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RESUMO 

O carcinoma hepatocelular é uma doença complexa e devastadora que se mantém 

resistente à quimioterapia convencional. O desenvolvimento de fármacos dirigidos às vias 

moleculares envolvidas na sobrevivência e proliferação das células neoplásicas, bem como a 

sua associação aos agentes convencionais poderá constituir uma nova abordagem no 

tratamento do carcinoma hepatocelular. 

O objectivo do presente estudo consiste na avaliação do potencial terapêutico dos novos 

fármacos dirigidos a alvos moleculares, nomeadamente os inibidores do proteasoma (MG-

262), da farnesiltransferase (L-744832) e do mTOR (Everolimus), em monoterapia e em 

combinação com os agentes da quimioterapia convencional 5-Fluorouracilo e Doxorrubicina, 

em células de carcinoma hepatocelular em cultura, HUH-7. 

Para atingir estes objectivos, as células HUH-7 foram incubadas com concentrações 

crescentes de MG-262, L-744832 e Everolimus em monoterapia e em associação com 5-

Fluorouracilo e Doxorrubicina durante diferentes intervalos de tempo. A viabilidade celular 

foi avaliada pelo teste Alamar Blue e o tipo de morte celular por microscopia óptica e 

citometria de fluxo, recorrendo à dupla marcação com anexina V e iodeto de propídio. Os 

mecanismos moleculares envolvidos na acção e citotoxicidade dos fármacos, nomeadamente, 

a expressão de conjugados de ubiquitina, lamininas A/C, ciclina D1 e de proteínas 

relacionadas com a morte celular (BAX e BCL2) foram também analisados por citometria de 

fluxo através de anticorpos monoclonais ligados a fluorocromos. 

Os resultados obtidos indicam que o MG-262, o L-744832 e o Everolimus têm um efeito 

antiproliferativo e citotóxico em monoterapia que varia em função da dose utilizada e do 

tempo de incubação. Induzem morte celular principalmente por apoptose, a qual poderá estar 

relacionada com o aumento da razão BAX/BCL-2. Às 48h, o IC50 é, respectivamente, 100nM 

(MG-262), 77µM (L-744832) e 18µM (Everolimus). A combinação destes fármacos com os 
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agentes terapêuticos convencionais demonstra aumento do efeito antiproliferativo para doses 

inferiores ao IC50 (sinergismo de adição). Além disso, o efeito citotóxico foi observado 

apenas nas associações do MG-262 com os fármacos da quimioterapia convencional. 

Este estudo sugere que os inibidores do proteasoma, os inibidores da farnesiltransferase e 

os inibidores do mTOR poderão constituir uma alternativa terapêutica no tratamento do 

carcinoma hepatocelular tanto em monoterapia como em associação com os fármacos 

convencionais. A escolha de um esquema terapêutico adequado será também crucial para o 

sucesso do tratamento. 

 

 

PALAVRAS-CHAVE 

Carcinoma hepatocelular, vias de sinalização, linha celular HUH-7, inibidor do 

proteasoma, inibidor da farnesiltransferase, inibidor do mTOR   
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ABSTRACT 

Hepatocellular carcinoma is a complex and devastating disease which remains highly 

resistant to commonly used systemic chemotherapy. Alternative treatment strategies focus on 

specific pathways involved in malignant cell survival and proliferation, as well as 

combination of different targeted therapies with conventional anticarcinogenic agents may 

open new horizons in hepatocellular carcinoma therapy. 

The aim of the present study is to test the therapeutic potential of new targeted drugs in 

hepatocellular carcinoma, namely the proteasome (MG-262), farnesiltransferase (L-744832) 

and m-TOR (Everolimus) inhibitors, in monotherapy and in combination with conventional 

anticarcinogenic agents, 5-Fluorouracil and Doxorrubicin, in the hepatocellular carcinoma cell 

line, HUH-7.  

To attaint this purpose, the HCC cell line, HUH-7 cells, were incubated with increasing 

concentrations of MG-262, L-744832 and Everolimus, both as single agents and in 

association with 5-Fluorouracil and Doxorrubicin, during different periods of time. Cell 

viability was evaluated by the Alamar Blue assay and cell death by optic microscopy and flow 

citometry using annexin V and propidium iodide incorporation. The molecullar mechanisms 

involved in drug citotoxicity, namely the expression of ubiquitin conjugates, laminin A/C, 

cyclin D1 and proteins related to cell death (BAX and BCL2), were analysed by flow 

cytometry using monoclonal antibodies labeled with fluorochromes. 

The obtained results show that MG-262, L-744832 and Everolimus have an 

antiproliferative and cytotoxic effect in monotherapy, depending on the applied dose and 

incubation period, inducing cell death mainly by apoptosis that may be related with the 

increase in BAX/BCL-2 ratio. The IC50 at 48h for each drug is: MG-262=100nM, L-

744832=77μM, Everolimus=18µM. The combination of MG-262, L-744832 and Everolimus 

with conventional anticarcinogenic drugs reveals an increase in antiproliferative effect for 
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lower doses than the IC50 (addition synergism). However, the cytotoxic effect is only 

observed with MG-262 in association with the conventional anticarcinogenic drugs. 

