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Acknowledgements

Many people have contributed to make this thesis a reality, by providing me with

their guidance, friendship, love, money, code and data. To those people, brave of the

bravest, an acknowledgement word shall be given in this very pages.

I would like to start by thanking my advisor Prof. João P. Barreto for teaching me

a great deal about science, and how to tackle hard problems in computer vision. His

enthusiasm and pressure for having new exciting results was a key ingredient to put

this thesis on the right track.

I also acknowledge the Portuguese Governments department FCT- Portuguese

Foundation for Science and Technology for the doctoral scholarship SFRH/BD/63118/

2009 that funded my work. After a four year PhD and a 12 month research grant I ad-

mit that I owe a lot to Portuguese tax payers. Currently I am contributing with security

at airport electronic gates, but I hope I can keep helping people lives with computer

vision systems.

A special word to my co-authors, specially to Prof. Danail Stoyanov for having

the patience to read my paper drafts and for providing the data for some of my papers.

I would like to thank my big family for the long standing and tirelessly support.

Specially to my awesome nephews for keeping me smiling and asking me for money

for their video games or their bike.

Thanks to my lab friends, Melo, Michel, Luis, and Vitor...and many others that

somehow made this journey more enjoyable. Specially thanks to my personal friends

Claudia, Pedro and Rita for helping my wife in keeping me fed during these years

with some awesome dinners and great wine bottles.

The most important thank you goes to my wife Margarida, whose unconditional

love and support would never fit in these pages. Meeting you at the end of my days

during my extreme paper deadlines was always quite comforting. Right now, we are

engaged in the most wonderful process of all: building a family. So my truly last

words are to my daughter Beatriz, who is giving my life a whole new meaning.

i





MIGUEL LOURENÇO

Abstract

Point correspondences between different views are the input to many computer vi-

sion algorithms with a multitude of purposes that range from camera calibration to

image content retrieval, and pass by structure-from-motion, registration, and mosaick-

ing. Establishing such correspondences is particularly difficult, not only in the case of

wide-baseline and/or strong change in viewpoint, but also when images present sig-

nificant non-linear distortions. The thesis addresses this last problem and investigates

solutions for detecting, matching, and tracking points in images acquired by cameras

with unconventional optics such as fish-eye lenses, catadioptric sensors, or medical

endoscopes.

We start by studying the impact of radial distortion in keypoint detection and de-

scription using the well known SIFT algorithm. Such study leads to several modi-

fications to the original method that substantially improve matching performance in

images with wide field-of-view. Our work is conclusive in showing that non-linear

distortion must be implicitly handled by a suitable design of filters and operators, as

opposed to being explicitly corrected via image warping. The benefits of such ap-

proach are demonstrated in experiments of structure-from-motion, as well as in the

development of a vision-system for indoor localization where perspective images are

used to retrieve panoramic views acquired with a catadioptric camera.

In a second line of research, we investigate solutions for feature tracking in contin-

uous sequences acquired by cameras with radial distortion. We build on the top of the

conventional frameworks for image region alignment and propose specific deforma-

tion models that simultaneously describe the effect of local image motion and global

image distortion. It is shown for the first time that image distortion can be calibrated

at each frame time instant by tracking a random set of salient points. The result is

further explored to solve the problem of knowing the intrinsic calibration of cameras

with motorised zoom at all times. This problem is particularly relevant in the context

of medical endoscopy and the solution passes by combining off-line calibration with

on-line tracking to update of the camera focal length. The effectiveness of our track-

ing and calibration approaches are validated in both medical and non-medical video

sequences.
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The last contribution is a pipeline for visual odometry in stereo laparoscopy that

relies in multi-model fitting for segmenting different rigid motions and implicitly dis-

carding regions of non-rigid deformation. This is complemented by a temporal cluster-

ing scheme that enables to decide which parts of the scene should be used to estimate

the camera motion in a reliable manner.
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Resumo

Correspondências de pontos entre imagens da mesma cena são o argumento de entrada

para muitos algoritmos de visão por computador, como por exemplo calibração de

câmaras, reconhecimento de imagens e recuperação de movimento e estrutura 3D da

cena. O cálculo de correspondências é particularmente difı́cil, não só devido a deslo-

camentos de câmara e mudanças de ponto de vista, mas também devido à presença de

deformação não-linear, como é o caso de distorção radial. Esta tese investiga o último

problema e propõe soluções para deteção, correspondência e seguimento de pontos

em imagens adquiridas com câmaras equipadas com ópticas não convencionais, como

lentes olho-de-peixe, sensores catadióptricos e endoscópios/ laparoscópios médicos.

Esta tese começa por estudar o impacto da distorção radial na deteção e descrição

de pontos de interesse do método SIFT. Este estudo leva a várias modificações ao

método original que permitem melhorias substanciais no desempenho em imagens

adquiridas com câmaras com largo campo de visão. É demonstrado que a distorção

não-linear deve ser implicitamente compensada atráves da adaptação dos operadores

de imagem em vez de rectificar as imagens para a remover. Os benefı́cios desta nova

solução são validados com experiências de recuperação de movimento e através de

um sistema de visão que usa uma base de dados de imagens catadióptricas georefer-

enciadas para reconhecimento de localizações dentro de edifı́cios.

Numa segunda linha de investigação são estudadas soluções para seguimento de

pontos de interesse em sequências contı́nuas de imagens com distorção radial. Usando

como base o actual estado da arte para registo de imagens, são propostas soluções

para descrever simultaneamente o efeito do movimento local e distorção global da

imagem. É demonstrado pela primeira vez que a distorção radial na imagem pode ser

calibrada em cada instante de tempo através do seguimento de pontos de interesse.

Esta solução é ainda explorada para resolver o problema de calibração de câmaras

com zoom motorizado. Este problema é particularmente relevante no contexto de

endoscopia médica e a solução passa por combinar calibração offline com calibração

online usando o seguimento de pontos para actualizar a distância focal da câmara. A

eficácia dos algoritmos de seguimento e calibração são validados em sequências de

vı́deo médicas e não-médicas.
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A última contribuição desta dissertação é um método para odometria visual em

laparos- copia éstereo que utiliza técnicas de estimação de mútiplos modelos para seg-

mentar a cena em zonas rı́gidas e não-rı́gidas. De modo a complementar a segmentação

inicial um esquema de clustering temporal é usado para decidir quais zonas da cena

devem ser utilizadas para ancorar a estimação do movimento da câmara.
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Chapter 1

Introduction

Images are low dimensional representations of the 3D world. The extraction of vi-

sual content from these low dimensional representations enable to design algorithms

for interpreting the observed scene. One way of extracting image information is by

computing image salient point, commonly called interest points or keypoints, that

can be easily recognized across different views of the same scene. The literature re-

ports a large pool of approaches for finding image salient points that can range from

low computationally complexity translation invariants [1,2] to more complex solution

that achieve scale [3, 4] or affine invariance [5, 6]. Such features capture low-level

local image information that can be used for a wide range of computer vision applica-

tions such as image retrieval [7,8], classification, point association for structure-from-

motion [9–12], or image compression [13, 14].

In the context of medical endoscopy, image features have been used mainly with

two purposes: content retrieval, and stucture-from-motion and navigation. Image re-

trieval and classification of different medical image modalities using computer vision

techniques has been proposed in the literature [15–17]. Visual assessment of medical

images performed by physicians is often subjective and experience dependent. An im-

age retrieval system with an annotated database can be used by inexperienced medical

professionals as an auxiliary tool for disambiguating difficult diagnosis. The impor-

tance of medical image retrieval has been recently acknowledged with the creation of

ImageCLEF [18] context. This benchmark provides several medical image modali-

1



(a) Fish-eye lens (b) Micro lens (c) Endoscopic lens

Figure 1.1: Different types of lenses that induce strong RD.

ties for evaluation of retrieval schemes, and it was created for a fast dissemination of

medical image retrieval applications.

Knowledge about the camera motion is a fundamental prerequisite for image-

based computer aided-surgery, enabling 3D reconstruction [19], registration with other

sensor modalities [20], and guidance systems. Typical approaches compute point as-

sociation between views and uses the 5-point algorithm for solving the camera motion

within a sample consensus framework [19–21].

Endoscopic images place several challenging problems for keypoint detection and

matching that are not currently solved by state-of-the-art techniques. One of such

problems is the strong non-linear distortions, namely Radial Distortion (RD), re-

sulting from the miniaturization and special optical arrangement of endoscopic lens.

In [19, 20] the authors deal with this problem by previously correcting the images to

remove the radial distortion introduced by the medical endoscopes/laparoscopes. In

this dissertation we show that the image rectification must be avoided since it has a

negative impact in terms of feature accuracy. Thus, we propose computational effi-

cient approaches for keypoint detection, matching, and tracking in images with RD

that significantly improve the accuracy of Structure-from-Motion (SfM) application

in medical images.

Despite of the fact that we are primarily motivated by medical endoscopic applica-

tions, the research we will pursue has a more general character. Many vision systems

employ cameras with unconventional optical arrangements that introduce non-linear

distortions. The most striking example is the case of cameras equipped with fish-

2
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eye lenses (see Fig. 1.1(a)) for the acquisition of wide Field-of-View (FOV) images

that enable a more thorough visual coverage of the environments. Another example

of unconventional optics is the case of cameras equipped with micro-lenses (see Fig.

1.1(b)) and boroscopes for visual inspection of cavities with limited access. The evalu-

ation in non-medical scenarios using standard evaluation guidelines is carried to prove

that the usefulness of the proposed solutions goes beyond its application the medical

endoscopic images.

1.1 Thesis Outline and Contributions

This document presents three main lines of research.

In the first line, we focus on keypoint detection and matching in sparse image se-

quences. Chapter 2 starts by benchmarking the performance of the Scale-Invariant

Feature Transform (SIFT) in images with distortion. Afterwards, we propose improve-

ments to the SIFT algorithm that substantially improve keypoint detection and match-

ing in images with RD. Since, the design of such solution is based in adapting the

low-level image processing tools to account for the distortion effect, the benefits are

transversal to all methods using scale-space image representation and gradient-based

keypoint descriptors. This chapter is closely related with the following conference and

journal publications:

• M. Lourenco, J.P. Barreto, and A. Malti, Feature Detection and Matching in

Images with Radial Distortion, IEEE International Conference on Robotics and

Automation, 2010. (Finalist for the Best Student Paper Award).

• M. Lourenco, J.P. Barreto, and F. Vasconcelos, sRD-SIFT Keypoint Detection

and Matching in Images with Radial Distortion, IEEE Transactions on Robotics,

2012.

Chapter 3 extends the methodology proposed in the previous chapter to para-

catadioptric images, and proves its usefulness in a indoor image-based localization

application. We propose to carry the localization by using perspective images ac-

quired with a cell phone to query a database of geo-referenced panoramic images.

3



1.1. THESIS OUTLINE AND CONTRIBUTIONS

The retrieval is accomplished by using a combination of a new keypoint detection and

matching strategy with a state-of-the-art Bags of Visual Words (BOV) recognition

engine. This chapter relates with the following conference publication:

• M. Lourenco, V. Pedro, and J.P. Barreto, Localization in Indoor Environments

by Querying Omnidirectional Visual Maps using Perspective Images, IEEE In-

ternational Conference on Robotics and Automation, 2012.

The second line of research is devoted to feature association in continuous endo-

scopic video. In Chapter 4 we study the problem of image alignment in the pres-

ence of non-linear distortion. We build on top of the conventional image registration

frameworks, and propose specific deformation models that simultaneously describe

the effect of local image motion and global image radial distortion. We propose solu-

tions for both calibrated and uncalibrated camera setups, showing that it is possible to

reliably estimate the image distortion at each frame time instant by tracking random

keypoints. The proposed methods are evaluated in a feature tracking context showing

to highly benefit standard rigid SfM in medical endoscopy. In Chapter 5 we have ex-

tended the uncalibrated image alignment framework for estimating the focal length in

cameras equipped with optical zoom, showing that is possible to accurately keep the

camera calibrated by combining off-line camera calibration with on-line image distor-

tion estimation. These two chapters are related with two conference publications and

a patent request:

• M. Lourenco and J.P. Barreto, Tracking Feature Points in Uncalibrated Images

with Radial Distortion, European Conference on Computer Vision, 2012.

• M. Lourenco et al. , Continuous Zoom Calibration by Tracking Salient Points in

Endoscopic Video, International Conference on Medical Image Computing and

Computer Assisted Intervention, 2014 (Oral presentation).

• M. Lourenco, J.P. Barreto and R. Melo, Method for aligning and tracking point

regions in images with radial distortion that outputs motion model parameters,

distortion calibration, and variation in zoom, PCT/PT2013/000057, 2013.

4
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Finally, Chapter 6 presents an effective visual odometry solution for stereo la-

paroscopes. The proposed pipeline effectively segments non-rigid and piecewise rigid

structures from the surgical site by using a multi-model fitting [22]. This is com-

plemented by a temporal clustering scheme to better distinguish which scene regions

should be used to anchor the camera motion estimation. This work has been published

in:

• M. Lourenco, D. Stoyanov and J.P. Barreto, Visual Odometry in Stereo En-

doscopy by using PEaRL to handle Partial Scene Deformation, International

Workshop in Augmented Environments for Computer-Assisted Interventions,

held in conjuction with Internation Conference on Medical Image Computing

and Computer Assisted Intervention, 2014.

Notation

Matrices are represented by symbols in sans serif font, e.g. M, and image signals

are denoted by symbols in typewriter font, e.g. I. Vectors and vector functions are

typically represented by bold symbols, and scalars are indicated by plain letters, e.g

x = (x, y)T and f(x) = (fx(x), fy(x))T. We use under script, i.e. fp(x), to de-

note when a certain function parameter p is known, and f(x; p) to denote that p is

unknown. 0 is specifically used to represent a null vector.
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Chapter 2

Radial Distortion and Scale Invariant
Features

Keypoint detection and matching is of fundamental importance for many applica-

tions in vision-based systems. The association of points across different views is

problematic because image features can undergo significant changes in appear-

ance. Unfortunately, state-of-the-art methods, like the SIFT, are not resilient

to the radial distortion that often arises in images acquired by cameras with

micro-lenses or wide FOV. This chapter proposes modifications to the SIFT al-

gorithm that substantially improve the repeatability of detection and effectiveness

of matching under radial distortion, while preserving the original invariance to

scale and rotation.

2.1 Introduction

Finding point correspondences between two images of the same scene is a key step of

many computer vision algorithms. Camera calibration, image registration, structure-

from-motion, visual recognition, and image content retrieval are just a few examples

of applications that use discrete point matches as input. Current methods for associ-

ating points across different views typically comprise three steps: (i) the detection of

keypoints at distinctive locations in the image, such as corners, blobs, and T-junctions.

7



2.1. INTRODUCTION

The most valuable property of a keypoint detector is its ability of repeatedly find the

same physical point under different viewing conditions; (ii) the description of the

neighborhood patch around the detected keypoints. The neighborhood is usually rep-

resented through a feature vector that must be distinctive and, at the same time, ro-

bust to geometric and photometric transformations; and finally (iii) the matching of

descriptor vectors which is typically carried using a distance defined in the feature

space, e.g. Mahalanobis or Euclidean distance.

The SIFT, introduced by Lowe [3, 23], have become arguably one of the most

popular matching algorithms, being broadly used in robotics for tasks like visual

servoing and visual Simultaneous Location and Mapping [11, 24], content image re-

trieval [16] and medical endoscopy structure-from-motion [19, 20]. The detection

is carried in a scale-space representation of the image [25] that is efficiently com-

puted using the Difference-of-Gaussian (DoG) operator. The keypoint detection is

performed by searching for points in the DoG pyramid that are simultaneously extrema

in space and scale dimensions. This procedure enables assigning scale information

to salient points, which is used for normalizing the size of the neighborhood region

considered during description. The descriptor vector encodes the local image gradi-

ents that are expressed with respect to the dominant gradient orientation. The SIFT

features obtained in this manner are invariant to scale, rotation, illumination, and mod-

erate viewpoint changes.

Many vision-based systems employ cameras with unconventional optical arrange-

ments that introduce non-linear distortions. The most striking example is the case

of cameras equipped with fish-eye lenses for the acquisition of wide FOV images.

Such cameras enable a thorough visual coverage of the environments, and are ad-

vantageous for egomotion estimation by avoiding the ambiguity between translation

and rotation [26, 27]. Another example of unconventional optics is the case of cam-

eras equipped with micro-lenses and boroscopes for visual inspection of cavities with

difficult or limited access [28]. These cameras are broadly used in medicine for en-

doscopic procedures of surgery and diagnosis. Unfortunately the SIFT algorithm, as

well as the majority of competing methods, is meant for perspective images and cannot

handle the strong radial distortion introduced by the optics described above [29–32].
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2.1.1 Related Work

The RD is a non-linear geometric deformation caused by the bending of the light

rays when crossing the optics. At an image level, and comparing with the standard

perspective, the pixel positions suffer a displacement along radial directions and to-

wards the center. This displacement is non-uniform and depends on the distance to

the image center (the radius). Despite the fact that the SIFT algorithm is not invariant

to RD, it has been applied in the past to images with significant distortion. While

ones simply ignore the pernicious effects of RD and directly apply the original SIFT

algorithm over distorted images [19], others perform a preliminary correction of dis-

tortion through image rectification and then apply SIFT [33]. The latter approach is

quite straightforward but it has two major drawbacks: the explicit distortion correction

can be computationally expensive for the case of large frames and, more importantly,

the interpolation required by the image rectification introduces artifacts that affect the

detection repeatability.

Daniilidis et al. were the first ones arguing that the warping of wide FOV images

should be avoided because interpolation effects introduce undesired results in filtering

[29]. Their article proposes using the sphere as the underlying domain of the image

function for computing optical flow in catadiotpric views. However, instead of back-

projecting the image plane P2 into the sphere S2, the smoothing is formulated in S2 and

the derived kernel function is projected into P2. This enables carrying the convolution

on the plane using the original image pixel values. Since the mapped spherical kernel

changes at each image pixel position, the computational complexity of the filtering

is substantially higher when compared with the convolution with standard isotropic

Gaussian kernel, which can be performed separately in X and Y dimensions [34].

In [35, 36] Bulow proposes a scale-space representation for functions defined in

S2 by solving the spherical heat diffusion equation. Inspired by this work, Hansen

et al. investigated the generalization of the SIFT algorithm for images with domain

on the sphere [31, 32]. The advantages of such generalization are twofold: First, the

SIFT on the sphere can be indistinguishably applied to any type of central projection

image. The only requirement is to know in advance the intrinsic camera calibration in

order to map the image plane into S2; Second, the formulation of SIFT on the sphere

9
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enables to achieve full invariance to pure camera rotation motion. The original SIFT

algorithm [3], despite of being invariant to rotations on the plane, it is unable to handle

the projective transformations in P2 due to camera rotation [37].

The main difficulty in extending the SIFT algorithm to the sphere is the computa-

tion of a suitable scale-space representation that passes by back-projecting the image

I into S2 and convolving the result with a spherical Gaussian function GS [36]. The

problem is that this operation must be carried in a manner that is simultaneously com-

putationally efficient and avoids the re-sampling of the original image signal [29, 31].

We briefly review the approaches described in the literature:

• Mapping GS into P2: The re-sampling can be avoided by mapping GS into P2

and carrying the convolution on the image plane using the original pixel val-

ues. This is similar to the adaptive filtering proposed in [29], with the mapped

Gaussian kernel changing at every image pixel location, which precludes the

separability property in X and Y. Unfortunately this solution is unsuitable for

generating the multiple scale levels of the DoG pyramid because of its computa-

tional complexity [31, 32].

• Spherical SIFT (sSIFT): An alternative is to perform the Gaussian smoothing

in the frequency domain [31]. Since the original image I can be mapped into a

spherical image IS , then the spectrum of IS can be found via a discrete spher-

ical Fourier transform (DSFT). This means that the filtering can be carried by

applying the inverse DSFT to the product of the image spectrum with the trans-

form of GS . The spherical diffusion can be implemented in an efficient manner

in the spectral domain as long as it is imposed an upper limit on the bandwidth

for keeping the computation tractable. The problem is that this limit can lead to

aliasing issues when finding the image spectrum as discussed in [31, 32].

• Approximated Diffusion SIFT (pSIFT):: Hansen et al. have recently used stere-

ographic projections for approximating the diffusion on the sphere [32]. They

propose to map the image I via the sphere into the stereographic plane, and con-

volve the result with the stereographic projection of GS . The projected Gaus-

sian kernel, despite of changing at every image pixel position, it is always a
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symmetric function. More importantly, it is shown that the 2D adaptive filtering

is well approximated by successive 1D convolutions along X and Y directions.

