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Abstract

Cough can be defined as a forced expulsive onrush, normally against a closed

glottis, producing a characteristic three-phase sound, and as a symptom, it

can be an indicator of many respiratory diseases. An objective measure of

cough would be of use in clinical practice, clinical research and the assess-

ment of novel therapies and pharmaceuticals.

In the present work, a method to automatically identify, count and (partly)

qualify cough sounds, based on internal sound signals, is proposed. This ap-

proach relies on explosive phase detection, because of its acoustic and spectral

distinctive characteristics, and its potential for accurate onset detection of

cough sounds. The features analyzed, related with tonality, pitch, timbre

and frequency, prove to be very relevant in our explosive phase detection

approach. Our results show an accurate detection, for a wide testing popu-

lation with and without respiratory perturbations, which demonstrates the

ruggedness of this approach. The internal sound analysis reveals advantage-

ous in external noise reduction, therefore internal sounds are highlighted and

better characterized. The explosive phase detection approach demonstrates

usefulness in detecting the onset of cough sounds.
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Resumo

A tosse pode ser definida como um evento explosivo forçado, normalmente

contra a glote fechada, produzindo um som caracteŕıstico com 3 fases, e

como sintoma, pode ser um indicador de muitas doenças respiratórias. Uma

medição objetiva da tosse seria útil na prática e pesquisa cĺınica, e na avaliação

de terapias e produtos farmacêuticos inovadores.

O presente trabalho propõe um método baseado no som interno para

automaticamente identificar, contar e parcialmente qualificar sons de tosse.

Esta abordagem basea-se na deteção de fase explosiva, devido à sua acústica

e às caracteŕısticas distintivas no espetro, e ao seu potencial para a deteção

precisa do ińıcio dos sons de tosse. As caracteŕısticas analisadas, relacionadas

com tonalidade, entoação, timbre e frequência, revelam-se muito relevantes

na abordagem de deteção da fase explosiva. Os nossos resultados evidenciam

uma boa deteção, para uma vasta população de teste, com e sem perturbações

respiratórias, o que demonstra a robustez desta abordagem. A análise do som

interno revela-se vantajosa na redução de rúıdo externo, portanto, os sons

internos são realçados e melhor caracterizados. A abordagem de deteção da

fase explosiva demonstra utilidade na deteção do ińıcio dos sons de tosse.
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Chapter 1

Introduction

1.1 Scope

The present master thesis is part of the European project Wearable Sensing

and Smart Cloud Computing for Integrated Care to COPD Patients with

Co-morbidities (WELCOME), which aims to bring about a change in the

management of chronic diseases and in particular the Chronic Obstructive

Pulmonary Disease (COPD). The project is intended to produce a patient

centered approach to COPD management, by the design, development and

evaluation of a platform that will integrate the fundamental elements of care

into a unified system targeting COPD for early detection of complications.

The combination of continuous monitoring, information and communication

technologies, shared decision support systems, and personalized guidance will

provide a shift from reactive to predictive, preventive, personalized, and par-

ticipatory medicine. The project includes the development of a vest with

a large number of non-invasive chest sensors and devices dedicated to the

treatment of diabetes for measuring and monitoring various parameters, like

high spatial resolution electrocardiogram, chest sounds, Electrical Impedance
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Tomography (EIT) and saturation of peripheral oxygen (SpO2). The WEL-

COME solution will then integrate and exploit the monitoring data, in order

to discover predictive patterns and organize the healthcare pathway. Here,

it will be included signal processing and detection algorithms for cough, dys-

pnea and chest sounds like crackles, rhonchi or wheeze. A schematic view of

WELCOME project is presented in Figure 1.1.

Figure 1.1: Schematic view of WELCOME. From Project Proposal Docu-
ment

1.2 Motivation and Objectives

The original goal of the present master thesis was the detection of acute dys-

pnea by the non-intrusive parameters contemplated in the project. Dyspnea

can be defined as the patient’s subjective perception of shortness of breath,

and the current clinical gold standard for detection and measurement is by

X-ray and spirometry, both highly intrusive and, hence, not appropriated

for continuous monitoring. It was intended to develop a solution for par-

oxysmal dyspnea and dyspnea under exertion detection, based on information
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provided by multi-sensor parameters able to producing surrogates for respir-

ation and chemoreflex mechanism, as well as technology already developed

by the University of Coimbra that enables cardiac output and contractility

index assessment from systolic time intervals. The lack of a suitable dataset

led to the acquisition of data on hospital environment, but due to difficulties

and delays in this procedure, the scope of the work had to be changed. In

late April of 2014 the decision to abandon the dyspnea detection study was

made, and our attention turned to detection and quantification of cough.