These results suggest that proteasome, farnesiltransferase and mTOR inhibitors may 

constitute a new potential therapeutic approach in HCC not only in monotherapy, but also in 

association with conventional therapies. The choice of an optimal drug schedule will also be 

crucial to the success of the therapy.  

 

KEYWORDS 

Hepatocellular carcinoma, molecular pathways, HUH-7 cell line, proteasome inhibitor, 

farnesyltransferase inhibitor, mTOR inhibitor 

 

 

ABBREVIATIONS LIST 

AV: annexin V 

DMEM: Dulbecco’s Modified Eagle’s medium 

FC: flow cytometry 

FBS: fetal bovine serum 

FICT: fluorescein isothiocyanate 

FTI: farnesyltransferase inhibitors 

HCC: hepatocellular carcinoma 

IC50: half-maximal inhibitory concentration  

MIF: mean intensity of fluorescence 

PBS: phosphate buffer solution 

PE: phycoerythrin 

PI: propidium iodide   
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INTRODUCTION 

Hepatocellular carcinoma (HCC) is a major health problem worlwide, being responsible 

for 80% of the primary malignant liver tumors (Avila et al., 2006). It is the sixth most 

common neoplasm in the world, and the third most common cause of cancer-related death 

(Lachenmayer et al., 2010). 

Geographical differences in incidence reflect variations of the main causal factors. In 

Asia and Africa, hepatitis B virus infection and aflatoxin B1 intake from contaminated food 

are common. In the West and Japan, hepatitis C virus infection is the main risk factor, as well 

as other causes of cirrhosis, such as alchool and haemochromatosis. The role of tobacco is not 

clearly established (Llovet et al., 2003). On the other hand, HCC is more frequent in certain 

genetic diseases including Wilson disease, porphyria and α-antitrypsin deficiency (Wang et 

al., 2002).  

Hepatocarcinogenesis is a mutifactorial process that might explain the complex 

molecular pathogenesis of HCC. This neoplasm arises in normal livers, abnormal but 

noncirrhotic livers, and in cirrhotic liver (80% of cases) as a result of different environmental 

risk factors. Each of these scenarios involves different genetic and epigenetic alterations, 

chromossomal aberrations, gene mutations and altered molecular pathways (Llovet and Bruix, 

2008), that result in the deregulation of key oncogenes and tumor-suppressor genes involved 

in several signalling pathways (Figure 1) (Farazi et al., 2006).  

At the time of presentation less than 40% of patients in the western world fulfill criteria 

for curative treatment (resection, transplatation, local ablation) and only 20% are eligible  for 

chemoembolization. Alternative or palliative treatment options are very limited due to 

resistance to conventional chemotherapy and radiotherapy. Therefore, the knowledge of the 

molecular pathogenesis of HCC can provide new opportunities for target therapies 

(Lachenmayer et al., 2010). 
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Figure 1: Signaling pathways involved in HCC, (Adapted from Avila et al., 2006). 

 

Since the inhibition of the ubiquitin-proteasome pathway in tumor cells results in 

accumulation of tumor suppressor and pro-apoptotic proteins, the possibility of targeting this 

pathway in cancer therapy is a viable option (Landis-Piwowar et al., 2006). Proteasome 

inhibition has already been established as a strategy for multiple myeloma and non-Hodgkin’s 

lymphoma affected patients (Baiz et al., 2009).  

Furthermore, activated RAS interacts with downstream effectors that mediate several 

signaling pathways involved in cell proliferation and survival (Haluska et al., 2002). The 

discovery that the transforming activity of oncogenic RAS depends upon its post-translational 

farnesylation has led to the development of farnesyltransferase inhibitors (FTIs) (Mazieres et 

al., 2003). FTIs have already  entered several phase I/II/III clinical trials in haematological 

malignancies and solid tumors, such as pancreas, lung, liver, prostate and bladder 

(www.clinicaltrials.gov). However, other studies show that the therapeutic efficacy of FTI 

Proteasome 
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may be independent of RAS mutations (Song et al., 2000; Appels et al., 2005; Sarmento 

Ribeiro et al., 2007; Ana Oliveira, 2008; Costa et al., submitted). 

Another signaling cascade that is frequently overactive in hepatic carcinogenesis is the 

PI3k/AKt/mTOR pathway (Piguet et al., 2008). mTOR is one of the most important 

regulatory element of protein synthesis, considered as a central controller of cell growth. It 

has a key position which is on the cross road of various signalling pathways, such as 

RAS/RAF, PI3/AKt, TSC, NF-kB (Strimpakos et al., 2009). Inhibition of mTOR have already 

been evaluated in haematological malignancies and breast, prostate, bladder, kidney and 

neuroendocrine tumors (Strimpakos et al., 2009 and Garcia et al., 2008).  

In this study we intend to evaluate the therapeutic efficacy and the possible synergistic 

effect of new targeted drugs, in particular the proteasome inhibitor, MG-262, the 

farnesyltransferase inhibitor, L-744832 and the mTOR inhibitor, Everolimus, in monotherapy 

and in combination with conventional chemotherapy, using a HCC cell line in culture. 

