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ABSTRACT 

The effect of statins on endothelial progenitor cells (EPCs) function derived from diabetic patients 

(DMpts) with acute myocardial infarction (AMI) is unknown. In this study we assess the response of 

early and late EPCs from diabetic versus non-diabetic patients (NDMpts) with AMI to statins.  

EPCs were obtained from 10 diabetic and 10 age-matched non-diabetic male patients with AMI. For 

each patient, cultures of early and late EPCs were performed under 4 different conditions: normal 

glucose concentration (control); high glucose concentration; normal glucose concentration with 

atorvastatin supplementation and normal glucose concentration with pravastatin supplementation. To 

compare the effect of these treatments on EPC function in DMpts versus NDMpts, we performed in 

vitro: EPC colony-forming units (CFU) assay; cell cycle analysis; viability assessment and expression 

of the surface markers CXCR4, CD133, CD34 and KDR. 

Under control conditions, CFU numbers were reduced in DMpts-derived EPCs when compared to 

those of NDMpts (1.4±0.8 vs 2.6±1.2 CFU/well, P=0.021). When early EPCs from DMpts were 

cultured in the presence of statins, CFU capacity was restored, surmounting that of NDMpts under 

control conditions. Statins significantly improved viability of early EPCs and delayed the onset of late 

EPCs senescence, even in cells from DMpts. Additionally, statins induced approximately a 2-fold 

increase in the proportion of late EPCs in S-phase of the cell cycle (P<0.05).  

Statins have a beneficial effect on both early and late EPCs from DMpts with AMI. Despite the 

functional impairment of EPCs from DMpts, they exhibit similar responsiveness to statins as 

equivalent cells from NDMpts.  

 

Key words: endothelial progenitor cells; diabetes mellitus; myocardial infarction; statins; function 
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1. Introduction 

Worldwide, coronary artery disease (CAD) is the single most frequent cause of death (Steg et al., 

2012). In Europe, the annual incidence of hospital admissions due to ST segment elevation acute 

myocardial infarction (STEMI) is estimated to be approximately 66 per 100 000 inhabitants and 

mortality rates caused by STEMI remain substantial (approximately 13.5% in-hospital mortality rate 

and 12% 6-month mortality rate) (Fox et al., 2006; Mandelzweig et al., 2006; Widimsky et al., 2010). 

Additionally, high-risk patients, such as diabetics, present a significantly higher mortality rate than 

those without diabetes (Donahoe et al., 2007). Indeed, type 2 diabetes mellitus (DM) is associated with 

increased risk of atherosclerotic disease and poor outcome after an acute myocardial infarction (AMI) 

(Donahoe et al., 2007). Nearly 50% of diabetic patients die from cardiovascular disease, establishing it 

as the leading cause of death among this growing population and contributing to a shortening of 

average life span by 5-10 years in diabetic patients (Morrish et al., 2001). 

Endothelial progenitor cells (EPCs) are bone-marrow derived cells that are able to proliferate and 

differentiate into functionally mature endothelial cells, playing therefore an important role in the 

regeneration of ischemic tissue and in the maintenance of endothelium integrity (Takahashi et al., 

1999). The number of circulating EPCs increases after AMI, revealing the importance of EPCs-

mediated tissue and vessel repair as a “physiological” response of the organism to severe ischemia 

(Asahara et al., 1997; Werner et al., 2005). However, several reports have shown that EPCs are 

impaired, both in number and function, in diabetic patients, independently of other cardiovascular risk 

factors. This may, at least in part, explain the poorer outcome post-AMI in patients with DM (Fadini et 

al., 2007).  

Several experimental and clinical studies have demonstrated that statins exert favorable effects on 

EPCs, independently of their lipid-lowering properties, and that this may contribute to the clinical 

benefit of these drugs (Dimmeler et al., 2001; Landmesser et al., 2004; Walter et al., 2002). However, 

it has been suggested that pravastatin is not as efficient as other HMG-CoA reductase inhibitors in 

improving the number and function of EPCs (Minami et al., 2009; Satoh et al., 2009) suggesting 

therefore that statins may differ in their ability to improve EPCs parameters. 

As diabetic patients have a severely impaired endogenous pool of EPCs and no studies have yet been 

performed examining the direct effects of statins on EPCs isolated from diabetic patients with AMI, it 

is not known whether EPCs from diabetic patients are still responsive to statins stimulation. 
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Therefore, in this study we evaluate the in vitro effects of atorvastatin and pravastatin on functional 

parameters of early and late EPCs derived from diabetic patients with STEMI and compared them to 

those obtained from equivalent EPCs from non-diabetic patients. Additionally, to simulate clinical 

hyperglycemia, we study the effects of high glucose concentration on functional parameters of diabetic 

and non-diabetic derived EPCs in vitro. 

2. Materials and methods 

2.1. Study population 

A prospective observational study was performed on 20 consecutive patients (10 diabetic and 10 non-

diabetic patients) admitted in a single Coronary Care Unit (CCU) due to STEMI, between January 

2012 and January 2013. The study was approved by the local ethics committee (project identification 

code: HUC-23-08). All patients gave written informed consent and research was conducted according 

to the principles outlined in the Declaration of Helsinki. 

Patient inclusion criteria included: age from 40-70 years old, presentation to the cardiac catheterization 

laboratory for percutaneous coronary intervention (PCI) in the setting of STEMI within 12 h of 

presentation and no previous treatment with a HMG-Co-A reductase inhibitor in the last 3 months. 

