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Highlights

 Ti1-xAgx thin films with diverse Ag/Ti ratios were deposited by sputtering on 

piezoelectric PVDF;

 The  deposition conditions do not promote changes on the polymer structure;

 The coatings do not change the piezoelectric properties of the polymer;

 Sheet resistivity values show a typical behavior of a binary alloy system.

 The deposited films as suitable for the development of functional electrodes
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Abstract

Piezoelectric materials are interesting for the development of sensors and actuators for 

biomedical applications in areas such as smart prosthesis, implantable biosensors and 

biomechanical signal monitoring, among others. For acquiring or applying the electrical signal 

from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings 

with tailored multifunctional properties: conductivity and antibacterial characteristics through Ag 

inclusions. This work reports on Ti1-x Agx electrodes with different Ag/Ti atomic ratios deposited 

by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), 

PVDF. The X-Ray Diffraction (XRD) results revealed that the deposition conditions preserve the 

polymer structure and suggested the presence of crystalline Tiβ phase in pure titanium coating 

and fcc-Ag phase in pure silver coating.  According to the results obtained from scanning 

electron microscopy (SEM) analysis, the coatings are homogeneous and no clusters were found; 

since β-PVDF is anisotropic, the deposited coatings replicate the underlying substrate surface. 

Sheet resistivity values show a typical behavior of a binary alloy system, with low resistivity 

values for coatings of zone 1 (Ti rich) and zone 3 (Ag rich) and a slightly higher resistivity 

values in zone 2.  The piezoelectricity of the different samples show similar values. 

Keywords: Sensors, Ag nanoparticles, piezoelectric polymers, sputtering.
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1. Introduction

Implant failure represents a large problem for both patients and health agencies, since it results 

in repeated surgeries with consequent discomfort and human pain, being also responsible for a 

large economic burden for society. This failure can be attributed to excessive wear and wear 

debris and also to microbial infection [1]. The future of prosthetic implants pass through the 

implementation of prevention mechanisms based on the implementation of sensor systems, 

which allow to obtain valuable information about a wide range of biomechanical signals [2,3]. 

An example of this evolution relays on piezoresistive [4,5] and piezoelectric materials to serve as 

strain and force sensor [6] for various applications. These sensors are suitable for the above-

mentioned application, adding the fact that the piezoelectric materials do not need external power 

supply, being even able to provide energy to the circuit, keeping the system operational for 

longer periods of time [7,8].  

Poly (vinylidene fluoride), PVDF, is well-known for its piezo and pyroelectric properties, 

useful for a wide variety of applications in the field of sensors and actuators.  For the four known 

polymorphs of PVDF, the β phase is the one with the largest piezoelectric response [9,10] and it 

was the one used as substrate material in this work. This phase can be obtained in different ways

[9], being the most common the uniaxial stretching of α-phase (non electroactive) PVDF [11,12]. 

Further, for improving the piezoelectric response, the material must be poled, i.e. the alignment 

of the randomly organized dipolar moments against the applied electric field [11,12]. 

As this piezoelectric material transforms mechanical loads into electrical signals, conductive 

electrodes are necessary on both sides for signal acquisition. Such electrodes must show good 

electrical conductivity and since they are to be used within the human body they must be 

biocompatible. Titanium and its alloys have been widely used on artificial implants due to their 
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biocompatibility and good corrosion resistance [13], and Ti shows electrical conductivity in the 

range 43 μΩ cm [14].

Still, these implants show a high failure rate, mainly caused by microbial adhesion and 

colonization [13]. Thus, it becomes essential to create strategies that prevent bacterial adhesion 

in the first place. In addition, infections caused by Staphylococcus and other coagulase-negative 

Staphylococci (CNS) are also known as one of the most common causes of serious hospital 

acquired infections [13,15]. This is related to the ability of microorganisms to adhere to medical 

devices and forming biofilm. Despite various efforts to develop effective medical treatments 

against infections caused by biofilms [16], the physical removal of an infected medical device 

(such as implants) is often necessary, which entails extra costs, as well as physical discomfort of 

the patient. Over the past years a considerable interest in increasing biodevices lifetime, trough 

inhibition of biofilm, has raised. In order to achieve this goal, different concepts based on the 

incorporation of Ag in nanoparticles and coatings have been proposed, due to the effective 

antibacterial activity of this metal [13,17–19].

