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Resumo 

O objectivo do presente trabalho é a análise da estabilidade de painéis cilín-

dricos metálicos sujeitos a tensões de compressão no seu plano médio e o de-

senvolvimento de regras de dimensionamento que colmatem as limitações que 

as normas europeias actualmente apresentam.  

Para o caso mais simples, o da compressão uniaxial uniforme, os principais 

estudos foram reanalisados tendo-se concluindo que, no que respeita a tensão 

crítica elástica de painéis cilíndricos metálicos, as expressões disponíveis apre-

sentam erros consideráveis. Recorrendo ao método dos elementos finitos e, 

paralelamente, a uma formulação analítica baseada em métodos energéticos, 

foram desenvolvidas novas expressões que melhoram significativamente os 

valores obtidos para tensão crítica e que permitem, também, calcular a mesma 

para painéis sujeitos a carregamentos de compressão não uniforme. Em rela-

ção à tensão última, o método agora proposto apresenta também melhorias 

significativas, mas é o primeiro a incluir a possibilidade de calcular a tensão 

última de painéis cilíndricos metálicos sujeitos a flexão pura no seu plano mé-

dio e a permitir uma aplicação directa a secções.  

Finalmente deve referir-se que, apesar de não se propor nenhum método para 

a obtenção da tensão última, o comportamento último de painéis cilíndricos 

sujeitos a compressão uniforme biaxial é caracterizado recorrendo a métodos 

exclusivamente numéricos.  

 

Palavras-chave: Estabilidade, painéis cilíndricos, estruturas metálicas. 





Abstract 

The objective of this work is to analyse the stability behaviour of cylindrically 

curved steel panels under generalised in-plane compressive stresses and to 

develop design rules which overcome some limitations of current European 

Standards.  

For the simplest case of pure compressive axial stresses, the most relevant 

works have been revisited and analysed. In what concerns the elastic critical 

stress of cylindrically curved panels, it was concluded that the expressions 

which are currently available return non-negligible errors. Relying on the fi-

nite element method and, at the same time, on an analytical formulation based 

on energy methods, new expressions presenting significant improvements 

and allowing obtaining the elastic critical stress also for panels under 

non-uniform in-plane loading are presented. Concerning the ultimate re-

sistance, the proposed method also shows improvements, but its main contri-

bution is that it allows obtaining the ultimate resistance also for panels under 

pure in-plane bending and a direct application to cross-sections.  

Finally, it is worth mentioning that, albeit it is not proposed any new method 

to compute the ultimate load of cylindrically curved panels under biaxial 

loading, the behaviour of curved panels under this type of loading is analysed 

relying exclusively on numerical methods.  

 

Keywords: Stability, cylindrically curved panels, steel structures. 
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Notation 

Roman uppercase letters 

A plate’s / panel’s cross-section area 

A, B, C, D numerical parameters 

Aeff plate’s / panel’s effective cross-section area 

AL, BL Lamé’s geometric coefficients 

C shell’s membrane rigidity 

Cl correction factor for long curved panels 

Cult correction factor for long cylindrically curved panels 

D shell’s flexural rigidity 

E Young’s modulus 

F stress function 

MRd resistant bending moment 

Mx, My, Mxy internal moments in a shell element 

My,Ed, Mz,Ed design bending moment around y-axis and z-axis 

N number of finite elements in the loaded edge of the plate / panel 

NEd design axial force 

NRd resistant axial force 
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Nx, Ny, Nxy internal membrane forces in a shell element 

Qx, Qy internal shear forces in a shell element 

qx, qy, qz distributed forces per unit area acting in x, y and z-direction 

R radius of curvature of the panel and shell element 

Rmin minimum value of the radius of curvature 

Rp residual vector in the Galerkin’s method 

Rx, Ry radius of curvature of the shell element at x- and y-direction 

R’x, R’y radius of curvature of the shell element at x- and y-direction after 

deformation 

U strain energy 

Ub bending strain energy 

Um membrane strain energy 

Un dimple imperfection amplitude parameter depending on the fab-

rication tolerance quality class 

V total potential energy 

V2 quadratic term of the total potential energy 

W work done by the applied loads 

Wy cross-section’s elastic section modulus around y  

Wy,eff, Wz,eff  cross-section’s effective elastic section modulus around y and 

z-direction  

Z curvature parameter 

Zb Batdorf curvature parameter 

Zt curvature parameter in the transverse direction 
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Roman lowercase letters 

a plate’s / panel’s length 

ai,j degrees-of-freedom in the energy formulation 

b plate’s / panel’s with 

beff plate’s / panel’s effective width 

ey,N, ez,N neutral axis variation according to y- and z-axis 

k elastic critical stress coefficient 

k,long elastic buckling coefficient for long curved panels 

k,min minimum value of the elastic critical stress coefficient 

k,plate plate’s elastic critical stress coefficient 

kσ,Domb&Leigh elastic critical stress coefficient from Domb & Leigh’s proposal 

kσ,num numerically obtained value for the elastic critical stress coefficient  

lg relevant gauge length according to clause 8.4.4(2) in 

EN1993-1-6:2007 

lLW length of the largest longitudinal half-wave 

lTW length of the largest transverse half-wave 

m number of longitudinal half-waves 

n number of transverse half-waves 

px, py, pz external forces 

q amplitude of the degree-of-freedom 

q0 initial amplitude of the degree-of-freedom 

qi undetermined parameters (degrees-of-freedom) in Rayleigh-Ritz 

and Galerkin’s methods 

t plate’s / panel’s thickness 

u axial displacements (x-direction) 
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v transverse displacements (y-direction) 

w out-of-plane displacements (z-direction) 

 

Greek uppercase letters 

ΑZ, ΒZ numerical parameters 

Βi factor compensating for the lower bound nature of ρi 

511993,,0  ENeqw proposed amplitude by EN1993-1-5:2006 for equivalent geomet-

ric imperfections 

611993,,0  ENeqw proposed amplitude by EN1993-1-6:2007 for equivalent geomet-

ric imperfections 

mod
511993,,0  ENeqw modified amplitude based on EN1993-1-5:2006 for equivalent 

geometric imperfections 

mod
611993,,0  ENeqw modified amplitude based on EN1993-1-6:2007 for equivalent 

geometric imperfections 

 

Greek lowercase letters 

α panel’s aspect ratio 

αcr,num critical multiplier directly read from numerical results 

αBC numerically calibrated parameter depending on the boundary 

conditions 

αz elastic imperfection reduction factor (Tran et al., 2012) 

αz, cz, Sz parameters calibrated with numerical results that reflect the ef-

fect of curvature in the shape of the proposed ρ-λ curves 
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β numerical parameter representing the influence of curvature on 

the value of the imperfection factor (Tran et al., 2012); plastic range 

factor (Tran, 2012) 

γ stress ratio between two orthogonal directions 

γM material coefficient 

γM0 safety coefficient 

γxy distortion between x- and y-direction 

γxy,0 membrane distortion between x- and y-direction without the 

change in curvature 

γxz distortion between x- and z-direction 

γyz distortion between y- and z-direction 

ε1, ε2 strains defining the plastic plateu before the strain hardening of 

the material’s physical law 

εx total strain at x-direction 

εx,0 membrane strain at x-direction without the change in curvature 

εy total strain at y-direction 

εy,0 membrane strain at y-direction without the change in curvature 

εz total strain at z-direction 

η interaction exponent 

η1 normalised utilisation factor 

θ panel’s sectorial angle 

θbl biaxial load case  

λ z,0 length of the initial plateau where no reduction of the panel’s 

resistance occurs 

λ reduced slenderness parameter 
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λ’ normalised slenderness parameter (Park et al., 2009); slenderness 

limiting the elasto plastic domain of the response of cylindrically 

curved panels (Tran, 2012) 

λ0,p   length of the initial plateau for flat panels 

λs reduced shell slenderness parameter from DNV-RP-C202 

ν Poisson’s coefficient 

ρ reduction factor applied to the width of the panel 

ρ0,Z   last branch of Eq. (8.20) setting λ=λ0,p 

ρi influence of initial imperfections on the characteristic buckling 

strength of the curved panel according to DNV-RP-C202 

ρlong   reduction factor applied to the width of the panel for long 

curved panels 

ρNum numerically obtained reduction factor applied to the width of the 

panel 

ρx, ρz, χw resistance reduction factors from the reduced stress method 

σ, σx membrane stress at x-direction 

σ1, σ2 maximum and mininum longitudinal stress acting on a plate’s / 

panel’s loaded edge 

σav average value of the membrane stress distribution at x-direction 

σccr elastic critical stress considering the curvature 

σcr elastic critical stress 

σE Euler’s elastic critical stress 

σEd design axial stress 

σk,Rd characteristic buckling strength according to DNV-RP-C202 and 

the ABS Guide for Buckling and Ultimate Strength Assessment 

for Offshore Structures 
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σlim limiting value for longitudinal stresses from the reduced stress 

method 

σpcr elastic critical stress without considering the curvature 

σx,Ed, σz,Ed design stresses at x- and z-direction  

σy membrane stress at y-direction 

σz membrane stress at z-direction 

τxy tangential stress at x-direction in a face perpendicular to 

y-direction 

τxz tangential stress at x-direction in a face perpendicular to 

z-direction 

τyx tangential stress at y-direction in a face perpendicular to 

x-direction 

τyz tangential stress at y-direction in a face perpendicular to 

z-direction 

τzx tangential stress at z-direction in a face perpendicular to 

x-direction 

τzy tangential stress at z-direction in a face perpendicular to 

y-direction 

φ0, φ1, φ2 numerical parameters 

χ resistance reduction factor 

χnum numerically obtained resistance reduction factor 

χx Change in curvature in x-direction 

χxy Twist in curvature in x- and y-direction 

χy Change in curvature in y-direction 

ψ loading type / stress gradient 

ψi approximate functions in Rayleigh-Ritz method 
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1. Introduction 

1.1. Motivation and statement of the problem 

The substantiation of this dissertation starts with a very simple statement: there 

are few design rules (in fact, there is no European standard in the framework of 

the Eurocodes), design recommendations/guidelines or any other background 

document (at least relevant enough) allowing an accurate design of curved 

steel panels in the civil & structural engineering field, namely transversally 

curved steel panels for structural application. This gap gains a bigger dimen-

sion and importance when more and more frequently this type of structural 

solution is employed in the design of important infrastructures like viaducts 

and bridges. Therefore, it brings to the structural safety and reliability context 

an important (and also interesting) issue: Behaviour of cylindrically curved 

panels under in-plane stresses.  

In particular, the work presented herein will show that besides the omission of 

design methodologies for curved panels by structural Eurocodes, other stand-

ards fail to accurately describe the elastic critical and ultimate behaviour of 

cylindrically curved panels under specific loading and boundary conditions 

whenever they fall outside their scope of application.  

Firstly, the structural Eurocodes do not cover the design of cylindrically 

curved panel segments. In fact, the scope of EN1993-1-5:2006 (CEN, 2006a) is 

limited to flat shell elements (or plates). The criterion used in EN1993-1-5:2006 

to define a plated element as flat corresponds to the limitation of the plate’s 

curvature to a maximum value given by 
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where b is the plate’s width, R is the radius of curvature of the element and t is 

the plate’s thickness. Similar criteria exist in other codes of practice such as 

BS5400-3 (BSI, 2000) that limits the curvature to 
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In addition, EN1993-1-6:2007 (CEN, 2007) is not applicable to this type of ele-

ments since its scope is limited to shells of revolution.  

Secondly, in the oil & gas industry and offshore construction there are some 

design recommendations to assess the buckling strength of shells and curved 

panels: DNV-RCP-202 (DNV, 2010b) and the ABS Guide for Buckling and Ul-

timate Strength Assessment for Offshore Structures (ABS, 2004) to name a few. 

However, these standards are restricted to very specific boundary conditions 

and the buckling of cylindrically curved panels is seen as a possible local fail-

ure mode of a global structural system: the orthogonally stiffened cylinder.  

Thirdly, the aeronautical and aerospace industry has been continuously put-

ting serious effort into the scientific research of the mechanical properties and 

structural response of cylindrically curved panels used for lightweight flight 

vehicles and their components under several loading arrangements. There are 

some accepted and commonly used procedures, namely the so-called NACA 

design curves, but, as some researchers have been claiming in their research 

outcomes, they are outdated (Nemeth, 1998; Domb & Leigh, 2001).  

Finally, over the past years several studies have been performed (Domb & 

Leigh, 2001; Domb & Leigh, 2002; Domb, 2002; Featherston & Ruiz, 1998; 

Featherston, 2000; Featherston, 2003; Featherston, 2012; Tran, 2012; Tran et al., 

2012; Tran et al., 2014), but none of these authors have dealt comprehensively 

with different aspects of cylindrically curved panels, namely, different loading 

arrangements other that pure compression (from pure compression to pure 

in-plane bending and biaxial compression) and imperfection sensitivity 

(shapes and amplitudes). Concerning a methodology to assess the safety level 
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of cross-sections built-up with cylindrically curved panels, the research pre-

sented in this work is completely new.  

1.2. The use of curved steel in structural applications 

1.2.1. Structural curved steel panels in building applications 

The use of curved steel is not a novelty, but its use has grown in recent years. 

The first use of curved structural steel was limited to bar elements that were 

mainly employed in roof structures as grid-shells (Figure 1.1 and Figure 1.2 a)).  

 

Figure 1.1: Diagrid Shell by Vladimir Shukhov during construction, Russia  

(unknown author, 1897) 

In recent years, curved shapes are present in almost every bold architectural 

design, either as reinvented grid-shells, like the roof structure of the British Mu-

seum by Foster and Partners (Figure 1.3), or in futuristic uses of curved stainless 

steel panels, like the urban sculpture Cloud Gate by Anish Kapoor (Figure 1.4).  

The use of curved stainless steel panels is also employed in the reconstruction of 

old buildings where curved shapes were also part of the original design, like the 

refurbishment of the Birmingham New Street Station by Foreign Office Archi-

tects (Figure 1.2 b)).  
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a) b) 

Figure 1.2: a) New St. Station in Victorian Times, before redevelopment in the 1960's, 

Birmingham, England (unknown author, 1885) and b) New St. Station by FOA, as 

viewed from Stephenson St., Birmingham, England (Foreign Office Architects, 2009) 

 

Figure 1.3: British Museum Great Court roof by Foster and Partners,  

London, England (Dunn, 2005) 
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Figure 1.4: Cloud Gate by Anish Kapoor, Chicago, United States of America  

(Ertürk, 2014) 

1.2.2. Structural curved steel panels in bridge applications 

Due to a variety of reasons, curved steel panels are also a popular choice in the 

design of structural elements of bridges all around the world. 

Typically, horizontally curved bridges are a consequence of constraints in the 

longitudinal layout in plan (surrounding buildings in an urban context and/or 

terrain morphology constraints in other areas1). However, the use of curved 

panels also offers aesthetic and cost benefits over more traditional structures 

even when the mentioned restrictions are inexistent or not important (Linzell 

et al., 2004). As examples of horizontally curved bridges, Figure 1.5 shows the 

New Sheppey Bridge, England (horizontally curved steel I-girder which is an 

example of how morphology of terrain interfered with the bridge design) and 

the Zubizuri Bridge in Bilbao, Spain which is a bridge by the bridge engineer and 

architect Santiago Calatrava, known by his beautiful bridge designs (aesthetic 

criteria).  

                                                      
1 Horizontally curved bridges “are often one of the few viable options at complicated 

interchanges or river crossings where limited site space or pier locations are available” 

(Linzell et al., 2004).  
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a) b) 

Figure 1.5: a) New Sheppey Bridge, England (unknown author, 2007) and b) Zubizuri 

Bridge in Bilbao, Spain (Lopez, 2007) 

Another way in which curved panels are being employed as structural ele-

ments in steel bridges is in girders curved in elevation, i.e. with varying depth 

– deeper near to the supports and shallower at the middle of the spans. Exam-

ples of this use of curved steel are the bridge over Rio Ave in Portugal (Figure 

1.6 a)), which is an I-girder with the bottom flange curved in elevation and the 

bridge over motorway IC19 in Portugal (Figure 1.6 b)), which is a box-girder 

bridge with a longitudinally stiffened bottom flange curved in elevation. 

  
a) b) 

Figure 1.6:  a) Bridge over Rio Ave, Portugal and b) Bridge over IC19 in Lisbon,  

Portugal (courtesy of Professor António Reis) 
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a) b) 

Figure 1.7: a) Bellows Falls Arch Bridge, New Hampshire, United States of America 

(unknown author, 19052) and b) Pedro e Inês footbridge,  

Coimbra, Portugal (Correia, 2009) 

In opposition to what was common practice in the past, when designing an 

arch bridge (where the arch was built-up with open iron or steel sections put 

together forming a truss), nowadays, some arch bridges are designed with 

curved steel panels which are part of closed sections of the arch. 

Figure 1.7 shows examples of old and modern designs of arch bridges, high-

lighting the evolution between arch trusses to closed sections arches: the Bel-

lows Arch Bridge (old arch bridge designed with open iron sections forming a 

curved truss which supports the deck) and the Pedro e Inês footbridge, which 

is a modern bridge design where the arch is made of rectangular steel box 

(closed) sections. 

Finally, curved panels can be employed as transversally curved bottom flang-

es, as shown in Figure 1.8 and Figure 1.9. The reasons for this solution may be 

purely the aesthetic criteria as it is the example of the Chaves’ Pedestrian 

Bridge in Portugal (Figure 1.8 b)) and/or due to the fact that the curved shape 

of the bottom flanges provide improved response to wind loads, as is the case 

of Stonecutters bridge in Hong Kong, China (Figure 1.9). The Renault Bridge 

                                                      
2 End of construction date.  
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in France (Figure 1.8 a)) is another example of a box-girder with a transversal-

ly curved bottom flange.  

  

a) b) 

Figure 1.8:  a) Renault Bridge, France (Tran et al., 2012) and b) Pedestrian Bridge in 

Chaves, Portugal (Ribeiro, 2008) 

Stonecutters Bridge in Hong Kong, China, is a cable-stayed bridge with two 

main girders with curved bottom flanges. This curved shape of the bottom 

flanges of both box-girders was deliberately chosen considering the bridge 

performance with respect to the heavy wind impact and to the bridge overall 

aerodynamic behaviour (Janjic, 2008). 

 

Figure 1.9:  Stonecutters Bridge cross-section in Hong Kong, China (Vejrum, 2008) 
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1.2.3. Structural curved steel panels in offshore and naval  

applications 

In offshore construction and ship building industry, curved steel panels are also 

a common structural solution. In fact, curved steel elements, namely curved 

steel panels are a requirement for the overall behaviour of ships and vessels 

(Figure 1.10) and other offshore structures like SPAR platforms (Figure 1.11).  

In recent years, naval architects and engineers have spent a great amount of 

time discussing the structural performance of curved panels. This is patent in 

the increasingly number of references dealing with this topic in the Interna-

tional Ship and Offshore Structures Congress (Frieze & Shenoi, 2006; Jang & 

Hong, 2009; Fricke & Bronsart, 2012) and in the International Offshore and Polar 

Engineering Conference (Chung et al., 2008; Chung et al., 2009).  

  

a) b) 

Figure 1.10:  a) Bending of steel sheet (Newport News Shipbuilding) and b) Welded 

steel plate forming part of a ship's hull (Newport News Shipbuilding) 

1.2.4. Structural curved panels in aeronautical and aerospace  

applications 

The aeronautical industry was, since from the beginning, the main driving 

force responsible for developments on the stability of curved shells and main-

ly segments of curved shells, like curved panels. The first papers dealing with 
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such phenomena were published mainly by mechanical and aerospatiale en-

gineers and scientists (e.g. von Kármán) that were concerned with the buckling 

of plates and shells for flight vehicles applications. Nowadays, a great amount 

of effort is still being made to understand the behaviour of thin curved ele-

ments, mainly those made by new materials like carbon fibre and other com-

posites. Figure 1.12 shows the results of numerical studies that were carried 

out to simulate the response of stiffened cylindrically curved panels to be ap-

plied in the Airbus 380 (Pardo & Fernandez, 2010). 

Curved panels were also used in the famous space shuttle (Figure 1.13) that is 

now retired from service upon the conclusion of Atlantis' final flight on 21st of 

July in 2011 (NASA, n.d.).  

 

Figure 1.11:  SPAR platform under construction (unknown author, 2010) 

1.3. Objectives and scope 

In this thesis special emphasis is given to cylindrically curved panels under 

in-plane loading. Specifically, this work aims at obtaining a clear perspective 

on the behaviour of cylindrically curved panels under general in-plane load-

ing, different boundary conditions and on its structural design in the range of 

civil engineering applications.  

Curved panel 
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Figure 1.12:  Numerical analysis of a cylindrical stiffened composite curved panel  

with two stiffeners for the Airbus 380 (Pardo & Fernandez, 2010) 

 

Figure 1.13:  Space shuttle external tank components (Nemeth, 1998) 
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The global priorities of this research are, on one hand, important and valid 

numerical and analytical results, which can be used by all scientific communi-

ty, and, on the other, a contribution to fill the present void in design rules at 

European level. Particularly, the following objectives are highlighted:  

 To contribute to the development of the theoretical background in the 

buckling and postbuckling behaviour of cylindrically curved steel pan-

els in the field of Structural & Civil Engineering;  

 To elaborate a reliable numerical model to study the behaviour of cylin-

drically curved steel panels;  

 To characterise the cylindrically curved panel’s behaviour under pure 

compression to pure in-plane bending and biaxial loading; 

 To characterise the sensitivity to geometric imperfections of cylindrically 

curved steel panels;  

 Finally, to propose design guidance (effective width based formulae) al-

lowing the designer to verify the resistance of sections built with cylin-

drically curved steel panels in a consistent and systematic way similarly 

to the design philosophy of the structural Eurocodes.  

1.4. Thesis outline 

This thesis is organised into 9 chapters dealing separately with different sub-

topics: state-of-the-art revision, numerical and analytical studies, parametric 

studies, description of new approaches and conclusions.  

Chapter 2 introduces the most important analytical concepts about the analy-

sis of general thin elastic shells. It makes a revision of the most important shell 

theories giving special emphasis to those which are most likely to yield good 

results for cylindrically curved panels. Additionally, this chapter introduces 

important energy principles which will be the starting point of the energy 

formulation in Chapter 7.   

Chapter 3 provides a concise overview of the overall stability behaviour (elas-

tic critical behaviour, postbuckling behaviour and ultimate behaviour) of steel 

plates and cylindrically curved steel panels under several in-plane loading 
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(ranging from pure axial compression to pure in-plane bending, and from cir-

cumferential compression to biaxial loading). Important knowledge and terms 

about how these structural applications cope with the application of the re-

ferred loading are revisited making reference to earlier work whenever it is 

necessary.  

Additionally, a brief description of the methods to access the safety of plated 

steel structures and cylindrically curved steel panels proposed by selected 

standards (EN1993-1-5:2006, DNV-RP-C201 and DNV-RP-C202) is made.  

Chapter 4 is dedicated to the description of the numerical analysis based on 

the finite element method. The numerical models are validated against previ-

ous results from related works. This chapter is intended to give all back-

ground information required for Chapters 5 and 6.  

Chapter 5 is entirely devoted to the three parametric studies on the behaviour 

of cylindrically curved steel panels: the first on the elastic critical behaviour of 

panels under compressive stresses, the second on the ultimate strength of 

panels under pure compression and pure in-plane bending and the last one on 

the ultimate strength of panels under biaxial compression.  

Chapter 6 presents a comprehensive study on the imperfection sensitivity of 

cylindrically curved panels. In this study conclusions are drawn on how both 

the pattern (reflecting buckling modes) and amplitudes of geometric imperfec-

tions affect the ultimate load of cylindrically curved steel panels.  

Chapter 7 is reserved for the analytical study of the structural response of cy-

lindrically curved panels. Here an energy formulation capable of predicting 

the elastic critical stress and the postbuckling behaviour of curved panels is 

presented. A new simple expression able to return the elastic critical stress of 

cylindrically curved panels under particular boundary conditions is obtained.  

In Chapter 8, new methods for computing the elastic critical stress and the 

ultimate load of cylindrically curved panels are proposed. These are comple-

mented by statistical studies where their accuracy is studied.  
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Later, the revisited works of some authors providing methods to compute the 

elastic critical stress and the ultimate load of cylindrically curved panels made 

in Chapter 3 are compared to the methods now developed.  

Finally, in Chapter 9 a general summary of the work presented throughout 

this thesis is given and an outlook indicating some areas which have room for 

future research work is made. 

 



2. Analysis of general thin elastic 

shells 

2.1. Chapter overview 

This chapter focuses on the behaviour and analysis of general thin elastic 

shells. It also aims at providing a literature review with a special emphasis on 

shell theories and methods of analysis of thin shells. Additionally, it introduc-

es important energy related concepts that are required for Chapter 7.  

Sec. 2.2 to sec. 2.5 introduces a brief review on thin shell theories. Some shells’ 

definitions and basic assumptions are initially presented in sec. 2.2, comple-

mented by an historical review of shell theories (linear, nonlinear and special-

ised theories). Then, in sec. 2.3 and in sec. 2.4, the constitutive relations and 

the stress resultants for thin elastic shells are presented. Finally, sec. 2.5 con-

cludes with a concise enlightenment of the theories which are most likely able 

to predict the behaviour of curved plated elements: shallow shell theory and 

Donnell-Mushtari-Vlasov shell theory.  

Sec. 2.6 and 2.7 describe some approximate methods of analysis of thin shells. 

Sec. 2.6 initiates with the description of the total potential energy function and 

with two important energy principles: the principle of stationary total poten-

tial energy and the principle of minimum total potential energy. Subsequently, 

in sec. 2.7, the Rayleigh-Ritz approximated method is described. Finally, the 

finite element method is also introduced and described. 
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Finally, sec. 2.8 summarises and highlights the most important concepts and 

makes clear the relation between them and concepts in subsequent chapters.  

2.2. Brief review on shell theories 

2.2.1. Shells as a structural solution 

Shells as a structural solution are applied in many fields of engineering such 

as civil, aerospace, aeronautical, offshore and naval engineering. Additionally, 

thin shells feature prominently as a practical solution in specific branches of 

structural engineering such as bridge engineering (Tran et al., 2012). The wide 

application of shell structures in engineering is justified by the following ad-

vantages (Ventsel & Krauthammer, 2001):  

 Efficiency in load carrying performance;  

 High strength vs. weight ratio, i.e. shell structures may be, from this 

point of view, optimal structures;  

 High value from an architectural point of view, as shells can be harmo-

niously integrated in both urban and landscape contexts and areas.  

However, shell structures are very slender structures presenting stability is-

sues that must be taken into account when predicting its overall structural 

behaviour. As opposed to plates (Figure 2.1a)), for the majority of shell struc-

tures the buckling resistance (Figure 2.1b)) can be significantly lower than the 

theoretical elastic buckling load since shells are very sensitive to initial imper-

fections and its postbuckling behaviour is highly unstable.  

In short, shell-like structures due to their curvature can support much more 

efficiently external loads than other structures, resulting in a much stronger 

and stiffer load resistant mechanism but present stability issues that must be 

taken into account during their analysis.  

2.2.2. Definitions and fundamentals of thin shells  

A thin shell is a thin-walled three-dimensional body for which one dimension 

(thickness, denoted by the letter t) is significantly lower than the other two 
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dimensions and is characterised by its non-plane initial shape (i.e. finite radius 

of curvature). The geometric space that sets at equal distances from the two 

surfaces of the shell is called middle surface.  
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Critical load

Initial out-of-straigthness

F

w
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w 
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a) b) 

Figure 2.1:  Postbuckling behaviour: a) plated structure and b) shell structure 

In other words, shells have all the properties of plates plus curvature. Curva-

ture is one of the most important parameters in shells’ behaviour since de-

pending on it a shell is classified as cylindrical, conical, spherical, ellipsoidal, 

and toroidal and torispherical (Samuelson & Eggwertz, 1992) and these differ-

ent shapes, together with support conditions and constitutive law of the mate-

rial, will determine the shell’s response to external forces.  

Additionally, at each point of the shell’s middle surface there are two main 

directions of curvature mutually perpendicular. A locally reference coordinate 

system Oxyz is defined so that the plane Oxy is tangent to the middle surface 

of the shell at the point considered and the z-axis is perpendicular to the mid-

dle surface. The Ox and Oy axes are oriented in the principal directions of cur-

vature at the point considered, Rx and Ry being the principal radii of curvature 

according to x and y, respectively. 
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From another point of view, a shell may be classified as thin by the t/R ratio 

(where R denotes the radius of curvature of the middle surface). According to 

Novozhilov a shell that satisfies the following criteria can be considered as 

thin, otherwise shells should be considered thick (Novozhilov, 1959) 

  05.0
max

Rt

 
(2.1) 

Some authors (Samuelson & Eggwertz, 1992) agree that the previous inequali-

ty is insufficient and sets very roughly the frontier between thin and thick 

shells since it depends also upon the nature of the shells boundary conditions, 

external loads, etc. 

2.2.3. Historical review on shell theories 

In this sub-section a literature survey on shell theories is carried out. The most 

important theories are mentioned and categorised as linear, nonlinear and 

specialised shell theories. The diagram showed in Figure 2.2 summarises some 

interrelations between different shell theories and results from an extensive 

literature survey (Leissa, 1973; Brush & Almroth, 1975; Yamaki, 1984; Teng & 

Hong, 1998; Ventsel & Krauthammer, 2001; Teng & Rotter, 2004; Amabili, 

2008; and Nemeth, 2013). It is highlighted that the number of works present-

ing specialised shell theories is high and, therefore, a decision was made to 

refer only those theories that might be useful throughout this thesis.  

As already discussed in the previous sub-section, shells can be classified either 

as thin shells or thick shells. A calculation that considers the thickness into the 

analysis of the state-of-stress is very complex and time-consuming. That is the 

main reason why most common shell theories do not take into account the 

thickness, regarding, instead, the shell as a two-dimensional body (looking only 

to its middle surface) endowed with mechanical properties in the form of elastic 

resistance both stretching and bending actions within the surface (Calladine, 

1983). Thus, the approach on thin shell theories is based on the reduction of the 

equations of elasticity from three to two dimensions (Calladine, 1983), i.e. the 
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deformations throughout the shell body are completely defined by defor-

mations and changes in curvature of the geometry of the middle surface. 

General shells
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Figure 2.2:  Historical perspective and interrelation of different shell theories 

In the context of thin shells with constant thickness this simplification of the 

problem is based on Kirchhoff-Love hypothesis:  

 Plane sections normal to the initial middle surface remain plane and 

normal to the deformed middle surface. This hypothesis implies that 

strains γxz and γyz are negligible;  

 The transverse normal stress σz and strain εz are very small when com-
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pared with other normal stresses and strains components and may be 

neglected.  

The simplest shell theories are those which consider the shell as thin and are 

based upon linear elasticity concepts and on the simplifying Kirchhoff-Love 

hypothesis. Generally speaking, these theories are applicable whenever a shell 

presents small elastic deformations (i.e. equilibrium equations can be derived 

for the undeformed configuration neglecting displacements). These shell theo-

ries are called first-order-approximation3 linear thin shell theories. Among the 

researchers/authors that have developed linear thin shell theories are: Love in 

1888, Reissner in 1941, Naghdi in 1956, Sanders in 1959, Koiter in 1960 and 

Budiansky and Sanders in 1963 (see Figure 2.2 for references).  

In contrast to thin elastic shells, the analysis of thick elastic shells must include 

the effect of shear deformability. The simplest way of doing so is to continue 

to assume the shell as thin and only dropping the first Kirchhoff-Love hypoth-

esis replacing it by the following: 

 Plane sections normal to the initial middle surface remain plane but not 

necessarily normal to the deformed middle surface.  

The theories derived under these assumptions are called second-order-

approximation linear thin shell theories. Examples of this type of shell theories 

are works from: Naghdi in 1947 and Reissner in 1949 (see Figure 2.2 for refer-

ences).  

In the other hand, when the shell’s thickness is of a magnitude that forces a 

three-dimensional analysis, both Kirchhoff-Love hypothesis are abandoned 

and the transverse shear deformations and normal stress effects are incorpo-

rated. Examples of this typology of shell theories are those proposed by Reddy 

in 1984 and by Reddy & Liu in 1985 (see Figure 2.2 for references).  

                                                      
3 In this work, the following definition will be used: “The order of a particular approx-

imate theory will be established by the order of the terms in the thickness coordinate 

that are retained in the strain and constitutive equations” (p. 21, Baker et al., 1972). 
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In short, unlike nonlinear shell theories, linear shell theories determine a 

unique position of equilibrium for any shell with given loading/boundary con-

ditions. However, a shell under identical loading/boundary conditions may 

have several possible positions of equilibrium. In a very broad way, for a theo-

ry to be capable of predicting all the several equilibrium positions it has to 

include the nonlinear terms of the shell behaviour.  

The “behaviour of an elastic shell is said to be nonlinear if, under static condi-

tions, the deflection of any point of the shell is not proportional to the magni-

tude of an applied load” (p. 1, Libai & Simmonds, 2005). Two sources of non-

linearity can be identified: geometric and material. A theory that takes into 

account finite or large deformations is referred to as a geometrically nonlinear 

theory of thin shells (i.e. strain-displacement relations are nonlinear but the 

stress-strain relations are linear). Additionally, a shell may be materially non-

linear with respect to the stress–strain relations or present imperfections like 

lack of homogeneity and residual stresses.  

Geometric nonlinearity manifests itself in the governing equations in two ways. 

Firstly, displacements strain components are related to displacements by means 

of nonlinear equations. Secondly, a shell element that experiences large varia-

tions in its shape with increasing deformation cannot set up equilibrium equa-

tions based on a non-deformed configuration as in the linear shell theory.  

Large-displacement theory of thin plates originates mainly from von Ká-

rmán’s work (Von Kármán (1910), cited in Berger & Fife (1966)). Reissner in 

1950 presented a nonlinear shell theory with a narrow field of application: 

symmetrical loaded shells of revolution. Novozhilov in 1953, Leonard in 1961, 

Naghdi & Nordgren in 1963, Sanders in 1963, Koiter in 1966, Budiansky in 

1968, Mushtari & Galimov in 1968 and Nemeth in 2013, derived more general 

nonlinear theories (see Figure 2.2 for references). 

At the same time general theories of thin shells were developed, several spe-

cialised theories (linear and nonlinear) including features of singular types of 

shells appeared. The reasons determining the scopes for each specialised shell 

theory are: 
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 The geometry of the shell;  

 The support conditions;  

 The deformation ranges of the middle surface;  

 The type of loading, which together with the shell geometry and sup-

port conditions defines the state of stress of the shell.  

Among others, examples of specialised shell theories are the membrane theory 

and the shallow shell theory.  

Shallow shells are frequently referred to as curved plates. Marguerre in 1937 

established the governing equations for plates having an initial curvature being, 

together with Vlasov in 1949, one of the first authors to work on shallow shells 

theories (see Figure 2.2 for references). Shallow shells can be analysed by a par-

ticular shell theory named after their authors: the Donnell-Vlasov-Mushtari 

theory (also known as DMV theory). It should be noted that DMV theory may 

also be applied to analyse non-shallow shells (see Figure 2.2 for references).  

2.2.4. Types of state of stress of thin shells 

When an analysis is carried out on a general linear theory assumption is as-

sumed that bending stresses are of the same order as the membrane stresses. 

In some cases, due to the geometry, loading conditions and support system, it 

is possible to introduce simplifications that lead to distinct states of stress:  

 When bending stresses are negligible compared to the membrane stress-

es the type of state of stress is called membrane state of stress. The gov-

erning equations of the membrane theory are obtained directly from the 

equations of the general shell theory by neglecting the effects of bending 

and twisting moments, as well as the transverse shear forces. One ex-

ample of pure membrane state of stress is a hollow spherical shell sub-

jected to internal and/or external uniform pressure;  

 On the other hand, when the membrane stresses are negligible com-

pared with the bending stresses the type of state of stress is referred to as 

pure flexural state of stress;  



Chapter 2 | Analysis of thin elastic general shells 23 

 

 If membrane and bending stresses are of the same order of magnitude 

the state of stress is called mixed state of stress. This state of stress often 

occurs near the edges of the shell.  

It should be noted that “definitions of the ‘membrane’ and ‘pure flexural’ 

states of stress are not quite correct because the membrane state of stress ad-

mits an existence of small bending stresses and, in turn, small membrane 

stresses may occur in a pure flexural state of stress” (p. 346, Ventsel & 

Krauthammer, 2001). 

2.3. Constitutive relations for thin elastic shells 

The most general form of Hooke’s law is, for isotropic materials, given in three 

dimensions. In this case, as the object of this study is thin shells and remem-

bering the previous assumption according to which σz = 0, Hooke’s law is only 

derived for the specific case of plane stress. Under these conditions, strains are 

obtained from stresses according to Eqs. (2.2) to (2.5) 

 yxx
E

 
1

 (2.2) 

 xyy
E

 
1

 
(2.3) 

 xyz
E




 
 

(2.4) 

 
xyxy

E








12

 
(2.5) 

Neglecting Eq. (2.4) and solving Eqs. (2.2), (2.3) and (2.5) in order to σx, σy and 

τxy, Hooke’s law returns 

 yxx

E



 




21
 (2.6) 

 xyy

E



 




21  
(2.7) 
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12  
(2.8) 

Generally, the strains are divided into membrane strains and bending strains (or 

changes in curvature)4 as follows 
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(2.10) 

xyxyxy z 20, 
 

(2.11) 

Introducing Eqs. (2.9) to (2.11) into Eqs. (2.6) to (2.8) yields the stress-strain 

relations in terms of membrane and bending strains  

  yxyxx z
E




 


 0,0,21
 (2.12) 

  xyxyy z
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

 0,0,21  
(2.13) 

 
 xyxyxy z

E



 2

12
0, 




 
(2.14) 

where εx,0, εy,0 and γxy,0 are the membrane strain components; and χx, χy and χxy 

are the changes in curvature or bending strains (always related to the middle 

surface of the shell).  

2.4. Stress resultants for thin elastic shells 

Figure 2.3 to Figure 2.4 represent a thin shell element for which two principal 

directions are defined (which are orthogonal one to each other), each point of 

its middle surface establishing a coordinate plane, Oxy, tangent to the shell’s 

                                                      
4 A complete description and deduction of these expressions is made by Ugural (1981).  
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middle surface. This thin shell element is in equilibrium under the applied 

forces (px, py and pz) and the internal stresses (σx, σy, τxy=τyx and τyz=τzy,).  