 

 

MATERIALS AND METHODS 

1- Chemicals 

MG-262 and L-744832 were obtained from BiomoL (USA). Everolimus, Doxorrubicin, 

5-Fluorouracil, Resazurin, May-Grünwald solution and Giemsa solution were purchased from 

Sigma (St. Louis, MO, USA). FBS and DMEM medium were purchased from GIBCO 

(Barcelona,Spain). The kit FITC-labelled annexin V (AV) and propidium iodide (PI) were 

obtained from Immunotec (Canada). Antibodies anti-lamin A/C, anti-BAX, anti-ubiquitin 

conjugates, anti-cyclin D1 and anti-BCL2 were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA).  
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2- Cell line culture conditions and evaluation of cell viability 

The human HUH-7 cell line, derived from a HCC expressing high levels of mutated p53 

(Carloni et al., 2005), offered by Professora Doutora Maria Conceição Pedroso Lima (CNC) 

were maintained in DMEM medium supplemented with 10% FBS, L-glutamine 2mM, 

NaHCO3, penicilin 100U/mL and streptomycin 100μg/mL at 37ºC in a humidified incubator 

containing 5% CO2. HUH-7 cells were seeded at a density of 50000 cells per cm
2
. 

To determine the drug dose-dependent changes, cells were cultured in the absence 

(control) and presence of MG-262 (concentration range: 10nM to 250nM), L-744832 

(concentration range: 1μM to 100μM), Everolimus (concentration range: 1μM to 75μM) , 5-

Fluorouracil (concentration range: 10μM to 500μM) and Doxorubicin (concentration range: 

10ng/mL to 500ng/mL) for up to 72h. No further addition of drug was made after the first 

dose. 

To check for possible synergistic effects, combination treatments of the new drugs (MG-

262, L-744832, Everolimus) plus conventional chemotherapy (5-Fluorouracil and 

Doxorrubin) were compared to those of each drug alone. 

The antiproliferative effect was assessed by Alamar Blue assay each 24h, during 72h and 

the IC50 (drug inhibition concentration to attaint 50% of cell vianility) was calculated from 

three independent experiments using GraphPad Prism 4.00. 

 

3- Morphological analysis 

After incubation for 48h, in the conditions described in 2.2 section, the HUH-7 cells, 

were stained with May-Grünwald-Giemsa solution and their morphology was analysed by 

light microscopy using a Leitz Dialux 20 microscope associated with a Moticam 2300 digital 

camera.   
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4- Flow cytometry assays 

4.1 Cell death analysis  

HUH-7 cells cultured in the absence or in the presence of the drugs as previously 

described were trypsinized, centrifuged at 300xg for 5min and incubated for 10min at 4ºC 

with 440μL annexin buffer containing 5μL FITC-labelled AV and 2μL PI. Cells were then 

washed twice with PBS, resuspended in the same buffer and analysed in a FACScalibur 

cytometer (BD Biosciences, Heildelberg, Germany) equipped with an argon ion laser emiting 

at 488nm. The fluorescence of AV-FITC and PI was evaluated at 525 and 610nm, 

respectively. 

The results were expressed as percentage of viable, early apoptotic, late 

apoptotic/necrotic and necrotic cells (Darzynkiewicz et al., 1997; Neves et al., 2006). 

 

4.2 Molecular mechanisms related with the cytotoxic effect of new drugs 

Some of the mechanisms involved in the cytotoxic effect were analysed by flow 

cytometry (FC) through the expression and ratio of the apoptotic regulators BAX and BCL2, 

ubiquitin-conjugates formation, lamin A/C and cyclin D1 levels. 

Cells cultured in the absence or in the presence of the drugs described above were 

incubated with 100μL fixing solution during 10min at room temperature, in dark. Cells were 

then washed with 1mL PBS, centrifuged at 300xg for 5min and finally incubated with 1μg of 

the antibody anti-BCL2 labelled with FITC, 1μg of antibody anti-BAX labelled with PE and 

100μL cell-permeable solution during 15min at room temperature, in dark. Cells were washed 

with 1mL PBS, centrifuged at 300xg for 5min, ressuspended in the same buffer and analysed 

in the flow cytometer. 

The same protocol was made with lamin A/C, ubiquitin conjugates and cyclin D1 levels. 
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Results were plotted using normalized mean intensity of fluorescence (MIF) arbitrary 

units, which is proportional to the number of molecules labeled by the antibody.  

For all the assays, negative controls were established with isotype IgG, IgG1 and IgG2b, 

and submitted to the same procedures. 

 

5- Statistical analysis 

Statistical analyses were performed using GraphPad Prism software, version 4.0 

(GraphPad Prism software, Inc., San Diego, CA). Statistically significant differences (p<0,05) 

between the experimental groups were determined by Student’s t test. 

 

 

 

RESULTS 

1- Analysis of cell viability  

1.1 Effect of MG-262, L-744832 and Everolimus treatment in monotherapy on the 

viability of HUH-7cels 

In order to evalute the therapeutic effect of the new targeted drugs,  HUH-7 cells were 

cultured in the absence and in the presence of MG-262, L-744832 and Everolimus for up to 

72h and the antiproliferative effect was evaluated by the Alamar Blue assay 

Our results show that MG-262 induced a decrease in HUH-7 cells viability in a time and 

dose dependent manner. In Figure 2 we can observe a decrease in cell viability only after 48 

hours of incubation, with an IC50 at 48 and 72h hours of exposure of 100nM and 50nM, 

respectively. 
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Figure 2: Dose response curve in HUH-7 cells incubated with MG-262. Cells were treated with MG-262 

in several concentrations during 72h according with described in materials and methods. Cell viability is 

expressed in percentage (%) of control and represents the mean + SD of 3 independent experiments. 