This enables to achieve a computational efficiency similar to the original SIFT,

while avoiding the aliasing problems of the spectral approach. Although not

discussed in [32], the method has the drawback of requiring image re-sampling

for mapping I into the stereographic plane.

• Laplace-Beltrami (LB) operator [38–40]: Recently, some authors applied Rie-

mannian geometry concepts for computing the scale-space representation for

images of central projection systems. The Gaussian smoothing on the sphere

is achieved through an iterative procedure that preserves the geometry of the

visual contents and adapts to the non-uniform resolution while using the origi-

nal image pixel values. Although the Laplace-Beltrami can be derived for any

central projection system, the iterative procedure required to smooth the image

signal is computational expensive as shown in [40].

The Radial Distortion and Scale Invariant Feature Transform (RD-SIFT) herein

presented consists on several well engineered modifications to the original SIFT frame-

work for improving its invariance to radial distortion. Every processing step is carried

on the plane using original pixel values and, in a similar manner to the pSIFT algo-

rithm, the computational efficiency of the adaptive filtering is improved by consid-

ering an approximate kernel function that is separable in X and Y directions. Com-

paring with the SIFT formulations on the sphere, the RD-SIFT is less general, in the

sense that it cannot be applied to images not following the division model (e.g. cata-

dioptrics), and is not invariant to the effects of pure camera rotation motion. However,

and unlike the sSIFT and pSIFT algorithms, the RD-SIFT neither has bandwidth lim-

itations, nor requires warping of the original image. This difference seems to play a

key role in terms of matching performance. Hansen et al. compared sSIFT and pSIFT

against the original SIFT in sequences acquired by a fish-eye camera, and reported

improvements in matching performance of at most 15% [32]. As shown in section

2.6, the RD-SIFT algorithm can improve the effective number of matches up to 50%

when compared with the original SIFT algorithm. Another advantage of RD-SIFT

with respect to SIFT formulations on the sphere is that it does not require accurate
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intrinsic camera calibration (an approximate modelling of the distortion is sufficient).

2.1.2 Chapter Overview

The next sections start by introducing the camera projection model adopted along this

document, and briefly reviews the original SIFT algorithm [3, 23].

Section 2.3 evaluates and discusses the effects of RD in SIFT detection and de-

scription. The experiments are carried on a representative set of perspective images

to which distortion is artificially added. The usage of synthetically distorted images

enables fully controlled experiments, with accurate ground truth and assurance that

the observations are only due to the influence of RD. It is shown that SIFT detec-

tion is affected in multiple manners, with some keypoints, previously found at fine

scales, being missed; others being assigned to incorrect scales; and false keypoints

being detected because of spurious image artifacts due to the distortion (e.g. straight

lines that become curves). Most of these observations can be qualitatively explained

by the non-uniform compression of image structures. The compression diminishes

the characteristic length of the features and, as a consequence, the extrema in the DoG

pyramid tend to occur at scales that are lower than they would be in the absence of

distortion. In addition, and since RD also modifies the image gradients, the vector de-

scription varies with the position where the feature is projected. Therefore, it is easy

to understand that distortion also affects negatively the SIFT matching performance.

Sections 2.4 and 2.5 suggest modifications to the SIFT framework that substan-

tially improve its resilience to non-linear distortion. Section 2.4 focus on the detec-

tion, while section 2.5 concerns feature description and matching. A straightforward

solution for the RD problem consists in correcting the distortion followed by carrying

the keypoint detection and description in the rectified image. However, the explicit

distortion correction requires image re-sampling and, as discussed in [29, 32], the

pixel interpolation affects the DoG filtering output, which influences the repeatability

of keypoint detection. We propose instead to filter the original frame by an adaptive

kernel that takes into account the RD at each image pixel position. This approach

outperforms the explicit distortion correction because it avoids the signal reconstruc-

tion. It is also shown that the adaptive filtering can be well approximated by horizontal
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and vertical 1-D correlation using a Gaussian kernel with standard deviation varying

with the pixel image radius. Such approximation enables a computational efficiency

that is comparable to the original SIFT algorithm. Following a similar philosophy,

section 2.5 proposes to achieve description invariance to RD by performing implicit

gradient correction using the Jacobian of the distortion function. Finally, section 2.6

conducts several tests using real distorted images that prove the superiority and use-

fulness of RD-SIFT, and shows that the proposed modifications preserve the original

SIFT invariance to scale, rotation, illumination, and small viewpoint changes.

2.2 Background

2.2.1 The Scale Invariant Feature Transform

The SIFT framework was originally introduced by Lowe in [3]. The keypoint de-

tection is carried in a scale-space representation of the image [25], which enables

associating scale information to points that are visually salient. The scale is used for

normalization purposes during the description stage. The descriptor of each keypoint

is a vector that encodes the image gradients on a local patch around the point. The

size of this patch depends on the scale of selection (invariance to scale), and the local

gradients are described with respect to a dominant gradient orientation (invariance to

rotation). The SIFT detection and description are further discussed below:

SIFT detector

SIFT relies in the scale-space theory for achieving scale invariance and high repeata-

bility in detection [25]. Lowe [3] uses the DoG operator for extrema detection, an

approximation of the Laplacian-of-Gaussian(LoG) that enable to improve the com-

putational efficiency and avoid the explicit computation of second order derivatives

that are highly sensitive to noise [34]. Let L be a blurred version of I obtained by

convolution with a 2D Gaussian function with standard deviation σ (the scale).

Lσ(x, y) = I(x, y) ∗ Gσ(x, y) (2.1)

13



2.2. BACKGROUND

Each level of the DoG pyramid is computed through the subtraction of successive

blurred versions of I.

DoGkn+1σ(x, y) = Lkn+1σ(x, y)− Lknσ(x, y) , (2.2)

where k denotes a constant multiplicative factor.

The keypoints are detected by looking for extrema in the scale-space representa-

tion of the image signal. The intuition is that an extrema along the space dimension

reveals the location of a visual salience. In addition, an extrema along the scale di-

mension is illustrative of the correlation between the characteristic length of the image

feature and the standard deviation of the Gaussian filter. It can be shown that a key-

point with characteristic length
√
σ gives raise to an extrema at the scale level σ [41].

In the SIFT algorithm the search for extrema in the DoG pyramid is performed by

comparing each point with its 3 × 3 × 3 neighborhood. Lowe [3] suggests to double

sample the initial image I in order to increase the number of extrema detections. This

corresponds to a scaling of the spectrum in the frequency domain, which enables the

capture of high frequency component by the DoG band-pass filtering. Unfortunately

some of these extrema are either artifacts due to the bilinear interpolation, or lie in

indistinguishable image regions (e.g. low contrast regions or non discriminant edges).

These extrema are discarded [42], and the position of the detected keypoints is refined

to sub-pixel precision through interpolation in the DoG domain.

SIFT descriptor

The detection stage provides the image coordinates x and scale σ of a set of keypoints.

The following step is assigning to each keypoint a descriptor vector that encodes the

image gradients on a local patch around the point. The size of the patch is defined by

the scale of selection σ, and the entire processing is carried at the level of the Gaussian

pyramid where the extrema occurred (scale invariance). The window is divided in a

16×16 neighborhood and the gradient magnitude and orientation is computed at each

point of the grid.

The description algorithm starts by determining the dominant orientation of the
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20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 2.1: Scale and rotation invariant descriptor computation. The extracted scale
of the keypoint is used to compute the descriptor, after a rotation normalization step.

gradients, that is used as reference for rotating the window towards a normalized po-

sition (rotation invariance). The estimation of the dominant orientation is carried by

looking for peaks in a histograms of 36 bins. Each bin represents an interval of 10◦

around the keypoint x, and accumulates the magnitudes of the gradients whose orien-

tations fall within its range. The gradient samples are weighted by a Gaussian with

center x and standard deviation 1.5σ that aims giving less emphasis to contributions

far away from the keypoint. If there is a secondary peak, then a new descriptor is

created with the same scale-space information but different orientation. This means

that the same keypoint can have more than one associated descriptor which proves to

be helpful in improving the robustness during matching .

After compensating for the rotation, the 16 × 16 neighborhood is divided into 16

sub-regions with size 4 × 4. Each sub-region gives raise to an histogram of gradient

magnitudes where the gradient orientations are quantized into 8 intervals. The final

descriptor is obtained by stacking the 16 histograms with 8 bins into a vector with

dimension 128. The division into sub-regions enables the descriptor to be invariant

to pixel shifts up to 4 positions in the image. The gradient samples are weighted

by a Gaussian function with center x and standard deviation 0.5σ. This prevents

sudden changes in the descriptor caused by small changes in the window position, and

avoids mutual interferences between keypoints that are spatially close. The filtering
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procedure is of key importance for assuring stability and distinctiveness of the final

128-dimensional vector [3].

2.2.2 The Division Model for Radial Distortion

Along this document it is assumed that the image distortion follows the first order

division model [43, 44], with the amount of distortion being quantified by a single

parameter η (typically η < 0), and the distortion center being approximated by the

image center. Let x = (x, y)T and u = (u, v)T be the coordinates of corresponding

points in the distorted and undistorted images expressed with respect to a reference

frame with origin in the center. Γ is a vector function that maps distorted points in the

distorted image plane I into points in the undistorted image Iu [43, 44]:

u = Γ(x) =
(

1 + η xT x
)−1

x (2.3)

=

(
Γu(x)

Γv(x)

)
=

(
x

1+ η (x2 + y2)
y

1+ η (x2 + y2)

)
. (2.4)

The function is bijective and the inverse mapping from Iu to I is given by

x = Γ−1(u) = 2
(

1 +
√

1 − 4 ηuT u
)−1

u (2.5)

=

(
Γ−1x (u)

Γ−1y (u)

)
=

 2u

1+
√

1− 4 η (u2 + v2)

2 v

1+
√

1− 4 η (u2 + v2)

 . (2.6)

The mapping Γ−1 consists in shifting points towards the center and along the radial

directions. The amount of shifting increases with the distance of the point to the

image center (the radius). Given that the radius of x is r =
√

xTx, the corresponding

undistorted radius is

ru = (1 + ηr2)−1r. (2.7)

Henceforth, and in order to make the compression undergone by a particular image
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more intuitive, the amount of distortion will be quantified by

% RD =
ruM − rM
ruM

× 100 = −ηr2M × 100 (2.8)

with rM being the distance from the center to an image corner (maximum distorted

radius).

2.3 SIFT Performance in Radial Distorted Images

Mikolajczyk et al. [41] evaluate and compare several techniques for keypoint detec-

tion and matching under different imaging conditions including transformations in

scale and rotation, affine viewpoint changes, image compression, and variation in the

illumination [41, 45, 46]. The current section extends this study for the case of SIFT

detection and matching in images with radial distortion. The tests are run on a set

of real images that are warped using the mapping of Eq. 2.6. As explained in the

introduction, the synthetic addition of geometric deformation enables fully controlled

experiments with reliable ground truth, and assurance that the observations are only

due to the distortion effect. The alternative would be to acquire images from the exact

same viewpoint using cameras with different amounts of lens distortion. However, this

is difficult to achieve in practice and small shifts in camera position, or other changes

in image acquisition conditions, can potentially influence the final measurements. It

is true that the interpolation in the warping can also cause undesired interferences

but, as we will see latter, the final experiments with real distorted images confirm the

conclusions drawn in this section.

2.3.1 Measuring Detection Performance

Consider an image I0 from the test set and its distorted version Id with %RD = d (see

Fig. 2.2). Let S0 and Sd be respectively the sets of keypoints detected in I0 and Id. If

the detection is invariant to RD, then S0 = Sd meaning that the algorithm finds the

exact same points independently of the amount of deformation present in the images.

Unfortunately the non-linear distortion modifies the image spectrum and SIFT does

17



2.3. SIFT PERFORMANCE IN RADIAL DISTORTED IMAGES

(a) I0(%RD = 0%) (b) I5(%RD = 5%) (c) I15(%RD = 15%) (d) I35(%RD = 35%)

Figure 2.2: The performance is evaluated on a data set comprising of 20 640 × 480
images collect on the internet with different types of visual contents.The radial distor-
tion is artificially added by warping each image using the mapping of Eq. 2.4. The
figure shows one of the images of the data set to which is added increasing amounts
of deformation.

not satisfy this invariance property. The set Sd can be divided into two subsets: the set

Strued , that comprises the keypoints that are simultaneously detected in the distorted

and undistorted images

Strued = Sd ∩ S0 , (2.9)

and the set Sfalsed that contains the points in Id that have no correspondence in I0

Sfalsed = Sd − Strued

A keypoint in the distorted image belongs to the set Strued iff there is a detection in

I0 that is consistent both in space and in scale1. The consistency in space is verified

using the mapping of Eq. 2.6. If a keypoint is detected at location x in image Id, then

there must exist a keypoint in image I0 at location u. In addition the scales at which

the two keypoints are detected must agree. If the keypoint in the distorted image has

scale σd, then the keypoint in the undistorted image must have scale

σ0 =
σd

1 + ηr2
, (2.10)

1We follow the criteria proposed in [45, 46] according which the consistency in space and scale
implies that the overlap error between keypoint regions is less than 30%. However, instead of counting
all region pairs with an overlap above 70%, we only consider the pair with smallest error in order to
assure one-to-one correspondence [13, 47].
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where r denotes the keypoint radius in Id. As shown in Fig. 2.2, the addition of

radial distortion diminishes the size of the image features. The evaluation takes into

account this effect by performing an adaptive correction of scale using a local linear

approximation of the distortion function.

In the set Sfalsed we can distinguish between keypoints that have a match in the

undistorted image I0 in terms of space location but not in terms of scale, and the

keypoints that have no correspondence at all in S0. The former define the subset Swsd
of detections at a wrong scale , while the latter define the subset Snewd of newly detected

points.

Sfalsed = Swsd ∪ Snewd

The subsets discussed above are used to establish different metrics for character-

izing the SIFT detection. The repeatability for a certain amount of distortion RD = d

is computed as

%Repeatability =
#Strued

#S0

× 100 , (2.11)

with # denoting the cardinality of the set. The occurrence of new spurious detections

due to the effect of radial distortion is quantified by:

%New detections =
#Snewd

#Sd
× 100 .

Finally, the detection at wrong scale is characterized by:

%Keypoints at wrong scale =
#Swsd

#(Sd − Snewd )
× 100

The graphic of Fig. 2.3(a) shows the SIFT detection performance when the radial

distortion increases. The measurements are obtained by averaging the results for all

the images in the data set.

2.3.2 Measuring Matching Performance

Assume again an image I0 and one of its distorted versions Id. Two keypoints are

considered to be a match iff the euclidean distance between their SIFT descriptors
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Figure 2.3: SIFT detection and matching in images with radial distortion. The exper-
imental evaluation is carried by adding an increasing amount of RD to the images of
Fig. 2.2. The graphic on the left concerns detection repeatability, while the graphic on
the right shows matching precision-recall curves.

is below a certain threshold λ [3]. Let Md be the set of keypoints in Id for which

the matching algorithm finds a correspondence in I0. The elements of Md can be

divided into correct matches M true
d , and incorrect matches M false

d . In the best case the

number of correct correspondences equals the number of correct detections. Thus, the

ability of the matching algorithm in finding correct matches can be quantified using

the following metric:

recall =
#M true

d

#Strued

.

The recall must be complemented by the precision that measures how well the algo-

rithm discards keypoints that have no correspondence

precision =
#M true

d

#Md

. (2.12)

The precision and the recall depend on the value of the threshold λ. In general a good

matching performance is achieved whenever there is a choice for λ that makes both

the precision and the recall close to 1. Thus, and in a similar manner to what is done

in [31, 32], the matching can be evaluated by verifying if the curve 1-precision Vs.

20



MIGUEL LOURENÇO

recall for varying λ passes at a short distance of the operation point (0, 1). Fig. 2.3(b)

plots these curves for different amounts of radial distortion, with each curve being

obtained by averaging the results for all the images in the data set.

2.3.3 Discussion of the Results

This section tries to interpret and understand the results observed in Fig. 2.3. From

Fig.2.3(a) it follows that the repeatability of SIFT detection is severely affected by

RD. There are points in the original image that are no longer detected in the images

with distortion, and there are other points that, despite of being correctly located, are

assigned with an incorrect scale. We observed experimentally that for increasing val-

ues of RD the keypoint detections tend move downwards in the DoG pyramid. This is

explained by the fact that the distortion compresses the image structures and dimin-

ishes their characteristic length. Therefore, many keypoints with finer scales vanish

in the presence of distortion (missing keypoints), while other keypoints with coarser

scales give raise to extrema in the DoG pyramid that occur at lower levels than they

would occur in the absence of distortion (wrong scale detections).

Fig. 2.3(a) also shows that the distortion generates a significant number of new

keypoints. This is due to the fact that RD adds unstable high frequency components to

the image spectrum. The SIFT detection applies fixed size Gaussians for computing

each scale of the DoG pyramid. Since the distortion compresses the visual structures

in the image periphery, the Gaussians select contributions that were not present in the

original undistorted image, which gives raise to unstable keypoint detections.

Fig. 2.3(b) shows the curves of 1-precision Vs. recall for the matching between

original images and their distorted versions. The curves pass further away from the

ideal operation point (0, 1) as the value of added distortion increases. The RD affects

the matching performance because it modifies the SIFT descriptors in two ways: First,

the shift of the image pixels towards the center and along the radial direction causes

a change in the image gradients. This affects the histograms that are used to build

the descriptor vector (section 2.2.1). Second, the Gaussian weighting of the contribu-

tions looses its efectiveness. As the distortion increases, pixels in the periphery of the

description region move closer to the keypoint, and contributions that would be negli-
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Image 1.5x Image (Bilinear) 1.5x Image (Bicubic) 

Figure 2.4: SIFT detection in re-sampled images. The size of the left-most image is
increased in 50% using bi-linear and bi-cubic interpolation. SIFT keypoint detection
is carried independently in each frame and the results are compared. The reasons
for new detections are explained in [3]. More surprisingly is the fact that there are
keypoints in the original image that are not detected in the expanded versions. It can
also be observed that the detection results depend on the interpolation that is used.

gible in the absence of RD tend to become significant. In summary, the matching fails

because the distortion modifies the SIFT vector, moving it away from the undistorted

SIFT vector in the description space.

2.4 Keypoint Detection in Images with RD

The evaluation above shows that the repeatability of keypoint detection decreases in

the presence of significant radial distortion. This section proposes strategies for over-

coming the problem. We start by discussing the benefits and drawbacks of using ex-

plicit image warping for correcting the distortion. Section 2.4.2 derives a new adaptive

filter that compensates for the distortion while building the image scale-space repre-

sentation. Section 2.4.3 shows that the adaptive kernel can be approximated by a filter

that is separable in X and Y which enables improving the computational efficiency.

Finally, the new keypoint detector is evaluated and characterized in section 2.4.4.

2.4.1 Explicit Distortion Correction using Image Warping

The radial distortion causes a non-uniform compression of the image structures that

affects SIFT performance. Keypoints at finer scales vanish, others are detected at
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lower scales than they would be in the absence of distortion, and there are new un-

stable detections in the image periphery due to spurious high-frequency components

introduced by RD (see Fig. 2.3 and 2.8). A possible strategy for avoiding this com-

pressive effect is to explicitly correct the distortion by image warping and detect the

keypoints in the DoG pyramid of the rectified image [33]. This approach, henceforth

dubbed rectSIFT, is evaluated in Fig. 2.8.

In a first analysis we would expect a detection repeatability close to 100%. How-

ever, and despite of the significant improvements with respect to standard SIFT, the

detection results are far from this score. The distortion correction by image re-sampling

implicitly requires reconstructing the signal from the initial discrete image. The prob-

lem is that, not only there are high frequency components that can not be recovered

(e.g low resolution, aliasing), but also the reconstruction filters are imperfect. The

bi-linear and bi-cubic interpolations are respectively first and second order approxi-

mations of the ideal reconstruction kernel that is the infinite sinc function [34]. Such

approximations introduce spurious frequency components and other signal artifacts

that affect the keypoint detection. The skeptical reader can easily verify this by ob-

serving Fig. 2.4. The left-most image is linearly re-scaled by a factor of 1.5, and SIFT

keypoint detection is ran both in the original and expanded images. Remark that, since

the signal resolution is increased, there are neither aliasing effects nor losses of high-

frequency components. We would expect for the scale invariant detector to find in the

expanded images all the keypoints detected in the original frame. This clearly does

not happen. Moreover the detection results depend on the type of interpolation that is

used to perform the re-scaling.

In summary, as first argued by Daniilidis et al. [29], explicit distortion correction

by image warping should be avoided because interpolation effects introduce undesired

results in filtering. This largely explains the evaluation results shown in Fig. 2.8.

