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Abbreviations 

ANOVA, analysis of variance; 

FBS, fetal bovine serum; 

GCL, ganglion cell layer; 

IL-1β, interleukin-1 beta;  

INL, inner nuclear layer;  

IPL, inner plexiform layer;  

NMDA, N-Methyl-D-aspartate; 

NO, nitric oxide;  

OCT, optimal cutting temperature gel; 

ONL, outer nuclear layer; 

OPL, outer plexiform layer; 

PBS, phosphate-buffered saline;  

PFA, paraformaldehyde; 

PHO, photoreceptor layer;  

RGC, retinal ganglion cells; 

RT, room temperature; 

STZ, streptozotocin;  

TBS, tris-buffered saline; 

TBS-T, tris-buffered saline containing Tween-20; 

TNF-α, tumor necrosis factor alpha;  

TUJ-1, neuron-specific class III beta-tubulin. 

 

Abstract  

Diabetic retinopathy is a leading cause of vision loss and blindness. Disruption of 

axonal transport is associated with many neurodegenerative diseases and might also 

play a role in diabetes-associated disorders affecting nervous system. We investigated 

the impact of type 1 diabetes (2 and 8 weeks duration) on KIF1A, KIF5B and dynein 
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motor proteins in the retina. Additionally, since hyperglycemia is considered the main 

trigger of diabetic complications, we investigated whether prolonged exposure to 

elevated glucose could affect the content and distribution of motor proteins in retinal 

cultures. The immunoreactivity of motor proteins was evaluated by 

immunohistochemistry in retinal sections and by immunoblotting in total retinal extracts 

from streptozotocin-induced diabetic and age-matched control animals. Primary retinal 

cultures were exposed to high glucose (30 mM) or mannitol (osmotic control; 24.5 mM 

plus 5.5 mM glucose), for seven days. Diabetes decreased the content of KIF1A at 8 

weeks of diabetes as well as KIF1A immunoreactivity in the majority of retinal layers, 

except for the photoreceptor and outer nuclear layer. Changes in KIF5B 

immunoreactivity were also detected by immunohistochemistry in the retina at 8 weeks 

of diabetes, being increased at the photoreceptor and outer nuclear layer, and 

decreased in the ganglion cell layer. Regarding dynein immunoreactivity there was an 

increase in the ganglion cell layer after 8 weeks of diabetes. No changes were detected 

in retinal cultures. These alterations suggest that axonal transport may be impaired 

under diabetes, which might contribute to early signs of neural dysfunction in the retina 

of diabetic patients and animal models. 

 

Key words  

Diabetes; retina; axonal transport; kinesin; dynein. 

 

1. Introduction  

Diabetic retinopathy is the most common microvascular complication of diabetes 

mellitus and is a leading cause of vision loss and blindness among working-age adults 

in Western countries. However, increasing evidence has shown that the neural 

components of the retina are also affected (Antonetti et al., 2006). Alterations in 

electroretinograms in diabetic patients and animals, and loss of colour and contrast 

sensitivity are early signs of neural dysfunction in the retina (Roy et al., 1986, Daley et 
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al., 1987, Sakai et al., 1995), demonstrating that the neural retina can be also affected 

by this disease.  

Neurons are highly polarized cells, with long axons, which constitute a major challenge 

to the movement of proteins, vesicles, and organelles between cell bodies and 

presynaptic sites. To overcome this, neurons possess specialized transport machinery 

consisting of cytoskeletal motor proteins (kinesins and dynein) generating directed 

movements along cytoskeletal tracks. Axonal transport motor proteins require ATP 

demands, which implies the localization of functional mitochondria along the axons. 

Mobile mitochondria can become stationary or pause in regions that have a high 

metabolic demand and can move again rapidly in response to physiological changes. 

Defects in mitochondrial transport are implicated in the pathogenesis of several major 

neurological disorders (Sheng and Cai, 2012). Axonal transport is therefore crucial to 

maintain neuronal viability, and any impairment in this transport may play a role in the 

development or progression of several diseases (De Vos et al., 2008). 

A decrease in the levels of mRNAs encoding for neurofilament proteins was found in 

the dorsal root ganglia of streptozocin-induced diabetic rats (Mohiuddin et al., 1995). 

Additionally, slow axonal transport of neurofilament and microtubule components is 

reduced, leading to a decrease in axonal caliber (Medori et al., 1988). These evidences 

suggest that deficits in axonal transport may contribute to neuronal changes observed 

in diabetes in neural tissues. To our knowledge, only a few studies have evaluated the 

effect of diabetes on axonal transport in the retina and most of them have focused in 

studying fluoro-gold labelling in retinal ganglion cells (RGCs) (Zhang et al., 1998, Ino-

Ue et al., 2000, Zhang et al., 2000). Despite these evidences, the impact of diabetes in 

motor proteins (kinesins and dynein) in the retina has not been addressed. 

Nevertheless, potential changes in their content and distribution might underlie some 

changes already observed in axonal transport in the retina and visual pathway under 

diabetic conditions (Zhang et al., 2000, Fernandez et al., 2012).  
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Previously, we found that diabetes changes the levels of several synaptic proteins in 

retinal nerve terminals, with no changes in total retinal extracts, suggesting that axonal 

transport of those proteins may be impaired in diabetes (Gaspar et al., 2010a). 