With reference to Figure 2.4 and Figure 2.5 the internal forces are presented in 

Eqs. (2.15) to (2.24). Neglecting z/Rx and z/Ry (tRx and tRy)5 leads to the 

simplified version of these equations.  
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Figure 2.3: Geometry of a thin shell element 
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a) b) 

Figure 2.4: Thin shell element: a) membrane forces; b) shear forces and  

bending moment 

                                                      
5 It should be noticed that it is not enough to consider t<Rx and t<Ry to neglect the z/Rx 

and z/Ry quantities; it is also necessary to neglect the terms t3/Rx and t3/Ry which result 

from integration of z/Rx and z/Ry through thickness. For some geometry of curved 

panels present of following chapters, this simplification may be abusive and the stress 

resultant calculation should be corrected accordingly, i.e. without neglecting the terms 

t3/Rx and t3/Ry.  
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Figure 2.5: Schematic view of: a) plane Oyz and b) plane Oxz  

(adapted from Silva Gomes, 2007) 
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From the analysis of this previous set of equations it is concluded that Nxy is 

equal to Nyx and Mxy is equal to Myx only if z/Rx and z/Ry are neglected.  

Next, in order to relate the stress resultants to the shell deformations, σx, σy 

and τxy are expressed in terms of strains. Introducing Hooke’s law for a plane 

stress into Eqs. (2.15) to (2.24), leads to Eqs. (2.25) to (2.30) 

 0,0, yxx CN    (2.25) 

 0,0, xyy CN  
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 xyy DM  
 

(2.29) 

  xyyxxy DMM  1
 

(2.30) 

where C and D are the membrane and flexural rigidities, respectively, given by 

21 
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Et
C  (2.31) 
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112 


Et
D

 
(2.32) 

2.5. Shallow shells 

2.5.1. General 

A shallow shell is like a slightly curved plate, i.e. a shell whose smallest radius 

of curvature at each point is large when compared with the largest lengths 

measured along the middle surface (Leissa, 1973). It is possible to define a 

shallow shell as a shell that in any point of its middle surface satisfies the fol-

lowing expressions 
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where Z=Z(x,y) represents the equation of the middle surface.  

According to Koiter a shell is said to be shallow if the relation between the 

characteristic wavelength of its deformed configuration l, and the smallest ra-

dius of curvature of the middle surface Rmin, is negligible, i.e. l/Rmin<<1 (Koiter, 

1967). Vlasov defined shallow shell as a shell whose rise is limited to 20% of the 

smallest dimension of the shell in its plane (projection on the coordinate plane 

Oxy) (Vlasov, 1949). Later in 1959, Novozhilov showed that this definition 

leads to errors exceeding 5% (Novozhilov, 1959).  

The theory that deals with this kind of shells is called shallow shell theory and 

can be applied from cylindrically curved panels to more general geometries 

like doubly curved panels. It is presented in sec. 2.5.3 after a more general shell 

theory: the Donnell-Mushtari-Vlasov nonlinear general thin shell theory in 

sec. 2.5.2.  

2.5.2. Donnell-Mushtari-Vlasov nonlinear general thin shell theory 

First, a brief geometric introduction of a general shell is made. Using Figure 

2.6 as reference it is possible to define infinitesimal distances dsx and dsy. These 

distances can be given by the following expressions 

dyBdsdxAds LL  21 ;  (2.35) 

where AL and BL are the Lamé coefficients for a given coordinate system and 

are defined by the following expressions (Brush & Almroth, 1975)  
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where X=X(x,y), Y=Y(x,y) and Z=Z(x,y).  

The Donnell-Mushtari-Vlasov theory, or DMV theory, assumes the fundamen-

tal hypotheses of the classical theory formulated by Love in 1888 (cited in Love, 

1892). Besides these hypotheses, DMV theory also assumes that the shell shows 

infinitesimal deformations and moderate rotations. These last hypotheses indi-

cate that this theory, as previously mentioned, is suitable to analyse shallow 

shells.  
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Figure 2.6: Geometric definition of the relationships in Eq. (2.35) 

As previously stated, DMV theory takes into account rotations. Thus, the kin-

ematic relationships incorporate them as follows (Brush & Almroth, 1975) 
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Introducing Eqs. (2.38) to (2.43) into Eqs. (2.25) to (2.30) leads to 
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Eqs.(2.50)  to (2.52) represent the equilibrium equations in x, y and z-direction 
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It should be noted that Eq. (2.52) (equilibrium according to z-direction, i.e. ac-

cording to the direction that is normal to the middle surface of the shell) in-

cludes the (i) shear forces (expressed in terms of Mx, My and Mxy), and (ii) the 

membrane components according to z-direction (deformed configuration – 

geometrically nonlinear theory) (Reis & Camotim, 2012).  

Finally, introducing Eqs. (2.44) to (2.49) into Eqs. (2.50) to (2.52) leads to the 

nonlinear differential equations for the DMV theory expressed in terms of 

displacement w. 

Alternatively, the nonlinear equilibrium equations may be obtained from the 



32 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

total potential energy expression for general shells “by routine application of 

the principle of stationary potential energy” (p. 197, Brush & Almroth, 1975) 

(sec. 2.6.2).  

Finally, it can be seen that the Lamé coefficients can be specified to obtain kin-

ematic relationships for specific geometries, for example, for rectangular flat 

plate the Lamé coefficients are AL=1 and BL=1 and Rx=∞ and Ry=∞, and for cir-

cular thin cylindrical shell are AL=1 and BL=Ry and Rx=∞.  

2.5.3. Nonlinear shallow shell theory 

Shallow shells are frequently required to be analysed by a geometrically non-

linear theory because shallow shells are less stiff than other shells, which 

means that for the same applied transverse load, the displacements and mainly 

the rotations are larger than in other shells having the same planar dimensions.  

From the element [ABCD] and its projection in the Oxy plane represented in 

Figure 2.6 is clear that the following simplifications can be made 
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Furthermore, the nonlinear terms can be neglected leading to the following 

further simplifications 

dxds 1

 
(2.55) 

dyds 2

 
(2.56) 

i.e. AL=1 and BL=1. Therefore, it is correct, when analysing shallow shells, to con-

sider as orthogonal the curvilinear system of coordinates. In conclusion, the 

intrinsic geometry of a shallow shell is identical to the geometry of a plane of its 

projection. This actually represents the first basic assumption of the theory of 

shallow shells (Ventsel & Krauthammer, 2001). The second assumption of shal-
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low shells theory is that the effect of transverse shear forces in in-plane equi-

librium equations is negligible and the influence of the deflections, w, predom-

inates over the influences of the in-plane displacements u and v in the bending 

response of the shell. Replacing the Lamé coefficients by 1 in DMV equations 

leads to the nonlinear equations of shallow shells. The kinematic equations are 
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The force-displacement relationships are given as follows 
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And, finally, the equilibrium equations 
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Alternatively, Eq. (2.71) can be written only with respect to the terms related 

to the membranes forces and the displacement field w 
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The corresponding linear governing equations are obtained neglecting the 

nonlinear terms in Eqs. (2.57) to (2.59).  

2.6. Energy principles 

2.6.1. General 

In the next sub-sections the total potential energy of thin general shells is in-

troduced. Additionally, the principles of stationary total potential energy and 

of minimum total potential energy are stated. A complete demonstration or 

proof of these principles is not given in this section since it can be found with 

great amount of detail in the works of several authors (e.g. Reddy, 2002). 

2.6.2. Total potential energy of thin elastic shells 

For a general shell element, the total potential energy V of an elastic body, 

Eq. (2.74), is obtained by adding the strain energy, U given by Eq. (2.73), and 
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the work done by the load W. The strain energy of a general thin elastic shell 

may be divided into two components: membrane strain energy Um, given by 

Eq. (2.75) and pure bending strain energy Ub, given by Eq. (2.76) (Koiter, 1960).  
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The work done by external loads is given by (Brush & Almroth, 1975) 
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(2.77) 

where a is the shell’s element length, b is the shell’s element width and px , py 

and pz are the distributed forces per unit area acting in x, y and normal direc-

tions, respectively. Eqs. (2.75) and (2.76) are easily derived from Eq. (2.78), 

which represents the most general expression for the strain energy of an elas-

tic body, and recurring to Hooke’s law as presented in sec. 2.3.  
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2.6.3. The principle of stationary total potential energy 

The principle of stationary energy states that when the equilibrium configura-

tion of an elastic body is perturbed by the introduction of an infinitesimal dis-

placement field, the total potential energy remains constant. Mathematically, 

this principle is translated by the following equation  

0





iq

V
V

 
(2.79) 

where qi represents the introduced infinitesimal displacements.  
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2.6.4. The principle of minimum total potential energy 

The principle of minimum potential energy states “an equilibrium configura-

tion is stable whenever the total potential energy of the system displays a min-

imum” (p. 34, translated from Portuguese, Reis & Camotim, 2012). Mathemat-

ically, this principle is illustrated by the following conditions (the first varia-

tion of the total potential energy is null and the second is positive) 

00 2  VV 

 
(2.80) 

where symbol δ is the variational operator used in calculus of variations.  

Another way to enunciate this principle is “of all displacements fields which 

satisfy the prescribed constraint conditions, the correct state is that which makes 

the total potential energy of the structure a minimum” (p. 74, Tauchert, 1974).  

2.7. Methods of analysis of thin shells 

2.7.1. General 

As already seen in the previous section, there are relevant problems in the 

field of engineering which may be well described in terms of partial differen-

tial equations. With some exceptions, an analytical solution is not possible to 

obtain or it is very complex. This fact is explained by two reasons: there is no 

analytical solution for the differential equations describing the problem and/or 

because the quantity of differential equations to solve is too large.  

Problems that have exact solutions have very simple geometry and very sim-

ple loading and boundary conditions, like:  

 Axially loaded simply supported cylindrical shells of revolution; 

 Simply supported rectangular plates under uniform compression; 

 Simply supported circular plates.  

For more complex problems it is necessary to use approximate methods. Gen-

erally speaking, approximate methods return an exact solution for discretised 

geometries (in opposition to the continuum) of the problem.  
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In problems involving conservative systems6, several approximate methods 

(whose theoretical fundamentals lies on the calculus of variations) have been 

applied to determine numerical values of natural frequencies and buckling 

stresses. Among those methods, the ones worth mentioning are the Ray-

leigh-Ritz (sec. 2.7.2) and Galerkin methods7. The solutions obtained by the 

Rayleigh-Ritz and Galerkin methods are an approximation of the true solution 

of the differential equations describing the problem. This is due to the fact that 

the solutions are in the form of a finite linear combination of undetermined 

parameters and appropriate functions that need to satisfy the boundary condi-

tions. Additionally, it should be highlighted that the main differences between 

the two methods are: while the Rayleigh-Ritz method acts on the total poten-

tial energy of the function (meaning that it is only applicable to conservative 

problems), the Galerkin method acts on the equilibrium differential equations 

(Reis & Camotim, 2012); and while the Rayleigh-Ritz method requires only the 

essential boundary conditions, the Galerkin method requires both essential 

and natural boundary conditions.  

Another classical method to obtain approximate solutions consists in approx-

imating exact derivatives by finite differences computed in respect to a gril-

lage point system. This method is known as finite difference method. Alt-

hough it is suitable to return an approximate solution of a complex problem 

this method needs to solve a considerable amount of linear differential equa-

tions that were only possible to be solved with the aid of computers.  

Finally, in sec. 2.7.3 the finite element method (FEM) is mentioned. This com-

putational method is the most commonly used numerical method nowadays. 

In fact, in the past couple of decades it progressively became a valuable tool 

for structural engineers, ceasing to be used exclusively by researchers. In a 

                                                      
6 From physics is known that “A conservative system is a system in which work done 

by a force is: (i) independent of path; (ii) equal to the difference between the final and 

initial values of an energy function; (iii) completely reversible” (Young et al., 2010). 

7 The Rayleigh-Ritz and the Galerkin methods are probably the most prominent meth-

ods and are referred to as the “classical variational methods” (Reddy, 2002). 
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simplistic way, the FEM is a computational technique which goal is to provide 

approximate solutions of boundary value problems. In conservative problems 

the finite element method is similar to the Rayleigh-Ritz method. The differ-

ence lies in the way the system is discretised. In FEM, the system is modelled 

with finite elements establishing a mesh with an approximate shape of the 

initial problem and in Rayleigh-Ritz method the system is discretised by de-

fining a finite number of degrees-of-freedom that are able to reproduce the 

mechanical response to external loading.  

2.7.2. Rayleigh-Ritz method 

The Rayleigh-Ritz method was developed by Ritz to solve equilibrium and 

eigenvalue conservative problems (i.e. problems with potential energy) using 

the same approach used by Rayleigh to analyse free vibrations (Brush & 

Almroth, 1975).  

In the Rayleigh-Ritz method the structure’s displacement field is approximated 

by functions containing a finite number of independent parameters or in other 

words “the continuous structure is approximated by a system having a finite 

number of degrees-of-freedom” (p. 89, Tauchert, 1974). These functions have to 

satisfy only the kinematic boundary conditions of the problem, disregarding 

the static boundary conditions. Summarising, in the Rayleigh-Ritz method, a 

dependent unknown8 u is approximated by a finite linear combination un 


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n

i

iin quu
1



 
(2.81) 

where qi are undetermined parameters (degrees-of-freedom) and ψi are the 

approximation functions that have to be previously chosen and, as already 

mentioned, have to satisfy the kinematic boundary conditions. The undeter-

mined parameters qi are obtained by applying the principle of stationary total 

potential energy (see sec. 2.6.3).  

                                                      
8 In the field of structural analysis the unknown is usually the displacement field.  
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Finally, it should be noted that when the continuous structure is idealised into 

a system with a finite number degrees-of-freedom, additional constraints are 

being added to the structure. These imaginary constraints become more and 

more significant when reducing the degrees-of-freedom making the discretised 

structure stiffer than it really is. This means that a procedure using the Ray-

leigh-Ritz method returns smaller values for the displacements and, in the case 

of eigenvalue analysis (linear stability analysis) higher values of critical loads.  

2.7.3. Finite element method (FEM) 

Before the emergence of the FEM, all analysis carried out to solve structures 

were done by means of direct solving the partial differential equations under-

lying the behaviour of the structure. As aforementioned, this approach was 

only possible in very rare cases with simple geometries and loading conditions.  

Thus, the main idea of the finite element method is to systematically find very 

simple approximation functions, ψi, for each finite element and then requiring 

them to cope with continuity equations (i.e. the displacement field must be 

continuous and differentiable in all domain of the problem), equilibrium equa-

tions and constitutive laws.  

Theoretically, the solution obtained by application of the FEM tends to the 

exact one if the dimension of the finite element tends to zero (i.e. the number 

of finite elements replacing the real structure tends to infinity) or if the degree 

of interpolation of the finite element tends to infinity (i.e. the degree of the 

approximation functions of the finite element tends to infinity). 

In Chapter 4 (numerical studies) this method will be used and its main as-

sumptions within cylindrically curved steel panel applications will be thor-

oughly described.  

2.8. Summary 

In conclusion, this chapter started with a revision of the historical evolution of 

shell theories and also with the most important definitions (where the defini-
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tion of shallow shells, together with the explanation of the nonlinear shallow 

shell theory, stand out). It was also concluded that shallow shell theory, name-

ly DMV theory is the most suitable theory to study cylindrically curved panels.  

Finally, it is highlighted the fact that this chapter defines and introduces the 

most important concepts that are crucial for the progress into the subsequent 

chapters:  

 Firstly, the topics covered in sec. 2.5 together with those in sec. 2.6, are 

crucial for the progress of Chapter 7: Energy based analytical model. In 

fact, the expressions presented in Chapter 7, are derived from total po-

tential energy formulations where the strain-displacement relations are 

given by the nonlinear shell theory presented in sec. 2.5.3 and are in-

serted into Eq. (2.78);  

 Secondly, sec. 2.7.3 initiates a very important task in this work: the 

numerical study, which is presented in Chapter 4: Numerical models 

of curved panels under compressive stresses. Apart from expressions 

in Chapter 7, the remaining proposed formulae are calibrated using 

numerical results.  



3. Stability analysis of plates and  

cylindrically curved panels  

3.1. Chapter overview 

This chapter presents and discusses the stability behaviour of simply support-

ed cylindrically curved panels. Additionally, since plates are seen as a particu-

lar case of cylindrically curved panels, a concise introduction to the stability of 

plates is also made.  

Therefore, after an introductory description of a cylindrically curved panel’s 

geometry in sec. 3.2, the buckling and postbuckling behaviour of plates under 

uniaxial compressive stresses is tackled in sec. 3.3 and under biaxial loading in 

sec. 3.4. Thus, the most important features of the elastic critical behaviour and 

postbuckling behaviour of simply supported plates are reviewed and covered 

in these sections.  

In sec. 3.5 to sec. 3.7 the same framework is used to characterise the behaviour 

of simply supported cylindrically curved panels (uniaxial compressive stress-

es, circumferential compressive stresses and biaxial compressive stresses, re-

spectively).  

In sec. 3.9 to sec. 3.13 a revision of the ultimate behaviour is made for plates 

and cylindrically curved panels. Once again, more emphasis is given to the 

ultimate behaviour of cylindrically curved panels. In sec. 3.9, the classical for-

mulae based on the effective concept are revisited. Sec. 3.10 revises the ulti-

mate resistance of plates under biaxial loading, and sec. 3.11 undertakes a 
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deeper literature review on the ultimate resistance of cylindrically curved 

panels under uniaxial compressive stresses including the consideration of 

boundary conditions other than simply supported and loading conditions 

other than uniform compressive stresses. Sec. 3.12 and sec. 3.13 review the 

ultimate resistance of cylindrically curved panels under circumferential com-

pressive stresses and under biaxial loading, respectively. Current design 

methods for the assessment of the resistance of plated structures and curved 

panels are described in sec. 3.14. In particular, the design methods from 

EN1993-1-5:2006, DNV-RP-C201 and DNV-RP-C202 are briefly presented.  

Finally, in sec. 3.15 a summary of the entire chapter is made establishing rele-

vant aspects to take into account in subsequent chapters.  

3.2. Geometry of a cylindrically curved panel 

Taking as reference Figure 3.1, the notation for the geometry of a plate and of 

a cylindrically curved panel is given as follows:   

b

a
t

b

a
t

R

depth
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a
t
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a
t
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depth

 
a) b) 

Figure 3.1: Geometry of a: a) plate and b) cylindrically curved panel 

 a is the length of the plate/panel; 

 b is the width of the plate/panel; 

 t is the thickness of the plate/panel; 

 R is the radius of curvature of the panel; 

 θ is the sectorial angle of the panel.  
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Classically, the curvature of a cylindrically curved panel is denoted by Z, 

called the curvature parameter, defined by the following expression 

tR

b
Z

.

2



 
(3.1) 

The adoption of the letter Z for the curvature parameter is due to Batdorf 

(Batdorf, 1947a; Batdorf, 1947b; Batdorf, 1947c) who defined a similar parame-

ter, but taking into account the Poisson’s coefficient ν 

2
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(3.2) 

Besides the curvature parameter for curved panels, Eq. (3.2), Batdorf defined 

another one for cylinders (which is similar to the former but replacing b2 by a2). 

Another important aspect related to the geometry of a cylindrically curved 

panel is the coordinate system. In order to follow the classical notation, when-

ever a shell element is referred (local coordinate system) the following nota-

tion applies: x and y are the directions defining the plane tangent to a refer-

ence point of the shell’s element and z-direction is the respective perpendicu-

lar direction (definition used through Chapter 2 and 7, see Figure 7.1); other-

wise (with exception of sec. 8.8), whenever a curved panel is being referred 

(global coordinate system) x is the longitudinal direction, y is the strong axis 

direction (out-of-plane direction) and z is the weak axis direction (definition 

used through the remaining chapters, see Figure 4.2).  

3.3. Buckling and postbuckling behaviour of flat plates under 

uniaxial compressive stresses 

3.3.1. Linear elastic buckling behaviour 

Although linear buckling theory is not enough to accurately predict the com-

plete behaviour of a structure9, it still plays an important role in its design 

                                                      
9 “The theoretical or elastic critical local buckling load is not on its own a satisfactory 

basis for design. Ultimate strength of plates may be less than the critical buckling load 

due to yielding or may be in excess of the critical buckling load due to beneficial post-

buckling reserve” (p. 128, Ziemian, 2010).  
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process. In fact, almost all standards deliver formulae and diagrams that allow 

calculating the elastic critical stress for common cases. The elastic critical stress 

value is fundamental in plated structures design as it is necessary when calcu-

lating the slenderness parameter. For a simply supported rectangular plate 

subjected to uniform compression, the elastic critical stress can be mathemati-

cally defined since the linear buckling theory does not take into account geo-

metric and material nonlinearities. However, in the presence of complex sup-

port conditions and/or loading arrangements it is usually necessary to use 

approximate numerical or semi-analytical methods such as the Rayleigh-Ritz 

(sec. 2.7.2 and Chapter 7) or the Galerkin methods. For even more complex 

problems advanced software tools are available that use the finite element 

method (sec. 2.7.3 and Chapter 4) or the finite strip method to calculate accu-

rately the elastic critical stress value. A derivation of the elastic critical stress of 

plates and curved panel based on energy principles applying the Rayleigh-Ritz 

method is performed in Chapter 7.  

The first one to deduce Eq. (3.3) – elastic buckling stress of a long simply sup-

ported rectangular plate subjected to uniform compression, with an assumed 

buckling shape given by Eq. (3.4) – was Bryan in 1891 (Ziemian, 2010).  
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The elastic critical stress value depends on the value of the buckling coefficient 

kσ that is calculated from Eq. (3.5). This equation takes the value 4 (minimum 

value) for a simply supported plate under uniform compression with one 

transversal half-wave (n=1) (Figure 3.2) 
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(3.5) 

where α is the plate’s aspect ratio, defined as the quotient between the plate’s 

length, a, and the plate’s width, b, m is the number of longitudinal half-waves 



Chapter 3 | Stability analysis of plates and cylindrically curved panels 45 

 

and n the number of transversal half-waves of the buckled shape. For short 

plates (i.e. aspect ratio less than 1) Eq. (3.5) does not have a minimum value 

(Figure 3.2). Therefore, the buckling coefficient must be directly obtained by 

the same equation (instead of being, in a simplified manner, equal to 4).  

For other support conditions and/or for non-uniform loading, different values 

for the minimum buckling coefficient are obtained (Timoshenko & Gere, 1961; 

Bijlaard, 1957). Table 3.1 and Table 3.2 show some values for diverse in-plane 

loading and boundary conditions.  

m=4
m=3

m=2

m=1

0

4

8

12

16

20

0 1 2 3 4 5 6

B
u

ck
li

n
g

 c
o

ef
fi

ci
en

t,
 k

σ

Aspect Ratio, α  

Figure 3.2: Plot of Eq. (3.5), n=1 

When plates are stiffened the complexity of the analysis increases since the plate 

may show multiple buckling modes: global buckling of the plate, local buckling 

of the stiffened plate along longitudinal stiffeners, local buckling of the unstiff-

ened plate along longitudinal stiffeners and local buckling of the stiffeners. Be-

sides thickness, aspect ratio and material, the buckling stress of a simply sup-

ported stiffened plate depends on the number of stiffeners and their second 

moment of area. Several classical methods have been developed to compute the 

elastic critical stress of a stiffened plate (Seide & Stein, 1949; Bleich, 1952; Klöp-

pel & Sheer, 1960; Timoshenko & Gere, 1961; Klöppel & Möller, 1968). These 
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authors presented tables and diagrams for very limited configurations, e.g. dia-

grams presented by Klöppel are applicable only for “weak” stiffeners (Galéa & 

Martin, 2010). In addition to these methods, there are, nowadays, advanced 

tools capable of predicting the elastic critical stress of a stiffened plate accu-

rately: FEM, CFSM and EBPlate (CTICM, 2007) are examples of such tools.  

Table 3.1: Values of the minimum buckling coefficient, kσ,min, for different types of 

boundary conditions (adapted from Bijlaard, 1957) 

   Top edge free Bottom edge free 

Loading, 

ψ 

Unloaded 

edges simply 

supported 

Unloaded 

edges fixed 

Bottom edge 

simply 

supported 

Bottom 

edge fixed 

Top edge 

simply 

supported 

Top edge 

fixed 

-1 23.9 39.6 0.85 2.15 - - 

-2/3 15.7 - - - - - 

-1/3 11.0 - - - - - 

0 7.8 13.6 0.57 1.61 1.70 5.93 

1/3 5.8 - - - - - 

1 4.0 6.97 0.42 1.33 0.42 1.33 

 

Table 3.2: Values of the buckling coefficient, kσ, for different types of in-plane loading 

(adapted from Timoshenko & Gere, 1961) 

Type of 

loading, ψ 

Aspect ratio, α 

0.40 0.50 0.60 0.67 0.75 0.80 0.90 1.00 1.50 

-1 29.1 25.6 24.1 23.9 24.1 24.4 25.6 25.6 24.1 

-1/3 18.7 - 12.9 - 11.5 11.2 - 11.0 11.5 

0 15.1 - 9.7 - 8.4 8.1 - 7.8 8.4 

1/3 10.8 - 7.1 - 6.1 6.0 - 5.8 6.1 
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3.3.2. Postbuckling behaviour 

The change between equilibrium states of a perfect plate occurs by stable 

symmetric bifurcation. This type of bifurcation is responsible by the stable 

postbuckling behaviour of a plate (see Figure 2.1). In fact, at the same time 

buckling occurs, a loss of stiffness and a redistribution of stresses character-

ised by the transformation of membrane potential energy into bending energy 

also occurs (Figure 3.3). Furthermore, when it comes to determining the post-

buckling behaviour of a structural system, it is necessary to consider nonlinear 

terms in the equilibrium equations (established as the basis of the deformed 

configuration) and also a moderate- or large-deflection plate theory.  
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a) b) 

Figure 3.3: Stress redistribution: a) lateral borders remain straight and b) lateral bor-

ders free to deformed (adapted from Simões da Silva & Gervásio, 2007) 

The postbuckling equilibrium path for a simply supported square plate with-

out imperfections with all edges constrained (remaining straight after buck-

ling, Figure 3.3a)) can be deduced by von Kármán’s equations or obtaining the 

equilibrium equations from the total potential energy function. The resulting 

equilibrium path is (Reis & Camotim, 2012) 
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where q is the maximum out-of-plane displacement of the plate. The deduction 

of Eq. (3.6) is not made in this section. For deeper information readers should 

consult classical references on the subject (e.g. Chajes, 1974).  

However, a real structure is not imperfection free, therefore imperfections 

must be taken into account (it is brought to the attention of the reader that a 

deeper insight on imperfections is made in sec. 3.7). Figure 3.4 shows how 

geometric imperfections can affect the postbuckling behaviour of a simply 

supported plate under uniform compression. Again, the postbuckling equilib-

rium path for a plate with imperfections (assuming an imperfection shape or 

initial displacement field given by Eq. (3.8)) can be derived from the same 

large-deflection equations. The resulting equilibrium path is given by the fol-

lowing expression (Reis & Camotim, 2012) 
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where q0 is the maximum amplitude of the initial geometric imperfection.  
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Figure 3.4: Effect of geometric imperfections on the postbuckling behaviour of a plate 

under uniform compression 
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3.4. Buckling and postbuckling behaviour of flat plates under 

biaxial compressive stresses 

3.4.1. Linear elastic buckling behaviour 

The elastic buckling stress of a rectangular isotropic plate under biaxial com-

pression can be calculated using Eq. (3.3) setting the buckling coefficient equal 

to (Brush & Almroth, 1975; Reddy, 2007)10 
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(3.9) 

where γ is the ratio between the stresses in the two orthogonal directions 

(=-σy/σx). Figure 3.5 to Figure 3.8 plot Eq. (3.9) for several values of γ.  
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Figure 3.5: Plot of Eq. (3.9), n=1 and γ=-1 

                                                      
10 The derivation is given in the mentioned references.  
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Figure 3.6: Plot of Eq. (3.9), n=1 and γ=-0.5 
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Figure 3.7: Plot of Eq. (3.9), n=1 and γ=0.25 
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Figure 3.8: Plot of Eq. (3.9), n=1 and γ=1 

As one would expect, for negative values of γ (i.e. tensile stresses at y-direction) 

the elastic buckling coefficient is higher than for plates under uniaxial com-

pressive stresses (i.e. γ=0) and for positive values of γ (i.e. compressive stresses 

on the y-direction) the elastic buckling coefficient is lower than for plates under 

uniaxial compressive stresses. These statements are easily proven by setting to 

zero the first derivative of kσ function to α and studying the behaviour of the 

function kσ(α) when α is in the vicinity of infinity. The first process yields the 

values of aspect ratio for which kσ takes a minimum value (Eq. (3.10) only 

shows positive real solutions) 
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Analysing Eq. (3.10) it is concluded that it only represents a real number for 

γ<0.5 (this conclusion results from imposing n2-2n2γ>0). Replacing α by the 

expression obtained in Eq. (3.10) into Eq. (3.9) yields an expression of the min-

imum values of the elastic buckling coefficient 
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For values γ≥0.5 the minimum value of the elastic buckling coefficient occurs 

only for in the vicinity of infinity 
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Figure 3.9 plots the two expressions which return the minimum values of the 

elastic critical stress coefficient of plates under biaxial loading. As it was ini-

tially stated, it is now easy to accept that for γ<0 (compression-compression), 

kσ for plates under biaxial loading is higher than for plates under uniaxial 

compressive stresses and for γ>0 (tension-compression), kσ is lower than for 

plates under uniaxial compressive stresses. Table 3.3 summarises the expres-

sions for computing the elastic buckling coefficient of plates under biaxial 

loading, giving also some examples of kσ for several values of γ.  
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Figure 3.9: Plot of Eq. (3.11) and (3.12), n=1 
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Table 3.3: Values of kσ,min for plates under biaxial loading 

Type of loading, γ Minimum values of kσ (n=1) Expression of kσ,min 
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3.4.2. Postbuckling behaviour 

As already discussed, when a plate is under uniaxial loading it has a post-

buckling reserve strength due to its ability of developing tensile membrane 

stresses (in an orthogonal direction to the load application) that have an over-

all stabilising effect, allowing the plate to reach higher loads than the theoreti-

cal bifurcation load. If compressive membrane stresses are added in the or-

thogonal direction to the main loading (γ<0), i.e. in the direction of the stabilis-

ing stresses, the stabilisation effect is lost and the postbuckling strength re-

serve decreases. On the other hand, if extra tensile membrane stresses are 

added in the orthogonal direction (γ>0) to the main loading, the stabilising 

effect is enhanced and the postbuckling strength reserve increases.  

Although the sign of the orthogonal stresses is a crucial aspect for the post-

buckling behaviour, there are other aspects that are almost as important, 

namely the plate’s aspect ratio and the boundary conditions (Braun, 2010).  

According to Braun, the aspect ratio is a fundamental parameter since it dic-

tates the type of behaviour of the plate: plate-like or column-like behaviour 

(the latter cannot benefit from the development of stabilising tensile stresses). 

Additionally, for non-squared panels, i.e. for plates where column-like behav-

iour is relevant, the shape of the imperfections becomes important. Boundary 

conditions also play an important role in the postbuckling behaviour since the 
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stresses redistribution to the edges strongly depends on how the edges are 

fixed (see also 0). In this regard, Braun studied the influence of in-plane edge 

restraints and of rotational edge restraints. In both cases it was found that the 

more constrained the boundary condition the higher the postbuckling strength 

reserve will be (Braun, 2010).  

3.5. Buckling and postbuckling behaviour of thin cylindrically 

curved panels under uniaxial compressive stresses 

3.5.1. Linear elastic buckling behaviour 

The buckling of cylindrically curved panels is a subject that has been studied 

for many years. However, this topic was not as popular as flat plates, which 

can explain some inconsistencies when predicting curved panel’s critical stress 

using classical semi-analytical formulae. The misconceptions about curved 

panel’s critical behaviour are well illustrated by Gerard’s definition of its be-

haviour: “A curved plate loaded in axial compression buckles in the same 

manner as cylinder when the plate curvature is large, and when the plate cur-

vature is small it buckles essentially as flat plate. Between these two limits, 

there is a transition from one type of behaviour to the other” (p. 54, Gerard & 

Becker, 1957). This characterisation of the buckling behaviour of cylindrically 

curved panels is not entirely correct as it is patent in a former work by Stowell 

in 1943 (Stowell, 1943) and recently demonstrated numerically by Tran et al. 

(2012). Whereas Gerard defends that cylindrically curved panels buckle simi-

larly to a cylinder when the panel’s curvature is large, Tran showed numerical-

ly that the critical stress of cylindrically curved panels tends to half the value of 

the cylinder’s critical stress (in this work R, a, t and the boundary conditions 

are constant; b varies from 0 to 2πR). This occurs due to the fact that even 

though the curved panel is a full cylinder of revolution, the longitudinal edges 

are independent from each other (i.e. the curved panel is a cylinder of revolu-

tion with a longitudinal cut-out). In what concerns the opposite limit, when the 

radius of curvature tends to infinity, the panel buckles as a flat plate. Figure 

3.10 highlights the differences between plates, curved panels and cylinders. It 
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is clear that the buckling pattern of a curved panel has little in common with 

the buckling pattern of a cylinder. This is due to the fact that curved panels do 

not develop tensile circumferential membrane stresses in the same way as cyl-

inders do, resulting in distinct buckling modes from those observed in cylin-

ders (Martins et al., 2013). Additionally, the existing formulae predicting the 

elastic critical stress of cylindrically curved panels (which are limited to uni-

form compressive stresses) present considerable errors (Martins et al., 2013).  

   

a) b) c) 

Figure 3.10: a) Plate, b) curved panel and c) cylinder behaviour subjected to longitu-

dinal compressive stresses (1st buckling mode) 

Redshaw carried out work mainly based on the use of energy methods such as 

the Rayleigh–Ritz method to determine theoretical buckling loads for curved 

panels under compression, Eq. (3.13), pure shear and combinations of both 

types of loading (Redshaw, 1934). Eq. (3.13) reduces to the flat plate buckling 

stress as one limit and to the classical cylinder buckling stress as the other lim-

it (as already mentioned this trend for the behaviour of a curved panel is erro-

neous).  
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In 1936, Timoshenko based on approximated expressions for the plate’s 

out-of-plane displacement, proposed a different expression, Eq. (3.14) (Timo-

shenko & Gere, 1961) 
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Later in 1943 Stowell proposed a modification of Redshaw’s formula for cases 

in which the curvature of the plate is larger, Eq. (3.15) (Stowell, 1943)  
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Furthermore, in this report, Stowell claims “The tests that have been made 

indicate, however, that the effect of curvature cannot always be relied upon to 

follow consistently the gradual increase in critical stress with increase in cur-

vature” (p. 9, Stowell, 1943). In fact, the problem of non-negligible errors be-

tween experimental data and proposed formulae was corroborated by other 

authors who carried out experimental programs on curved panels, e.g. Cox & 

Clenshaw (1941); Crate & Levin (1943); Welter (1946); Schuette (1948).  

In 1947, Batdorf proposed design curves devised to fit theoretical curves to ex-

perimental data using an equivalent Donnell’s equation and proposed a solu-

tion by Fourier series that was afterwards calibrated with test data (Batdorf, 

1947a; Batdorf, 1947b; Batdorf, 1947c). These design curves, which were based 

on the erroneous assumption that critical stress was equivalent to ultimate 

stress, still could not fully explain the discrepancies between theoretical and 

experimental results. These inconsistencies would be solved with the appear-

ance of the concept of imperfection sensitivity and with the awareness that elas-

tic critical stress was in fact different from ultimate stress (sec. 3.9 and sec. 3.11).  

In 1963, using the Galerkin method and assuming a buckling shape described 

by Eq. (3.4), Volmir (1963) proposed the following expression to compute the 

elastic buckling stress of a simply supported curved square panel with all 

edges constrained (i.e. edge’s deformation is constant along its length) 
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This is exactly the same formula as the first branch of Eq. (3.14). However, his 

most important contribution was the derivation of a formula to characterise 

the postbuckling behaviour (sec. 3.5.2). 

In 2001 Domb and Leigh (Domb & Leigh, 2001), using FEM numerical analy-

sis, refined Batdorf’s curves and obtained more accurate values for the buck-

ling coefficient of cylindrically curved panels under uniform compressive 

stresses.  
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where c0=0.6021, c1=0.005377, c2=0.192495, c3=0.002670, c=0.4323 and d=0.9748.  

For very large values of Z, Figure 3.11 shows that formulae from Redshaw and 

Timoshenko tend to the elastic critical stress of cylinders of revolution; formu-

lae from Stowell and Domb & Leigh tend to half of the elastic critical stress of 

cylinders of revolution (Tran et al. (2012) also reached this conclusion as al-

ready mentioned).  

Magnucki & Mackiewicz in 2006 and Wilde et al. in 2007 studied the problem of 

an axially compressed cylindrical panel with three edges simply supported and 

one edge free (Magnucki & Mackiewicz, 2006; Wilde et al., 2007). The range of 

validity of these studies is limited to values between π/2 and π of the sectorial 

angle θ. For smaller values of the sectorial angle, π/6≤θ≤π/2, Chu & Krishna-

moorthy performed a similar study in 1967 (cited in Magnucki & Mackiewicz, 

2006). In the first paper the authors solved the Donnell´s equations for linear 

buckling of shells that were reduced to a generalised eigenvalue problem with 

the use of the Galerkin method. Wilde et al. (2007) developed an analytical 

model to predict the elastic buckling stress and performed a numerical study 

where a finite element model was modelled and the results compared to those 

obtained by Magnucki & Mackiewicz one year earlier. The comparison of the 
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solutions obtained with the analytical and numerical procedures showed that 

the differences between these results were small. 

Eipakchi & Shariati in 2011 presented a study concerning the buckling stresses of 

cylindrically curved panels subjected to axial stress with the two opposite sides 

simply supported and the two other edges free or simply supported. The authors 

proposed an analytical method based on perturbation methods to find the buck-

ling axial stress of a cylindrically curved panel (Eipakchi & Shariati, 2011).  

Types of loading other than pure compression were studied by Featherston & 

Ruiz (1998), Featherston (2000), Domb & Leigh (2002), Domb (2002) and Ama-

ni (2011). However, none of these authors either studied or proposed formulae 

to compute the elastic critical stress of cylindrically curved panels under com-

binations of pure compression and pure in-plane bending. 
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Figure 3.11: Comparison of formulae from Redshaw, Timoshenko, Stowell and  

Domb & Leigh 

Similarly to flat stiffened plates, stiffened cylindrically curved panels may pre-

sent four different buckling modes: global buckling of the cylindrically curved 

panel, local buckling of the stiffened cylindrically curved panel along longitu-
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dinal stiffeners, local buckling of the unstiffened cylindrically curved panel 

along longitudinal stiffeners and local buckling of the stiffeners (Figure 3.12). 

 

Figure 3.12: Global and local buckling pattern of curved panels  

(Möcker & Reimerdes, 2006) 

3.5.2. Postbuckling behaviour 

“In contrast to columns, which have a neutral postbuckling path, and plates, 

which exhibit a stable post-buckling behaviour, shells (in which curved panels 

are included) usually have a very unstable postbuckling behaviour that 

strongly influences their buckling characteristics” (p. 625, Singer et al., 2002). 

