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Abstract

A glassy carbon electrode modified with functionalized multi-walled carbon 

nanotubes (MWCNT), 1-butyl-3-methylimidazolium chloride (ionic liquid= IL) and 

tyrosinase (Tyr) within a dihexadecylphosphate (DHP) film for the development of a 

biosensor is proposed. MWCNT, IL and Tyr were efficiently immobilized in the film 

using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide 

(EDC/NHS) as crosslinking agents, and which was characterized by cyclic voltammetry 

(CV) in the presence of catechol. The IL-MWCNT nanocomposite showed good 

conductivity and biocompatibility with Tyr enzyme, since the biosensor presented 

biocatalytic activity towards the oxidation of catechol to o-quinone which was 

electrochemically reduced to catechol at a potential of 0.04 V. The calibration curve 

ranged from 4.9 × 10−6 to 1.1 × 10−3 mol L−1 with a detection limit of 5.8 × 10−7 mol 

L−1. The developed Tyr-IL-MWCNT-DHP/GCE biosensor showed a wide linear range, 

good reproducibility, sensitivity and stability and the biosensor was successfully applied 

to the determination of catechol in natural water samples, with satisfactory results 

compared with a spectrophotometric method, at the 95% confidence level.
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1. Introduction

Room temperature ionic liquids (RTIL) are defined as compounds composed 

entirely of ions, which are liquid at a temperature less than 100 °C [1]. The use of ionic 

liquids in electroanalysis provides stability in the electrochemical responses and high 

ionic conductivity without the necessity of adding inert electrolyte. In recent years, 

RTILs have been used in the development of electrochemical sensors and biosensors, in 

most cases being incorporated in carbon paste [2] or carbon composite [3]. 

Nevertheless, there are very few biosensors using RTIL incorporated in film-modified

electrodes. Film-modified electrodes are a good way to entrap proteins and enzymes, 

retaining their bioactivity whilst not interfering in the electrochemical response.

Carbon nanotubes (CNTs) present similarity in length scales with redox 

enzymes, they have high electronic conductivity and good mechanical properties, which 

can improve biosensing devices [4-7], such as tyrosinase biosensors. Ozoner et al.

proposed a flow injection catechol biosensor based on tyrosinase entrapped in a CNT-

modified polypyrrole biocomposite film on a glassy carbon electrode substrate [8]. Man 

and Yo prepared a biosensor containing tyrosinase, single-walled CNT and polypyrrole

for amperometric detection of dopamine [9]. Tsai and Chiu developed an amperometric 

biosensor based on multi-walled CNT-Nafion-tyrosinase nanobiocomposites for the 

determination of phenolic compounds [10]. 
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Dihexadecylphosphate (DHP), or dicetylphosphate, is a surfactant molecule 

with a polar head and two long hydrophobic tails [11]. It can produce stable films on 

electrode surfaces, probably via hydrogen bonds, and has been used in sensors [12] and 

biosensors [13].

Tyrosinase (Tyr) is a blue copper protein (with 2 copper atoms in the active 

centre), which can be considered as a polyphenol oxidase (PPO). This important 

enzyme catalyzes two consecutive oxidation reactions: 1) the o-hydroxylation of 

phenols to guaiacol and subsequently, 2) the oxidation of guaiacol to o-quinones, both 

in the presence of molecular oxygen. Furthermore, Tyr has been extensively used in 

biosensor construction for the determination of phenols [14, 15]. Janegitz and co-

workers proposed a new phenol biosensor based on direct electron transfer by 

immobilizing Tyr on AuNPs electrodeposited on the surface of a BDD electrode [16].

In other work, Yang and co-workers constructed a novel nanocomposite film of 

tyrosinase–chitosan–carbon-coated nickel nanoparticles (CNi) for the detection of 

catechol [17]. Arecchi and co-workers developed a tyrosinase-modified amperometric

biosensor for the detection of phenolic compounds in food, in which the enzyme was

immobilized by drop-coating on a glassy carbon electrode covered by a polyamidic 

nanofibrous membrane prepared by electrospinning [18].

The aim of this work is to evaluate the advantages of a new catechol biosensor 

using 1-butyl-3-methylimidazolium chloride ionic liquid (IL) immobilised within a 

dihexadecylphosphate (DHP) film containing functionalized multi-walled carbon 

nanotubes (MWCNT) and tyrosinase (Tyr) enzyme.

2. Experimental

2.1 Reagents and solutions
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Tyrosinase 50 kU (from mushroom) and dihexadecylphosphate were purchased 

from Sigma. MWCNT (20-30 nm in diameter, 1-2 nm wall thickness and 0.5–2 m in 

length and 95% purity), 1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide hydrochloride 

(98%), 1-butyl-3-methylimidazolium chloride, N-hydroxysuccinimide (98%) were 

purchased from Aldrich. Catechol (99 %) and 4-aminoantipyrine were purchased from 

Sigma-Aldrich. All other chemicals were of analytical grade.

A 0.01 mol L−1 catechol stock solution was prepared in a 0.1 mol L−1

phosphate buffer solution (pH 7.0), which was made using NaH2PO4 and Na2HPO4. All 

solutions were prepared with Millipore Milli-Q nanopure water (resistivity > 18 M

cm). The phosphate buffer solution was employed as the supporting electrolyte in all the 

measurements with the biosensor.

2.2 Apparatus

The voltammetric experiments were conducted with a three-electrode system: 

the biosensor Tyr-IL-MWCNT-DHP/GCE as working electrode, a platinum wire as 

counter electrode, and Ag/AgCl (3.0 mol L−1 KCl) as reference electrode, to which all 

potentials are referred. Voltammetric measurements were carried out using a model 

PGSTAT12 potentiostat/galvanostat (Metrohm-Autolab, Utrecht, Netherlands) 

controlled by GPES 4.9 software. Cyclic and linear voltammetric measurements were 

carried out in a 20.0 mL electrochemical cell. The background current was subtracted 

from all voltammograms. All experiments were carried out at room temperature.

