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Abstract  

A new set of methodologies, which allow a simple and fast mapping and 

characterization of small-scale aeolian structures on Mars is introduced in this work. We 

follow an object-based approach in which the bedform crestlines are automatically 

mapped and characterized. 

From the methodology validation, we conclude that the quality of the obtained results is 

comparable with human-produced photointerpretations. We show that the accuracy 

associated with the measurement of mean trends from the automatically mapped 

patterns is less than 10º. 

Through the analysis of two areas located near the MSL landing site in Gale Crater, we 

explore some of the possibilities that the automatic mapping technique enables. Namely, 

for multitemporal surveys and ripple pattern analysis.  

We demonstrate how the mapped ripple patterns can be used to assess local wind 

orientations, and we analyze some examples that illustrate the diversity of wavelength 

spatial distributions that can be found on Mars. We try to relate these pattern 

wavelength variations with the possible local influence of granulometry and wind shear 

velocity.  

 

Highlights 

We introduce a set of new tools for analyzing small-scale aeolian bedforms on Mars 

We evaluate the accuracy of the new mapping methodologies  

Several examples of possible applications are given 

Contrasting ripple wavelength spatial distributions are described in Gale Crater 

Keywords  

Geological processes; Mars, surface; Image processing 
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1. Introduction 

Dune field and ripple patterns, as many natural patterns in nature, are self-organized 

complex systems (Werner, 1999; Werner and Kocurek, 1999). This means that studying 

the characteristics of a pattern may shed light on the process that drives its evolution. 

Many examples of studies using morphometric parameters to characterize the long-term 

dune field dynamics can be found (Beveridge et al., 2006; Bishop, 2010; Elbelrhiti et 

al., 2008; Ewing et al., 2006; Kocurek and Ewing, 2005). The classic planimetric 

discretization of landforms using points or lines is still the preferred methodology, even 

if it is recognized that it can be a highly subjective task whose results are not necessarily 

reproducible (Hugenholtz et al., 2012). 

The study of subaqueous ripples has profited from the application of objective 

characterization techniques. By employing sonar data, several workers used spectral 

analysis (Englert, 2010; Smyth and Li, 2005; Voulgaris and Morin, 2008), the Radon 

transform (Maier and Hay, 2009) and edge detection techniques (Traykovski, 2007) to 

retrieve bedforms morphometric parameters (such as wavelength, orientation and 

height). Skarke and Trembanis (2011) presented and alternative approach, combining 

the use of local gradients (to obtain wavelengths and orientations) with a defect 

mapping technique which relies on the identification of the ripple junction points.  

The study of Martian wind ripples was recently boosted by the quality and spatial 

resolution (~ 0.25 m/pixel) of High Resolution Imaging Science Experiment (HiRISE) 

imagery (Bridges et al., 2007; McEwen et al., 2007). Because sand ripples are 

influenced by the short term wind flow variability in space and time, their study is 

fundamental to reconstruct the local wind context of a certain area. To date, the most 

used pattern characteristics have been the trend and rate of migration of the ripple 

crestlines, in particular: 1) the trend of the ripple crestlines has been used to reconstruct 
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the flow pattern over the dunes in Olympia Undae, Arabia Terra, Meridiani Planum and 

in the Mars Science Laboratory (MSL) landing site in Gale Crater  (Ewing et al., 2010; 

Geissler et al., 2012; Silvestro et al., 2013; Silvestro et al., 2011); 2) the migration rate 

of the ripple crestlines have been used to provide constraints on sand-moving winds and 

to calculate sand flux over the Nili Patera sand dunes (Bridges et al., 2012; Silvestro et 

al., 2010), and the trend and direction of the moving ripple crestlines have been used 

together to provide a better “ground truth” for testing mesoscale atmospheric wind 

models in the MSL landing site (Silvestro et al., 2013). 

Manually mapping the ripple crestlines has been, to date, the most used technique to 

derive pattern parameters such as trend and rate of migration (Ewing et al., 2010; 

Johnson and Zimbelman, 2013; Silvestro et al., 2010). However, this procedure is time 

consuming and to date only small areas could be analyzed. A first step in using an 

automatic method for studying ripple populations on Mars has been done by the authors 

in Arabia Terra and Gale Crater (Silvestro et al., 2013; Silvestro et al., 2011). However, 

the methodology used in these works has never been properly validated. Here we 

describe in detail an integrated framework for mapping and analyzing small-scale 

aeolian ripples from HiRISE data. We will provide the validation of the proposed 

technique, and we will highlight some of the possible applications, giving special 

attention to the spatial analysis of ripple patterns.  