It is curious to observe that for distortions below 15% the standard SIFT detection

outperforms rectSIFT. It means that for small amounts of RD the pernicious effects of

image re-sampling surpass the benefits of correcting the radial distortion.
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2.4.2 Adaptive Gaussian Filtering

We propose a model-based approach for image blurring that compensates for the spec-

tral modifications caused by radial distortion. While in rectSIFT the DoG pyramid is

computed after warping the image, in this section the scale-space representation is

generated directly from the frame with distortion using adaptive Gaussian filtering.

The outcome is a DoG pyramid equivalent to the one that would be obtained by fol-

lowing the steps:

1. Correct the radial distortion of the image I

2. Blur Iu through successive convolutions with a Gaussian function.

3. Apply radial distortion to the blurred images Lu

4. Subtract the distorted blurred images L for obtaining the final DoG pyramid

As we will see latter, the detection repeatability improves dramatically by avoiding the

image re-sampling required by the warping operation. The adaptive Gaussian function

is derived below.

Consider the convolution of the undistorted image Iu with a Gaussian kernel with

standard deviation σ. By writing the convolution operation of Eq. 2.1 explicitly, it

comes that the blurred image is

Luσ(s, t) =
+∞∑

u=−∞

+∞∑
v=−∞

Iu(u, v)Gσ(s− u, t− v) .

If I is the original image with distortion, then it follows from section 2.2.2 that

Iu(u) = I(x) with x = Γ−1(u) (equation 2.6). Replacing Iu by I and switch-

ing the variables (u, v) by (x, y) using the mapping relation 2.6, we obtain the result

of Eq. 2.13

Luσ(s, t) =
∞∑

x=−∞

∞∑
y=−∞

I(x, y)Gσ
(
s− Γu (x, y), t− Γv (x, y)

)
. (2.13)

This equation computes the undistorted blurred image Lu directly from the original

distorted frame I. However, it is no longer is a strict convolution because the filter
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function varies with the image location that is being filtered. Henceforth, we will

refer to this operation as being an adaptive convolution that is denoted by ? whenever

convenient.
Let’s now apply radial distortion to the blurred image Lu in order to obtain L. This

can be achieved in an implicit manner using again the mapping relations of section
2.2.2. Equation

Lσ(h, k) =
∞∑

x=−∞

∞∑
y=−∞

I(x, y)Gσ
(

Γu (h, k)− Γu (x, y), Γv (h, k)− Γv (x, y)
)

(2.14)

is derived by a new switching of variables, that substitutes the undistorted image coor-
dinates (s, t) by their distorted counterpart (h, k). After replacing Γ−1 and performing
some algebraic simplifications, we obtain the adaptive filtering of Eq. 2.15

Lσ(h, k) =
∞∑

x=−∞

∞∑
y=−∞

I(x, y)Gσ
( h− x+ ηr2(hδ2 − x)

1 + ηr2(1 + δ2 + ηr2δ2)
,
k − y + ηr2(kδ2 − y)

1 + ηr2(1 + δ2 + ηr2δ2)

)
(2.15)

with r being the distance between the center and the image location where the filter

is applied

r =
√
h2 + k2 , (2.16)

and δ being the ratio between the radius d of each pixel contribution and r

δ =
d

r
=

√
x2 + y2√
h2 + k2

.

The keypoints are detected by looking for extrema in the DoG pyramid that is computed

by subtracting the images L of Eq. 2.15 for increasing values of σ (see Eq. 2.2.

The application of this adaptive filtering is called the RD-SIFT algorithm. Figure 2.8

shows that the RD-SIFT outperforms the standard SIFT in every evaluation parameter

and level of distortion. More importantly, RD-SIFT is unarguably better than rectSIFT

for amounts of distortion up to 45%. Beyond this point the compressive effect is

so strong that many image structures disappear and can no longer be filtered out.

Since rectSIFT tries to restore the original signal, it tends to provide slightly better

repeatability under very extreme RD. However, not only this relative superiority is
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(a) Detection Repeatability
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(b) Detection at Wrong
Scales
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(c) Detection of New Key-
points

Figure 2.5: The graphics compare the performance of different strategies in detecting
keypoints in images with radial distortion. The detection methods are: standard SIFT
applied to original distorted images (SIFT); standard SIFT applied to frames where
the distortion has been corrected using explicit image warping (rectSIFT); search for
extrema in a DoG pyramid obtained using the adaptive Gaussian kernel derived in
section 2.4.2 (RD-SIFT); and search for extrema in a DoG pyramid obtained using the
separable approximation of the adaptive kernel derived in section 2.4.3 (sRD-SIFT).
The evaluation is carried using the images and methodology of section 2.3.

almost negligible, but also such high amounts of distortion are unlike to arise in real

camera systems.

2.4.3 Improving Computational Efficiency

The adaptive convolution of Eq. 2.15 is computationally intensive both in terms of

processing and memory requirements [29]. We now discuss an approximation of the

filter function that enables conciliating good detection repeatability with computa-

tional efficiency. Let’s analyze how the filter of Eq. 2.15 adapts to the RD present in

the image. Consider that the image point with coordinates (h, k) is near the center. In

this case the term ηr2 is very close to zero and the filtering operation converges to the

standard convolution by a Gaussian kernel. This makes sense because, since the effect

of RD is usually unnoticeable in the center, there is no need for the filter to make any

type of compensation. Consider now that the point (h, k) is in the image periphery.

Since the filtering kernel dismisses pixel contributions far away from the convolution

center, it is reasonable to assume that (x, y) is close to (h, k) and that the ratio δ is
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approximately unitary. Making δ = 1 in Eq. 2.15 yields

L̂σ(h, k) =
∞∑

x=−∞

∞∑
y=−∞

I(x, y)Gσ
( h− x

1 + ηr2
,
k − y

1 + ηr2

)
,

with L̂ being an approximation of L. The expression can be re-written using the adap-

tive convolution operator:

L̂ = I ? Ĝ (2.17)

where Ĝ is given by

Ĝ = Gσ′(x, y), (2.18)

with σ′ = (1 + η r2)σ. From the Eq. 2.18 it is easy to understand that I is filtered by

a Gaussian kernel with a standard deviation that varies with the image radius r. As we

move far from the center, the filter adapts to the distortion by increasingly emphasizing

the pixel contributions closer to the convolution point. While the filtering of Eq. 2.15

uses a different kernel at every image pixel location, the approximation of Eq. 2.17

employs the same filter function for image locations equidistant to the center. This

decrease in the number of kernels is advantageous for implementations using a look-

up table of pre-computed filter masks for speeding up the convolution process. Refer

to Fig. 2.6 for a comparison between the accurate and this simplified filter.

It is well know that the regular 2D Gaussian function G can be generated by cas-

cading two 1D Gaussian kernels [34]. This decoupling property is used in standard

scale-space implementations for dramatically decreasing the computational complex-

ity of image blurring. The filtering is typically achieved by successively convolving

the image with a 1D Gaussian kernel with horizontal and vertical orientations. Un-

fortunately, neither the exact filter of Eq. 2.15, nor Ĝ, verify the decoupling property.

Despite of this let’s consider the adaptive kernel G̊ given by

G̊ = ghσ′(x, y) ? gvσ′(x, y) , (2.19)

with ghσ′ and gvσ′ being horizontal and vertical 1D Gaussian functions with standard

deviations varying with the radius of the convolution center.
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(a) RD-SIFT Gaussian filter (b) sRD-SIFT Gaussian filter

Figure 2.6: Differences between accurate and simplified filters. Tha RD-SIFT Gaus-
sian filters change their shape according to the pixel radius and orientation accord-
ing to the pixel position in the image. The filter is strongly non-isotropic and non-
separable. The sRD-SIFT filters only vary their shape according to the pixel radius.
Since they are spatial invariant with respect to the image radius, this allows to perform
separable convolution in X and Y dimensions by cascading two 1D Gaussian filters.

Figure 2.7 studies how well G̊ and Ĝ approximate the filtering of Eq. 2.15. The

three adaptive kernels are generated for every possible image location, and the simi-

larity between them is evaluated using normalized cross correlation (NCC). The first

column shows the NCC scores between G̊ and the exact filter. It can be observed that

the approximation becomes worse when the RD increases and the convolution center

moves towards the image periphery. However, for most image pixel locations the two

kernels are quite similar. The second column depicts the NCC for Ĝ and the behavior

is in general the same. The third column is obtained by subtracting the result of the

second column to the first. It is interesting to observe that, since the difference in NCC

is always positive, the adaptive kernel G̊ is slightly better than Ĝ in approximating the

exact filter function.

Summarizing, the filtering of Eq. 2.15 can be approximated by an adaptive convo-

lution using either G̊ or Ĝ. The former approximation is better than the latter and, more

importantly, the filtering can be implemented by cascading two 1D adaptive Gaussian

filters with horizontal and vertical orientations. Fig. 2.8 evaluates the performance of

the sRD-SIFT algorithm that implements the image blurring in a decoupled manner.
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Figure 2.7: The figure shows how well the kernels G̊ and Ĝ approximate the filtering
of Eq. 2.15. The rectangles represent the lower right quadrant of a 640 × 480 image
with radial distortion (the RD value is different for each row). The two approximation
kernels and the exact adaptive filter are generated for every possible image pixel loca-
tion. In the first column a color scale is used to show the normalized coss-correlation
(NCC) score between the exact filter mask and G̊. The second columns does the same
for Ĝ. The third column depicts the difference of the two first columns that is multi-
plied by 1000 for visualization purposes.

The images L̊, that give raise to the DoG pyramid, are obtained by the convolution of the

original image I with the 1D filters ghσ′ and gvσ′ . The adaptive filters are pre-computed

and stored in a look-up table enabling an implementation with an overall computation

performance very close to standard SIFT. As expected, the approximated filtering

used in sRD-SIFT causes a slight decrease in detection performance when compared

to RD-SIFT. However, the deterioration of detection is in general small, and largely

compensated by the improvements in computational efficiency (see Fig. 2.8(d)).

2.4.4 Additional Evaluations

In this section we run some additional tests to better evaluate and compare the detec-

tion performances of SIFT, rectSIFT, RD-SIFT, and sRD-SIFT. All the experiments

are carried using the data set introduced in section 2.3. The RD is added artificially
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(a) Sub-pixel accuracy in keypoint detection. The graphics show the repeatability when the
tolerance in position error increases. From left to right the RD is 5%, 25%, and 35%.
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(b) Disturbance in the Center
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(c) Disturbance in % of RD
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(d) Time Profiling

Figure 2.8: The figures concern the spatial accuracy of keypoint detection (a), the
robustness to errors in the calibration parameters (b)-(c), and the computation time for
building the DoG pyramid (d). The results of (a)-(c) were obtained using the images
of Fig. 2.2. The tests on sensitivity to calibration parameters were carried assuming
RD = 15%. The computational time of (d) was evaluated for images (640 × 480)
with increasing size and a constant distortion of 25%.

and the SIFT detections in the original undistorted image are used as ground-truth.

2.4.4.1 Sub-pixel Accuracy in Keypoint Detection

Recent works assess sub-pixel detection accuracy by evaluating the repeatability using

different position error thresholds for deciding about the keypoint correctness [13,47].

We follow a similar methodology and show in Fig. 2.8 the repeatability curves ob-

tained by varying the tolerance in the location error from 0 to 1 pixel. It can be

observed that the increase in RD affects both the repeatability and the accuracy of

the keypoint localization. The original SIFT algorithm is the one where the break in

accuracy is more pronounced, while RD-SIFT is the method more resilient to the de-

terioration. It is interesting to observe that for strong distortion (RD=35%) there is a

30



MIGUEL LOURENÇO

scarce number of rectSIFT detections with accuracy below 0.2 pixels. sRD-SIFT has a

behavior similar to RD-SIFT for low amounts of distortion, but the break in accuracy

is more noticeable when RD increases. This can be easily understood by taking into

account that the approximation in the filtering becomes coarser. Comparing sRD-SIFT

with rectSIFT we might conclude that in general the former is significantly more ac-

curate than the latter.

2.4.4.2 Robustness to calibration errors

The algorithms RD-SIFT, sRD-SIFT, and rectSIFT, require prior knowledge about the

center and amount of distortion. In this experiment we evaluate the robustness of the

detection to noise in the calibration parameters. Fig. 2.8(b) shows the repeatability

behavior when the position error in the distortion center ranges from 0 to 20 pixels (the

shift direction is random). As expected, all the methods are affected by inaccurate

center calibration, but the break in performance is smooth and proportional to the

disturbance. The behavior of the three algorithms is very similar, with RD-SIFT being

slightly more robust than the competitors. Fig. 2.8(c) shows the repeatability when

the error is in the quantification of the RD. Both RD-SIFT and sRD-SIFT present a

reasonable robustness to the disturbance (the former more than the latter). rectSIFT

seems to be more sensitive, specially when the RD is over-estimated. We believe that

this is due to a poorer image signal reconstruction because of the wider interpolation

intervals. From the study we can say that the proposed algorithms lead to significant

improvements in detection repeatability, even when the RD calibration is performed

in a coarse manner.

2.4.4.3 Run time

This experiment compares the execution time of the different detectors with respect

to increasing image resolution. Fig. 2.8(d) shows the average run time on the images

of the data set after proper scaling and addition of RD=25%. The measured detection

time is the sum of the time intervals spent in pre-processing, generating the scale-

space representation, and looking for local extrema. In RD-SIFT and sRD-SIFT the

pre-processing consists in computing the adaptive filter masks and storing them into
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memory, while in rectSIFT it refers to correcting RD through image re-sampling 2.

From Fig. 2.8(d) it follows that sRD-SIFT has a computational efficiency close to

standard SIFT. We verified experimentally that the overhead introduced by the adap-

tive filtering is usually negligible, and that the time difference is caused by the pre-

processing step. The graphic also shows that rectSIFT is substantially less efficient,

presenting an execution time that grows exponentially with the image resolution. The

overhead comes from the interpolation in the pre-processing stage and from the larger

size of the undistorted frame. Since the RD correction expands the image, the filtering

and looking for extrema become computationally more expensive.

2.5 Keypoint Description in Images with RD

The SIFT description is not invariant to RD because the non-linear deformation changes

pixel positions and image gradients in the neighborhood of the keypoint. As a con-

sequence, the SIFT vector is displaced in the description space with respect to its

position in the absence of RD. Since the RD deformation is non-uniform across the

image, the descriptor displacement depends on the location where the keypoint is de-

tected. This variability precludes using any kind of nearest-neighbors strategy for

successfully matching keypoints across different views (see Fig. 2.9(a)). This section

shows how to keep the descriptor vector stationary in order to achieve RD invariance.

2.5.1 Implicit Gradient Correction

The most straightforward approach to achieve RD invariance on the description step

would be through explicitly rectification, by warping the image and computing the

gradients in the undistorted signal. Since we aim at working at with the original pixel

values, we perform an implicit correction by measuring the gradients in the original

image and correct them using a derivative chain rule. The implicit approach avoids

the propagation of interpolation artifacts inherent to the image re-sampling, and is

2Remark that, for the case of detection in an image sequence, the explicit RD correction must be
repeated for each frame, while the adaptive masks are computed only once.
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computationally more efficient because the gradient correction is only performed in

the description regions around the keypoints.

Let I be the original image and Iu be its undistorted counterpart. From section

2.2.2 it follows that

Iu(u) = I(Γ−1(u)) .

Applying the derivative chain rule it yields

∇Iu = JΓ−1 .∇I (2.20)

with ∇Iu and ∇I being respectively the gradient vectors in Iu and I, and JΓ−1 being

the 2× 2 jacobian matrix of the mapping function Γ−1 given in Eq. 2.6. The Jacobian

matrix can be written in terms of distorted image coordinate x = (x, y)T by replacing

u using the mapping of Eq. 2.4:

JΓ−1 =
1 + ηr2

1− ηr2

(
1− η(r2 − 8x2) 8ηxy

8ηxy 1− η(r2 − 8y2)

)

with r denoting the radius of x.

In summary, we propose to measure the gradients directly in the original distorted

image I, evaluate the Jacobian matrix JΓ−1 at every relevant pixel location, and correct

the gradient vectors ∇I using Eq. 2.20. The keypoint descriptor is generated from

the undistorted gradients ∇Iu following the procedure described in 2.2.1. The only

modification is the replacement of the weighting Gaussian function G(x, y;σ) by the

function Ĝ = Gσ′(x, y) that accounts for the changes in pixel contributions due to

RD.

2.5.2 Evaluation in Keypoint Matching

Fig. 2.9 shows the precision-recall for keypoint matching using SIFT descriptors gen-

erated before and after compensating for the image distortion. The comparison with

standard SIFT description shows a dramatic improvement in the retrieval performance.

Thus, the first conclusion is that the correction of image gradients enables achieving
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SIFT)
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(c) Implicit Gradient Correc-
tion

Figure 2.9: Matching performance by generating the SIFT descriptors before (2.9(a))
and after compensating for the distortion (2.9(b) and 2.9(c)). The graphics show the
curves of 1-precison Vs. recall for increasing amounts of RD. In Fig. 2.9(b) the
distortion is explicit corrected via image warping, while in Fig. 2.9(c) we use the
implicit gradient correction approach described in 2.5.1.

RD invariance during description which boosts the keypoint matching performance.

By comparing implicit gradient correction against explicit image warping, it comes

that the former is superior to the latter for amounts of distortion up to 25%. This is

explained by the fact that the interpolation employed in the re-sampling process in-

troduces spurious frequency components that propagate for the first order derivatives

that are used in the descriptor vector. For very strong distortions the explicit image

rectification outperforms the implicit gradient correction. As discussed previously,

beyond a certain amount of RD the compressive effect becomes so strong that local

variations that would be observed in the undistorted image are no longer detectable in

the distorted signal. In other words, it is impossible to recover the gradient vector∇Iu

using Eq. 2.20 because the corresponding vector ∇I cannot measured. In this case

the interpolation used in the re-sampling is advantageous because it enables inferring

missing information.

2.6 Experimental Validation

This section aims to confirm the results so far by running experiments in images ac-

quired by real cameras with lens distortion that undergo changes in scale, rotation,

and viewpoint. The sRD-SIFT keypoint detection and matching is compared against
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the original SIFT algorithm, the SIFT run after performing explicit RD correction via

image warping (rectSIFT), and the pSIFT framework [32]. As discussed in section

2.1, the pSIFT detection approximates the spherical diffusion using a stereographic

projection and computes the descriptor by considering a support region on the sphere,

which is re-sampled to a canonical patch of size 41× 41.
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Figure 2.10: Calibration grids and 3 (out of 13) images for each data set used for
the experiments of section 2.6.1. The frames were acquired using a lens with low
distortion (RD≈ 10%), a 4mm minilens commonly used for robotics’ applications
(RD≈ 20%), and a fish-eye lens with a wide FOV (RD≈ 40%). The image resolution
is 640× 480 for all cases.

2.6.1 Planar Textured Surfaces

This experiment uses three images sequences of planar scenes acquired using lens that

introduce different amounts of distortion (see Fig. 2.10). The results of each sequence

are averaged over 78 image pairs obtained from 13 frames. For the case of rectSIFT

and sRD-SIFT, the distortion center is assumed to be coincident with the image center,

and the distortion parameter η is roughly estimated by straightening up lines in the

image periphery [44]. For the case of pSIFT, the camera intrinsics are fully calibrated

from images of a checkerboard pattern using the method proposed in [48]. Since the

scenes are planar, the frames are related by an homography that can be used to verify
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Table 2.1: The table compares the performance of the four algorithms in planar
scenes. The left-most group of columns concern the computational overhead, the
middle group refers to detection and matching when the threshold value for keypoint
selection in the DoG pyramid is the same for all methods. #Sd, #Strued , and #M true

d

are respectively the average number of detections, of common detections in the im-
age pair (matching potential), and of correctly established correspondences. We also
show the detection repeatability and the matching precision as defined in section 2.3.
The matches and respective precision values were computed using the ratio best and
second neighbors descriptor thresholded at 0.8 [3]

Time (sec) Detect. & Match. (Constant Threshold)
Detect. Total #Sd #Strued %Rep. #Mtrue

d %Prec.

10
%

SIFT 1.57 1.97 1052 596 57 405 62
rectSIFT 3.31 3.73 1057 644 61 431 70
pSIFT 2.05 2.78 1224 756 61 524 67
sRD-SIFT 1.61 2.32 1080 777 72 528 71

20
%

SIFT 1.95 2.79 1332 871 65 458 47
rectSIFT 4.85 5.66 1375 1022 74 539 68
pSIFT 2.21 3.37 1558 1168 75 654 57
sRD-SIFT 1.99 3.02 1412 1110 78 641 65

40
%

SIFT 1.87 2.35 900 295 27 78 30
rectSIFT 18.22 20.88 752 419 56 165 67
pSIFT 2.33 4.28 1557 795 51 286 63
sRD-SIFT 2.01 3.98 1663 809 49 295 65

the correctness of the matches and the repeatability of detection [45, 46]. We apply

a robust estimation algorithm that uses hundreds of correspondences for computing

these ground truth homographies [45, 49].