A Supra 35-VP equipment (Carl Zeiss, Germany) with electron beam energy of 

25 keV, was used to obtained the FEG-SEM images.
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Measurements of pH were performed using an Orion pH-meter, Expandable 

Ion Analyser, model EA-940, connected to a Digimed combined glass electrode with an 

external Ag/AgCl (3.0 mol L−1 KCl) reference electrode.

For comparison, a spectrophotometric method for catechol determination [19]

was carried out using a Femto spectrophotometer (model 435, Brazil) with a quartz 

cuvette (optical path length of 10 mm).

2.3. Functionalization of the multi-walled carbon nanotubes (acid treatment)

The MWCNT were initially purified with 2.0 mol L−1 HCl solution to remove 

metallic impurities, and were then submitted to a chemical pre-treatment using a 

mixture of concentrated nitric and sulfuric acids 3:1 (v/v) for 12 h at room temperature. 

After this, the suspension was centrifuged, the solid was washed several times with 

ultrapure water until pH 6.5–7.0 and was then dried at 120 °C for 6 h. The acid 

treatment promotes the appearance of polar hydrophilic surface groups, such as

carboxyl (−COOH), hydroxyl (−OH), quinone (–C(=O)), nitro (−NO2), and amino 

groups (−NH2) at the ends or at the sidewall defects of the nanotube structure [20-22].

After the acid treatment of MWCNT, an increase in the amount of carboxylic groups 

occurs, as described in detail in a previous, recent article [7].

2.4 Preparation of the Tyr-IL-MWCNT-DHP/GCE biosensor

A glassy carbon electrode (GCE, 5 mm diameter) was carefully polished to a 

mirror finish with 0.3 and 0.05 µm alumina slurries, and rinsed thoroughly with Milli-Q 

water. The GCE was sonicated in isopropyl alcohol and then with Milli-Q water, each 

for about 5 min, and dried at room temperature.
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A mass of 1.0 mg of MWCNT and 1.0 mg of DHP was added to 700 L of 0.1 

mol L−1 phosphate buffer solution (pH 7.0) and subjected to ultrasonication for 30 min 

to give a MWCNT-DHP suspension and then, 100L of 50 mg mL−1 IL solution in 0.1 

mol L−1 phosphate buffer solution was added and the mixture ultrasonicated for a 

further 30 min. Afterwards, an aliquot of 200 L of solution containing 1.0 × 10−3 mol 

L−1 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 2.0 × 10−2 mol L−1 N-

hydroxysuccinimide (NHS) was added in suspension for the carboxyl coupling reaction,

carried out for 2 h with magnetic stirring. A mass of 1.20 mg enzyme (2000 U Tyr) was 

added to the MWCNT suspension and stirred for 2 h. During mixing, Tyr molecules 

were linked by covalent bond formation between the –COOH groups of the MWCNT

and –NH2 of the enzyme [23]. Finally, a stable black suspension was obtained 

containing 1.0 mg of MWCNT, 1.0 mg of DHP and 5.0 mg of IL per mL. Subsequently, 

20 L of this suspension was cast onto the surface of a GCE and the solvent allowed to 

evaporate at 25 ± 1 oC for 12 h. Fig. 1 shows the biosensor fabrication process. 

The Tyr-IL-MWCNT-DHP/GCE biosensor was stored at 4 °C in a refrigerator 

in 0.1 mol L−1 phosphate buffer solution (pH 7.0), when not in use. 

Insert Fig. 1 here

2.5 Preparation of water samples

Natural water samples, A, B and C, were collected from a lake at São Carlos 

Federal University (São Carlos city - Brazil) (GPS A = 21°59’09.47’’S 

47°52’56.07’’W, B = 21°59’10.45’’S 47°52’55.31’’W and C = 21°59’07.53’’S 

47°52’51.01’’W). A sample of tap water, D, was collected at the same university. A

fixed volume (25 mL) was transferred to four different calibration flasks (50 mL). After 

this, an aliquot of 5.0 mL of a 1.0 × 10−2 mol L−1 catechol standard solution was 
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carefully added to each and the final volume of 50 mL reached by addition of ultrapure 

water. The samples were stirred in order to homogenize the solutions. All solutions 

were used without any pre-treatment and were freshly prepared just before the

measurements.

2.6. Spectrophotometric comparison method

A spectrophotometric method [19] was employed in order to compare the 

results obtained with the proposed voltammetric method. This method involves the 

construction of an analytical curve by monitoring the amount of antipyrine dye formed 

by the reaction of 4-aminoantipyrine and catechol. The blank, samples and standards 

were treated as follows. An accurate volume (100 mL) was transferred into a 250 mL 

beaker together with 2.5 mL of a 0.5 mol L−1 NH3 solution, and the pH was adjusted to 

7.9 with phosphate buffer solution. Then, 1.0 mL of a 20.0 g L−1 4-aminoantipyrine 

solution was added and mixed well, followed by 1.0 mL of a 80.0 g L−1 K3Fe(CN)6

solution. After 15 min, absorbances (blank, samples and standards) were measured at 

500 nm.

3. Results and discussion

3.1 Characteristics of the IL-MWCNT-DHP/GCE electrode

The IL-MWCNT-DHP/GCE electrodes were characterised electrochemically.

The combination of functionalized MWCNT and IL results in a nanocomposite with 

good conductivity and biocompatibility. In addition, the proposed film can increase the

electrode electroactive area, as shown below.
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The electroactive area of GCE, DHP/GCE, IL-DHP/GCE, MWCNT-

DHP/GCE and IL-MWCNT-DHP/GCE was estimated in 0.1 mol L−1 KCl solution in 

the presence of 1.0 × 10−3 mol L−1 potassium hexacyanoferrate (II) (data not shown), 

applying the Randles–Sevcik equation [24]:

Ipa = 2.69 × 105 n3/2 A D1/2 C v1/2 Eq. 1

where Ipa is the anodic peak current (A), n is the number of electrons transferred, A is 

the electroactive area (cm2), D is the diffusion coefficient of [Fe(CN)6]
4− in 0.1 mol L−1

KCl solution (6.2 × 10−6 cm2 s−1), v is the potential scan rate (V s−1), and C is the 