 

 

In the same way, when we treated the cells with the L-744832, we also observed a 

decrease in cell viability in a dose and time dependent manner, reaching the IC50 at 77μM 

(48h) and 59μM (72h) (Figure 3). However, and in the opposite with the observed with MG-

262, the antiproliferative effect is achieved earlier, after 24h of incubation, for the same 

concentration range observed in the cells treated during 48h, being the IC50 of 80μM.  

 

 

 

 

 

 

 

 
 

Figure 3: Dose response curve in HUH-7 cells incubated with L-744832. Cells were treated with L-

744832 in several concentrations during 72 hours according with described in materials and methods. Cell 

viability is expressed in percentage (%) of control and represents the mean + SD of 3 independent experiments. 
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Regarding the cytotoxicity induced by Everolimus, we observed a significant decrease in 

cell viability after 24h of incubation, being the IC50 similar during all the incubation period 

(18 to 17μM). However, the lethal dose is only achieved in the cells incubated during periods 

of 48h or higher (Figure 4). 

 

 

 

 

 

 

 

Figure 4: Dose response curve in HUH-7 cells incubated with Everolimus. Cells were treated with 

Everolimus in several concentrations during 72 hours according with described in materials and methods. Cell 

viability is expressed in percentage (%) of control and represents the mean + SD of 3 independent experiments. 

 

 

1.2 Effect of MG-262, L-744832 and Everolimus treatment in association with 

Doxorubicin and 5-Fluorouracil 

In order to check for possible synergistic effects, between MG-262, L-744832 and 

Everolimus with conventional chemotherapy agents, HUH-7 cells were incubated with the 

targeted drugs in combination with 5-Fluorouracil and Doxorubicin. 

As we can see in Figures 5-7, in all tested conditions, a synergistic antiproliferative effect 

was observed (addition synergism). In fact, the same antiproliferative effect was achieved at 

lower concentrations than those obtained for all the tested drugs in monotherapy. However the 

IC50 was achieved earlier in the combinations involving the L-744832 and Everolimus 

(Figures 6 and 7, respectively) than those involved MG-262 (Figure 5). 
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Figure 5: Dose response curve of MG-262 in association with Doxorubicin (up) and 5-Fluorouracil 

(below) in HUH-7 cells. Cells were treated with concentrations below the IC50 of the drugs used in 

monotherapy during 72 hours. Cell viability is expressed in percentage (%) of control and represents the mean + 

SD of 3 independent experiments. The difference between experimental groups is statistically significant after 

48h of incubation (**p<0,01; ***p<0,001). 
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Figure 6: Dose response curve of L-744832 in association with Doxorubicin (up) or 5-Fluorouracil 

(below) in HUH-7 cells. Cells were treated with concentrations below the IC50 of the drugs used in 

monotherapy during 72 hours. Cell viability is expressed in percentage (%) of control and represents the mean + 

SD of 3 independent experiments. The difference between experimental groups is statistically significant after 

48h of incubation (**p<0,01; ***p<0,001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Dose response curve of Everolimus in association with Doxorubicin (up) or 5-Fluorouracil 

(below) in HUH-7 cells. Cells were treated with concentrations below the IC50 of the drugs used in 

monotherapy during 72 hours. Cell viability is expressed in percentage (%) of control and represents the mean + 

SD of 3 independent experiments. The difference between experimental groups is statistically significant after 

48h of incubation (***p<0,001). 
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we can observe an addition synergism was achieved in all the tested conditions. In fact, the 

same antiproliferative effect was obtained with concentrations below the IC50 of the drugs 

used in monotherapy.   
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Figure 8: Dose response curve in HUH-7 cells incubated with MG-262 in association with L-744832. 

Cells were treated with concentrations below the IC50 of the drugs used in monotherapy during 72 hours. Cell 

viability is expressed in percentage (%) of control and represents the mean + SD of 3 independent experiments. 

The difference between experimental groups is statistically significant after 48h of incubation (**p<0,01; 

***p<0,001). 

 

 

 

 

 

 

 

Figure 9: Dose response curve in HUH-7 cells incubated with MG-262 in association with Everolimus. 

Cells were treated with concentrations below the IC50 of the drugs used in monotherapy during 72 hours. Cell 

viability is expressed in percentage (%) of control and represents the mean + SD of 3 independent experiments. 

The difference between experimental groups is statistically significant after 48h of incubation (**p<0,01; 

***p<0,001). 

  

 

 

 

 

 

 

Figure 10: Dose response curve in HUH-7 cells incubated with L-744832 in association with 

Everolimus. Cells were treated with concentrations below the IC50 of the drugs used in monotherapy during 72 

hours. Cell viability is expressed in percentage (%) of control and represents the mean + SD of 3 independent 
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experiments. The difference between experimental groups is statistically significant after 48h of incubation 

(**p<0,01; ***p<0,001). 