Table 2.1 compares the performance of the four studied algorithms. The two left-

most columns concern the computational overhead, and show the time for detection3

and the total runtime. It can be observed that the overhead of pSIFT and sRD-SIFT

with respect to the original SIFT is very small, with the former being slightly slower

3The detection time does not include the offline computation of the filter masks used by pSIFT and
sRD-SIFT. For pSIFT the Matlab implementation supplied by the authors took around 5 minutes to
compute the octave filters for each sequence. For sRD-SIFT the Matlab and C implementations took
respectively 1.25 and 0.35 seconds to accomplish the task.
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Figure 2.11: Keypoint matching evaluation in planar scenes with ground truth. Fig-
ures 2.11(a) to 2.11(c) depict the 1-precision Vs. Recall curves that characterize the
retrieval performance of the four descriptors being tested (in this case the keypoints
were detected using sRD-SIFT)

than the latter because of the rendering of the stereographic image. In rectSIFT the

exponential growth of computation time with RD is justified by the increasing size of

the corrected warped frames.

The middle columns show the average results for detection and matching when

the threshold for selecting keypoints in the DoG pyramid is 1.25 × 10−2. The relative

performance of SIFT, rectSIFT, and sRD-SIFT in terms of repeatability and matching

precision is in accordance with the synthetic experiments of Fig. 2.8 and 2.9. For

RD = 40% rectSIFT presents the highest repeatability score, but sRD-SIFT achieves

substantially more detections thanks to the adaptive filtering that avoids an excessive

blurring in the image periphery. Comparing sRD-SIFT with pSIFT, the former tends

to achieve better repeatability and precision scores, but in overall terms the two meth-

ods behave quite similarly. Since the test images undergo significant changes in view-

point (Fig. 2.10), the pSIFT invariance to camera rotation is an advantage that seems

to compensate the drawbacks of the re-sampling used for rendering the stereographic

image.

Figure 2.11 aims at comparing the four descriptors being tested. The precision-

recall of each method is measured over the same set of keypoints detected using

sRD-SIFT. The results are consistent with the observations made in Fig. 2.9, with the

implicit gradient correction of section 2.5.1 being the top-performer for RD amounts
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up to the 20% case. For very high distortion the explicit correction by interpolation

provides the best keypoint description, and can be used as an alternative for further

improving the matching results of our framework. Surprisingly the pSIFT descriptor

presents a break in terms of descriptor distinctiveness for all levels of distortion. This

fact is due to the additional re-sampling step for mapping the sphere support regions

into a canonical patch of 41 × 41 pixels [32]. The pernicious effects of the operation

might be negligible for coarse scale features, but for fine structures the interpolation

intervals are often too large and induce gross errors in the rendered patch.

In summary, sRD-SIFT and pSIFT always provide the largest number of keypoints

that can be correctly associated between the two frames. However, the superiority both

in terms of effective number of correct matches and computation time make sRD-SIFT

a better option than rectSIFT and pSIFT for low/moderate amounts of distortion. Two

major advantages of sRD-SIFT over pSIFT are the fact that intrinsic camera calibra-

tion is not required (a rough approximation is enough) and also that image signal

re-sampling is completely avoid by formulating all the processing steps in the image

plane [29].

2.6.2 Structure-From-Motion in Medical Endoscopy

Accurate point correspondence across frames is of key importance in multiple-view

geometry application, such as structure-from-motion [37, 49]. In this experiment we

evaluate the different keypoint detection and matching methods in medical endoscopy

structure-from-motion. The rectSIFT method is not include in the evaluation since

interpolation introduces pernicious effects in terms of keypoint precision as described

in [50, 51]. For computing the camera motion we use 5-point algorithm [52] in a

RANdom SAmple Consensus (RANSAC) procedure that estimates the epipolar ge-

ometry in a robust manner [37]. The RANSAC is an iterative scheme that computes

the essential matrix from 5 randomly chosen correspondences, and counts the number

of point matches that agree with the achieved estimation. A point match is considered

to be an inlier iff the Sampson distance to the epipolar lines is below a certain threshold

value [37].

Due the nature of the rigid SfM experiments, the datasets were collected by imag-
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Figure 2.12: Sample images used in the medical SfM experiments.

ing ex vivo tissues from a porcine, which enable to minimize the non-rigid physio-

logical motions. The datasets used in this section were made available by [53, 54].

This experiment consists in computing the camera motion between 30 pairs of images

with depth variation, and evaluating the repeatability of the camera motion estimates.

Given N = 50 trials of the RANSAC plus 5-point algorithm, we compute a mean

rotation matrix R̄ [55] and a mean translation vector t̄ [56], with t̄ being a unitary

vector. For each image pair, the sensitivity in translation is then computed as follows:√√√√ 1

N − 1

N∑
n=1

[arccos(t̄Ttn)]2. (2.21)

Like in [56], a difference rotation matrix ∆R = R̄TRn is used to compute the angular

difference between the R̄ and Rn. For each image pair, the sensitivity in rotation

estimates is measured by the standard deviation of the angular differences for the N

RANSAC trials.

Experimental results

Figure 2.13 depicts the results using 30 images pairs. For the sake of visualization

we combine the results of the 30 pairs using a boxplot, that can be used to access the

variability of the estimations. It can be seen in Fig. 2.13(c) that the sRD-SIFT algo-

rithm enables to establish more matches than SIFT and pSIFT. More important than
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Figure 2.13: Structure-from-motion in medical endoscopy. The graphics show the
rotation 2.13(a) and translation 2.13(b) sensitivity analysis. The last graphic show the
number of correct matches provided by each method. It can be seen that sRD-SIFT
algorithm provides better camera motion estimates than the two other approaches.

the number of correct correspondences across views is their localization accuracy in

terms of sub-pixel precision for recovering the camera motion. The sRD-SIFT algo-

rithm provides the more consistent estimations for rotation and translation (see Fig.

2.13(a) and 2.13(b), respectively). The pSIFT algorithm improves upon SIFT in terms

of number of matches obtained. However, the camera motion estimatives are not as

consistent as the ones observed with the sRD-SIFT. We believe this is due to the extra-

interpolation step required to map the image to the stereographic plane to carry feature

detection. This process introduces signal artifacts that affect the keypoint precision,

which propagates to the camera motion estimation. In summary we can conclude that

sRD-SIFT and the pSIFT give raise to similar number of correspondences, but the

sRD-SIFT enables more accurate camera motion estimations. This advantage come

from the fact that sRD-SIFT completely avoids image interpolation.

2.7 Closure

This chapter proposes modifications to the broadly used SIFT framework that make it

resilient to image radial distortion, while preserving the original invariance to scale,

rotation, and moderate viewpoint change. The only assumptions are that the camera

follows the division model [43], and that the amount of distortion is coarsely known.

We ran several experiments, both in synthetic and real frames, that prove the superi-
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ority of sRD-SIFT whenever there is significant image distortion. Our method often

duplicates the number of correct point correspondences, while keeping a high local-

ization accuracy. All this is achieved at the expense of a small computational overhead

when compared with the standard SIFT implementation. sRD-SIFT can be advanta-

geous in several robot vision tasks, ranging from SfM to visual recognition, as well as

in medical applications that rely in endoscopic imagery.

The main virtue of proposed approach is that it avoids image re-sampling. The

interpolation used in previous works that require image warping operations [32, 33]

severely affects the keypoint detection performance. With sRD-SIFT we show that

the radial distortion can be locally compensated using an adaptive kernel, and that this

adaptive filtering can be implemented in a computationally affordable manner.
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Chapter 3

Image-based Indoor Localization

One valuable competence of any robotic navigation system is the ability to local-

ize itself with respect to the environment. This chapter investigates the problem

of image-based localization in indoor environments when dealing with hybrid

imaging systems, i.e. when the query image and the visual map database have

been acquired with different imaging systems. The localization is achieved by

querying a database of omnidirectional images that constitutes a detailed vi-

sual map of the building where the robot operates. Omnidirectional cameras

have the advantage, when compared to standard perspectives, of capturing in a

single frame the entire visual content of a room. Inspired by the sRD-SIFT we

develop a computational efficient feature detection and matching strategy that

substantially benefits the recognition based in visual words. We also compare

the classical BOV against the recent framework of Geometric Preserving Visual

Phrases (GVP), showing that the latter outperforms the former.

3.1 Introduction

One valuable competence for a robot is the ability to localize itself with respect to the

environment for performing autonomous navigation [57] and obstacle avoidance [58].

Visual recognition has been used for localization purposes by establishing correspon-

dences between a query image and a database of geo-referenced images constituting
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Figure 3.1: Indoor localization scheme using omnidirectional visual maps.

a topological visual map [59]. However, this approach has several difficulties: (i) The

query image and the corresponding image in the database, although representing the

same visual contents, can substantially differ in appearance (e.g. different lightning,

substantial change in viewpoint, etc); (ii) Environments containing symmetric and/or

repetitive structures, e.g. doors, walls or corridors, suffer from substantial perceptual

aliasing [60]; and (iii) Building a database of large scale environments can be trouble-

some, specially if we want an exhaustive visual coverage of the environment [59].

Image-based localization based on distinguishable scene landmarks is closely re-

lated to image retrieval [3], object recognition [61], and location recognition [59]

problems. A commonly adopted scheme extracts local image features [3], quantizes

their descriptors to visual words, and applies methods adapted from text search en-

gines to accomplish visual recognition [61, 62]. Many authors take advantage of

these techniques, primarily designed for perspective images, for performing image-

based localization using omnidirectional images [63]. Typically the image description

is accomplished by the extraction of local [3] or global [63] features for topologi-

cal and metric localization using omnidirectional images in a hierarchical recognition

framework [61]. In these prior works, the recognition concerns images acquired us-
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ing the same type of imaging system, i.e. perspective [61, 62], or omnidirectional

cameras [63].

A closely related work to ours is the one of Chen et al. [64], where the authors per-

form the coverage of a city-scale outdoor environment using a panoramic camera. The

authors discuss that performing matching between a perspective query and a database

of omnidirectional panoramas leads to poor performance, and propose a rectification

process to solve this problem. Instead of using signal reconstruction techniques, which

are often subject to interpolation artifacts, we solve the problem by accounting with

the distortion during keypoint detection and description. For retrieving the location

of the query images we compare two approaches: the classic bags-of-words and the

recent concept of visual phrases [65]. The main difference is that the visual phrases

introduce weak spatial constraints during the recognition process, while in the stan-

dard bags-of-words framework the spatial layout of the features is lost.

In this chapter the goal is to perform image-based localization when the query

and database images are acquired using different imaging systems (hybrid imaging

systems). Taking advantage of the omnidirectional images to perform a complete cov-

erage of the environment, we want to retrieve the location of a query image taken from

a conventional camera, e.g. a mobile robot equipped with a perspective camera, or a

cell-phone image taken from a person who wants to retrieve its location. While the

omnidirectional images permit to speed up the acquisition of thorough visual maps,

they also introduce non-linear image distortion that increases the appearance differ-

ence between the images. Inspired in the RD-SIFT framework, we propose a keypoint

detector and descriptor for omnidirectional images that mitigate this effect, and sub-

stancially improves the localization performance.

3.1.1 Chapter Overview

This chapter starts by briefly reviewing the para-catadioptric image formation process

[44, 66], and strategies for matching in hybrid imaging systems [32, 67]. Section 3.3

proposes a new framework for feature detection and matching between perspectives

and para-catadioptric images, and compares its performance against commonly used

strategies for matching in hybrid imaging systems. Section 3.4 evaluates the proposed
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method in image-based indoor localization with a database of more than 100 images

indexed by 450 perspective queries images.

3.2 Background

3.2.1 Image Formation Model

Barreto and Araujo [44, 66] show that the mapping between points in the 3D world

and points in the para-catadioptric image plane can be divided in three steps:

1. Visible points in the scene Xh are mapped into projective rays/points x̂ in the

catadioptric system reference frame that is centered in the effective view point.

The transformation is linear and can be described by a 3 x 4 matrix P such that

x̂ = PXh = Rc [ I | − C ]Xh (3.1)

where C represents the world origin coordinates in the catadioptric system ref-

erence frame, Rc is the rotation matrix between the two coordinate systems, and

I is a 3 x 3 identity matrix.

2. A non-linear function h maps points x̂ into points x̄ in a second oriented pro-

jective plane.

x̄ = h(x̂) =
(
x̂ ŷ ẑ +

√
x̂2 + ŷ2 + ẑ2

)T
(3.2)

3. Projective points x in the catadioptric image plane are obtained after the projec-

tive transformation

x = Kc


2p 0 0

0 2p 0

0 0 1


︸ ︷︷ ︸

Hc

x̄ (3.3)

where Hc depends on the mirror parameters (lactus rectum of the parabolic mir-

ror p) and camera intrinsic parameters Kc
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(a) Original image (b) Cylinder

Figure 3.2: Cylindrical panorama obtained from the warping of para-catadioptric im-
age of Figure 3.2(a).

3.2.2 Cylindrical Coordinates

It is possible to obtain virtual perspectives by back-projecting the omnidirectional

images into planes. However, we aim at using panoramic images for recognition pur-

poses, making use of the thorough coverage of the environment captured by a single

image. For further considerations on how to obtain virtual camera perspectives we

point the readers to [44]. It is also possible to map the original image into a cylinder

and unfold it to obtain a panorama. Let x̂ be the backprojection of the image point x :

x̂ = (x̂, ŷ, ẑ)T = h−1(H−1c x) (3.4)

The representation of x̂ in cylindrical coordinates is:
θ = s · arctan

( x̂
ŷ

)
h = s · ẑ√

x̂2 + ŷ2

(3.5)

with s being a scaling factor (the radius of the cylinder). We consider s = f , where

f is the focal length, in order to minimize the deformation near the center of the

image [68]. Figure 3.2(b) is the result of rectifying the para-catadioptric image of Fig.

3.2(a)1.
1The transformation of the catadioptric image to the cylindrical panorama requires the calibration

matrix Hc that we obtain using the CatPack toolbox made available by Barreto [69]
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3.2.3 Matching in Hybrid Imaging Systems

One possible approach to obtain matches between images coming from central cata-

dioptric systems and conventional cameras was proposed by Luis Puig et al. [67].

The omnidirectional images are warped using a transformation to polar coordinates

using (3.7). SIFT features are computed on the warped and perspective images for

establishing putative matches.

θ = arctan
(y
x

)
(3.6)

ρ =
√
x2 + y2 (3.7)

The generated polar images are very similar to the ones obtained using the mapping to

cylindrical coordinates of section 3.2.2. However, the transformation from cartesian

to polar coordinates has the advantage of not requiring camera calibration.

Other possible solutions for hybrid matching are the framework describe in sec-

tion 2.1 that map the into the sphere, like the pSIFT [32] and LB operator [39, 40].

As discussed earlier, such representation minors the problems inherent to planar per-

spective projection, enabling non-linear distortion invariance and extra invariance to

rotation. However, the approach requires perfect camera calibration for both perspec-

tive and catadioptric images. In this work, we assume that the perspective camera is

not calibrated such that the query images can be acquired by a hand-held device, e.g.

cell-phone camera which precludes the usage of the methods that assume the sphere

as the underlying image domain.

3.3 Feature Detection and Matching in Hybrid Imag-

ing Systems

This section proposes a new method for extracting image features from omnidirec-

tional images that can be reliable matched with perspective image features. Instead of

rectifying the omnidirectional image to perspective images [51], we implicitly com-

pensate the distortion effect based on the rectification to cylindrical coordinates, which
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enables the use of the wide field-of-view of the omnidirectional images. Finally, we

evaluate the proposed method using standard repeatability and precision-recall tests,

and compare it against some approaches for matching between mixtures of perspective

and para-catadioptric images.

3.3.1 SIFT for Cylindrical Images

Keypoint detection

The objective here is to generate a scale-space representation equivalent to the one that

would be obtained by filtering the cylindrical panorama. Instead of explicitly comput-

ing a new image using signal reconstruction techniques, which are often subject to

interpolation artifacts [50, 51], we adapt the convolution kernels to directly process

the para-catadioptric image samples.

Through the manipulation of Eq. 3.4 and Eq. 3.5, we can re-write the mapping

from para-catadioptric coordinates to cylindrical coordinates as

u = Ψ(x) =

(
Ψu(x, y)

Ψv(x, y)

)
=

f · arctan(x/y)

f 2 − r2

2r

 . (3.8)

The inverse of Eq. 3.8 provides the mapping between cylindrical and para-catadioptric

coordinates:

x = Ψ−1(u) =

(
Ψ−1x (u, v)

Ψ−1y (u, v)

)
=

 y tan(
u

f
)

cos
(
u
f

) (√
f 2 + v2 − v

)
 . (3.9)

Let’s now consider the convolution of the cylindrical image Icyl with a Gaussian kernel

with standard deviation σ. By writing the convolution operation of Eq. 2.1 explicitly,

it comes that the blurred image is

Lcylσ (s, t) =
∑
u

∑
v

Icyl(u, v)Gσ(s− u, t− v) . (3.10)

Following the same reasoning of section 2.4.2, it is possible to obtain the adaptive
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filtering of Eq. 3.11

Lσ(h, k) =
∑
x

∑
y

I(x, y)Gσ
(
f ·
(

arctan
(h
k

)
−arctan

(x
y

))
,
f2(δ − 1) + δr2(δ − 1)

2δr

)
,

(3.11)

with r being the distance between the center and the image location where the filter

is applied

r =
√
h2 + k2 , (3.12)

and δ being the ratio between the radius d of each pixel contribution and r

δ =
d

r
=

√
x2 + y2√
h2 + k2

.

Note that now the smoothing convolution is an operation of R2 ×R4 → R+ due to its

dependence in (h, k) and (x, y). For each radius, the adaptive blurring kernel has the

same shape, but with different orientations (see Fig.3.3). Like the RD-SIFT, the pixel

shape and orientation depends on its position in the image, becoming computationally

heavy to filter the image. To leverage such computational burden, we approximate the

adaptive filters by a rank 1 filter that can be written as the outer product of two 1D

Gaussian filters of the same standard deviation. This permits to implement the con-

volution process separately in X and Y dimensions like in the sRD-SIFT algorithm,

which permits to considerably speed up the smoothing process [34]. Instead of com-

puting the cylindrical Gaussian for each image pixel position, we approximate (3.11)

by the closest rank 1 Gaussian filter estimated using Singular Value Decomposition[
U S V

]
= SVD(Gσ). (3.13)

Thus, the rank 1 Gaussian kernel that better approximates Gσ is

Gσ,rank=1 = U(:,1)S(1,1)V(:,1)
T (3.14)

where S(1,1) representing the first singular value and V(:,1) representing the correspon-

dent singular vector (see Fig.3.3 for an illustration of the process). We have observed
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Figure 3.3: Separable filters for catadioptric images.

that this decomposition has two significant advantages: (i) For every image radius the

same Gσ,rank=1 can be used, which enables separable convolution for each radius in

a similar way to [51]; and (ii) a filter bank can be computed offline and loaded into

memory when required. We consider the same filter bank for all the para-catadioptric

images used throughout this chapter.

Keypoint description

Instead of explicitly correct the local image patches for the SIFT descriptor compu-

tation, we use the same reasoning of section 2.5 to implicitly correct the gradient by

measuring the gradients in the original image and correct the result using the deriva-

tive chain rule. Let I be the catadioptric image and Icyl be the cylindrical panorama.

The mapping relation between the two images is the following:

Icyl(u) = I(Ψ−1(u)) .

Applying the derivative chain rule it yields

∇Icyl = JΨ−1 .∇I (3.15)

with ∇Icyl and ∇I being respectively the gradient vectors in Icyl and I, and JΨ−1

being the 2 × 2 Jacobian matrix of the mapping relation given in (3.9). The Jacobian
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(a) Set A (b) Set B (c) Set C (d) Set D

Figure 3.4: Example of the data sets used for detection and description evaluation.

matrix can be written in terms of para-catadioptric image coordinate x = (x, y)T:

JΨ−1 =

 r2

fy
0

− x

fr

(
τ +

√
τ 2 + f 2

) y

r

(
τ+
√
f2+τ2√

f2+τ2

 ,

with τ = r2−f2
2r

. The final descriptor is generated from the undistorted gradients

∇Icyl following the procedure described in section 2.4.1. This framework for keypoint

detection and matching is called SIFT for Cylindrical Images (cylSIFT).

