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RESUMO 

Os juízos de confiança são exemplos centrais da metacognição – 

conhecimento acerca dos processos cognitivos de cada um. De acordo 

com a visão metacognitiva, os relatos de confiança são gerados por um 

processo de monitorização de segunda-ordem, baseado na qualidade das 

representações internas sobre crenças próprias. Apesar dos correlatos 

neurais de confiança nas decisões terem sido recentemente identificados 

em humanos e noutros animais, não é ainda muito claro se existem 

regiões do cérebro especialmente importantes na monitorização da 

confiança.  

De forma a explorar este assunto criámos uma tarefa comportamental de 

aposta temporal pós-decisão onde ratos expressam confiança 

relacionada com a escolha, através da quantidade de tempo que estão 

dispostos a esperar por recompensas. Nesta tarefa os ratos tiveram de 

escolher entre duas opções - deslocarem-se para uma zona à sua 

esquerda ou à sua direita. A evidência para efectuar uma decisão 

correcta era dada por um estímulo odorífero. Depois de uma decisão ter 

sido feita os animais esperavam por recompensa. Estavam dispostos a 

esperar mais tempo por uma recompensa quando previam que a decisão 

fosse acertada. Este tempo era também dependente da dificuldade da 

decisão – tempos de espera maiores foram observados em decisões 

fáceis e correctas.   

Posteriormente demonstrámos que um modelo normativo conseguia 

prever quantitativamente os tempos de espera, baseados na computação 

da confiança nas decisões, estabelecendo um sistema computacional 

para o estudo de relatos de confiança, que descarta descrições 

semânticas. 

De seguida inactivámos farmacologicamente o córtex orbitofrontal 

(OFC) de ratos enquanto estes efectuavam a tarefa comportamental de 

“tempo de espera”. Esta manipulação perturbou os relatos de confiança 

baseados no tempo de espera que se tornou  menos dependente do facto 

da decisão ser ou não correcta, e também da sua dificuldade. No entanto 



a manipulação não alterou a performance dos animais. Estes resultados 

estabelecem um locus anatómico para relatos cognitivos, julgamentos de 

confiança, distinto dos processos necessários para formar decisões 

perceptuais. 

Decisões difíceis podem ocorrer porque os estímulos são difíceis de 

percepcionar ou porque as regras que definem o que se deve fazer em 

resposta as estímulos apresentados são incertas para o decisor. Nós 

gostaríamos de perceber melhor como é que esta segunda forma de 

incerteza é representada no cérebro e pode ser avaliada e usada para 

comportamentos adaptativos. Correlatos neurais de confiança em 

decisões perceptuais foram já descobertos no OFC de ratos. O OFC e o 

estriado ventral (VS) são duas regiões cerebrais implicadas na supervisão 

comportamental e avaliação de resultados. 

Para melhor perceber o papel do OFC e do VS na computação da 

confiança nas decisões e na adaptação comportamental sintonizada por 

sinais de confiança nós registámos a actividade de neurónios individuais 

situados nestas duas regiões, enquanto ratos efectuavam a tarefa 

comportamental de tempo de espera. Encontrámos populações de 

neurónios, em ambas as regiões, cuja actividade estava correlacionada 

com a confiança nas decisões e com o tempo de espera, logo após os 

ratos terem feito a sua escolha. Estes resultados exploraram mais além a 

função do OFC em decisões baseadas no nível de confiança, e 

adicionaram os gânglios de base ao circuito envolvido na computação de 

confiança nas decisões.  

As decisões perceptuais categóricas acontecem baseadas tanto na 

informação sensory como em factores relacionados com o reforço, tais 

como os valores da recompensa. Quando uma decisão é incerta os 

animais enviesam as suas escolhas a favor da opção mais reforçadora. Se 

por um lado é sabido que as escolhas são enviesadas pelo valor não é 

claro como é que a magnitude da recompensa afecta decisões baseadas 

na confiança. 



Para melhor perceber o efeito da recompensa em julgamentos de 

confiança após a decisão treinámos ratos para efectuar uma versão 

modificada da tarefa do tempo de espera, com uma manipulação de 

recompensa. Em conjuntos de ensaios era oferecido aos animais uma 

maior quantidade de recompensa por casa decisão correcta, para uma 

das localizações. Observámos que a manipulação da recompensa 

enviesou a escolha dos animais na direcção da opção mais 

recompensadora. Esta manipulação também afectou a sua performance. 

Decisões para o lado oposto à opção mais recompensadora foram mais 

correctas. Não obstante, esta manipulação da quantidade de recompensa 

não alterou os relatos de confiança baseados no tempo de espera. Os 

ratos esperavam a mesma quantidade de tempo enquanto esperavam 

pela recompensa maior ou pela recompensa menor. 

Posteriormente conseguimos explicar os resultados comportamentais de 

performance, escolha e tempo de espera, formulando um modelo 

baseado em princípios de teoria de detecção de sinal. Neste modelo dois 

factores opostos – uma estimativa de confiança enviesada pela 

recompensa, e outra estimativa de confiança não enviesada – interagem 

para dar lugar a um relato de confiança. Esta estrutura teórica explora 

também a hipótese de que existe uma distinção entre decisões 

perceptuais e estimativas de confiança. 

Os resultados publicados nesta dissertação podem ser aplicados na 

construção de teorias normativas de tomadas de decisão por humanos, e 

constroem o circuito neuronal envolvido na produção de julgamentos de 

confiança. Estes resultados trazem implicações na forma como 

percebemos como é que as pessoas avaliam as suas decisões e adaptam e 

optimizam o seu comportamento face a um mundo incerto, complexo e 

pleno em mudança.    



SUMMARY 

Confidence judgments are a central example of metacognition—

knowledge about one’s own cognitive processes. According to this 

metacognitive view, confidence reports are generated by a second-order 

monitoring process based on the quality of internal representations 

about beliefs. Although neural correlates of decision confidence have 

been recently identified in humans and other animals, it is not well 

understood whether there are brain areas specifically important for 

confidence monitoring. To address this issue we designed a post-

decision temporal wagering task in which rats expressed choice 

confidence by the amount of time they were willing to wait for rewards.  

In this task rats had to choose amongst two options, going to a choice 

location either on the left or right. Evidence for correctness of choice was 

given by a odor stimulus. After a decision was made rats would have to 

wait for reward. They were willing to wait longer for a reward when 

expecting it to be correct. And this was difficulty dependent - longer 

waiting times were observed after correct easy choices. Furthermore we 

have shown that a normative model can quantitatively account for 

waiting times based on the computation of decision confidence, 

establishing a computational framework for studying decision reports, 

which puts aside semantic descriptions.  

Next we have pharmacologically inactivated the orbitofrontal cortex 

(OFC) of rats performing the waiting time task. This inactivation 

disrupted waiting-based confidence reports - waiting time was less 

dependent of correctness and difficulty of decision. But this 

manipulation did not affect decision accuracy. These results establish an 

anatomical locus for a metacognitive report, confidence judgment, 

distinct from the processes required for perceptual decisions. 

Difficult decisions can occur because stimuli are hard to perceive or 

because the rules of what should be done given a certain stimulus are 

uncertain to the decision maker. We would like to understand how this 



second form of uncertainty is represented by the brain and may be 

assessed and used for adaptive behavior. Neural correlates of perceptual 

decision confidence have been previously found in the OFC of rats. OFC 

and ventral striatum (VS) are two brain regions implicated in behavioral 

supervision and outcome evaluation.  

To better understand the role of OFC and VS in the computation of 

decision confidence and behavior adaptation tuned by confidence signals 

we have recorded single unit activity from these two regions from rats 

performing the waiting time task. We have found populations of cells in 

both OFC and VS whose activity was correlated with decision confidence 

and waiting time, soon after decision was made. These results have 

further explored the functions of OFC in confidence based guided 

decisions and added the basal ganglia to the circuitry involved in 

decision confidence computations.  

Perceptual categorical decisions take place based both in stimulus 

information and reinforcement-related factors, such as the value of 

outcomes. When a decision is uncertain animals bias their choices in 

favor of the most rewarding option. While choices can be biased by 

value, it is not clear if reward magnitude affects decisions based on 

confidence. 

To better understand the effect of reward in post-decision confidence 

judgments we have trained rats to perform a modified version of the 

waiting task with a block-wise reward manipulation. In blocks of trials 

animals were offered a higher reward amount for one of the options. We 

have observed that the reward manipulation biased animals choices 

towards the most rewarding option. It also affected their performance. 

Decisions away from the highest rewarding option were more accurate. 

Nevertheless this reward manipulation did not alter the waiting time 

confidence report. Rats were waiting the same amount of time when 

expecting a smaller or a larger amount of reward.  

By devising a signal-detection-theory based model which assumed a 

dual-route processing of confidence we were able to explain, our 



accuracy, choice and waiting time behavioural results. In this model two 

opposite factors - a confidence estimate which is biased by reward, and a 

unbiased confidence estimate - interact to give rise to a confidence 

report. This theoretical framework further explores a distinction between 

perceptual decisions and confidence estimates. 

Taken together the results portrayed in this dissertation can be applied 

to build up normative theories of human decision-making and establish 

the neural circuitry involved in producing confidence judgments.  The 

results have implications in our understanding of how do people 

evaluate their decisions and can further adapt and optimize behavior in 

the face of an uncertain, complex and ever-changing environment. 
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“Brains allow us to perceive the world, respond to it, move through it, and act on it.” (Greenspan, 2007).  
 
“Marr said that “an algorithm is likely to be understood more readily by understanding the nature of the 
problem being solved than by examining the mechanism (the hardware) in which is embodied”.[(Marr, 
1982)] I want to suggest that at a global level we can characterize the function of the nervous system as 
decision making.”(Glimcher, 2003) 
 
“When we perceive the physical world, make a decision, and take an action a critical issue that our brains 
must deal with is uncertainty.” (Doya, Ishii, Pouget, & Rao, 2007). 
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Decisions: lenses to better understanding 

the brain 

It is humbling to notice that “perception” of a very simple stimulus, and 

a stereotypical response to it, could be achieved by a simple biochemical 

and molecular machinery, like the one from Euglena, a simple 

unicellular aquatic protozoan (Swanson, 2003). Because in this 

organism sensors and effectors are located in one single cell, the types of 

“behaviors” produced are very primitive. But given that the world is 

much more complex than a quiet, constrained water pond, it is fortunate 

for us humans that along natural history the complexity of nervous 

system organization has evolved dramatically. Otherwise we would have 

to struggle with, and as (un) creatively as protozoans for the same 

ecological niche.  

Our brain, with all it’s different layers of neurons that build up into 

complex systems, allows us to cope with a more dynamic and uncertain 

world. Our behavioural repertoire makes a big difference. We don’t 

passively “deal” with the world, we are able to act upon and adapt to it by 

the virtue of our decisions. 

In the hope to understand the nervous system we should look to 

understand its function. The study of decision-making provides insight 

into the realm of brain functions that comprise cognition, linking 

perception - the processing of sensory stimuli - to the output of motor 

actions, which unfolds into behavior. Decision-making conjugates the 

fields of cognitive neurosciences, systems neurosciences and 

computational neurosciences into better defining the neuronal circuits 

and computations that ultimately bring “thinking” to the cellular scale.  

A first glimpse into uncertainty 

There are four basic computations in the core of most decision processes, 

which have been the focus for understanding the neural underpinnings 

of decision-making: accumulation of evidence, formation of a categorical 

choice, reward-based adaptation and stochasticity inherent in choice 
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behavior (Wang, 2008). We are mostly interested in the latter one and in 

questions that follow from it.  

Why do we make incorrect decisions? This comes from the fact that the 

decision process is noisy (Knill and Pouget, 2004), so uncertainty is to 

blame. Noise in the nervous system might have multiple sources (Faisal 

et al., 2008) but we consider that uncertainty in categorical decision 

making mainly comes from: 1) uncertainty arising from the outside 

world (not being sure about the information we obtain from our senses), 

and/or 2) internal uncertainty (not being sure on what to do with the 

information we capture).  

Given that uncertainty in decisions might be ubiquitous it is feasible to 

assume that the nervous system has computational strategies and 

appropriate circuitry to calculate the amount of uncertainty in a 

decision, and to take advantage of these computations to optimally drive 

and adapt behaviors (Drugowitsch et al., 2012; Körding, 2007). For 

instance, when one is uncertain, learning rates should be boosted and 

attention enhanced (Dayan et al., 2000). One other function of 

uncertainty, which we will focus on, is that it could be used to compute 

confidence judgments, used to evaluate outcomes of decisions before 

they are known, and drive optimal post-decision strategies (Kepecs and 

Mainen, 2012).  

We shall focus on perceptual decisions, that involve categorical 

judgments on the basis of sensory stimuli. These are deliberative 

processes that combine the available sensory evidence with information 

related to the known alternatives, past experiences, and decision goals to 

drive decisions (Ding and Gold, 2013). 

From the senses towards reward 

What is the purpose of choosing? What is the goal of a decision? For the 

argument of simplicity let us assume that decisions are made in order to 

obtain desired outcomes, and avoid undesired ones. These contribute to 

establish a decision rule – given what I have and what I want, what 
should I do? 
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In the end-side of a perceptual-decision lies a goal, but it all starts with a 

stimulus. To understand the neural circuits and computations giving rise 

to perceptual decisions, one must describe how these decisions depend 

on sensory input. Psychophysics is a field developed to describe just that. 

By varying characteristics of presented stimuli, such as contrast or 

intensities, it is possible to manipulate the amount of sensory evidence 

available for each individual decision, and relate perception with choice 

behavior. To prevent interpretational confounds due to choice bias from 

stimulus attributes unrelated to sensory features (like different 

motivational values) it is important to correctly design a behavioral task 

(for a simple review, Carandini & Churchland, 2013). The two-

alternative-forced-categorization task design can be good to prevent 

these confounds.  

In the context of most decisions a desired outcome is some “reward”, 

which has a given value. Animals make decisions for food (eg. Smith et 

al., 1995), drink (eg. Padoa-Schioppa & Cai, 2011), sexual content (eg. 

Deaner, Khera, & Platt, 2005) or social interactions (eg. Zinck & Lima, 

2013), because these have some positive subjective value to the animal, 

and avoid punishment (eg. Paton, Belova, Morrison, & Salzman, 2006) 

because it has a negative value. A basic premise is that decisions are 

influenced by the net value that they might bring to an organism that 

aims to satisfy its needs. By this premise, an animal will choose to 

perform certain actions, in detriment of others, so to maximize rate of 

obtained reward (Herrnstein, 1961).  

Value is a concept that has been key in the study of behavioural decision-

making by multiple fields. For instance, in machine learning theory 

(Barto and Sutton, 1998) maximizing ‘state’ values and ‘action’ values 

leads to learning and selection of actions. In neuroeconomics (Glimcher 

and Rustichini, 2004) assignment of economic value allows qualitatively 

different goods to be compared in a ‘universal currency’. In animal 

learning theory (Balleine and Dickinson, 1998) the incentive value of 

outcomes is responsible for behavioural motivation.  
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In order to study the neural computations of decisions, animals are 

trained to perform behavioural tasks where the input variables are well 

controlled in the laboratory environment, and the behavior of the animal 

is characterized to a great extent. Traditionally, behavior is discretized 

into trials and neuronal activity can be aligned to specific events within 

individual trials. The variables of interest can vary. For instance, to study 

the neural correlations or the causal role of neural activity in choices, the 

reward pay-off of available options might not be fixed. The experimenter 

might want to manipulate the probability of reward delivery (eg. Sugrue 

et al., 2004), the amount of reward delivered (eg. Lau and Glimcher, 

2008) or/and the timing of reward delivery (eg. Nomoto et al., 2010). 

This approach can unravel the neural computations which occur during 

value transformations of decision variables, that link reward experience 

to action (Sugrue et al., 2005).  

The expected value of a choice is calculated as the product of magnitude 

(amount) of reward and reward probability (Rolls et al., 2008). If the 

reward probability of a given action is less than unity then the animal 

experiences, and has to deal with, a degree of outcome uncertainty, also 

named risk. Neural correlates of risk have been indentified - prefrontal 

cortical areas, striatum and midbrain dopaminergic projections have 

been previously linked to the processing of this type of uncertainty 

(Critchley et al., 2001a; Fiorillo et al., 2003; Hsu et al., 2005; O’Neill and 

Schultz, 2013; Schultz et al., 2000, 2011). While risk is normally 

measured across outcomes observed over multiple trials, the scope of the 

work presented hereon will be focused on decision uncertainty, a single-

trial estimate on the basis of the decision variables of the current trial 

(Kepecs, 2013). 

How to build a decision and compute confidence  

A number of computational strategies have been used to model 

perceptual decision-making under uncertainty and it’s neural correlates 

(Dayan and Abbott, 2005). While being different in the power of 

predictions and explanations that they can achieve (Churchland et al., 

2011; Drugowitsch and Pouget, 2012) they provide a common strategy to 
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the study of decisions. They incorporate behavioural and neural data and 

link hidden, internal variables driving behaviour to external, observable 

variables in a quantitative manner.  While it is not the purpose of this 

dissertation to commit to a particular proposed model, it is useful to 

mention those that have particularly influenced the way we conducted 

the research explained here. 

Signal detection theory 

Signal-Detection-Theory (SDT) is a statistical technique that prescribes a 

process to convert observations of noisy evidence into a categorical 

choice, and extract a confidence estimate from this process. For more 

than 45 years it has allowed psychologists to infer from behavior 

properties underlying sensory representations (Green and Swets, 1966) 

and it has provided a strong basis for probing the neural mechanisms 

that underlie perception and categorization under uncertainty (eg. 

Salzman & Newsome, 1994). From SDT it is possible to use Receiver 

Operant Characteristic analysis (ROC), and calculate a measure called 

area under the ROC curve, to account for the performance of a binary 

classifier. This approach allows to infer how well a ideal observer could 

distinguish between two distributions of, say, trial-to-trial firing rates, 

and classify the signal identity.  

In the context of SDT in a categorical decision samples from two noisy 

distributions are compared and related to each other. Establishing a 

decision rule to which this comparison should obey to, allows for a 

decision. The absolute Euclidean difference between the two samples 

will be a quantitative measure of confidence. This measure of confidence 

arises from whatever process comparing two distributions, and wherever 

it occurs. It could be used to analyze any comparison between two 

distributions of behavioural events or neural firing rates. If the 

comparison is made between samples of firing rates drawn from two 

stimuli distributions, this process can tell which stimuli is present, and 

with what degree of confidence. If it’s made between a sensory sample 

and a sample drawn from a noisy decision rule distribution, this 

computes which decision to make and the degree of confidence in that 
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decision.  If it’s made between firing rates sampled from two different 

outcome distributions, (e.g. error and correct trials), it can identify 

which outcome is more likely to be expected, and the certainty of that 

estimation. 

Accumulator models 

Accumulator models are a second class of dynamic models of decision-

making used to compute decisions under uncertainty and compute 

confidence estimates (Beck et al., 2008; Gold and Shadlen, 2007; Sugrue 

et al., 2005; Vickers and Packer, 1982). These models are part of 

sequential analysis, a natural extension to SDT that accommodates 

multiple pieces of evidence observed over time. In accumulator models, 

evidence in favor of a given decision is accumulated over time until it 

crosses a threshold level and decision is made. In perceptual decisions, 

neural activity that represents sensory stimuli is used as evidence and so 

is any neural activity that represents value properties of the different 

options. The total combined evidence forms a conceptual entity named 

decision variable, which is “interpreted” by the decision rule to produce a 

choice. Much effort has been made to describe the neural correlates of 

this decision variable using accumulator models to understand where 

and how is it formed (Ding and Gold, 2013; Gold and Shadlen, 2007; 

Mazurek, 2003; Roitman and Shadlen, 2002), and more recently, how is 

it related to confidence (Fetsch et al., 2014; Kiani and Shadlen, 2009; De 

Martino et al., 2013).  

Recurrent neuronal circuits 

The architecture of recurrent circuits can be used to better understand 

how could a neural circuitry implement a decision (for a review, Wang, 

2008). Generally, a circuit of neuronal populations composed of three 

distinct layers could serve as the central core for decisions, which 

incorporate external stimuli, evaluate actions and take decisions. An 

initial layer of neurons would be a first rail for representing sensory 

variables used in decisions. Projections from these neurons to an action 

valuation layer would bias the action to be implemented. Downstream 
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from this one layer of neurons would be responsible for actually 

assuming the decision. A circuit comprised of sensory cortices and 

different regions of basal ganglia could assume the roles of the different 

layers and be a neural implementation of this process. (Ding and Gold, 

2013) 

This framework takes into account more precise physiological 

parameters like the balance between recurrent excitation and feedback 

inhibition to instantiate attractor states for forming categorical choices 

and also long transients for gradually accumulating evidence in favor or 

against alternative options. By adding reward-dependent synaptic 

plasticity this circuitry can learn to produce adaptive choice behavior. 

Moreover, recurrent networks could be implemented to derive decisions 

about confidence estimates, by adding a second recurrent network, fed 

by the decision-making network (Insabato et al., 2010a).  

 

Neural mechanisms of decision-making 

Having in mind the former computational approaches we will proceed by 

mentioning a foundational body of work, successful in establishing 

neural basis for decision-making. Next we will introduce some of the 

research already done in perceptual decision-making, using rats or mice, 

a line of research that might be the future direction of the field.  

The random-dot motion task: Neural circuitry of decision 

making in non-human primates 

A significant bulk of knowledge on the neural basis of perceptual 

decision-making has been collected by studying monkeys performing a 

visual discrimination task - the random-dot motion task (RDM).  

In this task a head-fixed monkey, has to decide between two possible 

(opposite) directions of dots randomly moving in a computer screen. 

Task difficulty is controlled by varying the percentage of coherently 

moving dots. On high-coherence trials, the majority of dots move in the 
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same direction, making it easy to decide the correct global motion 

direction. On low-coherence trials, only a small percentage of dots move 

in the same direction, while the other dots move randomly, making the 

direction decision more difficult. The monkey’s movements are 

restrained and the direction decision is typically indicated with an eye 

movement, a saccade. In this task response times vary with the difficulty 

of the decision: responding quickly yields lower accuracy, whereas taking 

longer to respond corresponds to higher-accuracy decisions (Palmer et 

al., 2005). 

Extensive physiological and microstimulation studies have shown that 

direction-sensitive neurons in the middle temporal (MT) area of the 

visual cortex encode motion stimulus (Britten et al., 1992, 1993; 

Newsome et al., 1989), thus encoding the sensory information relevant 

for this task. The decision process itself occurs downstream of MT. The 

final preparation of eye movements involves the superior colliculus (SC) 

(Horwitz and Newsome, 1999, 2001) but the decision variable, which 

mediates the transformation of accumulated evidence to a binary choice, 

is represented midway between MT and SC. This is visible in neural 

activity from the parietal cortex, area LIP (Kiani et al., 2008; Shadlen 

and Newsome, 1996, 2001). Related to accumulation of evidence, LIP 

neuronal activity also correlates with reaction time (Roitman and 

Shadlen, 2002). 

LIP has been implicated in other high-order processes involved in the 

selection of saccade targets, like representation of bias, reward, expected 

value, and elapsed time (Dorris and Glimcher, 2004; Leon and Shadlen, 

2003; Platt and Glimcher, 1999; Sugrue et al., 2004). Most relevant to 

the subject proposed in the work presented here, LIP was implicated in 

decision confidence signals, and it’s behavioural expression (Fetsch et 

al., 2014; Kiani and Shadlen, 2009). So the same sensory neural signals 

in LIP reflect choice, reaction time, and confidence in a decision in 

monkeys performing the RDM task. 
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Perceptual decision making in rodents 

Inspired by the approaches and results obtained by studying non-human 

primates in tasks like the RDM, the last decade has seen an increasing 

amount of scientific advances in perceptual decision-making by 

experiments involving rats and mice (for a review, Carandini & 

Churchland, 2013). The rodent brain shares the most fundamental 

design principals with those of humans, and other primates. Rodents are 

able to perform simple psychophysical tasks like the ones primates 

normally perform and, opposite to primate research, data can be 

collected from a multitude of individuals, with less financial (and ethical) 

cost (Abbott, 2010). Adding to this is the promise of circuit targeting and 

manipulation (eg. Cohen et al., 2012; Kvitsiani et al., 2013; Tai et al., 

2012; Znamenskiy and Zador, 2013), advantages that can be obtained 

due to genetic and molecular tools that are more easily implemented in 

these models.  

The odor-guided two-alternative forced-choice task 

Rodents can perform psychophysical tasks in response to a plethora of 

sensory modalities: olfaction (eg. Ranade & Mainen, 2009), audition (eg. 

Otazu, Tai, Yang, & Zador, 2009), vision (eg. Busse et al., 2011), 

somatosensory (reviewed in Diamond & Arabzadeh, 2013), or even 

combining multiple modalities (Raposo et al., 2012). Given the subject of 

this dissertation, let us focus on olfactory-guided decision making.  