 

 

2- Morphological analysis  

Since tumour cell death mechanisms can interfere with the therapeutic strategy, we also 

analysed the cytotoxic effect induced by the referred drugs by studying cell death process 

through morphological analysis by optical microscopy and FC using the AV/PI incorporation. 

Figures 11-13 show the morphology of cell smears stained with May-Grünwald-Giemsa 

before (control) and after treatment with MG-262 (Figure 11), L-744832 (Figure 12) and 

Everolimus (Figure 13) in monotherapy and in association with Doxorubicin or 5-

Fluorouracil during 48h. As it can be seen, cells have morphological characteristics typical of 

cell death by apoptosis, such as cellular retraction, nuclear fragmentation, blebbing and 

apoptotic bodies’ formation. 

 

 

 

 

 

 

 

 

 

Figure 11: Morphological analysis of HUH-7 cells before (A) and after treatment with 50nM MG-

262(B) and 50nM MG-262 in association with 50ng/mL Doxorubicin (C) or 250μM 5-Fluorouracil (D) by 

optical microscopy. There are morphological evidences of cell death by apoptosis, such as cellular contraction, 

nuclear fragmentation, blebbing and apoptotic bodies’ formation. Amplification: 500x. 
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Figure 12: Morphological analysis of HUH-7 cells before (A) and after treatment with 50μM L-

744832 (B) and 50μM L-744832 in association with 50ng/mL Doxorubicin (C) or 250μM 5-Fluorouracil 

(D) by optical microscopy. There are morphological evidences of cell death by apoptosis, such as cellular 

contraction, nuclear fragmentation, blebbing and apoptotic bodies’ formation. Amplification: 500x. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Morphological analysis of HUH-7 cells before (A) and after treatment with 10μM 

Everolimus (B) and 10μM  Everolimus in association with 50ng/mL Doxorubicin (C) or 250μM 5-

Fluorouracil (D) by optical microscopy. There are morphological evidences of cell death by apoptosis, such as 

cellular contraction, nuclear fragmentation, blebbing and apoptotic bodies’ formation. Amplification: 500x. 
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The morphological characteristics of HUH-7 cells observed after treatment with the new 

target drugs in association during 48h are also consistent with cell death by apoptosis (Figure 

14). 

 

 

 

 

 

 

 

 

 

Figure 14: Morphological analysis of HUH-7 cells before (A) and after treatment with 50nM MG-262 

in association with 50μM L-744832 (B), 50nM MG-262 in association with 10μM Everolimus (C) and 

50μM L-744832 in association with 10μM Everolimus (D) by optical microscopy. There is morphological 

evidence of cell death by apoptosis, such as cellular contraction, nuclear fragmentation, blebbing and apoptotic 

bodies’ formation. Amplification: 500x. 

 

 

3.3 Flow cytometry studies 

In order to confirm or results and evaluate the extent of apoptosis and necrosis, we used a 

FC assay based on staining the cells with AV-FITC and PI incorporation. 

The results, shown in figure 15, are almost in agreement with those obtained in 

morphological studies, as we observed an increase in the percentage of apoptotic cells after 

the treatment with all the tested conditions. In fact, an increase in the number of cells in early 

and late stages of apoptosis was observed when cells were treated with MG-262, L-744832 

and Everolimus. However, this was more pronounced in cells submitted to the FTI, where a 
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reduction of 50% in alive cells and a concomitant increase in the percentage of apoptotic cells 

was observed. 

On the other hand, the synergistic effect obtained with the incubation of MG-262 in 

association with Doxorubicin and 5-Fluorouracil described in figure 5 was translated into an 

increase in apoptotic cells (Figure 15). Although the concentration of drugs was below the 

IC50, the apoptotic effect of the associations was superior to the apoptotic effect of each drug 

alone. 

After the incubation of L-744832 and Everolimus in monotherapy and in association with 

Doxorubicin and 5-Fluorouracil we didn’t observe the synergistic effect seen in the dose 

response curves. Besides apoptosis is the main mechanism involved in HUH-7 cells death 

upon their treatment with these tested conditions, the number of AV positive cells didn’t 

increase with the drugs administered in association. 

 

 

 

 

 

 

 

 

 

Figure 15: Evaluation of cell death by FC using AV and PI incorporation. HUH-7 cells were incubated 

in the absence (CTL) and in the presence of 50nM MG-262 (MG), 50µM L-744832 (L), 10µM Everolimus (Eve) 

in monotherapy and in association with 50ng/mL Doxorubicin (Dox) and 250uM 5-Fluorouracil (5-Fu). HUH-7 

cells were also incubated with the new targeted drugs in association. Alive cells are AV/PI negative (green); 

early stages of apoptosis are AV positive and PI negative (light orange) and cells in late stages of apoptosis are 

AV/PI positive (blue). Necrotic cells are AV negative and PI positive (red). Results were obtained after 48h of 

incubation and represent the mean of 2 independent experiments. 
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In order to characterize some of the molecular events underlying the cell death and the 

antiproliferative mechanism observed in treated cells, we also chose to study the BAX/BCL2 

ratio (Figure 16) and the Cyclin D1 expression (Figure 17). 

As we can see in Figure 16, MG-262, L-744832 and Everolimus induced an increase in 

BAX/BCL2 ratio, whereas when these drugs were tested in association the ratio was higher 

(about two times).  