[Fe(CN)6]
4− concentration in bulk solution (mol cm−3). The slopes of Ipa vs. v1/2 plots for 

the oxidation process (data not shown) were: 4.77 × 10−5, 2.29 × 10−5, 3.11 × 10−5, 7.44 

× 10−5 and 11.0 × 10−5 A V−1/2 s1/2 for GCE, DHP/GCE, IL-DHP/GCE, MWCNT-

DHP/GCE and IL-MWCNT-DHP/GCE, respectively. The estimated electroactive areas 

were thus 0.071 cm2, 0.034 cm2, 0.046 cm2, 0.11 cm2 and 0.16 cm2 for GCE, 

DHP/GCE, IL-DHP/GCE, MWCNT-DHP/GCE and IL-MWCNT-DHP/GCE, 

respectively. The combination of MWCNT and IL increased the electroactive surface 

area by a factor of 2.3 compared to the GCE. This increase can be attributed to the 

unfolding of MWCNT promoted by IL through ‘cation-π’ interactions between the 

imidazolium cation of the IL and the π-electrons of the MWCNT surface, increasing the 

number of exposed MWCNT electroactive sites [25-27].

The influence of IL concentration from 3.0 to 10 mg mL−1 in the film, at a 

fixed amount of MWCNT in DHP 1.0 mg mL−1, on the analytical signal was also 

investigated. For this purpose, a 1.0 × 10−3 mol L−1 [Fe(CN)6]
4− in 0.1 mol L−1 KCl 

solution and potential scan rate of 100 mV s−1 were used. The peak current increased 

with the increase of IL concentration up to 5.0 mg mL−1 in the film (see Fig. SD-1 in the 
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supplementary data). When the concentration of IL was higher than 5.0 mg mL−1 the 

peak current decreased significantly. Thus, a 5.0 mg mL−1 IL concentration was selected 

for further studies.

3.2 Characterisation of the Tyr-IL-MWCNT-DHP/GCE biosensor

3.2.1 Scanning electron microscopy

Fig. 2 shows scanning electron microscopy (SEM) images of IL-MWCNT-

DHP and Tyr-IL-MWCNT-DHP on the surface of GCE. Initially, before enzyme 

immobilization, Fig.2A, it can be seen that the MWCNT are uniformly distributed in the 

IL-MWCNT-DHP nanocomposite film. Tyr was then immobilized within the IL-

MWCNT-DHP film by using EDC and NHS crosslinking agents that link the MWCNT 

carboxylic to the amine groups, as described previously [13]. After Tyr is immobilized

(Fig. 2B), the surface morphology shows agglomerates that can be attributed to enzyme 

on the surface of the CNTs.

Insert Fig. 2 here

3.2.2 Electrochemical behaviour of catechol

The electrochemical behaviour of the catechol system was evaluated using the 

proposed biosensor. Fig. 3 shows cyclic voltammograms (CVs) obtained for Tyr-

MWCNT-DHP/GCE and Tyr-IL-MWCNT-DHP/GCE biosensors, after thirty cycles in 

0.1 mol L−1 phosphate buffer solution (pH 7) containing 1.0 × 10−4 mol L−1  catechol at 

a scan rate of 100 mV s−1. As can be observed, the presence of IL in the biosensor leads 

to a considerable increase in the current response. Under the same conditions, the Tyr-

IL-MWCNT-DHP/GCE (Fig. 3B, solid line) gives higher anodic and cathodic current 

peaks than the biosensor without IL (Fig. 3A, dashed line). Thus, the cathodic peak
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current increased from −3.8 µA at Tyr-MWCNT-DHP/GCE to −7.6 µA at Tyr-IL-

MWCNT-DHP/GCE and the anodic peak current from 2.9 µA to 7.7 µA for the 

biosensor containing IL. In the absence of Tyr in the modified electrode, the CVs are 

similar but the oxidation and reduction current response is lower by about 30 %, since 

no additional effect from enzymatic conversion of catechol to o-quinone (which can be 

reduced and then reoxidised) can occur.

The Tyr-IL-MWCNT-DHP/GCE biosensor presented well-defined anodic and 

cathodic peaks of similar magnitude and nearly symmetric at 0.300 and 0.040 V (scan 

rate 100 mV s−1), respectively, with an Ipa/Ipc ratio equal to one, a formal potential, Eo,

of 170 mV and peak separation (Ep) of 260 mV. The presence of IL in the biosensor, 

showed an improvement in the reversibility of the system when compared with the 

biosensor in the absence of IL which presented a Ep of 383 mV.

Insert Fig. 3 here

These results show a synergic effect due the coupling of IL and MWCNT, 

which combines the high conductivity of ionic liquid with the electrocatalytic activity 

and/or increase of the analytical signal by the MWCNT. 

The effect of scan rate on the analytical response of the Tyr-IL-MWCNT-

DHP/GCE biosensor was evaluated for a 1.0 × 10−4 mol L−1 catechol solution in 0.1 mol 

L−1 phosphate buffer solution (pH 7.0). There was a shift in the peak potentials and 

increase in peak-to-peak separation with increasing scan rate, as can be seen in Fig. SD-

2 in the supplementary data. The linear dependence of the anodic and cathodic peak 

currents with scan rate in the range 10 to 500 mV s−1  indicates that the process is 

controlled by the redox monolayer containing the immobilised Tyr and might be treated 

using Laviron`s equations [28]:
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   Eq. 2

Eq. 3

Eq. 4

where Epa and Epc are the anodic and cathodic peak potentials, respectively, 

Ep = Epa − Epc, α is the charge transfer coefficient, v is the potential scan rate (V s−1), ks

is the heterogeneous electron transfer rate constant (s−1), R is the ideal gas constant

(8.314 J mol−1 K−1), F is the Faraday constant (96,485 C mol−1) and T is the temperature 

in Kelvin (298.15 K).