Counting and classifying cough automatically for ambulatory monitor-

ing has proven to be an important issue, with several challenges to address.

As a common and clinic descriptive symptom of many respiratory diseases

[Chung et al.,1996; Irwin et al.,1990; Irwin et al.,1998; Chang et al.,2003],

cough has been vastly explored by the scientific community as a diagnosis

marker. In some conditions like pulmonary fibrosis, lung cancer and COPD,

the daily life quality depends on the assessment, monitoring and control

of this symptom. With the potential of reducing hospital admissions and

the prevention and mitigation of co-morbidities, like chronic heart failure,

diabetes, anxiety and depression, a continuous monitoring of cough could

contribute for improvement of financial profitability and efficiency.

The cough sound had consistently been cloven in three main phases: ex-

plosive phase, intermediate phase and voicing (or voiced) phase. The first

explosive phase is characterized by an initial burst of high frequency sound

that emerges in the moment of glottal opening, and so, it seems to assume

importance not only for accurate onset detection of the cough sound but also

for counting cough, since this phase is always present in each cough sound
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produced. In fact, much difficulties in counting cough rely on a variety of pat-

terns, molded by the causing pathology, presence of sputum, among other

factors. The first phase endows the signal of a more explosive and louder

characteristic, therefore less variable between subjects, being an ideal can-

didate for identifying cough.

Besides the identification and counting of cough, three other characterist-

ics of the cough sound proved to provide important clinical information: the

pattern of coughing; the intensity of the sound; and the general acoustic prop-

erties. The analysis of those may identify the presence of sputum, wheeze or

mechanical blockage, providing information about the causing mechanism of

the symptom.

To sum up, the main objectives of this work were:

• Elaborate the data acquisition protocol

• Data acquisition for obtaining a relevant dataset

• Summarize the state-of-the-art methods for detecting and counting

cough

• Development of a cough detection approach

• Develop and test the proposed algorithms

• Dissertation writing
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1.3 Approaches

In this work, a method for automatic cough detection based on internal

sounds analysis is proposed, aiming to not only count cough sounds but

also to characterize the event by intensity and pattern. To this end, we use

an explosive phase detection approach, analyzing 50 individuals, which pro-

duced 411 voluntary cough epochs (continuous coughing sounds without a

2-s pause), 383.4 seconds of speech, 24.55 seconds of laughing and 26 throat

clear events, captured by a digital stethoscope. It was also desired in this

work a broader analysis of the detected cough sound. The performance of the

method to discriminate the number of cough sounds detected in a multiple

cough sounds (fits of cough) was measured and it was evaluated if internal

chest sound energy could be a surrogate for the intensity analysis.

The results achieved for quantification of cough showed that the explosive

detection approach is a reliable method for identifying cough sounds. The de-

tection approach shows robustness across subjects with different respiratory

perturbations and demonstrates advantages in one of the main challenges

of audio signal analysis, the external-to-subject noise. Moreover, internal

events seem to be better characterized, with some features related with tonal-

ity, pitch, timbre and spectral analysis revealing themselves very descriptive.

The ability of the approach to discriminate the number of cough sound by

fits of cough indicate a first step in the analysis of the pattern, and the energy

metrics exhibit potential to become a surrogate for intensity assessing.
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1.4 Main Contributions

It was obtained significant dataset for a wide population with and without

respiratory perturbations, recording voluntary events such as cough, speech,

laugher and throat clears. The results achieved for quantification of cough

showed that the explosive phase detection approach is a reliable method for

identifying cough, demonstrating robustness across subjects with different

respiratory perturbations and mitigating the inherent difficulty of the vari-

ety of patterns in cough sounds.