One of the most prolific lines of research so far has come from the use of 

a two-alternative forced choice tasks scheme, where rats have to 

categorize binary choices in response to olfactory stimuli. In this task a 

rat pokes his nose into a central “poke” where odors are delivered. After 

sniffing the odor, it is then free to choose to move towards one of two 

side pokes, where reward is available, only for correct choices. Rats are 

psychophysically challenged by mixtures of two odors, with varying 

contrasts. In this task the mixture contrasts serve the same purpose as 

the coherence of moving dots in the RDM, such that on average higher 

accuracy is achieved in response to higher mixture contrasts. 
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A first behaviour breakthrough that came from animals performing this 

task was that, contrary to the RDM, response time did not vary with task 

difficulty, or in other words, speed did not trade with accuracy (Uchida 

and Mainen, 2003). This might imply that, contrary to the RDM, 

evidence is not being accumulated over time in this perceptual decision 

and it could be concluded that rodents do not integrate evidence to 

commit to decisions, as humans and other primates. So the processes 

underlying perceptual decision-making could not be generalized across 

these species. But that is not the case as was later found in rodents 

performing a task that requires integration (Brunton et al., 2013). What 

seems to be happening is that the sensory aspect of this task is not 

limiting to the animals, so although rats were making mistakes, 

especially for lower contrast mixtures, uncertainty does not arise at the 

sensory level. It was later suggested that uncertainty in odor category 

decisions arises from noise sources that fluctuate slowly, from trial-to-

trial, rather than rapidly within trials (Zariwala et al., 2013). This view is 

important for the work presented here. 

Establishing a neural circuit for odor categorization 

Rodents are very good at smelling and a big portion of their brain is 

dedicated to processing olfactory cues. The study of the early events of 

olfactory processing is a wide field on it’s own (reviewed in Murthy, 

2011; Uchida, Poo, & Haddad, 2014; Wilson & Mainen, 2006) and much 

is already well understood from studies involving non-behaving animal 

data. The first relay for processing olfactory information is the olfactory 

bulb (OB), to where olfactory receptor neurons project forming 

stereotyped structures called glomeruli. These regions encodes the 

identity of odor presented to the rats in the central odor port (Uchida 

and Mainen, 2003). The firing of OB projection neurons is well locked to 

the onset of sniffing (Cury and Uchida, 2010) and these projections 

reach multiple regions in the brain, predominantly the piriform cortex 

(PC), olfactory tubercle and cortical amygdala (Sosulski et al., 2011). In 

the PC, single units or neuronal ensembles were found to have correlated 

activity with multiple aspects of the odor mixtures presented to the 
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animal, but had a low average correlation between their firing rates and 

subjects’ choices, or expected outcome (Miura et al., 2012a). So, like MT 

in the RDM task, the piriform cortex appears to represent the sensory 

information required for task performance. But its activity is not 

correlated with decision in the odor categorization task. Also, by 

monitoring the activity from a small subset of PC neurons, a simple 

decoder based on firing rates could extract more than enough 

information in a single sniff cycle to account for the behavioral accuracy 

of rats in the odor categorization task. This adds to the notion that the 

noise source, which limits performance in this task, lies downstream of 

the sensory layer of this decision-making circuitry. 

In a different set of studies the role of superior colliculus (SC) in the 

odor-guided categorization task was investigated. Neurons in rats’ SC 

encoded choice direction while the animals were moving towards the 

side choice ports and inactivation of this region severely disrupted the 

choice behavior (Felsen and Mainen, 2008). This has broadened the 

spectrum of orientation-dependent actions with which the SC is 

involved, away from the “primate” saccade. Furthermore, in a version of 

the task where animals were forced to remain longer in the central port 

the activity of SC neurons could often predict the upcoming choice far in 

advance of movement initiation. Also, choice-predictive neurons were 

jointly modulated by discrimination difficulty (odor contrast) and choice 

outcome (error vs. correct trials), demonstrating that the critical sensory 

information necessary for constructing higher-order decision variables 

can be carried in the SC along with the choice itself (Felsen and Mainen, 

2012). In this same version of the task, performed by mice, activity of 

neurons from a brain stem region (pedunculopontine tegmental 

nucleus), was also correlated with choice direction and outcome 

(Thompson and Felsen, 2013). These two previous results indicate that 

properties of the decision variable are still reflected in the activity of 

neurons from regions closer to the motor output responsible for 

movement. But given that animals do not improve performance by 

sampling odors for longer times, it’s likely that the decision had been 

committed already while animals were forced to remain still in the odor 
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port. As in the RDM, it’s likely that the decision starts to take shape 

upstream from the SC.  

In a similar task, where rat’s have to perceive auditory stimulus to guide 

decisions, optogenetic manipulation of auditory cortex neurons which 

project to auditory striatum, biased animals choices (Znamenskiy and 

Zador, 2013). This bias was highly specific, towards or against the 

direction predicted by the cortical tonotopy, depending on whether the 

neurons were activated or inhibited. Given the ubiquity of corticostriatal 

projections in cortex, the authors suggested that these might provide a 

general mechanism for control of motor decisions by sensory context. In 

a version of the odor guided categorization task that included a reward 

value manipulation, neurons from the dorsomedial striatum (and ventral 

striatum, to a smaller extent) were shown to play a critical role in net 

value–dependent regulation of response vigor (Wang et al., 2013). 

Nevertheless, the neuronal activity correlated with this effect was 

observed before trial initiation and no perceptual-related bias of choice 

was reported, leaving open the question of whether this area plays a role 

in biasing decisions with odor specificity and whether trial-by-trial 

decision uncertainty in this task could arise from noise in cortico-striatal 

associations. 

Neural correlates of decision confidence and uncertainty 

in the orbitofrontal cortex 

The role of the orbitofrontal cortex (OFC) was also investigated in the 

olfactory-guided categorization task. In this task, neurons in the OFC 

were found to encode information about presented stimuli, but not about 

choice, in the period of time before a decision was made (Feierstein et 

al., 2006). In the same study OFC neurons encoded choice direction 

when the animal was moving towards the choice port. After the animal 

reached the choice port OFC neurons encoded information about goal 

properties, such as goal location and/or reward presence. These findings 

are in concordance with the view of OFC as playing a central role in goal 

monitoring, which was shown in the context of reward-based decision 

making (Balleine et al., 2011; Burke et al., 2008; Fellows, 2011; Morrison 
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and Salzman, 2011; Padoa-Schioppa and Assad, 2008; Padoa-Schioppa 

and Cai, 2011; Roesch et al., 2006; Schoenbaum et al., 2011; Schultz et 

al., 2000; Takahashi et al., 2013; Wallis, 2012). OFC activity was also 

found to be encoding decision confidence in rats performing the odor 

categorization task (Kepecs et al., 2008). This finding was foundational 

for the work presented here, so let us describe it in detail. 

 A simple modification of the odor categorization task allowed for a 

better focus on neural representations of uncertainty. In this task reward 

delivery was delayed, so the animal had to spend time (0.3-2s) in the 

choice port, anticipating the trial outcome. This was called the outcome 

anticipation period. Everything else remained similar - the different odor 

mixture contrasts allowed for challenging choices and deterministic 

reward contingencies enforced the decision rule. During the outcome 

anticipation period 24% of the recorded OFC units were firing as a 

function of odor mixture and outcome forming a “x”’-pattern 

characteristic for uncertainty signaling – on average they were less active 

for correct trials, in a difficulty dependent manner (Figure i E-H).  

Firing rates were lower for correct trials for easy stimuli (100% odorA : 

0% odor B and 0% odorA : 100% odor B mixtures) than for correct trials 

for stimuli closer to the 50A:50B category boundary. The opposite was 

observed for error trials. So, the firing rate of these cells was inversely 

correlated with accuracy, with higher firing rates predicting chance 

performance. These were called the “uncertainty” population of neurons. 

In 19% of the recorded units, the opposite pattern was observed. These 

were called “confidence” cells. In our framework, confidence is simply 

the opposite of uncertainty.  
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Figure i - Confidence 
estimation in a decision 
model and by OFC 
neurons.  

A, Schematic of a model 
for category decisions. 
Each odour mixture 
stimulus, as well as the 
memory for the category 
boundary, is encoded as a 
distribution of values. In 
each trial a stimulus, si, 
and memory of the 
boundary, bi, are drawn 
from their respective 
distributions. A choice is 
calculated by comparing 
the two samples (si,bi), and 
a confidence value is 
estimated by calculating 
their distance (|si-bi|). 
Incorrect choices result 
from noise, represented in 
the model by the width of 
the stimulus and category 
boundary distributions.  

B, Example psychometric 
function of the model, 
replicating the high choice 
accuracy of rats for pure 
odours and decreased 
accuracy for mixtures near 
the imposed the category 
boundary. 

 C, Mean accuracy of model 
choices as a function of 
decision uncertainty. The 
uncertainty estimate, s, is 
transformed from the 
distance between the 
stimulus and boundary 

samples. D, Mean decision uncertainty estimates generated by the model as a function of 
stimulus and trial outcome. Note that the model (or a subject) has access only to a stimulus 
sample and not the stimulus type (for example, 56/44). E, Firing rate of an example neuron 
during the outcome anticipation period as a function of odour stimulus and trial outcome. Error 
bars are s.e.m. across trials. F, Mean choice accuracy as a function of the firing rate for the 
same unit in E. Firing rates were binned and the mean accuracy was calculated for each range 
of firing rates. Error bars represent standard errors based on the binomial distribution of 
outcomes. G, Mean normalized firing rate of negative outcome selective population (negative 
outcome preference index across trials with all stimuli pooled at P,0.05, permutation test) 
during the anticipation period. H, Mean accuracy as a function of the firing rate for the same 
neuron population as in G. Firing rates were binned for individual neurons and the mean 
accuracy was calculated for each range of firing rates. These curves were normalized to a 
maximal firing rate of 1 and averaged. Error bars represent s.e.m. across neurons.  
– Adapted from Kepecs et. al 2008. 

!

These patterns of activity were predicted by an SDT-based model that 

derived choices and confidence estimates for the odor categorization 

task, (Figure i A-D). Also a race-model, a type of accumulator model, 

could predict the same pattern of activity, which contributed to the 

notion that confidence estimation is a generalized property inherent to 

the decision making process based on sensory stimuli. Additionally, 
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activity of these cells was not explained by the history of previous 

rewards, choices or outcomes, suggesting that these signals were related 

to a decision just made.  

This was the first evidence for decision confidence neural correlates in 

animals. Subsequent research, in non-human primates, within the scope 

of visual guided decision making, have found neuronal correlates of 

decision confidence in cortical areas such as the LIP (Kiani and Shadlen, 

2009), the supplementary eye field (Middlebrooks and Sommer, 2012), 

the pre-motor cortex (Martinez-Garcia et al, 2014) and the pulvinar 

nucleus of the thalamus (Komura et al., 2013).  

In the Kepecs study the authors trained rats to perform one other 

version of the task named the “reinitiation” task. Here, the reward 

delivery delay was even longer, varying from 2 seconds up to 8 seconds. 

In incorrect trials, an auditory tone played 8 seconds after choice port 

entry signaled the error and was followed by a time-out punishment. 

Animals were allowed to leave the choice port before the 8 seconds had 

passed and the task design made it so that upon initiating a new trial 

they could expect a higher contrast (easier) stimuli to be delivered.  

The fraction of trials in which animals decided to reinitiate a trial 

followed the same “x”-pattern as observed from firing rate of uncertainty 

cells in the original task– they reinitiated a trial more often when 

expecting the trial to be incorrect, after a high contrast mixture. This was 

indicative that animals could use confidence information behaviorally. 

However, no electrophysiological data was acquired when animals were 

performing the reinitiation task and it was left to know how did the 

activity from OFC uncertainty (and confidence) cells correlated with the 

behavioural usage of confidence.  

One other caveat related to this study comes from the previous history of 

research in the OFC, which mostly linked activity of this area to encoding 

properties of reward value (Wallis, 2007). Due to the two-alternative 

forced choice task design the data is consistent with either a 

representation of outcome probability or outcome uncertainty signals. 
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Either way, the computation of outcome probability must incorporate an 

estimate of decision uncertainty, and this estimate is thought to be 

important for computation of subjective expected value (Mainen and 

Kepecs, 2009). Since the value of reward was kept constant, it is not 

clear how does the uncertainty signal varies with magnitude of expected 

reward. 

Evaluation, or performance monitoring, is necessary to analyze the 

efficacy or optimality of a decision with respect to its particular goals 

(Shadlen 2007). OFC is particularly important for reward-based 

behaviors when values are inferred, for instance using model-based 

reinforcement learning algorithms (Daw and Doya, 2006; Jones et al., 

2012; Wilson et al., 2014). Sharing a similarly important role in 

evaluation of performance is the ventral-striatum (VS) (eg. Botvinick et 

al., 2009). This area was found to interact with OFC to guide optimal 

courses of actions that ultimately lead to rewards (Hare et al., 2008; 

McDannald et al., 2011; Simmons et al., 2007). Moreover, it is likely that 

activity in VS neurons also correlates with decision confidence, (Daniel 

and Pollmann, 2012a; Hebart et al., 2014a), but whether these neurons 

can predict a behavioral report of confidence is also not known. A 

cortico-striatal circuit involving OFC and VS could be relevant to 

evaluate decisions and optimize actions taking into account confidence 

estimates. 

Behavioral use of confidence 

When studying human decision making one can simply ask a subject for 

a semantic confidence report or raking about the decision made. While 

these might (or might not) be an accurate report of decision confidence, 

it is a strategy that cannot be followed in animal studies. To overcome 

this “communication” issue there is a realm of behavioural tasks 

designed to study confidence in animals. They can be subdivided in three 

categories: uncertain option tasks, opt-out tasks and post-wagering tasks 

(reviewed in Kepecs & Mainen, 2012).  
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Generally, in uncertain option tasks (eg. Smith, Shields, Schull, & 

Washburn, 1997) animals can choose to perform a two-alternative 

perceptual categorization or choose an uncertain option. In these tasks 

the reward payoff matrix is as follows - a correct categorization leads to 

reward, choosing the uncertain option leads to a smaller reward amount 

and wrong categorizations lead to absence of reward, or time-out 

punishment. In these tasks animals tend to choose more often the 

uncertain option whenever the stimulus presented is close to the 

category boundary. But a caveat of these tasks is that they can be viewed 

as a three-choice decision, which can be solved simply by learning 

appropriate stimulus-response categories without necessitating 

confidence estimates.  

Opt-out tasks are a variation of uncertain option tasks. They have been 

implemented in the RDM task scheme and allowed for the discovery of 

neural correlates of decision confidence in the parietal cortex of monkeys 

(Kiani and Shadlen, 2009). In Kiani´s study (as in all other RDM tasks) 

animals had to make a binary choice dependent on the motion of visual 

stimuli. On a subset of trials, after stimulus presentation, a third ‘opt out’ 

choice was presented for which monkeys received a smaller but 

guaranteed reward.  

The authors found that the frequency of choosing the ‘opt out’ choice 

increased with increasing stimulus difficulty and with shorter stimulus 

sampling. Moreover, performance on trials in which they declined to opt 

out was better than when they were forced to perform the 

discrimination. A problem with opt-out tasks, which is shared with 

uncertain option tasks, is that the task design does not allow for 

confidence report and perceptual guided decision to occur in the same 

trial. So confidence measures related to decisions just made cannot be 

obtained. Furthermore, confounding factors, such as attention or 

motivation, can be used to explain why is it that when animals choose 

not to opt out they perform better (Kepecs and Mainen, 2012).  

An ideal confidence-reporting task requires a report of choice and the 

confidence associated with that choice in the same trial. Post-decision 
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wagering tasks can accomplish that, given that after the choice is made, 

confidence is assessed by asking a subject to place a bet on his choice 

(Persaud et al., 2007). The reinitiation task from Kepecs was similar to a 

post-decision wager because after the odor-guided decision, rats would 

have to make a new decision in whether to stay and risk no reward with 

timeout punishment, or leave and start a new, potentially easier trial. 

But it still carried a problem - in each trial only a single bit of 

information was gained about decision confidence (stay or leave). A 

graded report of confidence might be preferable over a binary report, for 

instance, so that single trial neural activity can be correlated with single 

trial confidence-driven behavior.  
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AIMS 

Neural and behavioral correlates of 

decision confidence 

 

In this dissertation we will aim at the following: 

Design a post-wager confidence report suited for rodents and 

interpret the behavior using theoretical frameworks.  

Evaluate whether OFC is required for confidence reports.  

Explore OFC and VS neural activity in the computation of decision 

confidence and behavior adaptations tuned by confidence 

Understand the effect of reward magnitude in post-decision 

confidence judgments  
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ORBITOFRONTAL CORTEX IS 

REQUIRED FOR OPTIMAL 

WAITING BASED ON DECISION 

CONFIDENCE 
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SUMMARY 

Confidence judgments are a central example of metacognition—

knowledge about one’s own cognitive processes. According to this 

metacognitive view, confidence reports are generated by a second-order 

monitoring process based on the quality of internal representations 

about beliefs. Although neural correlates of decision confidence have 

been recently identified in humans and other animals, it is not well 

understood whether there are brain areas specifically important for 

confidence monitoring. To address this issue we designed a post-

decision temporal wagering task in which rats expressed choice 

confidence by the amount of time they were willing to wait for rewards. 

We found that orbitofrontal cortex inactivation disrupts waiting-based 

confidence reports without affecting decision accuracy. Furthermore, we 

show that a normative model can quantitatively account for waiting 

times based on the computation of decision confidence. These results 

establish an anatomical locus for a metacognitive report, confidence 

judgment, distinct from the processes required for perceptual decisions. 

 

INTRODUCTION 

If you are asked to report your confidence in a decision—how certain are 

you that you made the correct choice—you can readily answer. But what 

is the neural basis for this ability? Early behavioral studies considered 

confidence judgments as a type of metacognitive process related to self-

awareness. These studies established that several species besides 

humans are capable of confidence judgments but that some, such as rats, 

may not be (Flavell, 1979; Hampton, 2001; Metcalfe, 2008; Smith et al., 

2003). Against this backdrop of behavioral results, a recent line of 

studies identified single neuron correlates of decision confidence across 

species, in the brains of rats and monkeys (Kepecs et al., 2008; Kiani and 

Shadlen, 2009; Komura et al., 2013; Middlebrooks and Sommer, 2012), 

as well as functional correlates in humans (Fleming and Dolan, 2010; 
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Lau and Passingham, 2006; De Martino et al., 2013; Rolls et al., 2010a; 

Yokoyama et al., 2010). However, it is still not well understood where 

and how choice confidence is computed or how it is made accessible to 

an overt behavioral report. These issues are particularly interesting 

because they relate to the definition of metacognition and awareness. 

A mechanistic interpretation of metacognitive theories implies that a 

second-order brain circuit reads first-order representations of a separate 

circuit and transforms them into a second-order representation, such as 

a decision variable for confidence (Insabato et al., 2010a; Kepecs et al., 

2008; Kiani and Shadlen, 2009; Komura et al., 2013; Ma et al., 2006; 

Middlebrooks and Sommer, 2012). The representation of decision 

confidence in specific brain regions implies that lesions of such brain 

areas might affect the behavioral manifestation of decision confidence 

without changing other aspects of the choice behavior. In contrast, 

theoretical studies suggest that because confidence estimation is central 

to statistical inference, it ought to play a fundamental role in 

probabilistic or Bayesian neural computations of all kinds (Ma et al., 

2006; Moreno-Bote, 2010; Rao, 2010; Zemel et al., 1998). This view 

suggests that the computations of choice and confidence are mixed 

within the same neural circuits and hence representations of confidence 

might not be explicit or anatomically segregated(Higham, 2007). 

Consistent with these ideas, data from primates show that neurons in 

parietal cortex that represent a perceptual decision also encode the 

confidence associated with that decision(Kiani and Shadlen, 2009).  

Here we pursued the hypothesis that orbitofrontal cortex (OFC) is 

causally required for confidence reporting independent of perceptual 

decision-making. This hypothesis was based on two lines of evidence. 

First, previously we found that rat OFC contains an explicit 

representation of decision confidence (Kepecs et al., 2008). Second, OFC 

has been implicated in goal-directed or intentional decisions that require 

the evaluation of predicted outcomes (Jones et al., 2012; Kennerley et 

al., 2011; Morrison et al., 2011; Padoa-Schioppa and Assad, 2008; Rolls 

and Grabenhorst, 2008; Schoenbaum et al., 2009; Wallis, 2007). 
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Because reporting confidence requires performing an action on the basis 

of a predicted outcome, an intact OFC may be required for adaptive 

adjustment of the behavior according to decision confidence. At the 

same time OFC is probably not involved in most perceptual decisions. 

Studying confidence reports in animals requires a clear behavioral 

readout of confidence. Gambling on the outcome of a decision generates 

an observable wager that can quantitatively index confidence 

(Middlebrooks and Sommer, 2012; Persaud et al., 2007). Appropriate 

wagering requires an evaluation of decision confidence that can be 

distinguished from random betting using a computational approach 

(Fleming and Dolan, 2010; Kepecs and Mainen, 2012; Kepecs et al., 

2008; De Martino et al., 2013). Therefore to evaluate whether OFC is 

required for confidence reports of perceptual decisions, we designed a 

gambling task for rats with continuous wagers based on their willingness 

to wait for delayed rewards, interpreted the wagers within a theoretical 

framework for statistical confidence and used inactivation methods to 

probe the role of OFC in waiting-based confidence judgments. 

 

RESULTS 

A post-decision wagering task  

To study confidence in perceptual decisions we used an extensively 

studied odor categorization task that allowed us to systematically vary 

the difficulty and hence confidence in a decision (Kepecs et al., 2008; 

Uchida and Mainen, 2003). Upon entry into a central odor port, rats 

(n=10) received an olfactory stimulus (binary mixture of 2-octanol 

stereoisomers) and responded to the left or right choice ports based on 

the dominant odor component (Figure 1.1A, See Experimental 

Procedures). Trials with different odor-mixture ratios (20:80, 40:60, 

43:57 and 50:50 mixtures and their conjugates, 80:20, etc.) were 

randomly interleaved. Rats achieved high performance for easy stimuli 

(larger mixture ratios), but were challenged by more difficult 
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discriminations (Figure 1.1B). The perceptual accuracy was stable 

across several sessions of testing (Figure 1.1B). As previously reported 

(Uchida and Mainen, 2003; Zariwala et al., 2013) reaction times, as 

measured by the duration animals were sampling the odor before 

moving to the choice port, showed little sensitivity to odor-mixture ratio 

(Figure 1.1C and Figure 1.S1).  

 

Figure 1.1- Post-decision wagering task using temporal wagers. 
(A) Schematic of the behavioral paradigm. To start a trial, rats entered the central odor port 
and after a pseudorandom delay of 0.2–0.5 s a mixture of odors was delivered. Rats responded 
by moving to the left or right choice port, where a drop of water was delivered after a 0.5–8 s 
waiting period for correct decision (exponentially distributed with a decay constant of 1.5 after 
a 0.5s offset and 8s maximum). In a small fraction of correct choice trials, water rewards were 
omitted. Trials of different odor-mixture ratios were randomly interleaved independent of rats’ 
performance in the previous trials. While waiting for reward, animals were required to keep 
their snouts inside the choice port, which was continuously monitored using infrared photo-
beams. Failure to break the photo-beam resulted in error. (B) Behavioral performance and 
psychometric function of an example rat. Each thin line represents logistic fit (see Experimental 
Procedures) to the behavioral data collected in a single test session. Dots represent behavioral 
performance averaged across all trials of all test sessions. Thick gray line represents logistic fit 
to the average performance data shown with black dots. Error bars in all panels represent ± 
s.e.m. across trials. (C) Odor sampling duration (the duration animals were sampling the odor 
before moving to the choice port) as a function of odor mixture contrast in an example rat. 
Thin lines represent odor sampling duration in each of test sessions. Thick line represents the 
data averaged across all trials of all test sessions. (D) The timing of reward delivery (blue, see 
Experimental Procedures) and the distribution of waiting times at the reward ports of all test 
sessions for one example rat (black). Waiting times were measured for all the error trials and 
fraction of correct trials (i.e. reward omission trials).  
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An ideal confidence-reporting task requires a report of choice and the 

confidence associated with that choice in the same trial (Kepecs and 

Mainen, 2012; Middlebrooks and Sommer, 2012). Lacking this, it is 

difficult to rule out alternative mechanisms, a limitation of opt-out tasks 

(Kepecs, 2013). In addition, a continuous, rather than discrete, 

behavioral measure of confidence might enable stronger inferences 

about the underlying mechanisms (Kepecs and Mainen, 2012; Schurger 

and Sher, 2008). To allow rats to wager on the likelihood that their 

decision was correct, we delayed reward delivery and measured the time 

animals were willing to wait at the choice ports (Figure 1.1A,D). 

