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Abstract 

In this study, a new inorganic-organic hybrid compound consisting of a Keggin type 

polyoxometalate, H4SiW12O40 (SiW12), and Nile blue (NB) was synthesized and characterized. 

The (NB)2H2SiW12O40 (NB2SiW12) hybrid compound was characterized by Fourier transform 

infrared (FT-IR), elemental (CHNS) analysis, UV–Vis and thermogravimetry techniques, and 

used as a bulk modifier to fabricate a chemically modified carbon paste electrode (CPE) by 

direct mixing. The electrochemical behavior of the newly NB2SiW12 composite CPE was 

analyzed by cyclic voltammetry, and the electrode was applied for nitrite reduction, exhibiting 

high electrocatalytic activity. Determination of nitrite by fixed potential amperometry was done 

under various experimental conditions and, at the optimum conditions, the linear response ranged 

from 5 to 1200 μM with a high sensitivity of and a low detection limit. The electrode has the 

remarkable advantage of surface renewal owing to bulk modification, as well as simple 

preparation, good mechanical and chemical stability and reproducibility. No noticeable 

interferences from other ionic species usually found in natural water were observed. The new 

developed electrode has been successfully applied for detection of nitrite in real water samples. 

 

Keywords: Carbon paste electrode; Composite electrode; Inorganic-organic hybrid compound; 

Polyoxometalate; Nile blue; Nitrite 
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1. Introduction 
 
Polyoxometalates (POMs), as metal-oxygen cluster species, are a large and rapidly growing class 

of compounds, that have attracted much attention in the areas of catalysis, medicine, bioanalysis 

and materials science, owing to their excellent properties such as the possibility of tuning POM 

size, shape, charge density, acidity, redox potential, stability and solubility characteristics [1, 2]. 

One of the most important properties of POM anions is their ability to accept various numbers of 

electrons, giving rise to mixed-valency species [3]. This property has made these compounds 

very attractive in electrode modification and electrocatalytic research [4]. 

A number of strategies have been developed to prepare chemically modified electrodes (CMEs) 

with a variety of POMs. Several groups have immobilized POMs using various techniques, such 

as electrochemical deposition [5-7], adsorption [8-10], use of carbon nanotubes [11], doping in a 

polymer matrix [12-14], layer by layer molecular self-assembly process based on electrostatic 

attraction as the driving force [15, 16] and entrapment in sol-gel matrix [17, 18]. One of the 

drawbacks of the electrodes modified by these methods is that the electrode surfaces cannot be 

renewed in the event of leakage, contamination or passivation, therefore it is useful to explore a 

novel POM-based material, that retains the electrochemical and electrocatalytic activity of POM 

and can be used as bulk modifiers of carbon paste electrodes, the surface of which can be 

renewed with very good repeatability.  

Inorganic-organic hybrid POM-based materials with organic or biochemical substances have led 

to great achievements in the recent years, as they combine both inorganic and organic merits, 

possess new synergistic properties and poor solubility in water and in common organic solvent 

[19, 20]. Several organic compounds have been used for the synthesis of POM-based hybrid 



  

4 

 

materials [21-25]. Among them, organic dyes have a large planar conjugated π system and are 

excellent electron donors, offering the opportunity to be a good candidate to form POM-based 

charge transfer salts with a mixed valence state on the organic and inorganic units [26]. Nile 

blue, one of phenoxazine dyes, is a well-known electroactive molecule with highly promising 

properties as a redox catalyst [27]. This compound has been used as mediator for the 

electrocatalytic oxidation of NADH [28-30], hydrogen peroxide [31], L-cysteine [32], and nitrite 

[33] and electrocatalytic reduction of oxygen [34] and hemoglobin [35, 36]. 

In the present work, we reported the synthesis of a new inorganic-organic hybrid based on 

[SiW12O40]
4- polyoxoanion and Nile blue. The hybrid compound was characterized by Fourier 

transform infrared (FT-IR), elemental (CHNS) analysis, UV–Vis and thermogravimetry 

techniques and used as a solid bulk modifier to fabricate a chemically modified carbon paste 

electrode (CPE) by direct mixing. Electrochemical behavior of the NB2SiW12 modified CPE was 

investigated by cyclic voltammetry and applied to determine nitrite by fixed potential 

amperometry. 