3.3.2 Performance Evaluation in Planar Textured Surfaces

Methods under evaluation

In this hybrid matching comparison, SIFT [3] is always used to extract features in

the perspective images and the test only differ in terms of the method used to ex-

tract features in the para-catadioptric/rectified views. We compare the proposed cyl-

SIFT method against the following approaches: Application of SIFT over (i) para-

catadioptric images (SIFT); (ii) rectification to polar coordinates (Polar); (iii) rectifica-

tion to cylindrical coordinates (Cylinder); and (iv) Virtual Camera Perspectives (VCP).

To generate the VCP we manually select the region in the omnidirectional images that

correspond to the visual contents of the perspectives. Without this prior knowledge

we would need to render 4 or more perspectives for each omnidirectional image, and

still be subject to viewpoint changes arising in the synthetically generated perspec-

tive images. Although the VCP is not a direct competitor of our method because it

does not encapsulate the same wide field-of-view in one image, it is the theoretical top
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performer since matching is accomplished between images with no distortion, being

included in the performance evaluation study for the sake of completeness.

Metrics for evaluation

In terms of detection evaluation, the repeatability of keypoint detection is unarguably

the most important property of a reliable detector [45]. Let’s consider Scata and Spers
as being the set of keypoints detected in the para-catadioptric image (or rectifications

obtained from it) and perspective images, respectively. Given two images of the same

scene, the repeatability measures the percentage of the features detected on the scene

part visible in both images:

%Repeatability =
#(Scata ∩ Spers)

#Spers
∗ 100 (3.16)

where # denote the cardinality of the sets. For matching evaluation we use the tradi-

tional 1-precision vs recall curves [46] early introduced in section 2.3.2.

Datasets

We collected 13 para-catadioptric images taken in different places using a camera

with a resolution of 2272 × 1704. On the perspective side we collect 4 different

perspective image sets (Fig. 3.4): set (A) was acquired fronto-parallel to the scene,

at the same location of the para-catadioptric system; set (B) was acquired from the

same position as the para-catadioptric image and with an angle of approximately 45

degrees between the optical axis and the vertical plane; set (C) presents strong scale

changes while preserving the fronto-parallel viewpoint; and set (D) was taken from

different positions and viewpoints relatively to the para-catadioptric images, to test

strong viewpoint changes. The resolution of the perspective images is 1600x1200.

Similarly to the evaluation with planar textured surfaces of the previous chapter, at

this stage we only consider images of planar scenes that enables to find a ground truth

homography2 for verification of detection and matching results,

2The ground truth homography is computed after rectifying the para-catadioptric coordinates to
perspective coordinates.
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Panoramic Image Persp.
SIFT Polar Cylinder cylSIFT VCP

Detections 1328 1482 1613 1433 401
Time (sec) 4.4 7.78 8.05 5.6 2.4+

No . Matches 94.6 96.2 112.1 120.8 126.9

Figure 3.5: Detection and description evaluation in planar image pairs. Fig. 3.5(a)
compares the repeatability scores of the several methods evaluated, while Fig. 3.5(b)
concerns description evaluation. We can observe that using the cylSIFT approach per-
mits to have similar scores to the rectification for a perspective view. Additionally, we
provide the average running time of every method, number of detection and number of
matches established using the similarity distance thresholded at 0.9. The computation
differences between the SIFT and the cylSIFT rely on the offline computation of the
filter bank, which in our Matlab implementation takes in average 1 second, and in the
gradient correction technique. In VCP, Polar and Cylinder the rectification process
using our Matlab routines is included. (·)+ denotes that for the VCP we only show the
running the time for the correct perspective. In practice at least 4 perspective images
must be rendered for each omnidirectional to cover its wide field of view.

Results and discussion

The repeatability of detection and precision-recall curves for description can be ob-

served in Fig. 3.5. We can observe that the cylSIFT performs better than most com-

peting methods over the panoramic images. The image re-sampling for distortion

compensation requires the reconstruction of the discrete image signal. This recon-

struction process can either remove high frequency components and/or introduce new

spurious frequencies being highly prejudicial in the detection step [51]. The Polar

and the Cylinder generate similar images and it is expected that both provide similar

results. However, as the rectification to cylindrical coordinates uses the calibration
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Figure 3.6: Indoor image-based localization pipeline.

matrix and the non-linear function characteristic of the mirror, the mapping of the lat-

ter is more accurate than the former, which explains the observed better performance.

The cylSIFT method performs very closely to the VCP approach, showing that, even

dealing with the distortion on the cylinder, the cylSIFT is capable of performing close

the perspectives generated through interpolation.

In terms of description, we can observe that performing implicit gradient correc-

tion provides gains in terms of matching performance, when compared with the other

descriptors computed in the panoramic images. Once more it is verified that the VCP

provides the best matching scores, which is expected since the description space, al-

though subject to interpolation artifacts, does not present any non-linear distortion.

In summary, we can conclude that the cylSIFT outperforms SIFT applied directly

over the omnidirectional image, as well as polar and cylindrical panoramas. The VCP

approach outperforms the cylSIFT algorithm due to the correct alignment between

the perspective image and generated VCP (see results of set D in Fig. 3.5(a)). In a

real application scenario, this correct alignment is not known in advance, precluding

a good performance for this method.

3.4 Indoor Localization with Hybrid Imaging Systems

In this section we evaluate the proposed cylSIFT method for image-based localization.

Given a query image, acquired with a standard camera (e.g. robot or a person with a
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Figure 3.7: Illustration of a GVP occurrence. The process starts by quantizing the
image space into an offset grid. The spatial layout of the visual words are then used
to build GVP occurrences.

conventional camera), the localization is obtained by searching and retrieving the most

similar view in a database of omnidirectional visual maps. For a visual illustration of

the process see Fig. 3.6.

3.4.1 Retrieval Schemes

In our retrieval application, we compare two different searching approaches. The first

method uses the standard BOV approach. A vocabulary tree is built using k-means

clustering. The basic idea of descriptor clustering is to represent similar local im-

age descriptor with the same visual words, which results in very high dimensionality

reduction and subsequent speed-up when querying large image databases. Since the

SIFT descriptor is 128D, the process of clustering is speed -up by using hierarchical

k-means where each branch is recursively spitted into k new groups along L-levels

of the tree, which totalizes kL visual words. The correspondence between images is

given by measuring the similarity between the visual words in a query image and in

the database images [61]. Although this scheme provides good performance in several

recognition scenarios [61, 63], it discards the spatial relation of the visual words dur-

ing retrieval that can be relevant to disambiguate situations of perceptual aliasing [59].
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The second method uses the new concept of visual phrases (GVP) [65]. The objective

of using GVP is to take into account the spatial relations between visual words. For

each pair of the same word in the query and database images, the offset is computed by

subtracting their corresponding locations. A set of n visual words in a certain spatial

layout define a GVP of length n. The image space is quantized into cells to tolerate

shape deformation and to build an efficient voting scheme. After computing the off-

set, a vote is generated on the offset space. n votes in the same offset cell correspond

to a co-occurring GVP of length n. Refer to Fig. 3.7. for the illustration of a GVP

occurrence.

3.4.2 Feature Extraction Methods and Database considerations

The extraction of features in the query images is always performed using the standard

SIFT algorithm. On the database side, we consider the following features extraction

and description schemes: SIFT applied over (i) the para-catadioptric images; (ii) the

cylindrical rectification Cylinder and (iii) virtual image perspectives VCP; and (iv) the

cylSIFT features computed in the para-catadioptric images.

The feature extraction techniques and searching schemes are tested by performing

queries on a database of 118 para-catadioptric images that provide a detailed visual

map of the building where the robot operates. Concerning the VCP database, we ren-

der 4 perspectives for each omnidirectional image. Each generated perspective image

has a field of view of 108◦ and resolution of 1600 × 1200. Unlike in the tests of sec-

tion 3.3, the VCP images are generated in an unsupervised manner, meaning that each

omnidirectional image gives raise to 4 VCP without assurance that one of the VCP

is aligned with the perspective query image. We use 451 query images for evaluating

which combination of retrieval scheme, vocabulary size and feature extraction method

(at the database side) performs better for the task.

The performance of retrieval is given by the percentage of correctly retrieved loca-

tions in first place (Top 1), and in the sets of 3 and 5 images with highest scores (Top

3 and Top 5). Finally, the best retrieval method for each feature extraction technique

is selected and the top 5 images are re-ranked through geometrical verification within

a RANSAC framework [21].
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3.4.3 Results and Discussion
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(d) RANSAC re-ranking

Figure 3.8: Retrieval results in indoor environment. We have tested several combina-
tions regarding feature extraction techniques, vocabulary size and searching scheme.
The cylSIFT method proved to be superior to the other feature extraction approaches,
regardless of the type of retrieval scheme and vocabulary size. For each feature ex-
traction method, we selected the best retrieval scheme and performed re-ranking on
the top 5 images using strong geometric constraints within a RANSAC framework
(Fig. 3.8(d)).The darker colors represent the improvement obtained over the GVP
framework, with a vocabulary size of 160k. We additionally include the scores of a
naive approach to the problem where SIFT features and standard BOV are used for
localization recognition.

Figure 3.8 presents the retrieval results. The cylSIFT approach is the one providing

the highest retrieval scores, independently of the searching scheme and vocabulary

size. Increasing the number of words in the vocabulary increases the performance

of the BOV approach. In this case, the recognition is performed in a word-by-word
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basis and more discriminative words tend to provide better retrieval results. We also

observed that using a lower vocabulary size tends to favor the performance of the

GVP. Since vocabularies of small sizes are less discriminative more common words

between the query and the database image can be established and more visual phrases

exist, leading to a boost in performance.

For each feature extraction method, we selected the best retrieval scheme (GVP

with a vocabulary size of 160k) and performed re-ranking on the top 5 images using

strong geometric constraints within a RANSAC framework (Fig. 3.8(d)). In addition

to the average correct retrieval scores, we also provide the results for each perspective

sets. The higher quality of matching provided by our method can be clearly seen for

all the 4 sets, but with particular emphasis in the most difficult ones (set C and D). It

is also important to notice that in set D the VCP tends to be outperformed by all other

methods. This is due to the fact that in general the perspective image is misaligned

with the generated VCP, meaning that such schemes is only effective if we known in

advance which region of the omnidirectional image is being viewed to ensure minimal

viewpoint changes.

One important observation is that the interpolation used in the explicit cylindrical

and VCP images has a negative impact in the visual words distinctiveness. Using the

BOV with descriptors extracted in cylindrical images does not lead to an increase in

performance when comparing with SIFT, showing that the visual words computed on

these descriptors are less discriminative. While in the section 3.3, two descriptors were

considered a match by using similarity distance (nearest neighbor distance ratio) [46],

in the vocabulary tree, two descriptors belong to the same visual word if they are

close to the same centroid. Therefore, the smaller the euclidean distance between two

descriptors, the greater the probability of belonging to the same visual word. Although

the interpolation artifacts do not have a large influence in the nearest neighbor ratio,

they seem to be particularly relevant for the computation of the image visual words.

The implicit filtering approach seems to be immune to this phenomena and takes full

advantage of its higher matching performance.
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3.5 Closure

This chapter focus on indoor image-based localization by querying omnidirectional

maps using perspectives. We take advantage of the wide field-of-view of the images,

which enable a complete description of the environment with minimum effort. To

successfully retrieve the omnidirectional image using a perspective, we develop a new

algorithm for feature detection and description based on the rectification to cylindrical

images. Extensive experiments prove that our method outperforms explicit image rec-

tification methods, proving to be beneficial for image-based localization by improving

the rate success rate in 15%.
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Chapter 4

Image Alignment in the presence of
Radial Distortion

Image alignment consists in finding the deformation between a reference and an

incoming image through the minimization of an intensity-based cost function.

Solving this problem typically involves the assumption of an image motion model

(warping function) that describes the expected deformation a reference template

suffers between two time instants. In this chapter, we study the problem of image

alignment in wide FOV cameras, and we propose a set of motion models that

implicitly encompass the distortion effect arising in this type of imaging devices.

We show that including the proposed motion models in a inverse compositional

alignment framework enables to recover the image radial distortion whenever

the camera is not calibrated.

4.1 Introduction

Image alignment consists in finding the deformation between a template and an in-

coming image through the minimization of an intensity-based cost function. Since

the seminal work of Lucas and Kanade [70] on optical flow, image alignment has

been applied in a broad range of applications, such as tracking [71], medical image

registration [72], and face alignment [73]. In the past two decades, several authors
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devoted attention to the original method of [70] by improving optical flow accuracy in

wide baseline situations [74–77], or by manipulating the motion models for increased

robustness against illumination changes [78].

Image alignment techniques often rely on the assumption of a motion model that

describes the deformation expected between the template and the incoming images.

Several motion models are currently used, ranging from a low complexity translation

model [70, 79] to an affine motion model [75, 80, 81]. Unfortunately, these motion

models do not compensate the RD effect arising in cameras equipped with unconven-

tional optics. At the image level, the distortion causes a non-uniform displacement

of the pixel positions along radial directions and towards the center, which introduces

a non-linear image deformation that conventional image models do not tolerate. In

practical terms, the inability of the standard motion models for accommodating RD

translates in localization drifts and, more importantly, affect the registration accu-

racy [82, 83].

Despite these facts, image alignment has been applied in the past to images with

significant RD [84, 85], mainly in the context of feature tracking (Lucas-Kanade-

Tommasi tracker (KLT)). Some works directly apply the KLT method over RD im-

ages and, therefore, violate the underlying assumptions of the KLT tracker, which

were done for perspective images. Other solutions used in the literature either discard

the image boundaries [84], where the distortion effect is more pronounced, or correct

the distortion in a pre-processing step before applying the KLT. Although the later

approach is quite straightforward, the distortion rectification requires the interpola-

tion of the image signal, which can be computationally expensive, and, even more

important, unreliable since the synthetically corrected images contain artificially in-

terpolated pixel intensities [29, 51].

This chapter focus on image alignment in images presenting significant radial dis-

tortion. We propose an extension of the standard perspective motion model for de-

scribing the image template deformation that fuses local motion with global image

distortion. Unfortunately, the particular structure of this warp does not allow to cali-

brate the distortion during tracking, as it will be theoretical explained latter. To cope

with this problem, we additionally propose an approximation to the ideal theoretical

62



MIGUEL LOURENÇO

model that enables to calibrate distortion during tracking. To the best of our knowl-

edge, this is the first work showing that is possible to estimate RD through the regis-

tration of image patches. Photometric deformations will not be considered for clarity.

Affine photometric models [78] can be introduced without changing the underlying

results.

4.1.1 Related Work

Optical flow computation in cameras equipped with unconventional optics was, prob-

ably for the first time, discussed by Daniilidis et al. [29] that show that optical flow on

catadioptric images should be computed assuming the sphere as underlying domain of

the image function to deal with the non-uniform sampling of catadioptric images.

Mei et al. propose in [86, 87] a region tracking algorithm for generic central cam-

eras where the warping is also formulated on the sphere. The approach is specific to

the tracking of plane surfaces and requires the camera to be calibrated. In [88], Salazar

et al. use the warping function proposed in [86, 87] to perform homography-based

tracking in uncalibrated images by simply adding the camera intrinsics to the vector

of unknown parameters to be estimated. The work of Salazar et al. is still specific

to the tracking of large plane surfaces, it involves computationally expensive mini-

mization that precludes real-time performance, and it requires tracking across three or

more frames to recover the camera parameters [88].

A closely related work to ours is the one of Tamaki et al. [89] that propose an image

alignment approach to calibrate the camera radial distortion. The method registers a

distortion-free planar pattern with a distorted view of this pattern, and uses non-linear

optimization to estimate the plane homography under perspective, the radial distortion,

and the linear spatial changes in illumination. Like our method, the algorithm just

requires two views for computing the warping parameters, but the requirement of a

distortion-free view of the pattern limits usability.

Despite of being less general than [86–88] in the sense that it can only be applied

to cameras where the division model is valid, our method does not require the camera

intrinsic calibration to be known [86, 87], and it is able to recover the real radial dis-

tortion parameter solely by tracking low-level features between adjacent frames. Our
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method shares some similarities with [89], but does not require a calibration pattern,

and recovers distortion from the motion of low-level image patches.

4.1.2 Chapter Overview

The structure of this chapter is as follows: Section 4.2 reviews the literature related

with image alignment. Section 4.3 derives the RD compensated motion models and

explains how to include them in the inverse compositional alignment framework. Spe-

cial focus is given to the case of uncalibrated images, where a computational efficient

method that enables to simultaneously estimate global distortion and local feature mo-

tion is presented. The performance of the proposed motion models is first validated

in a synthetic data set, where we study the effect of number and size of the templates

in the estimation of distortion. In section 4.5, the proposed motion models are evalu-

ated in feature tracking applications with a representative set of repeatability [82] and

medical endoscopy SfM experiments [51].

4.2 Background

Along this chapter it is assumed that the RD can be fairly described using the divi-

sion model introduced in chapter 2. In this section, we review the image registration

frameworks with direct and inverse image alignment. We also summarize standard

image motion models, and discuss the importance of the local template updates and

pyramidal image representation for achieving reliable long-term template tracking.

4.2.1 Image Alignment Framework

Image alignment between temporally adjacent images can be formulated as a non-

linear optimization problem whose cost function is the sum-of-squared differences

between a template T and incoming images I. The goal is to compute

ε =
∑
u∈N

[
I(w(u; m))− T(u)

]2
, (4.1)
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where m denotes the components of the image warping (or motion model) function

w, and N denotes the integration region of an image point u. Lucas and Kanade

proposed to minimize Eq. 4.1 by assuming that a current motion vector m is known

and iteratively solve for δm increments on the warp parameters, with Eq. 4.1 being

approximated by

ε =
∑
u∈N

[
I(w(u; m + δm))− T(u)

]2
≈
∑
u∈N

[
I(w(u; m)) +∇I∂w

∂m
δm− T(u)

]2
.

(4.2)

Differentiating ε with respect to δm, and after some algebraic manipulations, a closed

form solution for δm can be obtained:

δm = H−1
∑
x∈N

[
∇I∂w(x; m)

∂m

]T(
T(x)− I(w(x; m))

)
, (4.3)

withH being a 1st order approximation of the Hessian matrix [80,81], and the parame-

ter vector being additively updated mi+1 ←mi + δm at each iteration i. This method

is also known as forward additive alignment [80, 81] and it requires to re-compute H
at each iteration due its dependence with I.

For efficiently solving Eq. 4.2, Baker and Matthews [80, 81] proposed an inverse

compositional alignment method that starts by switching the roles of T and I

ε =
∑
u∈N

[
I(w(u; m))− T(w(u; δm))

]2
(4.4a)

≈
∑
u∈N

[
I(w(u; m))− T(w(u; 0))−∇T∂w

∂m
δm
]2
. (4.4b)

The increments δm are then computed as:

δm = H−1
∑
u∈N

[
∇T∂w(u; 0)

∂m

]T(
I(w(u; m))− T(u)

)
, (4.5)

with w(u; 0) being the identity warp. H is computed using the template gradients and,

therefore, it is constant during the registration procedure, leading to a significant com-

putational improvement when compared with the forward additive alignment. Finally,
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the warp parameters are updated as follows:

w(u; mi+1) ← w(u; mi) ◦w−1(u; δm), (4.6)

where ◦ denotes the composition operator. Although the update rule of the inverse

compositional alignment is computationally more costly than a simple additive rule,

Baker and Matthews [80, 81] show that the overall computational complexity of the

inverse formulation is significantly lower than that of the forward additive KLT.

Motion models for perspective images

The motion model (or image warping function) w used for in the image alignment

framework determines the degree of image deformation tolerated during the registra-

tion process. The original contribution of Lucas and Kanade [70,79] assumes that the

neighborhoodN around a feature point u moves uniformly and, therefore, the authors

model the image motion using a simple translation model. However, the deformation

that it tolerates is not sufficient when the tracked image region is large, or the video

sequence undergoes considerable changes in scale, rotation and viewpoint. In these

situations, the affine motion model [75, 80] is typically adopted

w(u; m) = (I + A)u + t, (4.7)

where the parameter vector is m = (a1, .., a4, tx, ty)
T, and I is a 2× 2 identity matrix.

Although we work specifically with the affine motion model, the extensions proposed

can also be done with for other motion models, such as translation, similarity trans-

formations and homographies.

Pyramidal image representation for the iterative minimization

Despite of the warp complexity, the registration process may fail to converge when

the initialization of the warp parameters m0 is not close enough to the current motion

parameters, i.e. m0 is not in the convergence region C where the 1st order approxi-

mation of Eq. 4.4b is valid [81]. This effect can be attenuated by performing track-
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ing using a pyramidal image representation [74], where several image resolutions are

built by downsampling the original image signal by factors of 2. A L-levels pyrami-

dal tracking algorithm proceeds from the coarse to the finest pyramid level, with the

coarsest feature position being given by uL = 2−Lu. The registration proceeds at

each pyramid level, with the result begin propagated to the next level as uL−1 = 2 uL

(for further details see [74]). Since the integration region N is kept constant across

scales, the pyramidal framework greatly improves the probability of m0 belonging

to C, which by consequence increases the tracking success. The number of levels L

of the image pyramid representation is typically computed as function of the image

resolution [74, 75].