Two papers about this results were written in September 2014. ”Vol-

untary Cough Detection by Internal Sound Analysis” was submitted and

accepted at 7th International Conference on BioMedical Engineering and

Informatics (BMEI 2014). ”Combining Pervasive Technologies and Cloud

Computing for COPD and Comorbidities Management” was submitted at 4th

International Conference on Wireless Mobile Communication and Healthcare

(MOBIHEALTH 2014).

1.5 Outline of the Dissertation

The master thesis document is structured into six chapters. The

Chapter 2 presents the state of the art of cough pathophysiology, methods for

cough identification and the guidelines for cough counting and assessing. In

Chapter 3 it presented the applied methods and approaches used in this work.

Chapter 4 presents the results of our work, and discussion. In

Chapter 5 it is summarized the conclusions and contributions of this work.
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Chapter 2

State of the Art

In this chapter we investigate the state of the art of cough pathophysiology

and the former and recent methods for cough identification, as well as the

scientific consensus guidelines for cough counting and assessing. Patho-

physiology of cough is described in Section 2.1, it is given to the COPD

a special attention, within the framework of the project, in Section 2.2, it is

reviewed the specifications of the definition of cough in Section 2.3, and it is

analyzed the methods and systems for cough detection in Section 2.4.
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2.1 Pathophysiology of Cough

Cough is a protective reflex, a component of normal respiratory physiology

that enhances the mucociliary function and clears excessive secretions and

airway debris from the respiratory tract. Although cough in healthy indi-

viduals is physiologically important, it is normally a very uncommon event

[Loudon et al.,1966; Sumner et al.,2013]. Mostly, it represents a symptom of

a respiratory (or not) disease. Cough also assumes great importance as a

factor in the spread of infections and as a patient-initiated tactic to provide

cardiopulmonary resuscitation to maintain consciousness during a potentially

lethal arrhythmia or convert arrhythmias to a normal rhythm.

Because cough is an easily described and recognizable physical act, pa-

tients know what is being referred to as cough, thereby lending credibility to

findings from patient surveys on prevalence of cough. This had enabled the

development of patient reported outcome tools, by which physicians assessed

the impact of cough on patients, and still do.

Research on chronic cough has been revealed difficult over the years, be-

cause unlike bronchoconstriction, the cough reflex is blunted in anesthetized

animals [Lalloo et al.,1996]. Consequently, a better understanding of the hu-

man cough reflex was delayed until human trials became possible and secure.

The pathophysiology of the cough reflex began to be better characterized

by experiments with the use of inhalational challenge tests in human subjects

with chemicals such as capsaicin, chloride-deficient solutions, citric acid, and

prostaglandins [Lalloo et al.,1996]. Those substances with a variety of chem-

ical characteristics can securely stimulate the cough reflex in human beings.
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In neurophysiological terms, cough arises following activation of a com-

plex sensorimotor reflex arc [Irwin et al.,2014]. The cough reflex has vagal

afferent input, namely two different classes of afferent nerves - the myelinated

rapidly adapting receptors, and non-myelinated C-fibers with endings in the

lungs [Goldsobel et al.,2010] - and also brain stem centralization with cor-

tical modulation and motor efferent activity involving respiratory muscles.

Cough receptors are located in the respiratory tract from the larynx to the

segmental bronchi [Chang et al.,1999]. Cough reflex sensitivity can be mod-

ulated either by disease or pharmacologically. Because it can be initiated

at numerous anatomic sites, and it is therefore not surprising that chronic

cough may have a variety of causes. Two or three different conditions may

occur together in the same patient, thus complicating the clinical picture

[Irwin et al.,1991; Stone,1993].

There are a variety of respiratory diseases that can be related with the

symptom of cough. The most common cause of an acute cough is a viral res-

piratory tract infection, which can be a common cold, pneumonia, pertussis,

or tuberculosis. After a viral infection has cleared, the subject may be left

with a post-infectious cough. This typically is a dry, non-productive cough

that produces no phlegm. Symptoms may include a tightness in the chest,

and a tickle in the lungs.

When the symptoms last longer than 8 weeks, it can be designated as

chronic cough, and most of the cases are due to asthma, bronchitis, post-nasal

drip (excessive mucus produced by the nasal mucosa) and gastro-esophageal

reflux disease [Goldsobel et al.,2010]. Asthma is a chronic inflammatory dis-
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ease of the airways, normally related with allergic factors, that results from

chronic inflammation of the airways which increase contractility of the sur-

rounding smooth muscles, as presented in Figure 2.1. Its symptoms are

recurring and variable [Prevention et al.,2007].