 

2. Experimental 

2.1. Reagents and solutions 

All aqueous solutions were prepared with distilled water. All chemicals were of analytical grade 

from Merck and Fluka and used without further purification. 1.0 M nitrite solution was prepared 

by dissolving sodium nitrite in water. 1.0 M H2SO4 solution was prepared in water and different 

pH solutions were prepared by adjusting the pH with required amount of 1.0 M NaOH solution. 

Samples of natural water were taken from Zayandeh road river, Isfahan, Iran.  
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2.2. Apparatus 

A Leco CHNS-932 elemental analyzer was utilized for the structure characterization of hybrid 

compound. FT-IR spectrum was recorded in the 400-4000 cm-1 range on a JASCO model FT-IR-

3600 spectrometer using KBr pellets. Solid state diffuse reflectance spectra between 200 and 800 

nm were obtained for the dry pressed disk samples using a JASCO model V-670 

spectrophotometer. UV-Vis spectra in organic solvent were measured on a Shimadzu UV 160 

spectrometer using spectrophotometric grade dimethylsolfoxide (DMSO) as solvent. 

Thermogravimetric analyses were carried out between 25 and 750 oC in dynamic air atmosphere 

at 10oC min-1 on Mettler TA4000/TG-50 thermobalance. 

An Autolab electrochemical analyzer model PGSTAT30 (Eco Chemie, Utrecht, The 

Netherlands) controlled by a microcomputer with GPES 4.9 software was used for voltammetric 

measurement. A three-electrode cell was used, including carbon paste electrode or NB2SiW12 

composite carbon paste electrode as working electrode, together with an Ag/AgCl (saturated 

KCl) and a platinum wire as reference and counter electrode, respectively. 

The pHs of solutions were measured by a Metrohm model 827 pH meter using a combined glass 

electrode (Metrohm 6.0262.100).  

 

2.3. Synthesis of NB2SiW12 

The NB solution containing 0.4 mM NB in 0.1 M HCl was dropped, at room temperature, to an 

aqueous solution containing 0.1 mM SiW12, under vigorous stirring. After 30 min stirring, the 

dark blue precipitate formed was filtered and washed with water to remove all unreacted NB and 

dried at 120ºC for 5 h. CHNS  analysis Calcd. (found): C: 13.98 (14.04), H: 1.48 (1.54), N: 2.31 

(2.27) and FT-IR (KBr, cm-1): 2963, 2872 (νC-H), 1643 (νC=N), 1328, 1470, 1585 (νC=C), 1134 
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(νC-N), 1013 (νSi-Oa), 971 (νW-Od), 921 (νW-Ob-W), 793 (νW-Oc-W) confirm the synthesis of 

NB2SiW12. 

 

2.4. Fabrication of the carbon paste electrodes 

The unmodified carbon paste electrode was prepared by mixing graphite powder with an 

appropriate amount of paraffin oil (70:30 w/w). A portion of the composite mixture was packed 

into a 2 mm diameter insulin syringe. Electrical contact was made by forcing a copper pin down 

into the syringe and into the back of the graphite paste. The surface of electrode was smoothed 

on a piece of weighing paper. 

The NB2SiW12 composite electrode was prepared by mixing the graphite paste with NB2SiW12 

(85:15 w/w). In order to obtain a better homogeneity and good reproducibility of the composite 

electrode surface, ethanol was added to the resulted composite. The mixture was stirred using a 

magnetic stirrer until all the solvent evaporated. The composite was then air dried for 24 h and 

the composite electrode was fabricated in the same way as graphite one.  

 

3. Result and discussion  

3.1. Characterization of NB2SiW12 

3.1.1 CHN elemental analysis and thermogravimetry.  

The percentage of C and N determined by elemental analysis of NB2SiW12 was found to be 14.0 

and 2.3%, respectively, corresponding to the reaction of 2 NB moles with one mole of SiW12 to 

form NB2SiW12. Thermogarvimetric data showed a 4.30% weight loss below 200oC, 

corresponding to the release of hydrated water. At temperatures higher than 597oC, the hybrid 

compound being slowly decomposed to the final products SiO2 and WO3 [37]. The relative lost 
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weight of organic part to total weight shows that one mole of SiW12 reacted with 2 moles of NB 

cations to form NB2SiW12 hybrid compound, which confirms the CHN. 