 

1.1. Study area 

The study area is located ~9 km SW from the Mars Science Laboratory (MSL) 

Curiosity rover landing site in Gale Crater (Fig. 1). This area is characterized by the 

presence of dark barchans, dome and linear dunes of basaltic composition (Hobbs et al., 

2010; Silvestro et al., 2013). The dunes are predominantly sculpted by two sets of large 
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ripples (with an average wavelength of 2.7 m) trending 45° and 330°. Both, the dunes 

and the ripples, show signs of recent activity (Silvestro et al., 2013). In this work, we 

will focus our attention on the ripple pattern and, in particular, on the methodology used 

to extract specific morphometric parameters. Due to the complexity of the ripple 

pattern, the area is ideal for testing our methodology. Regions A and B are analyzed in 

more detail to illustrate some of the potential offered by the new tools which we are 

presenting (see section 4.2 and Fig. 1 for location).  

 

FIGURE 1  

 

2. Data and methodology 

In this work, we use USGS orthophotos with 0.25 m/pixel resolution (McEwen et al., 

2007) and DTMs (digital elevation models) with a spatial resolution of 1m/pixel and a 

vertical accuracy approaching 20 cm (Kirk et al., 2008). To improve the coregistration 

between the several images we use, we have defined control points and applied a third 

order polynomial fit in ArcGIS (a maximum RMSE of 5 cm was achieved). See table 1 

for a summary of image characteristics. 

As earlier mentioned, spectral analysis and other classic edge detection techniques 

can be used to estimate the wavelength and orientation of bedforms. A challenge that 

remote sensing data presents is that bedforms are not uniformly distributed. Ripples are 

usually clustered and can show a spatial variability of trends and wavelengths, moreover 

bedrock is frequently exposed. These facts inhibit the use of any methodology that 

produces global estimates for a given area.  

Our approach is to use simple geometric objects (polylines) to map the ripple pattern. 

The idea is to reproduce the way humans would map the ripple traces in map view, but 
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doing it automatically and assuring the reproducibility of the results. Putting the 

problem in this perspective, we take advantage of the lineament mapping techniques 

first developed for tectonic mapping purposes (Vaz, 2011; Vaz et al., 2012).  

On a wider context, the ideas we follow can be included in the field of object-based 

image analysis (OBIA, or GEOBIA – geographic object-based image analysis) 

(Blaschke, 2010; Hay and Castilla, 2008; Vaz and Silvestro, 2012). It consists on the 

application of classic segmentation and classification schemes to obtain higher 

hierarchy objects. Note that the major difference between our approach and any pixel-

based technique is that we can easily merge textural, spectral and multiscale spatial 

parameters as objects attributes.  

On Mars, a two-step algorithm was previously proposed for segmenting and 

recognizing linear bedforms using MOC (Mars Orbiter Camera) images (Pina et al., 

2004). We adopt the same general idea, and we divide the mapping procedure into two 

main tasks: segmentation of the sand bodies and bedform mapping and characterization 

(Fig. 2). Using a supervised classification technique, we first assure the segmentation of 

regions with superimposed bedforms. The obtained mask is then applied after the 

bedform recognition stage.  The final stage corresponds to the vectorization and 

characterization of the mapped objects.  

Through this work, we use several standard morphological image processing 

operators which for brevity are not defined in detail. The operators are used for textural 

characterization during the first processing stage, and for generating the ripple marker 

during the bedform mapping stage. For a formal description and details on the 

implementation of the operators, readers are referred to Soille (2002). 

 

TABLE 1  
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FIGURE 2 

 

2.1. Sand bodies segmentation 

Despite the albedo differences existent between bedrock and sand bodies, it is not 

practicable to use a simple threshold to segment the two classes. Shadows in the 

bedrock areas as well as dune topography produce albedo variations which make the 

segmentation process more difficult. To overcome these limitations, we adopt a 

supervised classification technique using artificial neural networks (ANN), a method 

that is widely used for classifying remote sensing data (Atkinson and Tatnall, 1997; 

Mas and Flores, 2008; Tso and Mather, 2001).  