Hyperglycemia is considered the main pathogenic factor for the development of 

diabetic complications. We found that high glucose leads to an accumulation of 

vesicular glutamate transporter-1, syntaxin-1 and synaptotagmin-1 at the cell body in 

hippocampal cell cultures, further suggesting that axonal transport of these proteins to 

nerve terminals might be affected under hyperglycemic conditions (Gaspar et al., 

2010b). Recently, we showed that mRNA levels and the content of kinesin motor 

proteins are altered in the hippocampus of diabetic rats (Baptista et al., 2013). We also 

demonstrated that high glucose leads to changes in the immunoreactivity of motor 

proteins and synaptic proteins specifically in the axons of hippocampal neurons further 

suggesting that anterograde axonal transport may be impaired in the hippocampus 

(Baptista et al., 2013). These changes detected in the hippocampus of diabetic rats 

lead us to check whether similar changes could also be occurring in the retina under 

diabetes. Therefore, in this work, we aimed to study the effect of diabetes and also high 

glucose per se (prolonged exposure for 7 days), mimicking hyperglycemic conditions, 

on the content and distribution of the motor proteins KIF1A (kinesin that transports 

synaptic vesicle precursors), KIF5B (kinesin involved in mitochondrial transport and in 

the transport of synaptic vesicle precursors and membrane organelles) and dynein 

(motor protein for retrograde axonal transport) in diabetic animals and primary rat 

retinal cell cultures. Since motor proteins need ATP to carry cargoes along the axons, 

the distribution of mitochondria was also analyzed in retinal neural cell cultures 

exposed to high glucose. 

 

2. Material and methods 

2.1 Animals  
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Male Wistar rats (Charles River Laboratories), eight weeks-old, were randomly 

assigned to control or diabetic groups. All procedures were in agreement with the EU 

Directive 2010/63/EU for animal experiments. Diabetes was induced with a single 

intraperitoneal injection of streptozotocin (STZ; 65 mg/kg, freshly dissolved in 10 mM 

sodium citrate buffer, pH 4.5) (Sigma, St. Louis, MO, USA). Hyperglycemic status 

(blood glucose levels exceeding 250 mg/dl) was confirmed two days after STZ 

injection with a glucometer (Elite, Bayer, Portugal). Before sacrifice, rats were 

weighted and blood samples were collected for measurement of glucose. Diabetic rats 

and age-matched controls were anesthetized with halothane and then sacrificed, 2 and 

8 weeks after the onset of diabetes. 

 

2.2 Preparation of total retinal extracts 

The eyes of diabetic and age-matched control animals were enucleated and placed in 

cold phosphate-buffered saline (PBS, in mM: 137 NaCl, 2.7 KCl, 10 Na2HPO4, 1.8 

KH2PO4, pH 7.4, at 4ºC). Retinas were dissected and lysed in RIPA buffer (50 mM 

Tris–HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.5% DOC, 0.1% 

SDS, 1 mM DTT) supplemented with complete miniprotease inhibitor cocktail tablets 

and phosphatase inhibitors (10 mM NaF and 1 mM Na3VO4). Then, lysates were 

sonicated and centrifuged at 16,000 x g for 10 min at 4ºC. The supernatant was 

collected and stored at -80ºC until use. 

 

2.3 Primary cultures of rat retinal neural cells 

Retinal cell cultures were obtained from the retinas of 3–5 days-old Wistar rats as 

previously described (Santiago et al., 2006). Cells were plated at a density of 2.0x106 

cells per cm2 on poly-D-lysine substrate (0.1 mg/ml) and were maintained at 37ºC in a 

humidified incubator with 5% CO2/air. The concentration of glucose in control 

conditions was 5 mM. After 2 days in culture, cells were incubated with 25 mM D-

glucose (30 mM final concentration, with 5 mM from culture medium) or 25 mM D-
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mannitol (plus 5 mM glucose from culture medium), which was used as an osmotic 

control, and maintained for additional 7 days in culture (nine days in culture). 

 

2.4 Immunohistochemistry in retinal sections 

2.4.1 Preparation of cryosections 

Rats from each experimental group were deeply anesthetized with ketamine/xylazine 

and intracardially perfused with 0.1 M PBS, followed by 4% paraformaldehyde (PFA) in 

0.1 M PBS. The eyes were enucleated, washed in ice-cold PBS and fixed in 4% PFA in 

PBS for 1 h. The cornea was removed and the posterior segments were fixed in 4% 

PFA in PBS for an additional period of 5 h. Tissue samples were transferred to 20% 

sucrose buffer overnight at 4°C for cryoprotection and then were embedded in OCT 

(Shandon Cryomatrix, Shandon, USA). The blocks were stored in a deep freezer (-

80ºC) until use. Transverse sections with 12 µm were obtained on a cryostat (Leica 

CM3050S, Nussloch, Germany) at -20ºC. The cryosections were then collected on 

gelatin-coated glass slides and allowed to air dry for 1 h. Retina sections were then 

stored at -20ºC for later use. 

 

2.4.2 Immunohistochemistry 

For immunostaining, frozen sections were placed 45 min at room temperature RT. After 

thawing, the sections were fixed in cold acetone (-20ºC) during 10 min and 

subsequently hydrated 3 times in PBS, during 10 min each time, to remove OCT. 

Sections were permeabilized with 0.25% Triton X-100 in PBS, for 30 min, and blocked 

with 5% fetal bovine serum (FBS) in PBS, for 30 min. Then, sections were incubated 

with primary antibodies (listed in Table 1) at 4°C,  overnight, in a humid atmosphere, to 

avoid tissue dehydratation. After washing in PBS, a conjugated secondary antibody 

plus DAPI (1:5,000), to stain cell nuclei, were added for 1 h in the dark, at RT. After 

washing the sections in PBS, coverslips were mounted over the retinal sections using 
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glycergel (Dako mounting medium). Stained sections were observed with a laser 

scanning confocal microscope LSM 710 META (Zeiss, Germany).  

 

2.4.3 Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling 

(TUNEL) assay  

TUNEL assay was performed in retinal sections according to the manufacturer 

instructions (Promega, USA). Nuclei were counterstained with DAPI (1:5,000) and the 

sections were mounted using Dako glycergel mounting medium. TUNEL-positive cells 

were counted at the GCL, and expressed as an average from the four retinal sections 

per condition normalized to the retina length. Representative images were acquired 

with a laser scanning confocal microscope (Zeiss LSM 710). 