From the slopes of the plot of the anodic and cathodic peak potentials versus 

the logarithm of the potential scan rate (see Fig. SD-3 in the supplementary data, insert), 

the value of αan was calculated to be 0.92 and αcn = 1.08, which strongly suggests that n

= 2, verified below. The value of ks was calculated to be 35.1 ± 0.8 s−1 from a plot of 

Ep versus the logarithm of the potential scan rate (see Fig. SD-3). This value is almost 

ten times higher than that previously reported by Wang et al [29] at a

poly(diallyldimethylammonium chloride) functionalized graphene-modified glassy 

carbon electrode (3.85 s−1). The high value obtained indicates the great ability of the 

proposed biosensor to promote electron transfer between o-quinone and the electrode 

surface and can be attributed to the structure of MWCNT that have a large number of 

defects as well as the synergistic effect of MWCNT and IL in promoting o-quinone 

electrocatalysis.

3.2.3 Influence of pH on the determination of catechol
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The influence of pH on the cathodic peak current of the Tyr-IL-MWCNT-

DHP/GCE biosensor was evaluated in the presence of 1.0 × 10−4 mol L−1 catechol 

solution in a 0.1 mol L−1 phosphate buffer solution at scan rate 100 mV s−1. Since the 

literature reports that free Tyr loses activity irreversibly below pH 4.5 and above pH 9.3

[30-32], the selected pH range was from 5.5 to 8.0. The cathodic peak currents 

increased with increase in pH up to 7.0, as seen in Fig. 4A (insert). Above pH 7.0 the 

peak currents decreased. Therefore, phosphate buffer solution at pH 7.0 was selected as 

the supporting electrolyte for further studies.

The effect of solution pH on the anodic and cathodic peak potentials of Tyr-IL-

MWCNT-DHP/GCE was also evaluated. As can be seen in Fig. 4, an increase of pH 

leads to a negative shift in both peak potentials. Fig. 4B (insert) shows a plot of the 

formal potential (E°' = (Epa + Epc) / 2) versus pH. In this study, the formal potential

showed a linear dependence with buffer pH following the equation E°' (V) = 0.554 − 

0.054 pH with a correlation coefficient of 0.996. The value of the slope was − 54 mV 

pH−1, which was close to the theoretical value (59.2 mV pH1) at 25 °C for a reversible 

process involving equal numbers of protons and electrons [35, 36] and, according to 

Equation 6, the enzymatically produced o-quinone (Eq. 5) is electrochemically reduced 

to catechol at the electrode surface. 

catechol + tyrosinase (O2) → o-quinone + H2O Eq. 5

o-quinone + 2H+ + 2e− → catechol (at electrode surface) Eq. 6

A schematic representation of the electrode process is shown in Fig. 5.

Insert Fig. 4 here

Insert Fig. 5 here

3.3. Determination of catechol by linear sweep voltammetry
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The dependence of the cathodic peak current for reduction of o-quinone to 

catechol on LSV scan rate was evaluated in the range from 10 to 150 mV s−1 in the 

presence of 5.0 × 10−5 mol L−1 catechol solution in a 0.1 mol L−1 phosphate buffer 

solution (pH 7.0). A linear increase in the magnitude of the peak current with increase 

of scan rate was observed up to 100 mV s−1. Thus, this scan rate was chosen for 

construction of the analytical curve. Fig. 6 shows voltammograms obtained and the 

analytical curve (insert) for catechol using the proposed Tyr-IL-MWCNT-DHP/GCE 

biosensor.

The LSV method showed a linear response to catechol in the concentration 

range from 4.9 × 10−6 to 1.1 × 10−3 mol L−1, following the equation ΔIpc (µA) = 0.69 + 

3.28 × 104 C (mol L−1) with a correlation coefficient of 0.998. The limit of detection 

(three times the standard deviation for the blank solution (n=10) divided by the slope of 

the analytical curve) was calculated as 5.8 × 10−7 mol L−1. 

Insert Fig. 6 here

Insert Table 1 here

The analytical figures of merit of the proposed method were compared with 

those reported in the literature, Table 1. It can be seen that the proposed Tyr-IL-

MWCNT-DHP/GCE biosensor has a wide linear range (almost three decades), which 

was greater than those reported for other catechol sensors [6, 8, 15, 32, 35-42]. It 

presents a limit of detection lower than the biosensors in [8, 15, 35-37, 39-41] and 

higher than biosensors [6, 32, 38, 42]. The sensitivity of the proposed voltammetric 

method is higher than those of [8, 36, 38, 41] and lower than those of [6, 15, 40]. In 

addition, the proposed biosensor exhibited a great stability, assigned to the 

biocompatibility of Tyr-IL-MWCNT.
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The apparent Michaelis–Menten kinetic constant (KM
app) provides important 

information about the catalytic activity and affinity between enzyme and substrate. It 

can be estimated from the Lineweaver-Burk equation (double reciprocal plot) [16, 39]:

Eq. 7

where Is is the steady-state current measured for enzymatic product and Imax, is the 

maximum current under condition of substrate (catechol) saturation.

The equation of the Lineweaver-Burk plots for the Tyr-IL-MWCNT-

DHP/GCE biosensor was 1/Is = 0,203  38.61×1/[catechol] (correlation coefficient of 

0.995). Table 2 presents KM
app values reported in the literature for different tyrosinase 

biosensors using catechol as substrate. The Imax and KM
app values obtained in this work 

were 4.93 × 10−6 A and 1.9 × 10−4 mol L−1 respectively, which is in agreement with the 

values previously reported for a biosensor containing MWCNT and magnetic 

nanoparticles [41], self-assembled monolayers in a gold electrode [43], a graphite 

electrode [44] and a reticulated vitreous carbon–epoxy resin [45]. Higher values of

KM
app than in this work were reported by Campuzano et al. [46] for Tyr immobilized on 

self-assembled monolayers, by Kiralp et al. [47] for Tyr immobilized on polypyrrole 

and the reports for free Tyr [47-50]. This suggests that the enzyme immobilized in IL-

MWCNT, has a high catalytic activity with a high affinity for catechol, owing to an 

increase of the electron transfer rate.