 

2.1.1. Texture descriptors 

Sand bodies are usually characterized by typical linear textures, differing from more 

chaotic textures of bedrock areas. Using local texture descriptors also has the advantage 

of attenuating different illumination conditions. Besides the reflectance values 

(descriptor 1d ), we fed the ANN with several texture descriptors and a topographic 

normalization matrix computed from the DTM. We use image T1 to train the ANN 

using the training dataset shown in Fig. 3.   

 

FIGURE 3 

 

To account for reflectance variations due to linear topographies, such as ripples, we 

use local morphological directional fields computed using line structuring elements 

(SEs). The descriptor d2 (Fig. 4b) is defined by ( ) ( )fgdirfgdirfd
φ

λ
γ

λ +−=2  where f  

is the input image, and ( )fgdir
γ

λ  and ( )fgdir
φ

λ  represent the strength of the local 
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orientation field computed by closing and opening respectively, at scale λ  (we use line 

SEs with 7 pixels).  

To enhance the boundaries between the two classes we merge the output of 

morphological half-gradients. This descriptor (Fig. 4c) is defined according to 

)()(3 ffd BB

−+ −= ρρ  and it is computed from the input image f  using an isotropic 

structuring element B with 5 pixels radius ( +ρ  and −ρ represent the external and 

internal morphological gradients). 

Another textural descriptor that we use is the local entropy computed on a 6 pixels 

radius circular neighborhood (Fig. 4d). This descriptor is computed from the local 

histograms and can be defined according to ∑
−

=

−=
1

0

24 )(log)(
n

i

ii zpzpd , where )( izp  is 

the probability of occurrence of a given reflectance value iz , while n  is the number of 

possible values in the neighborhood (Gonzalez et al., 2004).  

We adapt the Minnaert topographic normalization that is commonly applied on 

remote sensing for removing topographic effects (Blesius and Weirich, 2005; Lu et al., 

2008; Walter et al., 2011). The Minneart topographic correction is expressed by 

k

TH ieeLL )cos/(coscos=  with )cos(sinsincoscoscos smeei ϕϕθθ −+= . TL  is the 

input reflectance while HL is the output corrected reflectance. The terrain slope and 

aspect angles correspond to e  and sϕ , while θ  and mϕ  represent the solar zenith angles 

and azimuths (Riano et al., 2003). 

For simplicity we have not estimated the Minneart exponent k , which would 

probably assume a different value for each class  (Jehl et al., 2008). We used a constant 

value of 1.0=k , but instead of applying the correction to the input image, we used the 

correction values as one of the inputs for the ANN. We defined this descriptor as 
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k
ieed )cos/(coscos5 =  (Fig. 4e). In this way, we try to reduce the impact of DTM 

spatial resolution and artifacts in the final classification results.  

 

2.1.2.   Training and classification 

A pre-processing stage, which consists in the scaling of the input descriptors, is 

performed. Using the means and standard deviations ( x  and s ), the five descriptors are 

independently scaled from the [ ]sxsx 2,2 +−  interval to the [ ]1,1−  range (see Fig.4a to 

e). We use a simple feedforward ANN architecture constituted by one input (with five 

nodes), one hidden (five nodes) and one output layer (two nodes). We use hyperbolic 

tangent functions as transfer functions and the training methodology which we employ 

is the scaled conjugate gradient backpropagation algorithm (Moller, 1993). We obtain a 

classification overall accuracy of 97% for image T1. 

After the classification, the obtained “bedform” class is vectorized and is later used 

to mask the areas where the bedform mapping technique is applied (Fig. 4f and 5a). See 

section 4.1 for an example of the application of this same methodology to analyze dune 

migration.  