 

2.4.4 Immunofluorescence quantification of retinal slices 

A semi-quantitative determination of immunoreactive product densities at the level of 

the retinal layers was performed using ImageJ 1.42 software. In order to determine the 

fluorescence intensity of motor proteins (KIF1A, KIF5B and dynein), slides containing 

retinal slices from control and diabetic groups were blind coded. Sections from each 

immunohistological experiment, consisting of samples from control and diabetic group, 

were captured under identical conditions. Typically, four retinal sections from each 

animal were used for quantification. Random window sampling within the layers was 

carried out for quantification so that the intrinsic variability in the expression was 

appropriately quantified. To remove tissue background, for each image, a negative 

control (primary antibody omitted) of coverslipped tissue at the similar location was 

imaged, and background values were then subtracted from the experimental values, 

which were expressed in fluorescence arbitrary units (AU). Product densities were 

averaged across the four sections from each retina and expressed as mean 

percentage change; the percentage change across the control and diabetic groups was 

obtained and expressed as mean ± SEM. Although the intensity of staining varied from 
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one experiment to another, within a single experiment the application of primary and 

secondary antibodies, exposure times and acquisition image settings were uniform. 

This approach provides a measurement of the relative percentage change among 

control and diabetic groups based on the staining density in a given retinal layer.  

 

2.5 RNA extraction and cDNA synthesis 

Total RNA from the two retinas from control and diabetic rats was isolated using the 

RNeasy Mini Kit (Qiagen, Germany), as previously described (Baptista et al., 2013). 

 

2.6 Primer design and Quantitative real time polymerase chain reaction 

Primer design and evaluation for quantitative real time polymerase chain reaction 

(qRT-PCR) was performed exactly as previously described (Baptista et al., 2013). Final 

primer sequences and amplicon lengths are shown in Table 2.  

qRT-PCR and data analysis were performed also as previously described (Baptista et 

al., 2013). The data analysis was based on 5 independent biological replicates per 

group. The results were expressed as the mean ± SEM. Data were analyzed by the 

unpaired Student's t-test (IBM SPSS Statistics, USA) to determine differences in gene 

expression between groups. Differences were considered statistically significant when 

p<0.05. 

 

2.7 Preparation of extracts of cultured retinal cells 

Cells were rinsed twice with ice-cold PBS and then lysed with RIPA buffer 

supplemented with complete miniprotease inhibitor cocktail tablets and phosphatase 

inhibitors. Lysates were incubated on ice for 30 min and then centrifuged at 16,100 x g 

for 10 min at 4ºC. The supernatant was collected and stored at -80ºC until use.  

 

2.8 Western blot analysis 
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The protein concentration of each sample was determined by the bicinchoninic acid 

(BCA) protein assay (Pierce Biotechnology, Rockford, IL, USA). The samples were 

denaturated by adding 6x concentrated sample buffer (0.5 M Tris, 30% glycerol, 10% 

SDS, 0.6 M DTT, 0.012% bromophenol blue) and heating for 5 min at 95ºC. Equal 

amounts of protein were loaded into the gel and proteins were separated by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), using 6-8% gels. 

Proteins were transferred electrophoretically to PVDF membranes (Millipore, Billerica, 

Massachusetts, USA) and then the membranes were blocked with 5% low-fat milk in 

Tris-buffered saline (137 mM NaCl, 20 mM Tris-HCl, pH 7.6) containing 0.1% Tween-

20 (TBS-T) for 1 h at room temperature. Membranes were incubated with primary 

antibodies (listed in Table 1) overnight at 4ºC. After washing for 1 h in TBS-T with 0.5% 

low-fat milk, the membranes were incubated with an anti-mouse or anti-goat alkaline 

phosphatase-linked IgG secondary antibody (1:10,000; GE Healthcare, 

Buckinghamshire, UK) in TBS-T with 1% low-fat milk for 1 h at room temperature. After 

washing for 1 h in TBS-T with 0.5% low-fat milk, the membranes were processed for 

protein detection using the enhanced chemifluorescence substrate (ECF; GE 

Healthcare). Fluorescence was detected on an imaging system (Thyphoon FLA 9000, 

GE Healthcare) and the digital quantification of bands immunoreactivity was performed 

using ImageQuant 5.0 software (Molecular Dynamics, Inc., Sunnyvale. CA, USA). The 

membranes were then reprobed and tested for β-actin immunoreactivity (1:5,000; 

Sigma) or β-III tubulin (1:5,000; Covance) to prove that similar amounts of protein were 

applied to the gels.  

 

2.9 Immunocytochemistry 

Retinal cell cultures were washed with PBS and fixed with 4% PFA and 4% sucrose for 

10 min at RT. Cells were then washed and permeabilized with 1% Triton X-100 in PBS 

for 10 min at RT. Non-specific binding was prevented incubating cells with 5% 

FBS/0.2% Tween-20 in PBS for 20 min. Cells were incubated with the primary 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

antibodies (listed in Table 1) for 2 h at RT. After incubation, cells were rinsed with PBS 

and incubated with the secondary antibodies for 1 h at RT in the dark. The nuclei were 

stained with DAPI (1:5,000). Upon rinsing with PBS, the coverslips were mounted on 

glass slides using Dako Fluorescence mounting medium (Dako, Denmark). 

Preparations were visualized in a laser scanning confocal microscope LSM 710 META 

(Zeiss, Germany). Quantitative analysis of immunocytochemistry data was performed 

using ImageJ 1.42 software as previously described (Baptista et al., 2013). 

 

2.10 Statistical analysis 

Statistical comparisons between diabetic animals and respective age-matched controls 

were performed using the unpaired Student’s t-test. Variance analysis was not 

undertaken since the effect of age on the content of motor proteins was not the aim of 

this study. Thus, gels were always loaded with samples from age-matched animals and 

not from animals with different ages. Statistical significance for the analysis of retinal 

cell cultures protein content was determined by using one-way ANOVA, followed by 

Dunnett’s post hoc test. Quantitative analysis of immunofluorescence data was 

performed using ImageJ and statistical analysis between control and diabetic animals 

was performed using the unpaired Student’s t-test. Differences were considered 

significant for p<0.05. 