In fact, the change in equilibrium between equilibrium states of a perfect 

curved panel also occurs by bifurcation and it is denominated by asymmetric 

bifurcation. This type of bifurcation may lead to a stable or to an unstable 

postbuckling path. In practical terms, the postbuckling path will be determined 

by the imperfection direction.  

Figure 3.13 shows the stable and unstable postbuckling paths for a cylindrically 

curved panel. The initial postbuckling behaviour of long narrow cylindrically 

curved panels was studied and discussed by Koiter (1956), Gerard & Becker 

(1957), Volmir (1963), Pope (1965), Tamate & Sekine (1969). Koiter considered 

the radial displacements supressed along the longitudinal edges, i.e. simply 

supported unloaded edges. He demonstrated that as a consequence of increas-

ing curvature the elastic buckling stress would have also to increase. On the 

other hand, Koiter also showed that increasing curvature led to highly unstable 

responses. On the field of advanced postbuckling response, Koiter stated: “it 

would appear to be not too bold a conjecture that the behaviour of a narrow 
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curved panel in the advanced postbuckling stage approaches the behaviour of a 

flat panel of equal width” (p. 76, Koiter, 1956). The postbuckling equilibrium 

path for a simply supported square panel without imperfections with all edges 

constrained (remain straight after buckling) can be deduced using the Galerkin 

method as in Volmir’s work (Volmir, 1963; Chajes, 1974; Reis & Camotim, 2012) 
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Similarly to what has been done for plates, the postbuckling equilibrium path 

for the same curved panel with imperfections is given by  
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In Figure 3.13 it is shown how geometric imperfections can affect the post-

buckling behaviour of a curved panel – q0/t>0 means that the imperfection is 

applied inwards and q0/t<0 means that the imperfection is applied outwards 

(see also 3.7). 
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Figure 3.13: Effect of geometric imperfections on the postbuckling behaviour of a 

curved panel (plot of Eq. (3.19) for several values of q0/t) 



Chapter 3 | Stability analysis of plates and cylindrically curved panels 61 

 

3.6. Buckling and postbuckling behaviour of thin cylindrically 

curved panels under circumferential compressive stresses 

3.6.1. Linear elastic buckling behaviour 

In steel construction, it is common to find unstiffened curved panels under 

compressive circumferential stresses (Figure 3.14). Due to the presence of cur-

vature, the linear behaviour of the curved panel is immediately altered. This 

means that even for stockier panels (low values of slenderness) the width is 

reduced according to a reduction factor (see 3.12) which has an upper limit 

given by the following expression (Jetteur & Maquoi, 1984) (making Zt→0, i.e. 

R→∞, it is easy to conclude that for flat plates ρt=1) 
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where Zt is the curvature parameter in the circumferential direction, given by 

Eq. (3.21) and the elastic critical stress of a cylindrically curved panel under 

circumferential compressive stresses is given by Eq. (3.22) (Jetteur & Maquoi, 

1984). 

b

a

 

Figure 3.14: Scheme of a curved plate under circumferential compressive stresses 
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Again, for Zt=0, Eq. (3.22) yields the same expression as does Eq. (3.3) for kσ=4, 

i.e. the same expression for a flat plate under uniform compression is obtained. 

It is highlighted the fact that Eq. (3.22) returns always higher values than the 

elastic critical stress of a flat plate. The elastic buckling coefficient of cylindri-

cally curved panels under circumferential compressive stresses is plotted in 

Figure 3.15.  

It is worth stressing out the fact that for values of Zt greater than 11, Eq. (3.22) 

returns a negative value. This means that this expression only is able to com-

pute the value of the elastic critical stress for panels with low curvature. In fact, 

Jetteur & Maquoi (1984) refer the absence of numerical simulations for values of 

Zt greater than 3.5 indicating that the authors did not investigate the behaviour 

for medium to high values of curvature.  
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Figure 3.15: Elastic buckling coefficient for cylindrically curved panels under  

circumferential compressive stresses (Jetteur & Maquoi, 1984) 
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3.6.2. Postbuckling behaviour 

The literature on the postbuckling of thin cylindrically curved panels under 

circumferential compressive stresses is very scarce. The only relevant docu-

ments are those by Jacques (1983) (cited in Jetteur & Maquoi (1984)) and Jet-

teur & Maquoi (1984). In the work of Jetteur & Maquoi, the postbuckling be-

haviour of the cylindrically curved panel under circumferential compressive 

stresses is completely defined by a set of equations that result from a varia-

tional analysis. Eq. (3.24) describing the out-of-plane deformation in the post-

buckling regime is  
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where q is the maximum value of the out-of-plane displacement (only the non-

linear component), σ0 represents a constant compression stress in the circum-

ferential direction and σred,1 translates the loss of stiffness of the curved panel 

in the nonlinear (postbuckling) regime while σred,2 translates the stress redistri-

bution known to happen to flat plates in the after buckling occurs.  

3.7. Buckling and postbuckling behaviour of thin cylindrically 

curved panels under biaxial compressive stresses 

3.7.1. Linear elastic buckling behaviour 

Among the few authors that have studied the linear elastic buckling behaviour 

of biaxially loaded panels (Figure 3.16), the work of Hilburger et al. (2001) is 

here highlighted. The authors have reached several important conclusions in 

what concerns the linear elastic buckling behaviour of curved panels under 

biaxial loading, being one of the most important the fact that only panels under 

compression along the curved edges (Ny/Nx = 0) exhibits a bifurcation point; the 

remaining cases where Ny/Nx ≠ 0 the curved panels exhibit a limit point. This is 

due to the fact that the loading in the transverse direction is responsible for 

pre-buckling out-of-plane deformations that act as geometric imperfections 

forcing the structural systems to adopt equilibrium configurations different 
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from the initial one for load values lower than the bifurcation point for a panel 

under uniaxial compression (Nx only). The same conclusion was later reached 

by Girish & Ramachandra (2008). 

3.7.2. Postbuckling behaviour 

In what concerns the postbuckling behaviour of cylindrical curved panels, the 

research outcomes from the two previously referred authors are similar: both 

Hilburger et al. (2001) and Girish & Ramachandra (2008) have concluded that 

the higher the value Nx/Ny the lower the limit point occurs; there is a specific 

value of Nx/Ny, which will clearly depend on the geometry of the curved pan-

el, that defines the transition from an unstable postbuckling path to a stable 

postbuckling path.  

b

a

Nx

Ny

 

Figure 3.16: Scheme of a curved plate under biaxial compressive stresses 

3.8. Elastic critical stress vs. ultimate stress and the effect of 

imperfections 

The first attempts to compute ultimate strength of plates and shells assumed a 

perfect geometry of the structure and were based on the idea that the ultimate 

strength was the same as the elastic critical load. As experimental results re-

vealed, theoretical results based upon these assumptions could not provide a 
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reliable model to compute the ultimate strength. These inconsistencies were 

only overcome with the awareness that imperfections are unavoidable (having 

a non-negligible effect on the ultimate strength) and that the elastic critical 

stress is radically different from the ultimate stress.  

The most important works on this change on fundamental knowledge of shell 

stability are those from von Kármán et al. (1932) who for the first time use the 

effective width method to compute the ultimate strength of plates, von Kármán 

& Tsien (1941) and Donnell & Wan (1945) who calculated the load deformation 

curve for perfect and imperfect cylinders under pure compressive stresses, and 

the works of Koiter (1945) and, later, Budiansky & Hutchinson (1964), proving 

that initial imperfections were the main reason for the poor correlation for thin 

shells that buckle in the elastic domain. However, these studies have a serious 

limitation: they all assumed a constant imperfection shape during the applica-

tion of load and/or displacement (Rotter & Schmidt, 2008).  

Nowadays, the way to consider that imperfections are a variable parameter 

during the analysis of any kind of structure relies on advanced numerical ap-

plications using the finite element method. The finite element method allows 

performing fully nonlinear analysis (geometrically and materially nonlinear 

analysis with imperfections) and requires imperfections to be modelled explic-

itly as part of the model’s geometry. The following types of imperfections may 

be considered:  

 Geometric imperfections: imperfections applied to the initial shape of 

the structure. According to Schmidt (2000), Rotter (2004) and Braun 

(2010), these geometric imperfections may be: realistic shapes, the 

“worst” shape, stimulating imperfections, fabrication-oriented shapes, 

eigenmode affine and collapse affine shapes;  

 Material imperfections: mainly residual stresses due to welding and/or 

forming processes and lack of material homogeneity;  

 Loading systems imperfections: imperfections related to geometric im-

perfections but occurring at load application level (i.e. eccentricities at 

the point of application of the load).  



66 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

The most common way to introduce imperfections into the analysis is to model 

only equivalent geometric imperfections11. Since the appearance of hardware 

capable of efficiently solving problems using the finite element method, imper-

fection related studies have been extensively carried out. In the field of cylinders 

of revolution the following works are highlighted: Schenk & Schüeller (2003), 

that performed an extensive numerical study on random imperfection shapes; 

the works on the sensitivity to imperfections related to fabrication process that 

have been carried out by Pircher (Pircher, M., & Bridge, R. (2001) and Pircher 

(2004)); and the works of Teng & Song (2001) and Song et al. (2004), that have 

performed extensive numerical simulations comparing different geometric pat-

terns of imperfections based on eigenmode affine shapes, nonlinear buckling 

modes shapes, postbuckling deformed shapes and weld depressions. On the 

specific field of cylindrically curved panels the recent works by Featherston 

(Featherston, 2003 and Featherston, 2012) are emphasised. In the first paper the 

imperfection sensitivity of curved panels is explored under the combined effect 

of axial and shear stresses. Two shapes for the imperfection shapes were consid-

ered which were combined with a range of amplitudes (from 0.1t to 3.0t). It was 

concluded that the sensitivity to imperfections increases for curved panels with 

lower radius of curvature (i.e. curved panels with higher curvature parameter), 

and decreases when the aspect ratio is decreased. In the second paper, further 

numerical analysis using an adaptive mesh and with a geometric imperfection 

shape obtained from optical measurement of five specimens. Additionally, the 

specimens were experimentally tested in a compression rig and the numerical 

results were validated using the experiments resulting data. It was concluded 

that besides the geometric imperfection’s amplitude, the geometric imperfec-

tion’s shape is of high importance when determining the ultimate strength of 

curved panels.  Moreover, a comprehensive parametric study on imperfection 

sensitivity of cylindrically curved panels is performed in Chapter 6. 

                                                      
11 In what concerns the pattern and amplitude of equivalent geometric imperfections, 

ECCS manual on shell structures stability (Rotter & Schmidt, 2008) gives an extensive 

and accurate historical review of the most important works. 
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3.9. Ultimate strength of flat plates under uniaxial in-plane 

stresses 

3.9.1. General 

In the case of flat plates the postbuckling path is stable (Figure 2.1a)) and there-

fore, provided that the yield stress is higher than the critical stress (i.e. plates 

with medium to high slenderness), the postbuckling reserve can be exploited.  

Several methods have been proposed to compute the ultimate strength of a 

plate under compressive stresses (effective width method, reduced stress meth-

od and yield line theory, to name a few). In the next sub-sections the effective 

width method is described in sec. 3.9.2 and the methods proposed by European 

standards (EN1993-1-5:2006) are presented further in this chapter in sec. 3.14.1.  

3.9.2. Effective width method 

In 1932, von Kármán et al. (1932) proposed a simplified method to obtain an 

approximation for the ultimate load carried by the buckled flat plate. Accord-

ing to his method the ultimate resistance is totally supported by two strips of 

equal width (effective width), located along the unloaded edges (longitudinal 

edges). The effective width concept is illustrated in Figure 3.17 and by 

Eqs. (3.24) and (3.25) and it may be regarded as the width of the plate which is 

under a uniform stress distribution, equal to the effective stress distribution in 

the total width of the plate.  

In other words, this method establishes that the plate’s width is divided into 

effective (at the longitudinal edges of the plate) and non-effective parts (at the 

central buckled part of the plate) as shown in Figure 3.17. Immediately before 

collapse the stress distribution in the plate’s effective part is equal to fy.  
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where ρ is the reduction factor, beff is the effective width of the plate, b is the 
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actual width of the plate and λ is the reduced slenderness parameter of the 

plate given by 
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Figure 3.17: Effective width of a plate under compressive stresses 

Without any room for doubt, the introduction of the concept of effective by von 

Kármán was a breakthrough in computing the ultimate strength of plates under 

compression. However, when compared to experimental results, this method 

only predicts accurately the ultimate strength for plates with very high values of 

slenderness (in this domain of slenderness the effects of initial imperfections are 

negligible and plates buckle in the elastic domain). This means that the von Ká-

rmán’s formula is not appropriate for plates with medium values of slenderness 

where the effect of initial imperfections plays an important role in the ultimate 

strength. The realisation of this fact led other researchers to investigate deeper 

and propose formulae to predict the ultimate strength plates.  

Among those researchers it is worth mentioning the works of Winter (1947), 

Eq. (3.27), Gerard (1957), Eq. (3.28), Faulkner (1965) (cited in Simões da Silva & 

Gervásio, 2007), Eq. (3.29), Usami (1993) and Johansson (1999) (cited in Simões 

da Silva & Gervásio, 2007), Eq. (3.30). Figure 3.18, compares these formulae. 

Classically, Winter’s formula is the most generally accepted one. It was adapted 

to stress gradient loading (Dubas & Gehri, 1986) and is still in use to estimate 
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the ultimate strength of internal plate elements in EN1993-1-5:2006 (CEN, 

2006a), Eq. (3.49), and also in DNV-RP-201 (DNV, 2010a).  
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Figure 3.18: Effective width reduction factor according to von Kármán, Winter, 

Gerard, Faulkner and Johansson 
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In spite of the general acceptance of this design formula some authors stress out 

the fact that Winter’s formula gives higher results than experiments for more 

slender welded plates (Clarin, 2007) and, sustained by numerical results, Vel-

jkovic & Johansson (2009) claim that Winter formula does not incorporate accu-

rately enough the possibility of material imperfections, namely residual stresses.  

3.10. Ultimate strength of plates under biaxial stresses 

3.10.1. General 

In what concerns the evaluation of the ultimate strength of plates under biaxi-

al loading, there are several studies along the past years that addressed this 

topic: Becker et al. (1970), Faulkner et al. (1973), Becker & Colao (1977), and 

Stonor et al. (1983) (who conducted experimental studies); and Valsgard 

(1980), Dier & Dowling (1980) and Cui et al. (2002) (who conducted numerical 

studies). All these authors proposed interaction formulae that can be generally 

expressed by Eq. (3.31).  
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Table 3.4: Definition of ρx and ρz and interaction values V, e1 and e2 in Eq. (3.31)  

according to several authors 

Reference ρx according to ρz according to V e1 e2 

Faulkner et al. (1973) Faulkner (1965) Own calc. 0 1 2 

Valsgard (1980) Faulkner (1965) Valsgard (1979) -0.25 1 2 

Dier & Dowling (1980) Own calc. Own calc. 0.45 2 2 

Stonor et. al (1983) - - 0 1.5 1.5 

Cui et al. (2002) Own calc. Valsgard (1979) 0.1135 2 2 

 



Chapter 3 | Stability analysis of plates and cylindrically curved panels 71 

 

The difference between proposed interaction formulae relies on the definition 

of the reductions factors ρx and ρz (that can be evaluated according different 

authors, e.g. Winter’s and Faulkner’s formulae) and on the values of V, e1 and 

e2 (see Table 3.4).  

Guedes Soares & Gordo (1996) reassessed some of the existing results and de-

sign methods for plates subjected to biaxial compression and concluded that 

the already adopted method in standards at that time12 was valid, Eq. (3.32).  

1

2

,

2

,































yz

Edz

yx

Edx

ff 







 
(3.32) 

where ρx is the longitudinal reduction in biaxial compression (given by Faulk-

ner’s formula, Eq. (3.29)) and ρz is the transverse reduction in biaxial compres-

sion (given by Valsgard formula, see Guedes Soares & Gordo (1996)). Howev-

er, the authors recommended that the formula should only be used for plates 

with relative high values for the plate’s slenderness (λ>1.3) while for stockier 

plates the von Mises criteria is adopted. 

3.10.2. Braun (2010) 

Recently, Braun (2010) exhaustively reviewed and evaluated earlier work in 

this field (including those already mentioned) concluding that: (i) a compari-

son of interaction curves proposed by all authors is difficult since they intense-

ly rely upon the definition for the reference strength (i.e. the method used to 

assess the resistance to uniaxial compressive loading in both directions, e.g. 

Winter’s and Faulkner’s formulae); (ii) the reference strengths that are current-

ly being used in standards and being applied in design are more favourable 

when compared to the ones which were used in the past. Additionally, the 

author questions the usability of the results from earlier work, carrying out 

own simulations which were the basis for his proposed interaction equation, 

                                                      
12 Presently, the method proposed in DNV-RP-C201 (described in sec. 3.14.2) is differ-

ent from the former DNV Offshore Standard (DNV, 1977) which was valid in 1996. 
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Eq. (3.33). The key parameters in Braun’s parametric study were the slender-

ness (which was accounted for by changing the b/t ratio of the plates from 30 

to 100), the plate’s aspect ratio (α=1 and α=3), the imperfection shape (1 

half-wave vs. 3 half-waves eigenmode shapes) and the in-plane and rotational 

edge boundary conditions (simply supported vs. clamped edges where all 

edges are constrained or all edges unconstrained).  
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where V is an interaction factor given by ρx·ρz, when σx,Ed and σz,Ed are both in 

compression, or equal to 1, when at least σx,Ed or σz,Ed are in tension. In this 

formulation, Braun indicates that both the longitudinal reduction factor and 

the transverse reduction factor are to be calculated according to section 

4.5.4(1) of EN1993-1-5:2006 (CEN, 2006).  

The main conclusions of this work were that the aspect ratio together with the 

imperfection shape are of the utmost importance since they determine the 

lower bound resistance for non-square plates (in this case for plates with α=3); 

and that the boundary conditions also determine the ultimate resistance of 

plates under biaxial loading, being the lower bound of that resistance given 

for the case where all edges are simply supported and unconstrained.  

3.11. Ultimate strength of cylindrically curved panels under 

uniaxial in-plane stresses 

3.11.1. General 

As for plates, the ultimate strength of unstiffened cylindrically curved panels 

is governed by numerous parameters such as the postbuckling behaviour, 

boundary conditions, constitutive law of the material, geometric imperfections 

and material imperfections. Additionally, it depends on the curvature, ex-

pressed as the curvature parameter Z.  
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In the field of shell structures, Schmidt (2000) reviewed the most important 

contributions. Particularly relevant are the already referred works of von Ká-

rmán & Tsien (1941) and Donnell & Wan (1945) who calculated the load de-

formation curve for perfect and imperfect cylinders under pure compressive 

stresses, and the works of Koiter (1945), and Budiansky & Hutchinson (1964). 

Among the authors that have studied specifically the ultimate strength of cy-

lindrically curved panels are Gerard & Becker (1957), Gerard (1959), Feather-

ston & Ruiz (1998), Featherston (2000), Yumura et al. (2005) (cited in Yao et al., 

2006), Magnucki & Mackiewicz (2006) Wilde et al. (2007) and Park et al. (2009).  

Featherston and Ruiz in 1998 and Featherston in 2000 carried out a series of 

tests to determine the accuracy of the theoretical elastic buckling loads and 

ultimate loads. Finite element analyses were compared to experimental results 

to evaluate this method as an alternative to determine collapse loads and 

postbuckling behaviour (Featherston & Ruiz, 1998; Featherston, 2000).  

Later in 2003, Featherston presented a study where imperfection sensitivity of 

curved panels under combined compression and shear was addressed. The 

main conclusions of this study were that the imperfection sensitivity de-

creased with the increase of curvature and that in the majority of cases intro-

duction of imperfections with the shape of the second eigenmode led to the 

maximum reduction in the ultimate strength13.  

In 2005, Yumura et al. (2005) (cited in Yao et al., 2006) investigated buck-

ling/plastic collapse behaviour of compressed cylindrically curved plates. The 

authors performed an elastic eigenvalue analysis, an elastic large deflection 

analysis to investigate the characteristics of postbuckling behaviour and a series 

of elastic plastic large deflection analysis to clarify the buckling/plastic collapse 

behaviour (in Yao et al., 2006).  

Recently, Park in 2009 performed some studies to predict the buckling 

strength and ultimate strength of a simply supported cylindrically curved 

                                                      
13 Tran (2012) also reached the conclusion that the first buckling mode did not return 

the minimum collapse load for cylindrically curved panels (see sec. 3.11.2).  
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plate. The buckling strength and ultimate strength formulae are empirically 

derived based on a finite element method analysis (Park et al., 2009).  
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where λ’ is the normalised slenderness parameter taking into account the ef-

fect of curvature by considering the value of the elastic critical stress, σpcr is the 

elastic critical stress of the panel without curvature and σccr is elastic critical 

stress of the curved panel.  

3.11.2. Tran (2012) and Tran et al. (2012) 

Tran (2012) proposed two alternative methods to compute the ultimate 

strength of simply supported cylindrically curved panels subject to uniform 

axial compression. These approaches return a reduction factor that is applied 

to the plastic resistance of the panel (fy.b.t) giving its ultimate strength.  

The first one is based on a modification of the Ayrton-Perry approach (Tran et 

al., 2012) 
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where αz is the elastic imperfection reduction factor (Table 3.5), λz,0 is the 

length of the initial plateau where no reduction of the panel’s resistance occurs 

and β a numerical parameter and it represents the influence of curvature on 

the value of the imperfection factor.  

Tran (2012) also proposed a second approach based on the Ayrton-Perry ap-

proach but, as it is very similar to the one described above, it will not be con-

sidered here.  
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Table 3.5: Values of αz (Tran et al., 2012) 

Z 0 10 20 30 ≥40 

αz 0.28 0.38 0.33 0.21 0.13 

 

The second approach is based on EN1993-1-6:2007 (CEN, 2007) (Tran, 2012) 

and proposes the following set of formulae 
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where λz,0 is the squash limit relative slenderness (or the initial plateau length), 

αz is the elastic imperfection reduction factor14, β is the plastic range factor, η is 

an interaction exponent and λ’15 is the slenderness limiting the elasto-plastic 

domain of the response of cylindrically curved panels.  

                                                      
14 αz is used (as in the first approach) instead of α (as in the original proposal) in order 

to avoid possible confusion with aspect ratio.  

15 λ’ is used instead of λp (as is used in the original proposal) in order to avoid possible con-

fusion with plate slenderness.  
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These studies were conducted assuming simply supported square panels 

with varying curvature (0 ≤ Z ≤ 100) where the loaded edges are constrained, 

i.e. the displacement along the edges is constant. The shape for geometric im-

perfections (equivalent geometric imperfections) is based on the first buckling 

mode with amplitude max (a/200; b/200). It is claimed that imperfections de-

fined in this manner (similarly to the definition proposed in EN1993-1-5:2006) 

lead to safe results. Following the first study, Tran (2012) explored the imper-

fection sensitivity of cylindrically curved panels further: he concluded that 

initial shapes based upon the first buckling mode were not leading to mini-

mum values of the ultimate strength. Nevertheless, in that study, it is pointed 

out that the maximum difference on the ultimate load when different buck-

ling modes are chosen is only 3%. This led the author claiming that “The use 

of the first buckling mode as a shape for imperfection remains acceptable 

(…)” (translated from French, p. 95, Tran, 2012). However, as it will be ex-

posed in Chapter 6, this is not true for all geometries of cylindrically curved 

panels. In the aforementioned chapter, an extensive parametric study on ge-

ometric imperfection sensitivity of cylindrically curved panels is performed. 

One of the conclusions is that, for certain combinations of curvature and as-

pect ratio, the ultimate load value varies not negligibly with amplitude and 

shape (which is based upon buckling modes). Within the parametric study 

limits, Tran’s method (χ-λ approach) is reliable but it depends on the calcula-

tion of the critical load by Stowell’s formula (Eq. (3.15)) thus not allowing the 

elastic critical stress to be obtained numerically.  

Finally, it is only valid for square cylindrically curved panels under pure com-

pressive loading leaving out different aspect ratios and loading conditions.  

3.11.3. Tran et al. (2014) proposal 

Recently, Tran et al. (2014) based on the Design of Experiment Methodology 

and on a quasi-Monte Carlo method for sampling definition proposed a relia-

ble formula for computing the ultimate load factor for both stiffened and un-

stiffened cylindrically curved panels under pure compressive loads.  
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For the case of unstiffened panels, Eq. (3.45) gives the ultimate load factor de-

pending on the aspect ratio, α, on the curvature parameter, Z, and on the 

thickness to width ratio, t/b.  
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The big advantage of this formula when compared to the formulae proposed 

by Tran (2012) and Tran et al. (2012) is that it allows computing the ultimate 

load factor for cylindrically curved panels with different values of aspect ratio.  

Nevertheless, it is highlighted that, as in Tran (2012) and Tran et al. (2012), this 

formula is calibrated with numerical results that only incorporate imperfec-

tions based on the first buckling mode and with amplitude of b/200. A discus-

sion on the effect of shapes and amplitudes for the geometric imperfections on 

the ultimate load of cylindrically curved panels will be performed in Chapter 6.  

Additionally, the parametric range of is rather limited. In fact, in Tran et al. 

(2014) proposal t/b ratio varies from 0.01 to 0.04; aspect ratio varies from 0.6 to 

1.6 and b/R varies from 0 to 1. For panels with constant thickness equal to 

10mm, these limits represent a parametric study with a range from 0.4 to 2.1 for 

the reduced slenderness parameter and a range from 0 to 26 for the curvature 

parameter. The justification given by the authors for this parametric range lies 

on usual geometric configuration of panels in bridge engineering. Although 

these geometric limits might be accurate, such limited parametric range does 

not allow the generalisation of formulae for other types of applications.  

3.12. Ultimate strength of cylindrically curved panels under  

circumferential compressive stresses 

3.12.1. General 

According to Dubas & Gehri (1986), the problems to be taken into account 

when flanges curved in elevation are present in design are the following: 

 The hyperbolic stress distribution over the girder depth for lower val-

ues of R/b; 
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 Transverse bending of the flange produced by the radial components of 

the longitudinal stresses σ.dA/R, and the accompanying non-uniform 

distribution of these longitudinal stresses;  

 Corresponding radial stresses in the webs. 

In I-girders curved in elevation, studies of several authors (Massonet & Save, 

1963; Vandepitte, 1982; and Vandepitte & Verhegge, 1983; all cited in Dubas & 

Gehri, 1986) show that, for stocky flanges, the ultimate strength is little affect-

ed by the presence of curvature.  

However, in box-girders curved in elevation, the compressed flange usually 

has a significantly higher slenderness. To control the potential instability phe-

nomena that might arise, several design standards and recommendations, 

based on experimental and computational results, indicate a limit value for 

the curvature (Dubas & Gehri, 1986). These limits, which were already men-

tioned in Chapter 1, are imposed to the curvature parameter of the plate, 

which should, in this case, be regarded in the transverse direction, Eq. (3.21).  

Nevertheless, in several bridge designs (e.g. bow-string arch bridges), this limi-

tation is impossible to cope with. In fact, in order to verify the values imposed 

by EN1993-1-5:2006 for the curvature parameter at the same time the radii of 

curvature are kept in a small range of values, the plates would have to be unfea-

sibly and uneconomically thick.  

3.12.2. Jetteur & Maquoi (1984) 

To overcome this gap in standards, Jacques et al. (1983) examined the problem 

of the buckling of unstiffened curved plates using the finite element method 

and, later, in 1984, Jetteur & Maquoi (1894) developed an approach based on a 

two-field variational principle and obtained a simplified formulation that 

models the physical response of cylindrically curved panels under compressive 

circumferential stresses. Part of the formulation was already presented in 

sec. 3.6, namely, the expressions for the linear elastic response.  

Next, the formulae giving the reduction factors are presented. First, and mak-
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ing m/α=1, the complete analytical solution is addressed (where ρt is given by 

Eq. (3.20)) 
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Adding to this analytical solution, the authors of this study proposed two 

simplified approaches, the first based on von Kármán’s formulae and the sec-

ond based on Faulkner’s formulae, Eq. (3.47) 
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Figure 3.19: Effective width reduction factor for curved panels under circumferential 

stresses according to Jetteur & Maquoi (1984) 

The difference between the two formulations is clear from Figure 3.19 (which 

plots both Eq. (3.46) and (3.47)). However, it should be pointed out that the 
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analytical solution does not account for the presence of imperfections, while 

the simplified formulation, due to its origin (from Faulkner’s effective width 

formula) does.  

It is also highlighted the fact that in this formulation the slenderness of the 

curved plates is evaluated by Eq. (3.26) as it is for flat plates.  

3.13. Ultimate strength of cylindrically curved panels under 

biaxial compressive stresses 

In what concerns the evaluation of the ultimate strength of cylindrically curved 

panels, literature is (to the extent of the author’s knowledge) inexistent. All pa-

pers deal almost exclusively with the buckling and postbuckling behaviour of 

cylindrically curved panels (see sec. 3.7) omitting its ultimate structural re-

sponse. Although some design standards (e.g. DNV-RP-C202, see sec. 3.14.3) 

allows computing the ultimate strength of cylindrically curved panels (within a 

full revolution orthogonally stiffened shell context) under biaxial loading, sup-

porting background information seems to be missing or inaccessible.  

This lack of literature and background information further justifies the need to 

study cylindrically curved panels under biaxial loading (sec. 5.4).  

3.14. Design guidelines and standards 

3.14.1. EN1993-1-5:2006 design procedure for plated structures under 

in-plane stresses 

In section 4 of EN1993-1-5:2006 (CEN, 2006a) design rules are provided for 

built-up cross-sections from welded plates of class 4, based on the effective 

width method. Alternatively, EN1993-1-5:2006 (CEN, 2006a) provides the re-

duced stress method in section 10.  

The effective width method for evaluating the stability of a plated cross-section 

under compressive stresses made according to the following expression  
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where Aeff is cross-section’s effective area, Wy,eff and Wz,eff are the cross-section’s 

effective elastic section moduli according to y and z-direction, ey,N and ez,N are 

the neutral axis variation according to y and z-axis, respectively, NEd is the de-

sign axial force, My,Ed and Mz,Ed are the design bending moments and γM0 is a 

partial safety factor16. In the case of unstiffened plates (where plate-like behav-

iour prevails – column-like behaviour only is relevant for very small values of 

aspect ratio) the effective cross-section may be obtained simply by adding all 

sub-panels with a reduced width according to specific effective width formu-

lae. For internal compressed plate elements the following equation is used 
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where ψ is the stress gradient and λ is the slenderness parameter given by 

Eq. (3.26); or, for outstand compressed plate elements 
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In the case of stiffened plates the process is more complex and an interpolation 

between plate-like behaviour and column-like behaviour is required17. This 

interpolation scheme is given in 4.5.4 of EN1993-1-5:2006 and requires several 

intermediate calculations (for a more complete description of EN1993-1-5:2006 

procedures for stiffened plates the reader is invited to further investigate the 

                                                      
16 The recommended value for γM0 is 1. 

17 Beg et al. (2010) presented a study (see Beg et al. (2010), pp.72-75) where it is stated 

“at realistic aspect ratios, plate-like behaviour may be easily ignored for heavy stiff-

ened and even for normally stiffened plates and column-like behaviour for unstiff-

ened plates” (p. 75, Beg et al., 2010).  
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works of Johansson et al. (2007), Beg et al. (2010), among others and the 

EN1993-1-5:2006 standard itself).   

Another method present in EN1993-1-5:2006 is the reduced stress method. It 

uses the von Mises criterion and contrasts to the effective width method in the 

following aspects (Beg et al., 2010):  

 The reduced stress method assumes a linear stress distribution up to the 

limit of the plate element which buckles first;  

 For steel plated cross-sections the reduced stress method does not take 

into account load shedding from highly stressed to less stressed plate el-

ements. As a result, the weakest plate element governs the resistance of 

the cross-section;  

 The reduced stress method leads to a single step resistance calculation, 

erasing the necessity of the verification of each load type followed by a 

combination of these load types by means of an interaction equation.  

The basic idea of the reduced stress method is a limit definition to the stress 

average of the actual stress distribution (Figure 3.20).  

b

 max

b

 av  lim

 

Figure 3.20: Basic notions of the reduced stress method 

Furthermore, in those cases where the effective width method does not lead to 

a shift of the centre of gravity, i.e., when the cross-section is symmetric and it 

is under pure compressive stress, it may be concluded that the two methods 

coincide.  
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The safety assessment of an element subjected only to compressive stresses in 

the x and z-directions by the reduced stress method needs to satisfy the fol-

lowing equation 
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(3.51) 

where ρx and ρz are reduction factors obtained from different sections of 

EN1993-1-5:2006. The reduced stress method is directly applicable to I- or 

box-girders where x-direction is the longitudinal direction, y-direction is the 

out-of-plane direction (strong axis) and z-direction is the transverse direction 

(weak axis). The reduction factors ρx and ρz are obtained from Eq. (3.49) or 

(3.50) (depending on the type of element – internal or outstanding). Alterna-

tively, and as it is recommended by Beg et al. (2010), the calculation of ρz may 

be performed by the procedure given in annex B of EN1993-1-5:2006. This rec-

ommendation arises from the realisation that the “application of 4.5.4(1) [of 

EN1993-1-5:2006] and the interpolation between plate-like behaviour and col-

umn-like behaviour may lead to unsafe results as shown in Kuhlman et al. 

(2009)” (p. 165 Beg et al., 2010).  

3.14.2. DNV-RP-C201 design procedure for plated structures under 

in-plane stresses 

DNV-RP-C201 (DNV, 2010a) gives design guidelines to assess the buckling 

strength of plated structures under several load arrangements. Here, the con-

cern is set to unstiffened plates under longitudinal stresses and under biaxial 

loading. 

For unstiffened plates under longitudinal stresses, the safety assessment is 

performed by verifying the following expression 
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(3.52) 
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where σEd is the design applied stress and σx,Rd is the design buckling resistance 

of an unstiffened plate under longitudinal stresses. Calculation of σx,Rd is per-

formed by direct application of the following equation 

M

y

xRdx

f


 ,

 
(3.53) 

where ρx is the reduction factor which is calculated exactly in the same way as 

in EN1993-1-5:2006, i.e. by Eq. (3.49) and Eq. (3.50). The main difference be-

tween DNV-RP-C201 and EN1993-1-5:2006 is that in the former ρx is seen as a 

resistance reduction factor, while for the latter it is seen as a width reduction 

factor. For the special case of uniform compression this difference is irrelevant, 

but for varying in-plane stresses it leads to distinct final values for the re-

sistance. In sec. 8.5.2 this will be further addressed.  

For an unstiffened plate under transverse compressive stresses (where shorter 

edges are loaded) safety is checked by verifying the following condition 
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where σz,Rd is given by  
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It is brought to the attention of the reader that the above expression is an in-

terpolation formula between plate-like buckling and column-like buckling 

where the column-like behaviour is accounted for by the factor κ, which is 

given by 
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Chapter 3 | Stability analysis of plates and cylindrically curved panels 85 

 

where λc and μ are given by  

 2.021.0  c
 

(3.57) 

E

f

t

b y

c 1.1  (3.58) 

It should be noted that Eq. (3.55) is suitable for plated structures in ships 

where large values of aspect ratio are common; on the other hand, it leads to 

wrong results when it is applied to plates approaching a/b=1 (Braun, 2010). A 

closer look to Eq. (3.56) reveals that it corresponds to the European Buckling 

Curve a.  

Finally, in what concerns the safety assessment of unstiffened plates under 

biaxial loading, DNV-RP-C201 indicates Eq. (3.59) as the interaction formula 
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where V is given by  
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and σx,Rd and σz,Rd are given by the already described expressions in this section. 

3.14.3. DNV-RP-C202 design procedure for shell structures under 

membrane stresses 

In DNV-RP-C202 (DNV, 2010b) the proof of safety for cylindrically curved pan-

els under uniform compression is made according to the following expression 
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(3.61) 
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where σEd is the design applied stress and σk,Rd is the characteristic buckling 

strength. The design applied stress is obtained from the following expression 

2
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(3.62) 

and the characteristic buckling strength of cylindrically curved panels under 

pure compression (with aspect ratio larger than 1) is given by (it should be 

noticed that in Eq. (3.64) if the acting stresses σ0x,Ed and σ0z,Ed are in tension they 

are considered to be equal to 0)  
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where Ψ depends on the direction of the applied load (axial or circumferen-

tial) ρi translates the influence of initial imperfections on the characteristic 

buckling strength of the curved panel.  
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The design shell buckling strength is defined as  
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where γM is material safety factor and it is defined according the following 

expressions 
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It is pointed out that these formulas are applied to obtain the buckling strength 

of a particular buckling mode that may occur in a stiffened circular shell18. 

Therefore, boundary conditions are necessarily different from those that are 

considered further in this work (see 4.2.3).  

3.15. Summary 

In this chapter the characterisation of the behaviour of plates and cylindrically 

curved panels under several load arrangements was carried out. Particular at-

tention was given to plates and cylindrically curved panels simply supported in 

all edges under axial compressive stresses and under biaxial compressive 

stresses.  

Furthermore, this chapter is intended to gather essential information about pre-

vious works and standards, which will act as comparable data to the numerical 

analysis. For this purpose, the works from Tran (2012), Tran et al. (2012), Braun 

(2010) and the referred standards/design guidelines, namely, EN1993-1-5:2006 

(CEN, 2006) are highlighted.  

As a concluding remark, the reason why EN1993-1-6:2007 was not addressed 

in this chapter should be stated. In fact, it was mentioned that the scope of this 

                                                      
18 “The probable buckling modes of ring- and/or stringer-stiffened cylindrical shells can be 

sorted as follows: Local shell or curved panel buckling (i.e., buckling of the shell between 

adjacent stiffeners). The stringers remain straight and the ring stiffeners remain round. 

(…)” (p. 48, ABS, 2004) 
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European standard falls outside the scope of cylindrically curved panels. Nev-

ertheless, the design guideline from Det Norske Veritas DNV-RP-C202 was 

addressed. This is due to the fact that DNV-RP-C202 incorporates in its design 

procedure for the determination of the ultimate resistance of shells of revolu-

tion a buckling collapse mode exclusively related to the buckling of the shell 

panel between longitudinal and ring stiffeners.  

 



4. Numerical models of cylindrically 

curved panels under compressive 

stresses 

4.1. Chapter overview 

This chapter addresses all numerical models and numerical analyses that were 

carried out throughout this thesis. These analyses were performed using the 

FEA software ABAQUS FEA (Simulia, 2011). All data required to perform 

LBA and GMNIA (geometry, material properties, loading and boundary con-

ditions, imperfections, finite element type and mesh discretisation) is de-

scribed in sec. 4.2.  

Sec. 4.3 describes the types of performed analysis highlighting the main cau-

tions when using the finite element method. Specifically, LBA and GMNIA 

analysis are addressed.  

The validation of the numerical model is carried out in sec. 4.4. The validation 

is achieved by comparing previous well-established results from the literature 

with results from numerical simulations. Both LBA and GMNIA are validated 

for flat and cylindrically curved panels.  