Furthermore, only male patients were included in the study, in order to exclude the possible 

confounding factor of estrogens in women. Patient exclusion criteria included: active infections, 

clinical or biochemical evidence for the presence of concomitant overt inflammatory disease (high-

sensitivity C-reactive protein > 10 mg/dl), regular use of non-steroidal anti-inflammatory drugs or 

anticoagulants, known auto-immune or malignant diseases, severe peripheral arterial occlusive disease, 

deep vein thrombosis or pulmonary embolism, patients with pacemakers, implantable cardioverter 

defibrillators or resynchronization devices, atrial fibrillation, recent trauma or surgery (< 1 month), 

recent major bleeding requiring blood transfusion (< 6 months), renal insufficiency (creatinine > 2.0 

mg/dl), anemia (hemoglobin < 8.5g/dl) or thrombocytopenia (< 100 000/l), previous coronary bypass 

surgery, myocardial infarction within the preceding 2 months, cardiogenic shock, severe valvular 

disease or congenital heart disease, co-morbidities associated with a life expectancy less than 2 years 

and excessive alcohol consumption or illicit drugs abuse that may influence EPC kinetics. Diabetic 

patients already treated with insulin were also excluded. For each non-insulin treated diabetic patient 

with STEMI we included an age-matched non-diabetic patient. 
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All patients received the standard therapy for the acute phase of STEMI that included aspirin, 

clopidogrel and low-molecular-weight heparin, according to usual hospital practice. 

On the first morning after admission, blood samples were collected from each patient for chemistry 

(including fasting glucose and glycosylated hemoglobin (HbA1C)) and hematological parameters 

determination, according to standard hospital practice.  

2.2. EPCs isolation and culture 

Mononuclear cells (MNCs) were isolated from 20 ml of peripheral blood, by density gradient 

centrifugation using Ficoll (Histopaque 1077, Sigma–Aldrich), following manufacturer’s instructions. 

Total MNCs from each patient were cultured according to 2 different protocols to obtain early and late 

EPCs (see below). For each EPC culture protocol, cells were cultured under four different conditions 

set from the time of cell plating: 1) Control: normal glucose concentration (5.5 mM); 2) High glucose 

concentration (25 mM); 3) Incubation in the presence of atorvastatin (0.1 µM) and normal glucose 

concentration and 4) Incubation in the presence of pravastatin (10 mM) and normal glucose 

concentration. Statins or high glucose concentration were added at the time of isolation (day 0) and 

then every time the medium was changed. All experiments were performed on day 7 or day 15 for 

early or late EPCs, respectively. 

2.2.1. Early EPCs  

Immediately after isolation, 5x106 MNCs were resuspended in 1.5 ml of endothelial basal medium 

(EBM-2, Clonetics) supplemented with EGM-2-MV-SingleQuots (Clonetics) containing 

hydrocortisone, human fibroblast growth factor-B (hFGF-B), vascular endothelial growth factor 

(VEGF), human recombinant Insulin-like growth factor-1 (R3-IGF-1), ascorbic acid, human 

recombinant epidermal growth factor (hEGF), gentamicin/ amphotericin B, and 20% fetal bovine 

serum. Cells were plated on fibronectin-coated 6-well dishes (Biocoat BD) at 37°C in a 5% CO2 

incubator. After a 48 h pre-plating step to deplete the sample of adherent macrophages and mature 

endothelial cells, the non-adherent cells were collected, and re-plated at a density of 1x106 cells per 

well on fibronectin-coated 24-well plates (Biocoat BD). The medium was changed after 3 days and 

cells were maintained in culture until day 7.  
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2.2.2. Late EPCs  

Late EPCs were cultured according to the method described by Fadini (Fadini et al., 2006b), with 

minor modifications. Briefly, MNCs were plated on 6-well fibronectin-coated plates (Biocoat BD) at a 

density of 5x106 cells per well, and grown in EBM-2, supplemented with EGM-2-MV-SingleQuots 

(Clonetics) (1.5 ml per well), for 15 days. Culture medium was first changed on day 4 and then every 2 

days to remove non-adherent cells. The adherent cells displayed a “cobblestone” appearance typical of 

endothelial cells.  

2.3. Phenotypical characterization of early and late EPCs 

The endothelial lineage of EPCs was confirmed by dual direct fluorescent staining with 1,1-

dioctadecyl-3,3,3,3-tetramethylindocarbocyanine (DiI)-labelled acetylated low-density lipoprotein 

(acLDL; Molecular Probes) (which labels endothelial cells, via receptor-mediated endocytosis) and 

fluorescein isothiocyanate (FITC)-labelled Ulex europaeus agglutinin (UEA-1; Sigma) (which labels 

human endothelial cells via cell surface binding). At day 7 (early EPCs) or day 15 (late EPCs), 

adherent cells were first incubated with 10 µg/mL dil-acLDL at 37º C, for 1 h, washed three times with 

PBS and then fixed with 2% paraformaldehyde for 10 min. Cells were then incubated with UEA-1 (40 

μg/ml) at 4ºC, for 1 h. After staining, cells were visualized using a confocal fluorescent microscope 

(Leica Microsystems AG, Wetzlar, Germany) and only cells displaying double positive fluorescence 

(dil-acLDL and UEA-1) were considered to be EPCs. 

EPCs were also characterized by immunofluorescence staining for the expression of the cell-surface 

markers CD34 and KDR (early and late EPCs) and CD133 (early EPCs). Adherent cells were fixed 

with paraformaldehyde, permeabilized with 0.1% Triton X-100 (Sigma) in phosphate-buffered-saline 

(PBS) and incubated with phycoerythrin (PE)-Cy5-conjugated monoclonal antibodies against CD34, 

PE-conjugated monoclonal antibodies against KDR and allophycocyanin (APC)-conjugated 

monoclonal antibodies against CD133. Slides were mounted in antifading mounting media containing 

4',6-diamidino-2-phenylindole (DAPI) (Vectashield; Vector Laboratories, Burlingame, CA) for nuclear 

staining and examined by confocal fluorescence-microscopy. 