 

3. Results  

3.1 Animal body weight and glucose blood levels 

Animal body weight assessed prior the induction of diabetes was similar between the 

two groups (255.7±3.5 g for control animals and 253.4±3.4 g for diabetic group), as 

well as the blood glucose levels (89.1±1.4 mg/dl for controls and 86.7±5.7 mg/dl for 

diabetic group). The average weight and blood glucose levels for both diabetic and 

aged-matched control rats at the time of death are given in Table 3. A marked 

impairment in weight gain occurred in diabetic rats comparing to age-matched controls 
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in all time points analyzed. Diabetic animals also presented significantly higher blood 

glucose levels when compared to age-matched controls. 

 

3.2 Diabetes decreases the protein levels of KIF1A in total retinal extracts 

The impact of diabetes in motor proteins involved in axonal transport in the retina is 

unknown. We analyzed the mRNA levels and protein content of KIF1A, KIF5B, and 

dynein in total retinal extracts from diabetic animals and age-matched controls. At 2 

weeks of diabetes, no significant changes were detected in the mRNA levels or protein 

content of KIF1A and KIF5B. However, a significant decrease was found at 8 weeks of 

diabetes in KIF1A protein levels in total retinal extracts (reduction to 69.6±6.0% of 

control), whereas KIF5B levels remained unchanged. Moreover, no significant 

differences were detected between diabetic and age-matched control animals in dynein 

mRNA levels or protein content at 2 and 8 weeks of diabetes (Figure 1). 

 

3.3 Diabetes decreases KIF1A immunoreactivity  

Immunoreactivity of KIF1A across the retinal layers was also analyzed in diabetic and 

age-matched control rats. No significant changes were observed in KIF1A 

immunoreactivity in the retina at 2 weeks of diabetes, compared to control. However, at 

8 weeks of diabetes there was a significant decrease in KIF1A immunoreactivity in the 

majority of retinal layers (Figure 2). A reduction to 52.7±11.3%, 48.1±9.2%, 

51.4±10.5% and 38.7±9.5% was detected in the outer plexiform layer (OPL), the inner 

nuclear layer (INL), the inner plexiform layer (IPL) and the ganglion cell layer (GCL), 

respectively. 

 

3.4 Diabetes changes KIF5B immunoreactivity in the retina 

No differences were found in the content of KIF5B in total retinal extracts or in the 

distribution of KIF5B at 2 weeks of diabetes. However, by immunohistochemistry it was 

detected a significant increase in KIF5B immunoreactivity in the outermost retinal 
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layers at 8 weeks of diabetes (Figure 3), namely at the outer and inner segments of 

photoreceptor layer (PHO) and at the outer nuclear layer (ONL), to 166.1±14.3% and 

138.7±13.2%, respectively, comparing to age-matched controls. Conversely, a 

significant decrease in the GCL to 76.9±8.6%, comparing to age-matched controls, was 

detected at 8 weeks of diabetes (Figure 3). 

 

3.5 Diabetes increases the dynein immunoreactivity at GCL 

As mentioned before, in total retinal extracts, dynein levels remained similar to those 

found in control animals at 2 and 8 weeks of diabetes (Figure 1). Nevertheless, by 

immunohistochemistry, it was detected a significant increase (122.1±9.2% comparing 

to age-matched controls) in dynein immunoreactivity in the GCL at 8 weeks of diabetes 

(Figure 4). 

 

3.6 High glucose does not change KIF1A, KIF5B, and dynein immunoreactivity in 

retinal cultures 

Hyperglycemia is considered the main cause of diabetes complications, triggering 

various processes that may induce cell dysfunction. KIF1A and KIF5B are motor 

proteins that transport cargoes from the cell body to the synapse, whereas dynein is 

responsible for retrograde axonal transport. Exposure of cultured retinal cells to 

elevated concentrations of D-glucose (30 mM) or D-mannitol (24.5 mM + 5.5 mM 

glucose), for 7 days, did not induced changes in total protein content of KIFA, KIF5B 

and dynein (Figure 5A). Additionally, the morphology of retinal neurons was analyzed 

by immunocytochemistry using a TUJ-1 (neuron-specific class III β-tubulin) antibody. 

High glucose and mannitol did not induce any alteration in neuronal morphology 

(Figure 5B). The immunoreactivity of KIF1A, KIF5B and dynein, as well as the 

fluorescence of mitotracker (fluorescent dye that stains mitochondria in live cells) also 

showed that high glucose and mannitol did not induce any changes when compared to 

control (Figure 5B). Nevertheless, other factors besides hyperglycemia, such as the 
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increase in the levels of pro-inflammatory mediators, may possibly contribute for the 

changes detected in motor proteins in the retina of diabetic animals. In fact, 

inflammatory stimuli can induce changes in the levels of motor proteins in cultured 

retinal neural cells (Figure S1). KIF1A levels significantly decreased after exposure to 

IL-1β (10 ng/ml; reduction to 64.9±8% of control) or LPS (1 µg/ml; reduction to 

76.6±7% of control) for 72h (Figure S1). 

 

 

4. Discussion 

In the current study, we evaluated the impact of diabetes and elevated glucose on key 

proteins involved in axonal transport in retinal cells. We show that diabetes alters the 

content of KIF1A and the distribution of KIF1A, KIF5B and dynein along retinal layers at 

8 weeks of diabetes, suggesting that anterograde and retrograde transport mediated by 

these motor proteins may be impaired.  

Previously, we have demonstrated that the mRNA levels and content of KIF1A and 

KIF5B motor proteins are altered in the hippocampus of diabetic rats. In this study, we 

found no correlation between protein and mRNA expression levels of KIF1A in the 

retina, indicating that the changes detected at protein level appear not to be caused by 

changes at the transcript level. Because there are various levels of post-transcriptional 

and post-translational regulation, the alterations in the transcript levels do not always 

correlate with the alterations observed at the protein levels, which is the case for KIF1A 

at least at these time points analyzed.  