Reward delay was drawn from an exponential distribution (decay 

constant, τ = 1.5, see Experimental Procedures) to generate a relatively 

constant level of reward expectancy over a range of delays (i.e. flat 

hazard rate), (Janssen and Shadlen, 2005; Zariwala et al., 2013). 

Incorrect choices were not explicitly signaled and hence rats eventually 

left the choice ports to initiate a new trial. To measure waiting time (WT) 

for correct choices we introduced a small fraction of catch trials (10-15%) 

for which rewards were omitted. Therefore, in this novel post-decision 

wagering paradigm, each trial resulted in a binary choice as well as a 

graded wager, WT, for all incorrect trials and a fraction of correct trials. 

Figure 1.S1- Response 
times  
(A) Mean odor sampling 
duration (defined as the 
interval between odor valve 
opening time and the time 
point on which rat leaves the 
odor port) for the example rat 
as a function of odor mixture 
contrast. For all panels of the 
figure, error bars are ± s.e.m 
across trials or across rats. 
(B) Mean odor sampling 
duration as a function of odor 
mixture contrast averaged 
across ten rats. (C) Mean 
movement duration (defined 
as the interval between the 
time of leaving the odor port 
and the time of entry into a 
choice port) as a function of 
odor mixture contrast for the 
same rat as in (A). (D) Mean 
movement duration as a 
function of odor mixture 
contrast averaged across ten 
rats.  
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Derivation of optimal confidence–based temporal 

wagering 

To maximize rewards, an ideal observer should wait until the relative 

expected value of waiting for reward drops below the expected value of 

leaving. Because reward size is constant from trial-to-trial but depends 

on being correct, the subjective expected value of staying varies from 

trial-to-trial with the level of decision confidence. To derive the 

normative waiting time we assumed that the observer arrives at the 

reward port with a specific internal expectation about how likely it is to 

receive the reward, reflecting its decision confidence, which we denoted 

by the variable C. Assume that the observer has spent time  in the port 

without receiving a reward. The observer then faces the decision whether 

to spend the next interval of time, from  to  inside the reward 

port or leave and initiate a new trial. This decision should be based on 

the reward hazard function—the probability of getting reward at the next 

moment given that no reward has been received until now (Figure 
1.2A). This probability can be computed through Bayes’ theorem. Let us 

denote as  the event that waiting until time  was not rewarded, and 

 the event that reward arrives at the next moment, from  to . 

The reward expectation (hazard) function can be expressed as the 

conditional probability : 

  . (1) 

Notice that by definition the probability of waiting without reward given 

that reward arrives in the next moment, , is 1. The probability of 

being rewarded at the next moment, P(R), depends on the subject’s 

estimate of the time of reward delivery. We denote the experimenter-

defined temporal distribution of rewards during the anticipation period 

as , a distribution that was kept fixed during testing (see Figure 
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1D). Then the probability of getting rewarded at the next moment is 

given by: 

 ,  (2) 

where  is the expectation of being rewarded in the current trial for 

the given choice. Because we are describing the reasoning of the ideal 

observer, the expectation to be rewarded should be based on the internal 

representation of response accuracy, which means that  can be 

associated with the decision confidence, i.e. . The probability of 

waiting until time  without reward can be evaluated as , i.e. as 

one minus the probability of being rewarded during that time. 

    (3) 

From these equations we can compute the probability of being rewarded 

within time interval from  to  under the condition that the reward 

was not delivered before that       (4) 

Here  is the rate of reward expected by the observer within the next 

time interval, which is the reward expectation per unit time. Since, in our 

experiments, , we obtain the reward hazard as a 

function of decision confidence  

  (5) 

To obtain the optimal waiting time, the rate of reward expectation  

should be compared to the average reward rate for the session, , 
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representing the value of leaving or opportunity cost. Indeed, if , 

i.e. the expected rate of reward falls below the opportunity cost, the 

observer should leave the port and initiate a new trial (Figure 1.2A). 

The optimal waiting time, , can therefore be obtained from the 

equation , where  is given by Equation 5, while  is a 

parameter similar across trials within the same block. From this 

equation, the optimal waiting time is a function of the decision 

confidence, C  (Figure 1.S2): 

  (6) 

Here C is decision confidence variable from trial to trial, while  is the 

opportunity cost (a constant). Opportunity cost is expected to be smaller 

than , since otherwise the ideal observer would not have an incentive 

to go to the reward port. Thus, the product is less than one. This 

derivation reveals that  monotonically increases with confidence 

levels, consistent with intuition (Figure 1.2B and Figure 1.S2). The 

equation predicts that when , then WT is zero; meaning that in 

very low confidence trials or when the opportunity cost is large, it is not 

worth for the observer to wait inside the reward port. Thus in these cases 

the animal should abort the trial as quickly as possible.  
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Figure 1.2- A computational framework for estimating waiting time based on decision 
confidence  
(A) The optimal waiting time can be estimated by comparing the rate of reward expectation 

 and the opportunity cost, . While waiting for a reward, the agent faces the decision   
each moment If the expected rate of reward falls below the opportunity cost, the observer 

should abort the trial and initiate a new trial. The rate of reward expectation  is the 
probability that a reward will arrive at the next moment (denoted as event R), given that the 

agent did not yet receive reward (denoted as event W). (B) The model predicts that 
monotonically increases with the level of decision confidence, C. (C) In each trial, the stimulus 
is defined as the percentage of one of the components in the odor mixture ( ) and the 

internal representation of the stimulus ( ) is noisy read-out of the external stimulus.        

(D) Choice in each trial is computed by comparing the value of  and the decision boundary 

(b=50%), thus a step function of . Decision confidence, is a function of the distance 

between the internal representation of stimulus  and the decision boundary, as defined by 
Equation 7.  
 

To model decision confidence, we used a signal detection theory 

framework where each choice and its associated confidence could be 

estimated by comparing the sampled stimulus and the decision 

boundary. We modeled the stimulus as the percentage of one of the 
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components in the odor mixture henceforth denoted by  and defined a 

noisy read-out of that as the internal representation of the stimulus  

(Figure 1.2C, see Experimental Procedures I). In each trial, the values 

of  exceeding the decision boundary (b=50%) result in a response to 

the right, while the values  produce a left response (Figure 
1.2D). The distance between the internal representation of stimulus  

and boundary provides an estimate of decision confidence, C (Figure 
1.2D). Specifically, decision confidence in our approach is defined as the 

probability of making the correct decision  (see Experimental 

Procedures). It is not difficult to see that for a simple decision task 

described here, the probability of being correct is 

  (7) 

Thus confidence, C, is an internal metric about the probability of choice 

correctness. Because the internal representation of the stimulus  

varies from trial to trial even if the stimulus mixture  is fixed, response 

accuracy becomes coupled with decision confidence. Since  is 

an internal variable, it is not available for direct measurement but it 

could be assessed through the time spent by the observer in the reward 

port as described above (Equation 6). Notably, these general predictions 

about decision confidence are not only robust to various forms of 

stimulus and decision boundary distributions, but could also be derived 

from other decision frameworks based on Bayes’ rule, integration of 

evidence and attractor models (Kepecs and Mainen, 2012). 
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Figure 1.S2 - Ideal observer model for temporal wager  
(A) Reward hazard rates (equation (5) in the main text) plotted as a function of waiting time 
for different levels of decision confidence. For illustration, time constant for the temporal 

reward distribution was set to 2s. (B) Optimal waiting times (WTopt
, equation (6) in the main 

text), predicted by the model as a function of initial decision confidence for different values of 

opportunity costs, shown with different colors. WTopt 
is higher when the model encounters 

lower opportunity costs. For a fixed opportunity cost, the WTopt 
monotonically increases as a 

function of decision confidence.  
 
Rats’ behavior is consistent with the normative temporal 

wagering model 

We used this computational framework to examine whether rats’ WTs 

could be used as a trial-by-trial proxy of decision confidence. To do so, 

we fitted our model to rats’ behavior (Figure 1.3). Starting from the 

rat’s psychometric curve, we estimated the overall choice uncertainty 

(standard deviation of the overall sensory and internal noise 

distribution, σ, see Experimental Procedures I for details of fitting). We 

then used the estimated σ to calculate the intermediate variable, decision 

confidence (C), for each trial (Figure 1.3A, middle panel). We then 

fitted a single free parameter, the opportunity cost, κ, that minimized the 

difference between rat’s and the model’s WT distribution (Figure 1.3A, 

right panel). Although this model fit the mean WTs for each condition 

well, in order to fit to the full WT distribution we also assumed that rat’s 

estimation of elapsed time carries uncertainty. Specifically, previous 

studies have shown that the standard deviation of time estimates scales 

with elapsed time; referred to as ‘scalar timing’ (Gibbon, 1977; Gibbon et 

al., 1997; Janssen and Shadlen, 2005). Therefore, for the fitting, the 
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model’s WT distribution was blurred with a normal distribution whose 

standard deviation was proportional to the elapsed time (Figure 1.3A, 

right panel, see Experimental Procedures I). As expected from Equation 

6, following this fitting, the WTs showed a monotonic relationship with 

the estimated confidence levels (Figure 2B), demonstrating that WTs in 

the task could be viewed as a trial-by-trial proxy for decision confidence. 

 

Figure 1.3 - Post-decision waiting time report follows decision confidence.  
(A) Fitting the computational model to the behavioral data. Two parameters need to be 
estimated. First, the standard deviation of the sensory and internal noise distribution (σ), which 
was used to calculate model’s trial by trial choice and confidence. Second, the opportunity cost 
(κ), which, alongside confidence and reward delay distribution (Equation 6) was used to 
calculate model’s WT. Left and middle panels: estimating the model’s noise from rat’s 
psychometric curve. σ was estimated which could minimize the difference between rat’s and 
model’s psychometric curves. The estimated σ was used to estimate the confidence associated 
with a choice in each trial. Next, the opportunity cost, κ, was estimated by minimizing the 
difference between a rat’s and the model’s WT distributions. Following the fitting, the model’s 
WT distribution closely overlapped rat’s WT distribution. See Experimental Procedures I for 
details of fitting. (B-D) Predictions of the model and behavioral data from example rat. The 
model produces testable predictions about the relationship between confidence, perceptual 
accuracy, stimulus difficulty and trial outcome. The predictions of the model closely match the 
behavioral data. In each panel, thick lines represent the predictions of the model (with 
parameters optimized to fit rat’s accuracy curve and overall WT distribution) and behavioral 
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data are shown as mean ± s.e.m. across trials. (B) The model predicts that decisions with 
longer WT have higher accuracy (thick lines). Lines show model’s psychometric curves 
separated based on WT. Dark gray thick line represents long WT (defined as above 70 
percentile), light gray thick line represents short WT (shorter than 70 percentile). Dots show 
rat’s perceptual accuracy separated based on WT. Black dots represent long WT trials (defined 
as above 70 percentile) and gray dots indicate short WT trials (shorter than 70 percentile). 
Logistic psychometric fits, used for the slope comparison, are not shown. (C) In the model, WT 
predicts choice accuracy (thick line). Consistent with this prediction, rat’s decision accuracy 
increases with longer WT (thin line). (D) The model predicts that waiting time varies with 
stimulus difficulty in opposing directions depending on choice correctness (thick lines; correct: 
green, error: red) and rat’s WTs are consistent with this prediction. Dots show mean WT of the 
example rat as a function of odor mixture contrast and trial outcome (correct: green, error: 
red). (E-G) As in (B-D) averaged across 10 rats (mean ± s.e.m. across rats). In (E) black and 
gray lines represent logistic fit on the accuracy data in long and short WT trials, respectively 
(see Experimental Procedures). In (G) lines represent linear fits on the rats’ WT data. 
 

This model yields specific predictions about how WT, as a proxy for 

decision confidence, relates to other experimentally controlled and 

monitored variables. First, decisions in trials with longer WT are 

expected to have higher accuracy (Figure 1.3B, thick lines) for any 

given stimulus. Consistent with this prediction, when we separated 

behavioral trials into long and short WT, choice accuracy in trials with 

intermediate odor mixture contrast showed significant dependency on 

WT (Figure 1.3B, E, P < 0.05, Mann-Whitney U-test across trials in 

10/10 rats; and P < 0.05, Mann-Whitney U-test across rats). The slope of 

the rats’ psychometric functions was also steeper for long WT trials (P < 

0.05 in 10/10 rats; and P < 0.001 across rats, bootstrap test, see 

Experimental Procedures).  

Second, WT is expected to predict choice accuracy (Figure 1.3C, thick 

line). Consistent with this prediction we found that animals’ WT-

conditioned accuracy function (see Experimental Procedures) 

monotonically increased with longer WT, ranging from chance level to 

near-perfect performance (Figure 1.3C, F). Third, WT is expected to 

vary with stimulus difficulty in opposite directions depending on choice 

correctness (Figure 1.3D, thick lines). Indeed, we found that rats’ mean 

WTs varied with stimulus difficulty, and this relationship was opposing 

for correct and error trials (Figure 1.3D, G). For all these predictions, 

the model with parameters optimized to fit the rats’ overall WT 

distributions (Figure 1.3A) showed striking match to their behavioral 

data, as can be seen in Figure 1.3B-D. These properties further 

established WT as a good trial-by-trial proxy of C, and suggest that it can 

serve as an implicit report of decision confidence.  
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We also examined the effects of trial history on the stability and 

confidence-dependence of WT. We found that the mean WT was stable 

from the beginning to the end of a session (Figure 1.S3A, B, P > 0.3, 

Mann-Whitney U-test across trials in 10/10 rats; and P = 0.86, Mann-

Whitney U-test across rats). We observed a small but systematic effect of 

the outcome of the previous trial (correct/error) and the WT of the 

previous trial (short/long) on absolute WT. Rats tended to wait longer 

for reward following trials with correct outcome as well as after trials 

with long WT. These effects did not reach significance when averaging 

across rats (Figure 1.S3A, P > 0.1, Mann-Whitney U-test across rats), 

but were significant in many individual rats (Figure 1.S3C, D, P < 0.05, 

Mann-Whitney U-test across trials in 7/10 rats for the effect of previous 

outcome, and 5/10 rats for the effect of previous WT). These patterns of 

modulation would be expected if the distribution of temporal reward 

expectancies, Prew(t), was updated based on the reinforcement history. 

At the same time, these effects did not lead to significant changes to the 

C-dependence of WT (Figure 1.S3E-P, P > 0.1, ANOVA across rats, See 

Experimental Procedures I). 
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Figure 1.S3 - Dependence of confidence reporting measures on trial history.  
(A) Mean waiting times, averaged across rats (n=10), as a function of different parameters 
related to trial history. Left bars: WTs of early trials (initial 30% of trials per session) and late 
trials (last 30% of trials per session) of session; middle bars: WTs after correct and after error 
trials; right bars: WTs after trials with short WT (shorter than median waiting time of session) 
and after trials with long WT (longer than median waiting time of session). For all panels of the 
figure, error bars are ± s.e.m across trials or across rats.   
(B) Scatter plot of mean waiting time of individual rats for early trials (initial 30% of trials per 
session) and late trials (last 30% of trials per session) of session. Each data point corresponds 
to a single rat. Here and for all scatter plots of this figure filled/empty markers indicate 
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statistically significant/non-significant differences of waiting time between the two different 
conditions indicated on x and y axes of plots (Mann-Whitney U-test, P < 0.05).  
(C) Scatter plot of mean waiting time of individual rats when the previous trial had correct or 
error outcome. 
(D) Scatter plot of mean waiting time of individual rats when the previous trial had short WT 
(shorter than median waiting time of session) or long WT (longer than median waiting time of 
session).  
(E) Mean waiting time of an example rat as a function of odor mixture contrast and trial 
outcome for early trials and late trials of session. This parameter did not affect the waiting time 
of this rat (shown with empty purple circle in (B)). 
(F) Mean waiting time of an example rat (same rat as in (E)) as a function of odor mixture 
contrast and trial outcome after correct and error trials. This parameter did not change the 
waiting time of this animal (shown with empty purple circle in (C)). (G) Mean waiting time of 
an example rat (same rat as in (E, F)) as a function of odor mixture contrast and trial outcome 
after trials with short and long waiting time. This parameter did not affect the waiting time of 
this animal (shown with empty purple circle in (D). 
(H, I, J) As in (E, F, G) for an individual rat which its waiting time was not affected by 
early/late trials but was affected by the previous outcome (correct/error) and previous waiting 
time (short/long). This rat was indicated by red triangles in (B, C, D).  
(K, L, M) As in (E, F, G) averaged across all ten rats. 
(N, O, P) Confidence-reporting index (CRI) as a function of odor mixture contrast conditioned 
on the same contingences as in (B, C, D). CRI was measured by constructing receiver 
operating characteristics (ROC) curve from the distribution of waiting times of each rat.  
 

Inactivation of orbitofrontal cortex impairs confidence-

based waiting times but not choice accuracy  

Next, we pharmacologically inactivated OFC and examined decision 

performance and C-dependent waiting times. Rats were first trained in 

the task described above. After reaching criterion performance levels we 

implanted dual cannulae bilaterally in lateral and ventrolateral parts of 

OFC (Figure 1.4A and Figure 1.S4, see Experimental Procedures I).  

Figure 1.S4-  
Histology slides  
Examples of histology 
sections showing the 
position of implanted 
cannulae in different 
rats. In 4 rats the 
implanted cannulae 
correctly targeted the 
OFC whereas in other 
animals, implanted 
cannulae were located 
outside the OFC. 
 
(A,B) Example slides in 
which the cannulae 
correctly targeted the 
OFC.  
(C) Example slide in 
which cannulae tip 
positioned too deep, 
impinging on the pirifrom 
cortex.  
(D) Example slide in 
which cannulae tip 
positioned outside (very 
lateral) the OFC.  
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Following! recovery,! on! alternate! testing! days! rats! (n=4)! received! intra@OFC!

infusion!of!either!the!GABA@A!agonist!muscimol!for!silencing!neural!activity!or!a!

saline! solution! or! no! injection.! Because! we! found! no! differences! in! accuracy,!

reaction!time!and!WT!between!saline!and!no!injection!sessions!!(P!>!0.1,!Mann@

Whitney!U@test!across!trials!in!4/4!rats;!and!P!>!0.1!Mann@Whitney!U@test!across!

rats),! we! combined! these! as! the! control! condition.! We! found! that! OFC!

inactivation! did! not! change! sensory! discrimination! performance! (Figure' 1.4B!

and! 1.S5A),! odor! sampling! duration! or! movement! time! (Figure' 1.S5D0I),!

establishing! that! it! is! not! required! for! perceptual! decisions! (accuracy:!P! >! 0.1,!

bootstrap!test!on!the!slope!of!the!psychometric!functions!in!4/4!rats;!and!P!>!0.6,!

ANOVA!across!rats;!reaction!time:!P!>!0.1,!ANOVA!across!trials! in!2/4!rats!(P!=!

0.01! in! other! 2! rats);! and! P! >! 0.2,! ANOVA! across! rats,! see! Experimental!

Procedures!I).!!

 
 
 
 

Figure 1.4 - OFC inactivation 
disrupts confidence-
dependent waiting time but 
not decision accuracy.  
 
(A) Schematic for cannulae 
implants and anatomical locations 
of confirmed inactivation sites 
across rats. See Figure S4 for 
examples of histology sections. 
(B) Decision accuracy as a 
function of odor mixture contrast 
for control (saline and no 
injection combined) and 
muscimol conditions for the 
example rat (top) and averaged 
across rats (bottom). Lines are 
logistic fits to the data (see 
Experimental Procedures I). In all 
panels error bars are ± s.e.m. 
across trials or across rats. 
Cannulae implantation itself had 
no effect on the decision accuracy 
(Figure S6). 
(C) Mean waiting times for 
control and muscimol conditions 
for the example rat (top) and 
averaged across rats (bottom).  
(D) Psychometric functions 
separated based on WT in the 
control and muscimol conditions 
for the example rat (top) and 
averaged across rats (bottom). 
Black and gray dots represent 
long WT (above 70 percentile) 
and short WT (shorter than 70 

percentile) control trials, respectively. Red and pink dots represent long WT(above 70 
percentile) and short WT (shorter than 70 percentile) muscimol trials, respectively. Lines 
represent logistic fit on the accuracy data (see Experimental Procedures I).  
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(E) Mean normalized WT plotted as a function of odor mixture contrast and trial outcome for 
control and muscimol conditions for the example rat (top) and averaged across rats (bottom). 
In order to combine WTs across different sessions of each rat and across rat, normalized WTs 
were used. For this normalization, the WT in each trial was divided by mean WT of all trials of 
the session (see Experimental Procedures I). Lines are linear fit to the data. Asterisks indicate 
significant differences (P < 0.05) between individual data points. Cannulae implantation itself 
had no effect on the WT pattern (Figure 1S6). See Figure 6 for effect of muscimol on WT 
patterns in rats with cannulae positioned outside OFC. (F) Decision accuracy as a function of z-
scored waiting time (see Experimental Procedures I) for control and muscimol condition for the 
example rat (top) and averaged across rats (bottom).  
 

 

Moreover, average WT was not affected by OFC inactivation (Figure 
1.4C and 1.S5C; P > 0.2, Mann-Whitney U-test across trials in 3/4 rats 

(P = 0.01 in the fourth rat); and P  > 0.8, Mann-Whitney U-test across 

rats). However, while psychometric functions of the short and long WT 

trials had significantly different slopes in the control condition, this 

difference was negligible in the inactivation condition (Figure 1.4D; P < 

0.05 in 4/4 rats; and P < 0.01 across rats, bootstrap test on the slope 

differences). Moreover, we found that the dependence of WT on stimulus 

difficulty and outcome was significantly reduced (Figure 1.4E; P < 0.01, 

bootstrap test on the slope of the fitted lines in 4/4 rats; and P < 0.01, 

ANOVA across rats, see Experimental Procedures I) without a 

concomitant change in the mean WT. In addition, accuracy as a function 

of WT flattened (Figure 1.4F; P < 0.05, Mann-Whitney U-test for 

selected time bins across trials in 3/4 rats; and P < 0.05; Mann-Whitney 

U-test for selected time bins across rats) establishing that WT became a 

worse predictor of performance.  

The previous analyses only considered the mean WT patterns and not 

their variance and distribution. Therefore we next evaluated how well a 

subject’s waiting time report conformed to its actual decision accuracy 

using type-II receiver operating characteristic (ROC) analysis (Fleming 

and Dolan, 2010; Kepecs et al., 2008; Rounis et al., 2010), (Figure 
1.5A,B, see Experimental Procedures I). This confidence-reporting 

index (CRI) systematically varied as a function of stimulus difficulty 

(Figure 1.5C,D; P < 0.01, ANOVA across trials in 4/4 rats) as expected 

and was significantly reduced by OFC inactivation (Figure 1.5C,D and 

1.S5B; P < 0.01, ANOVA across trials in 4/4 rats; and P < 0.05, ANOVA 

across rats). 
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Figure 1.S5 - OFC inactivation disrupts decision confidence but not perceptual 
decisions in individual rats. 
 
(A) Scatter plot of behavioral accuracy for individual rats for muscimol and control conditions. 
Each data point corresponds to a single rat for single odor mixture contrast condition (either 
20% or 60%). Here and for all scatter plots filled/empty markers indicate statistically 
significant/non-significant differences for the measured variable between the muscimol and 
control conditions (P < 0.05). For all panels of the figure, unless stated otherwise, error bars 
are ± s.e.m across trials or across rats. (B) Scatter plot of confidence-reporting index (see 
Experimental procedure I and Figure 1.5 for detailed definition) for individual rats for muscimol 
and control conditions. Each data point corresponds to a single odor mixture contrast condition 
(either 20% or 60%) of a single rat. Error bars are bootstrapped estimates. (C) Scatter plot of 
mean waiting time of individual rats for muscimol and control conditions. Each data point 
corresponds to a single rat. (D) Mean odor sampling duration (defined as the interval between 
odor valve opening time and the time point on which rat leaves the odor port) for the example 
rat as a function of odor mixture contrast for muscimol and control conditions.  (E) Mean odor 
sampling duration as a function of odor mixture contrast for muscimol and control conditions 
averaged across rats. (F) Scatter plot of odor sampling duration of individual rats for muscimol 
and control conditions. (G) Mean movement duration (defined as the interval between the time 
of leaving the odor port and the time of entry into a choice port) as a function of odor mixture 
contrast for muscimol and control conditions for the same rat as in (D). (H) Mean movement 
duration as a function of odor mixture contrast in muscimol and control conditions averaged 
across rats. (I) Scatter plot of movement duration of individual rats for muscimol and control 
conditions.  
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Figure 1.5 - OFC inactivation 
reduces the accuracy of 
confidence report.  

 
(A) Probability distribution of 
normalized WTs for error and 
correct (reward omission) trials in 
control and muscimol conditions 
shown for 60% odor mixture 
contrast for the example rat. (B) 
Receiver operating characteristics 
(ROC) curve computed from 
probability distributions in (A), as 
threshold, θ, varied. A rescaled 
value for the area under this ROC 
curve is used as the confidence-
reporting index (CRI, see 
Experimental Procedures). (C) CRI 
as a function of odor mixture 
contrast for control and muscimol 
conditions for the example rat. 
Error bars are bootstrapped 
estimates. (D) CRI as a function of 

odor mixture contrast for control and muscimol conditions averaged across rats. Error bars are 
± s.e.m. across rats.  
 