Insert Table 2 here

3.4. Determination of catechol in water samples using the Tyr-IL-MWCNT-DHP/GCE 

biosensor
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The Tyr-IL-MWCNT-DHP/GCE biosensor was applied to the determination of 

the concentration of catechol in four water samples (three natural water samples, A – C,

and one tap water sample, D, using the standard addition method. As catechol was not 

found in the samples, aliquots of 100 µL of fortified samples (procedure described 

previously) were added to the electrochemical cell containing 20 mL of 0.1 mol L−1

phosphate buffer solution (pH 7.0) to obtain a 5.0 × 10−5 mol L−1 catechol 

concentration. For each sample three determinations were done, and the standard 

deviations were calculated. Table 3 presents the concentrations of catechol determined 

in water samples employing the proposed LSV method and the spectrophotometric

method [19]. After applying the paired t-test [51] to the results obtained by both

methods, the calculated t value of 2.468 is smaller than the critical value (3.182,  = 

0.05), so one may conclude that there is no difference between the two methods at a 

confidence level of 95%. This demonstrates that the Tyr-IL-MWCNT-DHP/GCE

biosensor is appropriate for the determination of catechol in water samples. Other 

advantages are ease of preparation, relatively low cost, stability and lifetime.

Insert Table 3 here

The repeatability (n=10) of one Tyr-IL-MWCNT-DHP/GCE biosensor was 

evaluated in a 5.0 × 10−5 mol L−1 catechol solution. The relative standard deviation 

(RSD) values obtained for intra-day repeatability was 1.16% and inter-day repeatability 

was 2.94%, indicating a good stability of the film. Furthermore, the reproducibility of 

the method was determined from the response of five different Tyr-IL-MWCNT-

DHP/GCE biosensors in the presence of 5.0 × 10−5 mol L−1 catechol. A relative standard

deviation of 4.86% was obtained, indicating high reproducibility.

The long-term stability of the Tyr-IL-MWCNT-DHP/GCE biosensor was 

evaluated by monitoring the response in the presence of 1.0 × 10−5 mol L−1 catechol in 
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0.1 mol L−1 phosphate buffer solution (pH 7.0) during 30 days (190 determinations in 

this period). The cathodic current response decreased by only 5.0 % after this time. This 

stability is due to two main factors, the immobilization procedure, which provides good 

entrapment of the enzyme within the IL-MWCNT-DHP film and to the biocompatibility 

between MWCNT and Tyr.

The interference of species such as sodium, potassium, magnesium, calcium, 

aluminum, iron(III) cations and carbonate, chloride, phosphate and sulfate anions and 

humic acid on catechol determination was evaluated in phosphate buffer solution (pH 

7.0) containing 5.0 × 10−5 mol L−1 catechol spiked concomitantly with each interferent 

(5.0 × 10−3 mol L−1). The results showed that for all tested species a change in the 

electrode response of less than 5 % occurred and did not disrupt the determination of 

catechol by the proposed biosensor at the concentration evaluated.

4. Conclusions

In this study, the enzyme tyrosinase was successfully immobilized in IL-

MWCNT-DHP/GCE. The use of MWCNT and IL, led to a synergistic effect by 

combining the high conductivity and biocompatibility of the ionic liquid with the 

MWCNT electrocatalytic activity and increased analytical signal. The Tyr-IL-

MWCNT-DHP/GCE biosensor was applied to the determination of catechol by LSV 

with linear responses in the concentration range from 4.9 × 10−6 to 1.1 × 10−3 mol L−1

and a detection limit of 5.8 × 10−7 mol L−1, besides presenting good intra and inter-day 

repeatability. The Tyr-IL-MWCNT-DHP/GCE biosensor was applied to the 

determination of catechol in water samples with good results, exhibiting high stability 

and long lifetime. Moreover, the use of this biosensor architecture can be an excellent

methodology to immobilize other enzymes or proteins.



Page 18 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

18

Acknowledgements

The authors gratefully acknowledge Conselho Nacional de Desenvolvimento 

Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de 

Nível Superior (CAPES), Instituto Nacional de Ciência e Tecnologia de Bioanalítica 

(INCTBio), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), 

for financial support and scholarships. We also thank Fundação para a Ciência e a 

Tecnologia (FCT), Portugal PTDC/QUI-QUI/116091/2009, POCH, POFC-QREN (co-

financed by FSE and European Community FEDER funds through the program 

COMPETE and FCT project PEst-C/EME/UI0285/2013.



Page 19 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

19

References

[1] M.J.A. Shiddiky, A.A.J. Torriero, Application of ionic liquids in electrochemical 
sensing systems, Biosens. Bioelectron., 26 (2011) 1775-1787.
[2] K.D. Maguerroski, S.C. Fernandes, A.C. Franzoi, I.C. Vieira, Pine nut peroxidase 
immobilized on chitosan crosslinked with citrate and ionic liquid used in the 
construction of a biosensor, Enzyme Microb. Technol., 44 (2009) 400-405.
[3] M.M. Musameh, R.T. Kachoosangi, L. Xiao, A. Russell, R.G. Compton, Ionic 
liquid-carbon composite glucose biosensor, Biosens. Bioelectron., 24 (2008) 87-92.
[4] E.R. Sartori, F.C. Vicentini, O. Fatibello-Filho, Indirect determination of sulfite 
using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with 
multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine 
hydrochloride) film, Talanta, 87 (2011) 235-242.
[5] B.C. Janegitz, L.C.S. Figueiredo-Filho, L.H. Marcolino-Junior, S.P.N. Souza, E.R. 
Pereira-Filho, O. Fatibello-Filho, Development of a carbon nanotubes paste electrode 
modified with crosslinked chitosan for cadmium(II) and mercury(II) determination, J. 
Electroanal. Chem., 660 (2011) 209-216.
[6] J. Ren, T.F. Kang, R. Xue, C.N. Ge, S.Y. Cheng, Biosensor based on a glassy 
carbon electrode modified with tyrosinase immmobilized on multiwalled carbon 
nanotubes, Microchim. Acta, 174 (2011) 303-309.
[7] B.C. Janegitz, L.H. Marcolino-Junior, S.P. Campana, R.C. Faria, O. Fatibello-Filho, 
Anodic stripping voltammetric determination of copper(II) using a functionalized 
carbon nanotubes paste electrode modified with crosslinked chitosan, Sens. Actuator B-
Chem., 142 (2009) 260-266.
[8] S.K. Ozoner, M. Yalvac, E. Erhan, Flow injection determination of catechol based 
on polypyrrole-carbon nanotube-tyrosinase biocomposite detector, Curr. Appl. Phys., 10 
(2010) 323-328.
[9] K. Min, Y.J. Yoo, Amperometric detection of dopamine based on tyrosinase–
SWNTs–Ppy composite electrode, Talanta, 80 (2009) 1007-1011.
[10] Y.C. Tsai, C.C. Chiu, Amperometric biosensors based on multiwalled carbon 
nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic 
compounds, Sens. Actuator B-Chem., 125 (2007) 10-16.
[11] Y. Wu, Nano-TiO2/dihexadecylphosphate based electrochemical sensor for 
sensitive determination of pentachlorophenol, Sensors and Actuators B: Chemical, 137 
(2009) 180-184.
[12] S.J. Yao, J.H. Xu, Y. Wang, X.X. Chen, Y.X. Xu, S.S. Hu, A highly sensitive 
hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl 
hydrogen phosphate composite film, Anal. Chim. Acta, 557 (2006) 78-84.
[13] B.C. Janegitz, R. Pauliukaite, M.E. Ghica, C.M.A. Brett, O. Fatibello-Filho, Direct 
electron transfer of glucose oxidase at glassy carbon electrode modified with 
functionalized carbon nanotubes within a dihexadecylphosphate film, Sens. Actuator B-
Chem., 158 (2011) 411-417.
[14] D. Fiorentino, A. Gallone, D. Fiocco, G. Palazzo, A. Mallardi, Mushroom 
tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols, 
Biosens. Bioelectron., 25 (2010) 2033-2037.
[15] C. Apetrei, M.L. Rodriguez-Mendez, J.A. De Saja, Amperometric tyrosinase based 
biosensor using an electropolymerized phosphate-doped polypyrrole film as an 