Figure 2.1: A cross-section of a normal airway and a cross-section of an
airway during asthma symptoms. From [61].

Bronchitis is an inflammation of the mucous membranes of the bronchi

and can be divided into acute and chronic [57]. Acute bronchitis is usually

caused by viruses or bacteria, and most cases of chronic bronchitis are caused

by smoking, which causes secretion of mucus into the airway, and difficulty

clearing that mucus out of the airways, as Figure 2.2 shows.
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Figure 2.2: Bronchitis increases the amount of mucus in the bronchi, dam-
aging cilia, the tiny hair-like organelles que reside on the surface of cells, and
causing chronic cough. From [60].

2.2 Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease (COPD) is an umbrella term used

to describe progressive lung diseases, most notably including emphysema

and chronic bronchitis [Minkoff et al.,2005]. Emphysema is marked by pro-

gressive destruction of alveolar tissue and irreversible enlargement of the air

spaces. Patients with COPD suffer symptoms of dyspnea, mucus production

and chronic cough, with impairment in ability to carry out daily activities

and progressive decline in quality of life.

Complex diseases such as COPD are most often the result of geneenvir-

onment interactions that determine the clinical presentation of the disease

[Agusti et al.,2012]. The diagnosis of COPD combines symptoms and a rel-

evant exposure to risk factors as tobacco smoking and ambient pollutants,

with the presence of persistent airflow limitation. For many years, the as-
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sessment of COPD, as well as the majority of respiratory diseases, has been

based almost exclusively on the severity of airflow limitation. The most com-

mon of the pulmonary function tests is the spirometry, measuring the amount

(volume) and/or speed (flow) of air that can be inhaled and exhaled. The

Figure 2.3 presents a scheme of this exam.

Figure 2.3: How spirometry is done. The patient takes a deep breath and
blows into a tube connected to a spirometer. From [59].

Nowadays, it is known that the assessment and management of COPD

patients requires a multidisciplinary approach, which should include genetic,

biological, clinical and environmental levels of analysis [Agusti et al.,2012].

By the clinical point of view, COPD should be considered in any patient

presenting with cough, sputum production or dyspnea, especially if the pa-

tient has been exposed to risk factors for the disease [Pauwels et al.,2004].

Cough may initially occur intermittently but it is usually the first symptom

of COPD to develop [Georgopoulas et al.,1991]. COPD is also associated
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with several co-morbidities such as cardiovascular disease, metabolic syn-

drome (e.g. diabetes), osteoporosis, mental health diseases and lung cancer.

Pharmacological treatment of patients with COPD should be initiated us-

ing a short-acting or a long-acting bronchodilator. Treatment with inhaled

corticosteroids is needed in patients with severe COPD. Other aspects of

treatment include vaccinations, antibiotics and mucolytics. In the late-stage

of severity long-term oxygen therapy, non-invasive ventilation and surgical

treatment become necessary.

It was proven that chronic cough and sputum production are associ-

ated with COPD exacerbations, including severe exacerbations requiring hos-

pitalizations, in pharmacological treated patients [Burgel et al.,2009].In the

European Union, COPD severe exacerbations are the leading cause of lost

work days, resulting approximately in [Loddenkemper et al.,2003]:

• 41,300 lost work days per 100,000 population, leading to productivity

losses amount to a total of 28.5 billion annually.

• 4.7 billion for outpatient care.

• 2.9 billion for inpatient care.

The estimated costs of exacerbations vary widely across studies: $88

to $7,757 per exacerbation, the largest component of the total costs be-

ing typically hospitalisation [Toy et al.,2010]. Costs were highly correlated

with exacerbation severity, although indirect costs have rarely been measured

[Toy et al.,2010]. The important indicator is that every exacerbation event

has a gradual increment phase preceeding the peak exacerbation time for sev-

eral hours to several days [Rabe et al.,2007]. Therefore, an acute, objective
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and continuous monitoring of cough can be used for early detection of com-

plications, and effective management of COPD may lead to improved patient

outcomes and reduction in total healthcare costs for long-term management

of COPD

2.3 Definition of Cough

A clear and consensual definition of cough is lacking in the majority of text-

books and scientific papers concerning cough. Two possible ways to define

it are:

1. Cough is a forced expulsive maneuver, usually against a closed glottis

and which is associated with a characteristic sound [Korpas et al.,1979].