 

3.1.2. UV-Vis spectra 

The diffuse reflectance (DR) UV-Vis spectra of SiW12 exhibited two strong bands at 254 and 

329 nm and of NB showed other less strong bands at 392 and 459 nm and broad strong 

absorption band from 500 to 800 nm. Hybrid compound exhibited also the adsorption bands of 

the components NB and SiW12 and a new band at 524 nm (Fig. 1A), attributed to the charge 

transfer transitions between the SiW12 acceptor and NB donor [38, 39]. The UV-Vis spectra in 

DMSO solution of SiW12, NB and hybrid (see Fig. 1B) showed that SiW12 has a high intensity 

absorption peak at 288 nm, attributed to the O-W charge transfer transitions [40] and that NB 

possesses absorption bands at 638 and 275 nm. The hybrid compound UV-Vis spectra exhibited 

all the absorption bands of both SiW12 and NB, with hypsochromic shifts of the NB peaks due to 

the interaction between SiW12 and NB in the hybrid compound.  

<Figure 1> 

 

3.2. Electrochemical properties of modified electrode 

As known, POM compounds are unstable in neutral and basic aqueous solutions and undergo a 

series of hydrolysis processes, but they are fairly stable in acidic aqueous solutions [41]. 

Therefore, electrochemical studies of the NB2SiW12 composite electrode were carried out in 1.0 

M H2SO4 aqueous solutions, pH 1.0. As shown in Fig. 2 (a) cyclic voltammetry of the NB2SiW12 

composite electrode in the potential range from -0.8 V to +0.6 vs Ag/AgCl shows three pairs of 

reversible redox peaks with the half wave potentials (E1/2= (Epa+Epc)/2) of -0.25 (II-II´), -0.49 

(III-III´) and -0.72 (IV-IV´) V vs. Ag/AgCl, that correspond to the reduction and oxidation of 
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one, one and two electron processes of tungsten center in SiW12 part, respectively [37]. The 

formal potentials E1/2 of SiW12 in the hybrid compound are shifted towards more negative 

potentials compared to the SiW12 alone (see Fig. 2b), when their values are -0.19 (II-II´), -0.44 

(III-III´) and -0.70 (IV-IV´) V vs. Ag/AgCl. This indicates that SiW12 acts as an electron 

acceptor in hybrid compound, and since the electron density of SiW12 increases in the hybrid 

compound, a higher potential is needed for its reduction than in SiW12 anion.  

The main redox activity of NB is observed at potentials very close to 0.0 V vs. Ag/AgCl, 

presenting reversible peaks with E1/2 +0.06 V vs. Ag/AgCl, a less evident pair of peaks, with 

E1/2=+0.37 V, being also noticeable (see Fig 2,c). In the NB2SiW12 hybrid compound, the main 

redox activity is maintained, the redox process being irreversible and the oxidation wave 

occurring at a potential closer to 0.0 V, indicating that NB is oxidized easier in the hybrid 

compound, due to the electron acceptor nature of SiW12. 

<Figure 2> 

 

3.2.1. Effect of pH and scan rate  

In general, the reduction of POM anions is accompanied by protonation, therefore, the pH of the 

supporting electrolyte, is expected to have an effect on the electrochemical behavior of the 

NB2SiW12 composite CPE. Fig. 3A exhibits the CV-s recorded in six different pH solutions, 

from 0.5 to 2.0, obtained by mixing 1.0 M H2SO4 with 1.0 M NaOH, and showing clearly the 

effect of pH on the redox peaks potentials characteristic of POM in the hybrid compound (peaks 

II, III and IV). As seen in Fig. 3B, an increase of pH from 0.5 to 2 leads to linear decrease of the 

potentials values. 

