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Abstract

To improve applicability of automatic sleep staging an efficient subject-
independent method is proposed with application in sleep-wake detection and in 
multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and 
rapid eye movement (REM) sleep). In turn, NREM is further divided into three 
stages denoted here by N1, N2, and N3. To assess the method,
polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset,
which was scored by an expert clinician in the central hospital of Coimbra, are 
used. To find the best combination of PSG signals for automatic sleep staging, 
six electroencephalographic (EEG), two electrooculographic (EOG), and one 
electromyographic (EMG) channels are analyzed. An extensive set of feature 
extraction techniques are applied, covering temporal, frequency and time-
frequency domains. The maximum overlap wavelet transform (MODWT), a 
shift invariant transform, was used to extract the features in time-frequency 
domain. The extracted feature set is transformed and normalized to reduce the 
effect of extreme values of features. The most discriminative features are 
selected through a two-step method composed by a manual selection step based 
on features’ histogram analysis followed by an automatic feature selector. The 
selected feature set is classified using support vector machines (SVMs). The 
system achieved the best performance by combining 6 channels (C3, C4, O1, 
left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep-wake 
detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for 
multiclass sleep staging.

Keywords: Automatic Sleep Staging, The maximum overlap discrete wavelet transform,
Polysomnographic signals, Features selection, Sleep dataset.

This dataset, as well as MATLAB code of the proposed algorithm will be made publicly available.
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1. Introduction

Sleep is an active and regulated process with an essential restorative function 

for physical and mental health [1]. Sleep disorders have an important effect on 

the health and quality of life. Sleep staging is an essential part of the diagnostic 

process in the assessment of sleep disorders such as Sleep Apnea Syndrome 

(SAS) [2]. Therefore, monitoring, scoring and detecting abnormal changes of 

sleep pattern through whole night sleep recordings have consistently been an 

important research topic. Scoring of sleep stages was done on the basis of 

Rechtschaffen and Kales standard (R&K) until recent dates [3]. The American 

Academy of Sleep Medicine (AASM) determined new criteria in the scoring of 

sleep based on the R&K rules. In adults, sleep-wake cycle is categorized in 

awake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep 

stages. NREM sleep is further divided into three stages: N1, N2 and N3 [4], the 

last of which is also called delta sleep or slow wave sleep(SWS). Moreover, the 

sleep stages during a night sleep, proceeds in cycles of NREM and REM, each 

cycle normally being N1

happen 4 to 6 times during whole night sleep [5]. The AASM rules define some 

characteristics for each sleep stages according to the amplitude, frequency and 

shape of the polysomnographic (PSG) signals (see Table I). Manual visual sleep 

scoring by highly trained human experts is a very time consuming task and 

normally may require hours to score the PSG recording of a whole night. Visual 

interpretation of PSG records based on AASM uses fixed epoch duration 30 

seconds, and allows for the recognition of different sleep-wake stages (Fig. 1). It 

is also a somewhat subjective procedure in which the concordance between the 

results of visual scoring obtained by experts can vary greatly. Accordingly, 

Table I

Summary of EEG,EOG and EMG patterns for different sleep stages

Stages EEG EOG EMG

Delta

(< 4 Hz)

Theta

(4 - 7 Hz)

Alpha

(8 - 13 Hz)

Beta

(> 13 Hz)

Other

EEG patterns

AWAKE x x 0.5-2 Hz
Variable amplitude but 

usually higher than during 
sleep stages

N1 x x Vertex waves Slow eye movement
Lower amplitude than in 

stage awake

N2 x
K-complexes;
Sleep spindles

Usually no eye 
movement, but slow 
eye movements may 

persist 

Lower amplitude than in 
stage awake and may be 
as low as in stage REM

N3 x
Sleep spindles 

may persist
Eye movements are 
not typically seen

Lower amplitude than in 
stage N2 and sometimes 
as lower as in stage REM

REM x x
Sawtooth

waves
Rapid eye movement

Low chin EMG tone; 
usually the lowest level of 

entire recording
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an efficient automatic sleep scoring may save time and provide objective 

assessment of sleep, independent of subjective interpretation of experts.

Several studies have reported the development of automatic sleep stage 

classification (ASSC) methods based on PSG records, namely 

electroencephalographic (EEG) records, sometimes in combination with 

electrooculographic (EOG) and electromyographic (EMG) records collected 

from human individuals using noninvasive surface electrodes. Some of the most 

important published works are summarized in Table II. Most of the works 

employed frequency, or time-frequency domains’ features such as discrete 

Wavelet transform (DWT), Hilbert Huang transform (HHT), and fast Fourier 

transform (FFT) [1, 6-8]. Different parametric and nonparametric methods have 

been applied in the classification process such as random forest classifiers,

artificial neural networks (ANN), fuzzy logic, the nearest neighbour, linear

discriminant analysis (LDA,) support vector machine (SVM) and kernel logistic 

regression (KLR) [6-12]. Classification accuracies vary widely among the ASSC 

methods reported in scientific literature. Rigorous comparisons between the 

reported systems cannot be done since they differ in recording conditions and 

validation procedures. State-of-the-art results summarized in Table II show 

agreement level with the manual scores ranging from 55% to 85%.

The contributions of this work are fourfold:

1. A new ASSC method has been developed, aiming to improve sleep 

stage classification accuracy in two applications: sleep-wake detection 

and multiclass sleep staging classification. The effectiveness of our 

approach is demonstrated through a series of experiments involving 

PSG data from our extensive dataset of 40 different subjects with 

confirmed or only suspicious sleep disorders which was collected in 

central hospital of Coimbra.

2. A new time-frequency based feature extraction method, for ASSC is 

proposed. To decompose the PSG signals in different resolutions, the 

Fig. 1. EEG pattern of different sleep stages
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Table II
Performance results to the multiclass sleep staging.

ASSC 

approaches
Sleep stages Nature of feature

Matching 

process

Subjects/

Channels

Quality 

evaluation

Zoubek et 
al.[1]

W, NREM-S1, 
NREM-S2, SWS, 
REM

30 sec. epoch;

10 features, EEG: RP 
delta, theta, alpha, 
sigma, beta (FT 
coefficients), 75th 
percentile; EMG: 
entropy;  EOG: entropy, 
kurtosis number and SD.

Neural 
Network BP 
MLP

47 
recordings,
EEG, EMG

71% (EEG only), 
80% (EEG, EOG 
and EMG): W: 
84.57%, 
S1:64.56%, 
S2:85.55%, 
SWS:92.90%,

REM: 72.81%.

Jo et al.[6]

Wakefulness 
(WA), shallow 
sleep (SS), deep 
sleep (DS), and 
rapid eye 
movement 
(REM)

30 sec. epoch; 

Fast Fourier transform 
(FFT) with Hamming 
window; power spectra; 
Relative powers(RP)

Fuzzy 
classifier and a 
genetic 
algorithm 
(GA).

4 recording, 
single 
EEG(C3-A2)

84.60%

Tang et al.[7]

Awake, NREM-
S1, NREM- S2, 
NREM-S3, 
NREM- S4, 
REM

30 sec. epoch;

HHT, Wavelet 
Transform, 
Autoregressive model

SVM

6  recordings, 
EEG(C3-A2), 
EMG and 
EOG

Wavelet: 77.9%

HHT: 77.6%

Fraiwan et 

al. [8]

W, sleep N1, 
sleep N2, sleep 
N3, REM

30 sec. epoch; 

Choi–Williams 
distribution (CWD), 
Continuous wavelet 
transform (CWT), and 
HHT and Renyi’s 
entropy measures

Random forest 
classifier

16 recording, 
Single EEG
(C3-A1)

Accuracy 83%;   
and kappa 
coefficient of 0.76.