Template update for long-term template tracking

In case of applying alignment techniques in the context of feature (position) tracking

in continuous video, it is typically more important to track the position u than the

template itself. Therefore, the template update is a critical step to keep plausible

tracks along long image sequences. An inherent problem to the template update step

is the localization error introduced whenever the template is updated [83]. High-order

motion models tend to be more flexible in terms of the deformation tolerated during the

registration process, with the templates being updated less frequently. This minimizes

the drift in the feature localization introduced whenever a new template is captured

[81,83]. When applying the proposed motion models in feature tracking applications,

a new template is captured whenever the squared error of Eq. 4.1 falls above some

threshold [75].

4.3 Image Alignment in Images with Radial Distortion

In this section, we propose extensions of the standard perspective motion models for

cameras equipped with lens that introduce significant radial distortion. We address the

image alignment problem both in calibrated and uncalibrated cameras, and we show

how the distortion can be efficiently estimated for when several templates are being

tracked/registered.
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Figure 4.1: Schematic difference between the (a) accurate and the (b) approximate
RD compensated motion model. The black dashed lines in (b) represent the patches
using the accurate RD model.

4.3.1 Radial Distortion compensated Motion Model

Let’s consider the standard situation where we aim at aligning two undistorted im-

ages Iu and Iu
′ that are related by a generic motion function w, such that Iu(u) =

Iu
′
(w(u; m)). We now consider that Iu and Iu

′ are result of removing the radial dis-

tortion from I and I′, respectively. Using the distortion function of Eq. 2.4, we know

that corresponding undistorted and distorted coordinates are related by u = Γη(x), so

we can re-write the mapping relation as Iu(u) = Iu
′
(w(Γη(x); m)). Since Iu(u) =

I(x), with x = Γ−1η (u), we can write the mapping that relates two distorted image

signals as I(x) = I′(Γ−1η (w(Γη(x); m))). The RD compensated motion model that

directly relate two distorted image signals can be expressed using the following func-

tion composition:

x′ = vη(x; m) =
(
Γ−1η ◦w ◦ Γη

)
(x; m). (4.8)

Intuitively, this warping function vη encompasses three steps: (i) compensates

the radial distortion, (ii) applies the motion model, and (iii) restores the non-linear

image deformation. In the case of an ideal model, the perspective motion model w

parameters will be the same as the images would be free of distortion. This motion

model can be included with minimal effort in the inverse compositional alignment

framework.
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4.3.2 Image Alignment in Calibrated Images

In case the camera is calibrated and η is known in advance, the parameter vector m

of vη comprises the same parameters of the original motion of Eq. 4.7. By replacing

our motion model vη in the inverse compositional alignment, it is straightforward to

obtain the closed-form solution for δm, which is given by:

δm = H−1d
∑
x∈N

[
∇T∂vη(x; 0)

∂m

]T(
I(vη(x; m))− T(x)

)
(4.9)

with the 1st approximation of the hessian being

Hd =
∑
x∈N

[
∇T∂vη(x; 0)

∂m

]T[
∇T∂vη(x; 0)

∂m

]
,

and the Jacobian ∂vη(x;0)

∂m
being evaluated at m = 0. Finally, the motion parameters

are updated at each iteration as follows:

vη(x; mi+1)← vη(x; mi) ◦ v−1η (x; δm) (4.10a)

← Γ−1η ◦w(x; mi) ◦w−1(x; δm) ◦ Γη. (4.10b)

In the remainder this method is called calibrated Radial Distortion KLT (cRD-KLT),

which stands for calibrated KLT for RD images.

4.3.3 Extending cRD-KLT to handle Uncalibrated Images

As it will be shown in the evaluation section, the cRD-KLT is highly effective for per-

forming image alignment of local patches in cameras with lens distortion, improving

substantially the tracking accuracy and repeatability when compared with standard

KLT framework. However, it has the drawback of requiring prior knowledge of the

distortion parameter η, which implies a partial camera calibration.

A strategy to overcome this limitation is to use the differential image alignment to

estimate both the motion and the image distortion. This passes by extending the vector

m of model parameters in order to consider η as a unknown variable in addition to the
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motion variables. In this case the warping function becomes v(x; q) with the differ-

ence with respect to vη(x,m) being only the vector q = (m, η) of free parameters to

be estimated. Unfortunately, the model v(x; q) cannot be used for image registration

using inverse compositional alignment. The problem is that any vector of parameters

q of the form q = (0, η) is a null element that turns the warping function into the

identity mapping

v(x; (0, η)) = x, ∀η. (4.11)

This warp does not have a simple null element because every value of η verifies the

identity warp when m = 0. As consequence, the Jacobian of v(x; q) evaluated for

any q such that m = 0 is singular which result in a non-invertible Hd that precludes

the use of inverse compositional alignment. An alternative would be to use the for-

ward additive alignment, since the only requirement needed is the differentiability of

the warp with respect to the motion parameters [80, 81]. Unfortunately, the compu-

tational complexity of this approach is significantly higher than that of the efficient

inverse formulation. Instead of using the forward additive alignment, the next section

proposes to approximate the warp v(x; q) by assuming that the distortion is locally

linear in a small neighborhood around the feature point.

4.3.4 Image Alignment in Uncalibrated Images

This section demonstrates an effective solution to avoid the singular Jacobian issue by

replacing the v(x; q) by a suitable approximation of the desired composed warping.

As it will be experimentally shown, this approximation has minimum impact in terms

of error in image registration and enables to use efficient inverse compositional align-

ment to estimate both motion and global image distortion in an accurate and robust

manner.

Let’s assume that in a small neighbourhoodN around a feature point p the distor-

tion effect can be approximated by

Γ(x) ≈ Γp(x; η) = (1 + ηpTp)−1x. (4.12)

Remark that by replacing the radius of each point x by the radius of the central point

70



MIGUEL LOURENÇO

p of the window N the non-linear function Γ becomes a projective transformation

Γp(x; η) as shown in Fig. 4.1(b). This is a perfectly plausible approximation when-

ever the distance between the feature point p and the center of the image is substan-

tially larger than the size of the neighborhood N . In the situations where this is not

verified, the effect of distortion is negligible, and the approximation does not introduce

significant error. Replacing Γ by Γp in Eq. 4.8 yields the following approximation to

the ideal theoretical model (see Fig.4.1(b)):

vp(x; q) =
(
Γ−1 ◦w ◦ Γp

)
(x; q). (4.13)

In this case, the warp has single null element, and the Jacobian is not singular when

evaluated in q = 0, leading to an invertible Hd. Remark that replacing Γ−1 by Γ−1p

would again lead to a motion model with singular Jacobian and non-invertible Hd. In

case we aim at aligning a single image template the computation of the updated δq is

similar to the cRD-KLT method. However, we have observed that typically aligning a

single template (N = 1) provides a noisy estimation of the radial distortion for small

size templates. The next section explains how to efficiently and globally estimate the

distortion when N > 1 features are being available for registration.

Estimation of the warp parameters for N > 1 templates

Due to the global nature of the RD, the distortion coefficient η can be simultaneously

estimated for N image templates being aligned, while keeping each the vector m

specific for each template. Recall that we want to compute the increment δq using the

inverse compositional algorithm, through the following closed-form solution:

δq = H−1d
∑
N

[
∇T∂vp(x; 0)

∂p

]T(
I(vp(x; q))− T(x)

)
. (4.14)

One possible solution to globally estimate the distortion coefficient would be to

perform block-by-block stacking of the feature observations and solve the system of

linear equations with a standard Gaussian elimination method. Instead of doing so,

we explore the sparsity of the system of linear equations for efficiently solving for the
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motion parameter updates. For each image feature, Eq. 4.14 can be re-written as:

Bn×nδqn×1 = en×1 (4.15)

where Bn×n = Hd =

(
Ui zi

zi
T λi

)
, and n is length of the motion parameter vector q.

By performing a proper block-by-block stacking, the observation of all the N tracked

features lead to the system of Eq. 4.16:

U1 z1

U2 z2

. . . ...

UN zN

z1
T z2

T . . . zN
T λ





δm1

δm2

...

δmN

δη


=



e1

e2

...

eN

d


, (4.16)

which in short-hand can be written as(
U z

zT λ

)(
δm

δη

)
=

(
e

d

)
, (4.17)

with λ =
∑N

i=1 λi and d =
∑N

i=1 di. To explore the system sparsity, we perform a

block-based Gaussian elimination by multiplying Eq. 4.17 on the left by

(
I 0

−zTU−1 1

)
,

which yields the following:(
U z

0T −zTU−1z + λ

)(
δm

δη

)
=

(
e

−zTU−1e + d

)
(4.18)

where the scalar −zTU−1z is the Schur complement of the matrix U [90]. The distor-

tion parameter update δη is simply computed using the following equation

(−zTU−1z + λ)δη = −zTU−1e + d (4.19)

By taking advantage of the sparsity of the system, we end up with one more equa-
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tion to solve when compared with the standard inverse alignment framework. Also

relevant in terms of computational efficiency is the fact that most feature dependent

blocks (U, z,−zTU−1z) can be computed offline. These feature-dependent blocks are

recomputed only when the correspondent template is updated, with the Schur comple-

ment of U being accordingly updated. The feature-dependent motion parameters can

now be estimated by simply computing the following:

δmi = U−1i (e− δη zi) (4.20)

The inverse of U corresponds to the same computational effort of an inverse com-

putational alignment since Ui is a 6 × 6 diagonal matrix that can be efficiently in-

verted [78, 91].

Update of the warp parameters

The final step of the algorithm concerns the update of the current parameters estimate.

In theory [80, 81], the incremental warp vp(x; δq) must be composed with the cur-

rent warp estimative. We relax this composition requirement and use an approximate

relation to update the warp parameters. We start from the relation given in [80, 81]

vp(x; qi+1)← vp(x; qi) ◦ v−1p (x; δq) ≡ vp(vp(x;−δq); qi). (4.21)

Using this equation, we can formulate the parameters update as an additive step

through the computation of a Jacobian matrix Jq that maps the inverse compositional

increment δq to its additive first-order equivalent Jqδq [80,81], with the warp param-

eters being additively updated as qi+1 ← qi + Jqδq.

4.4 Calibrating Distortion with Feature Tracking

In the previous section we derived a solution for recovering the distortion in the im-

age plane by using an image alignment framework. In feature tracking applications

the template is typically small and it is important to verify if the distortion can be
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decoupled from the other warp components. In this section we conduct experiment

in synthetic data, where the distortion and affine motion is accurately known. Since

we are working with an approximated RD compensated motion model, it is important

to verify until which extend the proposed motion model remains valid for describing

distortion. Moreover, it is important to verify whenever the motion components m

tend to compensate for the distortion effect.

4.4.1 Distortion Visibility at a Low Image Level

In this experiment we study the feature influence on the distortion estimation by

adding synthetic distortion to an image sequence with 20 frames. We track a vari-

able number of features across the RD distorted sequence and compare the average

RD estimation against the applied ground truth distortion.

Figure 4.2 compares the distortion estimation for two integrations regions of 11

and 50 pixels. We observe that with a single feature the distortion is not very accurate

because the affine motion parameters tend to compensate for the RD effect. For a

moderate number of features the distortion becomes more accurate. Since the distor-

tion is estimated globally for all the features being tracked, the affine motion models

do not tend to compensate RD. It can also be observed that for large size windows,

the distortion estimation is accurate, even for a single feature. It is also interesting to

observe that increasing the integration regions does not largely benefit the distortion

estimation for the case of 50 features.

4.4.2 Stabilizing the distortion estimation

Up to now we discuss how to estimate distortion, how to solve the sparse system of

linear equations in a computational efficient manner, and the influence of the integra-

tion region and number of features in the quality of RD estimation. Now, we will

show how we can integrate the estimate of the distortion parameter from each pair of

images using a Kalman filter [92] to keep robust plausible distortion estimations for

long-term tracking.

When deriving the equation of a Kalman filter, the goal is to find an equation that
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(a) Sample sequence with RD = 30%
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(c) Window Size = 50

Figure 4.2: Number of features vs quality of distortion estimation. Figures show the
estimation results for an integration of (b) 11 pixels and (c) and 50 pixels. For each
window size we use one, two and fifty templates. The estimation using one template
and small size region is very noisy, but increasing the number of templates and/or the
integration region enable to accurate estimation of the distortion coefficient.

computes the a posteriori state estimate η̂k as a linear combination of an a priori state

estimate η̂−k and a weighted difference of an actual measurement zk. The state of our

1-D kalman filter is the distortion coefficient η, and it is assumed to remain constant.

η̂−k = η̂k−1 (4.22)

The measurement update equations is then the following:

η̂k = η̂−k + κk(zk − η̂−k ), (4.23)
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(a) 10% (b) 20% (c) 40%

Figure 4.3: Sample images of the dataset used for repeatability experiments. The
images are shown with the manually selected object for controlled tracking. Inside
each rectangular regular image keypoint are extract with the Shi-Tomasi detector and
used for tracking evaluation purposes.

where κk is the kalman filter gain, zk is the measurement that in our case is distortion

estimation between two consecutive frames [92]. The Kalman estimate η̂k is incorpo-

rated in the RD compensated warp for the next frames, with the goal now being the

estimation of δη

vc(x; p, η̂k + δη) =
(
f−1 ◦w ◦ gc

)
(x; p, η̂k + δη). (4.24)

As it will be seen in the experimental validation, the application of a Kalman filter

enables the stabilization of the distortion estimation in long-term tracking sequences.

4.5 Experimental Validation

We validate the alignment framework for RD images in a feature tracking context,

with experiments being performed in repeatability and structure-from-motion appli-

cations. A reliable tracking algorithm must be able to perform long-term feature

tracking with high pixel accuracy [75]. Typically, the tracking performance is bench-

marked through the evaluation of the tracking repeatability and the spatial accuracy

of the tracking [75, 82, 93]. This section compares a standard KLT algorithm against

the proposed cRD-KLT and uncalibrated Radial Distortion KLT (uRD-KLT) trackers

in sequences with different amounts of RD. All the trackers are directly used in the

76



MIGUEL LOURENÇO

images with distortion, without any type of rectification or pre-processing. To the best

of our knowledge there is no such tracker that implicitly accounts for the effect of

RD during tracking. One possible solution would be to explicitly warp the template

for correcting distortion. However, this approach requires to know the RD in advance

meaning that it is not a direct competitor for uRD-KLT, and introduces pernicious

interpolation artifacts, so it is expected to perform worse than cRD-KLT [29, 51].

We perform experiences in sequences of planar scenes, where it is possible to

obtain ground truth to assess repeatability [51, 82], and scenes with depth variation,

where we evaluate the accuracy in medical endoscopy SfM [51]. The three methods

under evaluation were implemented using the affine motion model and a squared in-

tegration window N of 11 × 11 inside a pyramidal image registration with L = 4

resolution levels. Since our main goal is to perform feature (position) tracking rather

than the template itself, we monitor the health of the template through the evaluation

of the squared error of Eq. 4.1, with a new template being captured at the last feature

position whenever required. Note that in this case the features will not be replaced

when the tracking fails since this is the exact behavior we want to evaluate.

4.5.1 Repeatability Analysis in Planar Scenes

This experiment evaluates the reliability of the feature tracking algorithms using im-

ages of planar scenes (sample images are shown in Fig. 4.3). This means that every

2 images are related by an homography that is used to verify the correctness and lo-

calization accuracy of the tracked features. For the computation of the ground truth

homographies, we apply a robust estimation algorithm [49] that uses hundreds of cor-

respondences obtained with sRD-SIFT, which provides precisely located features in

radial distorted images [51]. The trackers are tested using four levels of distortion

(0%, 10%, ≈ 20% and 40 %), with each level comprising 2 types of motion: fast

translation and generic camera motion.

We start by extracting 150 features using the Shi-Tomasi detection criteria [79],

and track them along the 600 frames of each sequence. The reliability of the tracks

are measured using the following metrics:
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Table 4.1: Performance evaluation in the planar scenes. The results are organized by
type of motion (vertically) and corresponding amount of distortion (horizontally). The
results presented are the RMS of the evaluation metric computed over the 600 frames.

Fast Translation Affine Motion
R Serr Aerr R Serr Aerr

0%

KLT 0.95 0.27 0.021 0.90 0.35 0.032

uRD-KLT 0.95 0.31 0.028 0.90 0.39 0.035

10
%

KLT 0.92 0.58 0.055 0.90 0.59 0.045

cRD-KLT 0.98 0.47 0.028 0.98 0.43 0.027

uRD-KLT 0.98 0.47 0.028 0.98 0.43 0.027

20
%

KLT 0.88 0.56 0.047 0.69 0.85 0.051

cRD-KLT 0.98 0.43 0.026 0.90 0.55 0.027

uRD-KLT 0.98 0.43 0.026 0.90 0.57 0.031

40
%

KLT 0.76 1.15 0.065 0.64 1.27 0.076

cRD-KLT 0.91 0.70 0.038 0.84 0.65 0.047

uRD-KLT 0.90 0.73 0.040 0.84 0.65 0.047

(i) Repeatability (R) measures the ratio of correct points in the frame f using the

ground truth homography Hf1 that provides the mapping from view 1 to f :

R =
#(||xf − Hf1x1||2 < D)

#(Hf1x1)
, (4.25)

where || · ||2 denotes the euclidean distance and D = 2 pixels.

(ii) Sub-pixel accuracy (Serr) measures the RMS of the euclidean distance of cor-

respondent feature positions as:

Serr =

√∑
(||xf − Hf1x1||2)2

N
; (4.26)

(iii) The Photometric error (Aerr) measures the RMS of the squared error of Eq. 4.1

of the N tracked features.

We also evaluate the computational time of the different methods and the RD esti-
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Figure 4.4: The distortion estimation is averaged over the 2 sequences with the same
RD. It can be seen that using the distortion variation decreases considerably with the
Kalman filter.

mation obtained using the uRD-KLT. The image sequences presenting distortion are

calibrated using the single image calibration method proposed in [48, 94], which pro-

vides the ground truth for the distortion estimation.

Table 4.1 shows the repeatability results obtained in the planar image sequences.

The conventional KLT tracker performs well in low distortion sequence because in this

case the distortion changes smoothly between two points locations, and the template

update process enables to keep plausible tracks. However, higher distortion values

combined with complex motions, such as fast translation or affine camera motions,

result in abrupt changes in distortion between two feature locations, precluding an ef-

fective performance of the registration process with direct consequences in the track-

ing results. As we increase the distortion and the complexity of the motion, the KLT

starts loosing performance, which proves the importance of compensating distortion

during tracking.

The compensation of distortion during registration, either by knowing RD calibra-

tion, or by performing it on-the-fly, brings improvements in all the evaluation parame-

ters. The deformation tolerated by the RD compensated motion models allow to com-

pensate the pernicious effects of distortion, which in practice is translated in accurate

estimations of the feature motion parameters. This is visible in the lower appearance

error and spatial accuracy achieved by the RD-KLT trackers. Since the registration is

79



4.5. EXPERIMENTAL VALIDATION

more accurate, the appearance error is lower, and the template update is less frequent,

minimizing the inherent error in localization introduced by this process. It can also be

observed that uRD-KLT performs slightly worse than the cRD-KLT algorithm in the

sequences with high distortion and more complex motion. The differences in sub-pixel

precision and photometric error are due to the use of the approximated RD motion

model, which becomes slightly more imprecise as we increase distortion. Neverthe-

less, the difference is almost marginal without practical influence in the repeatability.

Finally, figure 4.4 shows that using the Kalman filtering reduces the variability of the

distortion estimation when compared with our previous implementation in [50]

The 3 methods were implemented in Matlab/MEX files. The C-MEX files include

operations that are transversal to the 3 methods, namely the interpolation routines,

image gradient computation and image pyramid building. The computational times

were measured in a Intel Core i7-2600 CPU @3.4GHz. cRD-KLT (≈ 1.11 millisec-

onds (ms)/feature) is slightly slower than the conventional KLT (≈ 1.10 ms/feature).

The small differences are explained by the different motion models used, which in

our case is a non-linear mapping function that requires a little more computation. The

uRD-KLT (≈ 1.17 ms/feature) presents a computational overhead of ≈ 6.4%. Using

the Schur complement instead of directly solving Eq. 4.16 enables an increasing in

computational efficiency of almost 10% when compared with [50].