To further confirm the endothelial phenotype of early and late EPCs, the expression of endothelial 

marker proteins was additionally measured by flow cytometry on day 7 or 15, respectively. Cells were 

detached from the culture plates by trypsinization (trypsin-EDTA 0.25%, Sigma) and labeled for 30 

min at 4ºC in the dark with different fluorescent anti-human antibodies at manufacturers’ 
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recommended concentrations. The following conjugated antibodies were used: PE-KDR (Sigma) as 

endothelial marker, FITC-CD34 and APC-CD133 (Miltenyi Biotec), as progenitor cell markers, APC 

H7-CD45 (Becton Dickinson) as a panleukocyte marker and PE-Cy5-CXCR4 (BD Pharmingen) which 

is critical for progenitor cell homing and embedding at sites of vascular injury (Yamaguchi et al., 

2003). Data were acquired on a FACSCanto II flow cytometer (BDBioscience) and analyzed using the 

Flow Cytometry Software Infinicyt 1.5 (Cytognos). 

 

2.4. In vitro studies on the effects of statins and high glucose concentration on cultured early 

and late EPCs 

The effects of high glucose concentration, atorvastatin and pravastatin on proliferation, viability, 

survival, and expression of typical cell surface markers were assessed in cultured EPCs derived from 

diabetic and non-diabetic patients with STEMI following the protocols below: 

2.4.1. Analysis of early EPCs proliferation - EPC colony-forming units (CFU) assay   

Early EPCs proliferation was assessed by the number of colony-forming units, after 7 days in culture as 

described by Hill and colleagues (Hill et al., 2003). An EPC colony was defined as a central core of at 

least 50 round cells with radiating elongated spindle-like cells at the periphery. A central cluster alone 

without associated emerging cells was not counted as a colony. Two independent investigators under 

blind condition counted all colonies in each well, manually using a phase-contrast microscope at ×100 

magnification, to obtain the average number of colonies per well.  

2.4.2. Viability and survival evaluation 

Viability of early EPCs was studied using trypan blue staining after 7 days in culture. Cultured cells 

from each condition were trypsinized (trypsin-EDTA 0.25%, Sigma) and the number of viable cells 

was counted using a hemacytometer.  

Late EPCs derived from 5x106 MNCs per well were quantified by direct counting, every 3 days 

starting from day 6 (the day of the second medium change) to day 15, and calculation of the average 

number of cells present in 10 randomly selected high-power fields, under a phase-contrast microscope. 

For this quantification ImageJ 1.45 s software (National Institutes of Health, USA) was used and 

survival curves created. Data are expressed as the number of cells per high-power field. At day 15, late 

EPCs were released from the original culture plates by trypsinization, stained with trypan blue and 
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counted using a hemacytometer. 

2.4.3. Cell cycle analysis of late EPCs by flow cytometry – DRAQ5 

Cell cycle analysis was assessed by DRAQ5 (Biostatus Ltd., Leicesterchire, UK) staining and flow 

cytometry evaluation. DRAQ5 specifically binds to DNA by rapidly penetrating intact cell membranes. 

At day 15, 3x105 cells in 250 µl of PBS, previously stained for surface antigens were incubated with 2 

µl of DRAQ5 for 5 min at room temperature and protected from bright light. Samples were acquired on 

a FACSCanto II flow cytometer (BDBiosciences). The ModFit LT™ 4.0 software (Verity Software 

House, Topsham, ME) was used to evaluate the proportion of late EPCs in S-phase (DNA Synthesis 

Phase). 

2.4.4. Expression of CD34, CD133, KDR and CXCR4  

Early and late EPCs were trypsinized, after 7 or 15 days in culture, respectively and analysed by flow 

cytometry to compare the expression of different cell surface markers (CD34, CD133, KDR and 

CXCR4), measured as mean fluorescence intensity (MFI).  

2.5. Statistical Analysis 

Statistical analyses were performed using SPSS software version 20. 

Continuous variables were tested for normal distribution by Kolmogorov–Smirnov test and expressed 

as mean ± standard deviation or median ± interquartile range for parametric and nonparametric data, 

respectively. Categorical data is expressed as counts and percentages.  

For comparison of continuous data unpaired Student t-tests or ANOVA tests were used when variables 

were normally distributed and nonparametric Mann–Whitney test or Kruskal-Wallis test for variables 

without a normal distribution. Categorical variables were compared with the chi-square test or with 

Fisher exact test as appropriate. The relationship between variables was calculated using Spearman's 

correlation coefficient. For all analyses, a 2-sided value of P<0.05 was considered statistically 

significant. 

3. Results 

3.1. Patient characteristics 

Comparison of the baseline characteristics of diabetic versus non-diabetic STEMI patients is 

summarized in Table 1.  
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The two groups were relatively homogenous in terms of age, cardiovascular risk factors and previous 

history of coronary artery disease (CAD). However, diabetic patients tended to be more frequently 

treated with ACE inhibitors/AT-1 receptor blockers and presented, as expected, significantly higher 

admission glycemia, fasting glycemia and HbA1c levels when compared with non-diabetic patients. In 

the diabetic group, the duration of diabetes varied from 3-13 years (mean 6.5 ± 3.1 years). 

All 20 patients included in this study underwent successful revascularization with deployment of at 

least one stent. 

3.2. Characterization of cultured EPCs 

Both early and late EPCs displayed a characteristic EPC phenotype as judged by by dil-acLDL uptake, 

UEA-1 binding and expression of CD34 and VEGFR2 on the plasma membrane. Early EPCs, but not 

late EPCs, also expressed CD133, a marker for more immature cells. Co-staining with the nuclear 

marker DAPI revealed that virtually all adherent cells were dil-acLDL(+) UEA-1(+) (Fig. 1 – A and 

B). 