Presently, different coatings produced by magnetron sputtering are proposed as potential 

candidates as functional conductive electrodes in polymeric sensors. Regarding  biomedical 

applications, TiNAg [20–22] and TiAg [14,23] coatings have been proposed for prosthesis 

pressure sensors and dry biopotential electrodes, respectively, due to their interesting electrical 

and biological properties. However, in the above mentioned reports the coatings were deposited 

on silicon and glass substrates. In fact, the high temperatures associated with sputtering process 

represent the major limitation in the development of functional electrode coatings in 

piezoelectric PVDF substrates, due to the eventual structural changes promoted by temperature

as well as eventual depolarization of the sample, leading to the loss of the piezoelectric response.



Page 7 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

7

Thus, the major innovation of the present report is the deposition of Tix-1Agx electrodes on PVDF 

substrates, while maintaining the piezoelectric response of the polymer.

This report focus on the development of polymer based sensors for biomedical devices, which 

allow detecting early failure and/or to monitor implants and biomechanical signals. Taking into 

account the good electrical conductivity of Ti and Ag, Ti1-xAgx coatings represent a good 

candidate for electrode materials. In addition, Ti is biocompatible, while Ag has been pointed as 

an effective antibacterial agent, able to improve the lifetime of the biodevices. Thus, Ti, Ag and 

Ti1-xAgx coatings, with different Ag/Ti atomic ratios were deposited by magnetron sputtering in 

piezoelectric PVDF substrates. The electric and piezoelectric responses of these thin films were 

evaluated, together with their structure and morphology.

2. Materials and methods

Ti1-xAgx coatings were deposited by dc/pulsed dc magnetron sputtering onto ultrasonically 

cleaned silicon (used for AFM, and EPMA tests) and PVDF thin films with a thickness of 

approximately 28 µm (used for SEM, XRD analysis, Four Point Probe technique and 

piezoelectric response (d33) tests) . One pure Ti target (99.99 %) and one Ag target (99.99%)) 

(both with 200x100 mm2) were used in argon atmosphere with the substrates rotating at 70 mm 

from the target at a constant speed of 7 rpm. During deposition, the pressure in the deposition 

chamber was about 0.17 Pa and the argon flow was kept constant at 60 sccm. To vary the Ag 

content in the films, the current density applied to each target was varied, as indicated in Table 1. 

The Ti target was connected to the pulsed dc power supply, while the Ag target was connected to 

a dc power supply. For the deposition of the pure silver coating and the Ti1-xAgx coating with 

lowest Ag content (coating Ag/Ti 0.02) the pulsed dc power supply was connected to the Ag 
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target and for the latter case the dc power supply to the Ti target. The frequency and reverse time 

were fixed at 200 kHz and 1536 ns, respectively, corresponding to a duty cycle of 69 %. The 

deposition time was varied in order to obtain a final thickness ranging between 150 nm to 200 

nm. In order to avoid the structural damage of the polymer substrate, the substrate temperature 

must be ideally kept below  ~100ºC- (far from the melt transition temperature of PVDF) [9]. In 

this sense, the depositions were performed without any external heating of the substrate and no 

bias polarization was applied on the substrate holder.

Chemical characterization was performed with a Cameca SX 50 electron probe microanalysis 

(EPMA) apparatus.  Five punctual measurements were randomly performed on the samples 

surface, with an acceleration voltage of 10 kV. Since the depth of analysis at 10kV is about 300 

nm for pure Ag and 700 nm for pure titanium, Ti1-xAgx coatings with a thickness of 1 µm were 

deposited for EPMA analysis. The morphology/topography of the coatings, was evaluated by 

atomic force microscopy (AFM) using a NanoScope III apparatus (Digital Instruments) 

operating in tapping mode. AFM images were taken over scanning areas of 5 × 5 μm2. The 

roughness values are an average of three measurements. The surface morphology and thickness 

were by examined by scanning electron microscopy (SEM) with a NanoSEM – FEI Nova 200 

(FEG/SEM). The structure and phase distribution of the coatings were analyzed by powder X-

rays diffraction (XRD) using a Bruker D8 Discover diffractometer (CuK radiation –  =1.5406 

Å, step 0.04º, time per step 1s and 6-60 2θ interval). The sheet resistivity was tested by Four 

Point Probe technique, in three randomly distributed points with a d. c. current and voltage 

calibrator. The piezoelectric response (d33) of the poled samples was analyzed with a wide range 

d33-meter (model 8000, APC Int Ltd).
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3. Results and discussion

3.1 Chemical composition vs. deposition parameters

The synthesis conditions together with the coating´s chemical composition, deposition rate, 

roughness and sheet resistivity are summarized in Table 1.  