Gunes et 
al.[9]

W, NREM-N1, 
NREM-N2, 
NREM-N3, REM

30 sec. epoch; 

129 features: Welch 
spectral analysis; k-
means clustering based 
feature weighting 
(KMCFW)

K-nearest 
neighbour
(KNN) and 
C4.5 decision 
tree

4 recording, 
EEG

55.88% by k-NN; 
the weighted sleep 
stages with 
KMCFW has been 
recognized with 
82.15% success

Fraiwan et 

al.[13]

W, NREM-S1, 
NREM-S2, 
NREM-S3, 
NREM- S4, 
REM

30 sec. epoch; 

Entropy on CWT, used 
three different  mother 
wavelets

Linear 
discriminant
analysis 
(LDA)

32 recording 
from MIT-
BIH, Single 
EEG

Accuracy 84%, 
kappa coefficient 
0.78.

Estévez et 
al.[14]

Awake, NREM-
S1, NREM- S2, 
NREM-S3, 
NREM- S4, 
REM

Amplitude of EOG, 
EMG, short time FFT, 
power Spectral density 
on FFT

Continuous
fuzzy 
reasoning 
scheme

33 
recordings,
EEG(C3-A2 
and C4-A1), 
EMG and 
EOG

W: 34%, 

N1: 43%,

N2: 51%, N3: 
82%,

REM: 82%, 

Helland et 
al.[15]

W, NREM-N1, 
NREM-N2, 
NREM-N3, REM

30 sec. epoch; 

power (P) and beta/delta, 
alpha/delta, theta/delta, 
beta/theta, alpha/theta, 
beta/alpha, beta/P, 
alpha/P, theta/P, and 
delta/P; heart rate 
variability (HRV) 
parameters

LDA

10 recording, 
EEG, ECG, 
and 
respiratory 
signals

90% Just EEG;

By including EMG 
and respiratory 
signals 93%,

Agreement with 
visual 61%

Tagluk et 
al.[16]

REM, NREM-
S1, NREM- S2, 
NREM-S3, 
NREM- S4

5 sec. epoch;

5 features

Neural 
Network BP 
MLP, RUM 
with 
momentum

21 
recordings, 
EEG(C3-A2), 
EMG and 
EOG

W: 70.5%,

NREM :82.6%

REM: 38.3%,
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Chapotot and 
Bequ [17]

W,NREM-N1, 
shallow

NREM-N2, deep

NREM-N3, 
REM, MT

20 sec. epoch with small 
subset of 2 sec. epochs; 
16 features: Shannon 
entropy, Hjorth activity, 
mobility and 
complexity, Hurst 
exponent, spectral edge 
frequency 95%, RP

Neural 
Network  BP 
MLP, and 
flexible 
decision rules

48 
recordings,
EEG, EMG

W: 34%,

N1: 43%,

N2: 51%,

N3: 82%,

REM: 82%,

MT: 13%

maximum overlap discrete wavelet transform (MODWT), which is shift 

invariant transform, is employed. Moreover, since temporal and 

frequency based features represent other aspects of the signals, several 

temporal and frequency based methods for feature extraction have been 

investigated.

3. Some works such as [8, 13] used just one or more EEG channels, 

whereas others [1, 7, 14] used EEG channels in combination with EOG 

and EMG channels. Therefore, to reduce the computational cost and 

improve classification performance, a systematic analysis for finding 

the best combination of EEG, EOG and EMG channels, for both 

application sleep-wake detection and multiclass sleep staging, is 

performed.

4. Current automatic feature selectors are dependent to the classifiers;

moreover, they are affected by extreme values in feature vectors.

Therefore to find the most discriminative features for sleep-wake 

detection and multiclass sleep staging a two-step feature selector is

applied on the transformed and normalized feature vectors. This two-

step algorithm is composed by a manual selection followed by an 

automatic selector. For the second part of the algorithm, six different 

feature selectors are investigated.

2. Subjects and Signals under Study

Data from all-night PSG records, each with duration around 8 hours 

(acquired by a SomnoStar Pro; Viasys SensorMedics, a multi-channel 

ambulatory recording device), were provided by the Laboratory of Sleep from 

central hospital of Coimbra. All EEG, EOG, and EMG (chin)  recordings were 

performed with a sampling rate of 200 Hz and stored into computer files using 

the standard EDF data format [18]. The international 10-20 standard electrode 

placement system [19] was used for EEG recording. The PSG is composed by 

signals from the following 19 channels:

6 EEG (F3, C3, O1, F4, C4 and O2);

2 EOG, right and left (ROC and LOC);
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1 electrocardiographic (ECG);

2 types of EMG (one m. submentalis – chin EMG (X1) – and two m. 
tibialis – legs EMG);

1 snore (derived);

2 airflow (pressure based);

2 abdominal effort;

1 pulse oximetry (SaO2);

1 body position (BPOS);

The ground and reference were placed in the right earlobe.
All recordings were segmented into epochs of 30 seconds and visually 

labelled by an expert according to the guidelines of AASM [4], with the stages: 

awake, NREM (N1, N2, N3) and REM sleep. Our ISRUC-Sleep dataset 

comprises data from forty adult subjects (detailed in Table VIII), twenty six 

males and fourteen females with ages between 22 and 85 years old (mean = 

54.35 years; STD = 16.37 years), with suspicious of sleep disorders, most of 

them with detected sleep apnea events. The subjects can be medicated but they

can breathe without machine help. Six EEG, two EOG channels and one EMG 

channel were used in our evaluation: F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, 

O2-A1, ROC-A1, LOC-A2, and X1(EMG) for all the subjects. To validate the 

results, in each new test, the initial population set is divided in two independent 

groups based on Leave-one subject-out cross-validation (LOOCV) strategy. The 

training set is used to obtain the most discriminative feature subset and training 

model created by a classifier. On the other hand, the test set (test subject) is used 

to assess the proposed method.

3. Methodology and Algorithm Description

The proposed system is organized in various interoperating parts as detailed

in the Fig. 2: preprocessing, feature extraction, feature transformation and 

normalization, feature selection, and classification. 

3.1. Preprocessing and Feature Extraction

The recorded signals are filtered to eliminate noise and undesired background

EMG, by using a notch filter at 50 Hz and a band-pass Butterworth filter with 

lower cut-off of 0.5 Hz and higher cut-off of 45 Hz. The signals were segmented 

in 30 seconds epochs. 

PSG is traditionally analyzed in the frequency domain, since each sleep stage 

is characterized by a specific pattern of frequency contents. However, further 

useful information can be extracted from temporal analysis of PSG signals given 

the nonstationary PSG signals, time-frequency transformations like wavelets are 
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very useful. Thus, after preprocessing, some features are extracted using several 

methods in the time-frequency, temporal and frequency domains.