Late EPCs presented a different morphology from early EPCs; after 15 days in culture, late EPCs 

acquired a cobblestone appearance instead of the characteristic elongated and spindle shape of early 

EPCs.  

Flow cytometry analysis demonstrated that the majority of early and late cultured EPCs exhibited light-

scattering properties consistent with a relatively large cell size. Additionally, this analysis revealed that 

early and late EPCs were positive for KDR, CD34 and CXCR4, confirming their endothelial 

phenotype. As expected, only early EPCs expressed the myeloid marker CD45 and the marker for 

immaturity/stemness CD133. 

3.3. Effect of statins and high glucose concentration on CFUs 

After 5 to 7 days in culture, attached cells exhibited typical colony-forming units, with a characteristic 

central cluster of round cells and peripheral radiating flat cells (Fig. 1-C). These cells showed the 

characteristic Dil-Ac-LDL uptake and UEA-1 lectin binding.  

Under control conditions, the number of cell colonies generated from 5x106 MNCs was 2.1 ± 1.2/well 

and incubation in high-glucose (25 mmol/l) resulted in diminished CFU formation (31% inhibition, 

P<0.05); in contrast, the number of colonies resulting from incubation with atorvastatin (3.9±1.8) or 

pravastatin (4.2±2.9) was significantly higher when compared to untreated cells (P<0.001), 
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corresponding to a 1.9 to 2-fold increase in colony formation when compared to control conditions 

(Fig. 2). 

Under control conditions, CFU numbers were significantly reduced in cells derived from diabetic 

patients when compared to equivalent cells obtained from non-diabetic patients (1.4±0.8 versus 2.6±1.2 

CFU/well, P=0.021) (Fig. 3). When cells of non-diabetic patients were grown in high glucose, CFU 

capacity was significantly reduced reaching similar numbers to those observed for cells derived from 

diabetic patients under control conditions (1.6±0.7 versus 1.4±0.8 CFU/well, respectively, P=0.631) 

(Fig. 3). Finally, treatment of early EPCs from diabetic patients with 0.1 µM atorvastatin or 10 mM 

pravastatin resulted in increased CFU values, surpassing CFU capacity of early EPCs from non-

diabetic patients under control conditions (Fig. 3). 

3.4. Effect of statins on EPCs survival and viability 

3.4.1. Early EPCs 

After 7 days in culture, the number of viable cells was significantly higher when the medium was 

supplemented with atorvastatin (11.7×104 ± 4.8×104 cells/ml) or with pravastatin (12.6×104 ± 7.8×104 

cells/ml) when compared to values obtained under control conditions (7.7×104 ± 3.5×104 cells/ml) 

(P=0.041). This positive effect of statins on early EPCs survival was also observed in the diabetic 

subgroup (atorvastatin treatment: 11.4×104 ± 3.2×104 cells/ml; pravastatin treatment: 14.1×104 ± 

6.8×104 cells/ml; control condition: 6.7×104 ± 2.5×104 cells/ml; P = 0.031). 

Regarding the comparison between cells derived from diabetic and non-diabetic patients, no 

differences in the number of viable cells were observed after 7 days in culture under control conditions 

(8.4×104 ± 3.9×104 cells/ml in non-diabetic patients versus 6.7×104 ± 2.5×104 cells/ml in diabetic 

patients, P=0.304).  

3.4.2. Late EPCs 

The survival curve of late EPCs showed a general downward trend, in all conditions tested. As shown 

in Fig. 4, statin treatment seems to delay the onset of late EPCs senescence. Moreover, this delay was 

verified not only in cells from non-diabetic but also in those from diabetic patients. However, survival 

at the later stage of culture was not affected by statin supplementation; at day 15 no significant 

differences were observed in the numbers of viable cells amongst the different study conditions. 

Additionally, no significant differences were found between the diabetic and non-diabetic subgroups 
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(5.2×104 ± 3.4×104 in cells from diabetics versus 5.0×104 ± 1.7×104 cells/ml in cells obtained from 

non-diabetics, P=0.362). 

3.5. Cell cycle analysis of late EPCs by flow cytometry – DRAQ5 

As atorvastatin seemed to delay senescence onset, we examined whether that was accompanied by an 

increase in cell proliferation by determining the proportion of late EPCs in S-phase of the cell cycle at 

the end of culture time.  

As shown by FACS analysis of DRAQ5 labelling, statin treatment induced nearly a 2-fold increase in 

the proportion of cells in S-phase when compared to control conditions (atorvastatin: 13.8±4.5%; 

control: 7.9±3.3%, p=0.048 and pravastatin: 15.7±1.1%; control: 7.9±3.3%, P=0.025) (Fig. 5 - A). 

Additionally, cells from diabetic patients under control conditions showed a significantly reduced 

proportion of late EPCs in S-phase at day 15 (diabetics: 9.4±4.0%; non-diabetics: 21.9±6.0%, P=0.026) 

(Fig. 5- B). 

3.6. Expression of cell surface markers assessed by FACS (mean fluorescence intensity) 

Mean fluorescence intensities (MFI) for cell surface expression of the characteristic markers CD34, 

KDR and CXCR4 were assessed for early and late EPCs by flow cytometry. MFI for CD133 was also 

determined for early EPCs. 