4.5.2 Structure-from-Motion in Medical Endoscopy

Tracking features have been successfully applied to camera motion estimation and 3D

scene reconstruction [49], with accurate point correspondence across frames being

of key importance for accurately recover the camera motion [9]. In the next set of

experiments the motion estimation is carried by a sequential SfM pipeline that uses

as input the tracked points obtained by the KLT and cRD-KLT. We have excluded

the uRD-KLT from the evaluation since full camera motion calibration is required

to run the adopted visual odometry pipeline. The SfM pipeline iteratively adds new

consecutive frames with a 5-point RANSAC initialization (using 2 views) [52], a scale

factor adjustment (using 3 views) [49], and a final refinement with a sliding window

bundle adjustment.
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Figure 4.5: Visual odometry evaluation. The graphics show the rotation error 4.5(a)
and translation error 4.5(b). It can be seen that the stereo calibration obtained with the
cRD-KLT present lower rotation and translation error, meaning that the monocular
motions are more consistent than the ones obtained with the standard KLT tracker.

Visual odometry validation

The objective of this experiment is to recover the motion of a sparse sequences of 20

frames (sampled uniformly from a video sequence with 100 frames). Both trackers are

initialized with the same 150 local images features, with feature replacement whenever

a feature is lost. For validation purposes, we use a stereo endoscope that was calibrated

(Rs , ts) with the well-known Bouguet’s toolbox 1. At each time instant we compute

(Rl , tl) and (Rr , tr) by applying the visual odometry pipeline independently to the

left and right channel, respectively. The computed rotations and translations are used

to compute an estimative of the stereo calibration (Res , tes). The rotation error is given

by the angular difference between Res and Rs. The translation error is evaluated by

computing the angle between the two translation vectors as θt = arccos
(

tsTtes
|ts||tes|

)
.

Figure 4.5 shows the evaluation of the motion estimation. By comparing the es-

timated stereo calibrations with the one obtained with the Bouguet toolbox, we can

conclude that the cRD-KLT enable to keep consistent motion estimations on the left

and right channel. The extra parameter in the RD compensated motion models per-

mits a better convergence of the registration process in images presenting distortion,

1Online available at http://www.vision.caltech.edu/bouguetj/calib_doc/.
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improving the sub-pixel accuracy of the tracked features.

In vivo validation

In this experiment we evaluate the KLT and cRD-KLT trackers in a visual odometry

experiment using orthopaedic in vivo data acquired during a anterior cruciate liga-

ment surgery. Since the motion is estimated between temporal adjacent images, it is

expected that the camera trajectory presents smooth transitions between frames. This

data set comprises 300 frames with 1920 × 1080 acquired at 60 fps. The high-frame

rate favours the application of rigid SfM pipelines with a small bundle-adjustment

window due the small deformation of the surfaces between consecutive frames. We

initialize the trackers with the same 300 local images features, with feature replace-

ment whenever a feature is lost.

(a) KLT tracking (b) cRD-KLT tracking
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Figure 4.6: Tracking results at frame 133. Due the higher tracking precision, the
cRD-KLT tracker enables to segment the non-rigid motion in the scene (classified
as outlier points).Motion recover with the KLT (blue) and cRDKLT (red) trackers in
the orthopaedic data set. The highlighted connection in green shows a smooth motion
transition between frames 132 and 133 of the video sequence. The motion smoothness
typical from continuous video is more consistent with the trajectory obtained for the
cRD-KLT. The 3D structure was obtained using the cRD-KLT.

Figure 4.6 shows an example of the tracking results obtained with the KLT and

cRD-KLT trackers. The final camera trajectory can be seen in Figure 4.6(c). The

KLT tracked features start to drift due the combined effect of radial distortion, low-
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texture and non-rigid motion, resulting in an inaccurate endoscope trajectory. Since

the tracking with the cRD-KLT is more accurate, the deforming surfaces and moving

tissues are more consistently removed by the visual odometry pipeline, enabling to

keep a plausible trajectory estimation.

4.6 Closure

In this chapter we focus on the problem of image alignment in images presenting

strong radial distortion. We improve image alignment in calibrated and uncalibrated

camera setups by modifying the standard warping functions in order to account for

both the motion and the non-linear image deformation arising in cameras with wide-

angle lenses. Comparative experiments show that our RD-KLT tracker performs al-

most as well as the standard KLT tracker in sequences of correct perspective images,

and achieves substantially better results in sequences with any amount of non-linear

distortion. This is accomplished with minimum computational overhead. Such im-

provements in tracking are of strong importance for applications and domains that em-

ploy cameras equipped with mini-lens, fish-eye lenses, or boroscopes (e.g. robotics,

medical applications, etc).
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Chapter 5

Online Camera Zoom Calibration in
Medical Endoscopy

Many image-based systems for aiding the surgeon during minimally invasive

surgery require the endoscopic camera to be calibrated at all times. This chapter

proposes a method for accomplishing this goal whenever the camera has optical

zoom and the focal length changes during the procedure. Our solution for online

calibration builds on top of the uRD-KLT for tracking salient points using dif-

ferential image alignment, is well suited for continuous operation, and makes no

assumptions about the camera motion or scene rigidity. Experimental validation

using both a phantom model and in vivo data shows that the method enables

accurate estimation of focal length when the zoom varies, avoiding the need to

explicitly recalibrate during surgery. To the best of our knowledge this the first

work proposing a practical solution for online zoom calibration in the OR.

5.1 Introduction

Minimally Invasive Surgery (MIS) has a number of well documented benefits for the

patient, such as faster recovery time, and less trauma to surrounding tissues. However,

since the surgeon has limited access to the anatomical cavity and the visualisation is

carried indirectly through the video acquired by an endoscopic camera, the execution
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of MIS is more difficult than the (equivalent) open-surgery. In this context, systems

for Computer Assisted Surgery (CAS) that process the endoscopic video can be very

helpful in assisting the doctor during the procedure, either by improving the visuali-

sation [94], or by recovering the camera motion [19].

Most image-based CAS systems that use the endoscopic video as primary sensory

input require the intrinsic camera calibration to be known at all times during the pro-

cedure [19, 94]. Endoscopic camera calibration in the context of CAS is challenging

for three reasons [94, 95]: (i) since the optics are exchangeable and the camera can-

not be pre-calibrated, the calibration procedure must be carried in the operation room

(OR) by a non-expert user [94], (ii) in the case of oblique-viewing endoscopes the

surgeon often rotates the lens scope with respect to the camera head, which changes

the calibration parameters [95], and (iii) high-end endoscopy systems provide optical

zoom, which means that camera focal length changes during the intervention. Melo

et al. [94] describe effective solutions for overcoming challenges (i) and (ii). They

improve usability by proposing a fully automatic calibration method that uses as input

a single image of a planar checkerboard pattern and, in the case of oblique viewing

endoscopes, they show that it is possible to estimate the lens rotation and update the

initial calibration by tracking the image boundary contour. This chapter addresses

challenge (iii) meaning that it is shown that under varying zoom the only parameter

that changes significantly is the focal length, and that it is possible to update the initial

calibration information without the need of re-calibrate the camera.

Zoom calibration is closely related to the problem of unknown/variable focal length

estimation [96,97]. Stoyanov et al. [96] propose a solution for stereo endoscopy where

the focal lengths are directly estimated from the fundamental matrix [37]. Assuming

that the extrinsic stereo calibration is known in advance, the focal lengths can be deter-

mined using only two point matches across the stereo pair. Unfortunately, the solution

only generalizes for monocular endoscopy if the camera motion is known. Stewenius

et al. [97] propose a solution for computing the relative camera pose and unknown fo-

cal length from 6 correspondences that is used within a sample consensus framework.

The method assumes a rigid scene and requires in practice a considerable baseline

between images, which makes its use problematic in continuous video. Closely re-
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lated to this work is the contribution of Lee et al. [98] that does online estimation

of focal length based on the image of the boundary contour of the endoscope. Sev-

eral calibrations for different zoom positions are obtained offline, and indexed using

a look-up table. At running time, the boundary radius is used to index the look-up

table and obtained a suitable calibration for that zoom level. This approach has the

disadvantage of requiring explicit camera calibration for multiple zoom positions and,

more importantly, it does not work whenever the boundary contour is not visible in

the image.

5.1.1 Chapter Overview

This chapter reports a solution for efficient and accurate focal length estimation in

endoscopic video. Section 5.2 presentes the adopted camera model and derives how

the focal length can be estimated using global radial distortion in pixel units. Next

we present a slight variation of the uRD-KLT method that enables to estimate distor-

tion when the distortion changes between two different time instants. Since we built

on tracking theory, our approach is well suited for processing continuous monocu-

lar endoscopic video, does not make assumptions about camera motion [96] or scene

rigidity [97], and does not require the boundary contour of the lens to be visible [98].

Section 5.3 presents both quantitative and qualitative validation in synthetic and in

vivo scenarios.

5.2 Zoom Calibration with the uRD-KLT

This section details the proposed method for online focal length calibration. We start

by introducing the adopted camera model before moving to the method description.

5.2.1 Endoscopic Camera Modeling

Direct projection model and single image calibration

Let qu be the perspective projection of a 3D point Q in the canonical projective plane

(see Fig.5.2). In the presence of distortion, and assuming the camera to be skewless
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Figure 5.1: Illustration of endoscopic camera modeling in the presence of radial dis-
tortion.

and having unitary aspect ratio, point qu is mapped into the point x̂ in the image plane

by

x̂ = f Γ−1ξ (qu) + c, (5.1)

with Γ−1(·) being Eq. 2.6 that maps qu in its distorted counterpart

qd = Γ−1ξ (qu) = 2
(

1 +
√

1− 4ξquTqu

)−1
· qu, (5.2)

f is the camera focal length that converts metric units into pixel units, and c = (cx, cy)

is the principal point in pixels. With the single image calibration of [94] we can

easily estimate ξ, f and c at an initial reference zoom position. Remark that ξ is the

amount of distortion in metric units that is a characteristic of the lens and therefore

independent of the zoom variation.

Modeling radial distortion in the image plane

An alternative way of modelling the projection is to consider that the radial distortion

acts in the image plane as opposed to act in the metric projective plane. From the

inversion of Eq. 5.1 it comes in a straightforward manner that

qu = Γξ(f
−1(x̂ − c)). (5.3)

For simplicity, let’s assume that x = x̂ − c, which means that image points are

expressed in a coordinate frame centred in the principal point. Replacing Γξ by the
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expression of Eq. 2.4 it comes that

f · qu = (1 +
ξ

f 2
xTx)

−1
· x. (5.4)

Let u = f · qu be the undistorted image point in pixel units. From the equation above

it follows that u is related with its distorted version x by u = Γη(x) with

η = ξ · f−2 (5.5)

being the parameter that quantifies the distortion in pixel units. We conclude that, if

the radial distortion is expressed in metric units, i.e. before the intrinsics, the corre-

sponding parameter ξ does not depend of the camera focal length. However, if we

quantify this same distortion in pixel units using η, then there is a dependence on the

focal length which means that the distortion parameter varies with the zoom. We will

use the relation of Eq. 5.5 for recovering the focal length f at each frame by combin-

ing offline calibration of the constant parameter ξ using [94] with online estimation of

η using our tracking framework.

5.2.2 Zoom Calibration with Image Alignment

In the previous chapter, it is shown that it is possible to estimate the radial distortion

in the image plane by tracking feature points between adjacent frames. The uRD-KLT

starts by extracting reference templates T(x) around a set of salient points x that are

detected based on image derivatives [50]. Note that in this case the previous time

instant t − 1 and the current frame at time instant t can have different distortion pa-

rameters since the distortion can change in time. Also important to note is that the

distortion at instant t − 1 is known or has been estimated. In this particular case, the

deformation model is given by:

v(x; p) =
(
Γ−1ηt−1

◦w ◦ Γ
)

(x; p), (5.6)

with p = (m, ηt) where m is the vector of motion parameters that describes the local

deformation undergone by each image patch in the absence of distortion [81], and η is
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the global distortion parameter that is common to all image regions.

Given an initial estimate of p the goal is to iteratively compute the updates δp of

the warp parameters by minimizing the following cost function

ε =
∑
x∈N

[
I(v(x; p))− T(v(x; δp))

]2
(5.7)

This error function can linearised with respect to p by computing the first order Taylor

expansion, and the final updates δp can be computed in closed-form as:

δp = H−1
∑
x∈N

[
∇T∂v(x; 0)

∂p

]T(
I(v(x; p))− T(x)

)
, (5.8)

withH being a 1st order approximation of the Hessian matrix, and ∂v(x; 0)/∂p being

the Jacobian of the warp evaluated at the identity warp [50,81]. Since the η is a global

parameter common to every image point, the corresponding distortion updates are

computed using all tracked features, while the feature local motion m is computed for

each feature separately like detailed in the previous chapter.

While in the previous chapter, it is assumed that the camera calibration is not

known and that the principal point c is coincident with the image center, in here we

use the single image calibration [94] at a reference zoom position to obtain the princi-

pal point c and the lens distortion ξ in metric units. The uRD-KLT is applied during

operation to continuously estimate the image distortion parameter ηt and the focal

length is estimated at each frame time instant using the relation of Eq. 5.5. The

approach works as far as c and ξ remain constant. Next section will validate the pro-

posed method for zoom calibration, starting by empirically proving that the required

assumptions hold in practice.

5.3 Experimental Validation

In this section we evaluate the proposed solution for recovering the focal length in

continuous video. We start by conducting a set of experiments with ground truth

to validate the assumptions made for the derivation of our solution. Afterwards, the
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Figure 5.2: Intrinsic parameters for different zoom positions. Fig. 5.2(a) shows a
calibration image where the radius of the boundary is used to index the current zoom
position. Fig. 5.2(b) shows the variation of the center of coordinates and Fig. 5.2(c)
shows the variation of the focal length (blue) and distortion in metric units (green) for
increasing zoom. Each independent calibration is obtained using a single chessboard
image. The experiment confirms that the focal length increases, while the principal
point c and the distortion parameter ξ are virtually constant.

method is validated in both a synthetic environment and in a in vivo sequence acquired

in a porcine uterus. To prove the usefulness of our method in real application scenar-

ios, we include a small visual odometry experiment where the variable focal length

estimation enables to correctly estimate the camera motion.

5.3.1 Variation of Intrinsic Camera Parameters with Zoom

In this experiment we used a Storz H3-Z endoscopy system with a Dyonics’ arthro-

scopic lens with 4mm diameter. We placed the camera zoom in 15 distinct positions

and, for each position, we collected 5 images of a checkerboard pattern that were used

to obtain 5 independent intrinsic calibrations using the method described in [94].

Figure 5.2(b) shows the principal point estimation for successive zoom positions

that are referenced using the radius of the boundary contour. Fig. 5.2(c) does the same

for the focal length f and the lens distortion parameters ξ. It can be seen that all the

parameters remain approximately constant with the increasing of zoom, with excep-

tion of the focal length that, as expected, increases. Therefore, the assumption that c

and ξ are kept constant while the zoom varies holds in practice, with the variability in

the center estimation being within previously reported values in the literature [48,94].
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Figure 5.3: Simulation experiment with a zoom only sequence. Fig. 5.3(a) shows the
two phantom images with the corresponding boundary radius at different zoom posi-
tions. Fig. 5.3(b) shows that the focal length estimation of the uRD-KLT is accurate.

5.3.2 Validation with a Phantom Model

This experiment uses the camera setup of section 5.3.1 for acquiring a video sequence

of a phantom model of the knee. The endoscope is kept stationary, while the zoom

is increased. The focal length is estimated at each frame time instant by using the

uRD-KLT to track 20 automatically detected points. The focal length estimates are

related with the calibration results of section 5.3.1 using the radius of the boundary

contour like in [98].

Figure 5.3 compares the on-line estimation results with the calibration ground

truth. Please note that high-zoom values have no ground truth because the boundary

contour is not visible and there is no manner of relating the f estimates with calibra-

tion results. Nevertheless, the estimation seems to be plausible and consistent with

the calibration obtained for the end zoom position. The maximum relative estimation

error was 2.5% for the maximum zoom position when the image distortion η reaches

its minimum.

5.3.3 Validation in In vivo Data

The data used in this experiment was recorded in a in vivo porcine uterus during a

robotic assisted procedure. The sequence of 1000 frames with resolution 1920× 1080

was acquired at 30Hz with a Storz H3-Z camera system equipped with a laparoscopic

lens of 10 mm from Dyonics. We used the procedure of section 5.3.1 to obtain cali-
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Figure 5.4: Zoom calibration and SfM applications in vivo data. (a) shows some sam-
ple video frames, and the focal length estimation. (b) and (c) show a visual odometry
experiment without and with focal length compensation, respectively. Compensating
the focal length bring clear benefits for visual odometry, as it can be seen in Fig. 5.4(d)
where the reprojection error of the reconstructed 3D points decreases from ≈ 3 pixels
to less than 1 pixel.

bration ground truth. The surgeon was asked to vary the zoom against the direction of

motion of the endoscope in an attempt to keep the size of the image structures constant

and evaluate the robustness to changes in scale.

Figures 5.4(a) shows the online estimation results for the focal length by perform-

ing uRD-KLT tracking in the in vivo sequence. These results were obtained with a

straightforward Matlab implementation that ran at 2 fps on a single core of an Intel

i7-3630QM CPU @ 2.40GHz processor. It can be observed that the uRD-KLT-based

estimation is quite accurate with an average relative error of 2.20±2.40 % when com-

pared with the calibration ground truth. Please note that there are sequence segments
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for which there are no salient points (frames 250 to 300) or the accuracy of the estima-

tion decreases due to temporary poor tracking (frames 475-525). However, and since

the focal length measurement is carried in a frame-by-frame basis, these errors do not

accumulate.

Finally Fig. 5.4(b) to 5.4(d) show comparative visual odometry results for a sub-

sequence of 17 frames where the camera moves forward while the zoom decreases.

Since most of the scene is rigid the camera motion is computed by applying the five-

point algorithm [52] using image correspondences obtained with sRD-SIFT [51]. The

same set of points is given as input for both the case where the calibration is kept

constant and varied over time, which allow to isolate the camera calibration effect on

the camera motion and structure estimation. In this sequence the camera is moving

towards the scene, while the zoom is removed, which from the observer point-of-view

seems that the camera remains more of less stationary. This effect can be observed

on the camera motion estimation with constant focal length, while for the variable

focal length case the true motion pattern is captured. Figure 5.4(d) depict the motion

estimation results when the focal length is kept constant and when the focal length is

updated.

5.4 Closure

This chapter presents a practical solution for keeping the camera calibrated when the

camera zoom changes during operation. The method builds on recent developments in

image alignment for tracking keypoints in video with radial distortion and, since there

are no distortion free endoscopic cameras, it can be virtually used in any MIS. The

approach was validated in both synthetic and in vivo data, showing that is possible to

keep the camera calibrated under zoom variations without the need to re-calibrate the

camera during operation. To the best of our knowledge, this is the first work propos-

ing an effective solution for the zoom calibration in continuous medical endoscopic

video.
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Chapter 6

Visual Odometry in Stereoscopic
Laparoscopy

Stereoscopic laparoscopy provides the surgeon with depth perception at the sur-

gical site to facilitate fine micro-manipulation of soft-tissues. The technology

also enables computer-assisted laparoscopy where patient specific models can

be overlaid onto laparoscopic video in real-time to provide image guidance. To

maintain graphical overlay alignment of image-guides it is essential to recover

the camera motion and scene geometry during the procedure. In this chapter,

we propose a method for recovering the camera motion of stereo endoscopes

through a multi-model fitting approach which segments rigid and non-rigid struc-

tures at the surgical site.

6.1 Introduction

Stereo laparoscopes are becoming increasingly popular in MIS. The main reason

behind their wide adoption is the possibility of recovering the 3D structure of the

surgical site to provide the surgeon with depth perception of the operating field. De-

spite of being a difficult problem due to the dynamics of the medical environment that

combine occlusions from the surgical instruments with strong specularities, several

authors have already proposed efficient solutions for real-time computation of depth
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maps in medical endoscopy [99–102]. The obtained 3D structure can be used to align

multimodal information [103] within a global reference 3D coordinate system [20]

and enhance robotic instrument control.

Despite of the mature state of SfM techniques [37, 49], their application in mini-

mally invasive surgery remains a challenging problem due to non-rigid scene defor-

mation. An early work on structure-from-motion (SfM) in laparoscopic surgery was

developed by Burschka et al. [19] where a rigid environment was assumed due to

the confines of the sinus in order to compute a 3D scene map for registration with

pre-operative Computed Tomography (CT) patient models. For procedures targeting

soft-tissue anatomies non-rigidity due to cardiac, respiratory or peristaltic motions

can make such SfM impossible. Deformable SfM (DSfM) [102, 104], motion com-

pensated SLAM [54] and more recently Non-Rigid SfM [105] have been proposed

for overcoming this problem but an inspection phase to build a rigid template of the

scene and strong priors deformation are not always feasible. For example motion and

anatomical deformation due to instrument interactions cannot be reliably modelled

prior to surgery and significant practical challenges remain for robust SfM in MIS.