 

FIGURE 4 

 

2.2. Bedform mapping and characterization 

Bedforms tend to form distinctive linear features where one of the faces will be 

illuminated and bright, while the other will be shadowed and dark. We explore this 

linear bright/dark dichotomy to map the bedform traces, focusing on the segmentation 

of one of the faces, the one that is directly illuminated. 
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To enhance the brighter linear features on the images we first apply a neighborhood-

based morphological contrast enhancement technique defined as 

( ) 2/)]([ fgdirfg B

φ
λε+= , where f  is the input image, Bε  is the erosion operator (B 

corresponds to a disk SE with a radius of 1 pixel),  and ( )fgdir
φ

λ  is the strength of the 

local orientation field computed by closing using a SE with 5 pixels. The resultant 

dataset (Fig. 5b) is then used in the following processing steps. 

The marker matrix m  is obtained by computing the supremum of the differences 

between the white top-hats (
i

WTHα ) and black top-hats (
i

BTH α ) for all the possible 

orientations iα  (the length of the line SEs used is 7 pixels) (see Fig. 5c). An hysteresis 

threshold (aka double threshold, DBLT) is used to obtain a binary image, which is then 

intersected with the bedform marker (bm ) obtained with the methodology described in 

the previous section. These operations are represented by 

bmgBTHgWTHDBLTm
ii

i

ttt ∩−∨= << )]}()([{][ max21 αα
α

 with 
4

1 102.4 −×=t  and 

4

2 107.6 −×=t . An example of the obtained results can be seen in Fig. 5d. 

The same vectorization methodology described in Vaz (2011) is applied here, 

producing a lineament database which represent the bedforms traces (Fig. 5e). Several 

attributes are attached to each object in the database. Geometric parameters, such as 

length, sinuosity or azimuth (see Fig. 5f for an example of directional segmentation), 

are computed using geodetic measurements. Summary statistical parameters (minimum, 

maximum, mean and standard deviation or the mean vector azimuth and circular 

standard deviation when dealing with angular data) are computed along the objects from 

a diversity of datasets. For instance, from the original image and derived local 

orientation fields we obtain textural attributes. From the DTM we derived a full 

morphometric characterization of the bedforms topographic setting. Besides the 
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integration of the regional slope and aspect angles we also include longitudinal dips and 

strikes.  

Multitemporal surveys can also benefit from the proposed mapping technique. A 

minimum bedform displacement value can be simply derived by computing the 

Euclidean distance between the lines in the two datasets (section 4.1). Finally, the 

obtained lineament database can be used to produce additional datasets. For instance, 

the mapped crest lines can be used to derive wavelength estimates (see section 4.3).  

 

3. Bedform mapping accuracy assessment 

We have selected three regions, presenting a diversity of bedform geometries, 

wavelengths and trends, to serve as validation areas for the presented mapping 

methodology. For each area, we have automatically derived a lineament map (dataset 

III). Other two datasets (I and II) were obtained through photointerpretation and 

correspond to the crestlines mapped manually and independently by each author (see 

Fig. 6 for a detailed view of one of the areas, or Appendix A for a complete view of the 

compared datasets). 

In this section we compare the three datasets both qualitatively and quantitatively. 

The objective is to validate the results of the described method as well as to give some 

insight on the possible variability associated with the process of photointerpretation.  

 

FIGURE 6 

FIGURE 7 

 

 The main differences between the two manually derived datasets (dataset I and II), 

are located in the areas of intersection of sets of structures with different azimuths (see 
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the detailed view in Fig. 6). Different topological criteria contribute to the differences in 

the mapping output, but longer lineaments tend to be equally mapped on both datasets. 

Dataset III presents the same type of topological discrepancies, it is composed by 

smaller segments (compare the mean length in Table 2), and generally presents a higher 

degree of sinuosity since it fits better the local irregularities of the bedform patterns. 

These characteristics translate in a higher total length of mapped lineaments for dataset 

III. 

In Fig. 7 we show the length-weighted circular distributions for each test area and 

datasets. The unimodal (Fig. 7a) or bimodal (Figs. 7b, 7c) nature of the distributions is 

equally well represented in all datasets. The main difference is related with the circular 

frequencies, with dataset III presenting the lower values. This fact is consistent with the 

higher circular variances (V) associated with dataset III (see Table 2, V varies from 0 to 

1, with 0 denoting a strong clustering around the mean direction). Also note the 

different frequencies existent between the two interpreted datasets (I and II) nearby the 

modal bins (in Fig. 7b for instance). 