Finally, a short study on the suitability of the curvature parameter as defined 

in Eq. (3.1) is presented.  
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4.2. Data for finite element analysis 

4.2.1. Geometry 

Since the models are all cylindrically curved panels, their geometry can be 

fully described by 4 parameters (see sec. 3.2 and Figure 3.1):  

 a is the length of the panel;  

 b is the width of the panel;  

 t is the thickness of the panel;  

 R is the radius of curvature of the panel.  

The last 3 parameters are usually merged into 1 parameter called the curva-

ture parameter Z given by Eq. (3.1). Since the finite element method requires 

the replacement of the real geometry of the structure by a discretised one, a 

sub-routine able to compute the coordinates of all points of a previously de-

fined mesh discretisation was implemented.  

4.2.2. Material properties 

The mechanical properties of steel are characterised by Young’s modulus E, 

yield stress fy and ultimate strength fu given by EN10025-2:2004 (CEN, 2004), 

and strain hardening behaviour. The steel grade considered is S355 JR. Alt-

hough recommendations for material models are given in Annex C of 

EN1993-1-5:2006 (CEN, 2006a) the one followed in this work is described in 

ECCS Publication no. 125 (Rotter & Schmidt, 2008) and it is represent in Fig-

ure 4.1.  

For numerical simulations purposes ECCS recommendations (Rotter & 

Schmidt, 2008) state that it may be appropriate to disregard the plastic plat-

eau (a plastic plateau with zero slope may cause numerical convergence 

problems). This comment was taken into account to model the material for 

numerical simulations purposes (ε1=ε2). Table 4.1 summarises all information 

necessary to model the material. 
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Table 4.1: Material properties 

Young’s modulus, E 
Poisson’s  

coefficient, ν 
Yield stress, fy Ultimate stress, fu 

210 GPa 0.3 
355 MPa 

t≤16mm 

470 MPa 

3<t≤80mm 

 

S
tr

es
s,

 σ

Strain, ε

ε1 ε2 εu

 

Figure 4.1: Material behaviour from Rotter & Schmidt (2008) 

4.2.3. Loading and boundary conditions 

Only simply supported panels are studied in this work. The boundary condi-

tions are implemented in the shell model as shown in Figure 4.2. The follow-

ing restraints are imposed: central point restrained in x-direction, points E and 

F restrained in z-direction; all edges restrained in y-direction. Additionally, the 

following restraints are defined:  

 Boundary conditions type 1 (BC1): loaded edges and unloaded edges 

free-to-wave (unconstrained);  

 Boundary conditions type 2 (BC2): loaded edges remain straight (con-

strained) and unloaded edges free-to-wave (unconstrained), actual repre-

sentation in Figure 4.2 b) and c); 

 Boundary conditions type 3 (BC3): loaded edges and unloaded edges 

remain straight (constrained), actual representation in Figure 4.2 d). 
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Figure 4.2: Loading and boundary conditions for cylindrically curved panels under 

uniaxial and biaxial stresses 

Boundary conditions type 2 are the most common to use as they simulate ap-

proximately the boundary conditions of a bottom flange in a box-girder: web 

flexibility (unloaded edges free-to-wave) and rigid diaphragm (loaded edges 

constrained). Therefore, boundary conditions type 2 will be the basis of the par-

ametric study for cylindrically curved panels under uniaxial stresses; while 

boundary conditions type 3 will be the basis of the parametric study for cylin-

drically curved panels under biaxial stresses (Chapter 5). Nevertheless, bounda-

ry conditions type 2 is still an approximation to real situation and, therefore, 

boundary conditions type 1 and type 3 are introduced as limiting scenarios. The 

intention is to sporadically make comparisons between the 3 different boundary 

conditions. Exception is made to the parametric study of cylindrically curved 

panels under biaxial loading where boundary conditions type 3 are used exclu-

sively. In ABAQUS (Simulia, 2011) these boundary conditions are easily applied 

recurring to keyword *BOUNDARY. To simulate the constrained edges in 

boundary conditions type 2 and 3, keyword *EQUATION was used.  



Chapter 4 |  Numerical models of curved panels under compressive stresses 93 

 

The load is applied as point loads at element nodes along the curved edges 

and varies from pure compression ψ=1, to pure in-plane bending ψ=-1. The 

stress gradient has the same definition as in EN1993-1-5:2006 (CEN, 2006a) be-

ing obtained from the following expression 

2

1




 

 
(4.1) 

The magnitude of the applied loads is not of the utmost importance since it is 

the maximum load factor (MLF) that will be evaluated and from where the 

ultimate strength will be computed. Nevertheless, in order to simplify compu-

tations and interpretation of results, the total magnitude of the applied loads 

equals b.t.fy, i.e. the yielding strength.  

4.2.4. Imperfections 

In Europe, when numerically modelling plated structures, imperfections may be 

treated by Annex C of EN1993-1-5:2006 (CEN, 2006a). It is stated that both geo-

metric and material related imperfections should be taken into account or, alter-

natively, in a more straightforward way, only equivalent geometric imperfec-

tions may be considered. If the first approach is chosen, the shape of geometric 

imperfections should follow the shape of relevant eigenmodes with a recom-

mended amplitude of 80% of the fabrication tolerance limits (this recommenda-

tion is based on engineering judgement (Johansson et al., 2007)) which are de-

fined by EN1090-2:2002 (CEN, 2008), and the material related imperfections (re-

sidual stresses) should be represented by a stress field on the element and should 

translate the fabrication process (welding and forming). On the other hand, if the 

second approach is chosen, it is recommended to use an eigenmode shape or 

shapes defined in Figure C.1 of EN1993-1-5:2006 with amplitudes defined in 

Table C.2. In the case of unstiffened isolated plates or sub-panels the amplitude 

proposed by EN 1993-1-5:2006 is given by the following expression  

 200/;200/min511993,,0 baw ENeq  

 
(4.2) 

where a is the panel’s length and b is the panel’s width. For shell structures 

(shells of revolution), recommendations on how to consider geometric imper-
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fections are given in clause 8.7 of EN1993-1-6:2007, where it is stated that “im-

perfections should generally be introduced by means of equivalent geometric 

imperfections”. The amplitude of the equivalent geometric imperfections is 

given by the following expression  

 nngENeq tUUlw 25;max611993,,0  

 
(4.3) 

where lg is the relevant gauge length according to the clause 8.4.4(2) in 

EN1993-1-6:2007, Un is the dimple imperfection amplitude parameter which 

depends on the fabrication tolerance quality class, and t is the shell’s thick-

ness. In contrast to what is considered for plates, EN1993-1-6:2007 only rec-

ommends the eigenmode affine shape for geometric imperfections unless no 

other more unfavourable pattern can be justified. Additionally, it is recom-

mended that the imperfection’s maximum amplitude should always be ap-

plied inwards. The introduction of the imperfection shape into the numerical 

model is done using the keyword *IMPERFECTION and referring it to the 

respective LBA results and defining the desired amplitude.  

4.2.5. Finite element type and mesh discretisation 

Since the FEM is an approximate method, it will yield results containing una-

voidable errors. Therefore, before trying to validate the numerical model, some 

considerations and revision on numerical good practices should be made. Ac-

cording to Frey & Jirousek (2001) the modelling of a structure by finite ele-

ments requires that some information be previously gathered, like the type of 

element used and the level of discretisation for the mesh. Both these options 

must answer the problem’s complexity and prove to be accurate in simulating 

the structure’s real behaviour. Otherwise, a finite element and a mesh discreti-

sation too complex may lead to unnecessary amount of time of analysis. 

Therefore, in the next paragraphs the justification for the type of finite element 

and level of discretisation for the mesh is done.  

In what concerns the finite element type, a nine-node thin shell elements S9R5 

(Simulia, 2011) is used as this element has been shown to perform well in ap-

plications involving the modelling of curved geometries (Gardner & Ministro, 
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2004; Moen & Schafer, 2006) and it has a faster convergence, as fewer elements 

are needed19,20 (Table 4.2). Overall, the finite element S9R5 is characterised by: 

 Using quadratic shape functions;  

 Being suitable for thin shells with small strains and large rotations;  

 Having 5 degrees-of-freedom per node;  

 Being shear deformable;  

 Having reduced integration for shear stiffness.  

Table 4.2: Mesh convergence study for LBA 

Curvature Type of element N=20 N=30 N=40 N=50 N=100 

Z=0 

S4 0.214 0.214 0.214 0.214 - 

S4R 0.215 0.214 0.214 0.214 - 

S8R5/S9R5 0.214 0.214 0.214 0.214 - 

Z=10 

S4 0.274 0.274 0.273 0.273 0.273 

S4R 0.274 0.273 0.273 0.273 0.273 

S8R5/S9R5 0.272 0.272 0.272 0.272 0.272 

Z=100 

S4 2.102 2.041 2.013 1.994 1.940 

S4R 1.990 1.992 1.986 1.976 1.935 

S8R5/S9R5 1.847 1.845 1.845 1.844 1.844 

                                                      

19 The S9R5 element is a doubly curved thin shell element with nine nodes and it uses a 

quadratic shape function to estimate displacements. Consequently, S9R5 elements are 

able to simulate the half-sine wave of a buckled panel with just one element (while S4 

and S4R require at least 3 elements) (Moen & Schafer, 2006).  

20 It should be noticed that, due to the fact that S4/S4R finite element has 20 de-

grees-of-freedom while S8R5 has 40 degrees-of-freedom and S9R5 has 45 de-

grees-of-freedom, the convergence speed is measured by comparing results obtained 

using S4/S4R  with results obtained using S8R5/S9R5 and half the number of finite 

elements.  
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Table 4.3: Mesh convergence study for GMNIA 

Curvature Type of element N=10 N=15 N=20 N=25 N=50 

Z=0 S9R5 0.227 0.225 0.224 0.224 0.224 

Z=10 S9R5 0.207 0.206 0.205 0.205 0.205 

Z=100 S9R5 0.135 0.133 0.132 0.132 0.132 

 

Mesh discretization studies were performed and the conclusion was that 50 

square elements were enough to achieve numerical convergence for LBA and 25 

for GMNIA. Table 4.2 and Table 4.3 show this study (which was made reading 

values of load factors, being the total load applied equal to the plastic load).  

4.3. Types of analyses 

4.3.1. Linear buckling analysis 

LBA (linear buckling analysis, also known as eigenvalue analysis) are used 

to predict the elastic buckling strength of an imperfection free structure. This 

elastic buckling strength happens by bifurcation (see Figure 2.1). Since non-

linearities and imperfection free structures are an idealisation of the real im-

perfect structure with nonlinear responses, the elastic buckling strength is a 

theoretical value and its usefulness ends (for the majority of the problems in 

the field of structural mechanics) with the calculation of the slenderness of 

the structure (see Chapter 3).  

4.3.2. Geometrically and materially nonlinear analysis with imper-

fections 

The postbuckling response of the cylindrically curved panel requires perform-

ing a GNA (geometrically nonlinear analysis) and/or a GMNIA (geometrically 

and materially nonlinear analysis with imperfections). The main difference be-

tween GNA and GMNIA is that the latter includes initial geometric imperfec-

tions and material nonlinearity. 



Chapter 4 |  Numerical models of curved panels under compressive stresses 97 

 

In this study only GMNIA were performed and they applied the arc-length 

method, namely the modified Riks method (implemented in ABAQUS (Simulia, 

2011) and applied using the keyword *STATIC, RIKS). The arc-length method is 

well suited for structures which are able to support elevated loads but are very 

prone to instability, i.e. it is appropriate for obtaining nonlinear static equilibri-

um solutions for unstable structures, where the load level and/or the displace-

ment decrease along the loading path (Crisfield, 1997). Nonetheless, this meth-

od must be employed with great caution (Rotter & Schmidt, 2008): 

 It may miss the true bifurcation point when the change between the 

fundamental and a descending postbuckling path is abrupt (typical 

shell problems) – to overcome this problem a constrained small arc-

length was defined (Figure 4.3);  

 In some cases (namely those with medium to high values for the curva-

ture parameter) the arc-length routine may decide on the loading path 

as the postbuckling path – this was carefully verified by observing the 

load-displacement curves. This might happen at a primary bifurcation 

load (Figure 4.4) or at a secondary bifurcation load (Figure 4.5);  

 The arc-length routine may maintain the primary path instead of opting 

for the new secondary path at the bifurcation point thus missing the true 

bifurcation load leading to an overestimation of the ultimate load (for a 

GMNIA the presence of a potential bifurcation point can be evaluated by 

searching for loss of positive definiteness of the tangent stiffness matrix).  

In some rare cases the arc-length routine may jump to a non-realistic post-

buckling path. For example, in Figure 4.6, it can be seen at a lower load level a 

convergence problem characterised by a jump to a higher postbuckling path 

and, at a higher load level, a convergence problem characterised by the deci-

sion of the arc-length routine to follow the loading path as the postbuckling 

path. Additionally, the definition of the buckling resistance is taken as in an-

nex C of EN1993-1-5:2006 (CEN, 2006a):  

 Maximum load factor on the load-deformation curve;  

 Maximum of 5% for principal membrane strains.  
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Figure 4.3: Example of a non-converged analysis (Z=30 and α=2.2; imperfection pat-

tern based on buckling mode 3 with maximum amplitude equal to 2 mm) 
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Figure 4.4: Example of a non-converged analysis (Z=30 and α=5.0; imperfection pat-

tern based on buckling mode 3 with maximum amplitude equal to 10 mm) 
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Figure 4.5: Example of a non-converged analysis (Z=60 and α=3.0; imperfection pat-

tern based on buckling mode 6 with maximum amplitude equal to 7 mm) 
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Figure 4.6: Example of a non-converged analysis (Z=60 and α=5.0; imperfection pat-

tern based on buckling mode 5 with maximum amplitude equal to 10 mm) 
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4.4. Validation of numerical models 

4.4.1. Validation of LBA 

The validation of flat panel’s models is done by comparing numerical results 

with some analytical results from literature, namely from the classical Eq. (3.3) 

and from Timoshenko & Gere (1961), Table 3.2. Results are presented in Table 

4.4 and the agreement is excellent (maximum error is equal to 0.4%).  

In the case of cylindrically curved panels, the validation is done comparing 

numerical results with those obtained by Davaine & Tran (2010), Tran et al. 

(2012) and Tran (2012) (denoted by kσ,Tran). Results are presented in Table 4.5 

and agreement is very good (maximum absolute error is equal to 3.7 %). 

Table 4.4: Validation of flat models for LBA 

Aspect ratio, α Stress gradient, ψ kσ,Timoshenko kσ,num Error (%) 

0.40 

1 8.41 8.40 - 0.1 

0 15.10 15.13 + 0.2 

-1 29.10 29.04 - 0.2 

0.67 

1 - - - 

0 - - - 

-1 23.90 23.87 - 0.1 

1.00 

1 4.00 4.00 0.0 

0 7.80 7.81 + 0.1 

-1 25.60 25.50 - 0.4 

 



Chapter 4 |  Numerical models of curved panels under compressive stresses 101 

 

Table 4.5: Validation of cylindrically curved models under  

uniform compressive stresses for LBA 

Stress  

gradient, ψ  

Aspect 

ratio, α 

Curvature, 

Z 
kσ,Tran kσ,num Diff. (%) 

1 

1 

20 7.943 8.157 + 2.6 

25 9.511 9.602 + 0.9 

50 17.782 18.263 + 2.6 

100 34.378 35.485 + 3.1 

2 

50 17.900 18.375 + 2.6 

100 34.497 35.802 + 3.6 

200 67.808 70.263 + 3.5 

3 

19 7.376 7.602 + 3.0 

50 17.426 17.974 + 3.1 

100 34.378 35.339 + 2.7 

200 67.927 70.503 + 3.7 

 

4.4.2. Validation of GMNIA 

The validation procedure for flat models involves the evaluation of numerical 

results obtained by the modified Winter curve adopted by EN1993-1-5:2006 

(CEN, 2006a) (Eq. (3.49) for ψ=1 and ψ=-1)21. According to Rusch & Lindner 

(2001) recommended values for the numerical recalculation of Winter curve 

for plates under pure compression are: i) equivalent geometric imperfection 

based on Eq. (3.4) (n=1) with amplitude equal to b/420 or, ii) geometric imper-

fection based on Eq. (3.4) (n=1) with amplitude equal to b/500 and residual 

stresses.  

                                                      
21 In case of pure in-plane bending, ψ=-1, equivalence between χ and ρ is not straight-

forward but it can be easily established by an iterative procedure given in sec. 8.3.  
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Figure 4.7: Comparison between numerical simulations and values from 

EN1993-1-5:2006, ψ=1 
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Figure 4.8: Comparison between numerical simulations and values from 

EN1993-1-5:2006, ψ=-1 
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The validation study was carried out considering imperfection shapes based 

on the first buckling mode with maximum amplitudes of b/420 and b/200 to 

cover EN1993-1-5:2006 (CEN, 2006a) recommendations. Figure 4.7 and Fig-

ure 4.8 show the results from Eq. (3.49) for uniform compression and pure 

bending plotted against numerical results (results plotted in those figures are 

from models with aspect ratios equal to 1 and boundary conditions type 2). 

Table 4.6 and Table 4.7 present detailed results for amplitudes b/200 and re-

spective errors for 3 different values of the reduced slenderness parameter. 

From the analysis of these results, it is concluded that both equivalent geo-

metric imperfections with amplitudes b/420 and b/200 are well adjusted to 

Eq. (3.49). The option fell on those recommended by EN1993-1-5:2006, i.e. 

amplitude b/200. 

Table 4.6: Comparison between numerical results and EN1993-1-5:2006, ψ=1 

(imperfection amplitude equal to b/200) 

 λ=1 λ=2 λ=3 

ρEN1993-1-5 0.780 0.445 0.309 

ρNum 0.752 0.448 0.330 

Diff. (%) - 3.6 + 0.7 + 6.8 

 

Table 4.7: Comparison between numerical results and EN1993-1-5:2006, ψ=-1 

(imperfection amplitude equal to b/200) 

 λ=1 λ=2 λ=3 

ρEN1993-1-5 0.890 0.473 0.321 

ρNum 0.878 0.473 0.296 

Diff. (%) - 1.3 + 0.1 - 7.9 
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Additionally, it can be highlighted that the bigger differences between am-

plitudes b/200 and b/420 mainly occur for slenderness parameters between 

0.673 and 1.22. This region of the reduced slenderness parameter is where 

imperfection sensitivity of compressed plates has more influence on the ul-

timate load. For higher values of the reduced slenderness parameter the dif-

ferences become negligible (in that range the ultimate load is mainly driven 

by the elastic response and by the post-critical strength reserve). For lower 

values of the reduced slenderness parameter it is the yield strength of the 

material limiting the ultimate load.  

Cylindrically curved panels under uniform compression are validated com-

paring numerical results with results from the method proposed by Tran in 

2012 (see sec. 3.11.2; Tran, 2012; Tran et al., 2012). From the analysis of Figure 

4.9 to Figure 4.12, it is concluded that some non-negligible differences do 

exist. Several reasons emerge explaining these inconsistencies:  

 Different material’s law: linear unlimited strain-hardening (Tran’s 

proposal) vs. more realistic strain-hardening with an ultimate stress 

plateau;  

 Different type of finite element: four-node finite element (Tran’s pro-

posal) vs. nine-node finite element;  

 Different software: ANSYS FEA (Tran’s proposal) vs. ABAQUS FEA 

(own calculations);  

 Definition of the reduced slenderness parameter: in fact, the normal-

ised slenderness calculated based upon numerical results and from 

Tran’s work are not the same. While in this study the slenderness pa-

rameter is defined using numerical results for the elastic critical 

stress, in Tran’s works the elastic critical stress is obtained using 

Stowell’s formula, which, as it will be seen in Chapter 8, returns non-

negligible errors when compared to numerical results for the elastic 

critical stress.  
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Figure 4.9: Comparison of numerical simulations and curves proposed by  

Tran et al. (2012) for Z=10 and ψ=1 
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Figure 4.10: Comparison of numerical simulations and curves proposed by  

Tran et al. (2012) for Z=25 and ψ=1 
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Figure 4.11: Comparison of numerical simulations and curves proposed by  

Tran et al. (2012) for Z=50 and ψ=1 
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Figure 4.12: Comparison of numerical simulations and curves proposed by  

Tran et al. (2012) for Z=100 and ψ=1 
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The fact that the main differences occur for Z=10 is highlighted, since it is 

around this value that Stowell’s formula (used by Tran in his method) returns 

the largest errors when compared to numerical results of the elastic critical 

stress. Therefore, it is expectable that the main errors between numerical re-

sults for the ultimate strength (that are based on slenderness parameters com-

puted numerically, i.e. computed using a numerically obtained critical stress) 

and the curves from Tran’s method occurs for the same values of Z.  

In what concerns the validation of models of flat plates under biaxial loading 

(only square plates are considered in this validation), it can be seen in Figure 

4.13 that the numerical results are almost in perfect accordance with numerical 

results from Braun (2010).  
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Figure 4.13: Comparison of own numerical simulations and  

numerical results from Braun (2010) 

In fact, it is suggested by Figure 4.13 that only for stocky plates, specifically for 

plates with b/t=30, the differences start to be noticeable. This may be explained 

by numerical convergence strategies (i.e. differences due to user and/or software 

convergence strategies) which play a more important role for plasticity driven 

collapse modes rather than for elasticity driven collapse modes.  
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4.4.3. Brief study on the suitability of the curvature parameter 

4.4.3.1. General 

The majority of studies related to cylindrically curved panels suggest that 

the curvature parameter Z is a suitable parameter to characterise the geome-

try of cylindrically curved panels when computing its critical behaviour and 

ultimate load. In fact, as seen in Chapter 3, various formulae using the curva-

ture parameter have been proposed to calculate the value of kσ of cylindrical-

ly curved panels under uniform compression. Additionally, to compute the 

ultimate load of cylindrically curved panels under uniform compression the 

same parameter is seen as a key parameter (e.g. in Tran’s proposal). In fact, 

Tran et al. (2012) did mention that the curvature parameter represents well 

the geometrical variability of the problem.  

Nevertheless, further investigations are presented in the following sections 

trying to numerically verify this statement and, at the same time, validating 

Z as key parameter for loading conditions other that uniform compression 

(i.e. pure in-plane bending).  

4.4.3.2. As a key parameter for the elastic critical stress 

In order to verify to what extent is the assumption of using the curvature pa-

rameter accurate for computing the elastic critical stress of cylindrically 

curved panels under uniaxial stresses, a brief study performed by Martins et 

al. (2013) is presented and the results are discussed. The models have constant 

thickness (t=10 mm), aspect ratio (α=1) and the same mesh discretisation (con-

stant finite element size). The differences between results are measured taking 

as reference the models with b=1000 mm since those are the ones which will be 

used in the parametric study (Chapter 5). The results from this study are pre-

sented in Table 4.8 to Table 4.10. From the analysis of these tables it is possible 

to conclude that the sectorial angle θ may have some influence on the value of 

the critical stress of a cylindrically curved panel. Nevertheless, its influence 

will be disregarded for two reasons:  
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 In the domain of the parametric study (Chapter 5) the sectorial angle 

varies up to 1 rad and within this domain, all results show that the 

maximum error (which occurs for ψ=-1 and Z=100, therefore θ =1.333 

rad) is 1.83% (negligible error); 

 The remaining cases show even lower errors leading to the conclu-

sion that the curvature parameter, as it is defined in Eq. (3.1), is, in 

fact, a suitable parameter to fully characterise the geometry of cylin-

drically curved panels under compressive stresses.  

Table 4.8: 1st justification for the utilisation of the curvature parameter, ψ=1 

 Width, b 0.75 m 1 m 1.25 m 1.5 m 1.75 m 2 m 5 m 7.5 m 

Z=1 

kσ 4.007 4.009 4.010 4.010 4.010 4.011 4.011 4.011 

Diff. (%) 0.0 - 0.0 0.0 0.0 0.0 +0.1 +0.1 

R (m) 56.25 100 156.25 225 306.25 400 2500 5625 

θ (rad) 0.0133 0.01 0.008 0.0067 0.0057 0.005 0.002 0.0013 

Z=25 

kσ 9.602 9.602 9.602 9.601 9.601 9.602 - - 

Diff. (%) +0.0 - 0.0 0.0 0.0 0.0 - - 

R (m) 2.25 4 6.25 9 12.25 16 100 225 

θ (rad) 0.3333 0.25 0.2 0.1667 0.1429 0.125 0.05 0.0333 

Z=100 

kσ 34.532 34.497 34.488 34.487 34.486 34.485 - - 

Diff. (%) +0.1 - 0.0 0.0 0.0 0.0 - - 

R (m) 0.5625 1 1.5625 2.25 3.0625 4 25 56.25 

θ (rad) 1.3333 1 0.8 0.6667 0.5714 0.5 0.2 0.1333 
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Table 4.9: 1st justification for the utilisation of the curvature parameter, ψ=0 

 Width, b 0.75 m 1 m 1.25 m 1.5 m 1.75 m 2 m 5 m 7.5 m 

Z=25 

kσ 17.899 17.902 17.903 17.904 17.905 17.905 - - 

Diff. (%) 0.0 - 0.0 0.0 0.0 0.0 - - 

R (m) 2.25 4 6.25 9 12.25 16 100 225 

θ (rad) 0.3333 0.25 0.2 0.1667 0.1429 0.125 0.05 0.0333 

Z=100 

kσ 52.448 52.627 52.730 52.790 52.829 52.855 - - 

Diff. (%) -0.3 - +0.2 +0.3 +0.4 +0.4 - - 

R (m) 0.5625 1 1.5625 2.25 3.0625 4 25 56.25 

θ (rad) 1.3333 1 0.8 0.6667 0.5714 0.5 0.2 0.1333 

 

Table 4.10: 1st justification for the utilisation of the curvature parameter, ψ=-1 

 Width, b 0.75 m 1 m 1.25 m 1.5 m 1.75 m 2 m 5 m 7.5 m 

Z=25 

kσ 33.916 33.992 34.029 34.050 34.062 34.070 - - 

Diff. (%) -0.2 - +0.1 +0.2 +0.2 +0.2 - - 

R (m) 2.25 4 6.25 9 12.25 16 100 225 

θ (rad) 0.3333 0.25 0.2 0.1667 0.1429 0.125 0.05 0.0333 

Z=100 

kσ 72.524 73.460 73.927 74.189 74.350 74.459 74.759 74.791 

Diff. (%) -1.3 - +0.6 +1.0 +1.2 +1.4 +1.8 +1.8 

R (m) 0.5625 1 1.5625 2.25 3.0625 4 25 56.25 

θ (rad) 1.3333 1 0.8 0.6667 0.5714 0.5 0.2 0.1333 
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4.4.3.3. As a key parameter for the ultimate strength 

In contrast to the previous section, models do not have constant thickness be-

cause the ultimate strength of cylindrically curved panels under uniaxial 

stresses depends also on the reduced slenderness parameter of the panels. 

Therefore, thickness is calculated setting the slenderness and curvature pa-

rameters constant. On the other hand, aspect ratio (α=1), imperfection ampli-

tude (5 mm) and the mesh discretisation (element size) are kept constant. 

Table 4.11: 2nd justification for the utilisation of the curvature parameter, ψ=1 

 Thickness, b 2 mm 5 mm 10 mm 15 mm 

Z=1; 

λ=1.5 

χ 0.546 0.546 0.546 0.546 

Diff. (%) 0.0 0.0 - 0.0 

b (m) 0.139 0.347 0.693 1.040 

R (m) 9.618 24.045 48.089 72.134 

Z=100; 

λ=1.5 

χ 0.368 0.386 0.368 0.368 

Diff. (%) 0.0 0.0 - 0.0 

b (m) 0.381 0.953 1.906 2.858 

R (m) 0.726 1.816 3.631 5.447 

 

Table 4.12: 2nd justification for the utilisation of the curvature parameter, ψ=0 

 Thickness, b 2 mm 5 mm 10 mm 15 mm 

Z=1; 

λ=1.25 

χ 0.752 0.752 0.752 0.752 

Diff. (%) 0.0 0.0 - 0.0 

b (m) 0.162 0.404 0.809 1.213 

R (m) 13.075 32.688 65.377 98.065 

Z=100; 

λ=1.25 

χ 0.512 0.512 0.512 0.512 

Diff. (%) 0.0 0.0 - 0.0 

b (m) 0.389 0.972 1.945 2.917 

R (m) 0.756 1.891 3.782 5.673 
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Table 4.13: 2nd justification for the utilisation of the curvature parameter, ψ=-1 

 Thickness, b 2 mm 5 mm 10 mm  15 mm 

Z=1; 

λ=1.25 

χ 0.738 0.738 0.738 0.738 

Diff. (%) 0.0 0.0 - 0.0 

b (m) 0.282 0.706 1.412 2.118 

R (m) 39.869 99.672 199.344 299.016 

Z=100; 

λ=1.25 

χ 0.660 0.660 0.660 0.660 

Diff. (%) 0.0 0.0 - 0.0 

b (m) 0.459 1.147 2.294 3.440 

R (m) 1.052 2.630 5.260 7.891 

 

From the analysis of Table 4.11 to Table 4.13, it is concluded that the curvature 

parameter is suitable to fully describe the geometry of a cylindrically curved 

panel.  

4.5. Summary 

This chapter is intended to act as a foundation for parametric studies that 

were performed and which are presented in the next chapter (Chapter 5). 

Therefore, in order to make clear which were the main assumptions behind 

numerical studies they are thoroughly described and discussed throughout 

the entire chapter: 

 The geometry of a generic cylindrically curved panel was carefully de-

fined. All basic geometric parameters (width, length, thickness and ra-

dius) were visually identified;  

 The material properties were characterised being adopted the ECCS rec-

ommended stress-strain curve (Rotter & Schmidt, 2008). This option is 

sustained by the fact that this stress-strain relation translates correctly 

the behaviour of structural carbon steels avoiding at the same time prob-

lems with the numerical convergence during computer analysis;  

 The loading and boundary conditions were defined according to the 
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type of load arrangement under analysis – for cylindrically curved pan-

els under uniaxial compression boundary conditions type 2 were adopt-

ed, while for cylindrically curved panels under biaxial loading it were 

the boundary conditions type 3;  

The validation of the numerical models was also carried out, being the main 

conclusions about the accuracy of the numerical model addressed. Here it is 

highlighted the fact that, besides some minor identified and explained dis-

crepancies, the results from the numerical model are in line with the results 

from literature.  

Finally, the chapter ends with a brief, but pertinent, numerical investigation 

on the suitability of the curvature parameter Z. The conclusion of this study 

supports the preconceived idea that the curvature parameter as it is defined in 

Eq. (3.1) is a satisfactory parameter to describe the geometry of cylindrically 

curved panels.  

 





5. Characterisation of the behaviour 

of cylindrically curved panels 

5.1. Chapter overview 

This chapter extensively describes all steps performed during the parametric 

studies. Relevant parameters are defined, studied and conclusions about their 

influence on several aspects related to cylindrically curved panels are drawn.  

Firstly, in sec. 5.2 a parametric study on the elastic buckling behaviour of cy-

lindrically curved panels is presented. In this study particular relevance is 

given to the following parameters: curvature, boundary conditions, aspect 

ratio and loading type. Their relation to the elastic critical stress and to the 

first buckling shape is analysed from the results and conclusions are made.  

Secondly, in sec. 5.3 the study on the ultimate strength of short cylindrically 

curved panels is presented. In this study, the main parameters analysed are: 

curvature, boundary conditions and loading type. This study, together with the 

parametric study on the elastic buckling behaviour, is essential to create a 

model capable of accurately and safely predict the ultimate resistance of cylin-

drically curved panels. Following these studies, a complete study on the imper-

fection sensitivity study is performed in Chapter 6 (the option to set apart the 

parametric study on geometric imperfection sensitivity from the remaining 

ones is explained by the fact that its dimension and importance are enough to 

justify an entire chapter), where the studied parameters are (besides curvature 

and aspect ratio): the imperfection amplitude and the imperfection shape. It 
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should be mentioned that boundary conditions type 2 are given the main focus 

throughout all parametric studies. This is due to two reasons: firstly, boundary 

conditions type 2 are those which seem to be more appropriate to simulate the 

conditions of a lower flange in a box-girder (rigid diaphragms - loaded edges, 

and flexible thin webs - unloaded edges); and secondly, boundary conditions 

type 1 and 3 are, as it will be evident further on, limiting cases, i.e. numerical 

results from models with boundary conditions type 2 are limited by results 

from models with boundary conditions type 3 as an upper bound and limited 

by results from models with boundary conditions type 1 as an lower bound.  

Thirdly, in sec. 5.4 a parametric study on the ultimate load of cylindrically 

curved panels under biaxial compressive stresses is performed. Here the 

boundary conditions for all curved panels are type 3.  

Finally, the chapter ends with a summary where all main conclusions are 

highlighted and related to subsequent chapters.  

5.2. Parametric study on the elastic buckling behaviour of  

cylindrically curved panels under uniaxial compressive 

stresses 

5.2.1. Scope 

This parametric study aims at characterising the elastic critical behaviour of 

simply supported cylindrically curved panels and to provide data to extrapo-

late the obtained results to new critical stress formulae. The parametric study 

comprises the following parameters: 

 Curvature, Z (where thickness t and width b are kept constant);  

 Boundary conditions;  

 Aspect ratio, α;  

 Loading type, ψ.  

As it can be concluded from Table 5.1, the total number of performed analyses 

is 276 942.  
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Table 5.1: Parametric study on the elastic buckling behaviour of  

cylindrically curved panels 

Load cases 
Width,  

b 

Thickness,  

t 

Curvature, 

Z 

Aspect Ratio, 

α 

 

ψ=1 

1000 mm 10 mm 0 to 100 0.2 to 5.0 

 

to 

 

ψ=-1 

Total for BC1 
3 

(step=1) 
1 1 

11  

(step=10) 

6 (0.5, 1 to 5 

step=1) 

Total for BC2 
21 

(step=0.1) 
1 1 

101  

(step=1) 

130 (0.2 to 2.1 

step=0.02, 2.1 

to 5 step=0.1) 

Total for BC3 
3 

(step=1) 
1 1 

13 (0, 1, 5, 

10 to 100 

step=10) 

26 (0.1 to 1 

step=0.1, 1 to 4 

step=0.2, 5) 

 

5.2.2. Influence of boundary conditions on the elastic critical stress 

of cylindrically curved panels 

In opposition to plates, the elastic critical stress of cylindrically curved panels 

under uniform compression is influenced by the boundary conditions. This 

happens because curvature adds nonlinearity to the prebuckling state of the 

panel, which is sensitive to boundary conditions. Figure 5.1 shows a perfect 

agreement between analytical results and numerical results for Z=0 and 

boundary conditions type 2. For boundary conditions type 1 and 3 this perfect 

agreement is verified as well (this is due to the fact that prebuckling state of 

flat panels is not sensitive to the differences between boundary conditions 

types 1, 2 and 3).  
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Figure 5.1: kσ (1st buckling mode) vs. Z curves for panels with α≤1 and ψ=1 and  

boundary conditions type 2 

Table 5.2 compares the three boundary conditions types, making clear that, in 

what concerns the elastic critical stress, boundary conditions of type 1 lead to 

the lowest values while boundary conditions of type 3 lead to the highest value.  

Table 5.2: Comparison between boundary conditions type 1, 2 and 3 (values of the 

elastic critical stress for α=1 and ψ=1) 

 Z=0 Z=10 Z=20 Z=50 Z=80 Z=100 

BC1 4.00 4.79 6.94 16.25 26.37 33.13 

BC2 4.00 5.10 7.94 17.77 27.84 34.53 

BC3 4.00 5.70 9.21 18.52 28.45 35.06 

Diff. BC1 (%) 0 -6.1 -12.6 -8.5 -5.3 -4.0 

Diff. BC3 (%) 0 11.8 16.0 4.2 2.2 1.5 

 

As expected (since boundary conditions type 1 are the least rigid option and 

boundary conditions type 3 are the most rigid option), boundary conditions 
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type 2 lead to values limited by boundary conditions type 1 and 3. Surprisingly, 

Table 5.2 also shows that larger curvature does not mean larger differences 

between types of boundary conditions. This fact indicates that boundary con-

ditions may be a critical parameter, within the elastic critical stress of cylindri-

cally curved panels, for values of Z around 20 since it is for this value that the 

largest differences occur. 

5.2.3. Influence of aspect ratio on the elastic critical stress of cylindri-

cally curved panels 

5.2.3.1. General 

Aspect ratio plays an important role on critical behaviour of cylindrically 

curved panels. An earlier study on cylindrically curved panels (Martins et al., 

2011) has shown that the aspect ratio has a strong influence on the elastic criti-

cal stress value of cylindrically curved panels. This influence is quite distinct 

from the influence that aspect ratio has on flat plates.  

In fact, for plates under uniform compression it is well known that the mini-

mum elastic critical stress corresponds to an integer value of aspect ratio. For 

cylindrically curved panels and/or for types of loading other than pure com-

pressive stresses (for plates see, for example Table 3.2), the minimum critical 

stress is obtained for a non-integer value of aspect ratio.  

5.2.3.2. Short cylindrically curved panels with boundary conditions type 2 

For plates subjected to pure compressive stresses (ψ=1) Eq. (3.5) gives the elas-

tic buckling coefficient (function to the aspect ratio of the plate and the num-

ber of half-waves in each direction, m and n). For short cylindrically curved 

panels Eq. (3.5) is not able to predict the buckling coefficient accurately: the 

higher the aspect ratio and the higher the curvature the bigger the difference is, 

particularly for α>0.2. Figure 5.1 shows exactly this statement for cylindrically 

curved panels with boundary conditions type 2. It also shows, as conveniently 

stated, a perfect agreement between Eq. (3.5) and numerical results. Figure 5.2 

shows all numerical results for ψ=1 and ψ=-1. Essentially, Figure 5.2 a) it is an 

extended 3D representation of the same information in Figure 5.1.  
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Figure 5.2: 3D plot of kσ (1st buckling mode) vs. (Z, α) for ψ=1 and ψ=-1 

Figure 5.2 is better understood realising that the plane Z=0 represents the clas-

sical behaviour of a plate described by Eq. (3.5) in 0<α≤1.5 range. It is conclud-

ed that minimum values of kσ, henceforth denote kσ,min, are not independent 

from curvature (in Figure 5.2 these minimum values of kσ are highlighted). 

Focusing on the plane defined by Z and α it is seen that for the different load 

cases plotted in Figure 5.2 the evolution of kσ,min is similar; for a clearer inter-

pretation of results, these values are also plotted in 2D (Figure 5.3). It is also 

observed that aspect ratios which lead to kσ,min tend asymptotically to 0.28 for 

Z=100 with increasing curvature independently of ψ.  

5.2.3.3. Long cylindrically curved panels (α>>1)  

Numerical results for long flat panels present perfect agreement with results 

from Table 4.1 of EN1993-1-5:2006 (i.e. numerical results for Z=0 tend asymp-

totically to values from Table 4.1 of EN1993-1-5:2006).  