 
Finally, we considered the specificity of these results to the ventrolateral 

portion of OFC (vlOFC). We initially excluded 5 rats from our previous 

analyses where histological examination showed that some of the four 

cannulae were positioned either too lateral to vlOFC or too ventral 

reaching the piriform cortex (Figure 1.S4). In order to quantify the 

relationship between the position of cannulae and the behavioral effects, 

we measured the position of the cannulae relative to the centers of the 

vlOFC and the piriform cortex (see Experimental Procedures I for 

details). We then examined confidence reports and perceptual accuracy 

as a function of the average distance of cannulae relative to the OFC and 

piriform cortex (Figure 1.6A). The perceptual accuracy of rats with 

cannulae close to the piriform cortex was attenuated by muscimol 

inactivation, suggesting an important role for the piriform region in our 

odor-guided decision task (Figure 1.6B; P < 0.05 in 2/2 rats, bootstrap 

test on the slope differences). On the other hand, when cannulae were 

positioned very laterally, outside vlOFC, then we did not observe any 

effects of inactivation on either perceptual accuracy or the WT pattern 

(Figure 1.6C; P > 0.2 in 3/3 rats, bootstrap test on the slope 

differences). These results specifically implicate the ventrolateral 

subregion of OFC in confidence reporting. 
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Figure 1.6 - Observed 
behavioral effects are 
specific to ventrolateral 
OFC inactivation. 
 
(A) Behavioral effects as a 
function of cannula location.  
(left) Psychometric slope 
ratios for each rat as a 
function of cannulae distance 
from the piriform cortex.  
(right) Confidence-reporting 
index (CRI) ratios for each rat 
as a function of cannula 
distance from the vlOFC. Each 
dot indicates the average 
distance measured for each 
rat (averaged across all 
visible cannulae tracks). Error 
bars are s.e.m. across 
measurements.   
(B) Rats with cannulae both 
in the OFC and piriform cortex 
(n=2). (left) schematic of 
cannulae positions. (Middle) 
rats’ psychometric functions. 
(right) rats’ WT pattern. 
Asterisks indicate significant 
differences (P < 0.05) 
between individual data 
points.  
(C) The same as (B) for rats 
with cannulae out of the OFC 
(n=3). Compare behavioral 
effects shown in (B, C) with 
effects shown in Figure 4B 
and E.  
 

 

DISCUSSION 

Confidence judgments are usually studied using explicit self-reports in 

humans and are taken at face value. In order to study non-human 

animals a different approach is required (Kepecs and Mainen, 2012). We 

introduced a new post-decision gambling task that makes confidence 

reports valuable for animals and allowing experimenters to collect 

choices and confidence reports from the same trials (Kepecs and 

Mainen, 2012; Middlebrooks and Sommer, 2012). This is an advantage 

compared to opt-out tasks in which animals are presented with a third 

choice that provides a guaranteed but smaller reward. Opt-out choices 

may be made in epochs when the attentional or motivational state of an 

animal is reduced, so that if an animal is monitoring these state changes, 

it could prefer to opt out of the perceptual decision. For these reasons, 
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opt-out designs are not ideal for studying decision confidence because in 

these tasks each trial only provides either a perceptual or an opt-out 

choice, making it difficult to rule out behavioral mechanisms that do not 

require uncertainty monitoring. The time investment gambling task 

described here had fundamental similarity to the restart task we 

previously employed in which rats could abort the current trial to restart 

a new trial (Kepecs et al., 2008). However, the restart task provided only 

a binary measure of decision confidence (i.e. stay or restart). 

Consequently, another feature of current task design is that waiting 

times (WTs) served as continuous wagers (instead of binary bets). This is 

preferable in order to mitigate the problem of finding the optimal payoff 

matrix for binary bets that depends on animals’ internal costs and 

valuations (Clifford et al., 2008; Middlebrooks and Sommer, 2011; 

Schurger and Sher, 2008).  

In order to establish that WTs could serve as indices of confidence, we 

compared rats’ WT patterns to a normative model of decision 

confidence. First, we showed that the optimal time to wait depends 

monotonically on the initial reward probability for each trial (Figure 
1.2). In perceptual decisions, reward probability can be estimated based 

on the confidence associated with a decision. Second, we derived three 

predictions for decision confidence and compared these to WTs. As 

expected for a proxy of confidence, we found that WTs (i) correlated with 

the slope of psychometric functions, (ii) predicted decision accuracy and 

(iii) showed a characteristic dependence on signal-to-noise ratio and 

outcome (Figure 1.3). This allowed us to interpret our findings in the 

context of a normative model rather than a semantic definition of 

confidence. From a computational standpoint, the observed WTs could 

only be explained by models in which the variable P(correct|evidence), 
i.e. confidence, is taken into consideration. Rats’ WTs are determined 

not only by decision confidence but also by estimated reward delivery 

time and other reinforcement-related factors (Figure 1.S3). 

Nevertheless, the accurate computation of such reward expectation is 

only possible by incorporating confidence information. 
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Inactivation of the ventrolateral portion of OFC disrupted the 

confidence-dependence of WTs without a change in decision accuracy or 

mean waiting time (Figure 1.4-1.6). These results provide evidence that 

an intact OFC is necessary for reporting confidence but not for 

perceptual decision-making under uncertainty. Beyond establishing an 

anatomical locus for confidence judgments, the results also show that 

confidence reporting and the computation of perceptual decisions are at 

least in part distinct processes localized to different brain regions. From 

this perspective, our findings reinforce recent observations regarding the 

role of pulvinar in the representation of perceptual confidence (Komura 

et al., 2013). Using an opt-out task, these authors showed that 

inactivation of pulvinar increases monkeys’ opt-out choices in the 

wagering task without affecting perceptual categorization. However, for 

reasons discussed above, this experimental design could not rule out 

alternative possibilities. For instance, pulvinar inactivation could cause 

either lower risk-taking propensity or reduced attention, both leading to 

an increased opt-out behavior (Kepecs, 2013).  

Our findings leave open the question of whether OFC locally computes 

confidence or instead receives confidence signals from other areas 

(Insabato et al., 2010a, 2010b; Kiani and Shadlen, 2009; Komura et al., 

2013) but we consider it likely that choice and confidence are computed 

together and represented in regions important for perceptual decision-

making and then relayed to OFC. Centralization of confidence signals in 

OFC may be useful in order to have a central region to monitor 

confidence levels, alongside other reward-related variables, regardless of 

perceptual modality. Neuronal signals related to metacognitive 

monitoring have been observed in several subregions of the frontal 

cortex (Fleming and Dolan, 2010; Kepecs et al., 2008; Lau and 

Passingham, 2006; De Martino et al., 2013; Middlebrooks and Sommer, 

2012; Persaud et al., 2007; Rolls et al., 2010a, 2010b; So and Stuphorn, 

2012; Tsujimoto et al., 2010; Yokoyama et al., 2010), as well as in 

parietal cortex (Kiani and Shadlen, 2009) and thalamic nuclei such as 

pulvinar (Komura et al., 2013) suggesting that metacognitive 

representations may be widespread in the brain. Our results suggest that 
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OFC may integrate distinct sources of information, and similar to its role 

in value-based decisions, may provide outcome predictions based on 

confidence monitoring processes.  

Previous findings have implicated OFC in representing reward 

expectations (Rolls and Grabenhorst, 2008; Schoenbaum and Roesch, 

2005; Wallis, 2007) and in goal-directed behavior across species 

(Morrison et al., 2011; Rolls and Grabenhorst, 2008; Schoenbaum et al., 

2009; Wallis, 2007). Because decision confidence is also critical for 

computing the value of the current decision outcome (Hare et al., 2008), 

our results are consistent with a role for OFC in outcome valuation. OFC 

lesions are also known to impair the devaluation of reward outcomes, 

reversal learning and increase impulsivity (Bechara et al., 1997; Berlin et 

al., 2004; Burke et al., 2009; Mar et al., 2011; Noonan et al., 2010; Rolls 

and Grabenhorst, 2008; Rudebeck and Murray, 2008; Schoenbaum et 

al., 2002, 2009; Wallis, 2007; Walton et al., 2010), all of which reflect a 

compromise in the relative potency of explicitly imagined outcomes, as 

opposed to routine habits, in driving decisions (Balleine, 2011). These 

are consistent with our observations that OFC inactivation only affected 

WT wagering behavior and not well-learned decisions. Inactivation of 

OFC might have impaired general reward expectations and the 

motivation to wait for the reward (Mar et al., 2011; Noonan et al., 2010). 

However, WT after OFC inactivation was only reduced for correct trials, 

and increased for incorrect trials (Figure 1.4) suggesting that a 

disruption of reward expectation could not by itself account for the data. 

The fact that OFC inactivation did not affect the mean WT suggests that 

the animals’ ability to estimate the elapsed time remained intact. 

Moreover, rats’ movement times were not different between the 

muscimol and control sessions (Figure 1.S5) and were not different 

when comparing pre and post cannulae implantation (Figure 1.S6) 

implying that the observed behavioral patterns could not be attributed to 

the inactivation nor to the lesion of motor-related structures along the 

cannulae walls.  
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Figure 1.S6 - Cannulae 
implantation does not affect 
behavioral performance.  
(A) Averaged choice accuracy 
and psychometric functions of 
rats before and after the 
Cannulae implantation. (B) 
Confidence reporting index (CRI, 
See Experimental procedure and 
Figure 5 for definition of CRI) 
before and after the Cannulae 
implantation.  

  

The observation that following OFC inactivation rats failed to adjust 

their waiting time based on the decision is consistent with the broader 

notion that an intact OFC is necessary for some aspects of reward-

maximizing choice behavior (Padoa-Schioppa, 2011; Wallis, 2007). 

Confidence is also a form of uncertainty, therefore, our results are 

broadly consistent with observations demonstrating that OFC is involved 

in representing uncertainty and risk in humans (Critchley et al., 2001b; 

Fleming and Dolan, 2010; Hsu et al., 2005; De Martino et al., 2013; 

Rolls et al., 2010a; Tobler et al., 2007), monkeys (O’Neill et al., 2010) 

and rats (Kepecs et al., 2008; Roitman and Roitman, 2010). 

In summary, our results support the view that OFC is particularly 

important for reward-based behaviors when values are inferred, for 

instance using model-based reinforcement learning algorithms (Daw 

and Doya, 2006; Hampton et al., 2006; Jones et al., 2012; McDannald et 

al., 2011; Wilson et al., 2014), rather than when values are stored based 

on previous experiences. This is because, the estimation of decision 

confidence is an example of the computation of an inferred value based 

on a hidden belief state. Consequently, the role of OFC in confidence 

monitoring can be viewed as a second-order and metacognitive process 

that fits into the broader conception that OFC is critical for making on 

the fly predictions about behaviorally important outcomes. 
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EXPERIMENTAL PROCEDURES - I 

Subjects 

A total of 10 male Long-Evans rats were used for the experiments. Data 

from all rats were used for the quantification of confidence reporting 

behavior. 9 rats underwent the cannulae implantation surgery and based 

on anatomical localizations of implanted cannulae (Figure 1.6 and 

1.S4), data collected from 4 rats were used for investigating the effect of 

OFC inactivation on the confidence reporting behavior.  

Rats were motivated by water restriction and had unlimited access to 

food. All procedures involving animals were carried out in accordance 

with National Institutes of Health standards and were approved by the 

Cold Spring Harbor Laboratory Institutional Animal Care and Use 

Committee. 

Behavior 

Behavioral task and training 

The apparatus has been described previously (Kepecs et al., 2008; 

Uchida and Mainen, 2003). Rats self-initiated each experimental trial by 

introducing their snout into the central port where odor was delivered. 

After a variable delay, drawn from a uniform random distribution of 

0.2–0.5 s, a binary mixture of two pure odorants, S(+)-2-octanol and R(-

)-2-octanol , was delivered at one of 7 concentration ratios (80/20, 

60/40, 57/43, 50/50, 43/57, 40/60, 20/80 creating odor mixture 

contrast of 0, 12, 20 and 60 %) in pseudorandom order within a session. 

After a variable odor sampling time up to 0.7 s, rats responded by 

withdrawing from the central port, which terminated the delivery of 

odor, and moved to the left or right choice port. Choices were rewarded 

according to the dominant component of the mixture, that is, at the left 

port for mixtures A/B > 50/50 and at the right port for A/B < 50/50. For 

trials with 50/50 odor mixture, the reward was randomly assigned to 
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one of the choice ports. A variable reward delay period after entry into 

the choice port was introduced. For correct choices, reward was 

delivered between at least 0.5 s after entry into the choice port and up to 

8 s. The reward delay was drawn from an exponential distribution with 

decay constant equal to 1.5 (Figure 1.1D) resulting in a relatively 

constant level of reward expectancy over a range of delays (i.e. flat 

hazard rate). In a small fraction of correct choice trials distributed 

pseudorandomly throughout the behavioral session (10% - 15% of 

correct trials) rewards were omitted. These reward omission trials were 

distributed so as to never occur on the consecutive trials. As the rat 

spends time to consume the water in the rewarded correct trials, we used 

the reward omission trials to measure WT in the correct trials.  

In order to perform the task described above, rats went through a 

multistep training procedure typically lasting 6-8 weeks starting with 

imperative trials, moving to choice trials and gradually introducing 

choice trials with low odor mixture contrast.  

Surgery and inactivation procedures 

Surgery 

All surgical procedures were carried out under aseptic conditions. 

Anesthesia was initiated with inhalation of 2.5% isoflurane (Vetland, 

Louisville, KY) and retained with intraperitoneal injections of ketamine 

(50 mg/kg) and medetomidine (0.4 mg/kg), After craniotomy, dual 

guide cannulae (26-gauge Plastics One, Roanoke, VA) were 

stereotactically implanted in each hemisphere targeted 1.5 mm above 

OFC (AP+3.2,ML+/-3.2, DV+2.8 from dura and AP+4.1, ML+/-2.8, 

DV+1.8 from dura). Dual stainless steel stylets were inserted into the 

guide cannulae to ensure patency (protruding 0.5 mm below the tip of 

the guide cannulae). 

Pharmacological inactivation 

Temporary inactivation was achieved via localized injections of γ-
aminobutyric acid (GABAA) receptor agonist muscimol (Sigma Alderich) 
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under light anesthesia induced by 2% isoflurane (for about 6 min during 

which hind leg reflex never disappeared over the course of infusion). On 

each testing day the stylets were replaced with dual injector cannulae 

(33-gauge, Plastics One) protruding 1.5 mm below the tip of guide 

cannulae. One minute after proper placement of the injectors, muscimol 

(0.05 µg in 0.4 µl) or sterile saline (0.9%; 0.4 µl) was injected over a 5-

minute period. Fluid was infused via 0.38 mm diameter polyethylene 

tubing (Intramedic, New York, NY) attached to the injector on one end 

and to a 2 µl Hamilton syringe (Hamilton, Reno, NV) on the other end. 

The syringe was driven with a syringe pump (Harvard Apparatus, MA).  

Injections were monitored by observing the movement of a small air 

bubble in the tubing to confirm that fluid was moving.. After infusions 

were complete, the injector cannulae were left in place for 2 minutes and 

then replaced with stylets to maintain cannulae patency. Behavioral 

testing began about 30 minutes after infusion. It has been shown that 

the maximal extent of muscimol spread, using this procedure, was 1.5 to 

2 mm within 10-20 minutes of injection (Martin and Ghez, 1999). 

Histology 

Once experiments were complete, rats were deeply anesthetized and 

then transcardially perfused with 4% paraformaldehyde. Brains were 

removed, postfixed, and coronal sections of 50 µm were made using a 

fixed-tissue vibratome (VT1000S, Leica Instruments, Germany). Only 

animals in which at least 3 of the 4 cannulae were located within the 

lateral and ventrolateral portions of OFC were included in our analysis. 

We determined that 4 out of 9 implanted animals had correct cannulae 

positions while the others extended either ventrally into the piriform 

cortex or caudally into the striatum (Figure 6 and S4).         

Computational model 

Confidence estimation model 

To predict the expected patterns of decision confidence we used a simple 

model for two-alternative decisions. We used a signal detection theory 
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framework where each choice and its associated confidence could be 

estimated by comparing the sampled stimulus and the decision 

boundary. The boundary was fixed at 50%. In this framework, the choice 

in each trial is computed by comparing stimulus and boundary. We 

modeled the stimulus as the percentage of one of the components in the 

mixture henceforth denoted by . The internal representation of the 

stimulus  is different from the actual value : 

  (8)  

Here  is the Gaussian variable with zero mean and the standard 

deviation of σ : . The origin of noise  is two-fold: 

it may be contributed by the external uncertainties in the stimulus as 

well as the internal sources of error. From fits to experimental data we 

obtained an estimate of , i.e. internal and external sources of 

noise in their strength are equivalent to about 18% of the fraction of one 

components in the mixture. In each trial, it is assumed that the value of 

the internal representation of the stimulus determines the response of 

the observer. The values of  exceeding the decision boundary b=50% 

result in response to the right, while the values  produce a left 

response. For a given external stimulus , the fraction of right 

responses i.e. the psychometric function is given by 

  (9) 

 

In each trial, the distance between the internal representation of 

stimulus  and boundary provides an estimate of decision confidence,  

C. Decision confidence in our approach is defined as the probability of 

making the correct decision . Decision confidence however is a 

function of the internal representation of the stimulus  which is 

different from the external value (Equation 8). It is not difficult to see 
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that for a simple decision task, the probability of being correct could be 

estimated using Equation 7. 

It is important that, in each individual trial, the same internal 

representation of the stimulus  that determines response (response to 

the right occurs when ) is used to evaluate the decision 

confidence through Equation 7. The internal representation of the 

stimulus  varies from trial to trial even if the stimulus mixture  is 

fixed. Response accuracy therefore becomes coupled with decision 

confidence. Because  is an internal variable, it is not available 

for direct measurement. Instead, it could be assessed through the time 

spent by the observer in the reward port. In the computational model, we 

used Equation 6 describing an ideal observer. Note that Equation 6 

predicts that there are only two conditions when WT goes to infinity (i.e. 

waiting never terminates): when the opportunity cost, , is zero 

(waiting has no cost) or when a rat is completely confident about its 

choice C = 1. However, there is always some reward to be gained in 

future trials and because of reward omission trials a rat cannot be 

completely certain of reward, hence WT is always finite. 

Fitting the model to behavioral data 

To fit our model to rats’ behavioral data, we estimated two parameters. 

First, the width of the total noisy distribution (σ, made up of sensory and 

internal noise) used to calculate model’s trial by trial choice and 

confidence. Second, opportunity cost (κ) which, alongside confidence 

and reward delay distribution (Equation 6) is used to calculate model’s 

WT. Parameter estimation was done using a maximum likelihood 

method, implemented using MATLAB’s  fminsearch function. To avoid 

local minima, we re-ran fminsearch 1000 times using random starting 

parameter values and selected the set of parameter estimates with the 

smallest mean squared error. 

Starting from rat’s psychometric curve, we estimated one parameter (σ) 

that minimized the mean square error of choice predictions. We then 

used the estimated σ to calculate the intermediate variable, decision 



!

52!

confidence (C), in each trial (Figure 1.3A, middle panel) and 

subsequently estimated one other parameter, κ (Equation 6) which could 

minimize the difference between rat’s and the model’s WT distribution 

(Figure 3A, right panel). Although this model fit the mean WTs per 

condition well, in order to fit to the entire WT distribution we also 

assumed ‘scalar timing’. In other words, we assumed that a rat’s 

estimation of elapsed time carries uncertainty and in particular that the 

standard deviation scales with elapsed time (Gibbon, 1977; Gibbon et al., 

1997; Janssen and Shadlen, 2005). This implies that a time t is perceived 

at time t ± σ(t), where  

   (10) 

where  is the coefficient of variation or Weber fraction (Gibbon, 1977). 

Consistent with previous findings, we set (Gibbon et al., 1997; 

Janssen and Shadlen, 2005). Therefore, for the fitting the model’s WT 

distribution was blurred with a normal distribution whose standard 

deviation was proportional to the elapsed time (Figure 1.3A, right 

panel). Lines in Figure 1.3B-D show predictions of the model with 

parameters optimized to fit rat’s accuracy curve and WT distribution.  

Analysis of behavioral data  

We collected 68243 trials from 10 rats as following: 24032 control trials 

(Saline injection or no injection) and 11106 muscimol trials from 4 rats 

(79 sessions, in average 445 trials per session per rat, min trial per 

session=295, max trial per session=654, min session per rat = 15, max 

session per rat = 29). These data were included in analysis of confidence-

related WTs as well as the muscimol experiment. 23473 control trials 

and 9632 muscimol trials from 6 rats (5 of them implanted, 81 sessions, 

in average 408 trials per session per rat, min trial per session=281, max 

trial per session=701, min session per rat = 12, max session per rat = 18). 

Due to incorrect position of cannulae revealed by histological 

examination (Figure 1.S4), these data were only used in the analysis of 

confidence-related WTs and in Figure 6. 
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In general, we used nonparametric Mann-Whitney U-test for single 

comparisons and one or two-way ANOVA, post-hoc test adjusted, for 

multiple comparisons. Bootstrap test used for the comparing fit 

parameters in Figure 1.3E, 1.4B,D,E) and for comparisons shown in 

Figure 1.5C and 1.S5B. For statistical analysis across rats, averaged 

data for each rat was used. However, the large number of trials collected 

for each rat also enabled us to examine the significance of behavioral 

effects for each subject separately. For such analyses on single rats, 

statistical tests were performed across all trials collected for each animal. 

Asterisks in figures illustrate statistically significant (P < 0.05) 

differences for individual data points using Mann-Whitney U-test 

(bootstrap test was used for Figure 1.5C). Filled/empty markers in 

scatter plots indicate significant/non-significant differences tested using 

Mann-Whitney U-test (bootstrap test was used for Figure 1.S5B). Unless 

stated otherwise, error bars in figures indicate standard error of mean 

(s.e.m) across trials for individual animals or across rats for the 

population data. 

Perceptual accuracy and reaction time data 

For illustration proposes only, we fit behavioral choice data (probability 

of choosing left port) as a function of odor concentration (%A) to a 

logistic function of the following form (Figure 1.1B): 

!""#$%"&= 11+'−(( + ) × *+,$ -./0#$')                               (11) 

whereჼ�α is a measure of choice bias and β reflects perceptual sensitivity.  

We fit behavioral accuracy data as a function of odor mixture contrast to 

a logistic function of the following form (Figure 1.3E and 1.4B, D): 

!""#$%"&= 11+'−() × *+,$ 1,20$%30)                                    (12) 

where β reflects perceptual sensitivity (i.e. psychometric slope), with 

higher values implying increased sensitivity. 

Waiting time data 
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Waiting time data exhibited small variation across sessions and subjects. 

Therefore, for each rat the WTs of each session were normalized to the 

mean of the WT of that session (normalized WT). Other possible ways to 

normalize the data (normalization to the median WT of the session or 

normalization to the mean/median of the WT for odor mixture contrast 

= 0) resulted in very similar findings. For illustration proposes, non-

normalized WT data was used in Figure 3. 

For Figure 4F, z-scored WT (Equation 13, below) was used in order to 

compute the conditioned accuracy graphs (see below). However, using 

normalized WT (instead of z-scored waiting time) showed comparable 

results.                                                                                                         

                                        

€ 

ZscoredWTtrial =
WTtrial − µ WTsession( )

σ (WTsession )
                                   (13) 

We fit WT data as a function of odor mixture contrast and trial outcome 

to a linear function of the following form (Figure 1.3G, 1.4E): 

                         4,$-%5.6'+ 78= (+(± ) × *+,$ ",20$%30)                           (14) 

where β indicates the slope of change in the normalized WT as a function 

of the odor mixture contrast and its sign (-/+) indicates error/correct 

outcomes respectively.  

WT-Conditioned accuracy measures 

 In order to estimate rats’ decision accuracy as a function of WT, we 

assumed that WTs for correctly performed reward omission trials (which 

were pseudorandomly distributed) were a good representative for the 

distribution of all correctly performed trials. Therefore the z-scored WT 

data (Equation 13) were expanded to all correct trials (taking into 

account the odor stimulus identity) and WT-conditioned accuracy 

functions were computed (Figure 1.4F).  

Confidence-reporting index (CRI) 
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An objective measure of confidence reporting ability can be computed 

based on the type II receiver operating characteristic (ROC) curve, which 

quantifies how well a subject’s confidence report conforms to its actual 

decision accuracy. For each animal for each of the experimental 

conditions (muscimol vs. control) the probability distribution of the 

normalized WT for the error trials and correct trials were first computed 

(Figure 1.5A). The receiver-operating curve was then generated for 

each of the experimental conditions (Figure 5B), which indicates P (WT 

> θ | correct) as a function of P (WT > θ | error), where θ refers to the 

threshold which was varied in order to construct the ROC curve. The 

confidence-reporting index (CRI) is the rescaled measure of the area 

under the ROC curve, so that values close to zero indicate poor 

confidence and values close to 1 indicate perfect decision confidence 

(Figure 1.5C,D, 1.6A, 1.S3N-P and 1.S5B). 