<Figure 3> 
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Fig. 4 represents the CVs of the NB2SiW12 composite CPE at scan rates from 10 to 100 mV s-1 in 

the potential range +0.6 to -0.8 V vs. Ag/AgCl in H2SO4 pH 1.0 solution. As observed from Fig 

4, inset, the peak currents of all redox pairs increased linearly with the scan rate, suggesting that 

the redox process is surface-confined. The peak-to-peak potential separation for the redox peak 

pairs is about 50 mV, larger than the theoretical value, which should be 0 mV for a reversible 

surface redox process [42].  

<Figure 4> 

 

3.2.2. Stability and repeatability of surface-renewal  

The working stability of the NB2SiW12 composite CPE was investigated by recording repetitive 

cyclic voltammograms and monitoring the change in peak current density and peak potentials. 

The electrode retained 99% of its initial activity after 100 repetitive cycles in 1.0 M H2SO4 pH 

1.0 in the potential range of +0.6 to -0.8 V vs. Ag/AgCl. High stability of the NB2SiW12 

composite CPE could be related to the strong electrostatic attraction between NBCl and POM 

and insolubility of the hybrid compound in water.  

The composite electrode also showed excellent long term stability. The electrode was tested 

during 1 month, 5 times per week, by recording 10 CV-s in H2SO4 (pH 1.0) solution. Its initial 

peak current intensities decreased only slightly (with ≈ 8%) after 1 month of use. 

One of the main advantages of bulk modified electrodes over surface modified electrodes is that 

the electrode surface can be renewed easily. The reproducibility of the electrode surface was 

studied by renewing the modified electrode surface seven times and recording a CV scan after 

each, in 1.0 M H2SO4 pH 1.0. Data obtained showed an excellent R.S.D of 3.8%.  

These results are very promising for analytical application of the newly developed electrode. 
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3.3. Electrocatalytic activity NB2SiW12 composite CPE towards nitrite  

Many studies [4, 12, 43-47] have shown that reduced POMs are capable of delivering electrons 

to important analytical species, thus serving as powerful electron reservoirs for multi-electron 

reductions. In this work, we evaluate the applicability of the NB2SiW12 composite CPE for the 

electrocatalytic reduction of nitrite. 

 

3.3.1. Electrocatalytic reduction of nitrite at NB2SiW12 composite CPE 

Cyclic voltammograms were recorded at bare CPE and NB2SiW12 composite CPE in 1.0 M 

H2SO4 (pH 1.0) solutions containing different concentrations of nitrite. As shown in Fig. 5, the 

electroreduction of nitrite on the bare CPE requires a large overpotential of ≈0.8 V vs. Ag/AgCl, 

which is significantly lowered at NB2SiW12 composite CPE, due to its electrocatalytic activity 

towards nitrite reduction. By increasing the concentration of nitrite, the cathodic current 

increases while the oxidation one decreases at potentials higher than -0.2 V vs. Ag/AgCl, 

required for nitrite electrocatalysis.  

<Figure 5> 

 

3.3.2. Amperometric detection of nitrite at NB2SiW12 composite CPE 

Since the cyclic voltammetry is not particularly sensitive to low concentrations of analyte, the 

fixed potential amperometry was used to fully evaluate the sensor analytical properties. The 

influence of the applied potential on the response of NB2SiW12 composite CPE to nitrite was 

tested between -0.1 to -0.35 V vs. Ag/AgCl and, as expected, the sensor response is higher at 

more negative potentials. Nevertheless, at -0.25 V vs Ag/AgCl the sensor response was high 

enough, and was chose for further experiments in order to reduce the effect of other interfering 

ions, such as BrO3
-, ClO3

-, IO3
- potentially present in samples together with nitrite. 
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Fig 6A displays the typical hydrodynamic amperometric response of the NB2SiW12 modified 

CPE (rotation speed 2000 rpm) during successively addition of nitrite in 1.0 M H2SO4 pH 1.0. 

The time required to reach the 95% steady-state response was 5s, indicating a fast response 

process. The amperometric response to nitrite showed a linear range from 5 to 1200 μM (Fig. 

6B), with the calculated detection limit of 2.8 ± 0.42 μM (RSD = 3.9%, n=3). The sensitivity of 

the amperometric nitrite sensor was 178.2 ± 2.1 μA mM-1 cm-2 (RSD = 4.7%, n=3). 