3.1.1. The Maximum Overlap Discrete Wavelet Based Features

Wavelet transform acts like a mathematical microscope zooming into small 

scales to reveal compactly spaced events in time and zooming out into large 

scales to exhibit the global waveform patterns [20]. The discrete wavelet 

transform (DWT) generates coefficients, which are local in time and frequency

and represent the energy distribution of the signals. Therefore, signals can be 

reconstructed as a linear combination of the wavelet functions weighted by the 

wavelet coefficients. The maximum overlap discrete wavelet transform 

(MODWT) [21] is a DWT in which the operation of sub-sampling from an 

output filter is omitted. By giving up of the orthogonality property, the MODWT 

gains new features; although losing efficiency in computation, this transform 

does not have any restriction on the sample size and it is shift invariant. As a 

result, in the MODWT, the wavelet and scaling coefficients must be rescaled to 

retain the variance preserving property of the DWT. Although the components 

of MODWT are not mutually orthogonal, their sum is equal to the original time 

series. Additionally, the detail and smooth coefficients of a MODWT are 

Preprocessing

Notch filter
Butterworth filters

Segmentation

Artifact Removal
Signals of 

The Dataset

Signals of a New 
Subject

MODWT-based Features

Energy, Percentage of Energy, Mean and Standard deviation 
of each sub-band

Temporal and Frequency Features

Peak to Peak Amplitude of two EOGs, Tsallis (q=2), Renyi 

Parameters, Relative Spectral Power, Slow Wave Index (SWI), 
Autoregressive Coefficients (order 3), Percentile 25, 50, 75,
Skewness, Kurtosis of  EEG and EOG channels

Two-Step Feature Selection

Classification

SVM 
Training

Model Histogram based 
selection

Automatic 
feature 

selection

Feature Extraction

Preprocessing

Notch filter
Butterworth filters

Segmentation

Artifact Removal

Feature Transformation and
Normalization

MODWT-based Features

Energy, Percentage of Energy, Mean and 
Standard deviation of each sub-band

Temporal and Frequency Features

Harmonic Parameters, Relative Spectral 
Power, Autoregressive Coefficients (order
3), Percentile 75, Skewness, Kurtosis of
EEG, EOG and EMG channels

Feature Extraction

Feature 
T

ransform
ation and 

N
orm

alization

Feature set composition using the feature elements, 
which selected in the training phase

Classification

SVM TestResult

(a)

(b)

Fig. 2. System architecture; (a) training phase, (b) test phase.
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associated with zero phase filters. This means that temporal events and patterns 

in the original signal are meaningfully aligned with the features in the multi 

resolution analysis. Furthermore, the MODWT is invariant to circularly shifting 

the original time series. Hence, shifting the time series by an integer unit will 

shift the wavelet and scale coefficients by the same amount. This property does 

not hold for the DWT because of the sub-sampling involved in the filtering 

process. In addition, the MODWT does not induce the phase shifts within the 

component series. The MODWT variance estimator is also preferred because it 

has been shown to be asymptotically more efficient than an estimator based on 

the DWT [22]. In this study a MODWT of depth 6 with Daubechies order four 

(db4) is applied to every 30 second epochs with a sampling rate of 200 Hz. As 

shown in Table III, the frequency ranges are broken down in a decomposition of 

D1-D5, which almost correspond –

(8– –30 Hz). Finally, a set of statistical MODWT-based 

features are extracted to represent the time–frequency distribution of the EEG, 

EOG and EMG signals.

Energy and Percentage of Energy: Parseval’s theorem is employed to extract 

the distribution of energy of the signals. According to Parseval’s theorem, the 

energy of the distorted signal can be partitioned at different resolution levels. 

Mathematically it can be presented as:

= , = 1,… .                        (1)

where i =1,......,l denote the MODWT decomposition level. is energy at 

decomposition level i, N is the number of the coefficients at each decomposition 

level and is value of a coefficient j at decomposition level i :

=                              (2)

is Percentage energy at decomposition level i [23].

Mean and standard deviation of each sub-band: In order to reduce the 

dimensionality of the extracted feature vectors, mean ( ) and standard 

deviation at decomposition level i are used.

= /                                    (3)

Table III
Frequencies corresponding to different decomposition levels

Decomposition Frequency range (Hz)
D1 25–50
D2 12.5–25
D3 6.25–12.5
D4 3.125–6.25
D5 0–3.125



  

9

=                                (4)

3.1.2. Frequency and Temporal Features

Due to the importance of spectral and temporal analysis, some features are 

extracted in these domains. The following features are suggested in [1, 7, 24,

25].

Peak to Peak Amplitude: Peak-to-peak amplitude ( ) is calculated by

( ) = ( ) ( )                                   (5)

where = { , … , } denotes set of signal amplitudes.

Entropy: The entropy gives a measure of signal disorder and can provide 

relevant information in the detection of some signal disturbs. Shannon entropy

[26] is computed from histogram of the PSG samples, where , , … , are a 

series of events; = , where N is the number of samples within the signal 

, and is the number of samples within the ith bin. Shannon entropy H is 

defined as

( ) =                                (6)

where K is a positive constant.  

Extensions of Shannon’s original work have resulted in many alternative 

measures of information or entropy. Renyi [27] was able to extend Shannon 

entropy to a continuous family of entropy measures that obey

( ) =                                        (7)

The Renyi entropy tends to Shannon entropy as 1.

Furthermore, recently Tsallis entropy has proposed the use of the same 

quantity as a physical entropy measure which has some provoked considerable 

controvers [28]. Tsallis defined his entropy as [29] :

= 1 p                                       (8)

Relative Spectral Power (RSP): Spectral analysis provides some of the most 

important features. For each signal X, an FFT squared modulus estimator was 

applied to estimate the power spectral density (PSD). The spectrum is divided 

into five frequency sub-bands as represented in Table III. For each frequency 

sub-band, the RSP is computed. This parameter is given by the ratio between the 

sub-band spectral power (BSP) and the total spectral power, i.e., the sum of all 

five BSP sub-band [30]. Moreover, the spectral bands Delta, Theta and Alpha

can be highlighted over slow wave bands by means of slow wave indexes 

defined by the following ratios:
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=                                       (9)

=                              (10)

=                             (11)

where TSI, ASI [31] and DSI stand for theta-slow-wave index, alpha-slow-wave 

index and delta-slow-wave index, respectively.

Harmonic Parameters: Harmonic Parameters of the PSG signals include 

three parameters: the center frequency (fc) (12), the bandwidth (f ) (13) and the 

spectral value at center frequency (Sfc) (14). These parameters are defined as 

follows [7]:

= ( ) ( )                             (12)

= ( ) ( ) ( )       (13)

= ( )                                                (14)

where ( ) denotes the PSD, which is calculated for the frequency bands fL-fH

(see Table IV). These parameters allow the analysis of a specific band in the 

EEG spectrum.

Hjorth Parameters: The Hjorth parameters provide dynamic temporal 

information of the PSG signals. The Activity, Mobility and Complexity 

parameters are computed from the variance , ( ( )) and the first and second 

derivatives , according to [32]:

= ( )                                                        (15)

= ( ) ( )                                (16)

= ( ) × ( ) ( ) (17)

Table IV
Spectral sub-bands used in PSD computation

Bands Sub-bands Bandwidth fL-fH (Hz)

Delta
Delta 1 0.5-2.0
Delta 2 2.0-4.0

Theta
Theta 1 4.0-6.0

Theta 2 6.0-8.0

Alpha
Alpha 1 8.0-10.0

Alpha 2 10.0-12.0

Sigma
Sigma 1 12.0-14.0

Sigma 2 14.0-16.0

Beta
Beta 1 16.0-25.0

Beta 2 25.0-35.0
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Skewness and Kurtosis: The skewness describes a measure of symmetry, or 

more precisely, the lack of symmetry of a distribution. Skewness of a signal X

with samples is defined as

=                                           (18)

As formulated in (19) the kurtosis is a measure of whether the data are 

peaked or flat relative to a normal distribution.

= 3                             (19)

Autoregressive Coefficients: Autoregressive (AR) model is a representation 

of a time series such that it specifies that the output variable depends linearly on

its own previous values. An AR process is defined by

= +                                             (20)

where are the autoregression coefficients, is the series under investigation, 

which is a linear combination of its N past values and a purely random process 

. The noise term or residue, epsilon in the above, is almost always assumed to 

be Gaussian white noise [30].