 

 

 

 

 

 

 

 

Figure 16: Evaluation of Bax/Bcl2 ratio by FC. HUH-7 cells were incubated in the absence (CTL) and in 

the presence of 50nM MG-262 (MG), 50µM L-744832 (L), 10µM Everolimus (Eve) in monotherapy and in 

association with 50ng/mL Doxorubicin (Dox) and 250µM 5-Fluorouracil (5-Fu). HUH-7 cells were also 

incubated with the new targeted drugs in association.BAX and BCL2 expression was calculated as described in 

material and methods and the ratio BAX/BCL2 calculated. Results were obtained after 48h of incubation and 

represent the mean + SD of 2 independent experiments. 

 

 

In figure 17 is represented the expression of cyclin D1. As we can observe MG-262 alone 

didn’t induce significative alterations in cyclin D1 levels in HUH-7 cells. However, these 

levels increase when cells were treated with this proteasome inhibitor in association with 

Doxorubicin and 5-Fluorouracil. On the other hand, our results also show that after the 

treatment of HUH-7 cells with L-744832 in monotherapy and in association with MG-262, 
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there was an increase in cyclin D1 levels. In other way, cyclin D1 levels decreased after the 

treatment of HUH-7 cells with the other tested conditions.  

   

 

 

 

 

 

 

 

Figure 17: Analysis of Cyclin D1 expression by FC. HUH-7 cells were incubated in the absence (CTL) 

and in the presence of 50nM MG-262 (MG), 50µM L-744832 (L), 10µM Everolimus (Eve) in monotherapy and 

in association with 50ng/mL Doxorubicin (Dox) and 250µM 5-Fluorouracil (5-Fu). HUH-7 cells were also 

incubated with the new targeted drugs in association. Cyclin D1 expression was evaluated as described in 

material and methods. Results were obtained after 48h of incubation and represent the MFI detected in each cell, 

which is proportional to the number of cells labelled to the monoclonal antibody anti-cyclin D1. Values are 

expressed in relation to control and result from 1 or the mean + SD of 2 independent experiments.  

 

 

To analyse the efficacy of proteasome inhibition with MG-262 treatment in monotherapy 

and in association, the expression of ubiquitin conjugates was determined by flow cytometry. 

As we can see in Figure 18, when cells were treated with MG-262 in monotherapy and in 

association with 5-Fluorouracil no significative changes in ubiquitin conjugates formation 

was seen. However, a decrease in ubiquitin conjugates formation was observed when HUH-7 

cells were submitted to the association of MG-262/5-Fluorouracil. On the other hand, the 

ubiquitin conjugates formation increased after treatment with MG-262/L-744832. 
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Figure 18: Analysis of Ubiquitin conjugates expression by FC. HUH-7 cells were incubated in the 

absence (CTL) and in the presence of 50nM MG-262 (MG) in monotherapy and in association with 50ng/mL 

Doxorubicin (DOX), 250uM 5-Fluorouracil (5Fu), 50uM L-744832 (L) and 10uM Everolimus (Eve). Results 

were obtained after 48h of incubation and represent the MFI detected in each cell, which is proportional to the 

number of cells labelled to the monoclonal antibody. Values are expressed in relation to control and result from 1 

or the mean + SD of 2 independent experiments.  

 

 

The efficacy of inhibition of farnesyltransferase activity with L-744832 in monotherapy 

and in association was determined through the analysis of Laminins A/C expression. 

As we can observe in Figure 19, Laminin expression increased after treatment with L-

744832 in monotherapy and in association with MG-262 but decreased after treatment with L-

744832 in association with Doxorubicin. On the other hand the association of L-744832 with 

5-Fluorouracil or with Everolimus didn’t change laminin levels as compared to control. 

 

 

 

 

 

 

 

Figure 19: Analysis of Laminis A/C expression by FC. HUH-7 cells were incubated in the absence 

(CTL) and in the presence of 50uM L-744832 (L) in monotherapy and in association with 50ng/mL Doxorubicin 
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(DOX), 250uM 5-Fluorouracil (5Fu), 50nM MG-262 (MG) and 10uM Everolimus (Eve). Results were obtained 

after 48h of incubation and represent the MFI detected in each cell, which is proportional to the number of cells 

labelled to the monoclonal antibody. Laminins A/C are expressed in relation to control and represent mean +SD 

of 2 independent experiments. 

 

 

 

        DISCUSSION AND CONCLUSION 

HCC is a deadly cancer whose incidence has increased dramatically over the past 

decades. In Europe and the United States this increasing incidence exists mainly due to the 

rise in hepatitis C virus infection (Lachenmayer et al., 2010). 

Several chemotherapeutic protocols have been investigated to treat advanced HCC that is 

deemed incurable. Despite the lack of encouraging results, chemotherapy is still offered to 

patients with no other therapeutic alternatives (Piguet et al., 2008).  

However, the extensively studying of mechanisms involved in hepatic carcinogenesis, 

namely genetic and epigenetic alterations, chromosomal aberrations, mutations, and altered 

molecular pathways, can provide the development of molecular targeted anti-cancer 

molecules (Lachenmayer et al., 2010). 