A comparison of the analytical properties of recently reported nitrite sensors are listed in Table 1. 

The detection limit of the NB2SiW12 modified CPE was lower than most other electrodes, the 

linear range being similar to the other reported electrodes, the NB2SiW12 composite CPE having 

the advantage in being very easy to prepare from cheap materials compared to other more 

complex electrode architecture cited in the Table 1. 

<Figure 6> 

<Table 1> 

 

3.3.3. Interference study 

The influence of various ions which often exist in the nitrite containing samples, such as BrO3
-, 

ClO3
-, ClO4

-, CO3
2-, HCO3

-, NO3
-, F-, Cl-, I-, Br-, H2O2, IO3

-, Na+, Mg2+ and Ca2+, on the 

determination of nitrite was studied. The amperometric response of the sensor to nitrite in the 

presence of interferents was tested for the concentration ratio of 10:1 interefrent:nitrite. The 

results are summarized in Table 2 showing that sensor is almost interferent-free. Only I-, Br- and 

IO3
- interfere in the nitrite determination, which should not be a problem in real samples nitrite 

determination, where their concentration in relation to nitrite is much lower than 10:1, here 

tested. The catalytic selectivity is enhanced by the low working potential (-0.25 V vs. Ag/AgCl), 
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which in combination with the great operational stability, makes the proposed sensor a promising 

tool to be used for nitrite in real samples with no, or minimal sample preparation. 

<Table 2> 

 

3.3.4. Application of the sensor 

The NB2SiW12 modified CPE was used to determine nitrite in natural water from Isfahan, Iran 

(Zayandehrood river). A volume of 1 ml of water was injected into a 20 mL electrochemical cell, 

followed by injection of nitrite standard solution corresponding to 50, 100 and 150 µM nitrite in 

the total cell volume. The nitrite concentrations in the water sample and after the additions of 

standard solution of nitrite were determined from interpolation on the calibration curve recorded 

right before the experiment. Results are presented in Table 3. As observed, the recoveries were 

very close to 100 % (98.7-101.6%), indicating that the developed amperometric nitrite sensor can 

be successfully applied to the analysis of nitrite in water samples. 

<Table 3> 

 

4. Conclusions 

In this study, an inorganic-organic polyoxometalate (SiW12) - Nile Blue (NB) hybrid was 

synthesized and characterized by different techniques. Thermogravimetric and CHNS studies 

showed that 2 moles of NB react with one of SiW12 to form NB2SiW12 hybrid compound. The 

UV-Vis spectra of the hybrid contained the peaks of both components, a new peak at 524 nm 

being attributed to the charge transfer transitions between the SiW12 acceptor and NB donor. The 

NB2SiW12 was introduced as a bulk modifier in a CPE, to form NB2SiW12 composite CPE. The 

CV studies showed that POM acts as an electron acceptor in NB2SiW12, SiW12 being more 

difficult to be oxidized in the hybrid compound, while NB oxidizes at less positive potentials 
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close to 0.0 V vs Ag/AgCl. The electrode exhibited a great stability and reproducibility of 

surface renewal, and exhibits electrocatalytic activity towards nitrite reduction, decreasing 

substantially the high nitrite reduction potential at unmodified CPE. Fixed potential amperometry 

was used successfully to determine nitrite at -0.25 V vs Ag/AgCl, the sensor having a very low 

detection limit of 2.8 ± 0.42 μM (RSD = 3.9%, n=3) and a high sensitivity of 178.2 μA mM-1 

cm-2 (RSD = 4.7%, n=3). Almost interference free detection of nitrite, together with very good 

recovery results, close to 100%, obtained for nitrite detection in water sample, make this newly 

developed NB2SiW12 composite CPE an appropriate analytical tool for nitrite detection in real 

samples. 

 

Acknowledgment 

Financial support for this work by University of Isfahan is gratefully acknowledged. 



  

14 

 

 

References 

[1] M. Zhu, J. Peng, H.-J. Pang, P.-P. Zhang, Y. Chen, D.-D. Wang, M.-G. Liu, Y.-H. Wang, J. 

Solid State Chem. 184 (2011) 1070-1078. 