Effects of trial history on waiting time and confidence 

reporting measures 

Apart from decision confidence, the waiting time at the choice ports also 

depends on when an animal is expecting the reward delivery. We were 

interested to determine the extent to which WT pattern and CRI, our 

measures of confidence report, were affected by trial history. Figure 

1.S3E-G show an example rat in which none of the mentioned 

parameters affected its mean WT. Consequently, the WT patterns are 

overlapping. Figure 1.S3H-J show an example rat in which outcome as 

well as WT of previous trial affected its absolute WT. As a result, while 

WT patterns show a general shift, the confidence-dependent WT 

patterns are robust. When averaging across rats, WT as a function of 

odor mixture contrast and outcome did not vary between the beginning 

and end of a session, after correct and error trials or after long and short 

WTs (Figure 1.S3K-M; P > 0.1, ANOVA across rats). Similarly, 

confidence-reporting index (CRI) as a function of odor mixture contrast 

did not vary between the beginning and end of a session, after correct 

and error trials or after long and short WTs (Figure 1.S3N-P; P > 0.2, 

ANOVA across rats). 
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NEURAL CORRELATES OF 

CONFIDENCE AND CONFIDENCE 

REPORT IN ORBITOFRONTAL 

CORTEX AND VENTRAL STRIATUM 
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SUMMARY 

Difficult decisions can occur because stimuli are hard to perceive or 

because the rules of what should be done given a certain stimulus are 

uncertain to the decision maker. We would like to understand how this 

second form of uncertainty is represented by the brain and may be 

assessed and used for adaptive behavior. Neural correlates of perceptual 

decision confidence have been previously found in the orbitofrontal 

cortex (OFC) of rats. OFC and ventral striatum (VS) are two brain 

regions implicated in behavioral supervision and outcome evaluation. To 

better understand the role of OFC and VS in the computation of decision 

confidence and behavior adaptation tuned by confidence signals we have 

recorded single unit activity from these two regions from rats performing 

a two-odor categorization task with a post decision time-wager 

confidence report – waiting time. We have found populations of cells in 

both OFC and VS whose activity was correlated with decision confidence 

and waiting time, in different epochs of a trial. These results have further 

explored the functions of OFC in confidence based guided decisions and 

added the basal ganglia to the circuitry involved in decision confidence 

computations. 

 

INTRODUCTION 

Humans have the ability to make judgments about their own decisions. 

Because the outcome of important decisions is sometimes not readily 

available - think of a marriage engagement or a career plan– the 

capability of evaluating the quality of decisions and act according to it is 

of big importance (Harvey, 1997; Johnson and Fowler, 2011) When 

waiting for a outcome  a decision-maker which is not very confident 

(more uncertain) can opt for giving up waiting and try a fresh start. On 

the contrary, when confidence is high (uncertainty is low), to perseverate 

in the promise of a reward might be the best thing to do. We are 
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interested on understanding how does the brain compute decision 

confidence and generates confidence-driven adaptative behaviors. 

Non-human animals are also capable of self-confident judgments (Smith 

et al., 2003). In monkeys a number of studies, within the scope of visual 

guided decision making, have found neuronal correlates of decision 

confidence in cortical areas such as the parietal cortex (Kiani and 

Shadlen, 2009), the supplementary eye field (Middlebrooks and 

Sommer, 2012), the pre-motor cortex (Martinez-Garcia et al, 2014) and 

in the pulvinar nucleus of the thalamus (Komura et al, 2013)  

In rodents neural correlates of decision confidence were only found so 

far during a reward anticipation period in the orbitofrontal cortex (OFC) 

of rats (Kepecs et al., 2008) which were performing a two-odor 

categorization task. No confidence report was included in this previous 

task so it was only suggested that the confidence correlates could have 

behavioural significance. In a following study (Lak et al., 2014) 

inactivation of OFC of rats, behaving in a modified version of the 

categorization task which included a confidence report, disrupted a 

waiting-based confidence judgment, without affecting the odor 

categorization. This further revealed a role for the OFC in metacognitive 

monitorization of perceptual decisions. Nonetheless it is still not well 

understood how the neural correlates of decision confidence are related 

to the behavioural report of confidence. Moreover, the dynamics of the 

confidence signals are still unclear. Is the OFC computing a decision 

confidence estimate right after the perceptual decision was made? And 

can the waiting-time based confidence judgment be predicted as early on 

by OFC neural activity?  

OFC representations have been thoroughly implicated in different 

aspects of outcome expectations (reviewed in Padoa-Schioppa and Cai, 

2011; Schoenbaum et al., 2011; Schultz et al., 2011; Wallis, 2012) and 

decision confidence has been proposed to be one of the variables that 

animals take into account for generating these expectations (Mainen and 

Kepecs, 2009). In respect to behavioural adaptation, OFC activity was 

found to be necessary for a shift from habitual to goal-directed actions 
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following outcome revaluation (Gremel and Costa, 2013) which involved 

dynamic interactions between corticostriatal circuits of OFC and (dorsal) 

striatal regions.  

Ventral striatum (VS), specially the nucleus accumbens shell, is a striatal 

target of OFC projections (Schilman et al., 2008). These two regions, 

OFC and VS, are thought to work in concert to guide optimal courses of 

actions that ultimately lead to rewards (Hare et al., 2008).  More 

specifically it was speculated that signals from OFC bias VS activity with 

a flow of reward-contingency information (Simmons et al., 2007) and 

that VS incorporates information about features of expected outcome, 

signaled from OFC (McDannald et al., 2011).  

While the study of this corticostriatal circuit in the scope of 

reinforcement learning is prolific (reviewed in Balleine and O’Doherty, 

2010; Ito and Doya, 2011) this is not the case for the framework of 

perceptual decision confidence. The only data available involving VS and 

perceptual decision confidence comes from human functional imaging 

studies where voxels in VS showed activation positively correlated with 

reports of decision confidence (Daniel and Pollmann, 2012; Hebart et al., 

2014). 

To better understand the role of OFC and VS in the computation of 

decision confidence and behavior adaptation tuned by confidence signals 

we have recorded single unit activity from these two regions from rats 

performing a two-odor categorization task with a post decision time-

wager confidence report – waiting time. We found populations of cells in 

both OFC and VS whose activity could predict outcome in a difficulty 

dependent manner -hence correlated with confidence. The activity of 

these populations also correlated with the behavioural report of 

confidence. Furthermore these populations were differently constituted 

along the trial, with different individual neurons predicting outcome or 

waiting time depending on the trial epoch. OFC outcome predictive cells 

were more strongly correlated with waiting time just after decision, and 

VS cells while anticipating reward.  
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RESULTS 

Odor categorization task with confidence report 

Six rats were trained to perform a version of a classical two alternative 

forced choice odor categorization task (Kepecs et al., 2008; Uchida and 

Mainen, 2003), which includes a post-wagering report of confidence 

(Lak et al., 2014). In this task (Figure 2.1A, See Experimental 

Procedures II & III) water deprived animals had to insert their snout into 

a centre odor port where they received a two-odor mixture stimulus after 

a 0.2-0.5s delay. They were then free to move to one of two lateral choice 

ports in order to receive a water reward for correct decisions. Correct 

decisions depended on the majority odor in the mixture and the 

difficulty of each choice was manipulated by varying the odor contrast of 

the mixture delivered. Rat’s choices and accuracy depended on the 

difficulty of the stimulus delivered (Figure 2.S1). Upon inserting their 

snout in the correct choice port rats had to wait for a reward to be 

delivered, which occurred after a delay of 0.5s to 8s, randomly drawn 

from a negative exponential distribution with decay of 1.5s. After water 

consumption they could reinitiate a new trial almost immediately. 

Incorrect choices (error trials) were not rewarded nor signaled and in 

10% of the correct choices water was omitted (catch trials). In both error 

trials and catch trials the time that rats were willing to wait at the choice 

port (waiting time) was our behavioural proxy for confidence. Waiting 

time varied as a function of the probability of having done a correct 

choice given stimulus difficulty – higher waiting times occurred on 

average for correct easy choices (80A:20B or 20A:80B mixtures), and 

lower waiting times for error easy choices (Figure 2.1B-C). It was also 

predictive of choice accuracy (Figure 2.1D-E), indicating that it was a 

good trial-by-trial gradative report of decision confidence, as reported 

previously (Kepecs and Mainen, 2012; Lak et al., 2014). 
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Figure 2.1 – Odor categorization task 
with confidence report 
 
(A) Schematic of the behavioral paradigm. 
To start a trial, rats entered the central 
odor port and after a pseudorandom delay 
of 0.2–0.5 s a mixture of odors was 
delivered. Rats moved to one of the lateral 
choice ports and in correct trials they 
waited for a drop of water to be delivered 
after a pseudorandom delay, drawn from a 
exponential distribution with decay of 1.5s, 
0.5s offset and 8s maximum. In error trials 
no water was delivered, and so was the 
case for a small percentage of correct trials 
– catch trials. The time rats were willing to 
wait with their snout in the reward port, in 
both error trials and catch trials – waiting 
time – was considered to be the confidence 
report for this task. In these trials rats were 
able to start a new trial after 1s from 
leaving the reward port. 
(B-C) Waiting time as a function of odor-
mixture and outcome. Mean waiting time 
for (B) an example rat or (C) the population 
of n=6 rats, conditional to different 
delivered odor mixtures, and different 
outcomes, catch (green) and error (red) 
trials.  
(D-E) Waiting time predicts accuracy. Mean 
accuracy, as fraction of correct trials 
conditional on binned waiting times, for (D) 
example rat or (E) population of n=6 rats.  
Circles and error bars are mean and s.e.m, 
respectively, across sessions for the same 
rat in B and D, or across n=6 rats, in C and 
E.   

 

 

Outcome predictive neurons in ventral striatum and 

orbitofrontal cortex 

Following extensive behavioral training rats were chronically implanted 

with a tetrode drive, targeting the left hemisphere orbitofrontal cortex 

(OFC) and the left hemisphere ventral striatum (VS) (see Experimental 

Procedures). Tetrode tracks were recovered after termination of the 

experiment using standard histological techniques (see Experimental 

Procedures) and we considered only data obtained from tetrodes located 

in the targeted regions during the recording sessions. (Figure 2.2A-B). 

Single cells were isolated offline using manual clustering methods (see 
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Experimental Procedures), and only units with good isolation and 

recording stability across the session were further analyzed.  

 
 
 
Figure 2.S1 – Behavioral 
performance in odor 
categorization task 
 
(A-B) - Performance in the 
categorization of a mixture of 
two odors for (A) a example 
animal and (B) for a 
population of 6 rats.  
(C-D) - Categorization 
accuracy as a function of 
odor contrast, for (C) an 
example rat, and (D) for a 
population of 6 rats.  
Averages and error bars 
(s.e.m.) were calculated 
across different behavioral 
sessions of example rat, or 
across the population of 6 
rats. 

 

 

As reasoned before (Kepecs et al., 2008) neural activity related to the 

subject’s uncertainty in the outcome of a choice should occur while the 

subject is anticipating the trial outcome. We also reasoned that neural 

activity related to our confidence report (the amount of time rats are 

willing to wait for a reward) should be observed as early as in the 

beginning of the waiting period. Following this, our first approach was to 

analyze neural activity during a 500ms window after entry into a choice 

port, the outcome anticipation period, during which reward delivery is 

delayed in our task (Figure 2.2C).  

We have found neurons in the VS, and in the OFC with neural activity 

that anticipated trial outcome during the outcome anticipation period. 

Figures 2.2D and 2.2F depict a VS neuron that fired more intensively 

during error trials compared with correct trials. This cell is an outcome 

predictive neuron whose firing rate is also modulated by the difficulty of 

the categorization, (Figure 2.2H). Its firing pattern resembles an “x-

pattern” observed previously (Kepecs et al., 2008) which is a signature 

for an uncertainty coding neuron (Insabato et al., 2010b; Kepecs and 
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Mainen, 2012). Figure 2.2E and 2.2G depict an OFC neuron which is 

also an outcome predictive neuron, modulated by the difficulty of 

categorization, but with a not so clear “x-pattern” (Figure 2.2I).  

 

Figure 2.2 – Negative outcome 
predictive neurons in ventral striatum 
and orbitofrontal cortex 
 
(A-B) - Example Nissl-stained coronal 
sections showing electrolytic lesion sites 
(black arrows) from tetrodes located in (A) 
ventral striatum (VS) and (B) orbitofrontal 
cortex (OFC).   
(C) – Timing of outcome anticipation 
period. Neuronal activity was aligned to 
each trial choice port entry, signaled by 
the first break of photo-beams within each 
choice port, and analyzed for 500ms after 
choice port in – light blue bar. 
(D-E) Activity of example neuronal units, 
from (D) VS and (E) OFC. Raster plots 
represent neural activity, with each row 
corresponding to a single trial and each 
tick mark to a spike. All the trials from a 
session are depicted sorted for the 
duration of movement from odor port to 
choice port. Magenta marks signal the 
time of choice port entry and rows with no 
mark are initiated trials where no choice 
was made.  
(F-G) - Peri-event time histogram (PETH) 
of (F) VS and (G) OFC example neuronal 
units (same as in D-E). Trials are grouped 
by trial outcome - correct (green) and 
error (red) PETHs. In PETHS, central lines 
are the firing rate averages and upper and 
lower lines represents s.e.m across trials.  
(H-I) – Average firing rate of example (H) 
VS and (G) OFC example units (same as in 
D-E), during the outcome anticipation 
period, as a function of odor stimulus and 
trial outcome (correct, green; error, red). 
Error bars are s.e.m. across trials. 

 

 

We next used receiver operator characteristic (ROC) analysis to define a 

measure of how well the firing rate of a neuron can be used to classify the 

outcome of a trial (Feierstein et al., 2006; Felsen and Mainen, 2008; 

Kepecs et al., 2008), See Experimental Procedures). For each neuron a 

outcome relative preference index was calculated, with negative values 

being assigned to cells with higher average firing rates for error trials (as 

in Figure 2.2D-I) and positive values for cells with higher firing rates 

for correct trials.  
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In the VS 25% of the recorded neurons (16/64) showed a significant 

outcome relative preference (p<0.05, permutation test) (Figure 2.3A). 

75% of these outcome predictive cells (12/16) showed a negative outcome 

preference and the population average activity, as a function of outcome 

and odor mixture identity, revealed the “x-pattern” of uncertainty cells 

(Figure 2.3C). The remaining 25% (4/16) had positive outcome 

preference and confidence cells-like activity (Figure 2.3D). Choice 

accuracy varied with the firing rate of these populations - in the 

uncertainty neuronal population lower firing rates were associated with 

higher performance and higher firing rates to chance-level performance. 

The negative correlation between averaged activity and accuracy was 

significant (Figure 2.3G, R=−0.83 p=0.02226). On the other hand, a 

positive correlation between activity and accuracy was observed in the 

confidence population (Figure 2.3H, R=0.95 p=0.00089). 

In the OFC 22% of the recorded neurons (13/59) showed significant 

outcome relative preference (Figure 2.3B), 62% of these (8/13) were 

uncertainty neurons (Figure 2.3E) and 38% (5/13) confidence neurons 

(Figure 2.3F). The activity of OFC uncertainty population was well 

correlated with accuracy (Figure 2.3I, R=−0.89 p=0.00658), but the 

correlation was weaker in the OFC confidence population (Figure 2.3J, 

R=0.62 p=0.13663).  
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Figure 2.3 – Outcome predictive populations in ventral striatum and orbitofrontal 
cortex 
 
(A-B) – Outcome relative preference for (A) VS and (B) OFC population of neurons during the 
outcome anticipation period. Outcome preference is calculated using ROC analysis (see 
Experimental Procedures). Color bars represent significant selectivity (p<0.05, permutation 
test), green - positive outcome preference index (selective for correct trials), red – negative 
outcome preference index (selective for error trials) and gray – not significant. 
(C-D) – Uncertainty and confidence cells in VS. Normalized firing rate of VS (C) uncertainty 
population (averages across negative outcome selective cells) and (D) confidence population 
(averages across positive outcome selective cells), as a function of odor stimulus and trial 
outcome (correct, green; error, red).  
(E-F) - Uncertainty and confidence cells in OFC. Normalized firing rate of OFC (E) uncertainty 
population and (F) confidence population, as in C-D.   
(G-H) - Mean choice accuracy as a function of the firing rate, for VS (G) uncertainty population 
and (H) confidence population. Normalized firing rates were binned for individual neurons and 
the mean accuracy was calculated for each range of firing rates, then averaged across cells. 
Gray line represents least-squares line. Correlation coefficients (R) and p values (p) for 
correlation are depicted.  
(I-J) - Mean choice accuracy as a function of the firing rate, for OFC (I) uncertainty population 
and (J) confidence population, as in G-H. 
Error bars are s.e.m. across cells in C-J 
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Uncertainty and confidence populations predict waiting 

time 

We next sought to investigate the role of confidence and uncertainty 

neuronal populations in the reporting of confidence via our waiting time 

post-wager. We have found that the activity of 31% (5/16) VS outcome 

predictive cells and 18% (2/11) OFC outcome predictive cells was also 

linearly correlated with waiting time during the outcome anticipation 

period (Figure 2.S2).  

 

 

Figure 2.S2 – Uncertainty and confidence neurons in VS and OFC predict waiting time 
(A-B) Population scatter plots of outcome relative preference and coefficient estimates for the 
linear regression of firing rate predicted by waiting time, during the reward anticipation period, 
for (A) VS and (B) OFC neurons. Each point is a single neuron, color-coded for significance 
(p<0.05) in the permutation test for the outcome relative preference (red) or in the linear 
regression (blue), or for both measures (magenta). In both VS and OFC significant cells for 
positive outcome relative preference are defined as confidence neurons and significant cells for 
negative outcome relative preference are defined as uncertainty neurons.  

 

We’ve pooled VS and OFC uncertainty cells or VS and OFC confidence 

cells together to access the relationship between firing rates in 

uncertainty or confidence neuronal populations and our confidence 

report. In the uncertainty population (20/123 cells), higher average 

activity corresponded to shorter waiting times, and this negative 

correlation was significant (Figure 2.4A, R=−0.79 p=0.03632). The 

opposite was found to happen in the confidence population (9/123 cells) 

- on average when this population of neurons was more active rats 
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significantly waited longer for a reward (Figure 2.4B, R=0.91 

p=0.00412).  

To better understand the activity dynamics of these two populations, in 

relation with waiting time, we’ve generated population PETHs from 

trials ranked in intervals according to the distribution of waiting times 

(Figure 2.4C-D). Both confidence and uncertainty populations had a 

transient activation, locked to the time when the rat poked into the 

choice port, which was not clearly separable according to trial waiting 

time. Following this, activity was correlated with the waiting time 

percentile ranks either positively (confidence) or negatively 

(uncertainty), and this relation was only observed during this 500ms 

period. After this, and for at least 500ms, activity from the uncertainty 

population seemed to diverge into two binary categories – decreased 

activity for longer waiting times (>60th percentile) and sustained activity 

for shorter waiting times (<60th percentile) (Fig 2.4C) while activity of 

the confidence population converged and did not reflect waiting time 

(Figure 2.4D).  

Figure 2.4 - Uncertainty 
and confidence neuronal 
populations predict 
waiting time 
 
(A-B) - Mean normalized 
waiting time as a function 
of the firing rate, for total 
(A) uncertainty and (B) 
confidence recorded 
neurons. Normalized firing 
rates were binned for 
individual neurons, 
normalized averaged 
waiting time was calculated 
for each range of firing 
rates, and averaged across 
cells. Gray line represents 
least-squares line. 
Correlation coefficients (R) 
and p values (p) for 
correlation are depicted. 
Error bars are s.e.m. across 
cells. 
(C-D)  - Average PETHs of 
(C) uncertainty and (D) 
confidence recorded 
neurons. For each unit 
trials were grouped by 
waiting time percentile 

rank, from initial 20% (0-20, light yellow) to final 20% (80-100, dark brown). In light blue, the 
reward anticipation period. Lines are average normalized firing rates ± s.e.m, across neurons. 
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Waiting time predictive neurons are different before, in 

the beginning or end of waiting 

The population of neurons selected for significant outcome relative 

preference (uncertainty and confidence) during the outcome period had 

its activity correlated with waiting time at least at the beginning of 

waiting at the choice port. But it was unclear if those same cells could 

already be predicting waiting time (and outcome) before the rat had 

committed to a choice and poked into a choice port. Or, on the other 

hand, if the activity of these same cells kept being correlated with waiting 

time until the end of waiting and was when the leaving decision occurs. 

Given this, and to better understand the behavior of the waiting time 

predictive neurons as a population, we have looked into our 123 recorded 

neurons in two other trial periods: before waiting (activity aligned to 

choice port entry and analyzed for 500ms window before choice port in) 

and before leaving (activity aligned to choice port exit, and analyzed for a 

500ms window before choice port out) and compared these two periods 

to the outcome anticipation period.  

When comparing the period before choice port entry with the period 

after choice port entry 9% of the cells (10/123) could predict waiting time 

only after choice port in, 5% (6/123) could predict waiting time only 

before choice port in, and 5% (6/123) could predict waiting time during 

both periods (Figure 2.5A).  

The amount of outcome predictive cells between these two periods was 

similar- 14% (17/123) were predictive of outcome in only one of the 

periods and 10% (12/123) could predict outcome during both periods 

(Figure 2.S3A). 
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Figure 2.5 – Waiting time predictive neurons are different before waiting, in it’s 
beginning or end. 
 
(A) – (top) Neuronal activity was aligned to each trial choice port entry and analyzed for 
500ms after choice port in –blue bar, or aligned to each trial choice port entry and analyzed for 
500ms before choice port in – green bar  
(bottom) Population scatter plot of outcome relative preference during a 500ms window after 
choice port in (reward anticipation period), and outcome relative preference during a 500ms 
window before choice port in (movement period). Each point corresponds to a cell, color-coded 
for significance (p<0.05) in a linear regression of firing rate with waiting time as predictor 
(blue, waiting time regression after choice port in; green, before choice in and magenta, during 
both periods). Unfilled points are non-significant cells. Squares correspond to VS cells, circles 
to OFC cells. 
 
(B)– (top) Neuronal activity was aligned to each trial choice port entry and analyzed for 500ms 
after choice port in –blue bar, or aligned to each trial choice port exit and analyzed for 500ms 
before choice port out – yellow bar. 
(bottom) Population scatter plot of outcome relative preference during a 500ms window after 
choice port in (reward anticipation period), and outcome relative preference during a 500ms 
window before choice port out. Each point corresponds to a cell, color-coded for significance 
(p<0.05) in a linear regression of firing rate with waiting time as predictor (blue, waiting time 
regression after choice port in; yellow, before choice port in and magenta, during both 
periods). Unfilled points are non-significant cells. Squares correspond to VS cells, circles to OFC 
cells. 
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Figure 2.S3 – Outcome predictive before waiting, in it’s beginning or end. 
 
(A) - (top) Neuronal activity was aligned to each trial choice port entry and analyzed for 
500ms after choice port in –blue bar (left panel), or aligned to each trial choice port entry and 
analyzed for 500ms before choice port in – green bar.  
(bottom) Population scatter plot of outcome relative preference during a 500ms window after 
choice port in (reward anticipation period), and outcome relative preference during a 500ms 
window before choice port in (movement period). Each point corresponds to a cell, color-coded 
for significance (p<0.05) in the permutation test for the outcome relative preference (blue, 
after choice port in; green, before choice in out and magenta, during both periods). Unfilled 
points are non-significant cells. Squares correspond to VS cells, circles to OFC cells. 
(B)  – (top) Neuronal activity was aligned to each trial choice port entry and analyzed for 
500ms after choice port in –blue bar (left panel), or aligned to each trial choice port exit and 
analyzed for 500ms before choice port out – yellow bar. 
(bottom) Population scatter plot of outcome relative preference during a 500ms window after 
choice port in (reward anticipation period), and outcome relative preference during a 500ms 
window before choice port out. Each point corresponds to a cell, color-coded for significance 
(p<0.05) in the permutation test for the outcome relative preference (blue, after choice port 
in; green, before choice port out and magenta, during both periods). Unfilled points are non-
significant cells. Squares correspond to VS cells, circles to OFC cells. 

 

Moreover, the outcome relative preference indices of waiting time 

predictive cells were dispersed all over the outcome relative preference 

distributions, in both periods, with the occurrence of cells which could 

predict waiting time but not outcome (Figure 2.S4A). 