In a preceding study we have found a decrease in the content of several synaptic 

proteins important for neurotransmission in retinal nerve terminals at 2 and/or 8 weeks 

of diabetes (Gaspar et al., 2010a, Baptista et al., 2011). Since anterograde axonal 

transport is responsible for carrying proteins to nerve terminals, which are involved in 

synaptic transmission, the decrease in the content of synaptic proteins in nerve 

terminals may be a consequence of deficits in their transport. In fact, in cones lacking 
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KIF3A (kinesin present in photoreceptors), changes in photoreceptor properties occur, 

showing the importance of kinesin in the visual pathway (Avasthi et al., 2009). 

Moreover, trafficking of membrane proteins involved in phototransduction to the outer 

segments is impaired, resulting in progressive cone degeneration and absence of a 

photopic electroretinogram (Avasthi et al., 2009). Another study in the retina showed 

that, after 24 and 72 h of intravitreal injection of NMDA, an early elevation of KIF5B 

protein levels in the retina occurs, whereas a significant decrease is observed in the 

optic nerve, thus suggesting that a depletion of KIF5B precedes axonal degeneration of 

the optic nerve in NMDA-induced neurotoxicity (Kuribayashi et al., 2010). Moreover, it 

was found a deficit in the anterograde transport from the retina to the superior 

colliculus, 6 weeks after the induction of diabetes with STZ (Fernandez et al., 2012). 

Possibly, similar changes as those we detected in our diabetic model, namely in the 

content of KIF1A and distribution of KIF1A and KIF5B in the retinal layers at 8 weeks of 

diabetes, may also be occurring at 6 weeks of diabetes which may contribute therefore 

to the deficits observed in the anterograde transport from the retina to the superior 

colliculus. 

In the opposite direction, there is the retrograde axonal transport system, which 

transports, among other molecules, neurotrophic factors that influence steady-state 

activities in the cell body. It was previously reported a progressive deficit in the 

retrograde axonal transport, mainly in large axons, that is evident 1 month after 

diabetes induction and is not associated with RGC loss (Ino-Ue et al., 2000). In an 

experimental model of glaucoma, the expression of dynein light chain in RGC is 

downregulated, which could contribute to neuronal dysfunction and apoptosis (van 

Oterendorp et al., 2011). On the other hand, it was demonstrated that dynein heavy 

chain (chain that contains the site of ATP hydrolysis and is the force-generating part of 

the protein) accumulates at the optic nerve head with experimental intraocular pressure 

elevation in the rat, supporting the hypothesis that disrupted axonal transport in RGC 

may be involved in the pathogenesis of glaucoma (Martin et al., 2006). Here, we 
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studied the 74 kDa dynein intermediate chain subunit that forms a bridge between the 

heavy chain and dynactin subunits, which bind microtubules and the cargo to be 

transported. We found that there is an increase in dynein immunoreactivity in the GCL 

of diabetic rats after 8 weeks duration. This increase in dynein immunoreactivity might 

be due to impairments at microtubule network level and/or impairment in dynein motor 

function, leading to an accumulation of dynein. An alternative explanation is that dynein 

is being trapped at the cell body due to lack of recycling back to the axon terminals by 

kinesin. It has been shown that kinesin and dynein motors can co-localize on vesicular 

cargoes (Hendricks et al., 2010, Encalada et al., 2011). Also, it was demonstrated that 

there are direct interactions between kinesin motors and components of the 

cytoplasmic dynein complex (Deacon et al., 2003, Ligon et al., 2004). Importantly, 

kinesin-dependent transport is required to deliver dynein to the plus ends of 

microtubules in the periphery (Zhang et al., 2003, Baumann et al., 2012). When axonal 

transport is blocked by ligature, kinesin accumulates in the proximal site, whereas 

dynein accumulates both proximally and distally, consistent with the fact that dynein is 

firstly transported down the axon in order to initiate active transport back to the cell 

body. The opposite does not occur, since kinesin motors do not accumulate on the 

distal side of a ligature, and so dynein does not transport kinesins as transport cargos 

(Li et al., 2000). These observations are a possible explanation for the decrease in 

KIF5B immunoreactivity in the GCL. Likely KIF5B levels decrease at the cell bodies of 

RGCs compromising anterograde transport. Consequently, dynein might be trapped at 

the cell body due to lack of recycling back to the axon terminals by kinesin, which might 

be the cause of the increase in the dynein immunoreactivity at the GCL after 8 weeks 

of diabetes. Regarding the KIF5B accumulation at the inner/outer segments and cell 

bodies of photoreceptors, it may be due to the imbalance in protein degradation and 

synthesis or to axonal transport deficit due to changes in tracks (e.g. microtubules) (De 

Vos et al., 2008). Alternatively, an overexpression of KIF5B may function as a 

compensatory mechanism as an attempt of the system to re-establish the protein 
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levels. It is important to highlight that the changes reported in motor proteins are not 

due to changes or loss in neuronal structure. We evaluated several neural elements of 

the retina to control for cell loss or cellular changes. Firstly, we performed a TUNEL 

assay in retinal slices from 8 weeks diabetic rats. In the majority of retinal slices, we did 

not find any TUNEL-positive cell. As it can be observed in Figure S2 A, in a few retinal 

slices of diabetic rats we detected just one TUNEL-positive cell. Regarding counts of 

DAPI-stained cells at the level of the GCL, we did not find any changes after 8 weeks 

of diabetes. Neural apoptosis in the GCL has already been reported on the whole-

mounted diabetic rat retina (Barber et al., 1998). Barber and colleagues showed that an 

increase in the frequency of apoptosis occurred in whole-mounted rat retinas after 1, 3, 