For long cylindrically curved panels the evolution of the elastic critical stress 

with the aspect ratio is highly influenced by boundary conditions. Figure 5.4 

to Figure 5.7 show exactly this dependence and, also, how boundary condi-

tions change the value of the elastic buckling coefficient with increasing aspect 

ratio. Taking into consideration only boundary conditions type 2, for long 

curved panels, as in flat panels, the minimum elastic buckling coefficient stabi-

lises with the increase of aspect ratio and its influence becomes negligible (the 

higher the curvature, the higher the value of the elastic critical stress).  
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Figure 5.3: 2D plot Z vs. α inducing kσ,min for different loading cases  
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Figure 5.4: Plot of kσ (1st buckling mode) vs. α for Z=0 and ψ=1  

for boundary conditions type 1, 2 and 3 
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Figure 5.5: Plot of kσ (1st buckling mode) vs. α for Z=20 and ψ=1  

for boundary conditions type 1, 2 and 3 
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Figure 5.6: Plot of kσ (1st buckling mode) vs. α for Z=50 and ψ=1  

for boundary conditions type 1, 2 and 3 
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Figure 5.7: Plot of kσ (1st buckling mode) vs. α for Z=100 and ψ=1 

Table 5.3 shows the differences on the minimum values of the elastic buckling 

coefficient between short and long panels with boundary conditions type 2. 

The difference between absolute values of elastic critical stress for short and 

long curved panels is plotted in Figure 5.8.  

Table 5.3: Differences between short and long panels with boundary conditions type 2 

Loading type, ψ Curvature, Z 
kσ,min for short 

panels 

kσ,min for long 

panels 
Diff. (%) 

1 

0 4.00 (α=1) 4.00 0.0 

50 15.87 17.40 + 9.6 

100 30.21 34.23 + 13.3 

0 

0 7.81 (α=0.98) 7.81 0.0 

50 26.31 29.68 + 12.8 

100 45.31 52.08 + 14.9 

-1 

0 23.90 (α=0.66) 23.90 0.0 

50 42.26 48.17 + 14.0 

100 63.03 72.90 + 15.7 
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Figure 5.8: (kσ,min for long panels - kσ,min for short panels) vs. Z for panels with α>1 and 

boundary conditions type 2 

5.2.4. Influence of loading conditions on the elastic critical stress of 

cylindrically curved panels 

Considering only cylindrically curved panels having boundary conditions type 

2 with aspect ratios that minimise kσ (i.e. those aspect ratios of Figure 5.3), Figure 

5.9 plots kσ,min for different loading cases showing that there is a perfect agree-

ment between numerical results and the values given by EN1993-1-5:2006 (max-

imum absolute error equal to 0.7% for ψ=-0.8).  

It is also observable that, with respect to the elastic critical stress of (short and 

long) cylindrically curved panels, EN1993-1-5:2006 assumption that curved 

panels characterised by a curvature parameter Z≤1 can be treated as plates is 

accurate (error less than 1%). Nonetheless, this conclusion does not have any 

added value by itself since it is the ultimate stress that can truly verify the accu-

racy of that limit.  
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Figure 5.9: kσ,min for different values of ψ and curvatures and for short cylindrically 

curved panels with boundary conditions type 2 

5.2.5. Influence of curvature and aspect ratio on the elastic buckling 

pattern of cylindrically curved panels with boundary condi-

tions type 2 

5.2.5.1. Square cylindrically curved panels under uniform compression  

(α=1 and ψ=1) 

When aspect ratio is fixed the curvature has a significant influence on the 

buckling pattern of a cylindrically curved panel. Figure 5.10 shows the buck-

ling patterns for different values of the curvature parameter. From the numer-

ical results it is possible to identify two main different types of buckling pat-

terns which are related to curvature. The first type of buckling pattern occurs 

for low values of Z being very similar to the classical displacement field for 

plates with m=1 and n=1, Eq. (3.4). Its limits vary from Z=0 to Z≈23. The second 

type of buckling pattern is valid from Z≈23 to Z=100 (upper limit of the para-

metric study) and less agreement exists between classical and numerical dis-

placement field for m=1 and n=1, Figure 5.11. Domb and Leigh (2001) also set 

this difference between two types of behaviour (the transition was fixed at 
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Z≈24.27). This odd behaviour may be explained by the fact that, together with 

the boundary conditions, the increase in curvature establishes a non-uniform 

transversal state of stress with relevant compressive stresses near the edges 

and less relevant at the centre of the panel.  

    
a) Z=0 b) Z=23 c) Z=50 d) Z=100 

Figure 5.10: Buckling pattern for cylindrically curved panels with boundary  

conditions type 2 and with α=1 and ψ=1 
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Figure 5.11:  Comparison between Eq. (3.4) and the numerical displacement field at  

y=b/2 for cylindrically curved panels with boundary conditions type 2 

and with α=1 and ψ=1 
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5.2.5.2. Short cylindrically curved panels with α that minimises kσ and un-

der uniform compression (α≤1 and ψ=1) 

For curved panels with aspect ratios leading to minimum values of kσ instead 

of constant aspect ratios, it is plausible to assume that the buckled pattern, 

Figure 5.12, is close to the product of sine functions in both x and y directions 

(as Eq. (3.4) with m=1 and n=1). Figure 5.13 demonstrates this statement by 

plotting Eq. (3.4) together with numerically obtained displacement fields.  

    
a) Z=0 b) Z=20 (α=0.62) c) Z=50 (α=0.40) d) Z=100 (α=0.28) 

Figure 5.12: Buckling pattern for cylindrically curved panels with boundary  

conditions type 2 and with α minimising kσ and ψ=1 
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Figure 5.13: Comparison between Eq. (3.4) and the numerical displacement field at 

y=b/2 for cylindrically curved panels with boundary conditions type 2  

and with α minimising kσ and ψ=1 
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5.2.5.3. Square curved panels and varying loading conditions (α=1 and  

-1≤ψ≤1) with boundary conditions type 2 

Figure 5.14 represents the buckling pattern from a curved panel characterised 

by Z=100 and aspect ratio equal to 1 for different loading conditions.  

As expected, the buckling pattern follows the compressive stresses, while in 

areas with tensile stresses the panel remain with little or zero deformation.  

    

a) ψ=1 b) ψ=0 c) ψ=-0.7 d) ψ=-1 

Figure 5.14: Buckling pattern for cylindrically curved panels with Z=100, with  

boundary conditions type 2 and with α=1 and different loading conditions 

5.2.5.4. Long cylindrically curved panels and (α>>1 and ψ=1) with  

boundary conditions type 2  

Figure 5.15 illustrates the effect of curvature on the buckling pattern of long 

cylindrically curved panels (in this example α=3). In this case, curvature affects 

the number of half-waves (3 half-waves for Z<23 and two for Z≥23) and thus 

the buckling mode. With the increase of curvature the maximum out-of-plane 

displacement moves towards the loaded edges. It is also pointed out that this 

change in the number of half-waves takes place approximately also for Z=23.  

In Chapter 6 a comprehensive study on long cylindrically curved panels is per-

formed.  Not only the elastic buckling behaviour of long cylindrically curved 

panels is approached, but also, as previously mentioned, their ultimate strength 

and how they cope with different imperfection amplitudes and shapes. 
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a) Z=0 b) Z=23 c) Z=50 d) Z=100 

Figure 5.15: Buckling pattern for cylindrically curved panels with boundary condi-

tions type 2 and with α=3 and different curvature 

5.2.6. Concluding remarks 

It was shown that curvature plays an important role when predicting the elas-

tic critical stress of cylindrically curved panels. Besides this obvious conclu-

sion, a distinction on the buckling patterns due to curvature was identified: 

curved panels with Z<23 buckle in a different manner when compared to 

curved panels with Z≥23.  

Furthermore, in order to clarify the results from formulae obtained in the next 

chapters, it is important to stress out the fact that only models with aspect ra-

tios such that the elastic buckling coefficient is a minimum value (kσ,min) for a 

given value of curvature and loading were used in the calibration process (for 

short and long panels). Thus, the proposed formulae, besides the limits im-

posed by the parametric study, only returns minimum values for the elastic 

buckling coefficient. This approach is in line and consistent with the approach 

in EN1993-1-5:2006 (CEN, 2006a). Additionally, it was seen clearly that 

boundary conditions type 2 are limited by boundary conditions type 1 (which, 

for the same panel’s geometry) return lower values for the elastic critical 

stress; and by boundary conditions type 3 (which, for the same panel’s geome-

try) return the higher values for the elastic critical stress.  

Finally, it was shown that the classical displacement field expressed by 

Eq. (3.4) (m=n=1) is only suitable for cylindrically curved panels with aspect 

ratio following the curves in Figure 5.13.  
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5.3. Parametric study on the ultimate strength of short cylin-

drically curved panels under uniaxial compressive  

stresses 

5.3.1. Scope 

Numerical results are obtained from GMNIA and represent the maximum 

load factor achieved (which may vary from 0 to 1, whereby 1 corresponds to 

the full plastic resistance of the panel). The following parametric study com-

prises the study of the parameters:  

 Curvature, Z (where thickness t and width b are kept constant, sec. 4.4.3);  

 Boundary conditions;  

 Loading type, ψ.  

 Slenderness, λ.  

The cylindrically curved panels considered in this study have constant thick-

ness (t=10mm), the remaining geometric characteristics being variable (Table 

5.4). The thickness may be kept constant because the geometry of the panel is 

fully described by the curvature parameter. The width is taken as a dependent 

variable of the reduced slenderness parameter and it is calculated by Eq. (5.1) 

(which is obtained by solving Eq. (3.26) with respect to the width) 

 2132 









yf

Ekt
b

 
(5.1) 

Besides width, thickness and radius of curvature, length also influences the 

elastic critical stress of a cylindrically curved panel. Its influence is accounted 

for in the buckling coefficient kσ (the previous parametric study proves that 

the minimum elastic critical stress is a function of the curvature parameter, the 

aspect ratio and the loading type). So, it is important to be aware that values of 

width are calculated taking into account specific, and not random, values of 

length (or such that the aspect ratio is equal to 1). Finally, for this parametric 

study geometric imperfections based on the first buckling mode with ampli-

tudes given by expression (4.2) are used. The total number of analysis per-
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formed for this parametric study is 31 455. It should be noticed that all models 

with boundary conditions other than type 2 may have aspect ratios which 

minimise kσ different from those in Figure 5.3 but that influence was not ac-

counted for in this study. Nevertheless, to simplify the comparison between the 

three types of boundary conditions, it was assumed aspect ratios according to 

the curves in Figure 5.3 independently from the boundary condition type. Addi-

tionally, models with constant b/t ratios were performed. These models allowed 

verifying the evolution of the resistance of a panel with constant material (con-

stant cross-sectional area) with varying curvature over the slenderness (see 

grey-dashed lines in Figure 5.24 and Figure 5.25). In what concerns imperfec-

tions, it was considered an equivalent geometric imperfection based on the 1st 

eigenmode with amplitude equal to b/200 applied inwards.  

Table 5.4: Parametric study on the ultimate behaviour of cylindrically curved panels 

Load cases 
Slenderness, 

λ 

Width, 

b 

Thick-

ness, t 

Curva-

ture, Z 

Aspect  

Ratio, α 

 

ψ=1 

0.2 to 3.0 Eq. (5.1) 10 mm 0 to 100 

See  

Figure 

5.3 

 

to 

 

ψ=-1 

Total for BC1 
3 

(step=1) 

6 

(step=0.5) 
1 1 

11 

(step=10) 

Total for BC2 
21 

(step=0.1) 

29 

(step=0.1) 
1 1 

51 

(step=2) 

Total for BC3 
3 

(step=1) 

6 

(step=0.5) 
1 1 

11 

(step=10) 
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5.3.2. Influence of boundary conditions on the ultimate strength of 

short cylindrically curved panels (α≤1) 

In opposition to what happens for the elastic buckling behaviour, it is known 

that whether unloaded edges are or not constrained influences the postbuck-

ling behaviour of plates (see sec. 0) and, therefore, influences their ultimate 

strength. Figure 5.16 and Figure 5.17 plot, respectively, on top of the Win-

ter’s curve and on top of Tran et al. (2010) proposal, numerical results from 

models with the three types of boundary conditions. As it is visible, the best 

fit is for models having boundary conditions type 2. Again, as for the para-

metric study on the elastic buckling of cylindrically curved panels, values 

from models having boundary conditions type 1 represent a lower bound of 

results, while models with boundary conditions type 3 represent a upper 

bound of results. For panels with curvature, numerical results from models 

with boundary conditions type 3, despite being an upper bound, they are 

close to Tran et al. (2010) proposal (Figure 5.17). This is obvious from the 

analysis of both figures: in Figure 5.16, Winter curve and numerical results 

from models with boundary conditions type 2 represent the middle band-

width of results from models with boundary conditions type 1 and 3; in Fig-

ure 5.17 results from Tran et al. (2010) and numerical results from models 

with boundary conditions type 2 and 3 are almost on top of each other while 

results from models with boundary conditions type 1 are far apart on the 

lower part of the graph. Table 5.5,  

Table 5.6 and Table 5.7 compare the three boundary conditions, showing 

that, in what concerns the ultimate load factor, boundary conditions type 1 

lead to the lowest values while boundary conditions type 3 lead to the high-

est value. 

Generally speaking, as expected, boundary conditions type 2 lead to values 

limited by boundary conditions type 1 and 3. However, as already seen and 

analysed in Figure 5.16 and Figure 5.17, it is pointed out that for panels with 

curvature, the bigger differences are between boundary conditions type 1 

and type 2.  
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Table 5.5: Comparison between boundary conditions type 1, 2 and 3 (values of the 

ultimate strength for ψ=1 and λ=1) 

 Z=0 Z=10 Z=20 Z=50 Z=80 Z=100 

BC1 0.738 0.536 0.438 0.412 0.382 0.370 

BC2 0.752 0.656 0.622 0.576 0.523 0.512 

BC3 0.782 0.652 0.620 0.580 0.536 0.518 

Diff. BC1 (%) -1.9 -18.3 -29.6 -28.5 -27.9 -27.7 

Diff. BC3 (%) 4.0 -0.6 -0.3 0.7 1.1 1.2 

 

Table 5.6: Comparison between boundary conditions type 1, 2 and 3 (values of the 

ultimate strength for ψ=1 and λ=2) 

 Z=0 Z=10 Z=20 Z=50 Z=80 Z=100 

BC1 0.378 0.276 0.178 0.103 0.108 0.105 

BC2 0.448 0.404 0.356 0.288 0.254 0.242 

BC3 0.562 0.452 0.384 0.304 0.264 0.252 

Diff. BC1 (%) -15.6 -31.7 -50.1 -64.2 -57.4 -56.4 

Diff. BC3 (%) 25.4 11.9 7.9 5.6 3.9 4.1 

 

Table 5.7: Comparison between boundary conditions type 1, 2 and 3 (values of the 

ultimate strength for ψ=1 and λ=3)  

 Z=0 Z=10 Z=20 Z=50 Z=80 Z=100 

BC1 0.242 0.185 0.131 0.061 0.046 0.044 

BC2 0.330 0.304 0.256 0.195 0.165 0.154 

BC3 0.414 0.404 0.308 0.220 0.184 0.172 

Diff. BC1 (%) -26.7 -39.2 -49.7 -68.7 -72.4 -71.6 

Diff. BC3 (%) 25.5 32.9 18.5 12.6 11.2 11.5 
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5.3.3. Influence of loading type on the ultimate strength of short cy-

lindrically curved panels (α≤1) 

From the point of view of the ultimate strength the loading type is an essen-

tial parameter since depending on it the reduction factor changes are not 

negligible. As it is known from flat plates, the type of applied load influences 

the value of the reduction factor ρ. For this reason, as already mentioned in 

Chapter 3, EN1993-1-5:2006 proposes a modification of Winter’s curve given 

by Eq. (3.49). Figure 5.18 to Figure 5.23 show the effect of the loading type 

for different curvature and slenderness. The global pattern showed by all of 

the graphs is the same: higher reductions for loading type closer to pure 

compression, for higher values of the curvature parameter and for higher 

values of slenderness.  
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Figure 5.16: Comparison of numerical results assuming boundary conditions type 1, 2 

and 3 and the Winter curve (pure compression) 
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Figure 5.17: Comparison of numerical results assuming boundary conditions type 1, 2 

and 3 and the Tran’s et al. (2010) proposal for Z=50 (pure compression) 
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Figure 5.18: Influence of loading type for λ=0.5 
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Figure 5.19: Influence of loading type for λ=1 
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Figure 5.20: Influence of loading type for λ=1.5 
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Figure 5.21: Influence of loading type for λ=2 
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Figure 5.22: Influence of loading type for λ=2.5 
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Figure 5.23: Influence of loading type for λ=3 

It is brought to the attention of the reader that the values from the previous 

figures cannot be directly compared with the modified Winter formula 

(Eq. (3.49)). In fact, the resistance reduction factor, χ, only coincides with the 

width reduction factor, ρ, for pure compression. Otherwise, it is necessary to 

compute the equivalent value of ρ for each value of χ. The evaluation of the 

resistance reduction factor in terms of the width reduction factor is not 

straightforward and it requires an iterative process which is described in de-

tail in sec. 8.5.2.  

It should be also pointed out the fact that a cylindrically curved panel by pre-

senting a higher value of the curvature parameter does not necessarily mean 

that it is less resistant. In fact, previous figures do not compare panels with the 

same width but with the same reduced slenderness parameter.  

As it will be shown in the next section, with the exception of combinations of 

low curvature parameter with stocky panels, the higher the curvature parame-

ter the more resistant a cylindrically curved panel is.  



Chapter 5 | Characterisation of the behaviour of cylindrically curved panels 139 

 

5.3.4. Influence of slenderness on the ultimate strength of short cy-

lindrically curved panels under pure compression and pure 

in-plane bending 

Figure 5.24 and Figure 5.25 show that the reduction in the resistance of cylindri-

cally curved panels follows the same trend as flat panels do when plotted 

against slenderness and, when moving from uniform compression to pure 

in-plane bending, the gap between flat panels and curved panels (in this study 

the curvature limit is set as Z=100) becomes smaller. Furthermore, Figure 5.24 

and Figure 5.25 also may induce the wrong conclusion that a cylindrically 

curved panel is always less resistant than a flat panel with equal cross-sectional 

area. The opposite is proved by the grey-dashed curves which show the varia-

tions of χ for panels with constant area (different b/t ratios). An increase of χ 

with Z is noted, the resistance reduction factor exhibiting a minimum for small 

values of curvature in some cases, as clearly shown in Figure 5.26 and Figure 

5.27. The minimum is more pronounced for stockier panels, disappearing for 

more slender panels whereby the flat plate exhibits the lowest resistance. 
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Figure 5.24: Numerical results for the resistance reduction factor for ψ=1 
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Figure 5.25: Numerical results for the resistance reduction factor for ψ=-1 
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Figure 5.26: Relation between curvature and the resistance reduction factor for ψ=1 
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Figure 5.27: Relation between curvature and the resistance reduction factor for ψ=-1 

5.3.5. Concluding remarks 

In this section, it has been proven that curvature has a large influence on the 

ultimate strength of short cylindrically curved panels. In fact, the curvature 

parameter together with the slenderness seems to govern their behaviour. This 

realisation will lead in following chapters to a proposal to compute the ulti-

mate strength of cylindrically curved panels based on Winter’s formula which 

explicitly introduces the curvature parameter. Adding to these main conclu-

sions, the numerical results also show that:  

 Boundary conditions type 2 are always limited by boundary conditions 

type 1 (lower bound) and by boundary conditions type 3 (upper bound); 

 The evolution of the reduction factor with the reduced slenderness pa-

rameter is similar to what is observed for plates. The main difference lies 

on the magnitude of the reduction: the bigger the curvature the smaller 

the width/resistance reduction factor (i.e. the bigger the reduction is); 

 For panels with b/t ratio constant, an increase of the reduction factor 

with the increase of curvature is noted. The resistance reduction factor 

takes a minimum value for small values of curvature for stockier pan-

els, disappearing for more slender panels. This means that introducing 
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curvature in an initially flat plate may add a resistance reserve, espe-

cially if it is introduced a high curvature; the downside is that it also 

may change the plate’s postbuckling behaviour from stable to unstable.  

Additionally, the numerical results allow validating the assumption present in 

EN1993-1-5:2006 (CEN, 2006a): b2/(R.t)<1 (i.e. Z<1) (see Figure 5.28 and Figure 

5.29 and Table 5.8 and Table 5.9). Therefore, it is concluded that, within the 

range of the parametric study, the limit for the curvature parameter imposed 

by EN1993-1-5:2006 is on the safe side.  

Table 5.8: Validation of the limit for the curvature parameter in EN1993-1-5:2006 (ψ=1) 

 λ=0.2 λ=1 λ=1.5 λ=2 λ=2.5 λ=3 

EN1993-1-5 1.000 0.780 0.569 0.445 0.365 0.309 

Z=1 1.000 1.000 0.548 0.448 0.382 0.330 

Z=2 1.000 0.738 0.540 0.444 0.380 0.328 

Z=4 1.000 0.718 0.526 0.436 0.374 0.324 

EN1993-1-5 vs. Z=1 (%) +0.0 -4.4 -4.4 +0.2 +4.2 +6.9 

EN1993-1-5 vs. Z=4 (%) +0.0 -7.9 -7.5 -2.0 +2.5 +4.9 

 

Table 5.9: Validation of the limit for the curvature parameter in EN1993-1-5:2006 (ψ=-1) 

 λ=0.2 λ=1 λ=1.5 λ=2 λ=2.5 λ=3 

EN1993-1-5 1.000 0.890 0.618 0.473 0.362 0.292 

Z=1 1.000 0.873 0.630 0.471 0.368 0.296 

Z=2 1.000 0.861 0.623 0.469 0.366 0.294 

Z=4 1.000 0.854 0.619 0.464 0.362 0.292 

EN1993-1-5 vs. Z=1 (%) +0.0 -1.9 +2.0 -0.3 -3.2 -7.8 

EN1993-1-5 vs. Z=4 (%) +0.0 -4.0 +0.2 -1.8 -4.7 -9.1 
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Figure 5.28: Validation of the limit for the curvature parameter in EN1993-1-5:2006, ψ=1 
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Figure 5.29: Validation of the limit for the curvature parameter in EN1993-1-5:2006, ψ=-1 
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5.4. Parametric study on the ultimate strength of short cylin-

drically curved panels under biaxial compressive stresses 

5.4.1. Scope 

This parametric study aims at characterising the ultimate strength behaviour 

of cylindrically curved panels under biaxial loading. Numerical results are 

obtained from GMNIA analyses and represent the maximum load factor ob-

tained (which may vary from 0 to the normalised von Mises stress). The fol-

lowing parametric study comprises the study of the parameters:  

 Curvature, Z;  

 ratio between longitudinal and circumferential stresses, defined by θbl (see 

Figure 5.30);  

 Slenderness, whereby defined by the b/t ratio.  

From the information given by Table 5.10 it is concluded that 1760 analyses 

have been performed within this parametric study.  

Table 5.10: Parametric study on the ultimate behaviour of cylindrically  

curved panels under biaxial loading 

Load cases, θbl  

(see Figure 5.30) 

Width, 

b 

Thickness, 

t 

Curvature, 

Z 

Aspect  

Ratio, α 

Geometric 

imperfection  

 

0  

to  

π/2 rad 

300, 450, 

650 and 

1000 mm 

10 mm 

0 to 10 

(step=1)  

20 to 100 

(step=10) 

1.0 

Inwards 

and  

outwards 

Total for 

BC3 

11 

(step=π/20) 
4 1 20 1 2 

 

The cylindrically curved panels studied in this section have constant thickness 

(t=10mm) and an imperfection shape based on the first eigenmode of a cylindri-

cally curved panel under uniaxial compressive stresses (see Figure 5.10). The 
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maximum amplitude for the geometric imperfection shape is b/200 and it is ap-

plied both inwards and outwards. The use of the first buckling mode for the 

shape of the geometric imperfections in this parametric study is justified by the 

fact that, for square panels (i.e. aspect ratio equal to 1), one half-wave in both 

directions (longitudinal and transversal) is appropriate to “catch” the lower 

bound resistance of plates under biaxial loading (Braun, 2010). Here, it is as-

sumed that this trend is still true for square cylindrically curved panels under 

biaxial loading. In what concerns the maximum amplitude of the geometric 

imperfections, again recommendations from Braun (2010) are followed, i.e. max-

imum amplitude equal to b/200. 
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Figure 5.30: Definition of θbl 

5.4.2. Influence of geometry (curvature and geometric imperfections) 

on the ultimate strength of cylindrically curved panels 

In opposition to what was observed for cylindrically curved panels under uni-

axial compressive stresses, the ultimate resistance of cylindrically curved pan-

els under biaxial loading generally decreases with the increase of curvature.  
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Figure 5.31: Ultimate load factor for cylindrically curved panels under biaxial loading 

(geometric imperfections applied inwards and θbl=π/4) 
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Figure 5.32: Ultimate load factor for cylindrically curved panels under biaxial loading 

(geometric imperfections applied outwards and θbl=π/4) 
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The last statement is supported by information gathered from Figure 5.31 and 

Figure 5.32. However, from Figure 5.31 it is seen that for low values of curva-

ture the trend is an increasing on the ultimate resistance followed by an abrupt 

drop around values of Z=3 to Z=5. The referred increase in the ultimate re-

sistance is explained by the fact that, for low values of curvature (high values of 

radius of curvature and low values of total depth), the maximum amplitude for 

the geometric imperfection is greater than the total depth of the cylindrically 

curved panel and, therefore, the applied load compels the panel to increase the 

amplitude in the same direction as the geometric imperfection, i.e., inwards. For 

values of curvature around 3 to 6 (depending on the b/t ratio) the geometric 

imperfection becomes smaller than the total depth of the panel which means 

that the applied load is no longer able to force the panel to follow the geometric 

imperfection (Figure 5.33 and Figure 5.34). In this case the panel’s deflection 

starts increasing into the outwards direction right from the beginning of the 

load-displacement curve.  
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Figure 5.33:  Out-of-plane displacement of a cylindrically curved panel with geometric 

imperfections applied inwards (Z=10 and b/t=100) 
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Figure 5.34: Out-of-plane displacement of a cylindrically curved panel with geometric 

imperfections applied outwards (Z=10 and b/t=100) 

In conclusion, it is seen that the ultimate resistance for high values of curva-

ture and geometric imperfections applied inwards tend to the ultimate re-

sistance of cylindrically curved panels where the geometric imperfection is 

applied outwards (Figure 5.35 and Figure 5.36).  

5.4.3. Influence of the ratio between longitudinal and circumferen-

tial stresses on the ultimate strength of cylindrically curved 

panels 

As already discussed in sec. 3.4 and 3.13, the ratio between longitudinal and 

circumferential stresses (expressed by θbl) has a strong influence on the behav-

iour of cylindrically curved panels. Here, that influence is studied with more 

detail and with emphasis on the specific influence of the curvature parameter 

and on the direction of the applied geometric imperfections. Figure 5.37 to 

Figure 5.40 show that these parameters are in fact the most important to accu-

rately characterise the behaviour of square cylindrically curved panels under 

biaxial loading.  
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Figure 5.35: Ultimate load factor for cylindrically curved panels under biaxial loading 

(geometric imperfections applied outwards vs. geometric imperfections  

applied outwards; θbl=π/4 and b/t=65) 
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Figure 5.36: Ultimate load factor for cylindrically curved panels under biaxial loading 

(geometric imperfections applied outwards vs. geometric imperfections  

applied outwards; θbl=π/4 and b/t=45) 
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Figure 5.37: Ultimate load factor for cylindrically curved panels  

under biaxial loading (Z=1) 
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Figure 5.38: Ultimate load factor for cylindrically curved panels  

under biaxial loading (Z=10) 
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Figure 5.39: Ultimate load factor for cylindrically curved panels  

under biaxial loading (Z=50) 
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Figure 5.40: Ultimate load factor for cylindrically curved panels  

under biaxial loading (Z=100) 
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A direct conclusion from Figure 5.37 to Figure 5.40 is that for cylindrically 

curved panels under pure circumferential stresses the reduction on the ulti-

mate strength with the increase in curvature is quite abrupt, especially for 

slender curved panels (b/t=100); for stockier curved panels (b/t=30) it is seen a 

slight increase in the ultimate load factor from curvature around 50-60 to 100 

(this is also patent in Figure 5.31 and Figure 5.32 for b/t=45 and b/t=30).  

In what concerns the direction of geometric imperfections (inwards vs. out-

wards), from the analysis of Figure 5.41 it is seen that models with geometric 

imperfection applied inwards only return lower values of ultimate resistance 

when σx is dominant (θbl≤π/10, i.e., low values of circumferential stresses). Alt-

hough, Figure 5.41 only shows the results for Z=9 and b/t=65 this trend is no-

ticeable for other combinations of Z and b/t ratios.  
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Figure 5.41: Ultimate load factor for cylindrically curved panels  

under biaxial loading (Z=9 and b/t=65) 

5.4.4. Concluding remarks 

In this section, the influence of an additional loaded direction was studied 

being concluded that it has a strong influence on the ultimate response of cy-

lindrically curved panels. In fact, it is seen that the reduction on the ultimate 
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strength of cylindrically curved panels is greater when stresses in the circum-

ferential direction are dominant. This is in line to what was expected: as the 

circumferential direction is less stiff than the longitudinal direction the reduc-

tion is bigger in the circumferential direction.  

Another important conclusion is that the most unfavourable direction of geo-

metric imperfections changes from inwards for very low curvatures and when 

longitudinal stresses are dominant to outwards for medium to high curva-

tures and for low values of circumferential stresses (Figure 5.41).  

Finally, it should be said that the postbuckling behaviour is also different 

whether the geometric imperfections are applied inwards or outwards. Seem-

ingly, comparing Figure 5.33 to Figure 5.34, it is seen that the initial stiffness is 

higher (higher slope of the initial segment of the postbuckling path) when 

geometric imperfections are applied outwards.  

5.5. Summary 

In this chapter the numerical results (except those related to the imperfection 

sensitivity study) were shown and interpreted. It was shown, numerically and 

in a thoroughly way, that curvature is a central parameter that must be taken 

into account when evaluating the overall behaviour of cylindrically curved 

panels under compressive stresses (uniaxial and biaxial compressive stresses). 

Furthermore, it was shown that the definition of boundary conditions is more 

important than it is for flat plates. In fact, on one hand, for flat plates the re-

sults for the elastic critical stress are exactly the same whether boundary con-

ditions type 1, 2 or 3 are used; on the other hand, the elastic buckling stress is 

influenced by curvature.  

Another important outcome of this chapter is the awareness of the evolution 

of the shape of the first buckling mode of axially compressed cylindrically 

curved panels with the curvature parameter: the higher the curvature the 

more different from the classical displacement field the eigenmode is. This 

outcome is of extreme importance for the interpretation of analytical deriva-

tions in Chapter 7 and also it responsible for the development of the study 
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presented in Chapter 6: the study of the influence of different shapes (and 

amplitudes) based upon the panel’s buckling mode playing the role of geo-

metric imperfections.  

Finally, it should be said that results from sec. 5.2 and sec. 5.3 are the core of 

the calibration of proposed formulae (for computing the elastic critical stress 

and the ultimate strength of cylindrically curved panels under axial compres-

sive stresses) in Chapter 8.  



6. Imperfection sensitivity of cylin-

drically curved panels under uni-

axial compression 

6.1. Chapter overview 

In the field of plate and shell stability, imperfections (geometric, residual stress-

es and eccentricities) are known to be the cause of poor correlation between 

theoretical and experimental results. Generally speaking, the presence of imper-

fections decreases the ultimate load that a structure can support (Figure 2.1).  

Classically, design formulae were calibrated exclusively with experimental re-

sults (e.g. Winter’s formula) where the measurement of imperfections was not 

important since the goal was, after identifying relevant parameters, to establish 

a large scatter of points representing the ultimate resistance of a certain struc-

tural component and later perform a regression to obtain an expression capable 

of predicting the structural element ultimate load on the safe side. Nowadays, 

experimental campaigns are complemented with numerical simulations of the 

structural component being studied, allowing a much larger scatter of points in 

a much shorter time period. The downside of numerical approaches is that it 

becomes crucial to know and to model imperfections accurately.  

Additionally, high-performance software tools (almost exclusively based on 

the finite element and on the finite strip methods) are widespread and are 

used in most design offices around the world. Therefore, definition and guide-

lines on how to model imperfections is an urgent task. As already mentioned 
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in sec. 4.2.4, at the European level imperfections are treated in Annex C of 

EN1993-1-5:2006 (CEN, 2006a) for plated structures and in clause 8.7 of 

EN1993-1-6:2007 (CEN, 2007). Additionally, since cylindrically curved panels 

are neither flat panels nor shells of revolution, the following question is raised: 

what standard should be followed to define imperfections in cylindrically 

curved panels? If neither of the options is appropriate, definition rules for esti-

mating equivalent geometric imperfections are missing from European stand-

ards. On top of this problem, preliminary results confirm that unstiffened cylin-

drically curved panels are highly sensitive to initial geometric imperfections. 

In order to tackle the above referred problems, sec. 6.2 describes a parametric 

study organised to include all parameters that have an important role in what 

concerns geometric imperfections, namely maximum amplitude and pattern. 

In sec. 6.3 a very detailed analysis of the influence of the geometric imperfec-

tion on the postbuckling response and on the ultimate strength is made. Final-

ly, in sec. 6.4 the main conclusions are highlighted.  

6.2. Parametric study 

6.2.1. Scope 

A total of 24 120 GMNIA’s were carried out. The range of all parameters 

which intervene in the parametric study is presented in Table 6.1. The para-

metric study is centred on imperfect cylindrically curved panels with b/t ratios 

equal to 100. This choice is related to the belief that this ratio is the most repre-

sentative of practical applications. As shown in Figure 5.24 whereby b/t ratios 

equal to 100 are equivalent to non-dimensional slenderness parameters be-

tween 0.75 and 2, which is a comprehensive range and also where imperfec-

tions plays a larger role in the determination of the ultimate load (for lower 

non-dimensional slenderness parameters the ultimate strength is driven by 

plasticity and for higher values the ultimate load is driven by stability). Never-

theless, additional b/t ratios are also analysed (b/t=150 and b/t=200). It is high-

lighted that this additional results are only used to compare higher b/t ratios 

equal to 100 in sec. 6.3.3.4.  
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6.2.2. Definition of equivalent geometric imperfections: pattern and  

amplitude 

Since the main goal of this paper is to characterise the imperfection sensitivity 

of cylindrically curved panels, the definition of equivalent geometric imper-

fections requires a more complete description. Ten different imperfection 

shapes (based on the ten first buckling modes) are considered which are com-

bined with eight different amplitudes (from 20% to 200% of b/200, and two 

additional values representing a modified approach by EN1993-1-5:2006 

(CEN, 2006a) and EN1993-1-6:2007 (CEN, 2007)).  

Table 6.1: Range of the imperfect sensitivity study parametric study 

Width, b Thickness, t Curvature, Z Aspect ratio, α Imp. shape Imp. amplitude 

1000 mm 10 mm 
1, 10 to 100 

step=10 

0.4 to 5.0 

step=0.2 

Buckling 

modes 1 to 10 

2, 3, 4, 5, 7, 10mm 

mod
511993,,0  ENeqw  

mod
611993,,0  ENeqw  

1500 mm 

10 mm 
1, 10 to 100 

step=10 

1.0 to 5.0 

step=1.0 

Buckling 

modes 1 to 10 

b/200 

2000mm 

mod
511993,,0  ENeqw  

mod
611993,,0  ENeqw  

 

In what concerns the pattern of the equivalent geometric imperfections, the 

ten first buckling modes were considered. As an example, these buckling 

modes are shown in Figure 6.1 for a cylindrically curved panel with a curva-

ture parameter Z=50 and an aspect ratio α=2. As it is patent in Figure 6.1 the 

order of the buckling mode is not appropriate to identify a specific buckling 

mode by its wave number (e.g. the buckling mode with one half-wave in the 

longitudinal direction is buckling mode number seven, while for a cylindrical-

ly curved panel Z=1 and α=1, the buckling mode with one half-wave is the 

first one), buckling modes are classified according to their shape instead. The 

following geometrical aspects are considered to classify the buckling modes: 
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 Number of half-waves in the longitudinal direction: one half-wave is de-

fined as the deflected part of the panel delimited by zero deformation 

lines;  

 Number of peaks, i.e. maxima and minima, in the longitudinal direction;  

 Number of transverse half-waves.  

     

a) Buckling  

mode 1 

b) Buckling  

mode 2 

c) Buckling  

mode 3 

d) Buckling  

mode 4 

e) Buckling  

mode 5 

     

f) Buckling  

mode 6 

g) Buckling  

mode 7 

h) Buckling  

mode 8 

i) Buckling  

mode 9 

j) Buckling  

mode 10 

Figure 6.1: Buckling modes for a cylindrically curved panel with Z=50 and α=2 

Considering buckling mode number 2 of Figure 6.1, it is clear that it has one 

longitudinal half-wave and one transverse half-wave. Concerning the number 

of peaks, a deeper analysis must be done. 

Analysing Figure 6.2 (section at b/2) it is concluded that the number of peaks is 

equal to seven. Therefore, the name of this buckling mode is 1.7LW_1TW (where 

LW means longitudinal half-wave and TW means transverse half-wave). For 

instance, 3.11LW_2TW is referring to a buckling mode with three longitudinal 

half-waves with eleven peaks and two transverse half-waves.  
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Figure 6.2: Shape of buckling mode 2 at b/2 for a cylindrically curved panel with  

Z=50 and α=2 

Another important parameter related to the equivalent geometric imperfec-

tions is their maximum amplitude. As already mentioned, besides predefined 

amplitudes, the parametric study considers amplitudes based on two modi-

fied approaches based on methodologies for computing equivalent geometric 

imperfections given by EN1993-1-5:2006 (CEN, 2006a) and EN1993-1-6:2007 

(CEN, 2007). These modified approaches are based on the dimensions of the 

largest half-wave of the buckled shape, lLw in the longitudinal direction, and lTw 

in the transverse direction (see Figure 6.3), and the amplitudes are given by 

Eqs. (6.1) and (6.2).  

 

Figure 6.3: Definition of lLw and lTw 
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Eq. (6.1) is directly obtained from Eq. (4.2) by substituting a by lLw and b by lTw. 

Eq. (6.2) is less intuitive, but it is obtained from Eq. (4.3) by assuming the low-

est value between lLw.Un and lTw.Un for lg.Un with a lower limit set to 25.t.Un. 

The use of the length of the largest half-wave of the buckled shape as relevant 

length to compute the imperfection’s amplitude instead of the plate’s length, a, 

or width, b (as it is done for plates) and instead of predefined lengths, lg, given 

by EN1993-1-6:2007 (as it is done for shells) is justified by the fact that it would 

be to unfavourable (i.e. the reduction of resistance would be unrealistically 

high) to use min(a/200; b/200) or max(lg.Un; 25.t.Un) for a panel with geometric 

imperfections based on an eigenmode-affine shape with a large number of 

half-waves along the plate’s length.  