The absolute frequencies between the datasets can be variable, and are always 

dependent on the choice of bin size (in this work we use 5º bins on all circular 

diagrams). Even so, in cases where bimodal distributions are analyzed (Figs. 7b and c) 

the automatic methodology still allows the relative assessment of each mode magnitude. 

For the aforementioned cases, the NE-SW set of ripples tends to be predominant, with a 

stronger asymmetry in Fig. 7c.  

On average, a difference of 7.3º exists between the mean azimuth computed for 

datasets I and II. An average angular difference of 4.8º was obtained between dataset III 

and I/II. The given values attest that the expectable accuracy for determining the mean 
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trend of a bedform pattern, either by the traditional or automatic mapping, is always 

below 10º.  

 

TABLE 2 

 

4. Possible applications 

Besides the algorithm validation, we examine some examples of possible 

applications created by this set of new tools.  

 

4.1.   Multitemporal analysis 

The described methodology can be used to perform multitemporal monitoring of 

dune fields. In Figure 8a we show the boundaries of the sand bodies extracted 

automatically from a sequence of images (T1, T2 and T3) using the same procedure 

described in section 2.1. It is evident the SW migration of the dune during the analyzed 

time span. Assuming a bi-orthogonal displacement, a mean displacement of ~2  m was 

estimated for this upwind edge of the dune, during the T1-T3 time interval. This value 

of migration matches well with the dune toes advancement calculated for 8 dunes in the 

same area in a previous work (Silvestro et al., 2013). 

Since a true automatic ripple correlation procedure is not yet implemented, we 

present an example of the minimum migration procedure (Fig. 9). The azimuth of this 

displacement vectorial field is assumed to be locally orthogonal to the mapped 

structures. This approach has some limitations: 1) since the bedform correlation is being 

made between the nearest neighbors, it implies that the measured displacement values 

are always below half the pattern wavelength; 2) this technique is able to predict the 

direction of displacement but not the sense of motion of the structures; and 3) 
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coregistration errors as well as differences in illumination conditions can introduce 

uncertainties which are not easily quantifiable.  

Despite these limitations, the described method could be useful to analyze the spatial 

distribution of migration rates. For example, in the NE dune the displacements increase 

toward the dune top. The same dune height/ripple migration relation has been described 

by Bridges et al. (2012) in Nili Patera. In the SW dune, a similar trend is not evident 

since in the higher part of the dune the displacement values decrease (dashed area in 

Fig. 9). This could be interpreted as a clear sign of migration underestimation due to the 

limitations of the used correlation technique. In that area, the real displacement probably 

exceeds the threshold value of half the wavelength, which breaks the correlation 

between the ripples. 

To produce results similar to the ones obtained by the application of the COSI-Corr 

pixel-based tools (Bridges et al., 2012; Necsoiu et al., 2009), we are implementing an 

object-based cross-correlation which should solve the pointed limitations. The major 

advantage of our approach, is that we will be able to analyze and relate simultaneously 

pattern characteristics and migration rates.    

 

FIGURE 8 

FIGURE 9 

 

4.2. Characterization of bedform patterns  

Ripples are the structures that react faster to wind flow variations, and can be used to 

access the directions of the predominant winds. At a regional scale, spatial and temporal 

variations of the ripple main trends have already been analyzed using the described 

methodologies (Silvestro et al., 2013; Silvestro et al., 2011).  
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A correlation between bedform wavelength and atmospheric pressure has been studied 

on Mars (Lorenz et al., 2010), suggesting that wavelength measurements can be used as 

proxy for wind shear velocity. From fieldwork as well as from numerical and analogue 

experiments, it is known that the wavelength of a ripple pattern evolves in time 

(increasing with time until reaching a steady-state regime) and depends on sediment 

properties (grain size and sorting) and shear velocity (Andreotti et al., 2006; Ouchi and 

Nishimori, 1995; Pelletier, 2009; Walker, 1981). A linear dependence between wind 

velocity and ripple wavelength has been described by Andreotti et al. (2006). This 

relation is expressed by , where λ is the ripple wavelength,  is 

the particle diameter,  is the wind shear velocity and  is the shear velocity 

threshold.   