6, and 12 months of diabetes. They also reported a decrease in the RGC number and 

inner plexiform layer thickness, which occurs after 7.5 months of STZ-induced diabetes 

in rats (Barber et al., 1998), whereas Kusari et al. reported a loss of RGCs at 4 weeks 

of STZ injection (Kusari et al., 2007). Moreover, an increase in the number of apoptotic 

RGCs was also demonstrated after 3 months of diabetes (Seigel et al., 2006). In our 

hands, we only detected one TUNEL-positive cell in the RGC layer in just one slide and 

detected TUNEL-positive cells in the ONL in just a few slices, after 8 weeks of 

diabetes, indicating that in our model there is not a pronounced cell death in diabetic 

retinas at 8 weeks of diabetes. Besides TUNEL-positive cells and DAPI-stained cell 

counts, we also did not detect any changes in the number of Brn3a-positive cells 

(ganglion cell marker) after 8 weeks of diabetes (Figure S2 B). No significant changes 

were detected in beta-III-tubulin immunoreactivity at this timepoint as well (Figure S2 

C). 

Regarding potential macroglial changes, by analyzing GFAP immunoreactivity we did 

not find any significant changes in the levels of this protein neither by western blotting 

nor by immunohistochemistry (Figure S3 A). Barber et al. described that after 8 weeks 

of diabetes, there was a reduction in GFAP immunoreactivity in astrocytes and 

increased GFAP immunoreactivity in small groups of Muller cells (Barber et al., 2000). 
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In our retinal slices, immunoreactivity was largely confined to the ganglion cell layer 

and no differences in the immunoreactivity of GFAP were detected between control 

and diabetic animals. Concerning microglial cells, we found that there was an 

increased number of Iba-1-positive microglial cells in the retina of diabetic animals 

(21.7±1.9 for diabetic animals whereas age-matched controls presented 17.0±0.7 Iba-

1-positive cells per mm of retina). Moreover, some cell bodies of Iba-1-positive cells 

appeared larger, with an amoeboid morphology, and with shorter processes in the 

retinas of diabetic animals (see inset in Figure S3 B), consistent with early microglia 

activation, as already had been described (Zeng et al., 2000, Barber et al., 2005, 

Gaucher et al., 2007) .  

Previously, we demonstrate that the mRNA levels and content of KIF1A and KIF5B 

motor proteins are altered in the hippocampus of diabetic rats. Together, with the 

results presented in this study, we can suggest that diabetes may affect axonal 

transport at central nervous system, possibly by changing the transport of cargoes 

(namely synaptic vesicles and mitochondria) since their transport is mediated by these 

kinesins and dynein, and ultimately contribute to neural changes underlying diabetic 

encephalopathy and retinopathy.  

Since hyperglycemia is considered the main factor underlying the development of 

diabetic complications, we evaluated whether prolonged exposure to high glucose per 

se, which simulates hyperglycemic conditions, could change the content of proteins 

involved in axonal transport in primary retinal cultures. Moreover, since KIF5 motors 

are responsible for the axonal transport of mitochondria, the fluorescence of 

mitotracker, a mitochondrial probe, was also evaluated. A decreased number of 

mitochondria in axons will likely decrease ATP supply to molecular motors, thus 

leading to decreased anterograde and retrograde movement of mitochondria and 

vesicles. High glucose did not induce any significant changes in the content and 

general distribution of motor proteins and mitochondria in retinal cultures. However, in 

this study we were not able to quantify the immunoreactivity of motor proteins 
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specifically in retinal neurons since we used mixed cultures and we were not able to 

isolate axons for quantification. Moreover, the neurons in these cultures are not viable 

in low density cultures, therefore we cannot completely discard the possibility that 

changes may be occurring specifically at the axonal level as we previously 

demonstrated in hippocampal neurons (Baptista et al., 2013). 

On the other hand, we cannot exclude the hypothesis that other factors, besides 

hyperglycemia, such as the lack of insulin or the increase in the levels of pro-

inflammatory mediators, may contribute for the changes in motor proteins detected in 

the retina of diabetic animals. In fact, in sensory neurons, the loss of insulin-dependent 

neurotrophic support may contribute to mitochondrial membrane depolarization, thus 

establishing a link between insulin and mitochondrial dysfunction in diabetic neuropathy 

(Fernyhough et al., 2003). Furthermore, retinal neurons depend on insulin receptor 

activity for survival (Barber et al., 2001). Long-term instability in retinal insulin signalling 

may impair insulin-dependent anabolic activities such as protein synthesis in the retina 

(Chihara, 1981) and increased cell death (Reiter and Gardner, 2003), suggesting that 

insulin signalling provides neurotrophic actions in the retina. Therefore, diabetic 

retinopathy may result in part from neurotrophin deficiency (Whitmire et al., 2011), 

similarly to peripheral neuropathy. In this study, retinal cells were cultured in the 

presence of fetal bovine serum, which makes impossible to address the question of the 

lack of insulin using these cell cultures. In fact, in the past, we tried to culture retinal 

cells without serum, using B27 supplement, but cultures did not differentiate properly 

and cells died. 

Several evidences indicate that diabetic retinopathy also has characteristics of a low-

grade chronic inflammatory disease and therefore, inflammation may also be a factor 

contributing to changes in axonal transport in diabetes. Increased production of 

cytokines, such as interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), 

up-regulation of cyclooxygenase-2, increased expression of adhesion molecules and 

increased leukocyte adhesion and vascular permeability (Miyamoto et al., 1999, Carmo 
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et al., 2000, Kowluru et al., 2003) have been demonstrated in the retina of diabetic 

animals. Additionally, in the retinas of STZ-induced diabetic rats the levels of IL-1β are 

also increased (Carmo et al., 1999, Kowluru and Odenbach, 2004, Gerhardinger et al., 