6.3. Results and discussion 

6.3.1. Preliminary remarks 

From a preliminary analysis, based on engineering judgement, it was seen that 

some buckling modes were “unrealistic” as imperfection shapes (not necessarily 

giving the lowest value of the ultimate load). The idea that some buckling 

modes should not be considered came from the realisation that at some point a 

buckling shape would have so many half-waves that the membrane resistant 

behaviour would disappear (especially for high values of the maximum ampli-

tude) becoming a bending resistance behaviour, which is clearly unrealistic 

when dealing with this type of elements.  

Examples of such buckling modes are given in Figure 6.4. Obviously, the defini-

tion of “unrealistic” needs to be clarified and, again based on engineering 

judgement, some criteria were established to define whether a buckling shape 

should or should not be considered suitable as imperfection shape:  
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 Buckling modes with longitudinal half-wave lengths lower than min(a/4; 

2.b/3) are considered unrealistic;  

 Buckling modes with transverse half-wave lengths lower than b/2 are 

considered unrealistic.  

As an example, Figure 6.5 and Figure 6.6 shows numerical results for Z=40 

and Z=100 where the “realistic” patterns are separated from the “unrealistic” 

patterns. It is seen that for Z=40 some “unrealistic” shapes were found as the 

most critical while for Z=100 “unrealistic” shapes defined according to the 

previously defined criteria are never the most unfavourable ones. It is pointed 

out that in Figure 6.5 and in Figure 6.6 higher values for “unrealistic” shapes 

are related to shapes with three or more transverse half-waves. It is also high-

lighted that, for Z=40, the points with the lowest values of the ultimate load 

factor are exactly those with a large number of longitudinal half-waves where 

the behaviour might no longer be characterised by the presence of a mem-

brane resistant mechanism but by a bending resistant mechanism. 

  

 

 

Figure 6.4: Examples of “unrealistic” imperfection shapes according to  

previously defined criteria 

Finally, it is again brought to the attention of the reader that the discussion of 

results in the next sections is centred on results from models with b/t ratios 

equal to 100. The comparison between results with different b/t ratios is per-

formed at sec. 6.3.3.4.  
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6.3.2. Postbuckling behaviour response to geometric imperfections 

6.3.2.1. Influence of amplitude 

Generally speaking, it can be concluded from a first analysis of Figure 6.7 to 

Figure 6.10, that the postbuckling behaviour is strongly influenced by the im-

perfection’s amplitude. In particular, Figure 6.7 to Figure 6.10 plot the 

load-displacement curves for models with curvature parameters Z=10, 30, 50 

and 100, aspect ratios α=1.0, 1.2, 1.6 and 2.2 and for models with one longitu-

dinal half-wave and one transverse half-wave as the geometric imperfection 

pattern. It is noticed that other shapes may induce different behaviours and 

responses. This aspect will be treated in the next section. From a more refined 

analysis, it is concluded that the postbuckling behaviour changes its character-

istics with the curvature parameter and with the increase of the aspect ratio. 

For example, from Figure 6.7 it is clear that the postbuckling path resembles 

the behaviour of a plate for all aspect ratios, progressing to a completely dif-

ferent postbuckling path in Figure 6.8, specially for α=2.2, which resemble a 

classical shell behaviour. Moreover, this tendency seems to be lost, or weak-

ened, for curvature parameters higher than 40, where the pattern of imperfec-

tions seems to have less influence (see also sec. 6.3.2.2).  

It is also pointed out that this resemblance to classical shell behaviour coin-

cides with bigger errors when comparing numerical results to previously cali-

brated expressions for the ultimate load of cylindrically curved panels (see 

sec. 8.5.4). Additionally, for all cases it is fair to conclude that lower imperfec-

tion amplitudes generally lead to higher peaks of the postbuckling path. How-

ever, the panel characterised by Z=10 shows a very low sensitivity of initial am-

plitudes of geometric imperfections, and for the case with α=2.2 clearly presents 

a higher peak for initial amplitude equal to 10 mm. The evolution of the ulti-

mate load (peak of the postbuckling path) with the amplitude of geometric im-

perfections will be discussed in more detail in sec. 6.3.3 where it will be proven 

that Z=10 is not an isolated case. 
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Figure 6.5: Realistic vs. unrealistic shapes for Z=40 
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Figure 6.6: Realistic vs. unrealistic shapes for Z=100 
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c) α=1.6 (1.5LW_1TW) d) α=2.2 (1.7LW_1TW) 

Figure 6.7: Load-displacement curves (end-shortening) curves Z=10 
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c) α=1.6 (1.1LW_1TW) d) α=2.2 (1.1LW_1TW) 

Figure 6.8: Load-displacement curves (end-shortening) curves Z=30 
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c) α=1.6 (1.5LW_1TW) d) α=2.2 (1.5LW_1TW) 

Figure 6.9: Load-displacement curves (end-shortening) curves Z=50 
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c) α=1.6 (1.5LW_1TW) d) α=2.2 (1.7LW_1TW) 

Figure 6.10: Load-displacement curves (end-shortening) curves Z=100 
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6.3.2.2. Influence of the imperfection pattern 

The pattern of geometric imperfections is another parameter of the utmost 

importance in the definition of the load-displacement curve. In fact, initial 

geometric imperfections used in the parametric study stimulate ten different 

buckling modes, thus being expectable a strong influence of this parameter. 

Figure 6.11 to Figure 6.14 shows the load-displacement curves for cylindrically 

curved panels with equal curvature parameters as those in Figure 6.7 to Figure 

6.10 but with aspect ratios and imperfection patterns yielding a minimum val-

ue for the ultimate load, i.e. Figure 6.11 to Figure 6.14 are a minimum envelope 

of results presented in Figure 6.7 to Figure 6.10.  

It is interesting to notice that all worst case scenarios, except for Z=100, occur for 

panels with geometric imperfection patterns characterised by the presence of 

many longitudinal half-waves. The influence of the pattern of the geometric 

imperfections will be thoroughly analysed further in secs. 6.3.3.2 and 6.3.3.3. 
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Figure 6.11: Load-displacement curve (end-shortening) curves Z=10  

(worst case scenario: α=3.6 (6.6LW_1TW)) 
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Figure 6.12: Load-displacement curve (end-shortening) curves Z=30  

(worst case scenario: α=4.4 (8.8LW_1TW)) 
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Figure 6.13: Load-displacement curve (end-shortening) curves Z=50  

(worst case scenario: α=3.8 (8.8LW_1TW)) 
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Figure 6.14: Load-displacement curve (end-shortening) curves Z=100 

(worst case scenario: α=2.0 (2.2LW_1TW)) 

After analysing Figure 6.11 to Figure 6.14 and comparing them to Figure 6.7 to 

Figure 6.10, the main conclusion is that all cases referred to as worst case scenario 

the linear part of the load-displacement curve has a significantly lower slope 

when compared to the remaining load-displacement curves of the respective 

cylindrically curved panel. This suggests that those cylindrically curved panels 

(with worst case scenario patterns as geometric imperfections) have, generally, 

less membrane stiffness and are not able to cope with axial loads as efficiently as 

cylindrically curved panels with other buckling modes as imperfection shape.  

6.3.3. Ultimate behaviour response to geometric imperfections 

6.3.3.1. Influence of the amplitude 

As already established, amplitude is an ultimate load defining parameter. In 

Figure 6.15 to Figure 6.31 the evolution of the ultimate load factor with the max-

imum amplitude for “realistic” shapes is plotted for cylindrically curved panels 

with curvature parameters Z=10, 30, 50 and 100 and aspect ratio α=1. Addition-

ally, values of the ultimate load factor for amplitudes based on Eqs. (6.1) and 
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(6.2) for each imperfection shape are also plotted and information about the 

ultimate load factor given by EN1993-1-5:2007 (i.e. the ultimate load factor dis-

regarding the effect of curvature) is added. In order to aid in the interpretation 

of Figure 6.15 to Figure 6.31, Table 6.2 to Table 6.5 shows the buckling shapes 

and imperfection amplitudes used in each respective graph. The first conclu-

sion drawn is that the general trend is the decreasing of the ultimate load fac-

tor with the increasing of the imperfection’s amplitude. Nevertheless, and as 

already stated for the panel characterised by Z=10 and α=2.2, the panel with 

Z=10 and α=1.0 for the imperfection shape 1.1LW_2TW (Figure 6.15) also re-

turns higher ultimate load factor for amplitude equal to 10 mm. The same is 

true for the panel with Z=30 and α=1.0 for the imperfection shape 1.1LW_2TW 

(Figure 6.29).  

Table 6.2: Amplitudes based on Eqs. (6.1) and (6.2) for each buckling shape presented 

in Figure 6.15 to Figure 6.18 (Z=10 and α=1.0) 

Imperfection’s shape 
mod

511993,,0  ENeqw  mod
611993,,0  ENeqw  

1.1LW_1TW 
 

5.00 mm 10.00 mm 

1.1LW_2TW 
 

5.00 mm 10.00 mm 

2.2LW_1TW 
 

2.50 mm 5.00 mm 

2.2LW_2TW 
 

2.50 mm 5.00 mm 

3.3LW_1TW 
 

1.85 mm 3.69 mm 

3.3LW_2TW 
 

1.68 mm 3.37 mm 

4.4LW_1TW 
 

1.27 mm 2.53 mm 

4.4LW_2TW 
 

1.26 mm 2.52 mm 
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Figure 6.15: Imperfection amplitude vs. ultimate load factor for Z=10 and α=1.0  

(imperfection shapes 1.1LW_1TW and 1.1LW_2TW) 
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Figure 6.16: Imperfection amplitude vs. ultimate load factor for Z=10 and α=1.0 

(imperfection shapes 2.2LW_1TW and 2.2LW_2TW) 
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Figure 6.17: Imperfection amplitude vs. ultimate load factor for Z=10 and α=1.0 

(imperfection shapes 3.3LW_1TW and 3.3LW_2TW) 
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Figure 6.18: Imperfection amplitude vs. ultimate load factor for Z=10 and α=1.0 

(imperfection shapes 4.4LW_1TW and 4.4LW_2TW) 
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Table 6.3: Amplitudes based on Eqs. (6.1) and (6.2) for each buckling shape presented 

in Figure 6.19 to Figure 6.23 (Z=30 and α=1.0) 

Imperfection’s shape 
mod

511993,,0  ENeqw  mod
611993,,0  ENeqw  

1.3LW_1TW 
 

5.00 mm 10.00 mm 

1.1LW_2TW 
 

5.00 mm 10.00 mm 

2.2LW_1TW 
 

2.50 mm 5.00 mm 

2.2LW_2TW 
 

2.50 mm 5.00 mm 

3.3LW_1TW 
 

3.34 mm 6.68 mm 

3.3LW_2TW 
 

1.83 mm 3.66 mm 

4.4LW_1TW 
 

1.42 mm 2.85 mm 

4.4LW_2TW 
 

1.35 mm 2.70 mm 

5.5LW_1TW 
 

1.26 mm 2.53 mm 
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Figure 6.19: Imperfection amplitude vs. ultimate load factor for Z=30 and α=1.0 

(imperfection shapes 1.3LW_1TW and 1.1LW_2TW) 
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Figure 6.20: Imperfection amplitude vs. ultimate load factor for Z=30 and α=1.0 

(imperfection shapes 2.2LW_1TW and 2.2LW_2TW) 
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Figure 6.21: Imperfection amplitude vs. ultimate load factor for Z=30 and α=1.0 

(imperfection shapes 3.3LW_1TW and 3.3LW_2TW) 
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Figure 6.22: Imperfection amplitude vs. ultimate load factor for Z=30 and α=1.0 

(imperfection shapes 4.4LW_1TW and 4.4LW_2TW) 
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Figure 6.23: Imperfection amplitude vs. ultimate load factor for Z=30 and α=1.0 

(imperfection shapes 5.5LW_1TW) 
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Table 6.4: Amplitudes based on Eqs. (6.1) and (6.2) for each buckling shape presented 

in Figure 6.24 to Figure 6.28 (Z=50 and α=1.0) 

Imperfection’s shape 
mod

511993,,0  ENeqw  mod
611993,,0  ENeqw  

1.3LW_1TW 
 

5.00 mm 10.00 mm 

1.1LW_2TW 
 

5.00 mm 10.00 mm 

2.2LW_1TW 
 

2.50 mm 5.00 mm 

2.2LW_2TW 
 

2.50 mm 5.00 mm 

3.3LW_2TW 
 

2.35 mm 4.70 mm 

3.5LW_2TW 
 

3.63 mm 7.23 mm 

4.4LW_1TW 
 

1.78 mm 3.57 mm 

4.4LW_2TW 
 

1.53 mm 3.05 mm 

5.5LW_1TW 
 

1.69 mm 3.39 mm 
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Figure 6.24: Imperfection amplitude vs. ultimate load factor for Z=50 and α=1.0 

(imperfection shapes 1.3LW_1TW and 1.1LW_2TW) 
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Figure 6.25: Imperfection amplitude vs. ultimate load factor for Z=50 and α=1.0 

(imperfection shapes 2.2LW_1TW and 2.2LW_2TW) 
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Figure 6.26: Imperfection amplitude vs. ultimate load factor for Z=50 and α=1.0 

(imperfection shapes 3.3LW_2TW and 3.5LW_2TW) 
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Figure 6.27: Imperfection amplitude vs. ultimate load factor for Z=50 and α=1.0 

(imperfection shapes 4.4LW_1TW and 4.4LW_2TW) 
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Figure 6.28: Imperfection amplitude vs. ultimate load factor for Z=50 and α=1.0 

(imperfection shapes 5.5LW_1TW) 



180 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

Table 6.5: Amplitudes based on Eqs. (6.1) and (6.2) for each buckling shape presented 

in Figure 6.29 to Figure 6.31 (Z=100 and α=1.0) 

Imperfection’s shape 
mod

511993,,0  ENeqw  mod
611993,,0  ENeqw  

1.5LW_1TW 
 

5.00 mm 10.00 mm 

1.3LW_2TW 
 

5.00 mm 10.00 mm 

2.2LW_1TW 
 

2.50 mm 5.00 mm 

2.2LW_2TW 
 

2.50 mm 5.00 mm 

2.2LW_2TW 
 

2.50 mm 5.00 mm 

5.5LW_2TW 
 

1.86 mm 3.72 mm 
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Figure 6.29: Imperfection amplitude vs. ultimate load factor for Z=100 and α=1.0 

(imperfection shapes 1.5LW_1TW and 1.3LW_2TW) 
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Figure 6.30: Imperfection amplitude vs. ultimate load factor for Z=100 and α=1.0 

(imperfection shapes 2.2LW_1TW and 2.2LW_2TW) 
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Figure 6.31: Imperfection amplitude vs. ultimate load factor for Z=100 and α=1.0 

(imperfection shapes 5.5LW_2TW) 
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To more strongly support the idea that an increase in the amplitude corre-

spond a decrease in the ultimate load factor, Figure 6.32 shows the average 

value of the minimum values obtained for all different imperfection shapes 

and for each aspect ratio.  

Another important conclusion is the overall effect of curvature on the ultimate 

load factor for different values of amplitude. In fact, it is seen that for ampli-

tudes equal to 2 mm the difference between Z=10 and Z=100 takes the highest 

value, while for amplitudes equal to 10 mm the difference is the smallest. A 

better way to express this conclusion is to say that panels with smallest curva-

ture are the least sensitive to geometric imperfection’s amplitude; or, by in-

creasing the curvature parameter the ultimate resistance becomes more sensi-

tive to initial imperfection amplitude. 
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Figure 6.32: General trend of the ultimate load factor with the  

geometric imperfections’ amplitude 

6.3.3.2. Influence of the pattern 

From every analysis made so far, it is easily accepted that geometric imperfec-

tions’ pattern is of the utmost importance for the value of the ultimate load 

factor. This statement is specially sustained by analysing Figure 6.15 to Figure 
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6.32. Now, the search is for the most unfavourable pattern for geometric im-

perfections. Figure 6.33 compares the average value of the ultimate load factor 

for all models with one transverse half-wave and two transverse half-waves 

(geometric imperfections’ amplitude equal to 5 mm). It is concluded that, in-

dependently from curvature, shapes with two transverse half-waves tend to 

higher values of the ultimate load factor.  

Concerning the global tendency with respect to the number of longitudinal 

waves, Figure 6.34 compares the average value of the ultimate load factor for 

all models with one to five longitudinal half-waves (geometric imperfections’ 

amplitude equal to 5 mm; models with two transverse half-waves were ex-

cluded based on the previous conclusion). In this case, it is not possible to 

claim a general trend independent from the curvature parameter. In fact, for 

Z=30 it is seen that the tendency for the ultimate load factor is decreasing by 

increasing the number of longitudinal half-waves, while for Z=60 the opposite 

is true (trend lines in Figure 6.34).  

Once more, it is highlighted the fact that these conclusions are drawn based on 

average values for the ultimate load factor, i.e. these conclusions should be 

seen only as general trends and should not be extrapolated blindly to every 

particular case analysed in the parametric study. 

6.3.3.3. Discussion on the order of the buckling mode 

The first buckling mode is commonly used as imperfection shape. This is due 

the belief that, when used as imperfection shape, it will always yield the lowest 

ultimate load factor (as the first buckling mode is associated to the lowest bi-

furcation load and, therefore, associated to lowest energy necessary to change 

the state of equilibrium of a given system). This may be true for some types of 

structures (e.g. unstiffened plated structures), but it may also be an unsafe ap-

proach for others. Thus, it is the aim of this section to prove that, for cylindri-

cally curved panels, the option for the first buckling mode may be unsafe. 
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Figure 6.33: General trend of the ultimate load factor with the  

number of transverse half-waves 
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Figure 6.34: General trend of the ultimate load factor with the 

number of longitudinal half waves 
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For example, Figure 6.35 shows that for a panel with Z=30 and α=4.8 the first 

buckling mode is the one to which the highest value for the ultimate load fac-

tor is obtained and the difference to the lowest ultimate load factor (associated 

to the seventh buckling mode) is 11.6%. This is a representative case of many 

in the parametric study and, as it will be further in this section, depending on 

the aspect ratio, the use of the first buckling mode as imperfection shape do 

not always yield the minimum value of the ultimate load factor.  

Figure 6.36 shows the frequency distribution of the ten buckling modes corre-

sponding to minimum values for the ultimate load factor for all panels with 

different curvature parameters and aspect ratios. The buckling mode that 

more often corresponds to a minimum value of the ultimate load factor is the 

second one (34%). The first buckling mode corresponds to a minimum value 

of the ultimate load factor 30% of the times. 

Once more, a general trend can be drawn: the first two buckling modes are 

those which more likely will return a lowest value of the ultimate load factor 

(the possibility of getting the lowest value of the ultimate load factor is over 

60%).  
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Figure 6.35: Ultimate load factor for a cylindrically curved panel with Z=30 and α=4.8 
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However, if the results are divided in different sets of aspect ratio, more re-

fined conclusions may be drawn: 

 For short cylindrically curved panels (α≤1), the first buckling mode 

most often returns the minimum value of the ultimate load factor 

(Figure 6.37). Additionally, it is stated that the fourth buckling mode, 

although not as often as  the first one, returns the minimum value ul-

timate load factor 24 % of the times;  

 For long cylindrically curved panels (1.2≤α≤5), the second buckling 

mode is clearly the one that more times returns the lowest value of the 

ultimate load factor (Figure 6.38 and Figure 6.39). This is even more 

clear for cylindrically curved panels with 1.2<α≤2.4 as it is visible in 

Figure 6.38.  
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Figure 6.36: Distribution of the frequency of buckling modes corresponding to 

minimum values for the ultimate load factor (all aspect ratios) 
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Figure 6.37: Distribution of the frequency of buckling modes corresponding to 

minimum values for the ultimate load factor (panels with α≤1.0) 
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Figure 6.38: Distribution of the frequency of buckling modes corresponding to 

minimum values for the ultimate load factor (panels with 1.2≤α≤2.4) 
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Figure 6.39: Distribution of the frequency of buckling modes corresponding to 

minimum values for the ultimate load factor (panels with 2.6≤α≤5.0) 

6.3.3.4. Influence of the b/t ratio 

In this section models with b/t ratios equal to 150 and 200 are studied and their 

results are compared to the results from models with b/t equal to 100. In Fig-

ure 6.40 it is seen that, as expected, higher b/t ratios lead to lower values of the 

ultimate load factor. This is in line with conclusion from previous chapters, 

namely with Chapter 5 (see sec. 5.3.4) where it can be seen the influence of the 

slenderness parameter on the resistance of cylindrically curved panels.  

It is also pointed out an unexpected outcome: minimum numerical results for 

the ultimate load factor (for amplitudes based on Eq. (6.1)) decrease between 

Z=1 and Z=30 when, based on the results for short cylindrically curved panels, it 

was expected that they would always increase. This indicates that long cylindri-

cally curved panels characterised by a curvature parameter between these val-

ues have a very high sensitivity to geometric imperfections. It also raises the 

question of which exact combination of Z and b/t is the most sensitive to geo-

metric imperfection and therefore the most unfavourable one. Again, from the 

analysis of Figure 6.40, it is concluded that independently from the value of b/t, 

the minimum value of the ultimate load factor is obtained for models with Z=30. 
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Figure 6.40: Minimum values of the ultimate load factor for models with b/t=100, 150 

and 200 and maximum amplitude of the imperfection shape based on Eq. (6.1) 

6.4. Summary 

This chapter focused on the response of imperfect cylindrically curved panels. 

Specifically, geometric initial imperfections were studied and fundamental 

characteristics of the behaviour of imperfect cylindrically curved panels were 

described, namely:  

 The postbuckling path is very sensitive to imperfections’ amplitude and 

pattern and it also depends on the curvature parameter and aspect ratio 

value; 

 The postbuckling path presents a less steep linear part for some combi-

nations of shapes (not necessarily based on the first buckling mode) and 

amplitudes. These combinations of shape and amplitudes yields the 

lowest value of the ultimate load factor and for that reason are called 

worst case scenarios;  

 Generally, the ultimate load factor value decreases with the increase in 

the imperfection’s amplitude (Figure 6.32). However, there are cases 

where this is not true and where higher amplitude corresponds to high-

er ultimate load factors (Figure 6.15 and Figure 6.19 for example);  
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 Additionally, the smaller the curvature the less sensitive to the imperfec-

tion’s amplitude cylindrically curved panels are, i.e. by increasing the 

curvature parameter the ultimate resistance becomes more sensitive to 

initial imperfection amplitude. 

 Imperfection shapes with one transverse half-wave has generally a low-

er ultimate load factor that cylindrically curved panels with imperfec-

tion’s shapes with two transverse half-waves (Figure 6.33);  

 On the other hand, no global trend is possible to establish in what con-

cerns the evolution of the ultimate load factor with the number of longi-

tudinal half-waves. In fact, Figure 6.34 shows that for Z=30 the trend has 

a positive slope, while for Z=60 has a negative slope;  

 The first buckling mode used as imperfection shape does not return al-

ways the lowest value for the ultimate load factor. In fact, within the 

limits of the parametric study the first buckling mode returns the lowest 

value for the ultimate load factor only for 30% of the times, while the 

second returns for 34% of the times (Figure 6.36);  

 If the parametric study is divided into three different ranges of aspect ra-

tio, it is concluded that imperfection shapes simulating the first buckling 

mode yield more often the lowest value of the ultimate load factor for 

short cylindrically curved panels (i.e. α≤1); for panels with 1.2≤ α≤2.4 and 

2.6≤ α≤5 the second buckling mode is the one that most often returns the 

lowest value of the ultimate load factor (see Figure 6.37, Figure 6.38 and 

Figure 6.39);  

 The highest sensitivity to geometric imperfections (amplitude and pat-

tern) is obtained for long cylindrically curved panels characterised by a 

curvature parameter, Z, around 30 (Figure 6.40).  

Additionally, the definition of criteria for admitting a buckling mode as a “real-

istic” pattern for geometric imperfections for local buckling assessment is pro-

posed (assuming uniaxial compressive stresses):  

 Buckling modes with longitudinal half-wave lengths lower than 

min(a/4; 2.b/3) are considered unrealistic and 
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 Buckling modes with transverse half-wave lengths lower than b/2 are 

considered unrealistic.  

It is also concluded that current standards do not cover accurately enough the 

problematic of geometric imperfections in what concerns cylindrically curved 

panels. In fact, it was proven that cylindrically curved panels are highly sensi-

tive to initial geometric imperfections and, on top of that, the difference of using 

amplitudes given by EN1993-1-5:2006 (CEN, 2006) for plates and given by 

EN1993-1-6:2007 (CEN, 2007) for shells of revolution is significant. In order to 

fill the void in European standards Eqs. (6.1) and (6.2) are proposed for compu-

ting the amplitude of imperfections.  





7. Energy based analytical model of 

cylindrically curved panels 

7.1. Chapter overview 

This chapter covers all analytical studies performed within the goals of this 

thesis. Specifically, the analytical tools used were the formulation of the total 

potential energy function of cylindrically curved panels under pure compres-

sive stresses.  

In sec. 7.2 the energy formulation is described from a general point of view. 

General assumptions are enunciated, the degrees-of-freedom and the dis-

placement functions are defined and, finally, from the strain-displacement 

relations the strain energy and the potential energy are derived.  

In sec. 7.3 the energy formulation derived in sec. 7.2 is used to obtain, whenever 

feasible, simple expressions or, otherwise, values of the elastic critical stress of 

cylindrically curved panels under pure compressive stresses for boundary con-

ditions type 2 and 3. A discussion on the number of degrees-of-freedom neces-

sary to obtain good results is also started. The analytical results are compared to 

numerical results gathered from the first parametric study in Chapter 5. 

Finally, a short summary is performed at the end of this chapter where the 

most relevant contributions are listed and addressed in a concise way.  
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7.2. Energy formulation 

7.2.1. General 

The semi-analytical study presented herein is based on a previous study by 

Thompson & Hunt (1984), and later followed by Simões da Silva (1988) to in-

troduce his work on modal interactions in sandwich plates, and where the 

effect of initial curvature is added at the strain-displacement relations level. 

Fundamentally, the approach followed by Simões da Silva (1988) ignores the 

transverse and shear membrane stresses. From a physical point of view, this 

assumption means that the panel is seen as an infinite group of infinitely thin 

strips unable to transfer shear and/or membrane stresses to each other, but 

acting together during the deformation imposed by the external applied loads. 

Although this is a rather crude assumption, this energy formulation is still 

able to incorporate the main features of the plate’s buckling and postbuckling 

behaviour (Simões da Silva, 1988).  

However, in this chapter, this simplification is dropped making the panel able 

to transfer shear and membrane stresses in both directions. It should be men-

tioned that while for flat panels accounting for nonlinear terms in the y-

direction does not play any role in obtaining the elastic critical stress, the same 

is not true for curved panels, where the consideration for these extra nonlinear 

terms is crucial to obtain accurate results for both the elastic critical stress and 

the postbuckling path.  

7.2.2. Degrees-of-freedom and boundary conditions 

The cylindrically curved panel studied in this section is simply supported 

along all edges with longitudinal edges unconstrained and constrained 

(boundary conditions type 2 and 3, see Chapter 4) and it is under pure axial 

compression. In order to build an energy formulation of such a panel, three 

generic degrees-of-freedom (a1, a2,i and a3,i) corresponding to the three princi-

pal directions (x, y, and z) are considered (Figure 7.1).  
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Figure 7.1: Degrees-of-freedom considered in the analysis 

The degree-of-freedom in x-direction, a1, consists of the end-shortening of the 

panel (pre- and postbuckling path) and it is assumed to be constant along the 

width, corresponding to a constrained loaded edge and it is associated with 

the following displacement field 
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(7.1) 

In the y-direction, for boundary conditions type 2, the following function was 
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(7.2) 

This displacement function has two terms: the first reflects the sinusoidal dis-

placement along the width and the second is required to model the displace-

ment of unconstrained edges along their length. For boundary conditions type 

3, the displacement function is obtained from Eq. (7.2) dropping the second 

term (i.e., a2,2=0).  

At last, the degree-of-freedom in the z-direction describes the out-of-plane 

displacement of the panel during buckling. This out-of-plane displacement is 

assumed to adopt a similar shape to a plate, i.e. a sinusoidal shape with one 
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half-wave across the width and a number i of longitudinal across the length, 

given by  
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7.2.3. Strain-displacement relations and strain energy expressions 

The strain-displacement relations are derived directly from the nonlinear shal-

low shell theory presented in sec. 2.5. This means that when the shallowness 

of the cylindrically curved panels starts to disappear (i.e. the conditions ex-

pressed by Eqs. (2.33) and (2.34) are no longer verified), the curved panel ge-

ometry will differ noticeably from the plane geometry, i.e., the very basic as-

sumption of the shallow shell theory will become less and less accurate lead-

ing to more and more non-negligible errors.  

The strain-displacement relations are obtained from Eqs. (2.57) to (2.62) substi-

tuting Rx by ∞ and Ry by R. Additionally, since the nonlinear terms in the 

y-direction are taken into consideration, it is necessary to account also for an 

extra term in the transverse direction which is originated by the Poisson’s effect.  
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The strain energy expression for this system is obtained substituting Eqs.(7.4) 

to (7.9) into Eqs. (2.75) and (2.76) yielding two expressions: one representing 

the membrane strain energy and another representing the bending strain en-

ergy.  

7.2.4. Potential energy function and passive degree-of-freedom elim-

ination 

The total potential function, Eq. (7.10), is obtained by adding to the two com-

ponents of the strain energy and the work done by the line load P, Eq. (7.11) 
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The degree-of-freedom associated with the total end-shortening can be elimi-

nated from further consideration by using the corresponding equilibrium 

equation and solving it with respect to a1 
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(7.12) 

Replacing the result back into Eq. (7.10) gives an expression for the total po-

tential energy of the curved panel function to a2,i and a3,i.22  

7.3. Elastic critical stress 

7.3.1. General procedure to obtain the elastic critical stress 

The elastic critical stress is obtained by setting to zero the determinant of the 

matrix formed by the quadratic terms with respect to each of the a2,i and a3,i, of 

                                                      
22 The expressions which result from the application of the steps now described are 

very long and complex. For that reason, they are not shown in this work. Nevertheless, 

to the readers seeking deeper understanding of the developed formulation, two exam-

ples using the developed Mathematica (Wolfram, 2010) code are given in annex A.  
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the total potential energy function written in general form and evaluated on 

the fundamental path, and solve the resulting expression in order to P. 

10,...13,20,  iandjwithV iaj

 
(7.13) 

In the next sub-sections, some examples in which the elastic critical stress of 

cylindrically curved panels are obtained are shown.  

7.3.2. Boundary conditions type 3 and 3 degrees-of-freedom 

In the case of an energy formulation for a cylindrically curved panel with 

boundary conditions type 3 and with 3 degrees-of-freedom the displacement 

functions are as follows 
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It should be noted that, in Eq. (7.16) the letter m is added to the argument of the 

first sine function. This indicates that, although only one degree-of-freedom is 

considered for the function displacement in z-direction, several longitudinal 

half-waves may be considered. Therefore, in Eq. (7.16) m represents the number 

of longitudinal half-waves.  

In these conditions the expression of the quadratic terms of the total potential 

energy written in general form evaluated on the fundamental path is given by 
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The determinant which allows obtaining the elastic critical stress is 
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Solving this equation with respect to P and then dividing the solution by t 

gives an expression for the elastic critical stress of a cylindrically curved panel 

with boundary conditions type 3 
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It is easy to conclude that the first term of Eq. (7.22) is the classical expression 

for the elastic critical stress of plates. The second term is the additional contri-

bution given by curvature. 

This expression is deduced based on a simplified displacement function for 

the out-of-plane direction. In fact, is easy to conclude that Eq. (7.16) is not suit-

able to describe eigenmodes like those in Figure 5.10. Therefore, the presented 

expression is only valid in those cases where Eq. (7.16) accurately describes 

the out-of-plane displacements at the critical point (e.g. those in Figure 5.12). 

Figure 7.2 to Figure 7.6 show the accuracy of the above deduced expression by 

comparing it to numerically obtained buckling coefficients.  

It is seen that for low values of the curvature parameter (Z≤5), it is reasonable to 

use Eq. (7.22) to compute the elastic critical stress of a cylindrically curved panel 

under pure compression with boundary conditions type 3. For higher values of 

the curvature parameter, it is seen that only by setting m=1 (buckling mode with 

one longitudinal half-wave) and for low values of aspect ratio (short panels) it is 

possible to obtain reasonable values for the elastic critical stress. 
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Figure 7.2: Comparison between numerical results of elastic critical stress and 

Eq. (7.22) for Z=0 and BC3 
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Figure 7.3: Comparison between numerical results of elastic critical stress and 

Eq. (7.22) for Z=5 and BC3 
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Figure 7.4: Comparison between numerical results of elastic critical stress and 

Eq. (7.22) for Z=10 and BC3 
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Figure 7.5: Comparison between numerical results of elastic critical stress and 

Eq. (7.22) for Z=40 and BC3 
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Figure 7.6: Comparison between numerical results of elastic critical stress and 

Eq. (7.22) for Z=100 and BC3 

Thus, after some reworking, a simplified version of Eq. (7.22) where m=1 is pre-

sented  
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Additionally, further simplification can be made by minimising the second 

factor of Eq. (7.23) (which represents the elastic buckling coefficient) with re-

spect to aspect ratio (α=a/b) 
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Finally, from Eq. (7.24) it is possible to isolate the elastic buckling coefficient, 

resulting in an expression to compute minimum values of the elastic buckling 

coefficient of short cylindrically curved panels under pure compression with 

boundary conditions type 3 
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Figure 7.7 compares numerically obtained minimum values for the elastic 

buckling coefficient with Eq. (7.25). As also patent in Figure 7.2 to Figure 7.6 

the biggest differences are found for high values of the curvature parameter, 

where the biggest difference is 6.96% obtained for Z=80.  
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Figure 7.7: Comparison between numerical results of elastic critical stress and 

Eq. (7.25) for BC3 

7.3.3. Boundary conditions type 2 and 4 degrees-of-freedom 

Similarly to the previous section, the energy formulation for a cylindrically 

curved panel with boundary conditions type 2 is now deduced. In this case an 

extra degree-of-freedom is required. This extra degree-of-freedom allows the 

consideration of nonhomogeneous transverse displacements along the length of 

the panel, i.e. it allows the consideration of unconstrained longitudinal edges. 

Thus, the energy formulation presented in this subsection has 4 degrees-

of-freedom and the displacements functions are given by Eq. (7.26) to Eq. (7.28).  
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Here, following the conclusions of the previous subsection on the number of 

longitudinal half-waves, the out-of-plane displacement function is simplified 

setting m=1. In these conditions the expression of the quadratic terms of the 

total potential energy written in general form evaluated on the fundamental 

path is given by 
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The determinant which allows obtaining the elastic critical stress is 
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Solving this equation with respect to P and then dividing the solution by t 

gives, after some reworking, an expression for the elastic critical stress of a 

cylindrically curved panel with boundary conditions type 2 
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Again, the first term of Eq. (7.37) is the classical expression for the elastic criti-

cal stress of plates and the second term is the additional contribution given by 

curvature. Figure 7.8 to Figure 7.12 show the accuracy of the above deduced 

expression by comparing it with numerically obtained buckling coefficients 

(this comparison is made for minimum values of both analytical and numeri-

cal results).  

Additionally, in opposition to Eq. (7.23), obtaining a simplified expression from 

Eq. (7.37) for minimum values of the elastic critical stress is much more com-

plex. Nevertheless, it is possible to compute those values (see examples in annex 

A) and compare them to numerical ones (Figure 7.13). The biggest difference is 

6.08% obtained for Z=20.  
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Figure 7.8: Comparison between numerical results of elastic critical stress and 

Eq. (7.37) for Z=0 and BC2 



206 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

0

4

8

12

16

20

0 1 2 3 4

B
u

ck
li

n
g

 c
o

ef
fi

ci
en

t,
 k

σ

Aspect Ratio, α  

Figure 7.9: Comparison between numerical results of elastic critical stress and 

Eq. (7.37) for Z=5 and BC2 
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Figure 7.10: Comparison between numerical results of elastic critical stress and 

Eq. (7.37) for Z=10 and BC2 
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Figure 7.11: Comparison between numerical results of elastic critical stress and 

Eq. (7.37) for Z=40 and BC2 
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Figure 7.12: Comparison between numerical results of elastic critical stress and 

Eq. (7.37) for Z=100 and BC2 
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Figure 7.13: Comparison between numerical results of elastic critical stress and  

analytical results obtained from minimising Eq. (7.37)  

with respect to the aspect ratio for BC2 

7.3.4. Boundary conditions type 3 and 5, 7 and 9 degrees-of-freedom 

As it was concluded in sec. 7.3.2, an energy formulation with only three de-

grees-of-freedom is not able capture the elastic critical stress of curved panels 

for a wide range of aspect ratio values. This is due to the fact that, as previously 

mentioned, the consideration of only one degree-of-freedom in the out-of-plane 

displacement function is not sufficient to describe accurately more complex 

shapes (Figure 5.10). Therefore, in this section, the effect of introducing extra 

degrees-of-freedom at the out-of-plane displacement function level is studied. 

Since the complexity of the energy formulation grows with the number of de-

grees-of-freedom, the expressions are not shown (the reader is invited to consult 

the examples in annex A for deeper information). It was found that, even with 

seven degree-of-freedom in the out-of-plane displacement function, the elastic 

critical stress of cylindrically curved panels with high values curvature and as-

pect ratio is not accurately obtained (Figure 7.17 and Figure 7.18). In contrast, 

for low values of curvature, agreement between numerical results and analyti-

cal results is satisfactory (Figure 7.14 to Figure 7.16).  
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Figure 7.14: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=0 and BC3 
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Figure 7.15: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=5 and BC3 
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Figure 7.16: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=10 and BC3 

8

12

16

20

24

28

0 1 2 3 4

B
u

ck
li

n
g

 c
o

ef
fi

ci
en

t,
 k

σ

Aspect Ratio, α

Eq.(7.25) 5 DOF
7 DOF

9 DOF

 

Figure 7.17: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=40 and BC3 
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Figure 7.18: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=100 and BC3 
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Figure 7.19: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom  

for Z=100 (short cylindrically curved panels) and BC3 
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Nevertheless, focusing only on results for short cylindrically curved panels 

(α≤1), it is seen that this analytical model reproduces reasonably accurate re-

sults (Figure 7.19). In this case, the maximum absolute error between the ana-

lytical model and the numerical results is approximately 7% and it is obtained 

for Z=100 and α=1.0. It is believed that additional degrees-of-freedom would 

allow having the same accuracy for higher values of aspect ratio. Additionally, 

the errors are surely related to the fact that approximate displacement func-

tions are being considered. These introduce extra stiffness to the system that 

ultimately results in higher values of the elastic critical stress. 