Percentile 25, 50, 75: The percentile analysis provides some information 

about the amplitude of the signal and might be useful in discerning certain sleep 

stages [1]. The 25th, 50th and 75th percentile of the signal distribution is defined 

as

( ) = ( ) 100                                           (21)

where N is the number of samples of the measured signal and 

{25,50,75}

Table V
Transformation methods [33]

# Transformation # Transformation # Transformation

T1 1/ T4 Log(x) T7 Log(x/(1-x))

T2 T5 Log(1+x)

T3 T6 arcsin( )

3.2. Feature Transformation and Normalization

The extracted features are transformed and normalized in order to reduce the 

influence of extreme values. The transformation methods applied to each feature 

are described in Table V [33]. It was verified that some of those transformations 

improved the classification results. After a thorough experimental evaluation of 

each transform operator over extracted features, it was verified that the best 

classification results were attained with the transform

= arcsin                                                  (22)
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where Y denotes the feature matrix, and

= ; = 1,2, … , and = 1,2, … ,    (23)

is the transformed feature matrix, where N and M denote the number of subjects 

and the number of features, respectively. Thereby this transform was adopted in 

the overall sleep staging system. 

To avoid features in greater numeric ranges dominating those in smaller 

numeric ranges, as well as numerical difficulties during classification; each 

feature of the transformed matrix is independently normalized to the [0, 1] 

range by applying 

=                                 (24)

where is a vector of each independent feature.

3.3. Feature Selection

To reduce the dimension of the features vector and to find the most 

discriminative features, a two-step method that consists on a filtering and a

wrapper phases is proposed: firstly, as detailed in Algorithm 1, the less 

discriminative feature-types are removed. In fact, by investigation on the feature 

distribution’s histogram and corresponding hypnogram during a whole night 

Algorithm 1: Two-step Feature Selection method.
-------------------------------------------------------------------

Feature Selection (ExtractedFeatureSet)
Featurevector = {F1, F2, …, FN} , Fi = {y1, y2, …, yM},

= { , , . . , }.
                                                     % N: number of feature type, M: number of the feature elements,

                                                    % Z: number of sleep epochs
Step 1

1. Set SelectedFeatureType = { }, d =1.
                                                                               % initializes preliminary set of features

While (d <= N) do:
a. Comparison of feature distribution with the corresponding 

hypnogram
b. If ( has different distribution for sleep stages)

i. Add Fd to SelectedFeatureType.
                                  [End of if structure]
             [End of While structure]
Step 2

             SelectedFeatureType= {y11, y12, …, y1M, y21, y22, …, y2M, ..., yk1,yk2, …, ykM}
                                                                                               % yij: an element of feature set                 

2. Initialize
a. Z=1, SelectedElement= {y11},
b. MaxPerformance= performance ({y11}).

        While (Z<= length (SelectedFeatureType)) do:
i. Add yij to SelectedElement.

ii. FinalSel= AutomaticFeatureSelection (SelectedElement) 
iii. If (performance(finalSel)> MaxPerformance)
iv. Maxperformance=performance(FinalSel)
v. Update SelectedElement to FinalSel

         [End of While structure]
        Return SelectedElemnts
[End of Feature Selection]
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sleep, the features with a higher discriminative histogram are selected (see Fig. 

10). Then, in the second step, to select the best elements of each feature-type, 

resulted feature vector is fed into an automatic feature selector. Feature selectors 

are highly dependent to defined objective function, and we are going to find the 

most discriminative features for ASSC independently than selector/classifiers.

Therefore, to find the most discriminative feature-elements six different features 

selector were considered and their results were compared. Six different 

strategies for feature selection are described in the sequel.

Minimal-Redundancy and Maximal-Relevance: The mRMR method uses the 

mutual information between a feature and a class to infer its relevance for the 

class. The mutual information of two random variables measures the mutual

dependence between them [34]. Maximal Relevance is to search a feature set S

satisfying:

max ( , ), = ( , )                                  (25)

where ( ; ) means the mutual information between feature and class c. 

mRMR also uses the mutual information between features as redundancy of 

each feature. The minimal redundancy feature set R can be determined under 

condition

min ( ), =
| |

,,                         (26)

where , indicates the mutual information between features and . The

“Minimal-Redundancy and Maximal-Relevance” (mRMR) criterion combines 

measures (25) and (26) as follows: 

max ( , ), =                                      (27)

Sequential Floating Feature-Selection Approaches: Sequential forward 

selection (SFS) [35], which is the simplest from the sequential strategies, is a 

greedy search algorithm that determines iteratively an optimal subset of features

by adding one feature per iteration, if it increases a chosen objective function. 

Sequential backward selection (SBS) [35] is similar to SFS but works in the 

opposite direction, i.e., it starts with the superset of all the features and 

sequentially removes one feature if it increases the value of the objective 

function. 

The main drawback of these sequential approaches is that they gravitate 

toward local minima due to the inability to reevaluate the usefulness of features 

that were previously added or discarded, i.e., once a feature is added to or 

removed from the final set of features, it cannot be changed. Therefore, two 

expansions for SFS and SBS algorithms were proposed [36]. The sequential 

forward floating selection (SFFS) [36] finds an optimum subset by insertions 
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(i.e., by appending a new feature to the subset of previously selected features) 

and deletions (i.e., by discarding a feature from the subset of already selected

features) of selected features by the SFS algorithm. The sequential backward 

floating selection (SBFS) [36] is similar to SFFS but works in the opposite 

direction; it finds an optimum subset of features by insertions (i.e., by appending 

an already deleted feature to the subset of selected features) and deletions (i.e.,

by discarding a feature from the subset of already selected features) in the SBS 

algorithm.

Differential Evolution Feature Selection (DEFS): DEFS approach uses a

combination of differential evolution (DE) optimization method and a repair 

mechanism based on feature distribution measures. This method, utilizes the DE 

float number optimizer in the combinatorial optimization problem of feature 

selection. In order to make the solutions generated by the float optimizer 

suitable for feature selection, a roulette wheel structure is constructed and 

supplied with the probabilities of features distribution. These probabilities are 

constructed during iterations by identifying the features that contribute to the 

most promising solutions [37].

3.4. Classification

As classifier an SVM is applied [38]. Furthermore, LDA, Naïve Bayes (NB),

and AdaBoost are used to compare the efficiency of the system.

4. Performance Assessment

The performance of the proposed algorithm was assessed using the subjects 

of ISRUC-Sleep dataset detailed in Section 2. Two types of experiments have 

been carried out: sleep-wake detection and multiclass sleep staging. In order to 

verify reliability of the results, all the assessments were determined by using 

leave-one subject-out cross-validation (LOOCV). In our experiments, a fourth 

order Daubechies with MODWT decomposition was adopted. Also mRMR 

algorithm [34] and Libsvm toolbox [39] with sigmoid kernel were used in the 

second phase of feature selector and  classification phases, respectively. The 

sigmoid degree and C parameter of SVM were set to 0.13 and 1.25 respectively, 

as they produced the best empirical results. In order to characterize the 

performance of the method some well-known measures such as accuracy, 

receiver operating characteristic (ROC), balanced error rate (BER), sensitivity, 

specificity and confidence interval 95% were used. In particular, F-measure or 

balanced F-score is a weighted average of precision and recall where precision



  

15

is the fraction of retrieved instances that are relevant and recall is the fraction of 

relevant instances that are retrieved.