[2] D.-D. Wang, J. Peng, H.-J. Pang, P.-P. Zhang, X. Wang, M. Zhu, Y. Chen, M.-G. Liu, C.-I. 

Meng, Inorg. Chim. Acta 379 (2011) 90-94. 

[3] M. Sadakane, E. Steckhan, Chem. Rev. 98 (1998) 219-237. 

[4] H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Talanta 74 (2008) 909-914. 

[5] D.M. Fernandes, S.M.N. Simões, H.M. Carapuça, A.M.V. Cavaleiro, Electrochim. Acta 53 

(2008) 6580-6588.  

[6] Y. Li, W. Bu, L. Wu, C. Sun, Sens. Actuators B 107 (2005) 921-928. 

[7] Z.Y. Tang, S.Q. Liu, E.K. Wang, S.J. Dong, E.B. Wang, Langmuir 16 (2000) 5806-5813. 

[8] D. Martel, A. Kuhn, Electrochim. Acta 45 (2000) 1829-1836. 

[9] A. Kahn, F.C. Anson, Langmuir 12 (1996) 5481-5488. 

[10] B. Wang, S. Dong, Electrochim. Acta 41 (1996) 895-916. 

[11] B. Haghighi, H. Hamidi, L. Gorton, Electrochim. Acta 55 (2010) 4750-4757.  

[12] D.M. Fernandes, C.M.A. Brett, A.M.V. Cavaleiro, J. Electroanal. Chem. 660 (2011) 50-56.  

[13] S.-M. Chen, Y.-H. Fa, J. Electroanal. Chem. 567 (2004) 9-17. 

[14] X. Zou, Y. Shen, Z. Peng, L. Zhang, L. Bi, Y. Wang, S. Dong, J. Electroanal. Chem. 566 

(2004) 63-71. 

[15] M. Carcía, K. Carfumán, C. Diaz, C. Garrido, I. Osorio-Román, M.J. Aguirre, M., 

Electrochim. Acta 80 (2012) 390-398. 

[16] K. Jiang, H. Zhang, C. Shannon, W. Zhan, Langmuir 24 (2008) 3584-3589. 

[17] P. Wang, X. Wang, G. Zhu, Electrochim. Acta 46 (2000) 637-641. 

[18] W. Song, Y. Liu, N. Lu, H. Xu, C. Sun, Electrochim. Acta 45 (2000) 1639-1644. 

[19] X. Wang, Z. Kang, E. Wang, C. Hu, J. Electroanal. Chem. 523 (2003) 142-149.  

[20] H. Ma, J. Peng, Z. Han, X. Yu, B. Dong, J. Solid State Chem. 178 (2005) 3735-3739. 

[21] X. Wang, Q. Zhang, Z. Han, E. Wang, Y. Guo, C. Hu, J. Electroanal. Chem. 563 (2004) 

221-227.  

[22] B. Dong, J. Peng, A. Tian, J. Sha, L. Li, H. Liu, Electrochim. Acta 52 (2007) 3804-3812. 

[23] C. Li, R. Cao, K.P. O´Halloran, H. Ma, L. Wu, Electrochim. Acta 54 (2008) 484-489. 



  

15 

 

[24] M. Ammam, E. Bradley Easton, Electrochim. Acta 56 (2011) 2847-2855. 

[25] X. Wang, H. Hu, B. Chen, H. Lin, A. Tian, J. Li, Solid State Science 13 (2011) 344-349. 

[26] G. Xue, J. Xiong, H. Guo, G. Cao, S. Nie, H. Hu, Electrochim. Acta 69 (2012) 315-319. 

[27] Z.-W. Chen, A. Balamurugan, S.-M. Chen, Bioelectrochem. 75 (2009) 13-18. 

[28] P. Du, P. Wu, C. Cai, J. Electroanal. Chem. 624 (2008) 21-26. 

[29] L. Zhu, R. Yang, X. Jiang, D. Yang, Electrochem. Commun. 11 (2009) 530-533. 

[30] P. Du, S. Liu, P. Wu, C. Cai, Electrochim. Acta 53 (2007) 1811-1823. 

[31] P. Du, B. Zhou, C. Cai, J. Electroanal. Chem. 614 (2008) 149-156. 