Early EPCs under control conditions expressed the following MFI values: 11249.4 ± 3576.8 for CD34, 

8023.4 ± 2387.6 for CD133, 11965.8 ± 4549.4 for KDR and 48216.3 ± 17746.4 for CXCR4. Regarding 

the comparison between the 4 culture conditions, flow cytometric analysis revealed similar pattern of 

MFI values on day 7 (Fig. 6 - A). Additionally, there were no significant differences between the MFI 

values obtained for cells derived from diabetic and non-diabetic patients, in any of the 4 different 

culture conditions.  

A similar analysis of MFI for marker expression in late EPCs revealed that treatment of these cells with 

atorvastatin resulted in an increased expression of all surface markers tested. Additionally, cells 

cultivated under high glucose concentration showed a tendency for lower expression levels of CD34, 

KDR and CXCR4 when compared to control growth conditions; this difference was statistically 

significant for MFI values corresponding to CXCR4 expression (control: 73590.4 ± 18061.4; high 

glucose: 61516.8 ± 13601.6, P=0.049). Moreover, the expression of surface markers was significantly 

increased in cells treated with atorvastatin when compared to glucose-stressed EPCs (22% increase for 
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CD34 and CXCR4, P=0.007 and P=0.008, respectively and 26% increase for KDR, P=0.024) (Fig. 6 - 

B). 

Comparison of MFI for marker expression in late EPCs from diabetic versus non-diabetic patients 

revealed different patterns. Thus, KDR expression was significantly lower in cells from diabetic 

patients compared to those of non-diabetic patients, when cells were cultured in either control or high 

glucose conditions; showing the same tendency when the medium was supplemented with atorvastatin 

or pravastatin (Fig. 7). CD34 expression was also significantly reduced in late EPCs from diabetics 

when compared to those from non-diabetics, when cultured under high glucose conditions; and showed 

the same trend down for the other 3 culture conditions (Fig. 7). Finally, expression of the homing 

marker CXCR4 showed no differences between cells derived from non-diabetic or diabetic patients 

under any of the culture conditions tested.  

4. Discussion 

The major finding of this study is the demonstration that statins have a favorable effect on functional 

parameters of EPCs derived from diabetic patients with STEMI, with the same magnitude as what is 

observed in EPCs obtained from non-diabetic patients. This indicates that, despite the functional 

impairment of EPCs in diabetic patients, these cells are still responsive to statin stimulation. 

EPCs play a key role in the repair of damaged endothelium post-myocardial infarction, through the 

differentiation into mature, functional endothelial cells (Takahashi et al., 1999). These endothelial 

precursors are very rare in peripheral circulation, but their number significantly increases after an AMI 

(Massa et al., 2005; Shintani et al., 2001).  

It has been recognized that when EPCs are cultured in an ex vivo system, two different types of EPCs 

become apparent, differing in their time-dependent appearance - early and late EPCs. Both subsets of 

EPCs contribute to vascular repair, although through different mechanisms. Late EPCs have robust 

proliferative potential and vessel-forming ability in vivo, but have no significant paracrine angiogenic 

effects (Sieveking et al., 2008; Yoder et al., 2007). These cells appear in culture within 7-21 days and 

are positive for CD34 and KDR but negative for the endothelial precursor marker CD133 and the 

leukocyte marker CD45 (Cheng et al., 2013; Timmermans et al., 2007). In contrast, early EPCs have 

not yet been characterized antigenically in peripheral circulation and do not incorporate into newly 

forming blood vessels but instead, seem to promote angiogenesis through paracrine mechanisms 

(Medina et al., 2010; Sieveking et al., 2008; Yoder et al., 2007; Ziegelhoeffer et al., 2004). These cells 
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form colonies within 5–7 days and are positive for endothelial (KDR) and hematopoietic markers 

(CD45) and for the marker of immaturity/stemness CD133 (Cheng et al., 2013). 

So far, only a few studies have simultaneously studied early and late EPCs from human peripheral 

blood (Chen et al., 2007; Deschaseaux et al., 2007; Fadini et al., 2010; Sieveking et al., 2008) but none 

of these have examined the function of both cells in the context of diabetes or AMI. Therefore, it 

remains unclear whether EPCs from diabetic patients are dysfunctional in the context of an AMI and 

whether their function might improve in response to cardiovascular drugs, such as statins. To address 

this question, the effects of atorvastatin and pravastatin on both types of EPCs obtained from STEMI 

patients were examined in vitro. Moreover, we compared the effects of these statins on several 

functional parameters of EPCs from diabetic versus non-diabetic patients.  

Clinical outcome post-AMI is worse in patients with DM than in non-diabetic patients (Abbott et al., 

1988; Miettinen et al., 1998). It has become clear that there is a deregulation in EPC response to 

hypoxia and an abnormal angiogenesis in diabetic patients, as a result of reduced EPC numbers in 

peripheral circulation and EPC dysfunction (Churdchomjan et al., 2010; Fadini et al., 2005; Tepper et 

al., 2002). Therefore, the value of pharmacological therapies aiming to increase numbers of 

endogenous EPCs, that are dysfunctional in these patients, has been questioned (Fadini et al., 2006a; 

Marfella et al., 2004). In other words, can EPCs of diabetic patients recover their normal function and 

play their expected role in vascular repair when stimulated by cardiovascular drugs, such as statins? 