4.1. Evaluation of feature transformation and normalization

ROC curves related to the application of transformation and normalization 

methods (see Section 3.2) on extracted features are provided in Fig. 3. As it is 

shown, the best result was obtained by a combination of transformation 

arcsin( ) and normalization = . Furthermore, 

the performance of the system was remarkably improved when transformation 

and normalization operators were applied over all features. It confirms that 

transformation and normalization have an important effect in selection of the 

most discriminative features.

4.2. Evaluation of different number of features

In order to determine the best number of features in sleep-wake detection and 

multiclass sleep staging, a grid search was carried out over results obtained with 

the two-step feature selector (with mRMR) and SVM classifier. As shown in 

Fig. 4 and Fig. 5, the lowest average BER values occur for 147 (average 

BER=10.34) and 326 (average BER=15.32) features for sleep-wake and 

multiclass sleep staging, respectively. Nevertheless, for both cases, above 100 

features the BER values do not improve significantly, e.g., in multiclass sleep 

staging, the BER value corresponding to 110 features is nearly similar to BER of 

326 features, which performs the best result.

Fig. 3. ROC curves corresponding to (1) without any transformation and any normalization; (2) 
with normalization = ( ( ) ( )) ; (3) with normalization from (2) over the 

transformed features by = Arcsin , (4) and (5) normalizations x=(x-min)/(max-min) and x=
uniform [0 1] random variable with the same transformation of (3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

without transformation and normalization (1)
X = x/(max-min) (2)
X=x/norm (3)
X=uniform [0 1] random variable (4)
X=x/max (5)
X = (x-min)/(max-min) (6)
only normalization (7)



  

16

Fig. 4. Balanced Error Rate (BER) and standard deviation values corresponding to different number 
of selected features for sleep-awake detection.
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Table VI
Algorithm performance in Sleep-Awake detection with different channels combination

Channels BNF CI AUC ACC BER F-me SEN SPE

C3 20 0,051 81,80 84,51 18,201 72,141 72,14 91,46
C3C4 45 0,052 84,97 90,10 15,030 75,996 76,00 93,94
C3C4O1 66 0,041 88,45 93,28 11,548 81,479 81,48 95,43
C3C4O1F3 90 0,043 88,83 93,77 11,172 82,019 82,02 95,64
C3C4O1LOCROC 118 0,049 89,08 94,35 10,919 82,218 82,22 95,94
C3C4O1LOCROCX1 147 0,042 89,66 94,58 10,344 83,257 83,26 96,06

C3C4O1O2 97 0,043 88,73 93,40 11,272 82,134 82,13 95,32
C3C4O1O2F3F4 112 0,046 89,06 93,83 10,944 82,618 82,62 95,49
C3C4O1O2F3F4LOC 114 0,052 88,81 94,02 11,185 81,948 81,95 95,68
C3C4O1O2F3F4LOCROC 110 0,052 88,34 94,07 11,660 80,846 80,85 95,84
C3C4O1O2F3F4LOCROCX1 160 0,047 89,01 94,55 10,993 81,965 81,96 96,05
C3F3O1 99 0,035 89,27 93,10 10,726 83,221 83,22 95,33
C3F3O1LOC 57 0,046 87,76 92,89 12,240 79,716 79,72 95,81
C3F4O2 88 0,044 87,98 91,13 12,020 80,877 80,88 95,08
C3F4O2LOC 105 0,053 88,66 92,30 11,339 82,155 82,16 95,17
C3F4O2LOCROC 75 0,053 88,95 93,46 11,052 82,411 82,41 95,48
C4F3O1 84 0,048 88,41 93,72 11,593 81,136 81,14 95,68
C4F4O2 80 0,060 86,42 91,63 13,575 77,824 77,82 95,03
C4F4O2ROC 98 0,062 87,51 93,44 12,494 79,163 79,16 95,85

BNF: Best Number of Features, ACC: Accuracy, F-me: F-measure, SEN: Sensitivity, SPE: Specificity

Fig. 5. Balanced Error Rate (BER) and standard deviation values corresponding to different number 
of selected features for: multiclass sleep staging; (1) average; (2) awake stage; (3) sleep stages N1;
(4) N2; (5)N3;  and (6)REM.
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4.3. Channel Selection

Experiments to find the best combination of EEG, EOG and/or EMG

channels were performed. Basically, the AASM rules were followed in channel 

selection. Table VI and Table VII summarize the attained results of different 

combinations. As highlighted in the tables for sleep-wake detection, the best 

channels were 3 EEG channels (C3, C4, and O1), 2 EOG channels (ROC and 

LOC) and 1 EMG channel (X1). On the other hand, the best performance for 

multiclass sleep staging was achieved using 9 channels: 6 EEG channels (C3, 

C4, O1, O2, F3 and F4), 2 EOG channels (ROC and LOC) and 1 EMG channel 

(X1). Furthermore, distributions of the selected features per channel are shown 

Table VII
Algorithm performance in multiclass Sleep Staging with different channels combination

Channels BNF CI AUC ACC BER F-me SEN SPE

C3 26 0,025 73,78 85,66 26,220 58,838 57,03 90,66
C3C4 60 0,023 77,30 88,27 22,700 63,333 62,39 92,31
C3C4O1 93 0,024 79,86 89,79 20,136 68,190 66,60 93,19
C3C4O1F3 129 0,033 79,54 89,56 20,464 67,654 66,01 93,11
C3C4O1LOCROC 175 0,017 83,52 91,69 16,477 72,617 72,62 94,44
C3C4O1LOCROCX1 223 0,014 84,10 91,77 15,899 73,778 73,78 94,47
C3C4O1O2 116 0,024 80,32 89,80 19,682 69,971 67,51 93,19
C3C4O1O2F3F4 200 0,033 80,19 89,81 19,807 67,133 67,13 93,28
C3C4O1O2F3F4LOC 230 0,020 82,88 91,28 17,122 73,244 71,64 94,14
C3C4O1O2F3F4LOCROC 264 0,018 83,89 91,78 16,108 73,291 73,29 94,51
C3C4O1O2F3F4LOCROCX1 326 0,015 84,67 92,04 15,329 74,738 74,74 94,64

C3F3O1 95 0,034 78,59 89,05 21,412 66,583 64,46 92,74
C3F3O1LOC 138 0,025 81,70 90,53 18,297 70,561 69,67 93,66
C3F4O2 100 0,028 78,40 88,63 21,599 64,155 64,16 92,57
C3F4O2LOC 138 0,018 82,64 90,60 17,362 71,381 71,38 93,80
C3F4O2LOCROC 170 0,018 83,40 91,28 16,598 72,540 72,54 94,22
C4F3O1 90 0,032 79,45 89,59 20,553 69,135 65,84 93,09
C4F4O2 98 0,028 78,57 89,01 21,433 66,005 64,49 92,66
C4F4O2ROC 136 0,028 82,44 91,06 17,555 70,902 70,90 94,01

BNF: Best Number of Features, ACC: Accuracy, F-me: F-measure, SEN: Sensitivity, SPE: Specificity

Fig. 6. Number of selected features per channels using different feature selection methods in sleep-awake detection.

Fig. 7. Number of selected features per channels using different feature selection methods in multiclass sleep staging.
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in Fig. 6 and Fig. 7. These results show the importance of the identified best 

electrophysiological channels (combinations highlighted in Table VI and Table 

VII). Moreover, the results confirm the fact that sleep-wake detection is highly 

dependent on the level of alpha activity in central and occipital channels. The 

EOG and the EMG channels complemented the information. The EOG should 

record diverse ocular movements during the wake stage, as the EMG chin 

channel should record high tonic activity. Furthermore the results of Table VII,

confirm the importance of frontal channels in multiclass sleep staging (e.g. in

discrimination of REM stage).