When comparing the period after choice port in with the period just 

before choice port out 11% of the cells (13/123) predicted waiting time 

only during before choice port in, 6% (7/123) only before choice port out 

and 3% (4/123) would be common for both periods (Figure 2.5B).  
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Figure 2.S4 – Population of neurons predictive of outcome or waiting time, before 
waiting, in it’s beginning or end. 
 
(A)- Histogram of outcome relative preference indices for neuronal activity aligned to trial 
choice port entry and analyzed for 500ms before choice port in (left panel), or analyzed for 
500ms after choice port (right panel). Histograms are color coded for significance for two 
parameters, based on a linear regression of firing rate with waiting time as predictor (top 
histograms), or based on the outcome relative preference permutation test (bottom 
histograms). Green indicates number of cells significant during the 500ms before choice port 
in, blue, during the 500ms after choice port in and magenta during both periods. 
(B) - Histogram of outcome relative preference indices for neuronal activity aligned to trial 
choice port entry and analyzed for 500ms after choice port in (left panel), or for neuronal 
activity aligned to trial choice port exit, analyzed for 500ms before choice out (right panel). 
Histograms are color coded for significance for two parameters, based on a linear regression of 
firing rate with waiting time as predictor (top histograms), or based on the outcome relative 
preference permutation test (bottom histograms). Yellow indicates number of cells significant 
during the 500ms before choice port out, blue, during the 500ms after choice port in and 
magenta during both periods. 
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There was a difference in the amount of outcome related cells between 

these two periods. Just before choice port out rats should have already 

experienced the presence (or absence) of outcome. Maybe due to this 

33% of the cells (40/123) had a significant outcome relative index only 

during this period (Figure 2.S3B). From these 83% (33/40) had a 

negative outcome preference index and thus signaled errors. Just after 

choice port in 14% of the cells (17/123) could predict outcome and also 

be sensitive to it’s absence or presence just after choice port out, and 

29% of these cells (5/17) inverted their outcome relative preference 

signal from beginning to end of waiting. The outcome relative preference 

indices of waiting time predictive cells were also dispersed all over the 

outcome relative preference distributions, in both periods, with the 

occurrence of waiting time predictive cells which could not predict or 

distinguish between outcomes (Figure 2.S4B). 

 

Figure 2.S5 – Within trial dynamics of waiting time and decision confidence 
correlations 
(A,B) – Correlation coefficients of outcome relative preference and waiting time regression 
coefficients for (A) VS neurons and (B) OFC neurons, during four periods of a trial: sampling - 
activity aligned at odor port out and analyzed for 200ms before odor port exit; moving - 
activity aligned at choice port in and analyzed for 500ms before choice port entry; reward 
anticipation - activity aligned at choice port in and analyzed for 500ms after choice port entry; 
and end of waiting - activity aligned at choice port exit and analyzed for 500ms before choice 
port out. Filled circles, p<0.05 
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(C,D) – p values for correlation of outcome relative preference and waiting time regression 
coefficients for (C) VS neurons and (D) OFC neurons, during the above mentioned four periods 
of a trial. Filled circles, p<0.05. 

Overall, the population of OFC neurons had their outcome relative 

preference indices significantly correlated with their waiting time linear 

regression coefficients (Figure 2.S5A, C) in the 500ms window before 

choice port entry (R=0.52, p=2.2x10-5), but not during reward outcome 

anticipation (R=0.16, p=0.234) or in the end of waiting (R=-0.1, 

p=0.454). The population of VS neurons had their outcome relative 

preference indices significantly correlated with their waiting time linear 

regression coefficients (Figure 2.S5B, D) in the 500ms window before 

choice port entry (R=0.45, p=0.0002), and during reward outcome 

anticipation (R=0.3, p=0.0.016) but not in the end of waiting (R=0.17, 

p=0.1752). We have also analyzed a shorter 250ms window of activity 

before odor port exit, correspondent to the time animals are sampling 

the odor mixture. Before decision formation, both OFC and VS 

population of neurons did not have their outcome relative preference 

indices significantly correlated with their waiting time linear regression 

coefficients (OFC, R=0.25, p=0.0544; VS, R=0.23, p=0.0692). 

 

DISCUSSION 

To explore the neural correlates of confidence, uncertainty and its 

behavioral report (waiting time) we recorded electrophysiological 

activity of single neurons from the orbitofrontal cortex (OFC) and 

ventral striatum (VS) of behaving animals, performing a odor-mixture 

categorization task with a time wager report of confidence. Just after a 

choice was made we have found, in both the OFC and VS, populations of 

neurons that computed confidence and uncertainty (Figure 3.3) and 

that could well predict the time animals were willing to wait for a reward 

(Figure 3.4). 

While the OFC was previously found to have neuronal correlates of 

uncertainty (and confidence) (Kepecs et al., 2008; O’Neill and Schultz, 

2013) the relation between this activity and a behavioral report of 
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decision confidence was yet to be studied. Regarding VS, to our 

knowledge, this is the first report of single neuron correlates of decision 

confidence in this area although prior human functional imaging studies 

(Daniel and Pollmann, 2012b; Grinband et al., 2006; Hebart et al., 

2014a; Preuschoff et al., 2006) already hypothesized a role for the VS in 

decision making under uncertainty. Most notably, in Hebart et al, VS 

was the primary candidate region identified for encoding perceptual 

confidence, amongst frontal cortical regions.  

In our hands the total fraction of outcome predictive cells during the 

reward anticipation period was similar in both OFC and VS, and their 

activity was well correlated with decision accuracy. As a first approach 

analysis we decided to combine uncertainty and confidence populations 

from both regions and have observed that higher firing rates in 
uncertainty cells predicted shorter waiting times and the opposite was 

true for confidence cells. This correlation between a trial-by-trial gradate 

confidence report and activity of cells computing perceptual decision 

confidence/uncertainty was only previously shown in the primate 

supplementary eye field (Middlebrooks and Sommer, 2012).  

When looking closer to firing rate dynamics of these two populations we 

saw different tiled activity depending on the time animals waited for 

reward, but this difference was mainly observed in the reward 

anticipation period - most likely reflecting our selection criteria of 

outcome predictive cells. Those dynamics did not resemble a ramp-to-

threshold pattern, expected if these populations were responsible for 

accumulating confidence-based evidence that would result in the leaving 

decision upon reaching a threshold. It is possible that these populations 

of cells are instead feeding a accumulator network, located in one other 

brain region, which would take into account the amount of decision 

confidence, amongst other variables, and ultimately lead to spontaneous 

leaving decisions. The rodent pre-motor cortex would be a candidate 

area for such a role (Murakami et al., 2014). Also, the fact that in the 

confidence population the tiled difference collapsed soon after 500ms 

from choice port entry might indicate that these cells are not keeping 
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track of time spent waiting. The activity of the uncertainty population 

seemed to collapse into a binary pattern, no longer spread across the 

waiting time distribution but separated for trials <60% or >60% of 

waiting time distribution. This either reflects a difference between 

expected outcomes that does not correlate with confidence report from 

that time point on, or a change to a binary confidence encoding 

(Martinez-Garcia et al, 2014). Both populations had a peak activity just 

before choice entry, which also did not clearly reflect waiting time.  

The fact that waiting time tiled activity only held during the outcome 

preference selection window lead us to explore the idea that the 

population of outcome predictive cells, and confidence-report correlated 

cells, was not homogenous across the trial. We had chosen to analyze 

activity specifically during the outcome anticipation period, following a 

previous report (Kepecs et al. 2008), which had found neural correlates 

for confidence in OFC during that epoch. This period seemed ideal since 

the animals had already committed to a choice but were not yet 

rewarded. Nonetheless we looked at two other trial epochs, 1) during 

500ms before choice port entry, when animal was moving towards the 

choice port, we expected that some neurons would already be carrying a 

decision confidence estimation maybe correlated with waiting time; and 

2) for 500ms before leaving choice port, where animals should already 

be aware of the presence of reward in correct trials, or it’s absence in 

error or catch trials.  

For this analysis it was important to go back to individual neurons, and 

correlate single unit activity with waiting time or outcome preference. 

The fraction and identity of outcome predictive or waiting time 

predictive single neurons changed across different trial epochs, revealing 

interesting within-trial dynamics of the confidence signal. The highest 

fraction of cells with activity correlated with waiting time was observed 

in the reward anticipation period, but there was still a considerable 

amount of cells which were predicting waiting time exclusively just 

before entering the choice port or just before leaving it. This within-trial 

span of waiting time correlated activity might strengthen the idea that 



!

76!

these neurons feed an integrator of waiting time, in different stages of 

the accumulation process, as suggested before. 

Just after the odor guided-decision had taken place, and while animals 

were moving towards a choice port, there was already a small fraction of 

cells with significant outcome relative preference, either limited to that 

period or with sustained significant preference spanning until the reward 

anticipation period. This unravels that decision confidence estimates 

start to be computed early on in OFC and VS neurons. The amount of 

neurons distinguishing error trial from correct trials between just after 

choice port in and just before choice port out is quite different. A big 

proportion of the recorded neurons significantly increase their activity 

after an error was made, in what could be revealing computations 

necessary for detecting absence of reward. Although the aim of this study 

is other, it is widely reported that OFC and VS are involved in these 

processes (eg. Schultz et al., 2000). More so, a good proportion of these 

neurons shifted their preference from preferring correct choices, during 

the reward anticipation period, to preferring error choices, in what might 

be a signal for the discrepancy between expected outcome and actual 

outcome – prediction error – something previously observed in VS and 

OFC functional imaging (Doherty et al., 2003).  

Overall, the confidence report computation is dynamically shaped by the 

decision confidence/uncertainty signal, within the OFC-VS circuitry, 

throughout the trial starting just after decision. The outcome relative 

preferences of neurons in VS and OFC significantly correlate with the 

trial waiting times during the movement period. During this period OFC 

outcome predictive activity is more strongly correlated with the 

confidence report. After this, and while animals are anticipating the 

reward the correlation is significant only in the VS neurons but the 

significance is lost just before animals leave the choice port to start a new 

trial. Previously (Lak et al., 2014) OFC pharmacological inactivation was 

found to disrupt the waiting time dependency on confidence, without 

affecting perceptual decision making, or mean total waiting time. This 

disruption, although significant, was not total. In line with our results it 
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might be feasible to think that 1) OFC inactivation affected mostly the 

decision confidence report by having diminished outcome relative 

preference related activity just after decision formation and 2) even after 

OFC inactivation, VS outcome relative preference related activity might 

be responsible for keeping a waiting time behavior still partially 

dependent on decision confidence.  

We have shown that the neurons OFC-VS circuitry can play a role in 

guiding post-wager decisions based in subjective beliefs of decision 

confidence. These two regions are thought to be important in model-

based decision making (McDannald et al., 2011) or serve the role of the 

critic in actor-critic implementation of reinforcement learning 

(Botvinick et al., 2009), to track progression through a task sequence 

(Shidara et al., 1998) and act in conjunction to influence actions towards 

outcomes (Simmons et al., 2007). Here we propose that the 

orbitofrontal-ventral striatal circuitry is also central for using 

metacognitive signals, such as estimates of decision confidence, to shape 

adaptative behaviors in an uncertain world. 
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INTERPLAY BETWEEN 

CONFIDENCE AND VALUE TO 

GENERATE A CONFIDENCE 

REPORT 
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SUMMARY 

Perceptual categorical decisions take place based on stimulus 

information and reinforcement-related factors, such as the value of 

outcomes. Before outcome is known, while animals are waiting for a 

reward, the brain is able to compute an evaluation of how likely it is that 

the decision just made was a correct one. If given the chance, they can 

adapt their behavior accordingly, and for instance, choose to give up 

waiting and start again. This behavior is, like a metacognitive judgment, 

based on decision confidence estimates.  

When a decision is uncertain animals bias their choices in favor of the 

most rewarding option. But it is not clear if reward magnitude affects 

metacognitive judgments. To better understand the effect of reward in 

post-decision confidence judgments we have trained rats to perform a 

modified version of the waiting task, which had a block-wise reward 

manipulation. We have observed that the reward manipulation biased 

animals’ choices, affected their performance but did not seem to alter the 

waiting time confidence report. By devising a SDT model which assumed 

a dual-route processing of confidence we were able to explain our 

behavioural results.  

 

INTRODUCTION 

Animal lives are punctuated by decisions. Uncertainty and reward value 

play a major role in guiding and influencing each decision made - errors 

are more prevalent upon high uncertainty conditions and choices are 

more abundant towards most valuable options. Imagine a stockbroker 

analyzing highly complex and uncertain financial information. In doubt 

he opts to invest towards a very valuable option. Before he actually 

knows the outcome of his decision he can estimate his degree of 

confidence and sell back his shares when confidence is lacking. But how 

is his confidence affected by the magnitude of expected reward? Is his 

judgment affected by greed? 
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Human and non-human animals have the ability to report 

“metacognitive” confidence judgements on the quality of a decision (eg. 

Kepecs and Mainen, 2012; Smith et al., 2003; Yeung and Summerfield, 

2012). The importance of understanding the extent to which these 

confidence judgements reliably predict decision accuracy -calibration- 

has long been studied in human decision making (Baranski and Petrusic, 

1994; Griffin, 1993; Harvey, 1997). Through this effort it was observed 

that decision confidence was often uncalibrated, with a propensity for 

overconfident estimations following hard decisions. Later on individual 

differences in confidence calibration were linked to anatomical 

differences in prefrontal cortex areas (Fleming et al., 2010). 

Furthermore, it was proposed (Johnson and Fowler, 2011) that holding 

incorrect beliefs about one’s own capability could actually be a beneficial 

strategy in everyday life, depending  on small changes in benefit/cost 

ratio of decisions, with advantage for overconfident individuals when 

deciding under high levels of uncertainty. 

Despite all previous work it is not well understood how is a confidence 

report affected by unbalanced reward benefits. Recently, in a attempt to 

better understand how subjective confidence and valuation of choice 

options interact, De Martino, et al, (2013) observed a separation between 

the two variables, confirming the notion that high confidence could be 

reported after a low-value choice and vice versa. In this study human 

subjects were asked to make value-based decisions and accuracy was as 

measure of whether decisions were following an a posteriori defined 

subjective preference (Becker-DeGroot-Marschak mechanism). This task 

design meant that correct or wrong decisions were defined by individual 

subjective preferences. It was left unknown how is the interplay between 

value and confidence when the external world defines the rule for 

decisions. 

In reward based decisions the amount of offered reward biases choices 

towards the most valuable options (Lau and Glimcher, 2008; Roesch et 

al., 2006; Sugrue et al., 2004). The same can be observed in perceptual 

decisions, with the amount of choice bias depending on the sensory cue 
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contrast (Navalpakkam et al., 2010; Wang et al., 2013). It has been 

previously reported that animals can compute decision confidence 

estimates of perceptual decisions, and derive future behaviors 

accordingly (Kepecs et al, 2008; Kiani & Shadlen, 2009; Komura, et al, 

2013; Lak et al, 2014). The confidence-driven behaviors were highly 

correlated with the difficulty of the task (degree of uncertainty) and 

expected outcome (probability of being correct), but the effect of 

different offered reward amounts in a confidence report for perceptual 

decisions remained to be determined.  

Signal Detection Theory (SDT) models can be used to generate 

predictions that account for choice behavior and confidence estimation, 

in perceptually driven decisions under uncertainty (Deco et al., 2013; 

Hebart et al., 2014b; Kepecs and Mainen, 2012; Kepecs et al., 2008). 

These models have the caveat that do not reflect a temporal dimension 

but can be particularly useful and simple to apply in tasks where the time 

for sensory evidence accumulation does not seem to be a function of 

evidence contrast, such as in odor-guided categorizations (Uchida and 

Mainen, 2003; Zariwala et al., 2013). In tasks where the dynamic 

integration of evidence plays a important role in shaping response times, 

integrator or accumulator models can be used to derive choice and 

confidence ((Kiani and Shadlen, 2009; Vickers and Packer, 1982) Both 

types of models postulate that confidence estimation is a intrinsic 

property of the decision making process. In order to compute behaviors 

which monitor performance, such has confidence judgements, it was 

proposed that a second layer of processing which has access to 

confidence estimates (Charles et al., 2014; Cul et al., 2009; Insabato et 

al., 2010a; De Martino et al., 2013) might be implemented by the brain. 

To better understand the effect of reward in post-decision confidence 

judgments we have trained rats to perform a two-odor guided 

categorization task, which includes a post-wager decision confidence 

report and a block-wise reward manipulation. We have observed that the 

reward manipulation biased animals’ choices, affected their performance 

but did not seem to alter the waiting time confidence report. By devising 
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a SDT model that assumed a dual-route processing of confidence we 

were able to predict, and explain, our behavioural results.   

 

RESULTS 

Odor categorization task with confidence report and 

reward manipulation 

We have trained rats (n=6) to perform a modified version of the 2AFC 

odor categorization task (Uchida and Mainen, 2003), which incorporates 

a post-decision wager (Kepecs and Mainen, 2012; Lak et al., 2014). In 

this paradigm each trial consists of two different decisions, a perceptual 

decision towards one of two choice ports and a post-decision wager - 

waiting at the choice port - for incorrect trials and a fraction of correct 

trials where reward is omitted, catch trials (Figure 3.1A, See 

Experimental Procedures II & III). This post-decision wager is based on 

the willingness to wait for a reward, where the amount of time waited is 

a function of decision confidence and the opportunity cost of waiting. 

Waiting time (WT) will be higher for higher levels of confidence and 

lower costs of waiting (Lak et al., 2014). 

Figure 3.1 – Odor categorization task with confidence report and reward 
manipulation 
 
(A) - Schematic of the behavioral paradigm. To start a trial, rats entered the central odor port 
and after a pseudorandom delay of 0.2–0.5 s a mixture of odors was delivered. Rats moved to 
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one of the lateral choice ports and in correct trials they waited for a drop of water to be 
delivered after a pseudorandom delay, drawn from a exponential distribution with decay of 
1.5s, 0.5s offset and 8s maximum. In error trials no water was delivered, and so was the case 
for a small percentage of correct trials – catch trials. The time rats were willing to wait with 
their snout in the reward port, in both error trials and catch trials – waiting time – was 
considered to be the confidence report for this task. In these trials rats were able to start a 
new trial 1s after leaving the reward port. (B) - Reward magnitude manipulation. Each session 
starts with a block (1A:1B) of 120-140 trials where both choice ports deliver the same amount 
of water (0.024ml). This is followed by two reward manipulation blocks - a 3A:1B block of 120-
140 trials where one of the choice ports A delivers three times more water (0.072ml) than the 
opposite port B and then this relation is reversed for the next set of 120-140 trials (1A:3B). For 
the remaining trials of the same session the choice ports deliver again the same amount of 
reward (0.024ml) (1A:1B). The initial most rewarded side alternates from session to session.  
(C) - Effect of reward magnitude manipulation on performance. Psychometric functions of 
choices in 1A:1B (gray), 3A:1B (orange) and 1A:3B (blue) blocks. Values depicted are 
averages for a population of 6 animals. Error bars are s.e.m. 
 
 

Classically the difficulty of this task is manipulated by varying the 

contrast of the odor mixture, pseudo-randomly delivered in a central 

port (6%, 20% and 60% contrasts, corresponding to the odor ratios 

20:80, 40:60, 47:53 and their counterparts, 80:20, etc.) and so accuracy 

increases with mixture contrast (Uchida and Mainen, 2003). To study 

the interplay between reward value and confidence we introduced a 

reward magnitude manipulation in a block-wise design (Figure 3.1B). 

During a session rats experienced an initial block of trials where water 

was evenly delivered at the choice ports (0.024ml, 1A:1B block). This was 

followed by another block of trials where in one choice port the amount 

of reward delivered was the same as previously (0.024ml) and in the 

opposite choice port rats could obtain three times more water (0.074ml). 

In the next block of trials the unbalance in the magnitude of water 

delivery was reversed amongst ports. Depending of which port, A or B, 

was more rewarding we denominated these blocks as 3A:1B or 1B:3A. 

After these two blocks and until the end of the session the water delivery 

was again balanced (1A:1B). 

As previously observed in a similar reward manipulation task (Wang et 

al., 2013), rats choices were biased towards the most rewarded side in a 

difficulty dependent manner (Figure 3.1C) - biases are observed, 

mostly for when the odor mixture was closer to the categorization 

boundary (50:50). 
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Reward manipulation biases choices and affects 

accuracy 

We further analyzed the effect of our block-wise reward manipulation 

design on choices and accuracy. Regardless of stimulus contrast we 

looked at sliding average choices relative to which of the choice ports the 

animals decided to move to - towards side A or side B (Figure 3.2A top, 

middle).  To obtain a measure of choices according to their expected 

reward magnitude we divided the trials into 1:1 (equally rewarding), 1:3 

(less rewarding) or 3:1 (more rewarding) choices and averaged across the 

population of animals (Figure 3.2A bottom). During the initial 1A:1B 

block choices are balanced, occurring around 50% of the times to each 

port. This would be expected due to our pseudorandom schedule of 

stimulus delivery - the probability of delivered stimulus cueing a choice 

to each port was set to be even (0.5 for both sides), for a blocks of 40 

trials. Upon introducing an unbalance in the amount of delivered reward 

animals started biasing their choices towards the most rewarded choice 

port (3:1) away from the least rewarded choice port (1:3). Reversing the 

reward magnitude bias also reversed the bias in animals’ choices. An 

opposite effect could be observed in the dynamics of accuracy (Figure 
3.2B top, middle). 

In sum, reward manipulation biased choices (Figure 3.2A bottom, 

p<0.05, Wilcoxon signed rank test, for 1:1 and 1:3 or 1:3 and 3:1 

comparisons, across n=6 rats). On evenly rewarded trials (1:1) animals 

chose to go to side B in 55% ±1.7% of the choices. Due to the reward 

magnitude manipulation animals chosen 61% ±1% of the times the most 

rewarded choice port (3:1) and 39% ±1% the least rewarded choice port 

(1:3). 

Reward manipulation affected performance (Figure 3.2B bottom, 

p<0.05, Wilcoxon signed rank test, for 1:1 and 1:3 or 1:3 and 3:1 

comparisons, across n=6 rats). Animals’ average accuracy was 76% ±1% 

on the choices made during the evenly rewarded blocks. In choices were 

animals followed the reward magnitude bias, and went towards the most 

rewarded side, accuracy slightly dropped to 73% ±1%. On the opposite 
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direction, when we look at 1:3 choices, these were on average 84% ±1% 

accurate, higher than in 1:1 and 3:1 choices.  

Our reward manipulation biased choices towards the most rewarded 

side. Also rats performed better when counteracting the biasing force 

that an offer for a higher amount of reward provided. What was the 

effect of the reward manipulation on the confidence report – waiting 

time? 

 

Figure 3.2 – Effect of reward magnitude manipulation on choices, accuracy and 
confidence report.  
 
(A) - Effect of reward manipulation on choice. Average choice behavior of one animal (top) 
towards port A, or (middle) towards port B. Vertical blue line marks mean boundaries of 3A:1B 
to 1A:3B block transitions. Blue and purple boxes mark limits of reward manipulation blocks. 
Black thick and thin lines are 24 trial sliding averages and s.e.m, across 41 sessions. (bottom) 
Average fraction choices towards the least rewarded port (1:3 – purple box), towards the most 
rewarded port (3:1 – blue box), and towards port B in 1:1 trials. Values depicted are averages 
for a population of 6 animals. Error bars are s.e.m. 
(B) - Effect of reward manipulation on accuracy. Accuracy on choices (top) towards port A or 
(middle) port B for one animal. (bottom) - accuracy for 1:1, 1:3 or 3:1 choices for n=6 
animals.  
(C) - Effect of reward manipulation on waiting time. Waiting time for correct catch (green) or 
error (red) trials on choices towards (top) port A or (middle) port B for one animal. (bottom) - 
waiting time for 1:1, 1:3 or 3:1 choices for n=6 animals.  
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Reward manipulation does not affect waiting time  

If we hypothesize that animals wait for water depending on the amount 

of rewards they expect to obtain we would be led to predict that animals 

would be willing to spend more time waiting for a bigger reward (3:1) 

and less time waiting for a less rewarding choice (1:3). In this case 

waiting time would assume a pattern similar to the bias of reward 

manipulation on choices (Figure 3.2A bottom). An alternative 

hypothesis would be that waiting time is mostly related to the probability 

of being correct, hence mostly related with confidence. Given this, 

waiting time would be higher for when animals expect to be more 

accurate, and waiting time would assume a pattern similar to what is 

observed for the effect of reward manipulation on accuracy (Fig 3.2B 

bottom). Previous work has modeled waiting time as being positively 

correlated with confidence and negatively correlated with the cost of 

waiting (Lak et al., 2014). So, if the cost was to be (negatively) related to 

the expected reward value, then we might foresee an interaction between 

both previous hypotheses.  