[32] A.A. Ensafi, S. Behyan, Sens. Actuators B 122 (2007) 282-288. 

[33] X. Chen, F. Wang, Z. Chen, Anal. Chim. Acta 623 (2008) 213-220. 

[34] H.X. Ju, C. Shen, Electroanalysis 13 (2001) 789-793. 

[35] D.M. Zhou, H.Y. Chen, Electroanalysis 9 (1997) 399-402. 

[36] H. Kuramitz, K. Sugawara, M. Kawasaki, K. Hasebe, H. Nakamura, S. Tanaka, Anal. Sci. 

15 (1999) 589-592. 

[37] F.-Y. Cui, X.-Y. Ma, C. Li, T. Dong, Y.-Z. Gao, Z.-G. Han, Y.-N. Chi, C.-W. Hu, J. Solid 

State Chem. 183 (2010) 2925-2931. 

[38] R.S. Mulliken, J. Am. Chem. Soc. 72 (1950) 600-608. 

[39] R. Foster, in: Organic charge-transfer complexes, Academic, New York, 1969. 

[40] J.W. Zhao, Y.P. Song, P.T. Ma, J.P. Wang, J.Y. Niu, J. Solid State Chem. 182 (2009) 1798-

1805. 

[41] Z. Han, Y. Zhao, J. Peng, A. Tian, Y. Feng, Q. Liu, J. Solid State Chem. 178 (2005) 1386-

1394. 

[42] A.P. Brown, F.C. Anson, Anal. Chem. 49 (1977) 1589-1595. 

[43] H. Ma, Z. Zhang, H. Pang, S. Li, Y. Chen, W. Zhang, Electrochim. Acta 69 (2012) 379-383.  

[44] L. Wang, Z.-G. Feng, H.-N. Cai, J. Electroanal. Chem. 636 (2009) 36-39. 

[45] H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Electrochim. Acta 54 (2009) 3495-3500. 

[46] B. Haghighi, H. Hamidi, Electroanalysis 21 (2009) 1057-1065. 

[47] B.-Q. Huang, l. Wang, K. Shi, Z.-X. Xie, L.-S. Zheng, J. Electroanal. Chem. 615 (2008) 19-

24. 

[48] G. Zhao, K. Liu, S. Lin, J. Liang, X. Guo, Z. Zhang, Microchim. Acta 144 (2004) 75-80. 

[49] H. Wang, Y. Huang, Z. Tan, X. Hu, Anal. Chim. Acta 526 (2004) 13-17. 



  

16 

 

[50] Y. Tian, J. Wang, Z. Wang, Synth. Met. 143 (2004) 309-313. 

[51] J.X. Zeng, W.Z. Wei, X. Zhai, P. Yang, J. Yin, L. Wu, X. Liu, K. Liu, S. Gong, Microchim. 

Acta 155 (2006) 379-386. 

[52] J. Li, X. Lin, Microchem. J. 87 (2007) 41-46. 

[53] A. Salimi, A. Noorbakhsh, M. Ghadermarzi, Sens Actuators B 123 (2007) 530-537. 

[54] S. Yang, X. Zeng, X. Liu, W. Wei, S. Luo, Y. Liu, J. Electroanal. Chem. 639 (2010) 181-

186. 

[55] P. Dreyse, M. Isaacs, K. Calfumán, C. Cáceres, A. Aliga, M.J. Aguirre, D. Villagra, 

Electrochim. Acta 56 (2011) 5230-5237. 

[56] C. Deng, J. Chen, Z. Nie, M. Yang, S. Si, Thin Solid Films 520 (2012) 7026-7029. 



  

17 

 

 

Figure Captions: 

Figure 1. A) Diffuse reflectance UV-Vis spectra and B) UV-Vis spectra in 10 µM DMSO of (a) 

SiW12, (b) NBCl and (c) NB2SiW12  

Figure 2. Cyclic voltammograms recorded at (a) NB2SiW12, (b) SiW12 and (c) NBCl composite 

CPE in 1.0 M H2SO4 pH 1.0 solution; scan rate 100 mV s-1. 