The present study has shown that DM has a significant negative impact on several functional 

parameters of both types of EPCs in vitro. When compared to the non-diabetic subgroup under the 

same conditions, cells from diabetic patients show: 1) diminished CFU capacity in early EPCs; 2) 

attenuated expression of the endothelial marker KDR and of the hematopoietic progenitor marker 

CD34 in late EPCs (however, no differences were observed in the expression of the homing marker, 

CXCR4); and 3) reduced proportion of late EPCs in S-phase at the end of culture time. However, no 

differences were observed in the survival rates of either early or late EPCs between the two patient 

subgroups. Taken together, these data suggest that the functional impairment of EPCs in diabetic 

patients might be mainly due to problems related to their proliferative capacity, as judged by a 

reduction in CFU capacity for early EPCs and lower proportion of late EPCs in S-phase. CXCR4, the 

receptor for stromal cell–derived factor-1 (SDF-1), is highly expressed on EPCs and plays a pivotal 

role in their homing to ischemic sites (Mohle et al., 1998). In the hypoxia microenvironment, several 



  14

chemotactic factors initiate the homing process. SDF-1, by connecting with its receptor CXCR4, 

represents the major chemokine for initiating EPCs migration and promoting their engraftment to the 

ischemic myocardium (Gallagher et al., 2007). Hence, downregulation of CXCR4 receptor expression 

might contribute to limited functional neovascularization capacity of EPCs (Walter et al., 2005). In the 

present study, we observed similar levels of CXCR4 expression in EPCs obtained from diabetic and 

non-diabetic patients, suggesting that homing of EPCs to sites of vascular repair and angiogenesis is 

not impaired in diabetes. Finally, it seems that differences in apoptosis are not a contributing factor for 

EPCs impairment in diabetes, as cell survival was similar in the two patient subgroups.  

Several previous studies have demonstrated that, under experimental diabetic conditions, EPCs display 

functional impairment, such as reduced proliferation, adhesion, migration, and incorporation into 

tubular structures (Churdchomjan et al., 2010; Fadini et al., 2005; Krankel et al., 2005; Tepper et al., 

2002). However, it should be noted that comparison of functional parameters of early and late EPCs 

from diabetic patients with matched non-diabetic patients in the clinical context of an AMI had never 

been reported before. 

Importantly, in this study, we have shown for the first time that by culturing EPCs from non-diabetic 

AMI patients in experimental hyperglycemic-like conditions we were able to induce EPCs dysfunction, 

such as reduction in CFU formation, to equivalent levels of early EPCs from diabetic patients under 

normal glucose conditions. In addition, despite the expression levels of the homing marker CXCR4 

being similar in late EPCs from diabetic and non-diabetic patients under normal glucose conditions, 

long-term exposure of late EPCs to high glucose resulted in a markedly reduction of its expression. 

These data suggest therefore, that hyperglycemia per se, could at least in part, be responsible for EPC 

dysfunction seen in diabetes.  

Many drugs with beneficial cardiovascular properties, such as statins, have been shown to positively 

stimulate EPC function and numbers (Dimmeler et al., 2001; Landmesser et al., 2004; Walter et al., 

2002).  

Large clinical trials have demonstrated that statin treatment improves prognosis in patients with AMI 

(Murphy et al., 2009; Pedersen et al., 2010; Schwartz et al., 2001). It is well known that HMG-CoA-

reductase inhibitors have additional benefits on vascular function (known as pleiotropic effects) that 

are independent of their cholesterol-lowering ability (LaRosa, 2001; Palinski, 2001; Takemoto and 

Liao, 2001). These pleiotropic effects include: antioxidant (Fuhrman et al., 2002) and anti-
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inflammatory (Plenge et al., 2002) actions, atherosclerotic plaque-stabilizing properties (Crisby et al., 

2001), anticoagulant activity (Undas et al., 2001), decreased platelet aggregation (Aviram et al., 1998), 

inhibition of cardiac hypertrophy (Lee et al., 2002; Takemoto et al., 2001), increased nitric oxide 

bioavailability (Martinez-Gonzalez et al., 2001) and improvement of endothelial function (Egashira et 

al., 1994). Indeed, these effects might extend beyond the cardiovascular system, to include potential 

clinical benefits over conditions such as Alzheimer's disease (Wolozin et al., 2000), multiple sclerosis 

(Vollmer et al., 2004), osteoporosis (Meier et al., 2000), and cancer. HMG-CoA reductase inhibitors 

prevent the conversion of HMG-CoA to mevalonate, and thereby reduce mevalonate levels and its 

downstream products, which are essential for critical cellular functions such as membrane integrity, 

protein synthesis, and cell cycle progression (Wong et al., 2002). Therefore, inhibition of the 

mevalonate pathway by statins might reduce the risk of cancer and improve the recurrence of 

aggressive cancers (Boudreau et al., 2010). However, the clinical relevance of this noncardiovascular 

pleiotropic effect remains controversial (Dale et al., 2006).   

Importantly, enhancement of circulating EPCs numbers and promotion of their mobilization to 

ischemic areas by statins (Dimmeler et al., 2001; Llevadot et al., 2001; Vasa et al., 2001; Walter et al., 

2002) might be key mechanisms by which statins improve survival in patients with AMI. The 

mechanisms underlying statins stimulation of EPCs have been extensively investigated in experimental 

studies. Dimmeler et al have demonstrated that statins can induce the differentiation of EPCs and 

upregulate their numbers in vitro and in vivo through the PI3K/Akt pathway, which is known to have a 

key role in endothelial biology and angiogenesis (Dimmeler et al., 2001). Moreover, statins increase 

homing capacity of EPCs to sites of vascular injury, through the upregulation of endothelial integrin 

subunits α5, β1, αv and β5 (Walter et al., 2002). Finally, statins have the ability to delay EPC 

senescence, through a mechanism dependent on the up-regulation of telomere repeat-binding factor 2 

(TRF2), which prevents telomerase dysfunction (Assmus et al., 2003). Paradoxically, a study done by 

Hristov et al indicated that chronic statin therapy significantly reduces EPCs numbers and does not 

modify CFU capacity in patients with CAD (Hristov et al., 2007). However, this study has several 

limitations, including the fact that CFU could not be measured in all patients and that the statin group 

exhibited a more severe degree of CAD and had a higher prevalence of diabetes that might have biased 

the results. Furthermore, it is worth noting that in the study performed by Hristov et al statins were 

administered to patients, whereas in the present study atorvastatin and simvastatin were tested in vitro. 