Page 20 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

20

immobilization support. Application for detection of phenolic compounds, Electrochim.
Acta, 56 (2011) 8919-8925.
[16] B.C. Janegitz, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Direct 
electrochemistry of tyrosinase and biosensing for phenol based on gold nanoparticles 
electrodeposited on a boron-doped diamond electrode, Diam. Relat. Mat., 25 (2012) 
128-133.
[17] L. Yang, H. Xiong, X. Zhang, S. Wang, A novel tyrosinase biosensor based on 
chitosan-carbon-coated nickel nanocomposite film, Bioelectrochemistry, 84 (2012) 44-
48.
[18] A. Arecchi, M. Scampicchio, S. Drusch, S. Mannino, Nanofibrous membrane 
based tyrosinase-biosensor for the detection of phenolic compounds, Anal. Chim. Acta, 
659 (2010) 133-136.
[19] A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the Examination 
of Water and Wastewater, 19th ed., American Public Health Association, USA, 1995.
[20] X. Jiang, J. Gu, X. Bai, L. Lin, Y. Zhang, The influence of acid treatment on multi-
walled carbon nanotubes, Pigm. Resin. Technol., 38 (2009) 165-173.
[21] Y. Shirazi, M.A. Tofighy, T. Mohammadi, A. Pak, Effects of different carbon 
precursors on synthesis of multiwall carbon nanotubes: Purification and 
Functionalization, Appl. Surf. Sci., 257 (2011) 7359-7367.
[22] L. Wang, S.A. Feng, J.H. Zhao, J.F. Zheng, Z.J. Wang, L. Li, Z.P. Zhu, A facile 
method to modify carbon nanotubes with nitro/amino groups, Appl. Surf. Sci., 256 
(2010) 6060-6064.
[23] Z. Grabarek, J. Gergely, Zero-length crosslinking procedure with the use of active 
esters, Anal. Biochem., 185 (1990) 131-135.
[24] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and 
Applications, 2 ed., John Wiley & Sons Inc., New York, 2001.
[25] Q. Zhao, D.P. Zhan, H.Y. Ma, M.Q. Zhang, Y.F. Zhao, P. Jing, Z.W. Zhu, X.H. 
Wan, Y.H. Shao, Q.K. Zhuang, Direct proteins electrochemistry based on ionic liquid 
mediated carbon nanotube modified glassy carbon electrode, Front. Biosci., 10 (2005) 
326-334.
[26] H. Tao, W.Z. Wei, X.D. Zeng, X.Y. Liu, X.J. Zhang, Y.M. Zhang, Electrocatalytic 
oxidation and determination of estradiol using an electrode modified with carbon 
nanotubes and an ionic liquid, Microchim. Acta, 166 (2009) 53-59.
[27] M. Tunckol, J. Durand, P. Serp, Carbon nanomaterial-ionic liquid hybrids, Carbon, 
50 (2012) 4303-4334.
[28] E. Laviron, General expression of the linear potential sweep voltammogram in the 
case of diffusionless electrochemical systems, J. Electroanal. Chem., 101 (1979) 19-28.
[29] L.T. Wang, Y. Zhang, Y.L. Du, D.B. Lu, Y.Z. Zhang, C.M. Wang, Simultaneous 
determination of catechol and hydroquinone based on poly (diallyldimethylammonium 
chloride) functionalized graphene-modified glassy carbon electrode, J. Solid State 
Electrochem., 16 (2012) 1323-1331.
[30] D. Kertesz, R. Zito, Mushroom polyphenol oxidase I. Purification and general 
properties, Biochimica Et Biophysica Acta, 96 (1965) 447-462.
[31] Z.J. Liu, B.H. Liu, J.L. Kong, J.Q. Deng, Probing trace phenols based on mediator-
free alumina sol-gel derived tyrosinase biosensor, Anal. Chem., 72 (2000) 4707-4712.
[32] Y.Y. Tan, J.Q. Kan, S.Q. Li, Amperometric biosensor for catechol using 
electrochemical template process, Sens. Actuator B-Chem., 152 (2011) 285-291.
[33] H.L. Qi, C.X. Zhang, Simultaneous determination of hydroquinone and catechol at 
a glassy carbon electrode modified with multiwall carbon nanotubes, Electroanalysis, 
17 (2005) 832-838.