Using the proposed methodology, these two parameters (pattern trend and 

wavelength) can be easily extracted and correlated. Assuming that the wind direction is 

orthogonal to the ripple crests, it is possible to derive an axial vectorial field that 

approximates the wind trajectories at the surface. Wavelength is locally estimated by 

computing the median spacing between the bedforms (bedform orthogonal line 

segments with 10 m length were used). We have also computed the spacing median 

absolute deviation (MAD) which gives indication about the variability of the local 

wavelength. In this way, we obtain a vectorial field ideal for analyzing the spatial 

distribution of bedform wavelengths. 

In the following section, we investigate the possibility of using the wavelength of the 

ripple pattern as proxy for: 1) the dominant wind direction and 2) wind shear velocity 

and/or granulometry. The regions A and B (see Fig. 1) are analyzed for this purpose. 
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4.2.1. Region A 

In Fig. 10 we show the estimated wavelengths and median absolute deviation values. 

The MAD values give us indication about the regularity of the pattern in terms of 

wavelength (low values mean that the spacing between the ripples is regular, while high 

MAD values indicate areas where the pattern is less regular). We compare the slipfaces 

(Fig. 11a shows the stereographic projection of the slipfaces surface vectors) with the 

mean ripple vectors to evaluate which ripple morphometric parameter (ripple length or 

wavelength) is able to give a better insight on the long-term wind circulation pattern. In 

Fig. 11b we show: 1) the classic ripple length-weighted circular distribution, which was 

rotated by 90º ( ); 2) the mean wavelength vector and 3) the mean λ/MAD ratio 

vector (see Table 3). We assume that in this case the barchans slipfaces are probably the 

least unbiased proxies for the regional sediment transport direction and long-term wind 

circulation pattern.  

The wavelength- and λ/MAD-weighted circular distributions show a relative 

decrease of the NW-SE secondary component visible in the    distribution. Both 

cases produce mean trends which are closer to the slipface axis (<2º difference), while 

the  mean axis is 7.6º degrees apart from that axis. The ripples λ/MAD mean vector 

has the lower dispersion (with a V= 0.318). These characteristics suggest that the 

λ/MAD ratio may be a better proxy for inferring regional wind circulation patterns from 

Martian ripple patterns.  

 

FIGURE 10 

FIGURE 11 

TABLE 3  
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The relationship between height and ripple wavelength could also give precious 

informations about wind shear velocity and grain size distribution. A positive 

correlation between dune elevation and wavelength is evident in Fig. 10b. The MAD 

values decrease when moving uphill on the dunes, which means that the pattern 

becomes more regular in those regions (Fig. 10c).  

The linear regression of both variables shown in Fig. 11c seems to be consistent with 

the expected increasing shear velocity at higher dune heights, as also sustained by the 

linear correlation between ripple migration and dune height described by Bridges et al. 

(2012). This means that shear velocity, rather than granulometry, might control the 

wavelength spatial distribution in this area.  

If we assume a constant granulometry, we can try to predict the spatial distribution of 

wind shear velocities recurring to the direct application of the   

relation. However, dune grain size segregation is a well known process (Bishop, 2004; 

Lancaster et al., 2002), which we are not able to spatially constrain in the equation.     

 

4.2.2. Region B 

A similar analysis was made for a second area (Fig. 12), revealing a very different 

arrangement of the ripple pattern. We have a pattern that presents stronger trend 

bimodality, which is also visible in the λ/MAD-weighted circular distribution (Fig. 13a). 

A more detailed analysis showed that the NW-SE ripples set is preferentially located in 

lower dune heights (in Fig. 13b we present the wavelength-weighted circular 

distribution for the axial vectors located above and below 2 m, note the almost complete 

absence of the NE-SW component for elevations above 2 m).   
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In terms of wavelength spatial distribution we observe exactly the opposite of what 

was found for the two barchan dunes analyzed in the previous example. The higher 

wavelength values are clustered in the interdune depressions, while the pattern tends to 

be more regular (lower MAD values) in the higher sections of the dunes (Fig. 12). A 

negative linear correlation is observed between dune height and wavelength (Fig. 13c). 