4.4. Performance Evaluation of the Proposed Scheme

Fig. 8, Fig. 9 compare the performance obtained by the proposed method 

with different combinations of mentioned feature selector/classifiers detailed in 

Sections 3.3 and 3.4. In the experiments, six of the best feature selection 

approaches were used. DEFS, mRMR, and sequential methods (SBS, SFBS, 

SFFS and SFS). Moreover, four different types of classifiers were considered: 

Fig. 9. Accuracy of multiclass sleep staging corresponding to 6 feature selectors (DEFS, mRMR, 
SBS, SFBS, SFFS and SFS) and 4 classifiers (NB, Adaboost, LDA and SVM). 
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Fig. 8. Accuracy of sleep-wake detection, corresponding to 6 feature selectors (DEFS, mRMR, SBS,
SFBS, SFFS and SFS) and 4 classifiers (NB, Adaboost, LDA and SVM). 
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NB, AdaBoost, LDA and SVM classifiers. They are capable of handling large-

scale classification problems. The results are expressed in terms of box-whisker 

plots showing the average, median, the first and third quartile values of the 

average accuracies. The horizontal lines outside each box identify the upper and 

lower whiskers, and dot points denote the outliers. It can be observed from the 

figures that the higher second and third quartiles and the highest average were 

attained using mRMR-SVM in both sleep-wake detection and multiclass sleep 

staging. Moreover, as shown in Fig. 9 and Fig. 12, some of other combinations 

(e.g. DEFS-SVM approach) also perform very close results requiring, however, 

much less number of features. In multiclass sleep staging the SVM attained the 

lowest interquartile range and the highest average of accuracies, as shown in 

Fig. 9. As concerns the sleep-wake detection there is no significant difference 

between SVM and the other classifiers (see Fig. 8).

4.5. Evaluation of Feature Relevance

To account with the high dimensionality problem and to infer about the most 

discriminative features, an analysis was performed using our two-step feature -

Fig. 10. A sample of the two-step feature selector; step1: histogram of a feature values
corresponding to each sleep stages during a whole night  hypnogram to select the best feature 
types; step2: selection of the best feature elements.
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Fig. 11. Selection of the best elements of feature matrix for sleep-awake detection; red: extracted features; blue: selected features. E: energy of sub-bands; %E:  
percentage of sub-band energy; STD: standard deviation of sub-band energy; M: mean of sub-band energy; RP: relative power; Hd: harmonic-delta; Ht: 
harmonic-theta; Ha: harmonic alpha; Hs: harmonic-sigma; Hb: harmonic-beta; P75%: percentile 75th; K: kurtosis; Sk: skewness.

Fig. 12. Selection of the best feature elements for multiclass sleep staging; red: extracted features; blue: selected features. E: energy of sub-bands; %E:  
percentage of sub-band energy; STD: standard deviation of sub-band energy; M: mean of sub-band energy; RP: relative power; Hd: harmonic-delta; Ht: 
harmonic-theta; Ha: harmonic alpha; Hs: harmonic-sigma; Hb: harmonic-beta; P75%: percentile 75th; K: kurtosis; Sk: skewness.
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selection approach (See Fig. 10). Firstly, as detailed in Algorithm 1, some of the 

extracted feature types were selected manually. By analyzing on the histogram 

of features distribution of whole night sleep and corresponding hypnogram, we 

inferred the following types of features as being the most discriminative:

MODWT based features (energy, percentage of energy, mean and standard 

deviation of sub-bands), and relative-power, harmonic of theta, sigma, beta and 

alpha frequency ranges, percentile 75%, kurtosis and skewness. The second step 

is carried out with the purpose of selecting the final feature elements, i.e., for 

each feature type the final elements are selected. Therefore, resulted features of

the first step, are fed into the feature selectors mentioned in Section 3.3. As 

illustrated in Fig. 11 and Fig. 12 relative-power and percentage-of-energy are 

the most discriminative features for both sleep-wake detection and multiclass 

sleep staging. Moreover, it can be inferred from indicated figures that all 

features which selected in the first step are important and useful for the 

classification phase.

4.6. Analysis by gender

In other to evaluate the performance of the proposed method by gender, two 

experiments were performed: 1) the proposed ASSC was trained with data of 

subjects of both genders; 2) the ASSC system was trained and tested separately 

per each type of gender. Fig. 13 and Fig. 14 provide the accuracies, F-measures, 

and specificities, obtained with the ISRUC-Sleep dataset (see Table VIII), 

comprising 40 subjects, 14 female and 26 male subjects. The ASSC method 

achieved a better performance for both applications when trained/tested 

separately by gender. Actually, in both applications we had a lower interquartile 

range on the accuracy, F-measure and specificity of when the ASSC system was 

trained and tested separately by gender. Moreover, no significant differences 

were found in accuracy, F-measure, or specificity between female and male 

subjects.

4.7. Global performance of the proposed scheme 

Table VIII and Table IX summarize the details of the overall performance of 

the proposed ASSC method using the ISRUC-Sleep dataset, on sleep-wake 

detection and multiclass sleep staging applications. The three last columns of 

Table VIII provide sensitivity, specificity and accuracy values for each of the 

40 subjects, in the case of sleep-wake detection. For sleep-wake detection the 

following average sensitivity (93.74), specificity (82.49) and accuracy (88.87)
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were achieved. The lowest sensitivity values were obtained for the subjects with 

longer periods of wake stage during a whole night recording (approximately 8 

hours of data collection) (e.g. Subjects 6 and13 in Table VIII). On the other 

hand, as it can be seen from data of Table IX , in multiclass sleep staging, the 

best discrimination was achieved for awake (average sensitivity of 84.12 and 

average specificity of 93.07) N3 (average sensitivity of 78.51 and average 

specificity of 95.75) and REM stages (average sensitivity of 79.30 and average 

specificity of 94.69). However, the lowest sensitivities reside in the detection of 

stages N1 (41.71), while the average specificities attained for N1 (92.11) are 

close to the other sleep stages. Indeed, attending to accuracy values, it can be 

said that the best results were achieved regarding awake (88.59) and N3 (87.13), 

followed by REM (86.99), N2 (79.06) and N1 (66.91). The results indicate the 

performance of the proposed method.

Fig. 14. Accuracy, F-measure and specificity of multiclass sleep staging correspond to (a) training 
and test with the same genders (b) training with the both genders.
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Fig. 13. Accuracy F-measure and specificity of sleep-wake detection correspond to (a) training and 
test with the same genders (b) training with the both genders.
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Table VIII
Details of Our ISRUC-Sleep dataset and Performance results to the sleep-wake detection.