2. Cough is a three-phase expulsive motor act, initialized by an inspiratory

effort (inspiratory moment), followed by a forced expiratory against a

closed glottis (compressive moment) and then by opening of the glottis

and rapid expiratory airflow (expulsive moment) [Morice et al.,1991].

The major discrepancy between these two and between these and all other

definitions lies in the several respiratory patterns associated with cough, one

of its challenges. Moreover, neither these two definitions adequately deals

with the common clinical scenario whereby an initial cough is followed by

a series of cough efforts. For the patient, this is often described as a cough

”attack”. To the researcher, they may represent an extended single cough

with different characteristics or peals of two or more single coughs in a short

time. Clearly, this is of importance to those concerned with the accurate

recording of cough frequency, therefore must be defined precisely.
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For the purposes of acoustic recordings in clinical studies, cough should

be defined as a forced expulsive onrush against a closed glottis that is asso-

ciated with a characteristic sound, that literature have consistently cloven in

three main phases associated with the mechanisms of cough-sound creation

[Korpas et al.,1987; Thorpe et al.,1992]: explosive phase, intermediate phase

and voiced phase.

First, the explosive phase, characterized by an initial burst of sound that

emerges in the moment of glottal opening. It provides information about

bronchus, inasmuch that the high frequency sound yields in the vibrations

produced by the forced air flux in the airway and the bronchial narrowing

places.

Then, the intermediate phase, steady-state flow with the glottis wide

open. It reflects the status of trachea, the presence of sputum add a charac-

teristic high frequency component to the sound and is directly related with

the duration of this phase.

Finally, the voiced phase, where glottis narrows again, with the vocal

cords approaching each other. This third phase may not take place, but

the occurrence probability in voluntary cough is about 50% higher than in a

spontaneous event [Hirtum et al.,2002]. In Figure 2.4 is represented a typical

three-phase cough sound, acquired by a lapel microphone.
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Figure 2.4: A typical three-phase cough sound (1: explosive phase; 2: inter-
mediate phase; 3: voiced phase). From [Morice et al.,2007].

This definition clarifies the fits of cough as peals of two or more single

coughs. Yet, a more careful description of cough events is needed for an

accurate identification and quantification of cough, and there are several:

1. Counting the characteristic 3-phase cough sounds defined above is the

most intuitive way of counting cough.

2. Nevertheless, systems that continuously monitor breathing usually quan-

tifies cough as the number of breaths that contain at least one explosive

cough sound.

3. Another cough quantification can be the time spent coughing, i.e. the

number of seconds per hour containing at least one explosive cough

sound.
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4. It can also be done as cough epochs, continuous coughing sounds without

a 2-s pause.

These four ways to counting cough can lead to differing quantification, as

shown in Figure 2.5.

Figure 2.5: Methods for quantifying coughing: a) explosive cough sounds; b)
cough seconds; c) cough breaths; d) cough epochs. Dashed lines divide units
of cough and numbers represent cough count. From [Morice et al.,2007].

Counting the 3-phase cough sounds seems to be the more precise way to

discriminate peal events, since every single coughs are counted, but the other

three quantifications greatly simplify the process. Moreover, the European

Respiratory Society (ERS) defend that there is a tight linear relationship
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between cough sounds and cough seconds in a variety of conditions

[Morice et al.,2007], and that is not known whether any of these methods

is more valid than any other in clinical terms. In [Kelsall et al.,2008] , it is

found a strong correlation between counting explosive phases, cough seconds

and cough epochs. What is consensual is the mandatory definition of the

unit of cough used.

In this work, the definition of cough epoch is used as a time interval that

contains cough sounds spaced no more than 2 seconds [Hamutcu et al.,2002;

Munyard et al.,1996]. This defines peal events, and even nearby single coughs,

as a single cough epoch. In physiological terms, since coughing serves the pur-

pose of unblocking the airways, nearby 3-phase coughs aim to solve the same

block, so this definition indirectly counts the occurrence of discomforts that

lead to cough happenings. Moreover, excellent inter and intra-subject agree-

ment has been found for quantification of cough seconds, explosive phases

and cough epochs [Hamutcu et al.,2002; Munyard et al.,1994].