Figure 3. (A) Cyclic voltammograms recorded at NB2SiW12 composite CPE in 1.0 M H2SO4 

solution at different pH-s of 0.5, 0.75, 1.0, 1.5 and 2.0, scan rate 100 mVs-1 and (B) the linear 

dependence of peak potential with the pH. 

Figure 4. Cyclic voltammograms recorded at NB2SiW12 composite CPE in 1.0 M H2SO4 pH 1.0 

at different scan rates from 10 to 100 mV s-1; inset: the corresponding plots of peak current vs. 

scan rate. 

Figure 5. Cyclic voltammograms recorded at bare CPE and NB2SiW12 composite CPE in 1.0 M 

H2SO4 pH 1.0 solution for 0.0, 0.1, 0.5 and 1.0 mM nitrite; inset are CV at bare CPE in the 

absence and addition of 0.1 mM nitrite; scan rate 50 mV s-1  

Figure 6. (A) Fixed potential amperogram recorded at NB2SiW12 composite CPE for successive 

additions of nitrite in 1.0 M H2SO4 pH 1.0 solution at -0.25 V vs. Ag/AgCl, 2000 rpm and (B) 

corresponding calibration curve. 

 



  

Table 1. Comparison of some chemically modified electrodes for electroreduction of nitrite. 

 

Electrode Linear range  
LOD 

(M) 

Applied potential 

(V) vs. Ag/AgCl 
Reference 

CNTs/GCE
a
 in the presence of Cu ions 

2-10 M and 

20 M-1 mM 
0.5 -0.55 48 

Cu Nps
b
 thin-films electrode 50 M-30 mM 20.0 -0.30 49 

Polypyrrole nanowires/GCE 22.8 M-20 mM 22.8 0.18 50 

CNTs/PAA/GCE 3 M-4.5 mM 1.0 0.10 51 

Polypyrrole/Pt/GCE 0.5 M-1 mM 0.2 -0.12 52 

Catalase/CNTs/GCE 5 M-10 mM 1.4 0.30 53 

Cu Nps/CNTs/GCE 1 M-0.6 mM 0.1 -0.05 54 

Poly-NiTRP
c
-GCE 14.9-124M 9.4 -0.80 55 

PTH
d
/CNTs/GCE 0-50 mM 1.4 0.30 56 

NB2SiW12 composite CPE
e
 5-1200 M 2.8 -0.25 This work 

 
a
Carbon Nano Tubes Glassy Carbon Electrode 

b
Nanoparticles 

c
poly-[Ni(S-NO2-phen)2Cl]tetra pyridyl porphyrin 

d
polythionine 

e
Carbon Paste Electrode 

 



  

Table 2. Effect of interfering species on the amperometric determination of nitrite with 

NB2SiW12 composite CPE. 

 

Interferents Current ratio
a
 

BrO3
-
, ClO3

-
, ClO4

-
, 

CO3
2-

, HCO3
-
, NO3

-
, 

F
-
, Cl

-
, H2O2, Na

+
, 

Mg
2+

, Ca
2+

 

1.0 

Br
-
 1.5 

I
-
 1.8 

IO3
-
 2.1 

a 
current ratio was obtained by comparing the current response of 0.1 mM nitrite + 1.0 

mM interfering species with 0.1 mM nitrite. 
 



  

Table 3. Analytical results of the amperometric nitrite sensor for water taken from 

Zayandehrood river, Isfahan, Iran 

Sample Nitrite added (M) Nitrite found (A) (n=4)
a
 Recovery (%) 

water - 15.55 ± 4.15
b
 - 

Mixture 1 50 66.62 ± 4.26 101.6 ± 6.5 

Mixture 2 100 114.05± 3.53 98.7 ± 3.1  

Mixture 3 150 164.21 ± 3.83 99.2 ± 2.3 

a 
Average of four determinations ± relative standard deviation. 

b
Nitrite concentration found in the river water 
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• Synthesized a new inorganic-organic hybrid compound consisting of SiW12 and Nile blue. 

 

• Hybrid compound possess new synergy properties and poor solubility in water. 

 

• Electroreduction of nitrite by NB2SiW12 modified carbon paste electrode. 

 

• The electrode has a good mechanical and chemical stability and reproducibility. 

 

• The proposed sensor is suitable for use in real water sample. 

 