Wnt-β-catenin, hedgehog, c-Met, IGF, RAS-MAPK, PI3/Akt/mTOR, and apoptosis are 

the most important intracellular molecular signaling pathways involved in HCC 

(Lachenmayer et al., 2010). 

In this regard, we evaluated, using a HCC cell line (HUH-7 cells), the in vitro efficacy of 

new targeted drugs, namely the proteasome inhibitor, MG-262, the FTI, L-744832, and the 

mTOR inhibitor, Everolimus, not only in monotherapy but also in combination with each 

other and with conventional anticarcinogenic agents. 

Actually, there are already many clinical trials at various stages using these three classes 

of molecules in various types of cancer, but in HCC the studies are scarce.  
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Proteasome inhibition, with Bortezomib, has successfully been evaluated in a number of 

published and ongoing trials for solid and hematologic malignancies. Besides its prominent 

role in multiple myeloma, Bortezomib is presently approved by the Food and Drug 

Administration for use in relapsed and refractory mantle cell lymphoma. Bortezomib also 

displayed substantial activity in non-small cell lung cancer (Armeanu et al., 2008). The 

effects of Bortezomib on HCC cell lines have also been studied in vitro (Baiz et al., 2009).  

FTIs, e.g. Tipifarnib and Lonafarmib, have been shown to inhibit the proliferation of a 

variety of human tumor cells, both in vitro and in vivo. FTIs have already  entered several 

phase I/II/III clinical trials in haematological malignancies and solid tumors, such as pancreas, 

lung, prostate and bladder (Harousseau, 2006; Perabo and Müller, 2007; Li et al., 2009). 

Lonafarmib has also entered a phase IB clinical study in patients with ressecable primary liver 

neoplasm (www.clinicaltrials.gov). 

mTor inhibitors, e.g Everolimus and Tensirolimus are currently being evaluated in 

clinical trials for the treatment of many types of cancer such as haematological malignancies 

and breast, prostate, bladder, kidney and neuroendocrine tumors (Strimpakos et al., 2009 and 

Garcia et al., 2008). Tensirolimus is presently approved by the Food and Drug Administration 

for the treatment of advanced kidney cancer. AZD8055 and Sirolimus have also entered a 

phase I/II and phase III clinical studies , respectively,  in patients with HCC 

(www.clinicaltrials.gov). 

As there is only a few work done with these new molecules in HCC, namely in 

association, in this study we intend to evaluate the therapeutic efficacy and the possible 

synergistic effect of proteasome inhibitor, MG-262, farnesyltransferase inhibitor, L-744832 

and mTOR inhibitor, Everolimus, in monotherapy and in combination with conventional 

chemotherapy, using an HCC cell line in culture. 

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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Our results show that MG-262, L-744832 and Everolimus have an antiproliferative and 

cytotoxic effect in monotherapy depending on the applied dose and incubation period in the 

HCC cell line HUH-7. The combination of MG-262, L-744832 and Everolimus with 

conventional anticarcinogenic drugs demonstrates an increase in antiproliferative effect for 

lower doses than the IC50 (addition synergism). On the other hand, a significant synergistic 

antiproliferative effect was also observed with the combined treatment of MG-262 and L-

744832, MG-262 and Everolimus and of L-744832 and Everolimus. In fact the same 

antiproliferative effect is achieved at lower concentrations than those obtained for all the 

tested drugs in monotherapy. In all the cases, the reduction of concentrations of new and 

conventional drugs may decrease the potential side effects of these anti-carcinogenic drugs, 

suggesting that there is a rational basis to translate into a clinical setting these new targeted 

drugs.  

With our work, we can also conclude that apoptosis is the main mechanism involved in 

the cytotoxicity induced by the tested drugs. In fact, there are morphological evidences 

characteristic of apoptotic cell death, such as cellular retraction, nuclear fragmentation, 

blebbing and apoptotic bodies’ formation. These morphological changes observed in 

microscopic slides are in agreement with those observed by FC analysis using AV/PI 

incorporation and correlated with the increase in BAX/BCL2 ratio. In fact, there is an increase 

in percentage of apoptotic cells after treatment with the tested conditions. However, the 

percentage of apoptotic cells is higher in association than in monotherapy with schemes 

involving the proteasome inhibitor, particularly when combined with the conventional 

anticarcinogenic drugs. 

The sensibility of the HUH-7 cells to the drug regimens may be related with the increase 

in BAX/BCL2 ratio, suggesting that intrinsic or mithocondrial pathway may be involved in 

apoptosis induced by the tested drugs. On the other hand, these results are in agreement with 
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the increase in proapoptotic molecules, such as BAX, that may be related with proteasome 

inhibition. In reality, BAX is one protein that is degraded in this enzymatic complex (Milano 

et al., 2007).  

These findings may be relevant for the clinical application of these new target molecular 

therapies, since therapeutic strategies involving tumor cell death through apoptosis are 

advantageous as compared to those inducing necrosis, in which case the release of death 

factors to medium can cause toxicity in healthy tissue surrounding the tumor (Neves et al., 

2006). 

In order to evaluate the antiproliferative effect of the targeted therapies used in the study 

we analysed the expression of cyclin D1 by FC. Our results show higher levels of cyclin D1 

after the treatment with L-744832, and lower levels after the treatment with Everolimus in 

comparison with control cells; MG-262 failed to modify cyclin D1 levels.  

