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Abstract  4�

 5�

Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade 6�

by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic 7�

glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of 8�

melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the 9�

proliferation of melanoma cells, and is included in combined therapies for melanoma. 10�

As the efficacy of TAM is limited by its metabolism, we investigated the effects of the 11�

NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-12�

hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 13�

and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, 14�

the NMDAR competitive antagonist APV and the AMPA and kainate receptor 15�

antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR 16�

antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The 17�

combination of antiestrogens with MK-801 potentiated their individual effects on cell 18�

biomass due to diminished cell proliferation, since it decreased the cell number and 19�

DNA synthesis without increasing cell death. Importantly, TAM metabolites combined 20�

with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that 21�

the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when 22�

used in combination. 23�

 24�

Keywords: glutamate receptor antagonists; antiestrogens; melanoma; cell proliferation. 25�

 26�

Introduction 27�

 28�

Emerging evidence indicates that melanoma is a very heterogeneous 29�

malignancy, with several variants and with multiple signaling pathways contributing to 30�

cell proliferation constitutively activated (Herlyn, 2009). Therefore, in order to target 31�

such diversity, we need to develop combinations of drugs with specific and 32�

complementary mechanisms of action (Herlyn, 2009; Ko and Fisher, 2011). 33�
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Glutamate, the major excitatory neurotransmitter of the mammalian central 1�

nervous system, activates two classes of glutamate receptors (GluRs), the ionotropic 2�

(iGluRs) and metabotropic (mGluRs) receptors. The iGluRs form ion channels, while 3�

the mGluRs belong to the superfamily of G protein-coupled receptors (Teh and Chen, 4�

2012). The iGluRs are divided into three groups based on structural and 5�

pharmacological similarities, and are named N-methyl-D-aspartate (NMDA), �-amino-6�

3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and kainate (KA) receptors, 7�

according to the type of synthetic agonist that activates them. So far, eight members of 8�

mGluRs have been identified, which are grouped in three classes based on sequence 9�

homology and downstream signaling pathways. 10�

The fact that both neuronal embryonic progenitor cells and tumor cells have 11�

propensity to proliferate and migrate led to the investigation of the role of glutamate and 12�

its receptors on the proliferation and migration of cancer cells. It has been reported that 13�

GluR subunits are differentially expressed in a variety of tumor cell lines (North et al., 14�

1997; Stepulak et al., 2009; Brocke et al., 2010; North et al., 2010a, b; Stepulak et al., 15�

2011) and in samples of human tumor tissues (North et al., 2010a, b). The knockdown 16�

of selected GluR subunits has also been shown to modulate cancer cell proliferation and 17�

invasive behavior (de Groot et al., 2008; Luksch et al., 2011). Moreover, NMDA 18�

receptor (NMDAR) and AMPA receptor (AMPAR) antagonists inhibit the proliferation 19�

and migration of tumor cells and enhance the effects of cytostatic drugs, such as 20�

cyclophosphamide and thiotepa, in vitro and in vivo (Stepulak et al., 2005, 2007; North 21�

et al., 2010a, b; Rzeski et al., 2011; Stepulak et al., 2011). 22�

Beyond the role played by mGluR signaling in melanoma cells (Marín et al., 23�

2006; Namkoong et al., 2007; Abdel-Daim et al., 2010; Lee et al., 2011), recent reports 24�

also suggest a role for iGluRs, since functional NMDARs are expressed in this type of 25�

cells and the NMDAR antagonist MK-801 was shown to inhibit the migration and 26�

proliferation of melanoma cells and to decrease their growth in vivo (Song et al., 2012). 27�

In addition, the AMPAR antagonist CFM-2, as well as the NMDAR antagonists 28�

memantine and MK-801 have been shown to alter melanocyte morphology, indicating 29�

that glutamate signaling may be relevant in melanocyte regulation (Hoogduijn et al., 30�

2006).  31�

On the other hand, it has been reported that tamoxifen (TAM), a selective 32�

estrogen receptor (ER) modulator widely used in the treatment and prevention of breast 33�
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cancer, also decreases the growth and migration of melanoma cells (Kanter-Lewensohn 1�

et al., 2000; Matsuoka et al., 2009; Ribeiro et al., 2013) and sensitizes melanoma cells 2�

to other chemotherapeutic agents (Flaherty et al., 1996; McClay et al., 1997). The 3�

biological activity of TAM is mediated by two active metabolites, 4-hydroxytamoxifen 4�

(OHTAM) and endoxifen (EDX), generated via cytochrome P450 (CYP) enzymes, 5�

namely CYP3A4 and CYP2D6 (Kiyotani et al., 2012). Recent studies point to an 6�

association between CYP2D6 polymorphisms and the clinical outcome in women 7�

treated with TAM (Schroth et al., 2009; Lammers et al., 2010). Furthermore, it was 8�

shown that the coadministration of CYP2D6-inhibiting medication can limit the 9�

efficacy of TAM therapy (Kelly et al., 2010). Therefore, the use of TAM active 10�

metabolites may present strong advantages over the utilization of the prodrug, as it 11�

would avoid the variability related with TAM metabolism, leading to a more reliable 12�

therapeutic outcome.  13�

Based on these findings, we investigated the effects of iGluR antagonists on 14�

the proliferation of a highly invasive mouse melanoma cell line (K1735-M2). 15�

Additionally, since the combination of drugs with complementary mechanisms of action 16�

can provide superior therapeutic efficacy using lower concentrations, with the 17�

advantage of reducing the side effects of chemotherapy, we evaluated the effects of 18�

MK-801 in combination with antiestrogens on cell proliferation as well. We show that 19�

the NMDAR channel pore blockers, MK-801 and memantine, decrease mouse K1735-20�

M2 melanoma cell proliferation due to decreased cell division. Moreover, at the 21�

concentrations used, the combined treatment of MK-801 with antiestrogens, and 22�

particularly with TAM metabolites, strongly enhances the antiproliferative effects 23�

induced by the compounds individually, supporting the view that these drugs in 24�

association may be useful in malignant melanoma therapy. 25�

26�

Materials and Methods 27�

28�

Reagents 29�

MK-801, memantine, TAM, OHTAM and EDX were obtained from SIGMA-30�

Aldrich (St Louis, MO, USA). 2,3-dihydroxy-6-nitro-7-31�

sulfamoylbenzo[f]quinoxaline(NBQX) was purchased from Tocris. D-2-amino-5-32�

phosphonovaleric acid (APV), Dulbecco’s modified Eagle’s medium (DMEM) and 33�
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antibiotic/antimycotic solution (10 000 units penicillin, 10 mg streptomycin, 25 μg 1�

amphotericin B per mL) were purchased from SIGMA-Aldrich (St Louis, MO, USA), 2�

Fetal Bovine Serum (FBS) and trypsin were obtained from Gibco, Invitrogen Life 3�

Technologies (Carlsbad, California, USA). All of the other chemicals were purchased 4�

from SIGMA-Aldrich (St Louis, MO, USA) and were of the highest grade of purity 5�

commercially available. GluR antagonists were kept in aqueous stocks. TAM and 6�

OHTAM stock solutions were prepared in absolute ethanol while EDX was prepared in 7�

dimethyl sulfoxide (DMSO). 8�

 9�

Cell culture 10�

K1735-M2 mouse melanoma cells (kindly offered by Dr. Paulo Oliveira, 11�

Center for Neurosciences and Cell Biology, Department of Zoology, University of 12�

Coimbra, Portugal) were cultured in DMEM, supplemented with 10% heat-inactivated 13�

FBS and 1% antibiotic/antimycotic solution, and kept in a humidified atmosphere with 14�

5% CO2/95% air, at 37 ºC.  15�

Cells were plated with a density of 6.1×104 cells/cm2 and24 h after plating, the 16�

GluR antagonists and/or the antiestrogens were added to the cultures from diluted 17�

stocks, except in the control condition where the vehicle was added.  18�

 19�

Sulforhodamine B (SRB) assay 20�

The effects induced by the drugs on melanoma cell cultures were determined 21�

using the SRB assay, which is based on the binding of SRB to the basic amino acids of 22�

cellular proteins (Holy et al., 2006). At selected time points, the cell culture was fixed 23�

with absolute methanol containing 1% acetic acid, and stored at �20 ºC overnight. The 24�

methanol was then decanted and the plate air-dried. The SRB solution (0.5% in 1% 25�

acetic acid) was added to each well, and the plate incubated at 37 °C for 1 h. The cells 26�

were rinsed with 1% acetic acid, air-dried, and the bound dye eluted with 10 mM Tris 27�

buffer, pH 10. The absorbance was measured in a Synergy HT plate reader at 540 nm, 28�

providing an estimate of the total protein mass (biomass) which is related to the cell 29�

number. The absorbance obtained in control cultures was considered 100%. 30�

Experiments were performed in triplicates for each independent experiment. 31�

 32�

Cell viability assessment by trypan blue dye exclusion 33�



�

6�

�

Cell viability was investigated by staining cells with trypan blue (Houben et al., 1�

2009). At designated time points, adherent cells were trypsinized, centrifuged at 1 000 2�

rpm for 5 min and treated with 0.4% trypan blue for 2-3 min and then counted in a 3�

hemocytometer under a transmitted light microscope. Cells presenting a blue stained 4�

cytoplasm were considered as dead cells; cells excluding the dye were considered as 5�

viable. The number of independent experiments is indicated in figure legends. 6�

7�

Lactate dehydrogenase (LDH) assay 8�

LDH is a cytosolic enzyme that is released into the extracellular medium 9�

following the loss of cell membrane integrity (Vieira et al., 2010). Thus, we investigated 10�

the ability of the compounds used in this study to induce melanoma cell death by 11�

determining the LDH activity in the cell medium.The culture medium was collected 72 12�

h after incubation with the drugs and centrifuged at 14 000 rpm for 10 min at 4 ºC. An 13�

aliquot of supernatant (100 μL) was incubated with a substrate mixture containing 40 14�

μM lactate in perchloric acid 3%, and 3.6 mM nicotinamide adenine dinucleotide 15�

(NAD+) in tris-hydrazine buffer [80 mM tris, 400 mM hydrazine, 5 mM 16�

ethylenediaminetetraacetic acid (EDTA), pH 9.5]. LDH activity was determined by an 17�

enzymatic reaction whereby the NAD+ is reduced to NADH by oxidation of lactate to 18�

pyruvate. Thus, the amount of NADH is directly related to LDH activity in the 19�

supernatant. Absorption of NADH was measured at 340 nm. The LDH activity is 20�

expressed as the ratio between the LDH activity in the extracellular medium and the 21�

total LDH activity obtained from the supernatant of cells lysed with Triton X-100, 22�

which was considered as 100%. Experiments were performed in duplicates for each 23�

independent experiment.  24�

 25�

5-Bromo-2'-deoxyuridine (BrdU) incorporation assay 26�

Melanoma cell proliferation was monitored through the evaluation of BrdU 27�

incorporation during DNA synthesis in proliferating cells. For this purpose, the Cell 28�

Proliferation ELISA, BrdU, colorimetric kit (Roche) was used according to the 29�

manufacturer’s protocol. After 48 h of incubation with the drugs, cultured cells were 30�

placed in BrdU-labeling solution for 90 min. Afterwards the cells were fixed and the 31�

DNA denaturated with the FixDenat solution, provided with the kit, and then incubated 32�

with a monoclonal antibody conjugated with peroxidase (anti-BrdU-POD) to bind BrdU 33�
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in the newly synthesized DNA. The immune complexes were detected using the 1�

3,3’,5,5’-tetramethylbenzidine (TMB) substrate and the absorbance was measured in a 2�

Synergy HT plate reader at 370 nm. The absorbance values correlate to the amount of 3�

DNA synthesis and, therefore, to the number of proliferating cells. The experiments 4�

were carried out in triplicate for each independent experiment and the absorbance 5�

obtained in control cultures was considered as 100%. 6�

 7�

Cell cycle analysis by flow cytometry 8�

The effects of the drugs on cell cycle were monitored by flow cytometry 9�

(Carmo et al., 2011). Cells were plated in 6-multiwell plates and incubated with MK-10�

801, TAM, OHTAM and EDX for 48 h. At the end of the incubation period, cells were 11�

trypsinized and centrifuged at 1500 rpm for 10 min, the culture medium was discarded 12�

and the pellet was fixed overnight at 4 ºC with a solution of cold 70% ethanol. The cells 13�

were then centrifuged at 1500 rpm for 10 min, the pellet was resuspended in a solution 14�

of phosphate-buffered saline (PBS) containing RNAse and, after 45 min, propidium 15�

iodide was added and cells were further incubated for 1 h in the dark, at room 16�

temperature (the final concentrations of RNase and propidium iodide were 10 μg/mL 17�

and 20 �g/mL, respectively). The propidium iodide fluorescence was measured on a 18�

FACSCalibur flow cytometer (BD Biosciences, San Jose, CA) equipped with a 488 nm 19�

argon-ion laser. For aggregate/debris discrimination, in addition to propidium iodide 20�

fluorescence signal heights, areas and widths were also measured. Measurements for at 21�

least 20 000 events were collected per sample. Data were analyzed using the ModFit LT 22�

3.0. software. The experiments were carried out in duplicate for each independent 23�

experiment and the results are expressed as % of total cells. 24�

25�

Statistical analysis 26�

Results are presented as the mean ± S.E.M. of the indicated number of 27�

independent experiments. Statistical significance between the different assays was 28�

determined using the one-way analysis of variance (ANOVA), followed by the Tukey 29�

post-test, for multiple comparisons. A p value <0.05 was considered statistically 30�

significant. These statistical analyses were performed using the software package 31�

GraphPad Prism 4. 32�

33�
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Results 1�

2�

In order to establish the most effective GluR antagonists to pursue our work, 3�

we initially studied the effects of the NMDAR channel blockers MK-801 and 4�

memantine, and the selective NMDAR competitive antagonist APV, as well as the 5�

AMPAR antagonist NBQX, on mouse melanoma K1735-M2 cell biomass by using the 6�

SRB assay which correlates with cell number (Fig. 1). After 72 and 96 h of incubation 7�

in the presence of MK-801 and memantine, the cell biomass was decreased and 8�

significant effects were detected at 500 μM of MK-801 and at 300 μM of memantine. In 9�

contrast, the cell biomass was unaffected by 500 μM of APV or NBQX after 96 h of 10�

drug incubation (Fig. 1). Therefore, in the following experiments we used the NMDAR 11�

channel blockers MK-801 and memantine. 12�

To elucidate the mechanism underlying the effects of the NMDAR channel 13�

blockers MK-801 and memantine, we assayed cell viability after 72 h of incubation 14�

with the drugs by using the trypan blue dye exclusion assay (Fig. 2). In agreement with 15�

the results obtained with SRB assay, NMDAR channel blockers induced a decrease in 16�

the number of viable cells, which was significant at 500 μM of MK-801 and 300 μM of 17�

memantine (Fig. 2A). Moreover, at these concentrations MK-801 and memantine did 18�

not increase the number of dead cells during the course of 72 h (Fig. 2B). The absence 19�

of an increase in the number of dead cells within 72 h of treatment with the drugs was 20�

confirmed by the LDH assay which, as the trypan blue assay, is a cytotoxicity test based 21�

on cell membrane integrity. The LDH activity did not increase in the supernatant of 22�

cells grown in the presence of MK-801 or memantine (Fig. 3A). Therefore, we 23�

investigated whether the effect of the NMDAR antagonists could be due to the 24�

inhibition of melanoma cell proliferation by means of BrdU incorporation in the DNA 25�

synthesis after a 48 h treatment with MK-801 or memantine (100-500 μM). This earlier 26�

time point was selected as the number of cells in control condition at 72 h is 27�

substantially high and could lead to absorbance values beyond the acceptable measuring 28�

range. As shown in figure 3B, both compounds significantly reduced BrdU 29�

incorporation at 300 �M. Taken together, our results indicate that the toxiceffects of the 30�

NMDAR channel blockers MK-801 and memantine on mouse melanoma K1735-M2 31�

cells might be due to a decrease in cell proliferation. 32�
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To investigate the effect of drug combinations on mouse melanoma K1735-M2 1�

cell proliferation, MK-801 was the compound of choice to study in association with 2�

antiestrogenic compounds, since it has been shown to be effective and safe in several 3�

animal models of cancer (Stepulak et al., 2005; North et al., 2010a, b; Song et al., 4�

2012), whereas exposure to memantine at the concentrations used in this study 5�

compromises mitochondrial function (McAllister et al., 2008), which can lead to drug-6�

induced tissue injury (Labbe et al., 2008).  7�

The dose-dependent effects of antiestrogens on melanoma cells were initially 8�

evaluated by the SRB assay during a time-course experiment. The TAM active 9�

metabolite concentration of 5 μM was the lowest that induced a significant decrease in 10�

cell biomass (data not shown). Therefore, 5 μM was the selected concentration to 11�

pursue the studies aiming to assess the possible co-operative effects of a combination of 12�

antiestrogens with NMDAR antagonists on mouse melanoma K1735-M2 melanoma cell 13�

proliferation (Fig. 4). 14�

Thus, melanoma cells were subjected to treatment with MK-801 (100 μM) and 15�

antiestrogens (5 μM), alone or in combination, over 72 h (Fig. 4). At this concentration, 16�

the antiestrogen TAM did not significantly decrease melanoma cell biomass, whereas 17�

TAM active metabolite EDX significantly reduced cell biomass to about 82 % of 18�

control, in agreement with our previous studies (Ribeiro et al., 2013). The other TAM 19�

active metabolite, OHTAM, significantly decreased cell biomass to approximately 66 % 20�

(Fig. 4). The combination of MK-801 with the antiestrogens TAM, OHTAM and EDX 21�

diminished cell biomass to approximately 46 %, 33 % and 38 % of control, respectively, 22�

which is a much stronger effect in comparison with that induced by the compounds 23�

individually. Noteworthy, MK-801 at a concentration that did not induce effects, when 24�

applied individually, co-operated with the antiestrogens to potentiate their effects (Fig. 25�

4).  26�

The effects of the combinations of MK-801 (100μM) with antiestrogens (5 27�

μM) on cell viability were then quantitated at selected time points through the trypan 28�

blue dye exclusion assay (Fig. 5). As shown in figure 5A, MK-801 and TAM did not 29�

alter the number of viable cells at 72 h, in agreement with the results obtained in SRB 30�

assays (Fig. 4). However, a decrease in the number of viable cells was already observed 31�

at 48h when cells were treated with OHTAM (Fig. 5B), whereas the EDX metabolite 32�

only significantly decreased the number of viable cells at 72 h of incubation withthe 33�
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drug (Fig. 5C). The combination of any of the three antiestrogens with MK-801induced 1�

a significantly larger decrease of viable cells already observed at 48 h of incubation 2�

when compared to the compounds applied individually (Figs. 5A-5C). On the other 3�

hand, the number of dead cells after exposure to MK-801 and to the three antiestrogens, 4�

alone or in combination, did not significantly increase during the course of 72 h (Figs. 5�

5D-5F).  6�

The absence of an increase in the number of dead cells within 72 h of treatment 7�

with the drugs was confirmed by the LDH assay (Fig. 6). Neither the compounds 8�

individually nor their combinations increased the LDH activity in the extracellular 9�

medium, in accordance with the results obtained with the trypan blue dye exclusion 10�

assay (Fig. 5). The results obtained thus suggest that the toxic effects induced by the 11�

combined treatment of MK-801 and antiestrogens on melanoma cells may be related to 12�

a decrease in cell proliferation. Therefore, the inhibition of cell growth induced by MK-13�

801 in association with the antiestrogens was also investigated by means of the BrdU 14�

incorporation assay (Fig. 7). While 100 μM of MK-801 by itself did not affect the BrdU 15�

incorporation in melanoma cells, 5 μM of TAM, OHTAM and EDX significantly 16�

decreased the incorporation of BrdU to 80 %, 52 % and 59 % of control, respectively. 17�

Noteworthy, the combination of MK-801 at 100 μM with the three antiestrogens TAM, 18�

OHTAM and EDX significantly decreased BrdU incorporation to 35 %, 9 % and 17 % 19�

of control, respectively, which is a much stronger effect relatively to that of the 20�

compounds individually (Fig. 7). Thus, our results showed the combinations of MK-801 21�

and the antiestrogens might have a cytostatic effect on melanoma cells, which is more 22�

prominent when MK-801 is combined with the TAM metabolites than with the prodrug. 23�

To confirm our hypothesis that the rate of proliferation of melanoma cells was 24�

in fact affected by the combination of MK-801 with antiestrogens, and that the 25�

reduction in BrdU signal was not a consequence of the decrease in cell number, the 26�

effect of the drugs on the cell cycle was analyzed by flow cytometry (Fig. 8). Untreated 27�

cells (control) were characterized by a long and well defined G1 peak, a slightly 28�

prominent S phase, a least prominent G2 peak and a relatively low G0/G1 fraction, 29�

which was considered as the apoptotic fraction (Fig. 8). Forty-eight hours after 30�

incubation with 100 μM of MK-801 or 5 �M of antiestrogens, the population of cells in 31�

each cell cycle phase relatively to the control condition was not changed (Fig. 8).The 32�

combination of MK-801 with the TAM active metabolites, OHTAM or EDX, 33�
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significantly increased the percentage of cells in G1 while decreasing the population of 1�

cells in the S phase, thus arresting the cell cycle in the G1 phase (Fig. 8). 2�

3�

Discussion 4�

5�

Recent studies have demonstrated that melanoma cells express NMDARs and 6�

that MK-801 inhibits their migration and proliferation (Song et al., 2012). In addition, it 7�

was reported that NMDAR and AMPAR antagonists enhance the effects of cytostatic 8�

drugs on human neuroblastoma and human rhabdomyosarcoma/medulloblastoma cell 9�

lines (Rzeski et al., 2001). Thus, we investigated whether other iGluR antagonists could 10�

also affect the proliferation of melanoma cells and the possible co-operative effects of 11�

MK-801 in combination with antiestrogenic compounds, which also decrease the 12�

growth and migration of melanoma cells (Kanter-Lewensohn et al., 2000; Matsuoka et 13�

al., 2009; Ribeiro et al., 2013). Our results show, for the first time, that the combined 14�

treatment of MK-801 with antiestrogens, and particularly with TAM active metabolites, 15�

enhances the antiproliferative action induced by the compounds individually. 16�

The effects of GluR antagonists on mouse melanoma K1735-M2 cells were 17�

assessed by the SRB assay which showed that MK-801 and memantine reduce 18�

melanoma cell biomass (Fig. 1). On the contrary, the AMPAR and KAR antagonist 19�

NBQX, and the selective NMDAR competitive antagonist APV, which binds on the 20�

extracellular domain of the NMDAR, did not exhibit antiproliferative effects on 21�

melanoma cells even at high concentrations (Fig. 1). Although MK-801 and memantine 22�

have been traditionally considered to target theNMDAR channel, these compounds 23�

might act on other cellular targets. In fact, there is evidence that the 5-24�

hydroxytryptamine receptor 3, the �7 and/or �4�2 nicotinic receptors and the dopamine 25�

receptors may also be involved in the biological activity of memantine (Rammes et al., 26�

2008; Seeman et al., 2008). In addition, acute and chronic exposure to memantine has 27�

NMDAR-independent effects on the mitochondrial function, by affecting complex I and 28�

complex IV activities (McAllister et al., 2008). Likewise, MK-801 might act on the �7 29�

and �4�2 nicotinic receptors (Briggs et al., 1996; Buisson and� Bertrand, 1998) and can 30�

also modulate the dopaminergic and serotonergic system (Rao et al., 1990; Clarke and�31�

Reuben, 1995; Iravani et al., 1999). Additionally, MK-801 was shown to inhibit protein 32�

synthesis, an effect that does not appear to be related with NMDAR inhibition 33�
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(Charriaut-Marlangue et al., 1994). Thus, considering that MK-801 and memantine 1�

might interact with multiple targets, it remains unclear whether the effects on melanoma 2�

cells are mediated by NMDAR inhibition, in particular due to the lack of effect of APV. 3�

On the other hand, the absence of effect of NBQX suggests that AMPAR and KAR 4�

inhibition possibly does not affect melanoma cell viability. 5�

The cell viability assay with trypan blue staining revealed that MK-801 and 6�

memantine decrease the number of viable cells, without inducing cell death (Fig. 2). 7�

Moreover, the evaluation of LDH activity in the supernatant of melanoma cells (Fig. 8�

3A) and the BrdU incorporation assay pointed out that MK-801 and memantine do not 9�

induce cancer cell death, but instead they inhibit cell proliferation (Fig. 3B). Our results, 10�

obtained in mouse melanoma K1735-M2 cells, correlate with a recent study that has 11�

demonstrated that MK-801 inhibits the proliferation of the human metastatic melanoma 12�

cell line WM451, and that it can also reduce melanoma cell motility and invasion (Song 13�

et al., 2012). As metastatic malignant melanoma is largely refractory to existing 14�

therapies and has a very poor prognosis, the combined cytostatic and antimigration 15�

activity of MK-801 may suggest that it is a promising drug for melanoma treatment. 16�

Moreover, MK-801 was shown to inhibit the cell growth of other tumor cell lines and to 17�

have an antitumoral effect on animal models of melanoma (Song et al., 2012), 18�

neuroblastoma and rhabdomyosarcoma (Stepulak et al., 2005), lung (Stepulak et al., 19�

2005; North et al., 2010a) and breast cancer (North et al., 2010b).  20�

Considering the complex machinery involved in the onset and progression of 21�

malignant melanoma, the use of combination of drugs may provide an effective strategy 22�

to increase the therapeutic benefit (Herlyn, 2009; Ko and Fisher, 2011). Therefore, the 23�

effects of MK-801 were also investigated in combination with the antiestrogens TAM, 24�

OHTAM and EDX. Our results show, for the first time, that mouse melanoma K1735-25�

M2 cell treatment with the NMDAR antagonist MK-801 combined with antiestrogens 26�

strongly reduces melanoma cell biomass at the concentrations used in a co-operative 27�

manner when compared with the effect induced by the compounds individually (Fig. 4). 28�

Likewise, the assessment of cell viability with trypan blue staining revealed that the 29�

combined treatment of MK-801 with antiestrogens induces a larger decrease in the 30�

number of viable cells, without increasing the number of dead cells (Fig. 5), suggesting 31�

that the observed effect of the combinations of MK-801 with antiestrogens are due to 32�

decreased cell proliferation. Indeed, the evaluation of LDH activity in the supernatant of 33�



�

13�

�

melanoma cells confirmed that the decrease in viable cells is not due to increased cell 1�

death (Fig. 6), whereas the BrdU incorporation assay pointed out that MK-801 and the 2�

antiestrogens inhibit cell proliferation with maximal efficacy when the drugs are used in 3�

combination (Fig. 7). Moreover, the analysis of the cell cycle revealed that the 4�

combination of MK-801 with TAM metabolites, OHTAM or EDX, induce cell cycle 5�

arrest in G1 (Fig. 8). These results are in line with other studies that have shown that 6�

GluR antagonists co-operate with other cytostatic drugs, such as cyclophosphamide, 7�

thiotepa (Rzeski et al., 2001) and docetaxel (Haas et al., 2007) enhancing the 8�

antiproliferative action. The mechanisms underlying the interaction between NMDAR 9�

antagonists and antiestrogens are not yet clarified. However, the activation of NMDAR 10�

in neurons results in the phosphorylation of extracellular regulated extracellular signal-11�

regulated kinase (ERK) 1/2 (Kemp and McKernan, 2002; Hardingham and Bading, 12�

2003). Accordingly, MK-801 at 250 μM decreases ERK 1/2 phosphorylation in 13�

laryngeal cancer cells (Stepulak et al., 2011), as well as in lung cancer cells (Stepulak et 14�

al., 2005). Although MK-801 at 100 μM does not affect the proliferation of melanoma 15�

cells, the combination with antiestrogens enhanced the effects induced by the 16�

compounds individually. As it seems that the mitogen-activated protein kinase (MAPK) 17�

pathway plays a pivotal role in NMDAR signaling in different types of cancer cells and 18�

TAM decreases ERK 1/2 phosphorylation in B16BL6 melanoma cells (Matuoka et al., 19�

2009), it is possible that the effects of these drugs in combination onK1735-M2 cells 20�

involve this common pathway, which is known to play a critical in melanoma (Ko and 21�

Fisher, 2011). 22�

According to our previous studies (Ribeiro et al., 2013), TAM active 23�

metabolites were more effective than TAM in the inhibition of the proliferation of 24�

melanoma cells, either individually or in combination. As recent studies established that 25�

the CYP2D6 phenotype is an important predictor of treatment outcome (Lammers et al., 26�

2010) and that the coadministration of CYP2D6-inhibiting medication diminishes the 27�

treatment effect of TAM (Kelly et al., 2010), the use of TAM metabolites instead of the 28�

prodrug may increase the therapeutic benefit. Importantly, the use of MK-801 in a 29�

combined therapy might allow achieving an antitumoral effect with a lower dose than 30�

that necessary if the compound would be used in a monotherapy regimen, thus 31�

increasing the possibility of using MK-801 in a chronic treatment, without major side 32�

effects. In fact, in vivo studies have revealed that doses of MK-801 that were able to 33�



�

14�

�

slow breast (two daily doses of 0.3 mg/kg), melanoma (0.6 mg/kg every three days) and 1�

lung (up to 0.3 mg/kg) cancer progression were devoid of significant side effects 2�

(Stepulak et al., 2005; North et al., 2010a, b; Song et al., 2012). Noteworthy, the chronic 3�

exposure to MK-801 at concentrations up to 1.0 mg/kg was well tolerated by juvenile 4�

rhesus monkeys (Popke et al., 2002), suggesting that MK-801 might be suitable as a 5�

drug for cancer therapy. Nevertheless, others have found that these doses might 6�

influence rodents behavior (Gilbert, 1988; Tricklebank, 1989; Kawabe et al., 1998) and 7�

thus, the MK-801 dose and the duration of treatment necessary to achieve a maximal 8�

effect on cancer proliferation without major side effects has yet to be determined.  9�

In conclusion, we report that the NMDAR channel blocker MK-801 and 10�

antiestrogenic compounds decrease mouse melanoma K1735-M2 cell proliferation and 11�

their therapeutic potential may be greatly enhanced when used in combination, 12�

particularly with the active metabolites of TAM.  13�
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30�
Figure legends  31�

 32�

Fig. 1. Effects of GluR antagonists on mouse melanoma K1735-M2 cell biomass. Cells 33�

were incubated in the absence (control) or in the presence of MK-801 (100-500 μM), 34�

memantine (100-500 μM), APV (500 μM) and NBQX (500 μM). At 72 and 96 h, 35�

melanoma cell biomass was evaluated by the SRB assay. For that purpose, the cells 36�

were fixed with absolute methanol containing 1 % acetic acid and incubated with SRB 37�

solution at 37 °C for 1 h. Afterwards, the plates were rinsed and the bound dye eluted 38�

with Tris buffer and the absorbance was measured at 540 nm. Bars represent the mean ± 39�

S.E.M. of four independent experiments performed in triplicates. *** p<0.001 vs the 40�

respective time point control, One-way ANOVA followed by Tukey post-test. 41�

 42�
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�

Fig. 2. Cell viability of melanoma cells treated with the NMDAR channel blockers MK-1�

801 and memantine. Mouse melanoma K1735-M2 cells were grown in the absence (0) 2�

or in the presence of 100-500 μM of MK-801 or memantine for 72 h and the number of 3�

viable and dead cells was determined by the trypan blue dye exclusion assay. After the 4�

incubation period, cells were trypsinized, centrifuged, treated with 0.4 % trypan blue 5�

and counted in a hemocytometer under a transmitted light microscope. The number of 6�

trypan blue-negative (viable) cells and trypan blue-positive (dead) cells is presented in 7�

the graphs A and B, respectively. Data represent the mean ± S.E.M. of four independent 8�

experiments. *** p<0.001, * p<0.05 vs control.9�

10�

Fig. 3. The NMDAR channel blockers MK-801 and memantine do not induce cell death 11�

(A) and decrease cell proliferation (B). (A) Mouse melanoma K1735-M2 cells were 12�

grown in the absence (control) or in the presence of 100-500 μM of MK-801 or 13�

memantine. Cell death was assessed by measuring LDH activity in the supernatant of 14�

damaged cells after 72 h in culture. Bars represent the mean ± S.E.M. of three 15�

independent experiments performed in duplicates. The statistical analysis was 16�

performed by One-way ANOVA followed by Tukey post-test. (B) Cells were grown for 17�

48 h in the absence (control) or in the presence of 100-500 μM of MK-801 or 18�

memantine and then cell proliferation was assessed by the BrdU incorporation assay as 19�

described in the Materials and methods section. Bars represent the mean ± S.E.M. of 20�

four independent experiments performed in triplicates. *** p<0.001, ** p<0.01vs 21�

control, One-way ANOVA followed by Tukey post-test. 22�

 23�

Fig. 4. The combined treatment of MK-801 with antiestrogens potentiates the decrease 24�

in mouse melanoma K1735-M2 cell biomass induced by the compounds individually. 25�

Melanoma cells were grown in the absence (control) or in the presence of 100 μM of 26�

MK-801, 5 μM of the antiestrogens TAM, OHTAM and EDX, alone or in combination. 27�

The melanoma cell biomass was evaluated by the SRB assay after 72 h of incubation. 28�

Bars represent the mean ± S.E.M. of six independent experiments performed in 29�

triplicates. *** p<0.001, ** p<0.01, * p<0.05 vs control. +++ p<0.001 vs MK-801. ### 30�

p<0.001, # p<0.05 vs antiestrogen, One-way ANOVA followed by Tukey post-test. 31�

32�
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Fig. 5. Cell viability of mouse melanoma K1735-M2 cells treated with MK-801 and the 1�

antiestrogens.Melanoma cells were grown in the absence (control) or in the presence of 2�

100 μM of MK-801 and 5 μM of the antiestrogens TAM (A, D), OHTAM (B, E) and 3�

EDX (C, F), alone or in combination, and cell viability was assessed by the trypan blue 4�

dye exclusion assay as described in the Materials and methods section at 24 h, 48 h and 5�

72 h. The graphs present the number of viable (A, B, C) and dead (D, E, F) cells. Data 6�

represent the mean ± S.E.M. of six independent experiments. *** p<0.001, ** p<0.01, * 7�

p<0.05 vs the respective time point control. +++ p<0.001, ++ p<0.01 vs MK-801 at the 8�

respective time point. ### p<0.001, ## p<0.01, # p<0.05 vs the antiestrogen at the 9�

respective time point, One-way ANOVA followed by Tukey post-test. 10�

 11�

Fig. 6. The combination of MK-801 with the antiestrogens does not induce melanoma 12�

cell death. Mouse melanoma K1735-M2 cells were grown in the absence (control) or in 13�

the presence of 100 μM of MK-801, 5 μM of the antiestrogens TAM, OHTAM and 14�

EDX, alone or in combination. Cell death was assessed by measuring LDH release from 15�

damaged cells, after 72 h in culture. Bars represent the mean ± S.E.M. of four 16�

independent experiments performed in duplicates. 17�

 18�

Fig. 7. Mouse melanoma K1735-M2 cell treatment with the combination of MK-801 19�

and the antiestrogens reduces cell proliferation.Cells were grown in the absence 20�

(control) or in the presence of 100 μM of MK-801, 5 μM of the antiestrogens TAM, 21�

OHTAM and EDX, alone or in combination, for 48 h, and then cell proliferation was 22�

assessed by the BrdU incorporation assay as described in the Materials and methods 23�

section. Bars represent the mean ± S.E.M. of four independent experiments performed 24�

in triplicates. *** p<0.001, * p<0.05 vs control. +++ p<0.001 vs MK-801. ### p<0.001, 25�

## p<0.01 vs antiestrogen, One-way ANOVA followed by Tukey post-test. 26�

 27�

Fig. 8. Melanoma cell treatment with MK-801 and TAM metabolites blocks cell cycle 28�

progression in G1. Mouse melanoma K1735-M2 cells were grown in the absence 29�

(control) or in the presence of MK-801 (100 μM), 5 μM of the antiestrogens TAM, 30�

OHTAM and EDX, alone or in combination, for 48 h. Cell cycle distribution was 31�

evaluated by flow cytometry analysis of the DNA content labeled with propidium 32�

iodide. Data are the mean ± S.E.M. of three independent experiments performed in 33�
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duplicates. A total of 20 000 events were analyzed for each experiment. ** p<0.01, * 1�

p<0.05 vs control. + p<0.05 vs MK-801. ## p<0.01, # p<0.05 vs the antiestrogen, One-2�

way ANOVA followed by Tukey post-test. 3�

 4�

Highlights 5�

 6�

� MK-801 and memantine decrease melanoma cell proliferation. 7�

� The combination of MK-801 with antiestrogens inhibits melanoma cell 8�

proliferation. 9�

� These combinations greatly enhance the effects of the compounds 10�

individually.  11�

� MK-801 combined with tamoxifen active metabolites induces cell cycle 12�

arrest in G1.  13�

� The combination of MK-801 and antiestrogens is an innovative strategy 14�

for melanoma. 15�

 16�

 17�
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