Page 21 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

21

[34] M.F. Chen, X. Li, X.Y. Ma, Selective determination of catechol in wastewater at 
silver doped polyglycine modified film electrode, Int. J. Electrochem. Sci., 7 (2012) 
2616-2622.
[35] P. Dantoni, S.H.P. Serrano, A.M. Oliveira-Brett, I.G.R. Gutz, Flow-injection 
determination of catechol with a new tyrosinase/DNA biosensor, Anal. Chim. Acta, 366 
(1998) 137-145.
[36] Rajesh, W. Takashima, K. Kaneto, Amperometric phenol biosensor based on 
covalent immobilization of tyrosinase onto an electrochemically prepared novel 
copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film, Sens. Actuator B-Chem., 
102 (2004) 271-277.
[37] R. Solna, S. Sapelnikova, P. Skladal, M. Winther-Nielsen, C. Carlsson, J. Emneus, 
T. Ruzgas, Multienzyme electrochemical array sensor for determination of phenols and 
pesticides, Talanta, 65 (2005) 349-357.
[38] H.B. Yildiz, J. Castillo, D.A. Guschin, L. Toppare, W. Schuhmann, Phenol 
biosensor based on electrochemically controlled integration of tyrosinase in a redox 
polymer, Microchim. Acta, 159 (2007) 27-34.
[39] S. Tembe, S. Inamdar, S. Haram, M. Karve, S.F. D'Souza, Electrochemical 
biosensor for catechol using agarose-guar gum entrapped tyrosinase, J. Biotechnol., 128 
(2007) 80-85.
[40] F. Kheiri, R.E. Sabzi, E. Jannatdoust, H. Sedghi, Acetone extracted propolis as a 
novel membrane and its application in phenol biosensors: the case of catechol, J. Solid 
State Electrochem., 15 (2011) 2593-2599.
[41] B. Perez-Lopez, A. Merkoci, Magnetic nanoparticles modified with carbon 
nanotubes for electrocatalytic magnetoswitchable biosensing applications, Adv. Funct. 
Mater., 21 (2011) 255-260.
[42] R.X. Han, L. Cui, S.Y. Ai, H.S. Yin, X.G. Liu, Y.Y. Qiu, Amperometric biosensor 
based on tyrosinase immobilized in hydrotalcite-like compounds film for the
determination of polyphenols, J. Solid State Electrochem., 16 (2012) 449-456.
[43] X.P. Ji, X.R. Li, N. Wang, R.X. Ni, X.H. Liu, H.A. Xiong, Attachment of 
tyrosinase on mixed self-assembled monolayers for the construction of electrochemical 
biosensor, Chin. Chem. Lett., 21 (2010) 1239-1242.
[44] E. Burestedt, A. Narvaez, T. Ruzgas, L. Gorton, J. Emneus, E. Dominguez, G. 
MarkoVarga, Rate-limiting steps of tyrosinase-modified electrodes for the detection of 
catechol, Anal. Chem., 68 (1996) 1605-1611.
[45] B. Serra, S. Jimenez, M.L. Mena, A.J. Reviejo, J.M. Pingarron, Composite 
electrochemical biosensors: a comparison of three different electrode matrices for the 
construction of amperometric tyrosinase biosensors, Biosens. Bioelectron., 17 (2002) 
217-226.
[46] S. Campuzano, B. Serra, M. Pedrero, F.J.M. de Villena, J.M. Pingarron, 
Amperometric flow-injection determination of phenolic compounds at self-assembled 
monolayer-based tyrosinase biosensors, Anal. Chim. Acta, 494 (2003) 187-197.
[47] S. Kiralp, L. Toppare, Y. Yagci, Immobilization of polyphenol oxidase in 
conducting copolymers and determination of phenolic compounds in wines with 
enzyme electrodes, Int. J. Biol. Macromol., 33 (2003) 37-41.
[48] R.S. Brown, K.B. Male, J.H.T. Luong, A substrate recycling assay for phenolic-
compounds using tyrosinase and NADH, Anal. Biochem., 222 (1994) 131-139.
[49] J.C. Espin, M. Morales, P.A. Garcia-Ruiz, J. Tudela, F. Garcia-Canovas, 
Improvement of a continuous spectrophotometric method for determining the 
monophenolase and diphenolase activities of mushroom polyphenol oxidase, J. Agric. 
Food Chem., 45 (1997) 1084-1090.



Page 22 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

22

[50] J.L. Smith, R.C. Krueger, Separation and purification of phenolases of common 
mushroom, J. Biol. Chem., 237 (1962) 1121-1128.
[51] R.L. Anderson, Practical Statistics for Analytical Chemists, Van Nostrand 
Reinhold, New York, 1987.



Page 23 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

23

Biographies

Fernando Campanhã Vicentini received the MS degree from the University of São 

Paulo, São Carlos, SP, Brazil in 2009, and Ph.D. degree from the Federal University of 

São Carlos, São Carlos, SP, Brazil in 2013. His research interests include the study of

new electrode materials, carbon nanotubes, metallic nanoparticles and development of 

electrochemical sensors and biosensors.

Bruno Campos Janegitz received the MS degree from the Federal University of São 

Carlos, São Carlos, SP, Brazil in 2009, and Ph.D. degree in the same University, in 

2012. At present, he is a postodoctoral researcher at the Physics Institute of São Carlos, 

University of São Paulo, São Carlos, SP, Brazil. His research interests include 

electroanalytical chemistry, nanostructured electrode materials and modified electrode 

surfaces, electrochemical sensors and biosensors.

Christopher Brett is a professor of chemistry at the University of Coimbra, Portugal. 

His research interests include new nanostructured electrode materials and modified 

electrode surfaces, electrochemical sensors and biosensors, electroactive polymers, 

corrosion and its inhibition and applications of electrochemistry in the environmental, 

food and pharmaceutical areas.

Orlando Fatibello-Filho received his PhD degree in Analytical Chemistry from São 

Paulo University and postdoctorate in 1989 from the University of New Orleans, USA. 