However, in clinical terms it is relevant the way that body deals with the

blocks, a long peal event with numerous coughs contrasts with few strong

single coughs although both can resolve the same. Therefore, other features

of the cough signal apart from the number of coughs are potentially of use as

clinical end-points for classifying the event. ERS defined three characteristics

of the cough sound which provide important information [Morice et al.,2007]:

• The pattern of coughing is important, since either single coughs or fits

of coughing serve different mechanical purposes and affect the patient’s

experience.

• The intensity of the sound is also relevant, which could be given by
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both peak intensity and overall energy released, is important in subjects

that despite a small number of coughs may still find the symptom very

distressing if associated with chest pains, retching or syncope.

• Finally, the acoustic properties of the cough sounds, which may identify

the presence of sputum and wheeze.

2.4 Automate Counting of Cough

The evaluation of cough severity was for many years subjective, based on

cough scores, diaries, visual analogue scales, and symptom questionnaires,

which are completed either by the patient himself or a parent

[Birring et al.,2003; Marsden et al.,2008]. However, it has been shown that

subjective assessments correlate modestly with objective measures of cough

frequency [Decalmer et al.,2007].

An objective measure of cough would be of use in clinical practice, clinical

research and the assessment of novel therapies and pharmaceuticals. It would

permit validation of the presence of cough, grading of severity and monit-

oring of responses to therapeutic trials. But identifying, quantifying and

classifying cough has proven to be difficult, not only because of cough vari-

ety of phases, patterns and adjustments to pathologies with chronic cough,

but also because the aim is to perform ambulatory long term monitoring,

which, manually, can become a time-consuming and arduous task.

There have been attempts to achieve a consensual and reliable system for

monitoring cough, with experiments based on both voluntary and patholo-

gic events. Some approaches from the past used audio signals either alone or
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combined with others

[Munyard et al.,1994; Chang et al.,1997; Hsu et al.,1994], but they only en-

abled to manually spot the cough sounds by visualizing the signals, which

does not avoid the loss of time in counting.

Therefore, the ideal cough monitoring system needs to be able to de-

tect and count cough automatically and with high accuracy. One way of

classifying cough monitoring devices is by the degree of user input required

[Smith,2008]. The ideal cough monitoring system would be small, robust and

as less intrusive as possible for the subject.

Recently, other research works tried to automate the recognition and

counting of cough sounds. Many methods use ambient audio signal only.

The use of Hidden Markov Models (HMM), for instance, to detect cough

signals as keyword spotting in continuous ambient audio recordings, exhibit

promising results [Matos et al.,2007]. The Leicester Cough Monitor (LCM)

use this approach to presegment possible cough events from 24-h ambulatory

ambient audio recordings [Birring et al.,2008]. Some of these possible cough

segments are then presented to a human expert in order to develop a stat-

istical model tailored to the current recording. Finally, the full recordings

are processed with the developed models. In [Birring et al.,2008], the system

achieved an overall recall and specificity of 91% and 99%, respectively, for

tests in 6-h recordings from 9 respiratory patients. A scheme of this system

can be found in Figure 2.6.

Matos et al.[Matos et al.,2006] had also previously used HMM trained on

ambient audio features, developed to characterize cough events, but also to
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represent the set of all other possible events (it also selects the event can-

didates from recordings, by energy thresholding). This two models compete

to score new recordings and the most likely sequence of coughs and fillers is

retained. This system achieved a recall of 71%, lower than the LCM, but

here the process is fully automatic.

Figure 2.6: Leicester cough recording system scheme, with the lapel micro-
phone for ambient sound recording. From [Matos et al.,2007].

Currently, this is one of the most promising approaches in cough count-

ing, but some authors deem that coughs should not be treated as speech,

since their acoustic differing characteristics need to be fully considered in the

design of algorithms [Chunmei et al.,2013].

The Hull Automatic Cough Counter (HACC) system uses digital signal

processing to calculate characteristic spectral coefficients of ambient sound

events, which are then classified into cough and non-cough sounds by the use

of a probabilistic neural network (PNN)[Barry et al.,2006]. It uses an event

detection logic based on adaptable thresholding, which basically removes the
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predominant silence phases and allows focusing in probable cough sounds.