Subject Age Sex

Sleep 

Apnea 

event

Other 

problems

nº of 

epoch
% W % N1 % N2 % N3 % REM Sens Spec Acc

1 64 M yes overweight 880 30.00 8.30 22.05 26.25 13.41 90.70 99.32 95.01
2 52 M yes overweight 964 25.41 11.93 35.79 16.29 10.58 83.68 99.14 91.41
3 38 M no parasomnia 943 14.00 17.50 26.09 18.35 24.07 81.54 95.91 88.73
4 27 M yes - 963 2.91 6.75 44.24 22.22 23.88 82.14 97.35 89.75
5 58 F yes insomnia 875 33.83 12.34 30.29 18.74 4.80 95.49 98.62 97.05

6 22 M no
PLMS and 
insomnia

897 80.49 1.78 6.69 11.04 0.00 31.94 99.43 65.68

7 70 M yes ICC 933 14.36 18.33 21.97 25.08 20.26 53.73 95.58 89.37
8 76 M yes PLMS 904 24.45 13.94 31.08 23.67 6.86 88.08 94.21 93.25
9 61 M yes overweight 969 15.48 17.85 35.19 16.41 15.07 80.17 92.79 86.48

10 53 F yes
PLMS, AVC
overweight

842 38.00 10.69 36.58 11.40 3.33 91.03 95.21 93.12

11 57 F yes narcolepsy 982 24.44 15.89 45.42 9.16 5.09 99.15 70.15 84.65
12 79 M yes - 850 19.65 9.29 17.53 39.29 14.24 99.15 56.21 66.81

13 65 M yes
leukemia and 

HTA
882 73.70 12.59 4.42 7.26 1.93 24.65 99.41 86.46

14 66 M yes ataxia 906 50.77 12.36 19.98 11.48 5.41 97.38 89.00 93.19
15 52 M yes depression 786 24.55 10.81 20.10 23.03 21.50 90.53 93.99 92.26
16 50 M yes - 883 17.78 17.44 37.26 13.59 13.93 94.16 88.69 91.42
17 79 M yes - 851 44.18 18.68 24.91 6.46 5.76 89.37 90.09 89.73
18 38 M yes PLMS 999 13.61 10.81 43.84 15.42 16.32 96.30 97.24 96.77

19 59 F yes
HTA, obesity 
and diabetes

828 40.82 18.12 23.07 8.21 9.78 90.40 91.79 91.10

20 59 M yes
HTA and 
epilepsy

692 24.57 9.83 15.32 38.01 12.28 96.60 92.21 94.41

21 72 F yes
obesity and 

diabetes
1054 35.77 13.00 17.08 13.38 20.78 63.93 97.22 80.57

22 85 M yes Alzheimer 849 36.04 7.89 35.45 12.60 8.01 71.03 95.46 83.25
23 50 F yes PLMS 892 29.82 12.78 34.98 7.29 15.13 88.30 96.65 92.48
24 65 M yes HTA 830 24.10 10.24 29.40 16.14 20.12 73.53 99.52 86.53
25 29 F no - 921 14.77 6.62 31.92 14.55 32.14 59.56 98.94 79.25
26 69 M yes bronchitis 1062 28.53 20.24 19.59 15.54 16.10 93.07 88.34 90.70

27 26 F yes
PLMS and 

obesity
914 32.71 6.24 23.74 26.04 11.27 97.00 98.81 97.90

28 62 F yes - 882 6.93 11.02 19.66 24.66 37.73 77.05 96.97 87.01
29 42 F yes obesity 912 26.43 22.26 28.40 19.08 3.84 86.46 97.40 91.93
30 51 M yes HTA 882 30.76 14.07 39.05 8.06 8.06 96.31 91.91 94.11
31 29 M yes - 877 9.64 15.60 47.26 14.05 13.45 78.57 91.35 84.96
32 65 M yes - 1030 5.71 22.50 39.88 15.48 16.43 89.80 97.53 93.66

33 32 F yes
obesity and 

PLMS
920 44.52 6.43 31.79 10.71 6.55 94.10 98.93 96.52

34 43 F yes
PLMS and 

HTA
871 8.21 17.74 38.45 20.83 14.76 89.86 97.28 93.57

35 59 M yes HTA 888 40.95 11.19 22.86 19.64 5.36 40.45 98.65 69.55

36 36 F yes
affective 
disorder

987 33.33 10.36 22.62 14.88 18.81 83.75 95.70 89.72

37 52 M yes - 806 24.49 15.87 29.48 13.49 16.67 70.37 98.30 84.33
38 37 M yes dyslipidemia 932 11.56 23.70 39.68 8.62 16.44 99.08 90.67 94.88
39 66 M yes polycythemia 900 37.83 13.14 20.69 18.86 9.49 94.93 91.59 93.26
40 62 F yes PLMS 875 63.31 2.63 10.51 22.63 0.91 96.57 91.75 94.16

Sens: Sensitivity, Spec: Specificity, Acc: Accuracy



  

24

5. Discussion and Conclusion

To discriminate the sleep stages based on AASM standard, a subject-

independent ASSC method was here proposed for sleep-wake detection and for 

multiclass sleep staging (awake, NREM (N1, N2, N3) sleep and REM sleep).

The method employs the advantages of extracted features from multi-channels 

EEG, EOG and EMG signals according to temporal, frequency and time-

frequency domains. Applying the MODWT, which omitted subsampling in the 

filtering process, provided the shift invariance characteristic to our method 

which is one of the most important properties in analysis of PSG signals. To

reduce the effect of extreme values in the feature vectors the extracted feature 

Table IX
Performance results to the multiclass sleep staging.

Wake N1 N2 N3 REM Average

Subjects Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc

1 74.01 98.14 96.36 27.14 98.08 62.61 86.71 89.36 88.04 89.18 96.45 92.81 92.37 99.73 96.05 77.99 96.35 87.17

2 88.70 97.84 93.27 55.34 93.50 74.42 76.74 89.15 82.95 80.89 94.85 87.87 92.31 97.98 95.15 78.80 94.67 86.73

3 86.92 92.46 89.69 54.94 93.21 74.07 87.40 90.40 88.90 77.46 99.86 88.66 82.67 97.19 89.93 77.88 94.63 86.25

4 89.29 96.35 92.82 42.86 97.13 69.99 80.19 90.18 85.18 92.52 91.93 92.23 79.90 98.08 88.99 76.95 94.73 85.84

5 99.25 96.37 97.81 50.00 98.37 74.19 83.40 92.59 87.99 95.12 99.41 97.27 90.48 96.01 93.25 83.65 96.55 90.10

6 40.90 99.43 70.16 93.75 98.47 96.11 36.67 100.00 68.33 100.00 95.57 97.79 100.00 53.86 76.93 74.26 89.47 81.87

7 75.37 96.88 86.13 6.43 97.81 52.12 8.78 95.42 52.10 94.87 86.40 90.63 94.97 68.15 81.56 56.09 88.93 72.51

8 63.73 93.83 78.78 16.94 88.00 52.47 29.54 92.92 61.23 84.11 93.18 88.65 82.26 75.74 79.00 55.31 88.73 72.02

9 78.51 88.88 83.69 31.40 95.57 63.48 85.04 82.61 83.83 61.01 99.23 80.12 90.41 95.46 92.94 69.27 92.35 80.81

10 84.14 93.87 89.00 36.67 96.81 66.74 90.26 78.57 84.42 1.04 99.44 50.24 85.71 91.71 88.71 59.56 92.08 75.82

11 100.00 59.83 79.92 1.92 97.86 49.89 65.25 92.09 78.67 60.00 99.88 79.94 80.00 99.68 89.84 61.43 89.87 75.65

12 33.80 99.56 66.68 63.51 89.95 76.73 65.77 90.61 78.19 94.01 90.33 92.17 86.78 97.14 91.96 68.78 93.52 81.15

13 29.31 100.00 64.65 32.43 50.20 41.32 89.74 89.91 89.83 100.00 99.49 99.75 94.12 92.34 93.23 69.12 86.39 77.75

14 98.03 87.80 92.92 29.46 97.25 63.36 79.55 94.43 86.99 99.04 98.32 98.68 92.31 99.65 95.98 79.68 95.49 87.58

15 91.05 93.64 92.35 32.10 95.26 63.68 79.87 80.23 80.05 80.11 96.70 88.40 50.00 98.68 74.34 66.63 92.90 79.76

16 96.35 85.61 90.98 35.29 86.14 60.72 56.23 92.75 74.49 98.33 92.09 95.21 58.77 99.86 79.32 69.00 91.29 80.14