Through the deposition time and coatings thickness, estimated by SEM analysis, it was 

possible to determine the deposition rate. The Ti1-xAgx coatings were labeled according to the 

Ag/Ti atomic ratio, while pure titanium and pure silver coatings are labeled as Ti and Ag, 

respectively. The coatings were divided in three different zones: Z1 (Ag/Ti < 0.11), Z2 

(0.11<Ag/Ti>0.69) and Z3 (Ag/Ti>0.69) according to the variations in the resistivity values.

 Since Ag and Ti show  high sputtering yields (3.12 and 0.51, when bombarded with Ar at 0.5 

keV, respectively [24]) the deposition of these elements results in high deposition rates. The use 

of pulsed dc power supply promotes a reduction in the deposition rate, thus, allowing to control 

the chemical composition of the coatings, achieving a low Ag content, in the case of Ag/Ti 

(0.02), and low Ti contents in the coatings of zone 3.  As shown in Table 1, the JAg applied on 

the Ag target was 0.05 mA/cm2 for the deposition of Ag/Ti (0.02) and Ag/Ti (0.11), however, in 

the first case the pulsed dc power supply was connected to the Ag target, while in the coating 

with Ag/Ti (0.11) the dc power supply was connected to the Ag target. Despite the similar 

current density applied to Ag target (JAg) and the decrease on the current density applied to Ti 

target (JTi) in the deposition of Ag/Ti(0.11), the silver content was five times higher in relation to 

the coating Ag/Ti (0.02), which demonstrates the reduction in the sputtering rate with the use of 

pulsed dc power supply, as used on Ag/Ti (0.02) sample deposition. 
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Regarding the coatings deposited in similar deposition conditions (with a pulsed dc and a dc 

power supply connected to Ti and Ag targets, respectively) it can be found from Figure 1 that the 

Ag content increases linearly with the  JAg/JTi ratio, along with a decrease in the Ti content.

The relation between current density and sputter efficiency is well described in [25] discussing 

that higher current densities applied on Ti and other material targets induce the sustained self-

sputtering (SSS) effect meaning that during target bombardment by inert gas, in this case Argon 

(Ar), secondary electrons, photons, neutral and excited particles are extracted from target surface 

contributing to sputtering along with the inert gas, promoting a higher sputter effect [25]. 

According to the chemical composition, it is observed that with increasing current density 

applied on Ag target, the Ag content increases being this effect already explained on the previous 

topic.

3.2 Structural analysis

The crystalline structure of the coatings was evaluated by means of XRD analysis and the 

results are shown in Figure 2, where the main identified crystalline phases are depicted, namely 

Ti (ICDD181718) and Ag (ICDD 181730), together with the crystalline peaks of PVDF [9]. 

The XRD analysis was performed on pure Ti and Ag coatings and also in Ti1-xAgx coatings 

representative of the different zones defined previously. 

XRD peaks corresponding to atomic planes (200) and (110) of β-PVDF (Figure 2a) indicate 

that the deposition conditions do not induce any phase change in the polymer. This means that 

the piezoelectric phase of PVDF is still present, and that, if not depoling of the material is 

induced during the deposition of the films, the piezoelectric response will be maintained (see 

later, Section 3.4).  It can be seen a peak shift to the left, possible due to the compressive residual 
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stress in the coatings [26]. Pure Ti coating crystallizes in a hexagonal closed packed structure, 

which represents the most stable titanium phase [27–29]. The XRD pattern of Ag coating 

suggests the presence of crystalline fcc-Ag. A magnification of the XRD patterns are shown in 

Figure 2b, where the Ag, Ti, TiAg (ICDD 605934) and Ti2Ag (ICDD 605935) crystalline peaks 

are identified. According to Figure 2a) and b) the Ti1-xAgx coatings present very similar XRD 

patterns, with the most intense peak at about 37.8º, which is close to the TiAg (013) diffraction 

peak. The formation of TiAg phase was previously reported for TiAg coatings deposited by 

magnetron sputtering [14]. However, taking into account that the titanium, silver and TiAg peaks 

show similar values, it is difficult to accurately identify the presence of the different phases. In 

the Ag/Ti(0.11) coating, in addition to the TiAg phase, the presence of Ti(002) peak can also be 

identified, which suggests that the coating is composed by a mixture of crystalline TiAg and Ti 

phases. This was somehow predictable since the amount of Ti present in the coating is high (89.8 

at.%), which means that the TiAg phase is formed until the Ag is consumed and the remaining 

titanium forms a crystalline Ti phase. Regarding the coatings with higher Ag contents (40.8 at.% 

Ag (Ag/Ti(0.69)) and 78.8 at.% Ag (Ag/Ti(3.71)), it can be found that the diffraction peak of 