When we further analyzed the within-session dynamics of waiting time 

for individual animals we could not identify a pattern of dependency of 

waiting time on the different magnitudes of reward available in each port 

(Figure 3.2C top and middle). This is better revealed when we analyze 

the average waiting time for the population of animals. Rats wait on 

average a similar amount of time for higher and lower amount of reward, 

both for correct or error trials. This is no different from the time they are 

willing to wait in the 1:1 condition (p>0.05, Wilcoxon signed rank test, 

for all comparisons, across n=6 rats). The reward manipulation does not 

affect waiting time, and the amount of evidence available for each 

decision does not influence this result (two-way Anova, p<0.001 for the 

effect of odor contrast on waiting time, p>0.05 for effect of value and for 

the interaction, in either correct or error choices), (Figure 3.S1A). 
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Figure 3.S1 – Confidence report odor 
contrast and reward magnitude 

 
(A) Waiting time as a function of stimulus 
contrast, expected outcome and expected 
reward amount.  Waiting times for the three 
different odor mixture contrasts, for correct 
(green) or error (red) choices, and 1:1 
(dashed line), 3:1 (thick line) or 1:3 (thin 
line) choices. 
Values are means and error bars s.e.m. 
across a population of 6 animals. 

 
 

We also investigated the relation between waiting time and expected 

reward magnitude by analyzing single animal average waiting time, for 

different choice reward magnitudes and different expected outcomes 

(Figure 3.S2A). We could distinguish a clear separation between 

waiting times for correct and error choices, with animals waiting longer 

when expecting a trial to be correct, for (6/6 rats, p<10-11, Wilcoxon 

signed rank test). Animals didn’t wait differently in 1:3 compared to 3:1 

choices (0/6 rats during error trials, 1/6 rats during correct choices, 

p<0.05, Wilcoxon signed rank test).  

 
Figure 3.S1 – Waiting time, movement time and 
reward magnitude 

 
(A) -  Scatter plot of waiting time for 1:3 choices and 3:1 
choices. Each animal average waiting time, for correct 
catch (green) and error (red) is plotted, with a unique 
marker type per animal. Each individual session average 
waiting time, for correct catch (light green) or error (light 
red) trials is also plotted. Error bars are s.e.m., and the 
markers hide most of them.      

 
(B) - Scatter plot of movement time (defined as the 
interval between the time of leaving the odor port and the 
time of entry into a choice port), for 1:3 choices and 3:1 
choices. Each animal average movement time, for 
correct (green) and error (red) is plotted, with a unique 
marker type per animal. Each individual session average 
movement time, for correct (light green) or error (light 
red) trials is also plotted. Error bars are s.e.m., and the 
markers hide most of them. 
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In contrast, movement time -the time that rats take to move from odor 

port to the choice port – seems to be a good predictor of the amount of 

reward rats are expecting to obtain (3/6 rats during error trials, 5/6 rats 

during correct choices, p<0.05, Wilcoxon signed rank test), and a fair 

predictor of outcome (3/6 rats, p<0.05, Wilcoxon signed rank test), 

(Figure 3.S2B).  

Figure 3.S3 – Confidence report 
and trial history 
 
(A) Waiting time as a function of 
stimulus contrast and expected 
outcome, for different previous trial 
outcomes.  Waiting times for the 
three different odor mixture 
contrasts, for correct (green) or error 
(red) choices, depending on whether 
the previous trial was a error trial 
(dashed line), a correct rewarded 
trial in 1:1 and 1:3 choices, or a 
correct rewarded trial for 3:1 
choices. 
 
(B) Waiting time as a function of 
stimulus contrast and expected 
outcome, for different session 
periods.  Waiting times for the three 
different odor mixture contrasts, for 
correct (green) or error (red) 
choices, depending on whether the 
trials were done in the first half 
(solid line) or second half (dashed 
line) of the session.  Averages and 
error bars (s.e.m.) across a 
population of 6 animals. 
 
 
 
 
 

 
 

We have also observed that previous trial outcome history did not seem 

to influence waiting time – the fact that animals experienced 0.024ml of 

water or three times that amount in the previous trial did not change the 

following trial waiting time (two-way Anova, p<0.001 for the effect of 

odor contrast on waiting time, p>0.05 for effect of previous trial 

outcome and for the interaction, in either correct or error choices), 

(Figure 3.S3A). Contrary to previous results (Lak et al 2014) average 

waiting time significantly diminished from the beginning to the end of 

the session (two-way Anova, p<0.001 for the effect of odor contrast on 
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waiting time, p<0.05 for effect of session period but p>0.05 for the 

interaction, in either correct or error choices) (Figure 3.S3B), 

suggesting that average waiting time might be influenced by satiation. 

This difference in observations might come from the fact that while the 

number of trials per session is equivalent in both experiments rats might 

have experienced a higher amount of reward in our hands due to the 

reward manipulation of our task design.  

Two factors predict the effect of reward magnitude 
manipulation on choice, accuracy and confidence report 

To try to formalize in a computational model the different effects of our 

reward manipulation on choice behavior and confidence reporting we 

combined the mechanistic interpretation of metacognitive theories 

which implies a separation on the computations of choice and confidence 

estimation with the theoretical approach that confidence and choice can 

be derived by Bayesian and signal detection theory models (SDT) 

(Kepecs and Mainen, 2012). We took advantage of a model previously 

used to compute decisions and confidence in the 2AFC odor 

categorization task (Kepecs et al., 2008) and adapted it to generate 

predictions for our reward manipulation design.  

In this model choices and confidence are computed by establishing a 

comparison between a perceived stimulus and the recalled category 

boundary (see Experimental Procedures).  Stimulus and category 

boundary can assume a set of different values drawn from their specific 

distributions, which we assume to be Gaussian (Figure 3.3A). The 

stimulus distributions have the same variance but different means, in a 

odorA to odorB scale, depending on the mixture presented. The category 

boundary distribution has a given variance and a mean that is set around 

zero in trials where both options are equally rewarding (1A:1B). The first 

modification to the model was that we introduced a bias term, to 

represent the reward magnitude manipulation, that shifts the value 

sampled from the category boundary, positively (in 1A:3B blocks) or 

negatively (in 3A:1B blocks). In each trial a sample from stimulus 

distribution and a sample from the boundary distribution are compared 
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to derive choices Figure 3.3B). We adjusted the bias and category 

boundary distribution variance to better fit our behavioral results and we 

were able to generate psychometric curves (Figure 3.3 top), and choice 

behavior (Figure 3.3 middle) and performance (Figure 3.3 bottom) as 

a function of expected reward magnitude, which resembled our data. 

 

Figure 3.3 - Computation model for the effect of reward magnitude manipulation on 
choice and confidence report 
 
(A) - Each odor mixture stimulus, as well as the memory for the category boundary, is 
encoded as a distribution of values – Sd and Bd. In each trial (i) a value is drawn from each 
distribution (Sdi and Bdi) and related to generate choice, confidence, and confidence report for 
that trial. To reflect the reward magnitude manipulation a bias β is introduced which shifts the 
boundary sample positively, for 3A:1B block trials (blue) or negatively, for 1A:3B block trials 
(orange).  
(B) - This model can predict the psychometric curves previously obtained (top) as well as 
average choice behavior (middle) and accuracy (bottom).  
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Choices are calculated by comparing samples from Sd with samples from Bd. In 1A:1B blocks 
Sd is compared to the unbiased Bd. In reward manipulation blocks Sdi samples are compared 
with samples Bdi ± β. (top) - Data points (filled circles) and model predictions (lines) are 
separated according to blocks trials, 3A:1B (orange), 1A:3B (blue) and 1A:1B (grey). (middle, 
bottom) - Data points and model predictions are separated according to value of choices- 1:1, 
1:3 (purple) and 3:1 (blue).  
(C) – Model predictions for biased confidence for correct (green) and error (trials) for 1:1, 1:3 
and 3:1 choices. In each choice a biased confidence is calculated by the distance between Sdi 
sample and Bdi sample. In the reward manipulation blocks the Bdi sample is biased by ± β and 
this is reflected in the biased confidence value obtained.  
(D) - Model predictions for unbiased confidence for correct (green) and error (trials) for 1:1, 
1:3 and 3:1 choices. In each choice an unbiased confidence, is calculated by the distance 
between Sdi sample and the Bdi sample, for all the trials.  
(E)  - Model prediction for waiting time for correct (green) and error (trials) for 1:1, 1:3 and 
3:1 choices. In the model confidence report (waiting time) is computed for each choice by 
combining biased confidence and unbiased confidence values and the model predictions 
resemble the data.  

 

In the previous version of the SDT model (Kepecs et al., 2008) each trial 

confidence is computed by the decision distance, the absolute difference 

between the stimulus and the category boundary samples.  We 

introduced a second modification to the model, which consists in the 

notion that, in our reward manipulation task, there are two sources of 

confidence that the animals are using to generate the confidence report. 

For every decision the model has access to an internal representation of 

the quality of the decision, which takes into account the biased category 

boundary sample (Figure 3.3C). Confidence derived this way assumes a 

similar trait to what is observed for the reward manipulation effect on 

choice (Figure 3.2A bottom). In parallel the model keeps and uses the 

unbiased category boundary sample, to obtain a prediction of the reward 

probability given the stimulus, uncorrupted by the effect of reward bias, 

and uses it to compute an unbiased decision confidence (Figure 3.3D). 

Confidence derived this way assumes a similar trait to what is observed 

for the reward magnitude manipulation effect on accuracy (Figure 3.2B 

bottom). These two distinct sources of confidence can then be integrated 

to generate a confidence report (Figure 3.3E), and by doing so the 

model predicts very closely the waiting time data as a function of 

expected reward magnitude.  

The model suggests a parallel computation of biased and unbiased 

decision confidence, which happens before a final waiting time can be 

generated. We have recorded electrophysiological activity of single units 

early on in the waiting period (Figure 3.S4A, Experimental 
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procedures) in two distinct brain regions, the ventral striatum (VS) and 

orbitofrontal cortex (OFC). The activity of a population of cells in these 

two distinct brain regions can predict outcome, with average firing rates 

being higher during error trials (uncertainty) (Figure 3.S4B). In VS 

activity of the uncertainty population, as a function of trial outcome and 

expected reward magnitude (Figure 3.S4C) resembled the biased 

decision confidence (Figure 3.3C) and in OFC (Figure 3.S4D) activity 

of the uncertainty population resembled the unbiased decision 

confidence (Figure 3.3D), suggesting a putative neuronal 

implementation of our model predictions in these two brain regions. 

 
Figure 3.S4 – Uncertainty cells in VS 
and OFC and reward magnitude 
manipulation      
 
(A) – Timing of outcome anticipation 
period. Neuronal activity was aligned to 
each trial choice port entry, signaled by 
the first break of photo-beams within 
each choice port, and analyzed for 
500ms after choice port entry – light 
blue bar. During this period negative 
outcome predictive cells were identified 
in ventral striatum (VS) and 
orbitofrontal cortex (OFC) using ROC 
analysis (see Experimental 
Procedures).  
 
(B) – Normalized firing rate of total 
uncertainty neurons, in correct (green) 
or error trials (red), for 1:1, 1:3 and 3:1 
choices. 
 
(C-D) – Normalized firing rate of (B) VS 
and (C) OFC uncertainty neurons, in 
correct (green) or error trials (red), for 
1:1, 1:3 and 3:1 choices. 

 

DISCUSSION 

We have trained rats to perform a two-odor guided categorization task, 

which includes a post-wager decision confidence report. During each 

behavioural session they have experienced different reward schedules 

and we have analyzed how these affected rats behavior, in terms of their 

choices, accuracy and confidence report.  

We have shown that when rats have to choose between two options 

leading to two different reward amounts their choices were biased by the 
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promise of a most valuable reward (Figure 3.2A bottom). The amount 

of bias was dependent of the amount of evidence available - higher bias 

was induced when odor contrast delivered was low (Figure 3.1C). The 

unbalanced reward schedule also led to differences in accuracy – rats 

were on average more accurate when choosing a lower valued option 

(Figure 3.2B bottom). But once animals committed to a choice we did 

not see a clear difference on the way they report their decision 

confidence - whether expecting a greater or a lesser amount of water rats 

waited on average the same amount of time (Figure 3.2C bottom), 

regardless of the amount of evidence available (Figure 3.S1A).  

To explain this result we have hypothesized that waiting time was shaped 

by the interaction between two opposite sources: 1) a biased confidence 

(influenced by the expected amount of reward given the evidence) and 2) 

a unbiased confidence (which only takes into account the probability of 

being correct given the evidence). We managed to generate a model that 

predicted well our results by assuming that these two sources converge 

and give rise to a confidence report (Figure 3.3).  

 The model postulates that whenever an animal is asked to perform a 

two-alternative forced choice task the brain keeps track of a “true” 

confidence estimate, which takes into consideration the reliability and 

consistency of the accumulated perceptual evidence towards a decision, 

and which is not affected by the expected value of the alternatives. Given 

that the choice process does take into account the magnitude of expected 

reward – leading to biases in choice – this confidence estimate might not 

arise through the same mechanism that ultimately leads to a decision. 

Our proposed model was based on principles from SDT that are widely 

used to formalize perceptual decisions in terms of computationally 

separable processes. One other set of models used to compute 

perceptual-guided decisions are models based on the accumulation of 

evidence towards a decision threshold. These models can be adapted to 

unfold decision confidence estimates by the difference between 

accumulated evidence for the two separated options (Kepecs et al., 

2008). This framework might allow for different intuitions and give 
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insights into the underlying neural mechanisms of perceptual decision-

making. To explain our results we can extrapolate the proposals of our 

model into the framework of evidence accumulation. We might 

hypothesize that in each trial the unbiased confidence estimate is 

computed early on in the decision process, before the difference in 

reward amount biases accumulation of evidence and the animal ends up 

choosing the most rewarded option. This unbiased confidence would 

have to be kept in working memory, in the end of the accumulation 

process the biased confidence would be computed and later on both 

confidence estimates would interact. However, this assumption would 

fail if we assume that reward biases influence the starting point of 

accumulation (Ding and Gold, 2013), or that, as previously shown (Wang 

et al., 2013), reward biases are being computed even before trial 

initiation.  

A possible caveat of our study is that during behavioural training 

animals only experienced the reward manipulation schedule after having 

fully experienced and well performed the odor categorization. It might 

be possible that what we call unbiased confidence is not a trial-by-trial 

estimate but an estimate learnt due to previous outcome history. So, 

although in each trial a decision is made, taking into account the 

available evidence from that trial, and biased by expected reward, while 

the animal is anticipating reward the learnt outcome probability would 

affect the confidence report.  

Whatever explanation holds, the results add-on to the notion that 

confidence reporting and the computation of perceptual decisions are 

distinct processes localized to different brain regions (Lak et al., 

2014).They might also be somewhat concordant with the proposed view 

of a dual-route signal detection theory formalized for conscious versus 

non-conscious evidence accumulation and error detection (Charles et al., 

2014; Del Cul et al., 2009) 

We do not discard the view that perceptual-guided choices and 

confidence estimates are computed in the same brain region (Kiani and 

Shadlen, 2009) and relayed to other areas where the confidence-based 
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decisions take place (Insabato et al., 2010a). OFC is the best candidate 

region to play a central role in computing our confidence report (Kepecs 

et al., 2008; Lak et al., 2014). To better fit the ideas proposed by our 

model OFC should either locally compute the unbiased confidence, or 

keep track of the unbiased confidence computed somewhere else. Since 

OFC does not play a role in perceptual-guided decisions (Lak et al., 2014) 

(which were biased by our reward manipulation), it might be expected 

that the biased confidence is not locally computed in the OFC but relayed 

to here from some other region.  

Related to this we have found a population of neurons in the OFC whose 

activity pattern was qualitatively similar to the unbiased confidence 

prediction, just after choice port entry (Figure 3.S4D). In parallel, we 

have found a population of neurons in the VS that had an activity pattern 

qualitatively similar to biased confidence, during the same trial epoch 

(Fig 3.S4C). Merging both populations together held an activity pattern 

qualitatively similar to our waiting time result. Given this one view on 

the neural mechanism of computing the confidence report would be that 

both types of confidence signals could actually be forwarded, not to the 

OFC, but to one downstream brain region responsible for the leaving 

decision, such as the pre-motor cortex (Murakami et al, 2014). 

Nevertheless, we cannot rule out that we simply missed the small OFC 

neuronal population previously reported to correlate with both expected 

value and reward uncertainty (O’Neill et al., 2010). If we assume that 

unbiased confidence is related to perceptual uncertainty (and that 

perceptual uncertainty in our task is somewhat correlated with reward 

uncertainty) this population could be a good candidate to have activity 

correlated to the convergence of the two proposed opposite confidence 

signals. One other putative neural implementation of our mechanism 

would be the circuit proposed in value-based decisions in humans (De 

Martino et al., 2013), in where subjective confidence (unbiased 

confidence) and difference in value (bias) are computed differently in the 

ventromedial prefontral cortex (human analogous to rodent OFC) and 

accessed by the rostrolateral prefontral cortex to enable a confidence 

report. 
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Our results also revealed some interesting dynamic features of the role of 

reward and confidence on animals’ behavior. It was previously known 

that in a two-odor categorization task the motivation to start a trial is 

higher when more net value is expected, and choices are biased towards 

the most rewarding choice (Wang et al., 2013). Further on the reward 

bias not only influences choice probability but also keeps influencing 

animals’ behavior during movement time (Figure 3.S2B). Animals 

move faster when going towards a more valuable option but then do not 

wait longer for reward. In our paradigm the probability of making a 

correct decision is not clearly reflected in the behavior before a choice 

had been committed (Uchida and Mainen, 2003; Zariwala et al., 2013) 

but it is robustly reflected after that, in the waiting time of every tested 

animal (Figure 3.S2A). As previously reported (Busse et al., 2011) 

choices were influenced by the interaction between available evidence 

and outcome previously experienced; the same is true for the amount of 

reward obtained in the previous trial (data not shown). But previous trial 

reward amount does not affect waiting time (Figure 3.S3A). This adds 

to the notion that waiting time is a trial-by-trial confidence report that 

can provide resolution to the measure of quality of a decision just made, 

without being affected by previous experiences.  

In conclusion, we have explored the interplay between value and 

confidence (P(correct|evidence)) in the behavioural manifestation of a 

confidence report. We have observed that although choices were biased 

by expected reward magnitude our confidence report did not seem to be 

affected by it. Nevertheless it did not perfectly predict decision accuracy. 

We have suggested that value and confidence were opposite forces which 

combined gave rise to the observed confidence report. Or, in other view, 

introducing a choice bias by reward manipulation is one factor that can 

alter the calibration of confidence in perceptual judgments (Johnson and 

Fowler, 2011). 

This work has implications on the way we think about the effects of 

reward in perceptual decision-making. When allured by bigger rewards 

our choices are clearly biased. These biases change our performance but, 
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while unaware of the outcome, we might not be able to optimally adapt 

our behavior to reflect the quality of our decision - our confidence report 

is badly calibrated with accuracy. When waiting to know the outcome of 

a decision, if we have a hold on how much our decisions were biased by 

reward we might be able to extract a better notion of decision quality out 

of our confidence report. We could then change our behavior 

accordingly, preventing the spread of a bad choice or persevere on 

waiting in order to profit from a “truly” good decision. 
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EXPERIMENTAL PROCEDURES – II & III 

Subjects 

A total of 6 male adult Long-Evans rats were used for the experiments. 

Rats were motivated by water restriction and had unlimited access to 

food. All procedures involving animals were carried out in accordance 

with European Union Directive 86/609/EEC and approved by Direcção-

Geral de Veterinária.  

Behavior 

Behavioral apparatus 

The apparatus has been described previously (Uchida and Mainen, 

2003). The behavioral box contains a panel of three ports: the central 

port for odor delivery (‘odor port’), and two ports on each side (‘choice 

ports’) for water delivery. 1 infrared photo-beam detector positioned on 

the inner wall of each port detected entry and exit from the ports. A 

custom-designed computer controlled airflow dilution olfactometer was 

used for odor delivery. Saturated odor vapor was produced by flowing 

clean air through disposable syringe filters (glass microfiber, pore size = 

2.7 µm, #6823-1327, Whatman) that were loaded with 20 µl of 1/10 

mineral oil dilutions of liquid odorants. Filters were inserted into a 

PEEK manifold of all valves and controllers. Odor streams were mixed at 

the manifold directly before the odor port with a clean air stream 

(‘carrier’) to produce a total flow rate of 1 L/min (1:20 dilution).  The 

behavioral box is controlled using custom-made Matlab (Mathworks) 

software communicating with a real-time state-machine controlling the 

olfactometer and data acquisition hardware card (National Instruments) 

running on a Real-time Linux operating system. 

Behavioral task with confidence report 

Rats self-initiated each experimental trial by introducing their snout into 

the central port where odor was delivered. After a variable delay, drawn 
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from a uniform random distribution of 0.2–0.5 s, in 95% of the trials, a 

binary mixture of two pure odorants, S(+)-2-octanol and R(-)-2-octanol 

(Sigma), was delivered. Per block of 40 trials rats experienced the 

following 6 concentration ratios, arranged pseudo randomly: 80:20 – 

3/40 of the trials, 60:40 – 12/40 of the trials, 53:47- 4/40 of the trials, 

47:53 - 4/40 of the trials, 40:60 – 12/40 of the trials, and 20:80 - 3/40 

of the trials. Also in the same odor block a binary mixture of two pure 

odorants (p-cymene and anisole (Sigma) ) were delivered in 2/40 trials 

but further excluded from analysis. This odor block delivery scheme was 

used to ensure that rats experienced at least twice the full diversity of 

stimuli in each of the three reward manipulation blocks. 

After a variable odor sampling time up to 1 s, rats responded by 

withdrawing from the central port, which terminated the delivery of 

odor, and moved to the left or right choice port. Choices were rewarded 

according to the dominant component of the mixture, that is, at the left 

port for mixtures A/B > 50/50 and at the right port for A/B < 50/50. A 

variable reward delay period after entry into the choice port was 

introduced. For correct choices, reward was delivered between at least 

0.5 s after entry into the choice port and up to 8 s. The reward delay was 

drawn from an exponential distribution with decay constant equal to 1.5 

resulting in a relatively constant level of reward expectancy over a range 

of delays (i.e. flat hazard rate). In a small fraction of correct choices (10% 

- 15% of correct trials) distributed pseudo randomly throughout the 

behavioral session the reward was never delivered to the rat (catch 

trials). These trials were designed to never occur consecutively. As the 

animal spends time to consume the water in the rewarded correct trials, 

we used the catch trials to measure WT for correct choices. After one 

second from water delivery or from choice port exit in unrewarded trials 

rats could initiate a new trial. The duration of each day behavioral 

session was not strictly defined, and session duration was thus less 

predictable for the animal. 
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Reward manipulation 

In each session rats experienced three different conditions/blocks of 

reward delivery in which the ratio of reward magnitudes took one of 

three values - 1A:1B, 3A:1B, or 1A:3B (where A and B are the choice 

ports, and 1 and 3 are the amounts of water delivered, 24µl and 72µl 

respectively). Each session started with 140 trials of the 1A:1B block, 

followed by 120 trials of either 3A:1B or 1A:3B blocks. For the next 120 

trials the larger reward changed spatial location. After this, and until the 

end of the session the reward block switched back to 1A:1B.  The order of 

the first reward manipulation block (3A:1B or 1A:3B) was 

counterbalanced from session to session. 

Behavioral training  

In order to be able to perform the perceptual categorization task 

described above, rats went through a multistep training procedure 

typically lasting 6-8 weeks. Initial steps of training consisted of 

imperative trials in which animal was supposed to poke into the odor 

port and collect the water reward subsequently from either of the two 

choice ports. Choice trials were gradually introduced as the training 

proceeds; starting with easy decisions between pure odor stimuli and 

advancing gradually to more difficult trials in which odor mixtures close 

to decision boundary (lower odor mixture contrast) were introduced to 

the animal. During initial training sessions reward followed the correct 

choices immediately. After animals reached psychometric performance 

(>95% for pure odors) delayed reward delivery was gradually introduced 

in successive behavioral sessions, followed by the introduction of reward 

omission in the trials. At this time pure odors were no longer introduced 

and rats experienced only 60%, 20% and 6% odor mixture contrasts. 

When the confidence report was stable, rats started experiencing the 

blocked-wise manipulation of reward magnitude. Behavioral data was 

collected after animals had experienced 4 alternated sessions of reward 

manipulation for a total of 213 sessions (min. 26, max. 40 sessions per 
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rat) – Chapter III. After this period rats were prepared for surgery – 

Chapter II.  

Analysis of behavioral data – Chapter II 

During the collection of electrophysiological data, animals performed on 

average 483 trials per recording session, and data was collected during a 

total of 28 sessions (5 to 7 sessions per rat). 

In order to estimate rats’ decision accuracy as a function of waiting time, 

we assumed that waiting times for correctly performed catch trials 

(which were pseudo randomly distributed) were a good representative 

for the distribution of all correctly performed trials. Therefore the catch 

trials waiting time data were expanded to all correct trials (taking into 

account the odor stimulus identity). Each session trials were then 

grouped according to the waiting time distribution into 7 equally spaced 

bins and accuracy was calculated for each bin.  