7.3.5. Boundary conditions type 2 and 6, 8 and 10 degrees-of-freedom 

Following the same idea that extra degrees-of-freedom are required to more 

accurately capture the correct out-of-plane displacement, in this section results 

for the elastic critical stress of cylindrically curved panels with boundary con-

ditions type 2 under pure compression are presented. As in the previous sub-

section, it was found that, even with seven degrees-of-freedom in the 

out-of-plane displacement function, the elastic critical stress of cylindrically 

curved panels characterised by high values of aspect ratio is not accurately 

obtained (Figure 7.21 to Figure 7.24).  Again, focusing only on results for short 

cylindrically curved panels (α≤1), it is seen that this analytical model repro-

duces also reasonably accurate results (Figure 7.25).  

In the range of short cylindrically curved panels, the maximum absolute error 

between the analytical model and the numerical results is, now for curved 

panels with boundary conditions type 2, approximately 9% and it is obtained 

for Z=100 and α=1.0. As it was stated for cylindrically curved panels with 

boundary conditions type 3, more degrees-of-freedom would allow more ac-

curate results for high values of aspect ratio. Additionally, the errors are sure-

ly related to the fact that approximate displacement functions are being con-

sidered. 
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Figure 7.20: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=0 and BC2 
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Figure 7.21: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=5 and BC2 
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Figure 7.22: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=10 and BC2 
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Figure 7.23: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=40 and BC2 
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Figure 7.24: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom for  

Z=100 and BC2 
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Figure 7.25: Comparison between numerical results of elastic critical stress and  

analytical results from energy formulations with extra degrees-of-freedom  

for Z=100 (short cylindrically curved panels) and BC2 
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7.4. Summary 

This chapter focused on an energy formulation to study the behaviour of cy-

lindrically curved panels. Specifically, the following achievements were made: 

 Derivation of simple expressions capable of accurately predicting the 

elastic critical stress of cylindrically curved panels with different bound-

ary conditions and with values of aspect ratio ranging from 0.2 to 1; 

 Derivation of a simple expression to compute the minimum value of the 

elastic critical stress of cylindrically curved short panels with boundary 

conditions type 3; 

 Derivation of complex total potential energy function whose quadratic 

term may be used to obtain accurate values of the elastic critical stress of 

cylindrically curved panels with different boundary conditions and with 

values of aspect ratio ranging from 0.2 to 4;  

Additionally, it is worth to further investigate the origin of some observed 

unavoidable errors between analytical and numerical results (e.g. see Figure 

7.19 and Figure 7.25). In order to do so, the presence of the transverse state of 

stress mentioned in sec. 5.2 is again highlighted: it may be seen as part of the 

reason why there are those errors between analytical and numerical results; 

specifically it explains why even with extra degrees-of-freedom and high cur-

vatures those unavoidable errors still occur. It should be noticed that this 

transverse state of stress is ignored based on the shallow shell assumption made 

in Chapter 2. Consequently, it can be concluded that there is a value of Z that 

sets the difference between shallow and non-shallow curved panels. Based on 

Figure 5.10 and on the previous considerations, it is reasonable to set that val-

ue around 23. 

Finally it is highlighted the fact that the expressions of the potential energy 

derived in this chapter may be used to obtain the equilibrium equations and, 

consequently, the postbuckling behaviour of cylindrically curved panels.  

 



8. Design proposals for cylindrically 

curved steel panels 

8.1. Chapter overview 

This chapter comprises all calibration processes and presents the proposed 

methodologies for computing the elastic critical stress and ultimate strength of 

cylindrically curved panels. The background for all proposed formulae pre-

sented in this chapter is the numerical results from the parametric studies pre-

sented in Chapter 5 and Chapter 6 and the theoretical derivation of Chapter 7. 

It should also be emphasised that only boundary conditions type 2 are ad-

dressed by the developed methodologies leaving out of their scope boundary 

conditions type 1 and 3.  

The chapter starts, in sec. 8.2, with the description of the steps that were taken 

from the first analyses of the numerical results of the elastic critical stress of 

cylindrically curved panels (performed in sec. 5.2) to the proposal of a set of 

expressions allowing an accurate evaluation of the elastic critical stress of cy-

lindrically curved panels. At the end of this section, a comparison with exist-

ing proposals is made.  

In sec. 8.3, an alternative to the proposed formulae in sec. 8.2 is presented. 

This formula is proposed based on the analytical studies performed in Chap-

ter 7 and, on one hand, is considerable simpler  to implement, and on the oth-

er, an extended version, allows to compute the elastic critical stress for varying 

values of the aspect ratio.  
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Sec. 8.4 is devoted to a detailed comparison between the two proposals and 

formulae found in literature and already presented in Chapter 3 (namely, 

Stowell (1943) and Domb & Leigh (2001)).  

In sec. 8.5, an effective width approach is developed and presented. It is also 

based on numerical results from Chapter 5 as background and, additionally, in 

order to propose a correction factor for the evaluation of the ultimate strength of 

long cylindrically curved panels, numerical results from the imperfection sensi-

tivity study performed in Chapter 6 are used. Additionally, in sec. 8.6 the ultimate 

strength of cylindrically curved panels under direct stresses is assessed by an 

interaction formula and its level of safety is verified against numerical results.  

Subsequently, sec. 8.7 illustrates the application of the design formulae for 

curved panels for the evaluation of the resistance check of cross-sections 

built-up with curved panels.  

Finally, the chapter ends with a short summary highlighting the main conclu-

sions and contributions to the understanding and design of cylindrically 

curved panels under direct in-plane stresses.  

8.2. Numerical evaluation of the elastic critical stress of cylin-

drically curved panels under uniaxial compressive stresses  

8.2.1. General 

The effect of curvature on the elastic critical stress of cylindrically curved pan-

el is taken into account by means of calibrating numerical results of kσ,min and 

0.2≤α≤1 for short panels and 1<α≤5 for long panels. Proposed formulae are 

equivalent to those in Table 4.1 of EN1993-1-5:2006 (CEN, 2006a) for flat pan-

els, i.e. Z=0. In fact, the aim was to provide an extension of formulae from the 

European standard from plates to cylindrically curved panels, thus the chosen 

mathematical framework is similar. Furthermore, the set of proposed formu-

lae is divided into four subsets of panels: short (α≤1) and long panels (α>1) 

and low curvature (Z≤23) and high curvature (Z>23). This is necessary due to 

the already discussed facts that minimum elastic critical stress occurs for pan-
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els with α≤1 (the higher the curvature the shorter the panel is for a minimum 

value of kσ) and that there is a distinction in the buckling behaviour for Z=23. 

Additionally, for panels with α>1 the minimum values of kσ are higher than for 

panels with α<1.   

8.2.2. Calibration methodology 

Numerical results retrieved from parametric studies are not directly applica-

ble to calibrate the elastic buckling factor for cylindrically curved panels. In 

fact, numerical results of linear buckling analysis are critical multipliers of the 

applied load. Since the applied load is the product of the sectional area of the 

panels by the yield stress of the steel, numerical values of the elastic buckling 

coefficient kσ are obtained by Eq. (8.1), where αcr,num is the critical multiplier 

directly read from numerical results.  
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After this first step, minimum values of kσ are isolated since those are the ones 

used for formulae calibration (see sec. 5.2.3.2). The next step consists on ob-

taining numerical values of parameters A, B, C and D of Eq. (8.2) and Eq. (8.3). 

These expressions are exactly those given by EN1993-1-5:2006 (CEN, 2006a) 

for A=8.2, B=1.05, C=-6.29 and D=9.78 (see Table 8.1).  
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Numerical values of A and B are obtained using numerical values of the elas-

tic buckling stress for ψ=1 and ψ=0 






















































1
,

0
,

1
,

1
,

0
,

1
,

0
,

1
,

0
,

1
1

0
































numnum

num

num

numnum

numnum

num

num

num

num

num

num

num

kk

k
B

kk

kk
A

k
B

A

k
B

A

 
(8.4) 



220 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

Numerical values of C and D are obtained using Anum/Bnum and numerical val-

ues of the elastic buckling stress for ψ=-0.5 and ψ=-1 
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The last step comprises the calibration expressions depending on the curva-

ture. The calibration was divided into two subsets defined for Z=23 (see 

sec. 5.2.5). The calibration is made recurring to a quadratic regression through 

the least squares method with two constraints: 

 Value for Z=0 is fixed and is given by EN1993-1-5:2006 (CEN, 2006a); 

 Value for Z=23 is fixed to guarantee continuity between the two branch-

es of the proposed curve.   

The proposed formulae resulting from this calibration process is given in 

sec. 8.2.3 and the respective statistical evaluation is made in sec. 8.2.4.  

8.2.3. Proposed formulae for short curved panels 

Following the structure of EN1993-1-5:2006, the elastic critical stress is given 

by multiplying the buckling coefficient obtained by the method in Table 8.1 

and Table 8.2 by the classic critical Euler stress, σE 
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(8.6) 

It is now possible to compute different formulae for different combinations of 

Z and ψ and plot them as curves in charts similar to Figure 3.11 as in Figure 

8.1 that shows the variation of the critical stress coefficient with curvature for 

different values of ψ. Agreement with numerical simulations is very good, the 
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maximum absolute error (MAE) when comparing the suggested approach to 

numerical results being 3.79%.  

Table 8.1: Elastic buckling coefficient for short cylindrically curved panels 

ψ 1≥ψ>0 0≥ψ≥-1 

EN1993-1-5:2006 05.1

2.8
 278.929.681.7    

New Approach 
B

A
 2 DC

B

A
  

A=a1+a2Z+a3Z2 C=d1+d2Z+d3Z2 

B=b1+b2Z+b3Z2 D=d1+d2Z+d3Z2 

 

Table 8.2: ai, bi, ci and di coefficients 

ψ 1≥ψ>0 0≥ψ≥-1 

0 < Z ≤ 23 

a1=8.2 b1=1.05 c1=-6.29 d1=9.78 

a2=0.074 b2=-0.0002 c2=-0.1971 d2=-0.2174 

a3=0.0163 b3=0.0003 c3=0.0004 d3=-0.0002 

23 < Z ≤ 100 

a1=3.214 b1=0.961 c1=-9.124 d1=5.843 

a2=0.5976 b2=0.0104 c2=-0.0646 d2=-0.0556 

a3=0.0028 b3=0 c3=0 d3=0.0002 

 

8.2.4. Statistical evaluation for short curved panels 

The comparison of the proposed formulae for short cylindrically curved pan-

els with the numerical results (corresponding to all the numerical models with 

kσ,min) leads to the results of Figure 8.2 and Table 8.3 (a total of 2121 numerical 

models – Z from 0 to 100 and loading from pure compression to pure in-plane 

bending) were used for the global statistical evaluation.  
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Figure 8.1: kσ,proposed Eq. (8.6) curves for ψ=1, ψ=0, ψ=-0.7 and ψ=-1 
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Figure 8.2: Correlation of the proposed formulae (Eq. (8.6)) for short cylindrically 

curved panels with numerical results (normalised values) 



Chapter 8 | Design proposals for cylindrically curved steel panels 223 

 

Since the formulae from Stowell (1943) and Domb & Leigh (2001) only allow 

computing the buckling coefficient of cylindrically curved panels under pure 

compression, Table 8.4 shows the comparison between the proposed formula 

and other formulae only for ψ=1. It can be concluded that the proposed formu-

la is a better fit to the numerical results than Stowell’s and Domb & Leigh’s for-

mulae for short cylindrically curved panels.  

It should be mentioned again that long cylindrically curved panels have a 

higher elastic critical stress (the higher the curvature the bigger the difference 

for short curved panels, see Figure 5.4 to Figure 5.7). Therefore, the proposed 

formula to compute the elastic critical stress of cylindrically curved panels 

does not apply for long cylindrically curved panels.  

Here, for the sake of simplicity, the work presented by Martins et al. (2013) 

where a correction factor is proposed, is omitted and the correction of results 

will be exclusively performed at the ultimate strength level (see sec. 8.5.4).  

Table 8.3: Statistical evaluation concerning the ratios kσ,proposed Eq. (8.6)/kσ,num for short  

cylindrically curved panels (normalised values) 

No. of analyses Mean CoV (%) MAE (%) 

2121 1.0037 1.5 3.79 

 

Table 8.4: Statistical evaluation concerning the ratios kσ,proposed Eq. (8.6)/kσ,num; kσ,Stowell/kσ,num 

and kσ,Domb&Leigh/kσ,num for short cylindrically curved panels subjected only to pure com-

pression (normalised values) 

 
Proposed formulae 

Eq. (8.6) 
Stowell (1943) Domb & Leigh (2001) 

No. of 

analyses

 

Mean 
CoV 

(%) 

MAE 

(%) 
Mean 

CoV 

(%) 

MAE 

(%) 
Mean 

CoV 

(%) 

MAE 

(%) 

101 1.0113 0.80 2.07 1.1763 3.44 17.03 1.1712 4.26 18.34 
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8.3. Extended evaluation of the elastic critical stress of cylin-

drically curved panels under uniaxial compressive stress-

es: analytical closed-form solution 

8.3.1. General 

The scope of the formulae presented in the previous section is limited to cylin-

drically curved panels with an aspect ratio leading to minimum values of the 

elastic critical stress and it is exclusively calibrated with numerical results. At-

tempting to overcome this limitation and to obtain an expression with a physi-

cal meaning, in Chapter 7, an energy formulation was used to derive 

closed-form solutions for computing the elastic critical stress of curved panels 

under uniaxial compressive stresses with varying aspect ratios and with differ-

ent boundary conditions (boundary conditions type 2 and 3).  

As concluded in Chapter 7, these closed-form solutions allow to accurately 

predict the elastic critical stress of curved panels with aspect ratios up to 4 and 

with boundary conditions type 2 and 3. However, this achievement is bound to 

an analytical model with several degrees-of-freedom and characterised by a 

complex quadratic term of the total potential energy expression, making it im-

possible to propose a reasonably simple expression. Still, the quadratic terms 

and the corresponding determinant are easily programmed in a spreadsheet (a 

fully developed example of the analytical formulation for boundary conditions 

type 3 with 9 degrees-of-freedom and with the quadratic terms is shown in 

Annex A).  

8.3.2. Proposed formulae for short curved panels 

Nonetheless, in this section Eq. (8.7), which is based on Eq. (7.25) (derived in 

Chapter 7 from a simple analytical model with only 3 degrees-of-freedom for 

boundary conditions type 3), is proposed to compute minimum values of the 

elastic buckling factor of cylindrically curved panels under pure compression 

for boundary conditions type 2. This option is justified by the fact that Eq. (7.25) 

is very simple and, as concluded in Chapter 7, a similar expression for bounda-
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ry conditions is rather difficult to obtain. Albeit the following proposed analyti-

cal expression is derived based on an energy formulation suitable to describe 

the critical behaviour of cylindrically curved panels with boundary conditions 

type 3, it will be seen that with a slight modification, it fits quite accurately also 

to minimum values of numerical results for boundary conditions type 2.  

This modification, performed in Eq. (7.25) is seen in the following expression 

where the value 12 is replaced by αBC. This small modification allows obtaining 

good results when compared to numerical results also for boundary conditions 

type 2, maintaining the physical meaning of Eq. (7.25).  
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The parameter αBC was calibrated with numerical results through the least 

squares method and, for boundary conditions type 2 the value 9.6 is recom-

mend; for boundary conditions type 3 the value 12 is kept unchanged from the 

analytical derivation.  

Alternatively, for low values of curvature (Z≤10), Eq. (8.8) is proposed to ob-

tain accurate values of the elastic buckling factor for cylindrically curved pan-

els with aspect ratios from 0.2 to 1. This expression is directly obtained from 

Eq. (7.37) and it reflects the dependence of the elastic critical stress with α.  
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(8.8) 

8.3.3. Statistical evaluation for short curved panels 

The comparison with the numerical results and the global statistical evalua-

tion of the proposed formulae in Eq. (8.7) and Eq. (8.8) for short cylindrically 

curved panels leads, respectively, to the results of Figure 8.3 and Table 8.5 and 

Figure 8.4 and Table 8.6 where a total of 101 numerical models for Eq. (8.7) 

(corresponding to numerical models with kσ,min and pure compression) and 506 
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for Eq. (8.8) (corresponding to numerical models with Z≤10 and 0.2≤α≤1 and 

pure compression) were used.  

It should be pointed out that, when comparing Table 8.4 and Table 8.6, although 

presenting poorer results than Eq. (8.6) when compared to numerical results, 

Eq. (8.7) still presents better results than proposals by Stowell (1943) and Domb 

& Leigh (2001). Additionally, the fact that Eq. (8.8) gives accurate results inde-

pendently of the aspect ratio value is also highlighted. The downside of this 

expression is that it is only valid for values of curvature lower or equal to 10.  

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

k σ
,N

u
m

(n
o

rm
al

is
ed

 v
al

u
es

)

kσ, proposed (normalised values)  

Figure 8.3: Correlation of the proposed formulae (Eq. (8.7)) for short cylindrically 

curved panels with numerical results (normalised values) 

Table 8.5: Statistical evaluation concerning the ratios kσ,proposed Eq. (8.7) /kσ,num for short cy-

lindrically curved panels (normalised values) 

No. of analyses Mean CoV (%) MAE (%) 

101 1.0052 2.89 6.79 
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Figure 8.4: Correlation of the proposed formulae (Eq. (8.8)) for short cylindrically 

curved panels with numerical results (normalised values) 

Table 8.6: Statistical evaluation concerning the ratios kσ,proposed Eq. (8.8) /kσ,num for short cy-

lindrically curved panels (normalised values) 

No. of analyses Mean CoV (%) MAE (%) 

506 0.9897 1.33 7.56 

 

Finally, as it was concluded in Chapter 7 and already mentioned in this section, 

the alternative to Eq. (8.7) and Eq. (8.8) is to set up the total potential energy 

function (based on an energy formulation with several degrees-of-freedom) and 

to set the determinant composed by its quadratic terms to zero (see Annex A).  

8.4. Detailed comparison between numerical results of the 

elastic buckling factor and proposed set of formulae for  

pure compression  

In this section a detailed comparison between the proposed set of formulae in 

Eqs. (8.6) and (8.7) and current proposals from literature to compute the elastic 
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critical stress of cylindrically curved panels is performed. The proposed set of 

formulae is only compared with formulae developed by Stowell (1943) and 

Domb & Leigh (2001) because those are the ones that describe panels with 

similar boundary conditions and, therefore, those are the ones that truly can 

be compared.  

Table 8.7: Comparison between Stowell’s and Domb & Leigh’s formula and  

proposed formulae in Eq. (8.6) and (8.7) 

Curvature, Z Z=0 Z=10 Z=20 Z=30 Z=50 Z=75 Z=100 

kσ,num 4.00 5.05 7.46 10.21 15.87 23.02 30.21 

kσ,Stowell 4.00 5.90 8.99 12.24 18.86 27.19 35.54 

Error (%) 0.0 +14.6 +17.0 +16.6 +15.9 +15.3 +15.0 

kσ,Domb&Leigh - 6.16 8.30 11.37 18.71 27.77 36.76 

Error (%) - +18.0 +10.1 +10.2 +15.2 +17.1 +17.8 

kσ,proposed Eq. (8.6) 4.00 5.07 7.45 10.41 16.16 23.28 30.32 

Error (%) 0.0 +0.3 -0.2 +2.0 +1.8 +1.1 +0.4 

kσ,proposed Eq.  (8.7) 4.00 5.39 7.82 10.44 15.81 22.59 29.40 

Error (%) 0.0 +6.59 +4.85 +2.27 -0.38 -1.86 -2.70 

 

Table 8.7 and Figure 8.5 show the comparison of the proposed formulae with 

Stowell’s and Domb & Leigh’s formulae. It is easily concluded that Stowell’s 

and Domb & Leigh’s formulae significantly differ from the proposed formulae 

and that this one is the best fit to the numerical results (this same conclusion 

can already be drawn from the analysis of Table 8.4 and Table 8.5).  

It should be pointed out that Eq. (8.8) is not comparable to the proposals of 

Stowell (1943) and Domb & Leigh (2001) since their scope differs: while Stow-

ell’s and Domb & Leigh’s proposals (as well as Eqs. (8.6) and (8.7)) do not take 

the aspect ratio into consideration, Eq. (8.8) does.  
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Figure 8.5: Comparison between Stowell’s and Domb & Leigh’s formula and  

proposed formulae in Eq. (8.6) and (8.7) 

8.5. Ultimate strength of cylindrically curved panels under uni-

axial compressive stresses by the effective width method 

8.5.1. General 

The proposed formulae in this section are based on the effective width concept, 

i.e. a width reduction factor is calibrated instead of a resistance reduction factor. 

In order to achieve this goal, numerical results from the parametric study pre-

sented in sec. 5.3 are used to calibrate a width reduction factor for short cylindri-

cally curved panels. A correction factor allowing extending the defined formulae 

from short cylindrically curved panels to long panels is set based on the numeri-

cal results from the imperfection sensitivity study presented in Chapter 6.  

8.5.2. Numerical evaluation of the effective width reduction factor 

for short curved panels and calibration methodology 

Results of the numerical analysis directly provide a reduction factor on the 

reference loading applied on the panel (the first order plastic resistance),  
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yNumRd AfN 
 

(8.9) 

yyNumRd fWM 
 

(8.10) 

The effective width concept reduces the width of the panel by an appropriate 

effective width reduction factor ρ, leading to effective cross-sectional proper-

ties that result in the same ultimate resistance of the cross-section 

yyeffRd btffAN 
 

(8.11) 
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(8.12) 

Comparing Eq. (8.9) and Eq. (8.11) leads to the following equality 
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(8.13) 

However, because the effective modulus (Wy,eff) for a non-uniform membrane 

stress distribution is not linearly dependent on ρ (Wy,eff≠ρWy), it follows that for 

all in-plane applied stress other than uniform compression 
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Figure 8.6: Comparison between χ-λ and ρ-λ approaches for ψ=-1 
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This conclusion is valid both for flat and cylindrically curved panels. Figure 

8.6 confirms this conclusion by illustrating the two approaches (χ-λ and ρ-λ 

approaches) for ψ=-1. 

Hence, it is necessary to translate the numerical resistance reduction factor χNum 

into the corresponding effective width reduction factor ρNum. Following the nota-

tion for be1, be2 and bt of Table 4.1 of EN1993-1-5:2006 (internal members), the 

effective width reduction factor is obtained by solving the following equations 
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(8.16) 

where the maximum stress due to NEd and My,Ed is fy, Aeff is the effective area, 

Wy,eff is the effective elastic section modulus and χNum is the maximum load 

factor obtained from numerical analysis. Thus, the goal is to obtain a value for 

ρ which results in values for Aeff and for Wy,eff which together with χNum verify 

Eq. (8.15) and Eq. (8.16). Since obtaining direct solutions for these equations, 

for both load cases and curvatures, is not a straightforward process, an itera-

tive procedure was implemented that comprised a sub-routine that calculated 

accurately the effective cross-section properties of the section (see Annex A in 

Nakai & Yoo (1988) for further information). The structure of this sub-routine 

is illustrated in Figure 8.7.  
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Figure 8.7: Iterative procedure to compute the width reduction factor ρ (acc. Martins et 

al., 2014) 
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Based on the numerically calculated values of ρ obtained according to the 

previously described procedure, the set of formulae in Eq. (8.20) is proposed 

for the evaluation of the effective width reduction factor for cylindrically 

curved panels subject to non-uniform in-plane stress. The proposed formulae 

follow the format and incorporate EN1993-1-5:2006 for Z=0 as a particular 

case. As for the rules to compute the elastic buckling coefficient (see previous 

section), the aim of these set of equations is also to provide an extension of the 

effective width formula for internal elements from the European standard 

from plates to cylindrically curved panels (internal elements). Additionally, 

the set of proposed equations uses the concept of EN1993-1-6:2007 (CEN, 

2007) according to which the formulae are divided into three branches (λ<λ0,z; 

λ0,z≤λ<λ0,p; λ≥λ0,p) as it is visible in Figure 8.8, where λ is the slenderness pa-

rameter, λ0,p is the length of the initial plateau for flat panels, λ0,Z is the length 

of the initial plateau (general case), ρ0,Z is given by the last branch of Eq. (8.20) 

setting λ=λ0,p; αz, cz and Sz are parameters calibrated with numerical results 

that reflect the effect of curvature in the shape of the ρ-λ curves.  
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Figure 8.8: Generic output of proposed method 

The numerical value of the initial plateau’s length (the first branch of the pro-

posed formulae) for curved panels was obtained by intersecting numerical val-
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ues with the equation ρ=1. For pure compression (ψ=1), the lengths of the initial 

plateaus λ0,p and λ0,z are taken from EN1993-1-5:2006 (CEN, 2006a), Eq. (8.17), 

and from the work of Tran et al. (2012), Eq. (3.37) (see Figure 8.9). For pure 

in-plane bending (ψ=-1), the length λ0,p is taken from EN1993-1-5:2006 (CEN, 

2006a), Eq. (8.17), and the length λ0,Z is numerically calibrated, Eq. (8.18) (see 

Figure 8.10). It should be noted that in Eq. (8.18) φ1, φ2 and φ3 are dependent on 

the loading type. The regression is done by means of the method of the least 

squares by an algorithm developed in Mathematica (Wolfram, 2010).  

 055.0085.05.0,0 p

 
(8.17) 
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(8.18) 

The length of the initial plateau λ0,z gives the upper limit for the first branch of 

the proposed formulae. Here, the reduction factor is always limited to 1 (the 

hardening effect is disregarded as in EN1993-1-5:2006). The second branch of 

the proposed formulae is a linear interpolation between the point (λ0,z, 1) and 

the point (λ0,p, ρ0,Z). The last branch is given by a modification of the formulae 

in EN1993-1-5:2006 for computing the reduction factor, Eq. (8.19). This modifi-

cation incorporates the already mentioned numerical parameters, αz, cz and Sz, 

reflecting the effect of curvature in the ultimate resistance cylindrically curved 

panels. After isolating, for each curvature and loading type, the numerical 

values that fall inside the limits of the third branch, the parameters αz, cz and Sz 

are calibrated by means of a regression done using the method of the least 

squares by an algorithm developed in Mathematica (Wolfram, 2010).  
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The proposed formulae resulting from this calibration process is given in 

sec. 8.5.3 and the respective statistical evaluation is made in sec. 8.5.5. 
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Figure 8.9: Tran et al. (2010) expression for the length of the initial plateau, λ0,z (ψ=1) 
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Figure 8.10: Calibration of parameters in Eq. (8.18) for the length of the initial plateau, 

λ0,z (ψ=-1) 
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8.5.3. Proposed formulae for short panels 

The general form of the proposed formulae (with three branches) is represent-

ed by Eq. (8.20) 
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(8.20) 

The calibration of parameters carried out in the previous section results in the 

values for all parameters given by Table 8.8, Table 8.9 and Table 8.10.  

Table 8.8: Values of numerical parameters αz, cz and Sz for pure compression (ψ=1) 

 Z=0 Z=10 Z=23 Z=100 

αz 1 1 1 0.545 

cz 1 1.290 1.150 1.700 

Sz 0 0.060 -0.040 -0.040 

 

Table 8.9: Values of numerical parameters αz, cz and Sz for pure in-plane bending (ψ=-1) 

 Z=0 Z=10 Z=23 Z=100 

αz 1 1 1 -3.182 

cz 1 1.025 1.125 1.650 

Sz 0 -0.040 -0.040 -0.040 
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Table 8.10: Values of φ1, φ2 and φ3  

 ψ=1 (Tran et al., 2012) ψ=-1 

φ0 0.2 0.7 

φ1 0.473 0.174 

φ2 0.95 0.9 

 

8.5.4. Correction factor for long curved panels under pure compres-

sive stresses 

8.5.4.1. General 

In this section, numerical results from the imperfection sensitivity study (see 

Chapter 6) are compared with the previously proposed effective width formu-

lae developed for short cylindrically curved panels under axial loads and a 

correction factor is calibrated.  

The need for a correction factor for long cylindrically curved panels is justified 

by the influence that geometric imperfections (pattern and amplitude) have in 

the ultimate load factor of long cylindrically curved panels (see Chapter 6). In 

order to clarify this need, Figure 8.11 to Figure 8.14 compares numerical re-

sults (models with b/t=100) from sec. 6.2 (with imperfection amplitudes based 

on Eq. (6.1) and Eq. (6.2)) with the proposed formulae. The scope of the previ-

ously proposed formulae (short panels, i.e. α≤1) is represented with a shad-

owed background (0<α≤1.0).  

Generally, it is seen that the proposed formulae is accurate within the limits 

for which they were calibrated (it is also important to notice that the proposed 

formulae were calibrated for imperfection shapes corresponding to the first 

buckling mode only).  

On the other hand, Figure 8.11 to Figure 8.14 show non-negligible errors for 

cylindrically curved panels with aspect ratio higher than 1. Additionally, and 
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in line with the general trends observed in Chapter 6, it is seen that results 

from models with amplitudes given by Eq. (6.2) are lower than results with 

amplitudes given by Eq. (6.1). This suggests that, generally, higher amplitudes 

will return lower values of the ultimate load factor. This is more obvious for 

higher values of the curvature parameter (see Figure 8.13 and Figure 8.14).  

Summarised results are presented in Table 8.11. The largest error considering 

amplitudes given by Eq. (6.1) occurs for Z=30 for an aspect ratio equal to 4.4 

and for an imperfection shape based on buckling mode number 8.  

Table 8.11: Comparison between the minimum numerical values (b/t=100) and  

the proposed formulae 

Amplitude Z=10 Z=30 Z=40 Z=50 Z=60 Z=70 Z=80 Z=90 Z=100 

Proposed 

Formulae 
0.417 0.484 0.512 0.533 0.549 0.563 0.574 0.585 0.595 

Amp. based on 

Eq. (6.1) 
0.408 0.378 0.419 0.488 0.507 0.524 0.538 0.551 0.559 

Error (%) -2.2 -21.9 -18.2 -8.4 -7.7 -6.9 -6.3 -5.8 -6.1 

Amp. based 

on Eq. (6.2) 
0.393 0.364 0.371 0.383 0.437 0.443 0.449 0.455 0.460 

Error (%) -5.8 -24.8 -27.5 -28.1 -20.4 -21.3 -21.8 -22.2 -22.7 

 

It is highlighted that values of the ultimate load factor decrease from Z=10 to 

Z=30. This conclusion was already made in sec. 6.3.3.4, where a detailed analy-

sis and enlightenment of this phenomenon is given. Here the intention is only 

to justify the need of a correction factor for long cylindrically curved panels.  

8.5.4.2. Correction factor 

The correction factor is calibrated with results from the models of the imper-

fection sensitivity study performed in Chapter 6. Only those with maximum 

amplitude calculated with Eq. (6.1) are considered.  
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Figure 8.11: Comparison between numerical results and proposed formulae  

for Z=10 and b/t=100 
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Figure 8.12: Comparison between numerical results and proposed formulae  

for Z=30 and b/t=100 
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Figure 8.13: Comparison between numerical results and proposed formulae  

for Z=50 and b/t=100 
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Figure 8.14: Comparison between numerical results and proposed formulae  

for Z=100 and b/t=100 
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This choice was prompted by the belief that Eq. (6.1), based on EN1993-1-5:2006, 

is more appropriate for cylindrically curved steel panels typically used in bridg-

es; Eq. (6.2), based on EN1993-1-6:2007, would be more suitable for very high 

values of the reduced slenderness parameter (difficult to cope with more strin-

gent fabrication tolerances) and for the presence of high circumferential stresses.  

In Figure 8.15 the scatter relates to the ratio ρlong,Num,min/ρshort,proposed for panels with 

b/t=100, 150 and 200 and the straight lines are linear regressions between the 

points Z=1, Z=30, Z=70 and Z=100 constrained to form a continuous line giving 

the proposed value for Cult. The extreme values obtained by these linear re-

gressions are given in Table 8.12. The ultimate strength of cylindrically curved 

panels under pure compression is given by 

 ultlong C
 

(8.21) 
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Figure 8.15: Correction factor for long cylindrically curved panels, Cult 

Table 8.12: Correction factor for long cylindrically curved panels, Cult 

 Z=1 Z=30 Z=70 Z=100 

Cult 1 0.782 0.912 
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Figure 8.16 to Figure 8.20 shows that, when numerical values are obtained from 

models with maximum amplitudes computed from Eq. (6.1) (i.e. maximum am-

plitudes computed from a modified approach based on EN1993-1-5:2006) using 

the correction factor Cult leads generally to values higher than the numerical 

values of the ultimate load factor, i.e. on the “safe side”.  

Additionally, Figure 8.19 to Figure 8.21 shows that opting by computing maxi-

mum amplitudes for the geometric imperfections by Eq. (6.2) (i.e. maximum 

amplitudes computed from a modified approach based on EN1993-1-6:2007) a 

great amount of results fall inside the “unsafe zone”. This is sustained by the 

proven fact that, as a general trend, higher amplitudes lead to lower values of 

the ultimate load factor (see sec. 6.3.3.1 and Figure 6.32). Table 8.13 summarises 

all the relevant information that can be read from Figure 8.16 to Figure 8.21. It 

should be highlighted that the results from models which have “unrealistic” 

imperfection patterns (see sec. 6.3.1) are removed from Figure 8.15 to Figure 

8.21 and Table 8.13 and, therefore, are not taken into account for the correction 

factor.  

For amplitudes given by Eq. (6.1) it is concluded that Cult corrects accurately 

the ultimate load factor from short cylindrically curved panels giving a lower 

bound for the ultimate load factor of long cylindrically curved panels.  

Table 8.13: Summarised results from Figure 8.16 to Figure 8.21 

 No. of cases in the “unsafe zone” Error of the lowest value (%) 

 b/t=100 b/t=150 b/t=200 b/t=100 b/t=150 b/t=200 

Eq. (6.1) 
1 out of 

1748 

25 out of 

413 

4 out of 

370 
-0.1 -7.8 -0.4 

Eq. (6.2) 
339 out 

1748 

64 out of 

413 

44 out of 

370 
-15.2 -24.9 -21.2 
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Figure 8.16: ρlong,num,Eq.(6.1)/ρlong,proposed for b/t=100 
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Figure 8.17: ρlong,num,Eq.(6.1)/ρlong,proposed for b/t=150 
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Figure 8.18: ρlong,num,Eq.(6.1)/ρlong,proposed for b/t=200 
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Figure 8.19: ρlong,num,Eq.(6.2)/ρlong,proposed for b/t=100 
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Figure 8.20: ρlong,num,Eq.(6.2)/ρlong,proposed for b/t=150 
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Figure 8.21: ρlong,num,Eq.(6.2)/ρlong,proposed for b/t=200 
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8.5.5. Statistical evaluation for short curved panels 

8.5.5.1. General 

The following statistical evaluations are made using only results from the par-

ametric study in sec. 5.3, i.e. where the effect of imperfection amplitudes other 

than b/200, imperfections shapes other than based on the first buckling mode 

and panels with aspect ratios other than those following Figure 5.3, were not 

used. Numerical results from the imperfection sensitivity study were used in 

sec. 8.5.4 to calibrate a correction factor to compute the ultimate strength of 

long cylindrically curved panels.  

8.5.5.2. Pure compression 

Comparison of the proposed formulae with the numerical results leads to the 

results of Figure 8.22 and Figure 8.23 (a total of 1537 numerical models were 

used for the global statistical evaluation for pure compression). It can be con-

cluded that a good correlation between numerical and proposed results exists 

(all results are “inside” the zone delimited by the lines at +/-10%). In Figure 

8.22 and Table 8.15 it is concluded that current proposed formulae replicate 

better the numerical results than the proposals by Tran et al. (2012), Tran 

(2012) and Tran et al. (2014) do. On the other hand, the proposal by Tran (2012) 

is the one that most poorly reproduces the numerical results as it is character-

ised by a relatively high value of the coefficient of variation and presents the 

highest value for the maximum absolute error.  

8.5.5.3. Pure in-plane bending 

The comparison of the proposed formulae with the numerical results (Figure 

8.23 and Table 8.16 – a total of 1537 numerical models were used for the global 

statistical evaluation for pure bending). The agreement is very good.  
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Figure 8.22: Correlation of the proposed formulae with FEM results for pure  

compression (normalised values) 

Table 8.14: Statistical evaluation concerning the ratios ρ,proposed/ρNum, for pure  

compression (normalised values) 

 Proposed formulae 

No. of 

analyses

 

Mean CoV (%) MAE (%) 

1537 0.9994 2.7 8.0 

 

Table 8.15: Statistical evaluation concerning the ratios ρ,Tran et al. (2012)/ρNum, ρ,Tran/ρNum 

ρ,Tran et al. (2014)/ρNum for pure compression (normalised values) 

 Tran et al. (2012) Tran (2012) Tran et al. (2014) 

No. of 

analyses

 

Mean 
CoV 

(%) 

MAE 

(%) 
Mean 

CoV 

(%) 

MAE 

(%) 
Mean 

CoV 

(%) 

MAE 

(%) 

1537* 0.9817 4.6 16.8 1.0106 6.5 17.1 1.0671 5.0 13.5 

* Due to the limitation of the parametric range of the work by Tran et al. (2014) (see sec. 3.11.3), 

the number of analysis in this case is 212. 
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Figure 8.23: Correlation of the proposed formulae with FEM results for pure in-plane 

bending (normalised values) 

Table 8.16: Statistical evaluation concerning the ratios ρ,proposed/ρNum for pure in-plane 

bending (normalised values) 

 Proposed formulae 

No. of 

analyses

 

Mean CoV (%) MAE (%) 

1537 0.9993 2.0 7.8 

 

8.6. Ultimate strength of cylindrically curved panels under 

generalised axial stresses 

8.6.1. General 

The last section leant over the calibration of width reduction factors for cylindri-

cally curved panels under pure compressive stresses and pure in-plane bend-

ing. For combinations of axial force and bending moment the option fell on the 

simplified approach of EN1993-1-5:2006 (CEN, 2006a) which stipulates that the 

safety of plated elements under these conditions may be checked using the ef-
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fective properties calculated for axial force and bending moment acting sepa-

rately. Using numerical results from sec. 5.3 and the effective properties calcu-

lated with the formulae proposed in the previous section, the level of safety of 

the design method of EN1993-1-5:2006 will be assessed.  

8.6.2. Proposed formulae 

The proposed expression to verify the level of safety of cylindrically curved 

panels under generalised in-plane stresses (combined effect of compression 

and bending) follows Eq. (8.22).  
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(8.22) 

where Aeff is cross section’s effective area, Wy,eff is the cross section’s effective 

elastic section moduli according to y-direction, NEd is the design axial force 

and My,Ed is the design bending moment. Since it is at the element level (in op-

position to built-up sections), eccentricities do not participate in Eq. (8.22). As 

the account for eccentricities would increase the value η1, this option is on the 

safe side.  