Ti(002) disappears, which suggests that the crystalline titanium phase is not present in these 

coatings. In fact, the diffraction patterns of Ti1-xAgx coatings representative of zone 2 and 3 are 

very similar, both showing comparable full width at half maximum (FWHM). The only 

difference in these two coatings is the presence of a diffraction peak at about 43º for the coating 

Ag/Ti(3.71) (see Figure 2a), which corresponds to the diffraction peak of TiAg(110), thus 

suggesting a change in the orientation. The diffraction patterns of Ag/Ti(0.69) and Ag/Ti(3.71), 

suggest the presence of TiAg phase, however, the presence of both Ti and Ag cannot be 
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discarded, especially for the coating with higher Ag content, where Ag phases should be present 

taking into account the high Ag content (78.8 at.%).

3.3 Topography and Morphology 

SEM and AFM analyses were performed in order to evaluate surface characteristics and the 

presence of Ag nanoclusters on the surface. The SEM micrographs of coatings representative of 

different Zones (identified in Figure 1) are depicted in Figure 3. 

Since β-PVDF is anisotropic, the deposited thin film (Ti1-xAgx) replicates the underlying 

substrate surface showing a preferential accumulation of thin film along the crest of the 

longitudinal polymer microstructure obtained during the mechanical stretching to obtain the β

polymer phase [9,12,30]. The co-deposition of Ag and titanium nitride (TiN) [31]; carbonitride 

(TiCN) [32] and oxide (TiO2) [33]  results in the formation of nanocomposites whit Ag 

nanoparticles embedded in the matrix coating, being the size of these nanoparticles strongly 

dependent on the amount of silver incorporated in the coating. The formation of Ag 

nanoparticles is related to the immiscibility of Ag in these matrixes. It was reported [14] that 

TiAg coatings were composed of TiAg clusters segregated from the Ti hexagonal grain 

boundaries, which appear as bright spots in SEM micrographs.  In order to clarify if clusters of 

different phases (Ag or TiAg) were present, SEM analysis was performed with magnifications up 

to 200.000x (not shown) and also in backscattered electron mode (BSE) (shown in the inset), 

which allows to obtain the elemental contrast between elements of different atomic mass, where 

heavier phases should appear brighter. The XRD analysis suggested the formation of crystalline 

TiAg phases, combined with crystalline Ti phase (coatings of zone 1) and the formation of TiAg 

phases possibly combined with Ag and Ti phases in the coatings of zone 2 and 3. According to 
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the results obtained from SEM analysis (Figure 3), the coatings are homogeneous and no clusters 

were found. 

Figure 4 shows AFM images of the Ti; Ag and Ti1-xAgx films deposited on silicon. The AFM 

images suggest that the coatings of zone 1 and zone 3 show similar morphologies, with 

roughness values between 3 nm to 5 nm, while the coating of zone 2 shows a smoother surface 

with a slightly lower roughness value (2 nm). Still, no large variations are observed between the 

tested coatings.

3.4 Sheet resistivity and piezoelectric d33 response

Figure 5 shows the coatings resistivity and piezoelectric response as a function of silver 

content in the coatings. Sheet resistivity shows a typical behavior of a binary alloy, according to 

literature [34]. 

When Ag is added to titanium, the sheet resistivity will increase with increasing Ag 

concentration. It is apparent that when it reach 100 at. % of Ag and consequently 0 at. % of Ti, 

the electrode behaves as a pure metal so the resistivity must be small. So the resistivity vary from 

10.62 Ω/sq for 100 % of Ti and 0.12 Ω/sq for 100% of Ag. Therefore, resistivity versus Ag 

content must pass through a maximum, which for the Ti-Ag alloy is around ≈ 40 at. %. The 

coated polymer piezoelectric d33 response as a function of silver content is similar for the 

different samples. The values of the piezoelectric response vary from 19.6 pC N-1 to 27.6 pC N-1. 

Taking into account the typical range of piezoelectric d33 values obtained for this materials [9], it 

is concluded that the deposition process does not modify the piezoelectric response of the 

material [30]. Thus, the electrodes deposited by sputtering on the PVDF surface under the 
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conditions proposed in this investigation, allow maintaining the functional piezoelectric response 

of the polymer and its use for sensor and actuator applications. 

4. Conclusions

Ti, Ag and Ti1-xAgx thin films with different Ag/Ti atomic ratios were deposited on 

piezoelectric PVDF polymers by magnetron sputtering. The main goal of this investigation is to 

determine: i) if it is possible to deposit electrodes in PVDF polymeric films without causing any 

structural damage on the polymeric substrate and keeping the piezoelectric properties inherent to 

PVDF and ii) to evaluate the effect of thin films composition on the electrical response of PVDF 

coated sensors. 