2005, Krady et al., 2005). Previously, it was shown that TNF-α induces perinuclear 

clustering of mitochondria in L929 cells. This clustering of mitochondria was 

microtubule-dependent and mimicked by immunoinhibition of conventional kinesin, 

therefore suggesting that TNF-α-induced mitochondrial clustering is caused by 

impaired kinesin-mediated transport of mitochondria (De Vos et al., 1998). Moreover, it 

was shown that TNF receptor-1 induces activation of kinase pathways, resulting in 

hyperphosphorylation of kinesin light chain and inhibition of kinesin activity (De Vos et 

al., 2000). In hippocampal neurons, nitric oxide released from activated microglia 

inhibits directed axonal movement of synaptic vesicle precursors containing 

synaptophysin and synaptotagmin (Stagi et al., 2005), and exposure of hippocampal 

neuronal cultures to TNF-α induces the dissociation of KIF5B from tubulin in axons and 

inhibits axonal transport of mitochondria and synaptophysin by reducing the mobile 

fraction via JNK (Stagi et al., 2006). Therefore, inflammatory cytokines may affect 

axonal transport motors and consequently contribute to the previous detected changes 

in synaptic proteins in the retina (Gaspar et al., 2010a, Baptista et al., 2011). Moreover, 

as an indication that inflammatory stimuli can induce changes in the levels of motor 

proteins, incubation of cultured retinal neural cells with IL-1β or LPS significantly 

decreased KIF1A levels, putting forward a possible explanation for the changes in 

KIF1A observed in the retinas of diabetic rats (Figure S1).  

 

5. Conclusions 

In summary, our data demonstrate that diabetes leads to changes in KIF1A, KIF5B and 

dynein motor proteins, which may contribute to impairments in anterograde and 

retrograde axonal transport and consequently to neuronal dysfunction in the retina. The 
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changes observed may be due to insulin deficiency or inflammation rather than 

hyperglycemia, or to a synergistic combination of these factors. 
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Figure Legends  

Figure 1. Diabetes decreases KIF1A protein content in the retina. The mRNA 

levels of KIF1A, KIF5B and dynein were assessed by RT-PCR (A), whereas protein 

levels were analyzed by immunoblotting (B) in total retinal extracts obtained from 

control and STZ-induced diabetic animals (2 and 8 weeks of diabetes). Representative 

Western blots are presented above the graphs, with the respective loading controls (β-

actin or β-III tubulin), to confirm that identical amounts of protein from control and 

diabetic samples were loaded into the gel. The results are expressed as percentage of 

age-matched controls, and data are presented as mean ± SEM of 4-7 animals. 

*p<0.05, significantly different from control as determined by the unpaired Student’s t-

test. 

 

Figure 2. Diabetes decreases KIF1A immunoreactivity along retinal layers. (A) 

The distribution of KIF1A was evaluated in retinas (retinal slices) isolated from control 

and STZ-induced diabetic animals (2 and 8 weeks of diabetes) by 

immunohistochemistry. Magnification 400x; Scale bar: 50 µm. White arrows indicate 
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the retinal layers where significant differences were detected comparing to age-

matched controls. (B) The immunoreactivity of KIF1A was quantified in each retinal 

layer by ImageJ. The results are expressed as percentage of age-matched controls, 

and data are presented as mean ± SEM of at least 6 animals per condition. ***p<0.001, 

significantly different from control as determined by the unpaired Student’s t-test. 

 

Figure 3. Diabetes alters the distribution of KIF5B in the retina. (A) The distribution 

of KIF5B was evaluated in retinas (retinal slices) isolated from control and STZ-induced 

diabetic animals (2 and 8 weeks of diabetes) by immunohistochemistry. Magnification 

400x; Scale bar: 50 µm. White arrows: significantly different from control. (B) The 

immunoreactivity of KIF5B was quantified in each retinal layer by ImageJ. The results 

are expressed as percentage of age-matched controls, and data are presented as 

mean ± SEM of at least 6 animals per condition. *p<0.05, **p<0.01, ***p<0.001, 

significantly different from control as determined by the unpaired Student’s t-test. 

 

Figure 4. Diabetes induces alterations in dynein immunoreactivity at GCL. (A) 

The distribution of dynein was evaluated in retinas (retinal slices) isolated from control 

and STZ-induced diabetic animals (2 and 8 weeks of diabetes) by 

immunohistochemistry. Magnification 400x; Scale bar: 50 µm. (B) The immunoreactivity 

of dynein was quantified in each retinal layer by ImageJ. The results are expressed as 

percentage of age-matched controls, and data are presented as mean ± SEM of at 

least 7 animals. ***p<0.05, significantly different from control as determined by the 

unpaired Student’s t-test. 

 

Figure 5. High glucose does not affect the content and distribution of KIF1A, 

KIF5B and dynein in retinal neural cell cultures. Cultured retinal cells were 

incubated with 25 mM D-glucose (final concentration 30 mM) or 25 mM D-mannitol 

(plus 5 mM glucose), which was used as an osmotic control, and maintained for 
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additional 7 days in culture. The concentration of glucose in control conditions was 5 

mM. (A) The protein levels of KIF1A, KIF5B and dynein were analyzed by western 

blotting. Representative images of protein immunoreactive bands are presented above 

the graphs, with the respective loading control (β-actin or β-III tubulin). The 

densitometry of each band was analyzed and the results are expressed as percentage 

of control ± SEM, of five independent experiments. Regarding total protein content, 

statistical significance was determined by using ANOVA, followed by Dunnett’s post 

hoc test. Differences were considered significant for p<0.05. (B) The protein levels and 

distribution of TUJ-1, KIF1A, KIF5B and dynein in the culture was analyzed by 

immunocytochemistry, as well as the intensity of fluorescence of mitotracker. 

Magnification 630x; Scale bar: 50 µm.  