8.6.3. Statistical evaluation for short curved panels 

Similarly to sec. 8.5.5, in order to evaluate whether Eq. (8.22) is or is not appro-

priate to evaluate the strength of cylindrically curved panels, it is compared to 

numerical results from the parametric study in sec. 5.3. Since in Eq. (8.22) it is 

required to input NEd and My,Ed, these values were calculated beforehand taking 

into account the geometry of the panels of the referred parametric study and in 

such a way that σ1=1 (Eq. (8.23)). Finally, the inverse of the result given by 

Eq. (8.22) is compared to the respective numerical one.  
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(8.23) 
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In these previous equations, the cross-sectional effective area is calculated for 

the axial force acting alone and the effective elastic modulus around y-axis is 

calculated for the bending moment acting alone. In Figure 8.24 and in Table 

8.17 the overall statistical evaluation results are shown.  

It is possible to conclude that the majority of the results given by Eq. (8.22) are 

on the safe side (the maximum error on the unsafe side is equal to 5.9%). This 

is in line to what was expected: since the effective area Aeff is determined as-

suming that the cross-section is subject only to stresses due to uniform axial 

compression and the effective section modulus Wy,eff is determined assuming 

the cross-section is subject only to bending stresses, the proposed methodology 

is a simplified one and, as for plates, it yields results generally on the safe side.  

For a more detailed comparison of results, Figure 5.25 to Figure 8.27 show the 

statistical evaluation of results for ψ=0.5, ψ=0, ψ=-0.5. The comparison of re-

sults for ψ=1 and ψ=-1 is not shown here since it coincides with the compari-

son performed in sec. 8.5.5.3. Table 8.18 summarises all statistical data for all 

loading types (from ψ=1 to ψ=-1).  
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Figure 8.24: Correlation of Eq. (8.22) with FEM results for -1≤ψ≤1 (normalised values) 
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Table 8.17: Statistical evaluation concerning the ratios η1,Eq. (8.22)/η1,Num, -1≤ψ≤1  

(normalised values) 

 Proposed formulae 

No. of 

analyses

 

Mean CoV (%) 
Maximum error on 

unsafe side (%) 

32277 0.9606 4.7 5.9 
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Figure 8.25: Correlation of Eq. (8.22) with FEM results for ψ=0.5  

(normalised values) 
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Figure 8.26: Correlation of Eq. (8.22) with FEM results for ψ=0  

(normalised values) 
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Figure 8.27: Correlation of Eq. (8.22) with FEM results for ψ=-0.5  

(normalised values) 
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Table 8.18: Statistical evaluation concerning the ratios χEq. (8.22)/χNum, -1≤ψ≤1  

(normalised values) 

 Eq. (8.22) 

Type of 

loading, ψ 

No. of  

analyses

 

Mean CoV (%) 
Maximum error on 

unsafe side (%) 

1 1537 0.9994 2.7 5.9 

0.9 1537 0.9987 3.1 5.4 

0.8 1537 0.9925 3.6 5.5 

0.7 1537 0.9856 4.0 5.3 

0.6 1537 0.9784 4.3 5.0 

0.5 1537 0.9695 4.5 4.5 

0.4 1537 0.9633 4.7 3.8 

0.3 1537 0.9564 4.8 3.1 

0.2 1537 0.9497 4.8 2.4 

0.1 1537 0.9440 4.8 1.5 

0 1537 0.9379 4.7 0.9 

-0.1 1537 0.9349 4.6 0.1 

-0.2 1537 0.9321 4.5 0.0 

-0.3 1537 0.9308 4.3 0.0 

-0.4 1537 0.9316 4.1 0.0 

-0.5 1537 0.9335 3.9 0.0 

-0.6 1537 0.9401 3.4 0.0 

-0.7 1537 0.9487 2.9 0.0 

-0.8 1537 0.9614 2.3 0.3 

-0.9 1537 0.9794 1.7 1.4 

-1 1537 0.9993 2.0 5.8 
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8.7. Detailed comparison between numerical results and pro-

posed set of formulae for pure compression 

Similarly to the study performed in 8.4, this section presents the comparison 

between the proposed formulae and formulae from literature for the ultimate 

strength of cylindrically curved panels. Once again, only formulae calibrated 

with results from panels having similar boundary conditions are chosen for 

this comparative analysis. In these conditions are the proposed formulae from 

Tran et al. (2012), Tran (2012) and Tran et al. (2014).  

It is highlighted that this detailed analysis is limited to loading cases corre-

sponding to pure compression (as already stated before none of the proposed 

formulae in the literature predicts the ultimate strength of cylindrically curved 

panels for loading cases other than pure compression).  

The comparison between numerical results and the approaches proposed by 

Tran et al. (2012) (based on the Ayrton-Perry approach), Tran (2012) (based on 

EN1993-1-6:2007) and the one proposed in this study for panels with α≤1 is 

made in Table 8.19 to Table 8.21, where detailed results are shown, and in Fig-

ure 8.28 to Figure 8.31.  

As it was already concluded in Chapter 4, there are non-negligible errors be-

tween Tran’s proposal, numerical results and the proposed formulae. Howev-

er, the investigation of Figure 8.28 to Figure 8.31 indicates that the numerical 

results and the proposed formulae and Tran’s proposals all have the same gen-

eral trend. Here, the main reason that is thought to be the cause of the 

non-negligible errors is the fact that Tran´s formula is calibrated with numeri-

cal results from models with α=1, while in this study the models’ aspect ratio 

varies with the curvature parameter. Additionally, for the second approach 

proposed by Tran, besides the already discussed reasons that may lead to 

non-negligible errors, it is pointed out the only possible conclusion: the frame-

work of formulae from EN1993-1-6:2007 is not suitable for applications to the 

ultimate behaviour of cylindrically curved panels. 
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Figure 8.28: Comparison between curves proposed by Tran et al. (2012), Tran (2012) 

and proposed formulae for Z=10 and ψ=1 
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Figure 8.29: Comparison between curves proposed by Tran et al. (2012), Tran (2012) 

and proposed formulae for Z=30 and ψ=1 
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Figure 8.30: Comparison between curves proposed by Tran et al. (2012), Tran (2012) 

and proposed formulae for Z=50 and ψ=1 
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Figure 8.31: Comparison between curves proposed by Tran et al. (2012), Tran (2012) 

and proposed formulae for Z=100 and ψ=1 

 



256 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

Table 8.19: Comparison between the approaches by Tran et al. (2012), Tran (2012) and 

proposed formulae for λ=1 and ψ=1 

Curvature, Z Z=10 Z=30 Z=50 Z=80 Z=100 

χNum 0.656 0.612 0.576 0.530 0.512 

χProposed 0.665 0.618 0.567 0.508 0.478 

Error (%) +1.3 +0.9 -1.6 -4.2 -7.2 

χTran et al. (2012) 0.642 0.582 0.544 0.494 0.478 

Error (%) -2.1 -5.2 -5.8 -7.3 -7.0 

χTran (2012) 0.614 0.592 0.582 0.578 0.576 

Error (%) -6.8 -3.4 +1.1 +8.2 +11.2 

 

Table 8.20: Comparison between the approaches by Tran et al. (2012), Tran (2012) and 

proposed formulae for λ=2 and ψ=1 

Curvature, Z Z=10 Z=30 Z=50 Z=80 Z=100 

χNum 0.404 0.326 0.288 0.254 0.242 

χProposed 0.405 0.333 0.298 0.258 0.236 

Error (%) +0.2 +2.0 +3.3 +1.4 -2.4 

χTran et al. (2012) 0.371 0.323 0.291 0.261 0.252 

Error (%) -8.9 -1.0 +1.0 +2.7 +3.9 

χTran (2012) 0.367 0.316 0.294 0.279 0.274 

Error (%) -10.1 -3.2 +2.0 +8.9 +11.8 
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Table 8.21: Comparison between the approaches by Tran et al. (2012), Tran (2012) and 

proposed formulae for λ=3 and ψ=1 

Curvature, Z Z=10 Z=30 Z=50 Z=80 Z=100 

χNum 0.304 0.230 0.195 0.165 0.154 

χProposed 0.299 0.218 0.193 0.164 0.148 

Error (%) -1.5 -5.4 -1.3 -1.1 -4.2 

χTran et al. (2012) 0.260 0.222 0.197 0.177 0.170 

Error (%) -16.8 -3.8 +0.9 +6.3 +9.3 

χTran (2012) 0.260 0.218 0.198 0.184 0.180 

Error (%) -17.1 -5.3 +1.5 +10.3 +14.3 

 

Table 8.22: Comparison between the approach by Tran et al. (2014) and  

proposed formulae 

Slender-

ness, λ 

Curvature, 

Z 

Aspect 

ratio, α 

Numerical 

results 

Proposed 

formulae 

Error 

(%) 

Tran et al. 

(2014) 

Error 

(%) 

1.0 

10 0.9 0.656 0.665 +1.3 0.730 +10.1 

30 0.54 0.612 0.618 +0.9 0.593 -3.3 

50 0.4 0.576 0.567 -1.6 0.526 -9.5 

80 0.3 0.530 0.508 -4.2 0.484 -9.6 

100 0.28 0.512 0.478 -7.2 0.477 -7.4 

2.0 

10 0.9 0.484 0.501 +0.2 0.558 +13.2 

30 0.54 0.422 0.437 +2.0 0.438 +3.6 

50 0.4 0.386 0.395 +3.3 0.379 -1.8 

80 0.3 0.350 0.346 +1.4 0.340 -3.0 

100 0.28 0.334 0.321 -2.4 0.332 -0.5 

3.0 

10 0.9 0.404 0.405 -1.5 0.455 +11.3 

30 0.54 0.326 0.333 -5.4 0.350 +6.7 

50 0.4 0.288 0.298 -1.3 0.297 +3.0 

80 0.3 0.254 0.258 -1.1 0.260 +2.4 

100 0.28 0.242 0.236 -4.2 0.253 +4.5 
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The approach developed by Tran et al. (2014), besides accounting for the cur-

vature and the slenderness (represented by the thickness to width ratio), al-

lows accounting for the influence of the aspect ratio (Eq. (3.45)). For that rea-

son in Table 8.22 the value of aspect ratio is presented. Since the manner to 

express the panel’s slenderness is different from the proposed formulae, the 

geometric parameter defined by the thickness to width ratio is also presented.  

It is concluded, similarly to the two previous methods for computing the ulti-

mate strength of cylindrically curved panels, that there are non-negligible er-

rors between Tran et al. (2014) proposal and numerical results. These errors are 

thought to be originated from the fact that many examples given in Table 8.22 

fall outside the parametric range in Tran et al. (2014) work (see sec. 3.11.3).  

8.8. Application of proposed methodology to the design of 

cross-sections using the effective width method 

8.8.1. General 

In order to determine the ultimate strength of cross-sections built-up with 

slender cylindrically curved panels subject to direct stresses by the effective23 

width method, the effective widths of all plate/panel elements in compression 

and or in bending are determined separately using the proposed approach in 

sec. 8.2 (or sec. 8.3) and 8.5. From these effective widths the effective geometric 

properties (i.e. effective position of the centre of gravity, effective cross-section 

area Aeff, effective second moment of area Ieff and effective elastic section 

modulus Weff) are obtained. Finally, similarly to what is advocated by 

EN1993-1-5:2006, the resistance check is performed determining the utilisation 

factor using Eq. (8.24)  
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(8.24) 

                                                      
23 In this study shear lag effects are discarded and only local buckling phenomena are 

considered.  
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In short, Figure 8.32 presents schematically the design of cross-sections 

built-up with cylindrically curved panels subject to axial compression and 

uniaxial bending.  

Input geometric variables:
a, b, c, R, tf and tw

Compute reduction 
factors for ψ=1 
(bottom flange in 
compression):

• kσ (Table 8.1 or 
Eq. (8.7) or (8.8))

• λ=(fy/σcr)
1/2

• ρ (Eq. (8.20))

Compute 
reduction factors 
for ψ=-1 (bottom 
flange in bending):

• kσ (Table 8.1 or 
Eq. (8.7) or (8.8))

• λ=(fy/σcr)
1/2

• ρ (Eq. (8.20))

Compute effective 
cross-sectional 
properties for ψ=1:

• yeff, zeff

•Aeff

• Iz,eff

•Wz,eff

• eN,y

• eN,z

Compute effective 
cross-sectional 
properties for ψ=-1:

• yeff, zeff

•Aeff

• Iy,eff

•Wy,eff

Compute utilisation factor η
from Eq. (8.24)

Compute gross cross-sectional 
properties:

+• y0, z0

•A

• Iy, Iz

•Wy, Wz

•NEd

•MEd

Loading 
conditions 
ψ (Eq.(4.1))

 

Figure 8.32: Design flowchart for cross-sections built-up  

with cylindrically curved panels 

8.8.2. Box-girder bridge design examples 

In this section, five different cross-sections having curved bottom flanges with 

increasing curvature (from Z=0 to Z=100) under four loading conditions are 

analysed. The analysed sections are part of possible box-girder bridge configu-
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rations as suggested by Figure 8.33. It is assumed that the box-girder is being 

launched (therefore not having the benefit of the composite action) and, for the 

sake of simplicity, it is assumed also that the upper flanges are not accounted 

for in calculations. It is also assumed that a horizontal wind load is acting on the 

box-girder. The wind load (which is responsible for the curved bottom flange in 

bending, ψ=-1) together with the gravity load (which is responsible for the 

curved bottom flange in compression, ψ=1) produce a state-of-stress of com-

bined direct stresses in a cross-section incorporating a curved element.  

Additionally, in order to evaluate only the effect of the width reduction of the 

bottom cylindrically curved steel panel, webs are sized to be at least class 324 

therefore not having any width reduction due to local buckling phenomena. 

The geometry of the design examples is fully described by Figure 8.33 and 

Table 8.23.  
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Figure 8.33: Generic cross-section under analysis 

                                                      
24 Class 3 of outstand compression elements is defined in EN1993-1-1:2005 (CEN, 

2005).  
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Following the notation in the Eurocodes, namely the notation in clause 1.7 of 

EN1993-1-1:2005 (CEN, 2005), the x-direction is defined as the direction along 

the member, y-direction is parallel to the flanges and z-direction is perpendic-

ular to the flanges.  

Table 8.23: Cross-section dimensions 

 Section Z0 Section Z10 Section Z20 Section Z50 Section Z100 

b 2000 mm 2000.8 mm 2003.3 mm 2020.6 mm 2079.2 mm 

a 1000 mm 

R - 20016.7 mm 10033.3 mm 4082.6 mm 2161.6 mm 

Z 0 10 20 50 100 

tf 20 mm 

c 500 mm 475 mm 450 mm 375.6 mm 254.8 mm 

c1 0 mm 25 mm 50 mm 124.4 mm 245.2mm 

tw 50 mm 

 

Following the flowchart in Figure 8.32, the design starts with the input of the 

basic geometric dimensions (width b, length a, radius of curvature R, thickness 

of the flange tf, width of the webs c and thickness of the webs tw) given in Table 

8.23. It is pointed out the fact that with these dimensions the gross 

cross-sections’ total width and depth are constant in all analysed cross-sections 

(i.e. the alignment of both webs is fixed varying their height; this means that the 

width of the curved element is also variable). This allows performing a direct 

comparison between all different cross-sections based on the utilisation factor 

given by Eq. (8.24) (where the utilisation factor is divided by the gross area).  

As the flowchart indicates (Figure 8.32), the gross cross-sectional properties 

are calculated first. These properties were calculated using an iterative proce-

dure that was implemented following Nakai & Yoo (1988) and are given in 

Table 8.24.  



262 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

Table 8.24: Gross cross-sectional properties 

 Section Z0 Section Z10 Section Z20 Section Z50 Section Z100 

Centroid, y0 0.00 mm 

Centroid, z0 138.9 mm 146.3 mm 153.1 mm 171.9 mm 192.7 mm 

Area, A 
9.00 E+04 

mm2 

8.75 E+04 

mm2 

8.51 E+04 

mm2 

7.80 E+04 

mm2 

6.71 E+04 

mm2 

Second moment 

of area, Iy 

2.43 E+09 

mm4 

2.30 E+09 

mm4 

2.18 E+09 

mm4 

1.92 E+09 

mm4 

1.69 E+09 

mm4 

Second moment 

of area, Iz 

6.34 E+10 

mm4 

6.09 E+10 

mm4 

5.84 E+10 

mm4 

5.12 E+10 

mm4 

3.98 E+10 

mm4 

Elastic section  

modulus, Wy 

(bottom) 

6.73 E+06 

mm3 

6.50 E+06 

mm3 

6.30 E+06 

mm3 

5.87 E+06 

mm3 

5.51 E+06 

mm3 

Elastic section  

modulus, Wz 

6.34 E+07 

mm3 

6.09 E+07 

mm3 

5.84 E+07 

mm3 

5.12 E+07 

mm3 

3.98 E+07 

mm3 

 

The next steps are to compute the effective with reduction factors for pure com-

pression and pure in-plane bending (around z-axis, see Figure 8.33) using the 

methods described in the previous sections.  

Specifically, to compute the elastic critical stress and slenderness parameter, the 

method proposed in sec. 8.2 was followed; in what concerns the reduction fac-

tor, the method proposed in sec. 8.5 was followed. Table 8.25 and Table 8.26 

show the reduction factors for the curved panel element obtained for pure com-

pression and pure in-plane bending, respectively. Figure 8.34 shows generic 

effective cross-sections resulting from the application of the computed reduc-

tion factors for the curved panel element.  

be1 be2
be1

bt

y
eff

z
eff

y
eff

z
eff

 

Figure 8.34: Generic effective cross-section for ψ=1 and ψ=-1 
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Table 8.25: Cylindrically curved panel reduction factors for ψ=1 

 Section Z0 Section Z10 Section Z20 Section Z50 Section Z100 

kσ, Table 8.1 4.00 5.07 7.45 16.16 30.31 

λ 2.163 1.922 1.588 1.087 0.817 

ρEq. (8.20) 

(reduction of bottom flange) 
0.415 0.417 0.442 0.529 0.575 

 

Table 8.26: Cylindrically curved panel reduction factors for ψ=-1 

 Section Z0 Section Z10 Section Z20 Section Z50 Section Z100 

kσ, Table 8.1 23.88 25.58 29.26 42.99 63.33 

λ 0.885 0.855 0.801 0.665 0.565 

ρEq. (8.20) 

(reduction of bottom flange) 
0.989 0.946 0.931 1.000 1.000 
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Figure 8.35: Internal effective widths according to EN1993-1-5:2006 (CEN, 2006a) 
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Having the effective dimensions of the bottom curved flange (be1, be2 and bt are 

computed following Table 4.1 of EN1993-1-5:2006 and Figure 8.35) it is possi-

ble to compute the properties of the effective cross-section which are given in 

Table 8.27 and Table 8.28 for pure compression and pure in-plane bending, 

respectively. 

Finally, the utilisation factor is obtained from Eq. (8.24) and it is given in Table 

8.29 for the four different load cases and it is plotted in Figure 8.36. 

Table 8.27: Effective cross-sectional properties for ψ=1 

 Section Z0 Section Z10 Section Z20 Section Z50 Section Z100 

Centroid, y0,eff 0.00 mm 

Centroid, z0,eff 187.64 mm 198.4 mm 206.1 mm 224.5 mm 256.3 mm 

Effective elastic 

section modulus, 

Wy,eff 

5.83 E+06 

mm3 

5.45 E+06 

mm3 

5.16 E+06 

mm3 

4.56 E+06 

mm3 

3.82 E+06 

mm3 

 

Table 8.28: Effective cross-sectional properties for ψ=-1 

 Section Z0 Section Z10 Section Z20 Section Z50 Section Z100 

Centroid, y0,eff 1.5 mm 7.4 mm 9.8 mm 0.0 mm 0.0 mm 

Centroid, z0,eff 139.2 mm 148.0 mm 155.6 mm 171.9 mm 192.7 mm 

Effective elastic 

section modulus, 

Wz,eff 

6.32 E+07 

mm3 

6.00 E+07 

mm3 

5.73 E+07 

mm3 

5.12 E+07 

mm3 

3.98 E+07 

mm3 
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Table 8.29: Utilisation factor according to Eq. (8.24)  

for different load cases  

 

Loading type 1 Loading type 2 Loading type 3 Loading type 4 

My,Ed =1500kNm 

Mz,Ed =0kNm 

My,Ed =2000kNm 

Mz,Ed =450kNm 

My,Ed =1000kNm 

Mz,Ed =1000kNm 

My,Ed =0kNm 

Mz,Ed =9500kNm 

η1,Eq. (8.24) η1,Eq. (8.24) η1,Eq. (8.24) η1,Eq. (8.24) 

Section Z0 0.725 0.986 0.528 0.424 

Section Z10 0.775 1.054 0.564 0.446 

Section Z20 0.818 1.113 0.595 0.467 

Section Z50 0.927 1.261 0.673 0.523 

Section Z100 1.105 1.506 0.808 0.673 
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Figure 8.36: Evolution of the utilisation factor according to Eq. (8.24) with the increase 

of the curvature of the bottom flange 

From the analysis of both Figure 8.36 and Table 8.29 it is possible to infer that 

the higher the curvature, the higher the utilisation factor is (i.e. the less re-

sistance the section is). At a first glance, it may appear curvature has a negative 
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effect on the resistance of cross-sections. In fact, the analysed cross-sections’ area 

is not constant and therefore the comparison is biased. In an attempt to solve 

this issue, the results given in Table 8.29 are normalised to the area of the Z0 

section (Table 8.30).  

Table 8.30: Normalised utilisation factor according to Eq. (8.24)  

for different load cases  

 

Loading type 1 Loading type 2 Loading type 3 Loading type 4 

My,Ed =0kNm 

Mz,Ed =1500kNm 

My,Ed =450kNm 

Mz,Ed =2000kNm 

My,Ed =1000kNm 

Mz,Ed =1000kNm 

My,Ed =9500kNm 

Mz,Ed =0kNm 

0
)24.8(.,1

Z

Zi
Eq

A

A
  

0
)24.8(.,1

Z

Zi
Eq

A

A
  

0
)24.8(.,1

Z

Zi
Eq

A

A
  

0
)24.8(.,1

Z

Zi
Eq

A

A
  

Section Z0 0.725 0.986 0.528 0.424 

Section Z10 0.753 1.025 0.548 0.434 

Section Z20 0.773 1.052 0.563 0.442 

Section Z50 0.803 1.093 0.583 0.453 

Section Z100 0.824 1.123 0.602 0.502 

 

From the analysis of Table 8.30 it may be concluded that, in fact, curvature as a 

negative effect on the resistance of cross-sections but not as severe as at initially 

perceived. Additionally, concerning the ultimate strength of cross-sections, the 

following two aspects are worth to be mentioned:  

 Firstly, at the same time curvature is increased all the properties of the 

gross cross-section decrease (Table 8.24), meaning that for the same load 

level, cross-sections with curved bottom flange will typically present 

higher utilisation factors;  

 Secondly, as already discussed in sec. 5.3 for curved elements (see Figure 

5.24 to Figure 5.27). In these graphs it is seen that for constant b/t ratio the 

ultimate strength decreases from Z=0 to Z=10-20, reversing this trend in 

the range from Z=10-20 to Z=100. Since in the examples webs are sized to 

be at least class 3, it is fair to assume that, if the cross-sectional area is 
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constant, then the ultimate strength of cross-sections will follow the same 

trend.  

Finally, it should be highlighted that the use of steel box-girders with cylindri-

cally curved bottom flanges has some advantages like enhanced aerodynamic 

behaviour (e.g. Stonecutters bridge (Janjic, 2008)), aesthetics, etc.  

8.9. Summary 

In this chapter the new proposals to compute the elastic critical stress and the 

ultimate load of cylindrically curved steel panels were presented.  

Firstly, a new methodology for computing the elastic critical stress of cylindri-

cally curved panel under generalised axial compressive stresses (from pure 

axial compression to pure in-plane bending) was proposed. This new expres-

sions were derived with the same structure as those currently proposed by 

EN1993-1-5:2006 (CEN, 2006a). It is assumed that non-negligible errors arise 

when the aspect ratio increases. Nevertheless, these errors will vanish during 

the calibration process of the new expressions proposed for computing the 

ultimate load of cylindrically curved steel panels. In parallel, simple 

closed-formed analytical solutions obtained from the study performed in 

Chapter 7 were also proposed to compute the elastic critical stress of cylindri-

cally curved panels. These expressions have the advantage of considering the 

aspect ratio and allowing a physical interpretation of results as they are direct-

ly derived from an exact energy formulation (the only source of error is intrin-

sic to the choice of the displacement functions, as already discussed in Chap-

ter 7). The downside of these expressions is that, even though they are quite 

simple to implement, they yield considerably larger errors that the numerical-

ly calibrated proposed methodology.  

Secondly, new expressions for computing the ultimate load of cylindrically 

curved steel panels under pure axial compression and pure in-plane bending 

are proposed based on the effective width method. They are also based on the 
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slenderness parameter computed through the previously proposed numerical-

ly calibrated method for the elastic critical stress.  

It should be mentioned that, while for curved panels under pure axial com-

pressive stresses these new methods are an improvement of previously pro-

posed ones, for curved panels under combinations of pure compression and 

in-plane bending they are entirely innovative. Additionally, as it has been 

shown, the use of Eq. (8.22) allows a safe evaluation of the ultimate strength of 

cylindrically curved panels.  

In what concerns the design of cross-sections incorporating cylindrically 

curved panels by the effective width method, simple examples were solved 

and explained in detail. In what concerns their accuracy, it is expected that in 

the near future, these results will be validated against numerical and experi-

mental studies.  

Finally, it should be highlighted that both methods to evaluate the elastic criti-

cal stress and the method to evaluate the ultimate strength of curved panels 

under generalised axial compression have been statistically evaluated against 

own numerical results and compared to previous works of other authors. 



9. Summary and future research 

9.1. Conclusions 

Overall, the stability behaviour of cylindrically curved panels under direct 

stresses was studied. In fact, the performed research is the first to comprehen-

sively incorporate a large range of key parameters that influence the behav-

iour of cylindrically curved panels. Specifically, the following aspects were 

thoroughly analysed throughout the thesis: 

 Influence of the boundary conditions type on the elastic critical and ul-

timate behaviour: firstly, in opposition to plates, the elastic critical stress 

depends on whether the edges are or not constrained; secondly, it was 

concluded that while boundary conditions type 1 represent the lower 

bound of results for both the elastic critical stress and the ultimate stress, 

boundary conditions type 3 represent the upper bound;  

 Influence of aspect ratio on the eigenmode, elastic critical and ulti-

mate behaviour: together with curvature, this parameter is one of the 

most important parameters due to the fact that, firstly, in the range of 

short panels, for each value of the curvature parameter there is a value 

of aspect ratio that minimises the elastic buckling factor (kσ,min); second-

ly, if only square panels are considered it was concluded that curved 

panels with a curvature parameter lower than 23 buckle in a different 

manner when compared to those with a curvature parameter more 

higher than 23 (one longitudinal half-wave vs. many longitudinal 

half-waves); and finally, it should be said that another important stud-
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ied parameter, geometric imperfections, is closely related to the aspect 

ratio as the pattern is directly determined by the combination of aspect 

ratio and curvature; 

 Influence of the loading type (direct stresses ranging from pure axial 

compression to pure in-plane bending and biaxial compression) on the 

elastic critical and ultimate behaviour; 

 Influence of the pattern and amplitude of geometric imperfections on 

ultimate behaviour: to this parameter an entire chapter was devoted 

where an extensive parametric study allowed to conclude that, for cy-

lindrically curved panels, geometric imperfections have a strong impact 

on their ultimate strength (in fact, cylindrically curved panels character-

ised by a curvature parameter equal to 30 present the highest sensitivity 

to geometric imperfections); additionally, it was concluded that, if the 

lowest resistance possible is intended to be obtained, the choice for the 

first buckling mode is not a correct one the majority of times (the first 

buckling mode returns the lowest value for the ultimate load factor only 

for 30% of the times, while the second returns for 34% of the times); fi-

nally, as a general trend it can be concluded that cylindrically curved 

panels characterised by higher curvature parameter are more sensitive 

to the amplitude of initial imperfection amplitude;  

 Influence of the curvature on the overall behaviour of cylindrically 

curved panels: curvature is the most important parameter in this re-

search; in fact all other parameters are studied together with curvature. 

The main conclusions about the effect of curvature on the behaviour of 

cylindrically curved panels are: firstly, curvature dictates the buckling 

shape (which is crucial for the imperfection sensitivity study); secondly, 

the higher the curvature parameter is the higher the elastic critical stress 

and the lower the reduction curve (ρ-λ or χ-λ) is. Nevertheless, as con-

cluded at the end of sec. 5.3, the higher the curvature, the higher the re-

sistance of cylindrically curved panels with the same b/t ratio is. 

To reach the initially proposed objectives, early chapters shed light into the top-

ics that this research involves. Supported by those chapters where the numeri-
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cal, parametric and analytical studies are defined, new design methodologies, 

which significantly improve the accuracy of previous ones and establish new 

expressions to deal with some particular load cases (namely pure compression 

combined with pure in-plane bending), were proposed. The adopted strategy 

was to follow as closely as possible the rules proposed in EN1993-1-5:2006. In 

fact, one of the conclusions is that the behaviour of cylindrically curved panels 

is more similar to flat plates rather than shells of revolution. For that reason, the 

proposed methodology to compute the ultimate strength is based on the effec-

tive width method and it is has a similar framework to EN1993-1-5:2006. In a 

broad way, the methodology comprises formulae:  

 To compute the elastic critical stress of cylindrically curved panels under 

uniaxial compressive stresses. In this proposed methodology, a large 

number of numerical linear buckling analyses of curved panels with 

boundary conditions type 2 were used to derive new expressions. To 

simplify the interpretation of new expressions, these are organised in a 

similar way to EN1993-1-5:2006 (CEN, 2006a). Additionally, expressions 

suitable to compute the elastic critical stress of cylindrically curved pan-

els with boundary conditions type 2 and 3 are also derived, but exclu-

sively recurring to analytical methods. This expression results from an 

energy formulation which, using additional degrees-of-freedom, may be 

used to obtain the elastic critical stress of short and long curved panels 

(from aspect ratios equal to 0.2 up to 4.0) with boundary conditions type 

2 and 3 under pure compressive stresses.;  

 To compute the ultimate load of short and long cylindrically curved pan-

els under pure compression and pure in-plane bending. As for the meth-

odology for computing the elastic critical stress of cylindrically curved 

panels, this one is also based on numerical results. For long curved pan-

els, due to an unexpected effect of geometric imperfections (that was 

thoroughly analysed in Chapter 6), the calibration of a correction factor 

applied to results for short curved panels was necessary. Furthermore, 

the effect of geometric imperfections was thoroughly examined. The 

main conclusions were that the postbuckling path and the ultimate load 
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are very sensitive to imperfections amplitude and pattern also depending 

strongly on the curvature parameter and aspect ratio (as stated before, 

the highest sensitivity to geometric imperfections is obtained for long cy-

lindrically curved panels characterised by a curvature parameter, Z, 

around 30). Additionally, the application of proposed formulae to 

cross-sections in which the curved bottom flange is under combinations 

of pure compression and in-plane bending was also addressed.  

Albeit without a new proposed methodology, the structural response of cylin-

drically curved panels under biaxial loading was also studied. Among other, it 

was concluded that the reduction on the ultimate strength of cylindrically 

curved panels is more pronounced when stresses in the less stiff direction (i.e. 

the circumferential direction) are dominant.  

9.2. Future research 

The development of new knowledge raises invariably new questions. Not 

surprisingly, during the research presented in this work several unexpected 

problems have arose. Some of them were answered, but some are still open 

questions waiting for new research to tackle them. The following direct ques-

tions are believed to be dealt with in the near future: 

 Calibration of a safety factor for the proposed formulae in sec. 8.6;  

 Comprehensive studies (both numerical and experimental) on the be-

haviour of cross-sections incorporating cylindrically curved panels. 

The experimental tests will be performed on isolated cylindrically 

curved panels and on structures or substructures incorporating cylin-

drically curved steel panels (e.g. box-girder bridge segments). These 

experimental results are necessary to fully validate new proposals and 

to further evaluate their safety level;  

 Development of new interaction formulae for cylindrically curved steel 

panels under biaxial loading. This is believed to be possible by adapting 

the existent interaction formula proposed by Braun (2010) for plates. 

This will be done by calibrating an interaction factor (V in Braun’s pro-
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posal, see Eq. (3.33)) and by proposing a new expression able to com-

pute the reduction factor ρz in z-direction (circumferential compression);  

 Extension of the energy formulation to cover and predict the postbuck-

ling behaviour of cylindrically curved panels under compressive 

stresses; 

Besides these direct questions, others appear as promising and challenging 

future research work: 

 Study of cylindrically curved steel panels under combined non-uniform 

compression and shear loading: besides introductory works of Feather-

ston & Ruiz (1998), Featherston (2000) and Featherston (2003), there is no 

more references and, to the best of the author’s knowledge, there is no 

interaction formulae dealing with isolated cylindrically curved panels 

under combine non-uniform compression and shear loading; 

 Study of cylindrically curved panels under combined non-uniform and 

out-of-plane pressure:  offshore construction design standards (namely 

DNV-RP-C202) have interaction formulae which are suitable to com-

pute the ultimate strength of full revolution cylinders in which the 

buckling of curved panels is seen as a possible failure mode.  

Overall, these loading conditions (combinations of compression, shear loading 

and pressure) are very common in submerged substructures of offshore facili-

ties. Nevertheless, this topic will always be a stimulating one because it is still 

required to translate these rules to onshore construction. As highlighted in 

some chapters, boundary conditions for offshore structures are not necessarily 

the same for bridge and building construction. Additionally, safety levels and 

reliability indexes are not equal for both offshore and onshore construction.  

9.3. Original contributions 

The main original contribution of this thesis is the proposal of a methodology 

that allows verifying the level of safety of cross-sections built-up with cylin-

drically curved panels under several loading arrangements (from pure com-
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pression to biaxial bending). Specifically, the following original contributions 

are highlighted: 

 Derivation of a set of formulae capable of accurately predicting the 

minimum value of elastic critical buckling factor of cylindrically 

curved panels under compressive stresses (from pure axial compres-

sion to pure in-plane bending) and with boundary conditions type 2; 

 Derivation of simple analytical expression able to compute accurately 

the minimum value of elastic buckling factor of cylindrically curved 

panels under pure axial compressive stresses and with boundary con-

ditions type 2 and 3;  

 Derivation of simple analytical expression able to compute accurately 

the value of elastic buckling factor of cylindrically curved panels with 

varying aspect ratio and curvature parameter up to 10 (0.2≤α≤1 and 

Z≤10) under pure axial compressive stresses and with boundary condi-

tions type 2 and 3;  

 Modification of expressions from EN1993-1-5:2006 and EN1993-1-6:2007 

to compute the maximum amplitude of initial equivalent geometric im-

perfections in cylindrically curved panels for numerical analysis pur-

poses; 

 Development of a set of new expressions based on the effective width 

method to accurately compute the ultimate strength of cylindrically 

curved panels and cross-sections built-up with cylindrically curved 

panels under combinations of pure compression and bending; 

9.4. Publications 

The following publications have, to this point, resulted from the research 

work presented in this thesis:  

Journal papers: 

 Martins, J. P., Simões da Silva, L., Reis, A. (2013) Eigenvalue analysis of 

cylindrically curved under compressive stresses – extension of rules 

from EN1993-1-5. Thin-Walled Structures, 68, 183–194; 
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 Martins, J. P., Simões da Silva, L., Reis, A. (2014) Ultimate load of cylin-

drically curved panels under in-plane compression and bending – Ex-

tension of rules from EN1993-1-5. Thin-Walled Structures, 77, 36–4;  

 Martins, J. P., Simões da Silva, L., Marques, L. and Pircher, M. (2014), Ei-

genvalue analysis of curved sandwich panels loaded in uniaxial com-

pression. Romanian Journal of Technical Sciences (in press).  

 Martins, J. P., Beg, D., Sinur, F., Simões da Silva, L. and Reis, A. Imper-

fection sensitivity of cylindrically curved steel panels. (Submitted to 

Thin-Walled Structures for publication on 21st October, 2014). 

Conference Proceedings: 

 Martins, J. P., Simões da Silva, L. and Reis, A. (2011) Efeito da geometria 

na resistência de painéis curvos em aço. In: VIII Congresso de Construção 

Metálica e Mista, Guimarães, Portugal. pp. 365-362 (in portuguese); 

 Martins, J. P. and Simões da Silva (2012) Eigenvalue Analysis of Sand-

wich Panels Loaded in Uniaxial Compression. In: 6th International Confer-

ence on Coupled Instabilities in Metal Structures, Glasgow, Scotland. 

pp. 603-610; 

 Martins, J. P., Luís Simões da Silva and Reis, A. (2013) Determinação da 

resistência última de placas curvas em aço. In: IX Congresso de Construção 

Metálica e Mista, I Congresso Luso-Brasileiro de Construção Metálica Susten-

tável, Porto, Portugal. pp. 507-516 (in portuguese); 

 Martins, J. P., Beg, D., Sinur, F., Simões da Silva, L. (2014) Imperfection 

sensitivity analysis of cylindrically curved steel panels. In: Eurosteel 2014 

– 7th European Conference on Steel Structures, Naples, Italy. Paper 08-173. 

TWG 8.3 Meeting Presentations: 

 Martins, J. P. and Simões da Silva, L. (2011) Effect of geometry on the re-

sistance of curved panels, 12th Official meeting, May 6th, Paris;  

 Martins, J. P. and Simões da Silva, L. (2012) Eigenvalue analysis of cy-

lindrically curved panels under compressive stresses, 15th Official meet-

ing, October 26th, Liège;  



276 Behaviour of cylindrically curved steel panels under in-plane stresses 

 

 Martins, J. P. and Simões da Silva, L. (2013) Ultimate load of cylindrical-

ly curved panels under compressive stresses, 16th Official meeting, 

March 15th, Barcelona;  

 Martins, J. P., Simões da Silva, L. and Beg, D. (2013) Imperfection sensi-

tivity study on long cylindrically curved panels, 17th Official meeting, 

October 4th, Berlin;  

 Martins, J. P., Simões da Silva, L. and Sinur, F. (2014) Ultimate re-

sistance of long cylindrically curved panels: Influence of geometric im-

perfections, 18th Official meeting, March 21st, Bratislava;  

Other Publications not related to the work presented in this thesis: 

 Simões da Silva, L., Marques, L. and Martins, J. P. (2011) Stability and 

Design of Thin-walled Steel Shells. In: 6th International Conference on Thin-

Walled Structures, Timisoara, Romania. pp. 87-98. (Keynote Lecture); 

 Jordão, S., Pinho, M., Martins, J. P., Santiago, S. (2013) Modelação numé-

rica de vigas de vidro laminado. In: IX Congresso de Construção Metálica e 

Mista, I Congresso Luso-Brasileiro de Construção Metálica Sustentável, Porto 

Portugal. pp. 847-856; 
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