FTIs are potent modulators of cell cycle, depending on the cell line. They can induce 

accumulation of cells in G0/G1 or G2/M phase cells, in some human tumour cell lines, while 

in others no effect is observed on cell cycle distribution depending on the cell line (Mazieres 

et al, 2004). This can explain the up-regulation of the cyclin D1 levels shown in our cell line 

in opposition to other studies in haematological cell lines (Costa et al., submitted). In order to 

confirm and clarify the importance of FTIs on HUH-7 cell cycle, it will be also important to 

study the different phases of cell cycle in the tested conditions. 

The ubiquitin-mediated proteasome pathway is the main mechanism of degradation for 

short-lived cellular regulatory proteins, including p53, cyclins and the cyclin-dependent 

kinase (CDK) inhibitors p21 and p27, the oestrogen receptor, and the inhibitor of the nuclear 

transcription factor kappa B (IkB). Expression of specific cyclins is regulated differently by 

proteasome degradation during each phase of the cell cycle. In addition, the activity of CDKs 

is regulated further by a variety of inhibitor factors, such as p21 and p27, which are also 
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proteasomal substrates. Activated p53 arrests cells in the G1-phase and promotes apoptosis 

through induction of BAX, which, in turn, is also a proteasomal substrate. Taken together, 

these findings suggest that proteasome inhibition results in the stabilisation of p53, p21, p27 

and BAX, dysregulation of cell-cycle progression and, finally, apoptosis (Milano et al., 2007). 

This stabilization can also explain the unchanged levels of cyclin D1 after treatment with 

MG-262.  

On the other hand, we observed lower levels of cyclin D1 after treatment with 

Everolimus, in comparison with control cells. mTOR permits translation of proteins that drive 

cell growth, cell proliferation, and the production of angiogenic growth factors; thus, the 

inhibition of mTOR delays cell cycling at G1-S phase interface, inhibiting cell growth and 

angiogenesis (Amato et al., 2009). Consequently, mTOR inhibitors may down-regulate cyclin 

D1 levels.   

We also intend to clarify the molecular mechanisms related with the mechanism of action 

of the proteasome and the farnesiltransferase inhibitors through the analysis of the expression 

of ubiquitin conjugates and laminin A/C, respectively. 

The ubiquitin-proteasome system is the major catabolic pathway for degradation of 

short-lived and misfolded proteins. Proteins to be degraded through this pathway first undergo 

polyubiquitination followed by recognition and proteolysis by proteasome (Wu et al., 2010). 

Since inhibition of the ubiquitin-proteasome pathway in tumor cells results in accumulation of 

ubiquitinated proteins, we were expecting an increase of ubiquitin conjugates. In our study we 

only observe an increase in ubiquitin conjugates levels when cells are incubated with PI in 

association with 5-Fluoracil and L-744832. 

However we have also to consider that the lysosome-autophagy pathway serves 

complementary with the ubiquitin-proteasome system are the two major protein degradation 

systems (Wu et al., 2010). Simultaneously, it is already described that mTOR inhibitors 
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activate the autophagic process (Easton and Houghton, 2006) and that Doxorrubicin, at 

clinical relevant dose range, activates directly the proteasome (Liu et al., 2008). It has also 

been reported that proteasome inhibitors induce macroautophagy in breast, colon and glioma 

cancer cells (Wu et al., 2010). In this way, these findings could be the explanation for the 

obtained results.  

In our study the activity of farnesyltransferase was evaluated following the markers of 

farnesylation described by Adjei et al., 2000: prelamin A and HDJ-2. Franesyltransferase is 

essential for the processing of prelamin A into mature lamin A (Kilic et al., 1997) and the use 

of monoclonal antibodies to measure the intracellular levels of both these molecules may 

serve as marker of the activity of farnesyltransferase. 

Prenylation of proteins is carried out by FTase, GGTase-1 and GGTase-2. FTase and 

GGTase-1 can act on Ras proteins, but physiologically only FTase is involved (Brunner et al., 

2003). The exact mechanism of action of FTI is still currently unknown. FTIs inhibit 

farnesylation not only of protein RAS but also of a wide range of target proteins, including 

RHOB, nuclear laminins A and B, transducin, centromeric proteins CENP-E and CENP-F 

(Appels et al., 2005). Under FTI treatment there is alternative prenylation of certain proteins 

including RHO-B, K-RAS and N-RAS by GGTase-1 (Brunner et al., 2003). 

Our results failed to show a decrease in nuclear laminins. However, this can be related 

with the dose of L-744832. In fact it was already reported that the farnesyltransferase 

inhibition isn’t immediately correlated to the decrease of cell viability. In fact, the 

concentrations necessary to obtain biological effects were consistently superior to the 

concentrations need to inhibit farnesylation (Appels et al., 2005; Costa et al., submitted). 

Overall, the present study suggests that proteasome, farnesiltransferase and mTOR 

inhibitors may constitute a new potential therapeutic approach in HCC not only in 

monotherapy, but also in association with conventional therapies.  
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These new molecular targeted therapies and the increasing knowledge of hepatic 

carcinogenesis will, consequently, contribute to personalize medicine in HCC treatment. 

However, the choice of an optimal drug schedule will also be crucial to the success of the 

therapy. 
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