  16

Given the ability to precisely control testing conditions and the absence of potential environment 

factors interfering with statins actions, the direct exposure of EPCs to statins in vitro had the advantage 

to specifically identify the effects of statins on EPCs. Importantly, with in vitro assays we overcome 

the problem of potential interference of other cardiovascular drugs commonly used in these patients. 

Furthermore, we were able to evaluate at the same time two different statins.  

No previous published studies have analyzed the effects of statins on EPC function from diabetic 

patients, with an AMI. Therefore, we tested the hypothesis that, despite their profound endogenous 

dysfunction, early and late EPCs from diabetic patients are still responsive to statins.  

In the present study, we have shown that in vitro exposure of early and late EPCs from STEMI patients 

to atorvastatin or pravastatin results in remarkably improved cellular proliferation, with the CFU 

capacity and the proportion of late EPCs in the proliferative stage doubling in number when compared 

to values obtained under control conditions. Notably, this statin-mediated effect was also verified in 

cells from diabetic patients, with resulting CFU capacity surpassing that observed in EPCs from non-

diabetic patients grown in normal control conditions. Furthermore, statin treatment was also able to 

improve the viability of early EPCs and delay the onset of late EPCs senescence, in both non-diabetic 

and diabetic patients. Altogether, these data provide strong evidence that statins consistently improve 

in vitro function of both types of EPCs derived from STEMI males and that abnormal EPC function 

associated with diabetes can be reversed by statin treatment. These novel findings suggest that the well-

accepted “hyperglycemic memory” phenomenon (Ceriello, 2009; El-Osta et al., 2008) over EPCs can 

be reverted by statin treatment.  

Our data have important clinical implications: 1) treatment with statins may be beneficial for EPC-

driven vascular repair after an AMI and may improve the cardiovascular outcome of diabetic patients; 

2) our data also provide a rationale for the early statin administration in AMI patients, including those 

with diabetes; 3) enhancement of endothelial repair with cell-based therapies, during the in vivo 

response to ischemia, may become a realistic clinical goal, once EPC dysfunction associated with 

diabetes is pharmacologically reverted. 

4.1. Study limitations 

This study has some inherent limitations that should be considered. First, the study population is 

relatively small. These data, however, are based on a careful selection of patients, including only statin 

naïve men with STEMI, thus limiting the recruitment of large numbers of patients. Indeed, it should be 
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noted that each diabetic patient was individually age-matched with a non-diabetic patient and each 

patient served as his own control, as EPCs of each patient were cultured in 4 different settings, always 

including a control condition. Second, our study focused on the ex vivo characteristics of EPCs and did 

not address the in vivo fate of these putative cells. Therefore, as the complex homeostatic mechanisms 

and pathways found in the whole body have not being considered in these in vitro studies, only clinical 

studies in humans can provide the final proof that statins also improve EPCs function in vivo. It is not 

possible to know if the functional improvement induced by statins on EPCs in vitro really translates 

into a benefit in terms of vascular repair and clinical outcomes of STEMI patients. Third, although we 

demonstrated a statin-induced improvement on EPCs function in diabetic and nondiabetic patients with 

STEMI, the exact molecular mechanisms mediating this effect were not under the scope of this study 

and still need to be investigated further. Fourth, since we only included male patients to avoid 

previously confirmed gender influence on EPCs biology, the present results only support a beneficial 

role of statins on EPCs function in male patients. Finally, we cannot extrapolate these positive effects 

of short-term administration of statins in vitro to the chronic statin therapy performed in clinical 

settings. 

5. Conclusions 

In summary, this study provides the first evidence that statins can improve EPCs dysfunction of 

diabetic patients with STEMI comparable to what is seen in non-diabetic patients. Statin therapy may 

represent an important strategy to acutely improve vascular repair and, thereby, offer a therapeutic 

opportunity to improve prognosis of diabetic patients with AMI.  
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Figure Captions 

Fig. 1 Characterization of early EPCs at day 7 (A) and late EPCs at day 15 (B). Representative 

images are shown for cells derived from a diabetic STEMI patient cultured under control 

conditions. Nuclear stain DAPI (blue) was used to identify cells by fluorescence microscopy. 

Images (400 X) illustrate that all adherent cells were positively labelled with DiI‐acetylated LDL, 

(Dil‐acLDL) and FITC–Ulex Lectin. Almost all adherent early EPCs (A) were also positive for KDR, 

CD34 and CD133 staining. C) Early EPC colony-forming units (CFU) assay. Phase contrast 

microscopy showing CFUs from cells derived from a non-diabetic patient with STEMI after 7 days in 

culture, under control conditions. 

 

Fig. 2 Comparison of colony-forming units (CFU) between the 4 different culture conditions. Boxplot 

representation of CFU of early EPCs under: 1) normal glucose concentration (control condition); 2) 

exposure to atorvastatin 0.1 µM; 3) high glucose concentration (25 mM) and 4) supplementation with 

pravastatin 10 mM. Box plots represent the interquartile range of values, the horizontal lines show the 

median, and whiskers indicate the maximum and minimum range excluding outliers. Circles represent 

outliers; asterisks represent extreme outliers. Kruskall-Wallis test was used for the statistical 

comparison between the 4 culture conditions (P value in the text box, <0.001). A further Mann 

Whitney U test was performed to compare two to two culture conditions. The outliers were treated as 

valid cases and included in the statistical analyses. 
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Fig. 3 Comparison of colony-forming units (CFU) capacity of cells derived from diabetics (filled bars) 

and non-diabetics (empty bars), grown in 4 different culture conditions. From left to right we have: 1) 

normal glucose concentration (control condition); 2) high glucose concentration (25 mM); 3) treatment 

with 0.1µM atorvastatin; and 4) treatment with 10 mM pravastatin. Box plots represent the interquartile 

range of values, the horizontal lines show the median, whiskers indicate the maximum and minimum 

range. (Mann-Whitney U test was used for the statistical comparisons). 