If in the previous example the positive linear relation seems to support a wind shear 

controlled wavelength spatial distribution, here we are probably observing a stronger 

influence of granulometric control (with coarser sediments located in the interdune 

regions). Field observations made by Lancaster et al. (2002), shown that the spatial 

distribution of particle size and sorting is not constant in time and space, instead it is 

highly dependent on the fluctuations of the local wind regime. This means that our 

interpretation is of course rather simplistic, since we do not know much about particle 

size distribution, timing and intensity of the wind regime (which in this case is 

bimodal).  

 

FIGURE 12 

FIGURE 13 

 

5. Conclusion 

In this work we introduce a set of new tools suited for the integrated analysis of 

bedform patterns on Mars using HiRISE imagery. The main strength of the proposed 

framework is that it enables the simultaneous analysis of a large variety of data sources 

(migration rates and textural or morphometric parameters can now be integrated on a 

common object/entity).  
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We have evaluated the accuracy of the automatic methodology and we conclude that 

the results are consistent with the photointerpretations. From the comparison of two 

photointerpretations, we suggest that any type of pattern analysis which would be only 

focused on the pattern topology, is hardly reproducible and would probably produce 

biased results. The good news is that length-weighted circular statistics produce more 

stable and comparable results. Besides the bedform mapping, we present several 

possible applications derived from the core object-based mapping procedure:  

1) Multitemporal surveying of dune fields can be easily performed and the local wind 

circulation patterns can be inferred from the mapped lineaments.  

2) Dominant wind directions can be inferred by comparing circular length- and 

wavelength-weighted statistics with dune morphology. We speculate that the pattern 

wavelength may be a best proxy for wind direction. 

3) It is now possible to evaluate the spatial distribution of the bedforms wavelength 

over large areas. We analyzed two contrasting cases, where the general spatial 

arrangement of the ripple pattern seems to be conditioned by the interaction of 

granulometry and wind shear velocity.  

In addition, the data presented, confirm the regional variability of bedform 

arrangement close to the MSL landing site in Gale Crater. By combining the mapping 

techniques with new HiRISE images and with the ground observations made by the 

rover, we expect to generalize and better understand the causes of such variability.  
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Tables 

Table 1 – List of images used in this work. T2 image is used for all the pattern 

characterization tasks, while for multitemporal survey purposes we use all the images. 

ID Image Ls Date of acquisition 

T1 PSP_001488_1750_RED_A_01_ORTHO 138.17 2006-11-20 

T2 PSP_009650_1755_RED_A_01_ORTHO 113.93 2008-08-17 

T3 ESP_024234_1755_RED_A_01_ORTHO 7.03 2011-09-27 

 

 

 

Table 2 – Summary statistics for the three compared areas (Appendix A Figs. a, e and i) 

and datasets (datasets I and II correspond to the two photointerpretations, while dataset 

III was obtained automatically). The mean vector azimuth (σ ), circular variance (V), 

circular standard deviation (ν), mean length ( ), length standard deviation ( ) and total 

length ( ) are the presented parameters. See text for discussion. 

Area Dataset σ  V ν     

1 I 27.6 0.3 51.3 6.2 5.0 4643.5

II 23.3 0.2 42.9 6.2 5.9 4544.7

III 24.1 0.5 63.8 5.2 4.7 6288.9

2 I 22.2 0.8 96.4 6.0 5.0 5274.3

II 7.1 0.8 99.4 6.1 5.2 6178.3

III 14.9 0.7 91.6 5.0 4.2 6495.2

3 I 50.1 0.6 75.6 5.9 5.3 4702.4

II 52.6 0.6 73.2 5.6 6.2 4459.5

III 46.6 0.7 84.1 5.1 4.4 5116.8

 

 

 



  

 29

Table 3 – Mean axial trends comparison for the classic ripple length-weighted circular 

distribution rotated by 90º ( ), the mean wavelength vector (λ), the λ/MAD ratio 

mean vector and the mean vector computed from the slipfaces slope and aspect angles. 

Mean azimuth (σ ) and circular variance (V) are the presented parameters. 

 σ  V 

 

74.2 0.628 

 

67.0 0.346 

 

65.3 0.318 

Slipfaces axis 

(mean vector strike 

and dip) 

66.6  

(N246.6ºW; 

28.4SW) 
 

0.013 
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Figure captions 

Figure 1 – The two study areas located on Gale Crater which are used to illustrate the 

application of the proposed set of methodologies (CTX mosaic). 