 

Supplementary Data 

Figure Legend 

Figure S1. Inflammatory stimuli induce changes in the content of KIF1A in retinal 

neural cell cultures. Cultured retinal cells were exposed to IL-1β (10 ng/ml) or 

lipopolysaccharide (LPS; 1µg/ml) for 24h or 72h. The protein levels of KIF1A, KIF5B 

and dynein were analyzed by western blotting. Representative images of protein 

immunoreactive bands are presented above the graphs, with the respective loading 

control (β-actin). The densitometry of each band was analyzed and the results are 

expressed as percentage of control ± SEM, of five independent experiments. Statistical 

significance was determined by using ANOVA, followed by Dunnett’s post hoc test. 

*p<0.05, **p<0.01, significantly different from control. 

 

Figure S2. Diabetes does not induce a widespread retinal degeneration after 8 weeks 

of diabetes. (A) Cell death was evaluated in retinal slices of 8 weeks diabetic rats by 

the TUNEL assay and by DAPI-stained cells counts at the GCL. TUNEL-positive cells 

can be identified by green fluorescence (white arrow), whereas DAPI-stained cells at 
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the GCL are in blue (yellow arrow). (B) Diabetes does not induce changes in the 

number of Brn3a-positive cells (red arrow) in the retina after 8 weeks of diabetes. (C) 

Diabetes does not induce changes in the immunoreactivity of beta-III tubulin in the 

retina after 8 weeks of diabetes. The protein levels of beta-III tubulin were analyzed by 

western blotting. Representative images of protein immunoreactive bands are 

presented above the graph. The results are expressed as percentage of age-matched 

controls, and data are presented as mean ± SEM of 8 animals. The distribution of beta-

III tubulin was also evaluated in retinas (retinal slices) isolated from control and STZ-

induced diabetic animals (8 weeks of diabetes) by immunohistochemistry and no 

significant differences were detected in beta-III tubulin immunoreactivity. Statistical 

significance was determined by using the unpaired Student’s t-test.  

 

Figure S3. Diabetes increases the number of Iba-1-positive cells in the retina after 8 

weeks of diabetes, but not of GFAP-immunoreactivity. (A) The protein levels of GFAP 

were analyzed by western blotting. Representative images of protein immunoreactive 

bands are presented above the graph. The results are expressed as percentage of 

age-matched controls, and data are presented as mean ± SEM of 5 animals. Statistical 

significance was determined by using the unpaired Student’s t-test. The quantification 

of GFAP immunoreactivity (in red) was evaluated in retinas (retinal slices) isolated from 

control and STZ-induced diabetic animals (8 weeks of diabetes) by 

immunohistochemistry. (B) Diabetes increases the number of Iba-1-positive cells in the 

retina after 8 weeks of diabetes. In some retinal slices some microglial cells present an 

amoeboid-like morphology contrasting with the ramified microglia morphology in control 

retinas. The distribution of Iba-1 positive cells (in red) was evaluated in retinas (retinal 

slices) isolated from control and STZ-induced diabetic animals (8 weeks of diabetes) by 

immunohistochemistry. 
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Table 1.  List of primary antibodies used.

Primary Antibody Sample Antibody Dilution Protein (µg) Source

Total Extracts Retina 1:1,000 40

Total Extracts Primary cultures 1:1,000 40

Immunocytochemistry 1:50 _

Immunohistochemistry 1:50 _

Total Extracts Retina 1:2,000 10

Immunohistochemistry 1:100 _

Total Extracts Primary cultures 1:2,000 20

Immunocytochemistry 1:100 _

Total Extracts Retina 1:2,000 20

Immunohistochemistry 1:100 _

Total Extracts Primary cultures 1:2,000 40

Immunocytochemistry 1:100 _

Total Extracts Retina 1:5,000 10

Immunocytochemistry 1:1,000 _

Total Extracts Retina 1:5,000 10

Immunocytochemistry 1:400 _

Rabbit anti-Iba-1 Immunocytochemistry 1:1,000 _ Wako

Mouse anti-Brn3a Immunocytochemistry 1:200 _ Chemicon

CovanceRabbit anti-TUJ-1

Mouse anti-GFAP Calbiochem

BD BiosciencesMouse anti-KIF1A

Abcam

Abcam

Goat anti-KIF5B

Santa CruzGoat anti-KIF1A

Mouse anti-Dynein
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Table 2.  Primer sequences.

Gene Forward primer (5’-3’) Reverse primer (5’-3’) Amplico n size (bp)
Reference genes

GAPDH GACTTCAACAGCAACTCC GCCATATTCATTGTCATACCA 105

HPRT ATGGGAGGCCATCACATTGT ATGTAATCCAGCAGGTCAGCAA 77

YWHAZ CAAGCATACCAAGAAGCATTTGA GGGCCAGACCCAGTCTGA 76

Target genes

KIF1A CATTAGTTAGTGGCGTTGA TACCTGGAGGCATTAGAAA 91

KIF5B GTGATGATTGCGTCCAAG CTTCTTTGCACAATCGTTG 90

DYNEIN TTCTGGCGTAGTCCTATT ACACCACATCTCAAGTCT 104

DYNEIN - dynein cytoplasmic 1 intermediate chain.

GAPDH - glyceraldehyde-3- phosphate dehydrogenase; 

HPRT - human hypoxanthine phosphoribosyltransferase;

YWHAZ  - tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide;

KIF1A - kinesin family member 1A; 

KIF5B - kinesin family member 5B; 
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Weight (g) Blood Glucose (mg/dL)

Control 319.5±5.4 102.3±3.5

Diabetic 233.2±8.5*** 377.4±21.2***

Control 394.6±16.7 89.9±2.9

Diabetic 245.7±13.6*** 488.9±38.5***

2 Weeks

8 Weeks

Measurements were made immediately before the sacrifice of the animals. ***p<0.001.

Table 3. Average weight and blood glucose levels of diabetic and aged-matched control rats.
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Highlights:  

• Kinesin and dynein motor proteins are altered in the retinas of diabetic rats. 
• High glucose per se did not lead to changes in motor proteins in retinal 

neurons. 
• Other factors, like inflammation, may contribute for the alterations in motor 

proteins. 
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