Each individual rat data was an average over the median values for each 

behavioral session in the case of waiting time and movement time, or an 

average of session’s fraction choices (for accuracy, psychometric 

function). Error bars in figures indicate standard error of mean (s.e.m) 

across sessions for individual animals or across rats for the population 

data. 

Analysis of behavioral data – Chapter III 

In total, we’ve analyzed 106631 trials from 6 rats from a total of 205 

sessions (8 sessions were excluded because rats did not experience the 

three different reward blocks).  Rat’s performed an average of 391 trials 

per session (min 200 trials, max 747 trials), where on average 179 trials 

were evenly rewarded and on average 203 trials were unevenly 

rewarded.  

For statistical analysis across rats, averaged data for each rat was used. 

Each rat data was an average over the median values for each behavioral 

session in the case of waiting time and movement time, or an average of 

session’s fraction choices (for accuracy, psychometric function and 
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choice bias). Error bars in figures indicate standard error of mean 

(s.e.m) across sessions for individual animals or across rats for the 

population data. To compute statistical significance we used 

nonparametric Wilcoxon signed rank test for single comparisons and 

two-way ANOVA, for multiple comparisons.  

In figure 2.2 top two rows, sliding averages (of fraction choices, accuracy 

or waiting time) with 50 trial windows were computed for each session 

of rat G010. Averages and s.e.m over the sessions were then calculated.  

Only waiting times from error trials or catch trials were used. The 

distribution of waiting times was somewhat bimodal, especially for error 

trials (Fig 3S5). For all the analysis we have excluded waiting times 

shorter than 1.2s and longer than 15s. Due to the bimodality of the 

distribution we have considered that trials in which leaving decisions 

were done before 1.2s of entering the choice port (0.7s of waiting, since 

water could only be delivered after a 0.5s delay) were trials where 

choices had been qualitatively different from the rest of the dataset (in 

9% of error trials, 1.5% of catch trials, for all odor contrasts). These error 

trials might be driven by exploratory decisions. On the other hand trials 

longer than 15s were considered to be behavioral setup acquisition 

mistakes, most likely related to maintenance of photo beam disruption 

due to debris (0.2% of error trials and 0.3% of catch trials). Nevertheless, 

including the excluded trials showed comparable results (data not 

shown). 

 
Figure 3.SS5 – Distribution 
of waiting times 

 
(A)  - Histogram of waiting 
times in the behavioral 
dataset. Waiting times from a 
total of 6565 correct catch 
(green), and 22047 error 
trials (red) were plotted. For 
analysis waiting times 
shorter than 1.2s (dashed 
line) and longer than 15s 
were excluded – 9% of error 
trials and 2% of catch trials. 
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The effect of previous reward experience on waiting time was tested by 

conditioning waiting time on trial t to the amount of reward obtained in 

trial t-1. For this we considered that animals could have experienced 

three different outcomes: 24µl of water, in t-1 1:1 or 1:3 choices, 72µl of 

water in t-1 3:1 choices or no water, in t-1 error or catch trials. 

To test the effect of within-session satiation on waiting time we divided 

each session trials, (taking into account the odor stimulus identity) into 

30% percentiles and compared waiting time in the trials within the 1st 

30% percentile (session beginning) with waiting time within the 3rd 30% 

percentile (session end). 

Neural recordings 

For the electrophysiology experiments, each rat was implanted with a 

drive (Island motion corporation, Tappan, NY) with a double cannula, 

allowing for two distinct parallel recording sites. Each cannula directed 

10 to 12 movable tetrodes targeting the left hemisphere OFC (3.5mm 

anterior, 2.5mm lateral) or the left hemisphere VS  (1.25 mm anterior, 

2mm lateral). In the surgery day the implanted cannulas remained at the 

surface of the craniotomy cavity, and the individual tetrodes were moved 

until reaching a depth closer to the final target OFC (5.44mm), VS 

(8mm).   

Individual tetrodes consisted of four twisted polyimide-coated nichrome 

wires (H.P. Reid, Inc.; single-wire diameter 12.5 µm) gold-plated to 0.2-

0.5 MΩ impedance at 1 kHz. For better stability and targeting each 

implanted tetrode was covered by a 0.0055” OD polyimide tube 

(MinVasive Components), with the tetrode tip extending 1-1.5mm from 

the tube tip. Tetrodes were coated with DiI (Molecular Probes) to 

visualize the tetrode tracks in a histological examination.  

Tetrode depths were adjusted before or after each recording session in 

order to sample an independent population of neurons across sessions. 

The locations of tetrode tips during each recording session were 
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estimated based on their depth and histological examination based on 

electrolytic lesions and the visible tetrode tracks. 

Electrical signals were amplified and recorded using the Cerberus data 

acquisition system (Blackrock Microsystems). Neural and behavioral 

data were synchronized by acquiring time-stamps from the behavioral 

system along with the electrophysiological signals. 

Histology  

In order to verify the ultimate location of the tetrodes, electrolytic lesions 

were produced after the final recording session (15µA of cathodal 

current, 10s). Rats were then deeply anesthetized with pentobarbital and 

perfused transcardially with 4% paraformaldehyde. The brain was 

removed from a skull, stored in 4% paraformaldehyde, sectioned at 50 

µm. Every other slice was stained with Cresyl violet solution with a 

standard Nissl staining protocol to observe sites of electrolytic lesions. 

Other slices were prepared for fluorescent observation to examine the 

fluorescent tracks made by DiI-coated tetrodes.  

Neural data analysis  

Multiple single units were isolated offline by manually clustering spike 

features derived from the waveforms of recorded putative units using 

MCLUST software (A.D. Redish). From the isolated population of cells 

69 were excluded for further analysis for not being stably recorded 

across the session, due to cell drift or interruption of the signal 

acquisition while the rat was still behaving. A remaining 22 cells were 

excluded for being located outside of the targeted areas, in the piriform 

cortex. In the end of the clustering procedure a total of 123 individual 

neurons were considered of good quality to be used for further analysis. 

Data analysis was performed using Matlab.  

We focused our analysis mainly in the ‘reward anticipation period’ – 

activity aligned at choice port entry and measured for a window of 

500ms after choice port in. This excluded spikes that occurred during or 

after water valve actuation on correct trials; on error trials or catch trials, 
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no feedback was present. Two other epochs were analyzed to compare 

their activity with that of the reward anticipation period. For analysis of 

the ‘before waiting period’ activity was aligned at choice port entry and 

measured for a window of 500ms before choice port in. During this time 

rats were most likely moving from odor port to choice port. For analysis 

of the ‘end of waiting period’ activity was aligned at choice port exit and 

measured for a window of 500ms before choice port out. At this time 

rats were most likely experiencing water delivery, for correct trials, or 

aware of reward absence, for error and catch trials. 

For visualization purposes in raster plots trials were sorted according to 

movement time in ascendant order and the peri-event-time-histograms 

(PETHs) were smoothed with a Gaussian filter (s.d.= 25 ms). Activity is 

presented as mean firing rate and s.e.m. across trials, for individual 

units, and across cells, for population data. 

To determine how well neural activity predicted the upcoming outcome 

(correct-reward/error-no reward), we used receiver operating 

characteristics (ROC) analysis to calculate an outcome relative 

preference index (OP) that measures how well an ideal observer can 

predict the outcome from the knowledge of the firing rate from trial to 

trial (Feierstein et. al. 2006, Felsen and Mainen, 2008, Kepecs et al. 

2008 ). This index varies from -1 to +1 with the sign denoting whether a 

neuron fires more for correct (+) or error (-) decisions:  

€ 

OP = 2 × ROCarea − 0.5( ) ; 

€ 

ROCarea = P fcorrect = f( )P ferror < f( )df
0

∞

∫  

where fcorrect and ferror refer to the distribution of firing rates during the 

analysis period in correct and error trials respectively. Statistical 

significance was evaluated using a permutation test, where trial order 

was pseudo-randomly shuffled 1000 times to yield a p value. Neurons 

with p<0.05 were denominated uncertainty cells (negative OP) or 

confidence cells (positive OP). 

To relate the activity of uncertainty population of cells, or confidence 

population of cells, with accuracy and waiting time we have grouped 



!

106!

each unit’s trials according to it’s z-scored firing rate, binned into 7 

equally spaced bins. We then calculated accuracy, or average z-scored 

waiting time, for each group of trials. To extract statistical significance 

we have calculated the correlation coefficient between the averaged z-

scored firing rates and accuracy, or averaged z-scored waiting time, and 

computed a t-statistics based p-value for the hypothesis of null-

correlation. 

To better visualize the uncertainty or confidence population activity, 

dependent of waiting time, we have grouped each unit’s trials according 

to waiting time into 5 groups with equal amount of trials (waiting time 

percentile ranks). We have generated PETHs of z-scored firing rates for 

each group of each cell, and then averaged the PETHs of the population 

of neurons, for each waiting time percentile separately. 

We have also analyzed each individual neuron’s firing rate during each 

one of the trial periods and it’s relation with waiting time. For this we 

have done a linear regression analysis and explored if each trial’s waiting 

time (WTi) could be a good linear predictor of each neuron’s average trial 

firing rate during the different analyzed periods: 

€ 

Ratei = β0 + βwt ×WTi 

where β0 is a constant term and β WT is the regression coefficient for 

waiting time as a predictor. We used F-test to select for neurons (P < 

0.05). The F-test tests whether a proposed regression model as a whole 

fit the data significantly better than a simpler model (firing rate = β0).  

Using the activity analyzed in each one of the three epochs, we have 

correlated individual (OFC or VS, separately) neuron’s waiting time 

linear regression coefficients with the corresponding outcome relative 

preference indices and computed a t-statistics based p-value for the 

hypothesis of null-correlation. 
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Confidence report and value: 

computational model 

Our computational model is an adaptation of a previously developed 

model for two-alternative decisions that uses a signal detection theory 

framework. In this model each choice and its associated confidence 

could be estimated by comparing a sampled stimulus and a decision 

boundary (Kepecs et. al. 2008, Lak et. al. 2014).  

We have modeled the internal representation of a presented stimulus, in 

each trial i, as the log ratio of the presented odor mixture with additive 

Gaussian noise:  

 

 

where σs = 0.2, for all the different stimulus. The probability of stimulus 

occurrence was matched to what was experimentally set (Experimental 

Procedures II & III- Behavioral task with confidence report). The 

boundary distribution is modeled also with additive Gaussian noise σb = 

0.4, with mean 0 (50/50% mixture).  

The blocked-wise reward manipulation was modeled by adding a bias 

term, βblock, to the decision boundary sample, which varied according to 

the reward manipulation block in where the decisions were made. We 

have set β block values to better fit the choice bias occurring during the 

different reward manipulation blocks: β3A:1B = -0.15 , β1A:1B = -0.05 and 

β1A:3B = 0.25. In each trial i a sample from the stimulus distribution (Sdi) 

and a sample from the boundary distribution (Bdi) were randomly draw. 

To obtain the results (Fig 3) the model made a total of 100 000 trials.  

Choices were computed by comparing Sdi and Bdi : 

 

 

€ 

Si = log
[Ai]
[Bi]

+σs

€ 

choicei = sideA | Sdi > Bdi + βblock;{ sideB | Sdi ≤ Bdi + βblock}
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In each trial two types of confidence estimates were generated. One 

confidence estimate took into account the different reward magnitude 

manipulations, reflected by the βblock term, which induced the choice 

bias: 

 

 

where tahn is a scaled logistic function previously used to calibrate 

confidence to the outcome probabilities (Kepecs et. al. 2008). The 

second confidence estimate is unaffected by the reward manipulation. 

This unbiased confidence can be thought of as a more robust 

representation of the outcome probability  expected given the presented  

stimulus.  

 

To obtain each trial confidence report the model took into account the 

two types of confidence and simply added them together.  

 

The specific properties of the timing element in our confidence report 

(waiting time) were not considered but could be possibly better 

formalized using other types of models that take into account variables 

such as the relation between hazard rate and waiting cost functions (Lak 

et al., 2014). 

 

€ 

Biased confi = tahn Sdi − Bdi+βblock( )

€ 

Unbiased conf i = tahn Sdi−Bdi( )

€ 

WTi = Biased conf i +  Unbiased confi
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GENERAL DISCUSSION 
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Waiting time as a proxy for confidence 

We have approached the cognitive-loaded concept of confidence by 

studying perceptual decision-making and confidence-based behaviors in 

behaving rodents. Additionally, we have developed normative models to 

infer optimality on a time waging behavior that depends on confidence 

and investigated the role of value in a confidence report. Also, we have 

causally linked the OFC of rats to the report of decision confidence. 

Moreover we have analyzed individual neurons activity correlated with 

decision confidence and confidence report, both in the OFC and in the 

VS.  

In order to better understand the neural and behavioural mechanisms of 

perceptual decision confidence, we have trained rodents to perform a 

classic odor guided two alternative forced choice task (Uchida and 

Mainen, 2003). We have adapted this task such that, after a decision is 

made, rodents need to optimally wager on the time they are willing to 

wait for a reward. Waiting time was a proxy for decision confidence and 

is likely to be a better report of confidence, when compared to a binary 

wager or a opt-out task (Kepecs and Mainen, 2012). Mostly given that for 

each trial it is possible to get a hold on both decision and confidence 

estimates. 

Unpublished data from our lab (Venturini et al., 2014) shows that 

humans engaged on a visual-guided decision task can also use decision 

confidence to wager with time, and that the waiting time correlates well 

with a scalar confidence report. This waiting time paradigm could be 

well fit to study human decision confidence and metacognition, 

providing a better comparison between human and non-human animal 

data, given that it does not imply any semantic report.  

We have used two different models to describe how could a waiting time-

based confidence report be generated from a perceptual decision. In the 

first chapter of this dissertation we have shown that we could 

quantitatively establish the relation between optimal waiting time and 

reward probability, which in perceptual decisions can be estimated based 
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on the confidence associated with a decision. This could well predict 

animals’ waiting time data. Waiting time was also dependent on the 

estimated reward delivery, an indication that reinforcement-related 

factors also influence the post-decision wager.  

A possible separation between perceptual decisions and 

confidence estimation 

In order to evaluate the role of OFC in decision confidence reports we 

have pharmacologically inactivated this brain region in rats performing 

the waiting time task. Waiting time dependency on decision confidence 

was disrupted. It was not stated, but might be suggested, that after 

inactivation of orbitofrontal cortex (OFC) the rat’s estimation of optimal 

waiting time was mostly based on the estimation of reward delivery time, 

which should be independent of stimulus delivered. To better 

understand the computation of optimal waiting time, it was left to model 

how other variables related to reward such as reward magnitude, 

influence subjective estimation of reward delivery time or the 

opportunity cost of waiting. The results obtained in the third chapter of 

this dissertation could be used to test predictions obtained from such a 

model. 

To further explore the relation between waiting time and reward, we 

have manipulated reward magnitude expectation. In a block-wise design 

we have increased the value of one of the choices and analyzed the effect 

of this on animals’ behavior. Animals did not wait differently when 

expecting more or less reward, but were biased towards the choice 

offering larger amount of reward, and were more accurate whenever 

choosing the least rewarding option.  

We have used a SDT-based framework to explain this result, and 

introduced the notion of two opposite factors which influence waiting 

time - a unbiased factor, related to the reward probability only indicated 

by the stimulus, and a biased factor, which includes the both reward 

probability and reward magnitude. The interaction of these two factors 
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establishes a confidence report. The model could well predict choice, 

accuracy and waiting time behavioural data.  

This two-factor model has limitations, which arise mainly from its 

simplicity. For instance, unlike the model presented in the first chapter 

of this dissertation, it does not address the dynamics necessary to 

estimate timing of leaving decision. Also the way the two factors are 

combined to generate the confidence report can be seen as somewhat 

artificial. But we would like to point that the relevancy of this model 

comes not from its sophistication but from what it proposes: a dual-

route for the computation of decision confidence, which enforces the 

view of a possible separation between perceptual decisions and 

confidence estimation.  

A dual-route in perceptual decisions would assume the existence of one 

system responsible for categorizations, and a separate system 

responsible for supervision of these categorizations. This separation has 

been proposed by others, in the context of conscious vs. unconscious 

strategic judgments (Bechara et al., 1997; Charles et al., 2014; Cul et al., 

2009; Dehaene et al., 2006), reward-based decision making (Fleming 

and Dolan, 2012; De Martino et al., 2013), signal detectability (Galvin et 

al., 2003) or perceptual decision making (Insabato et al., 2010a; 

Zylberberg et al., 2012).  

The separation between perceptual decisions and confidence estimation 

was further enforced by the results from OFC inactivation, which 

disrupted waiting time, without affecting the odor-guided decision. 

Given this result we suggest that OFC can be regarded as a hub for 

centralization of confidence levels, alongside other reward-related 

variables. OFC could be implementing the necessary operations to 

compute waiting time proposed in the two-factor model. It’s waiting 

time correlated activity could serve as evidence for leaving decisions, 

computed in secondary motor cortex (Murakami et al., 2014). 

Future work should try to combine both models presented in this 

dissertation, to better establish the theoretical framework which can not 
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only accurately predict the use of decision confidence estimates to derive 

optimal waiting but also to mechanistically determine the concrete role 

of OFC in metacognitive judgments.  

A question subsides when looking at the results from the first and third 

chapters of this dissertation - what would be the effect on waiting time 

when inactivating OFC during the reward magnitude manipulation task? 

The block design used in this task makes its so that the amount of reward 

offered in each port is stable and predictable across the block. More so, 

these amounts are independent of the stimulus delivered. If OFC role is 

to compute outcome expectations “on the fly”, regardless of previous 

value experience, inactivating OFC could result in the disruption of the 

relation between decision confidence and waiting time, without affecting 

the relation between reward magnitude and waiting time. In this case 

animals would wait longer when expecting higher rewards. Instead 

inactivation of OFC could disrupt the dependency of waiting time with 

both reward magnitude and reward probability. Waiting time would then 

reflect other hidden variables, computed outside OFC.  

OFC and VS in estimating decision confidence 

Apart from OFC (Kepecs et al., 2008), neuronal signals related to 

decision confidence have been observed previously in other brain regions 

(Kiani and Shadlen, 2009; Komura et al., 2013; Middlebrooks and 

Sommer, 2012). We have included the basal ganglia in the plethora of 

regions that can compute decision confidence. We have found neuronal 

populations in the ventral striatum (VS) whose activity correlates with 

decision confidence (or uncertainty), and also with waiting time. 

 VS was previously implicated in inferring value information necessary to 

drive reward-based decisions (Bissonette et al., 2013; Cromwell and 

Schultz, 2003; Fitzgerald et al., 2014; Haber and Knutson, 2010; Ito and 

Doya, 2009; van der Meer and Redish, 2011; Meer et al., 2009; Roesch et 

al., 2009) and is suggested to play the role of critic, in model-based 

reinforcement learning, monitoring decisions and computing outcome 

expectations (Ito and Doya, 2011; Mannella et al., 2013; van der Meer 
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and Redish, 2011). The VS role in modulating goal-directed behaviors is 

normally seen as being shared with OFC (Botvinick et al., 2009; Hare et 

al., 2008; McDannald et al., 2011). The results presented here suggest 

that VS also has access to measures of decision uncertainty to play that 

role. 

Moreover, OFC and VS might work together, as a cortico-striatal circuit 

for implementing optimal behavioural strategies that take into account 

decision confidence estimates. To further explore the role of VS in the 

computation of confidence estimates and the behavioural use of these 

estimates it would be useful to manipulate neuronal activity in this 

region. This could be done with the same inactivation strategy used for 

OFC. Or, preferably, it could be done using optogenetics, a strategy that 

can give insights about within-trial temporal dynamics and striatal-

circuit specificity. A well-controlled manipulation would allow for a 

better mechanistic description of the roles of both OFC and VS in 

computing decision confidence estimates, reward-based decisions and 

behavioural adaptation. 

Future work: where is noise in the circuitry? 

We suggest that OFC and VS integrate distinct sources of information, 

relayed from other areas, to provide outcome predictions based on 

confidence monitoring processes. But the question of where does the 

uncertainty, or noise, arises in the olfactory-guided categorization still 

remains to be answered. Generally, it can be assumed that uncertainty 

might arise from noise at the sensory representation of task-related 

stimuli or from noise at the regions responsible for associating these 

representations with a categorical decision, and these two sources can be 

computed in separate brain regions (eg. Vilares, Howard, Fernandes, 

Gottfried, & Kording, 2012). Previous evidence suggests that in the odor 

categorization task noise does not arise at the level of sensory 

discrimination (Miura et al., 2012b), but from uncertainty about the 

precise category boundary, which has to be learnt by the subject through 

trial-by-trial reinforcement (Zariwala et al., 2013). This category 

boundary could be represented in a neuronal layer that receives 
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projections from both a sensory layer representing stimulus information 

(eg. the piriform cortex) and projections from reinforcement signals 

important to update value of actions (eg. ventral tegmental area).  

Results from a visual guided reward-based decision task performed by 

monkeys have implied that the oculomotor caudate (primate equivalent 

of dorsal striatum) contributes to the formation of the decision variable 

early in the decision process, biasing actions based on value properties 

(eg. Lauwereyns, Watanabe, Coe, & Hikosaka, 2002).  Moreover, 

corticostriatal circuitry, involving projection neurons form sensory 

cortex to dorsal striatum have been implicated in biasing actions 

according to sensory stimuli, at least in auditory-guided decision making 

(Znamenskiy and Zador, 2013). Given this we can predict that in the 

odor categorization task, the category boundary could be represented in 

a corticostriatal circuitry involving the piriform cortex and a specialized 

olfactory striatum – the olfactory tubercle. The olfactory tubercle is an 

extension of the ventral striatum that receives projections from the 

pririform cortex and VTA and may use reward-based learning rules to 

encode odor valence (reviewed in Giessel & Datta, 2014; Ikemoto, 2007). 

Hence, probing into piriform-to-tubercle projection neurons could result 

in identifying the source of noise that limits performance in odor-guided 

categorizations.  Alas, although plausible, this might be a daunting 

hypothesis to pursue. Mainly due to the fact that tubercle neurons, which 

receive projections from piriform cortex, are situated deep in the most 

ventral part of the rat’s forebrain. Adding to this, targeting the 

appropriate projections should be difficult since the representation of 

odors in piriform cortex, and maybe also in tubercle, are widely 

dispersed and do not follow a topographical organization (Stettler and 

Axel, 2009).  

Concluding Remarks 

In the work presented in this dissertation we have explored the 

behavioural and neural mechanisms of decision confidence. Confidence 

judgments, self-assessments about the quality of a subject’s decisions, 

beliefs or knowledge, are considered a central example of metacognition.  
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Failures in metacognition can result in lack of insight or unawareness of 

illness in many psychiatric disorders, such as schizophrenia, addiction, 

bipolar disorders and other psychoses (reviewed in David, Bedford, 

Wiffen, & Gilleen, 2012). Misevaluation of decisions and failure to adapt 

behaviors is also a feature of patients with frontal-lobe lesions. (Bechara 

et al., 1997; Dehaene & Changeux, 2011; a Del Cul, Dehaene, Reyes, 

Bravo, & Slachevsky, 2009). Understanding the neural mechanisms 

underlying decision confidence and confidence-based judgments can 

shed lights on the basis of the covert neurobiological processes disrupted 

in mental illness. 

Confidence estimates are important in everyday life situations, not only 

for subjective evaluation of individual decisions, but also in the context 

of social interactions. The way we report decision confidence to others 

can have social implications, and is strategically important in the context 

of competition for limited resources (Johnson and Fowler, 2011). Also, 

shared confidence evaluation seems to increase performance in 

decisions, increases the accuracy of our own confidence report and is 

important in collaboration efforts involving outcome or perceptual 

uncertainty (reviewed in Frith, 2012). Moreover, the importance of 

metacognition in education is widely acknowledged, and some efforts 

have been proposed in order to enhance metacognitive abilities, with 

implications in learning linked to student’s conceptions about their own 

knowledge (reviewed in Thomas, 2002).  

Undisputedly, the study of the neurobiology mechanisms of decision 

making in animal models can expose general principles of cognitive 

function (Shadlen and Kiani, 2013). The study of cognitive function is 

fundamental in the attempt to decipher nervous system function , 

allowing for approaches which encompass from molecules in individual 

cells to complex behaviors (Laurent and Fregnac, 2014; Mainen and 

Pouget, 2014). When neuroscience studies animal behaving it infers 

brain function from correlated neural activity or causal disruptions of 

behavioural features. As neuroscientists we grasp multiple elements of 

knowledge but are however not aware of the entire picture. The same is 
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true when we look at parsed circuits, populations of neurons or single 

cells and its molecular features. Whatever levels of research we focus on, 

let us not forget that the whole is greater than the sum of its parts, as the 

wise man said. In the end, it is the sum of our neurons and synapses, 

circuits and systems that allows us not only to behold the swimming 

Euglena struggling in the pond, but also to wonder about our own 

thoughts, beliefs and decisions. 
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