 

Figure 2 – Methodology diagram with the main processing steps necessary to 

automatically extract the bedform patterns from HIRISE imagery. 

 

Figure 3 – Training dataset used as input to the neural network classifier in order to 

obtain a bedform mask (see Fig. 1 for location, region A). We preferentially include the 

dune edges areas, and we try to include profiles over the dunes with several orientations, 

so that the variations in albedo due to dune topography are well represented in the 

training dataset. 

 

Figure 4 – Texture descriptors used in the segmentation of the bedforms (see text for 

details): a) descriptor 1d  (input image T1); b) descriptor d2; c) descriptor d3; d) 

descriptor d4 (local entropy); e) descriptor d5 (topographic correction descriptor); f) 

boundary between the two classes.  

 

Figure 5 – Example of bedform mapping: a) input image and mapping mask 

boundary; b) morphological contrast enhancement; c) bedform marker; d) binary 
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bedform marker; e) vectorized bedform traces; f) example of directional segmentation 

of the mapped lineaments, note the existence and overlap of two sets of ripples. 

 

Figure 6 – Detailed view of the three datasets (see Appendix A for a complete view). 

The main difference between the manually mapped patterns (datasets I and II) is related 

with different topological criteria (note how the same feature can be mapped using 

longer or shorter line segments). Dataset III presents a higher degree of sinuosity since 

the bedforms are traced with more detail. a) input image; b) dataset I; c) dataset II; d) 

dataset III.  

 

Figure 7 – Length-weighted circular distributions obtained from the automatically 

mapped dataset (dataset III) and from two photointerpretations made independently by 

each author (datasets I and II) on three different areas (see Appendix A). Notice the 

general agreement between the location of the modal trends in all datasets, and the 

different relative frequencies (see table 2 for the summary circular statistics). 

 

Figure 8 – Example of the application of the segmentation technique for analyzing 

the migration of a dune during the T1 – T3 time interval: a)  mapped dune boundaries; 

b) mean migration vector computed assuming a bi-orthogonal migration between the T1 

and T3 boundary traces. 

 

Figure 9 – Minimum migration axial field computed for the T1-T2 interval. The 

dashed area indicates a region where the ripple migration exceeds the half wavelength 

threshold, which produces an artificial decrease of the migration values.   

 



  

 32

Figure 10 – Wavelength spatial distribution. a) dune elevation; b) wavelength axial 

vectorial field; c) median absolute deviation (MAD) derived from the wavelength 

estimation process. The higher wavelengths and lower MAD values are centered in the 

higher elevation (see Fig. 11c). 

 

Figure 11 –Analysis of the wavelength vectorial field displayed in Fig. 10. a) 

stereographic projection of the slipface surfaces (the slope and aspect angles derived 

from the DTM where used to produce this diagram); b) comparison of the ripple length-

weighted spatial distribution L90º (which was rotated by 90º so that it should 

approximate the wind regime responsible for ripple formation) with the wavelength- (λ) 

and λ/MAD ratio-weighted spatial distributions; c) linear regression of dune elevation 

and ripple wavelength. 

 

Figure 12 - Wavelength spatial distribution (see Fig. 1 for location, area B). a) 

HIRISE image; b) dune elevation; c) wavelength axial vectorial field; d) median 

absolute deviation (MAD) derived from the wavelength estimation process. Note the 

clustering of lower wavelength MAD values in the higher sections of the dunes (see Fig. 

13c).    

 

Figure 13 - Analysis of the wavelength vectors displayed in Fig. 12. a) comparison of 

the ripple length, wavelength- (λ) and λ/MAD-weighted spatial distribution; b) height 

segmented circular distribution of the wavelength parameter for dune elevations below 

and above 2 m (λH<2 and λH>=2); c) linear regression of dune elevation and ripples 

wavelength. 
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Appendix A  

A1 – Complete view of the datasets used for validation. Each row corresponds to one of 

the analyzed regions (respectively 1, 2 and 3). The second, third and fourth columns 

show the mapped crestlines on each dataset (I, II and III). Refer to Fig. 7 and Table 2 

for the derived circular diagrams and statistics.  
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