17 90.74 89.87 90.30 42.28 86.61 64.44 62.69 86.45 74.57 80.00 98.04 89.02 32.65 99.48 66.07 61.67 92.09 76.88

18 94.81 97.36 96.09 35.85 98.96 67.40 92.70 86.02 89.36 77.92 98.53 88.22 96.32 97.02 96.67 79.52 95.58 87.55

19 91.02 86.11 88.56 12.67 98.92 55.79 78.53 83.86 81.19 92.65 95.62 94.13 89.39 98.63 94.01 72.85 92.63 82.74

20 98.11 89.16 93.64 41.24 92.35 66.79 57.62 82.83 70.23 58.58 100.00 79.29 80.61 99.15 89.88 67.23 92.70 79.96

21 68.44 96.14 82.29 11.76 89.30 50.53 43.02 86.85 64.94 100.00 88.83 94.41 89.50 96.65 93.07 62.54 91.55 77.05

22 92.41 81.10 86.76 25.00 93.32 59.16 56.04 88.48 72.26 63.55 94.80 79.18 47.06 97.07 72.06 56.81 90.95 73.88

23 95.85 91.29 93.57 26.36 96.28 61.32 82.76 83.22 82.99 70.77 94.35 82.56 54.55 100.00 77.27 66.06 93.03 79.54

24 81.76 98.10 89.93 55.29 88.53 71.91 73.36 94.60 83.98 98.51 96.25 97.38 76.65 95.89 86.27 77.11 94.67 85.89

25 60.29 97.88 79.09 27.27 97.37 62.32 40.07 91.89 65.98 97.01 68.69 82.85 77.42 98.53 87.97 60.41 90.87 75.64

26 95.05 91.36 93.20 77.46 84.25 80.86 53.37 79.37 66.37 6.67 100.00 53.33 57.34 98.54 77.94 57.98 90.70 74.34

27 94.67 98.81 96.74 19.64 99.16 59.40 94.18 83.40 88.79 56.90 100.00 78.45 95.19 93.62 94.41 72.12 95.00 83.56

28 93.44 98.36 95.90 11.70 99.21 55.46 35.06 92.33 63.69 98.16 84.72 91.44 96.41 91.39 93.90 66.95 93.20 80.08

29 94.32 90.66 92.49 49.74 92.19 70.96 76.36 91.51 83.93 95.40 98.02 96.71 66.67 99.30 82.98 76.50 94.33 85.42

30 95.94 91.74 93.84 49.59 92.07 70.83 58.59 97.72 78.15 98.61 91.41 95.01 96.77 96.84 96.80 79.90 93.95 86.93

31 82.14 89.52 85.83 54.96 83.94 69.45 62.09 74.22 68.16 27.12 99.86 63.49 75.22 96.05 85.64 60.31 88.72 74.51

32 93.88 96.35 95.11 65.07 85.21 75.14 74.45 77.57 76.01 77.69 98.82 88.26 57.25 99.52 78.39 73.67 91.50 82.58

33 96.70 97.64 97.17 66.67 94.74 80.70 82.02 96.63 89.33 92.22 98.50 95.36 98.18 100.00 99.09 87.16 97.50 92.33

34 89.86 96.11 92.98 70.67 87.70 79.18 75.85 88.61 82.23 82.29 99.40 90.84 79.03 98.88 88.96 79.54 94.14 86.84

35 73.89 96.40 85.14 78.41 91.04 84.73 71.10 97.44 84.27 94.93 96.94 95.93 60.00 90.74 75.37 75.66 94.51 85.09

36 85.87 95.10 90.48 47.57 87.59 67.58 70.81 91.18 80.99 78.63 99.64 89.13 86.58 99.17 92.88 73.89 94.54 84.21

37 60.32 98.64 79.48 51.67 93.75 72.71 84.80 86.69 85.75 75.51 99.26 87.39 74.79 84.63 79.71 69.42 92.59 81.01

38 99.08 91.80 95.44 56.81 87.81 72.31 77.72 83.79 80.75 46.05 99.64 72.84 68.97 97.49 83.23 69.72 92.11 80.92

39 94.93 90.65 92.79 63.24 94.55 78.89 80.11 97.81 88.96 96.92 97.16 97.04 74.70 99.62 87.16 81.98 95.96 88.97

40 91.16 92.10 91.63 17.39 95.99 56.69 84.78 92.30 88.54 66.67 98.52 82.59 87.50 98.21 92.85 69.50 95.42 82.46

Total 84.12 93.07 88.59 41.71 92.11 66.91 69.23 88.90 79.06 78.51 95.75 87.13 79.30 94.69 86.99 70.57 92.90 81.74

Sens: Sensitivity, Spec: Specificity, Acc: Accuracy
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set was transformed and normalized, which improved the overall performance

(Fig. 3). Moreover, by using the two-step feature selector it was inferred that,

relative-power and percentage-of-energy are the most discriminative features for 

both sleep-wake detection and multiclass sleep staging (Fig. 11and Fig. 12). The 

proposed method perform the best performance by combining 6 channels (C3, 

C4, O1, ROC, LOC and X1) for sleep-wake detection, and 9 channels (C3, C4, 

O1, O2, F3, F4, ROC, LOC, X1) for multiclass sleep staging (Table VI and 

Table VII). The experimental study was performed using the ISRUC-Sleep 

dataset which is a rich dataset composed by PSG signals from 40 subjects with 

different characteristics (i.e. young/old, male/female, non-apnea/with apnea 

event and other sleep problems). The overall accuracy of the proposed method 

applied to PSG signals from 40 subjects reached 88.87 and 81.74 for sleep-wake 

detection and multiclass sleep staging, respectively (Table VIII and Table IX ).

As concerns REM stage, remarkable results have been achieved by our ASSC 

method (accuracy of 86.99, specificity 94.69 and sensitivity 79.30). In fact it 

was verified that employing EOG and EMG channels, improved the REM stage 

discrimination in comparison with only using EEG channels. Indeed, in REM 

stage  EOG signals capture the high ocular activity (rapid eye movements) and 

the EMG signal captures the low level of (chin) muscle tone (the opposite of 

awake stage (Table I)). On the other hand, the worst accuracies occurred for N1, 

N2 stages. Indeed, recognition of N1 is one of the main challenges of sleep 

staging. There is a lack of discriminative features that characterize N1 stage 

clearly from the other stages. This has been observed previously by many 

authors (e.g., Anderer et al. [40]). This could be due to N1 being a transition 

phase between wakefulness and different sleep stages as discussed in [41]. In 

fact, the neurophysiologic signals of N1 and N2 stages present similarities 

between themselves and a mix of patterns with similarities to awake, N3 and 

REM stages (Table I); e.g., the N1 epochs can present alpha activity (typical of 

awake stage) and can present theta activity (typical of N2 sleep stage). 

Moreover, most of the times the N2 sleep stage automatically is misclassified as 

N1 or N3. Furthermore, concerning pattern similarities between N2 with N3,

critical cases are the transition epochs: epochs with a relevant percentage of 

slow waves but not enough to be classified as N3 sleep stage (Table I). Finally, 

the worst cases of performance in multiclass sleep staging were mainly related 

to the older subjects with the high percentages of epochs in N1 and N2 sleep 

stages (e.g. subjects 7, 8 and 22 in Table IX).
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Research Highlights

A subject-independent automatic sleep staging method with application in sleep-
wake detection and in multiclass sleep staging.
An extensive dataset with 40 polysomnographic (PSG) recording.
A time-frequency based feature extraction method using maximum overlap 
discrete wavelet transform (MODWT).
A two-step feature selector to find the most discriminative features.
The best combinations of the PSG channels in sleep-wake detection and in 
multiclass sleep staging.