This technique reduces the computation time of the analysis, by cutting a

large percentage of data to be analyzed. The spectral coefficients are calcu-

lated for detected event candidates, which are then classified into cough and

non-cough events by the use of PNNs. As the HACC system just identifies

coughs and labels them, and does not automatically count them, a techni-

cian has to listen to and count the labelled coughs using a graphical user

interface, presented in Figure 2.7. Tests performed only in smoking subjects

achieved a specificity of 96% and a recall of 80%.

Figure 2.7: HACC system graphical user interface. From [Barry et al.,2006].

Drugman et al. investigated the use of contact microphone signal in com-

plement to the ambient audio signal, with the use of PNNs too

[Drugman et al.,2012]. The key idea was to focus only on the detection of the

explosive phase of cough. Indeed, the intermediate phase had proven to be

very similar to a forced expiration [Korpas et al.,1996], or in some healthy

sputum-free subjects cases to a silence phase. As the voiced phase may

not occur and resembles to a speech sound, the explosive phase can assume

primacy in the cough sound analysis. As we can see in Figure 2.8, although
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this phase demonstrates irregularity, it is characteristic of the beginning of

any cough sound and possibly, its irregularity can be more nonspecific among

individuals.

Figure 2.8: a) Typical cough ambient sound waveform divided into the three
acoustic phases; b) The explosive phase on an expanded timescale, demon-
strating the irregular, noise-like appearance; c) The voicing phase on an
expanded timescale, showing its contrasting regular, periodic appearance.
From [Tracey et al.,2008]

Drugman et al. approached the explosive phases of each cough sound by

the first 60 milliseconds of the total sound, and selected a set of 50 features
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from the total 222 features calculated. This approach was experimented in

voluntary cough from healthy subjects, achieving specificity and recall of

88%, for ambient audio signal analysis, and specificity and recall of 71%

for the signal of a contact microphone over trachea and over thorax. The

combination of those two signals was proved to convey little new relevant

information compared to the audio signal modality alone.

There are, to date, three major cough-counting industrial devices: the

Lifeshirt System, the PulmoTrack-CC system and the VitaloJAK system.

Industrial devices as they are, little information was found about methods

used in each. The LifeShirt R©(VivoMetrics, Inc., Ventura, California, United

States of America) system, incorporates respiratory inductance plethysmo-

graphy for the non-invasive measurement of volume and timing ventilat-

ory variables and also incorporates a unidirectional contact microphone,

a single channel ECG, and a centrally located, 3-axis accelerometer. In

[Coyle et al.,2005], the system was evaluated in eight patients with a doc-

umented history of COPD, 24-h ambulatory sound recording, and with a

specialized software (VivoLogic R©, VivoMetrics, Inc., Ventura, California,

United States of America) used to view the data and a proprietary algorithm

housed within the software to identify cough. A recall of 78.1% and a pre-

cision of 84.6% was achieved. The system sensors are presented in Figure 2.9.
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Figure 2.9: The LS system sensors. The inductive plethysmography sensors
capture chest and abdominal respiratory movements. With ECG sensors, a
pulse oximeter, and a posture accelerometer, all data are recorded in a small
device attached to the waist. From [58].

The Karmelsonix R©(KarmelSonix Limited, Baulkham Hills, New South

Wales, Australia) company launched the PulmoTrack-CC, which includes a

piezoelectric belt, one lapel microphone and two contact microphones placed

on the trachea and the thorax. In [Vizel et al.,2010], the algorithm spe-

cifications are not clearly explained, but there is a first detection of cough

candidates, and then a validation phase by detection of specific character-

istics of cough in all signals data. The performance of this device reached a

recall of 96% and a specificity of 94% on voluntary cough from 12 volunteers.

The VitaloJAK system uses a contact microphone placed on the chest wall

and a custom-made digital recording device to detect cough from sound. In

[McGuinness et al.,2007a], this system was adapted to a physiological ap-

proach tailoring. Subjects perform voluntary coughs, which are recorded,

from set lung volumes. The same author concludes in

[McGuinness et al.,2007b] that much of the variability in cough sounds within

an individual can be explained by the lung volume from which the cough oc-
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curs. Acoustic parameters extracted from these voluntary coughs can be then

used to interrogate a 24-h sound recording and pick out candidate events.