 

Fig. 4 Effect of statins on survival curves of late EPCs from diabetic (left chart) and non-diabetic (right 

chart) patients. All cultures were initially set at the same cell density (5x106 cells per well). Every 3 

days, starting from day 6, cells from 10 randomly selected high-power fields of a phase-contrast 

microscope, were quantified using ImageJ 1.45 s software. Blue lines indicate the mean cell number 

per field over time for control culture conditions (normal glucose concentration). Green lines and 

orange lines correspond to cell survival under atorvastatin or pravastatin treatment, respectively.  

 

Fig. 5 Cell cycle analysis of late EPCs by DRAQ5 staining at day 15. A) Comparison of the proportion 

of late EPCs on phase S between the diabetic and non-diabetic subgroup (Mann Whitney U test). B) 

Comparison of the proportion of late EPCs in S-phase amongst the different culture conditions. 

Kruskall-Wallis test was used to compare all 4-culture conditions (P value in the text box, 0.022). A 

further Mann Whitney U test was used to evaluate statistically significant differences between each 

culture condition. Box plots represent the interquartile range of values, the horizontal lines show the 

median, and whiskers represent the maximum and minimum values. 
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Fig. 6 Comparison of surface markers expression, assessed by mean fluorescence intensity (MIF), 

between EPC cultivated under 4 different culture conditions: 1) control culture condition (normal 

glucose concentration) - empty bars; 2) atorvastatin supplementation - light grey bars; 3) high glucose 

concentration exposure - red bars; 4) pravastatin supplementation - dark grey bars. A) Comparison of 

CD34, KDR, CXCR4, and CD133 MIF expressed by early EPCs amongst all 4-studied culture 

conditions. B) Comparison of CD34, KDR, and CXCR4 MIF expressed by late EPCs amongst all 4-

studied culture conditions. Box plots represent the interquartile range of values, the horizontal lines 

show the median, and whiskers indicate the maximum and minimum values excluding outliers. P 

values were calculated by the Kruskal-Wallis test for comparisons between all 4-culture conditions. 

  

Fig. 7 Comparison of CD34 and KDR expression, assessed by mean fluorescence intensity (MIF), 

between late EPCs from diabetic (filled bars) and non-diabetic patients (empty bars). The comparison 

was performed regarding 4 different culture conditions: 1) control condition (normal glucose 

concentration) – left superior chart; 2) atorvastatin supplementation of the culture medium – right 

superior chart; 3) exposure to high glucose concentration – left inferior chart; and 4) culture 

supplementation with 10 mM pravastatin – right inferior chart. Box plots represent the interquartile 

range of values, the horizontal lines show the median, whiskers indicate the maximum and minimum 

values excluding outliers. Circles represent outliers. Mann Whitney U test was used for the comparison 

between EPCs from diabetic and non-diabetic patients. 
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Table 1 Legend 

ACEI, angiotensin-converting-enzyme inhibitors; ARB, AT-1 receptor blockers; BMI, body mass 

index; CAD, coronary artery disease; hs-CRP, high-sensitivity C-reactive protein; PCI, percutaneous 

coronary intervention 
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Table 1 - Baseline characteristics of diabetic and non-diabetic patients with STEMI 

 Diabetics (N=10) Non-diabetics (N=10) P value 

Age (years) 61.3±9.5 57.9±9.7 0.465 

BMI (Kg/m2) 27.8±2.7 27.9±4.8 0.943 

Previous CAD (%) 10 10 1.000 

Cardiovascular Risk Factors 

Hypertension (%) 80 60 0.628 

Smoking (%) 30 50 0.653 

Family history (%) 10 20 0.531 

Hyperlipidemia (%) 60 60 1.000 

Previous cardiovascular therapy 

Aspirin (%) 10 10 1.000 

ACEI/ARB (%) 80 40 0.068 

Beta-blockers (%) 10 10 1.000 

Baseline laboratory 

Peak Troponin I (µg/l) 85.6±49.9 54.6±56.4 0.233 

HbA1C (%) 7.4±0.9 5.5±0.5 0.001 

Total cholesterol (mg/dl) 187.7±52.1 204.1±46.4 0.496 

LDL cholesterol (mg/dl) 115.3±27.7 146.1±45.1 0.136 

HDL cholesterol (mg/dl) 38.3±7.7 41.3±7.2 0.418 

Triglycerides (mg/dl) 171.9±53.2 157.0±44.3 0.530 

Admission glycemia (mg/dl) 195.1±59.5 133.6±21.8 0.006 

First fasting glycemia (mg/dl) 167.8±59.5 112.5±30.0 0.016 

hs-CRP at admission (mg/dl)  0.6±0.9 0.5±0.5 0.443 

Peak hs-CRP (mg/dl) 4.2±1.6 3.3±3.0 0.400 

Coronariography /PCI 

Number of vessels with 

disease 

1.9±0.9 1.6±0.7 0.474 

Number of stents deployed 1.6±1.1 1.5±0.8 0.755 
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ACEI, angiotensin-converting-enzyme inhibitors; ARB, AT-1 receptor blockers; BMI, body mass index; CAD, 

coronary artery disease; hs-CRP, high-sensitivity C-reactive protein; PCI, percutaneous coronary intervention 

 

 

 

 

 

 

 


