Currently, he is a full professor of Analytical Chemistry in the Department of Chemistry 

at the Federal University of São Carlos, Brazil. His research interests consist in the 

development of analytical procedures employing chemical sensors, biosensors, solid-



Page 24 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

24

phase reactors and flow-injection systems and their application to the determination of 

analytes in pharmaceutical formulations, environmental and food samples.



Page 25 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

25

Figure Captions

Fig. 1. Scheme of the reaction of IL, EDC and NHS with the MWCNT and the enzyme 

Tyr.

Fig. 2. SEM images of IL-MWCNT-DHP (A) and Tyr-IL-MWCNT-DHP (B) on the 

surface of the GCE.

Fig. 3. CVs of Tyr-MWCNT-DHP/GCE (A, dashed line) and Tyr-IL-MWCNT-

DHP/GCE (B, solid line) after 30 cycles in a 1.0 × 10−4 mol L−1 catechol / 0.1 mol L−1

phosphate buffer solution (pH 7.0) at scan rate 100 mV s−1.

Fig. 4. CVs of the Tyr-IL-MWCNT-DHP/GCE in a 1.0 × 10−4 mol L−1 catechol / 0.1 

mol L−1 phosphate buffer solution, from pH 5.5 to 8.0. Scan rate 100 mV s−1. Inset A: 

Influence of pH on the cathodic peak current. Inset B: dependence of Eo' of Tyr versus 

pH.

Fig. 5. Schematic representation of the reduction of o-quinone produced in the

enzymatic reaction catalysed by Tyr in the presence of oxygen on the Tyr-IL-MWCNT-

DHP/GCE biosensor.

Fig. 6. LSVs obtained with the Tyr-IL-MWCNT-DHP/GCE biosensor in a 0.1 mol L−1

phosphate buffer solution (pH 7.0) containing different concentrations of catechol: (a) 

4.9 × 10−6, (b) 2.2 × 10−5, (c) 4.7 × 10−5, (d) 9.8 × 10−5, (e) 2.4 × 10−4, (f) 4.7 × 10−4, (g) 

6.9 × 10−4, (h) 9.0 × 10−4 (i) 1.1 × 10−3 mol L−1. Inset: Analytical curve.
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Table 1 Comparison of figures of merit obtained using the proposed biosensor and other 

tyrosinase biosensors for the determination of catechol.

Electrode Linear range
(µmol L−1)

Detection Limit
(µmol L−1)

Sensitivity
(mA mol-1 L)

Stability

Tyr-DNA/CP 1.0 – 50 1.0 – Shelf life: 2 months

Tyr-PAPCP/ITO 1.6 – 140 1.2 3.5 80% remained after 120 days

Tyr/SPPtE – 1.7 – 50-60% after 150 measurements

Tyr-Oscomplex-functionalized/Pt – 0.01 6.1

Tyr-Agarose-guar gum/GCE 60 – 800 6.0 – Shelf life: 2 months

Tyr-MWCNT-PPy/GCE 3.0 – 50 0.67 8.0 85% remained after 70 days

Tyr/MWCNT/AuNPs/AEP/Au 1.0 – 500 0.8 150 80% remained after 42 days

Tyr-MWCNT-MNP/SPE 10 – 80 7.6 4.8 Shelf life: 1 month

Tyr-MWCNT 0.2 – 10 0.2 226 72% remained after 30 days

Tyr-PO4–PPy/Pt 10 – 120 0.84 47 80% remained after 30 days

Tyr-PANI/Pt 5.0 – 140 0.05 – 90% remained after 120 days

Tyr-HTLc/GCE 3.0 – 300 0.1 – 72% remained after 30

Tyr-IL-MWCNT-DHP/GCE 4.9 – 1100 0.58 32.8 95% remained after 30 days

CP: Carbon paste; PAPCP: Poly (N-3-aminopropyl pyrrole-co-pyrrole); ITO: indium-

tin-oxide; SPPtE: Screen-printed Pt electrode; Os: Osmium; Pt: Platinum electrode; 

PPy: Polypyrrole; AuNPs: Gold nanoparticles; AEP: Acetone-extracted propolis; Au: 

Gold electrode; MNP: Magnetic nanoparticles; PANI: polyaniline; HTLc: Mg–Al–CO3

hydrotalcite-like.
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Table 2 KM
app values of different Tyr biosensors for catechol.

Biosensor KM
app/mol L−1 Reference

Tyr-MWCNT-MNP/SPE 1.8 × 10−4 [41]

Tyr-SAMs/Au 1.8 × 10−4 [43]

Tyr-IL-MWCNT-DHP/GCE 1.9 × 10−4 This work

Tyr/GE 1.9 × 10−4 [44]

Tyr/RVC-ER 2.0 × 10−4 [45]

Free Tyr 2.8 × 10−4 [48]

Tyr-MPA-SAMs/Au 3.3 × 10−4 [46]

Free Tyr 4.4 × 10−4 [49]

Free Tyr 4.0 × 10−3 [50]

Tyr-PPy/Pt 1.0 × 10−1 [47]

Tyr-PPy-MM/Pt 2.0 × 10−1 [47]

SPE: Screen printed electrode; MNP: Magnetic nanoparticles; Au: Gold electrode; 

SAMs: Self-assembled monolayers; GE: Graphite electrodes; RVC-ER: Reticulated 

vitreous carbon-epoxi-resin; MPA: 3-mercaptopropionic acid; PPy: Polypyrrole; MM: 

menthyl monomer.
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Table 3 Determination of catechol in water samples by LSV using the Tyr-IL-MWCNT-

DHP/GCE biosensor and spectrophotometric method .

                          Catechol (10−6 mol L−1)

Samples Reference method* LSV method Relative error**

A 50.9 ± 0.2 51.2 ± 0.4 +0.6

B 49.0 ± 0.4 53.8 ± 0.6 +9.8

C 49.1 ± 0.2 51.0 ± 0.3  +3.9

D 51.4 ± 0.6 49.2 ± 0.5 −4.3

* spectrophotometric method - Average of 3 measurements.

** [(proposed method – reference method) × 100] /reference method.
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Figure 3
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Figure 5
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Figure 6
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