 Ti1-xAgx thin films were divided in three different zones, according to the variations in the 

chemical composition, structure and electrical response: zone 1, with Ti rich coatings, with 

Ag/Ti atomic ratios ranging from 0 to 0.11, zone 2 which consists in a mixture of Ag and Ti 

(with Ag/Ti between 0.22 and 0.69) and zone 3, with silver rich coatings (Ag/Ti atomic ratios 

ranging from 1.27 to 3.71).  XRD analysis suggested the presence of crystalline Ti phase in 

pure titanium coating and fcc-Ag phase in pure silver coating. The coatings of zone 1 are 

characterized by the presence of crystalline TiAg phase and Ti phase, while Ti1-xAgx thin films 

of zone 2 and zone 3 show similar XRD patterns, which suggest the formation of TiAg phase. 

However, since all the possible crystalline phases (Ti,Ag and TiAg), show very similar XRD 

patterns it is difficult to accurately identify the phases present in these thin films. Another 

important feature is the presence of -PVDF phase diffraction peaks, which indicate that the 

deposition conditions did not damage the polymeric substrate. SEM images revealed that the 

topography of the anisotropic polymer (β-PVDF) tends to enhance a preferred nucleation of the 
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Ti1-xAgx thin films on the longitudinal crest of the polymer microstructure. The AFM analysis 

suggested that the coatings show very similar morphologies, with surface roughness ranging 

from 2 nm to 5 nm.

Sheet resistivity values show a typical behavior of a binary alloy system, with low resistivity 

values for coatings of zone 1 (Ti rich) and zone 3 (Ag rich) and a slightly higher resistivity 

values in zone 2.  The piezoelectricity of the different samples are very similar and presented 

values from 19.6 6 pC N-1 to 27.6 pC N-1. 
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Figure Captions

Figure 1 – Variation of Ti and Ag contents (at.%) with the current density ratio (JAg/JTi).

Figure 2 - XRD patterns of Ti1-xAgx coatings deposited with different Ag/Ti atomic ratios (Cu 

Kα radiation). Magnifications of the XRD patterns are shown in Figure 2b.

Figure 3 – SEM micrographs on SE mode of different Ti1-xAgx thin films deposited on PVDF

representative of the three different zones. The inceptions are micrographs in BSE mode for 

coatings Ag/Ti (0.11), Ag/Ti (0.69) and Ag/Ti (3.71). 

Figure 4 - AFM images of coatings on silicon substrate with a scan range of 5 μm × 5 μm.

Figure 5 – Relationship between sheet resistivity (■), piezoelectric coefficients (d33) (□) and the 

Ag content of the different thin films.
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Tables

Table 1– Chemical composition, resistivity, roughness of Ti1-xAgx coatings and some 

experimental details.
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Table 1

Chemical 
Composition 

(at. %)
Coating Zone

JTi

(mA/cm2)
JAg

(mA/cm2)
JAg/JTi

Deposition 
rate 

(nm/h)
Ti Ag

Ag/Ti
Resistivity 
(Ω/sq)

Roughness 
(nm)

Ti 5■ 0 0 437.2 100 0 0 10.62±0.48 5.30

Ag/Ti 
(0.02)

4□ 0.05■ 0.0125 590 98 2 0.02 20.30±0.12

Ag/Ti 
(0.11)

Z1

7.5■ 0.05□ 0.0067 891.8 89.8 10.2 0.11 13.87±0.29 3.55

Ag/Ti 
(0.21)

5■ 0.05□ 0.01 507.0 82.7 17.3 0.21 27.09±1.13

Ag/Ti 
(0.69)

Z2

3.5■ 0.15□ 0.043 336.7 59.2 40.8 0.69 28.05±0.17 1.97

Ag/Ti 
(1.27)

3■ 0.25□ 0.083 405.2 44 56 1.27 10.24±0.06

Ag/Ti 
(1.70)

4■ 0.5□ 0.125 752.0 37.1 62.9 1.70 6.91±0.33

Ag/Ti 
(3.71)

2.5■ 0.5□ 0.2 629.6 21.2 78.8 3.71 4.21±0.11 3.42

Ag

Z3

0 2.5■ - 658.6 0 100 - 0.12±0.01 3.93
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Figure 1
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Figure 2b
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Figure 3

http://ees.elsevier.com/apsusc/download.aspx?id=1276301&guid=c1a6eb8f-5892-4dcc-b9fc-218248d0d4f0&scheme=1


Page 26 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 4
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Figure 5
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