It is also possible to incorporate position sensors [106] for additional constraints to

assist the problem but this involves difficult integration solutions.

Close related work to ours was proposed by Roussos et al. [107] that propose a

multi-body segmentation framework that uses a direct hill climbing approach to alter-

nate the estimation of region segmentation, camera motion, and depth. This results in a

computationally heavy batch algorithm that requires a quite large number of frames to

become feasible. This chapter shows that by recovering depth with stereo laparoscopy

the problem becomes considerably simplified, and the region segmentation and cam-

era motion estimation can be performed online as new data arrives.

6.1.1 Chapter Overview

The next section presents a solution to effectively segment non-rigid or piecewise rigid

structures from the surgical site by using multi-model fitting [22]. The method uses

a temporal clustering scheme to better distinguish which scene part should be used

to anchor the camera motion estimation. When compared with the state-of-the-art in
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previously proposed solutions, our method does not require the entire scene to be rigid

[104, 108], being robust to parts that undergo non-rigid deformation while avoiding

priors on these deformations [54]. Section 6.3 presents quantitative and qualitative

validation of the proposed method. Quantitative validation is performed with synthetic

data 1 [99] to show the numerical stability and performance of the proposed method

when the camera motion is accurately known. Qualitative validation in a long in-

vivo video sequence shows that the proposed method is more effective in recovering

the camera motion that the RANSAC-based state-of-the-art in stereo visual odometry

[12].

6.2 Camera Motion Estimation in Stereo Laparoscopy

Our method can be split in three main steps: (i) computing dense correspondences

between two consecutive images; (ii) generating motion hypothesis using clustering

of the motion field with a multi-model fitting approach; (iii) temporal consistency

based segmentation of rigid structures that enable the recovery of the camera motion.

These steps are described in detail in the sections below.

6.2.1 Disparity Computation and Pixel-to-Pixel Association

The stereo endoscopic images are assumed to be rectified for disparity map com-

putation and the device is calibrated to determine the intrinsic and extrinsic camera

parameters. Given a point xl = (xl, yl)
T on the left image Il, the goal is to compute

the projection of the same point on the right image Ir that is given by xr = (xl+d, yl).

Ideally, the disparity map D is built by computing d for every image pixel. For the

disparity map computation we use the method proposed by Geiger et al. [100] that

starts by computing the disparity between control points that can be robustly matched

and subsequently propagates structure into neighbouring image regions.

For associating the disparity maps between two consecutive time instants Dl ↔
D′l we use a standard optical flow method [110] in 2D image space Il ↔ I′l. For

1Software for rendering the synthetic data is available online at http://www.cs.ucl.ac.uk/
staff/dan.stoyanov/software.html.
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(a) Point association

(R,t)

(b) Motion hypothesis (c) Segmented Regions

Figure 6.1: Main steps of the proposed algorithm. (a) The method starts by calculat-
ing dense correspondences in the image space. (b) Since the depths maps are available
from stereo laparoscopy, the motion hypothesis are proposed in 3D using the absolute
orientation method [109]. (c) The energy-based PEaRL algorithm enables to cluster
the images pixels by their accordance with a certain rigid motion. Temporal consis-
tency of the segmented regions is explored to segment rigid from non-rigid structures
to solve for the camera motion.

computational reasons we do not compute the flow for every image pixel with a valid

disparity and instead we sample the image space by using an equally spaced grid.

Our criteria for sampling the grid is defined as function of image resolution to obtain

≈ 4000 point associations between frames.

6.2.2 Motion Hypothesis Clustering and Refinement with PEaRL

After computing the putative matches xl ↔ x′l, the correspondence in 3D space

X ↔ X′ are obtained by using the corresponding disparity values. For registration

of the 3D point clouds we use the absolute orientation method [109]. Because differ-

ent motions can be present at the surgical non-rigid site, we apply the energy-based

PEaRL algorithm for labelling the data points with the corresponding motion [22,111].

This procedure involves three steps: (i) generate an initial set of motion hypotheses,

(ii) inlier classification by using an assigned a label (rigid motion) to the putative

matches, and (iii) motion refinement using the discrete label assignment.

We start by generating camera motion hypothesis T =
[
R t

]
by sampling sets of

3 neighbouring points (minimal case for [109]) without repetition. Up to 500 motion

hypothesis with support larger than 1% the number of pixels on the sample grid are
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used. Given the set of motion hypothesis T , the goal is to expand the models and

estimate their support. This is achieved by applying PEaRL [22] to minimize the

energy function

E(T) =
∑

x

D(x,Tx)︸ ︷︷ ︸
Data cost

+λ
∑

(x,y)∈N

w(x,y)δ(Tx 6= Ty)︸ ︷︷ ︸
Smoothness term

+ β|TT |︸ ︷︷ ︸
Label cost

, (6.1)

where T = {Tx|x ∈ P} is an assignment of rigid motion models to data points x.

The data cost term D(x,Tx) is the reprojection error [90] that enables to measure

the error in 2D, which is more robust than directly compute the data cost in the 3D

point clouds. The second term is a smoothness term that encourages the assignment of

the same label (rigid motion) to spatially close point. For each data point x only its 10

nearest neighbours y are considered to compute the weight w(x,p). Since we want

to enforce spatial consistency in the segmentation we consider that closer points are

more likely to be described by the same rigid motion, with the weight being inversely

proportional to their euclidean distance. This is achieved with the Gaussian function

w(x,y) = exp (−||x− y||2/σ2). δ(.) represent the Potts model, being 1 when the

condition inside parenthesis holds, and 0 otherwise [22,111]. The label cost penalizes

the number of different labels being assigned to the data points to avoid excessive

fragmentation. To the possible set of rigid motions T we add an empty label ∅, which

as a constant data cost of 1.5 pixels for all data point and label cost equal to zero. The

empty label acts as outlier model, and is intended to cluster erroneous point matches,

or points that are not explained by any rigid motion model hypothesis.

After the first label expansion, the motion parameters of each non-empty set are

refined by using the assigned inliers. This is accomplished by minimizing the repro-

jection error [90] with the Levenberg-Marquardt algorithm [22, 90], with the empty

labels being discarded of further optimization. The new set of labels is then used

in a new expansion step with the algorithm iterating between labelling and motion

refinement until the optimization does not decrease the energy of Eq. 6.1 or a cer-

tain number of iterations is reached. The constants λ and β were set to λ = 1 and

β = 200. These values were empirically obtained with a independent synthetic data
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set with known ground truth (not used in the method evaluation), and were used across

all the experiments used along this chapter.

6.2.3 Segmenting Multi-View Consistently Labelled Parts

The minimization of the energy function of Eq. 6.1 guaranties that a label is assigned

to each data point x. Since between two consecutive frames the non-rigid or piece-

wise rigid structures can be subtle and easily confused with the rigid ones, we adopt

a window-based system where several frames are used to perform an effective seg-

mentation. Given a temporal window (see Fig. 6.2), we build a label-based descriptor

for each pixel by concatenating the labels assigned in the frame-to-frame PEaRL op-

timization. Pixel descriptors with the outlier label assigned in one or more frames are

discarded from further processing. The temporal segmentation is carried by clustering

pixels with the exact same descriptor. In case of existing more than one cluster, the

one with largest spatial support is selected as dominant rigid region and it is used to

anchor the relative camera motion. Intuitively, we explore the fact that rigid struc-

tures tend to be classified with same labels in different views, the piecewise rigid or

non-rigid parts tend to fragment into different labels or be classified as outliers by the

PEaRL algorithm.

Finally, bundle adjustment [90] is used to refine both the camera motion and the

scene structure by using only the dominant rigid part of the scene. This step is neces-

sary because non-rigid regions can contribute on a frame-to-frame basis (locally rigid)

to the optimization with PEaRL. We could apply an adaptive key frame criteria, such

as the size of the segmented rigid area becoming too small, but in our current method

we use a fixed four frame window for segmenting the motion to keep the running time

constant. Larger temporal windows for both motion segmentation and optimization

can be used at the expense of increasing the computational complexity of the algo-

rithm.
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Figure 6.2: Rigid segmentation algorithm. At each frame, one label to a point cor-
respondence (same color represent the same label, and magenta represent the outlier
label). While rigid structures tend to be classified with same labels in different views,
piecewise rigid or non-rigid parts tend to fragment into different labels or be classified
as outliers.

6.3 Experimental Validation

For validation of the proposed method we conduct experiments with synthetic and in

vivo data. The proposed method was fully implemented in MATLAB, with exception

of PEaRL which is implemented in C++ code [22] 2. The single core implementation

of the algorithm runs at 0.5 fps in 960 × 540 images on an Intel i7-3630QM CPU @

2.40GHz processor. Our method is compared with the broadly used state-of-the-art

RANSAC-based approach of [12]. This method is implemented in C++ and it runs

at 2.5 fps after considerably tuning the method parameters to obtain the best possible

camera motion estimations.

6.3.1 Experiments in Synthetic Data

Camera and scene motion ground truth is difficult to obtain for in vivo MIS video

and, therefore, the proposed method is validated in a synthetic environment for which

the camera motion is precisely known. While simulation sequences cannot render

the full complexity of the surgical environment they allow to test the accuracy of

the proposed method against different levels of white image noise to illustrate the

numerical stability properties of the method. Figure 6.3 shows the performance of

both methods in the simulation environment where the scene is mostly non-rigid. We

2Software is online available at http://vision.csd.uwo.ca/code/.
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6.3. EXPERIMENTAL VALIDATION

(a) Sample images (b) Camera trajectory
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(d) Geiger’s method [12]

Figure 6.3: Simulation results under increasing level of image noise. (a) show the
simulation images with large deformation between them. (b) show the camera trajec-
tory estimation for the zero noise case. Green curve represent the ground truth, blue
is ours, and red is obtained with Geiger’s method. (c,d) show the performance of both
methods under increasing amount of additive white noise. For each method, the left
graphics show the translation error as a function of the camera translation motion and
level of noise. The same is done for the rotation on the right. It can be seen that our
method is numerically stable under moderate levels of image noise.

can observe that our method enables accurate camera estimation in case of such large

deformation, while Geiger’s method [12] tends to follow the non-rigid deformation

motion.

6.3.2 Experiments in In vivo Data

The data used in this experiment was recorded with da Vinci Si surgical robot dur-

ing a robotically assisted prostatectomy surgery. Our and Geiger’s methods [12] were

used to recover the camera motion and also the dense 3D scene reconstruction. This

sequence of 500 frames is particularly challenging due to the presence of non-rigid

motion, strong specularities, bleeding and physiological motion due to large vascular

structures in the view. At the end of the sequence the camera approximately returns to

102



MIGUEL LOURENÇO

(a) Motion segmentation at frame 98 and 99
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Figure 6.4: Evaluation of the stereo visual odometry in vivo data. (a) shows two
instants with the overlay segmentation. Magenta represent the outlier label that tends
to increase with larger deformation. (b) shows the reprojection error obtained with
each pixel in frame-by-frame basis. (c,d) show the results of our method and the
method of [12] for the camera motion recovery. While our method is capable of
performing reliable long-term camera motion estimation, Geiger’s method [12] tends
to deteriorate the estimations due to the presence the non-rigid parts. From the camera
trajectories it can be easily seen that our method enables to almost close the loop.

the starting point performing a loop-closure which can be used for qualitative assess-

ment.

Figure 6.4 shows the results for camera motion estimation using our and Geiger’s

methods. Since our solution effectively segments, the non-rigid parts of the scene

the camera motion is reliably recovered with the rigid scene being accurately recon-

structed. Geiger’s method employs a conventional frame-to-frame RANSAC-based

approach that is less suitable for the challenges in MIS images with the trajectory

clearly drifting in the presence of non-rigid motion.
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6.4. CLOSURE

To provide a quantitative measure of the quality of the motion estimation, we

compute the reprojection error in a frame-by-frame basis to show the accuracy of

the camera motion estimation. While in the simulation dataset the non-rigid motion

presents large amplitude and slow inter-frame variation, in this case most of the non-

rigid motion is localized and very fast. The adopted segmentation criteria and window

size enable good camera motion estimation in both scenarios.

6.4 Closure

This chapter presented a method for rigid structure segmentation and camera motion

estimation during stereoscopic MIS. The proposed method relies on PEaRL [22] for

segmenting the scene rigid structures to anchor the camera motion estimation. Tem-

poral consistency is enforced by clustering the segmented scene structures according

to the labelling assigned in the PEaRL step. Quantitative and qualitative validation in

simulation and in vivo data show that our solution enables to keep accurate camera

motion estimation in the presence of significant non-rigid deformation, outperforming

the RANSAC-based state-of-the-art method in stereo visual odometry [12].
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Chapter 7

Conclusions

The motivation beyond this thesis was to develop new strategies for keypoint detec-

tion, matching, and tracking in images with non-linear distortion. The proposed meth-

ods were evaluated both in medical and non-medical scenarios against state-of-the-art

approaches showing that they can be applied to most vision systems that use wide

FOV cameras.

In chapter 2 we have introduced the RD-SIFT and sRD-SIFT frameworks. To the

best of our knowledge, we have presented the first solution for compensating the RD

during feature detection and description without requiring any type of image signal

resampling/interpolation. Our model-based approach implicitly introduces the radial

distortion during the image scale-space computation and correct the local image gradi-

ents through a chain-rule approach. This results in a computationally efficient solution

that marginally increases the computational burden when compared with the original

SIFT algorithm. Repeatability experiments in non-medical scenes and SfM experi-

ments in medical endoscopic images show that the sRD-SIFT is superior to the state-

of-the-art solutions in most of the evaluation criteria. Recently, Puig et al. [40] eval-

uate the state-of-the-art methods for matching in images with RD and the sRD-SIFT

has ranked first in the repeatability, matching, and run time evaluation.

In chapter 3, we show an extension of the sRD-SIFT framework to para-catadioptric

images. The usefulness of this new method was demonstrated with a hybrid imaging

system for indoor image-based localization. The adopted localization pipeline was
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largely inspired in the object/instance retrieval literature, with descriptor vector quan-

tization and inverted file indexing at the core of the localization engine. The final

localization system outperformed by 15% a standard approach based on BOV with

the standard SIFT.

Chapter 4 studies image alignment in the presence of radial distortion. We pro-

pose a generic extension to the standard motion models that describe the image tem-

plate deformation in images without distortion. We study the problem of image align-

ment both in calibrated and uncalibrated camera setups, showing that it is possible

to calibrate the distortion solely by registering local image patches. The proposed

image alignment adaptations are benchmarked in feature tracking applications with

repeatability experiments in non-medical scenes and SfM experiments in medical en-

doscopy that show their superiority against a state-of-the-art implementation of the

KLT tracker.

Chapter 5 shows how to use the uRD-KLT for estimating the focal length in cam-

eras with variable zoom. While in chapter 4, we assume the distortion is constant

across all frames, in this case the distortion varies with the camera zoom, meaning

that it can be different in two consecutive time instants. The pipeline results from

synergies of the off-line camera calibration in [48, 94] with a slight modification to

the uRD-KLT to accept variable distortion coefficients. The variability of the camera

calibration parameters is studied in detail to verify that the required assumptions for

the method to be feasible are verified. Evaluation in controlled experiments show that

it is possible to accurately estimate the focal length by tracking features appearance

across frames.

Finally, chapter 6 presents a solution for visual odometry in stereo laparoscopes.

The solution is based on rigid motion segmentation and clustering using discrete opti-

mization and temporal clustering constrains. The proposed method is compared with

the state-of-the-art RANSAC approach of [12] in both simulation and in-vivo data

showing that it is more robust in partially non-rigid scenes.
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7.1 Future Work

The contributions presented in this thesis show that compensating the radial distortion

during image processing can be efficiently done without requiring any type of image

interpolation. Despite of the advances made there are several open issues that might

worth investigate in the future.

In chapter 2 we developed a solution for feature description that enables to improve

the matching performance over the state-of-the-art competitors up to 25% of distor-

tion. One solution that can be investigated is the feature description formulation with

image gradients computed in the S2. This provide an appropriate domain for the fea-

ture descriptor since it adapts non-linear sampling of the images and it also enhances

the description step with invariance to camera relative rotation. The main challenge

here would be to derive the operator on the S2 and devise suitable approximations for

mapping the image operators into P2 for avoiding image interpolation.

Chapter 4 studies the problem of image alignment in radial distortion images. Al-

though we tested the inverse composition alignment framework as a base algorithm

for the registration, it might be interesting to compare it with the efficient second-

order minimization proposed in [86, 87]. Mei et al. show that given a fixed time, the

efficient second-order minimization algorithm has better convergence properties than

the inverse compositional, which can be relevant for real-time applications.

Finally in chapter 6 we have proposed a framework for camera motion estima-

tion in stereo laparoscopy in partially non-rigid environments. The algorithm starts by

clustering the image points according to their rigid motion. Several frame-wise seg-

mentations are accumulated inside a temporal window for distinguishing between the

non-rigid and rigid scene structures to which the camera motion is anchored. Although

in this pipeline we have selected the dominant region inside the temporal clustering

window as being rigid, we think that a adaptive solution for computing the temporal

window must be investigated to disambiguate situations where more than one large

scene part appears to be rigid.
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[38] Z. Arican and P. Frossard, “OmniSIFT: Scale Invariant Features in Omnidirec-

tional Images,” in IEEE International Conference on Image Processing, 2010.

[39] L. Puig and J. J. Guerrero, “Scale Space for Central Catadioptric Systems. To-

wards a generic camera feature extractor,” in IEEE International Conference on

Computer Vision, 2011.

[40] L. Puig, K. Daniilidis, and J. Guerrero, “Scale space for camera invariant fea-

tures,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

[41] K. Mikolajczyk, Detection of local features invariant to affine transformations.

PhD thesis, INPG, July 2002.

[42] M. Brown and D. Lowe, “Invariant features from interest point groups,” in

British Machine Vision Conference, 2002.

[43] A. Fitzgibbon, “Simultaneous linear estimation of multiple view geometry and

lens distortion,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2001.

[44] J. P. Barreto, “A Unifying Geometric Representation for Central Projection

Systems,” Computer Vision and Image Understading, 2006.

[45] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaf-

falitzky, T. Kadir, and L. Van Gool, “A comparison of affine region detectors,”

International Journal of Computer Vision, vol. 65, 2005.

[46] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descrip-

tors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.

[47] A. Haja, B. Jahne, and S. Abraham, “Localization accuracy of region detec-

tors,” in IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[48] J. P. Barreto, J. Roquette, P. Sturm, and F. Fonseca, “Automatic Camera Cali-

bration Applied to Medical Endoscopy,” in British Machine Vision Conference,

2009.

113



BIBLIOGRAPHY

[49] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D Vision: From

Images to Geometric Models. Springer-Verlag, 2003.

[50] M. Lourenco and J. Barreto, “Tracking feature points in uncalibrated images

with radial distortion,” in European Conference on Computer Vision, 2012.

[51] M. Lourenco, J. Barreto, and F. Vasconcelos, “sRD-SIFT: Keypoint Detection

and Matching in Images With Radial Distortion,” IEEE Transaction Robotics,

2012.

[52] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2004.

[53] P. Mountney, D. Stoyanov, and G.-Z. Yang, “Three-dimensional tissue defor-

mation recovery and tracking,” IEEE Signal Processing Magazine, 2010.

[54] P. Mountney and G.-Z. Yang, “Motion compensated slam for image guided

surgery,” in Medical Image Computing and Computer-Assisted Intervention,

2010.

[55] M. Moakher, “Means and averaging in the group of rotations,” SIAM J. Matrix

Anal. Appl., 2002.

[56] T. Y. Tian, C. Tomasi, and D. J. Heeger, “Comparison of Approaches to Ego-

motion Computation,” in IEEE Conference on Computer Vision and Pattern

Recognition, 1996.

[57] S. Se, D. Lowe, and J. Little, “Vision-based Mobile Robot Localization And

Mapping using Scale-Invariant Features,” in IEEE International Conference on

Robotics and Automation, 2001.

[58] A. Chavez and D. Gustafson, “Vision-Based Obstacle Avoidance Using SIFT

Features,” in International Symposium on Advances in Visual Computing, 2009.

[59] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization and Map-

ping in the Space of Appearance,” International Journal of Robotics Research,

2008.

114



MIGUEL LOURENÇO
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[110] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,”

in Scandinavian Conference on Image Analysis, 2003.

[111] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization

via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2001.

120