The study, in 10 subjects (n=5 chronic cough, n=5 asthma), reaches a recall

higher than 99% in this first selection, while compressing the amount of data

to check manually in about 65%. The final cough detection achieved a recall

of 97.5% and a specificity of 97.7%. In Figure 2.10 we can see an image of

the VitaloJAK cough monitor.

Figure 2.10: VitaloJAK cough monitoring device, with both lapel and contact
microphone attached. From [Smith,2008].

Despite all of those systems and approaches, the ERS Committee defends

that there are at the moment no standardized methods for recording cough.

Moreover, there are no adequately validated, commercially available, and

clinically acceptable cough monitors [Morice et al.,2007].
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Chapter 3

Methods

In this chapter we present the methods and approaches used in this work. In

the Experimental Setup Section 3.1 it is explained the acquisition protocol

for obtained dataset. The annotation phase is descripted in Annotation Al-

gorithm Section 3.2. In the Algorithm Design Section 3.3 we present the

specifications of the proposed algorithms. The feature extraction proceed-

ings are described in Feature Extraction sub-Section 3.3.1, as well as feature

selection proceedings are described in Feature Selection sub-Section 3.3.2.

The Classification sub-Section 3.3.3 presents the classification algorithm and

the Post-processing and Performance Analysis sub-Section 3.3.4 presents the

proceedings after classification for cough counting and performance analysis.
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3.1 Experimental setup

In order to evaluate the explosive phase approach for cough detection in

chest sounds, a dataset was required. To the best of our knowledge, no

free-access datasets were available for this kind of purpose. It was desired

to have not only cough sounds, but also other respiratory and prosody-

related occurrences, which can possibly be confounded with cough. Related

works that use recordings of voluntary cough often include in their proto-

cols events such as speech, laugh, throat clearings and forced expirations

[Drugman et al.,2012; Drugman et al.,2013], and sneezes are also present in

ambulatory recordings [Matos et al.,2007].

The employed recording system consisted in a 3M Littmann digital steth-

oscope, model 3200, St. Paul, Minnesota, USA, with a sampling frequency

of 4000 Hz. The sound signal was acquired with individuals seated in a

room and without any external sound cancellation. For the auscultation

site, it was considered the posterior inferior lobe site of the left or right

lung, and the posterior middle lobe site of the left or right lung. Re-

lated works have considered auscultations in the throat, trachea and thorax

[Drugman et al.,2012; Drugman et al.,2013].

For each voluntary subject, 4 recordings of 15-s duration each were per-

formed, and subjects were asked to produce in each recording: a single cough,

a peal of two or more coughs, and around 5 seconds of one of the following

events: speech, laughter and throat clears. In Figure 3.1 we can find the

appearance of speech, laughter and throat clears in amplitude and their spec-

trogram. The subject initiated each event commanded by feedback of the

acquisition technician, always keeping more than 2-seconds spacing between
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each event. The order of the events in the recording was also randomly varied

for each of the four recordings. It was also requested that the subject perform

the events with a minimum of breaks, i.e., to speak as much continuously as

possible, to facilitate annotation.

Figure 3.1: Examples of confusing events present in the acquisition protocol
in amplitude and spectrogram: from top to bottom: first, a speech event;
second, a laughter event; third, three throat clears

Recordings were performed on 36 healthy individuals without any known

respiratory perturbation (without respiratory perturbations group - WPG)

and from 14 individuals with respiratory perturbations (respiratory perturb-

ations group - RPG). In the RPG group, smokers can be found (n=1), as

well as cough-related pathologies like asthma (n=3), bronchitis (n=1), rhin-

itis (n=1) and simple colds (n=8).
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The biometric characteristics of the testing groups are shown in Table 3.1.

All the data related with the population can be found in the Attachments

Section (ref).

WPG+RPG WPG RPG

Age (years±STD) 33.26±14.73 36.21±23.25 29.89±9.98

BMI - Body mass index

(kg/m2±STD)

24.85±4.17 24.84±5.28 24.86±3.74

Gender (males/ females) 26/24 7/7 18/18

Table 3.1: Biometric characteristics of the testing groups

The final total audio data consisted of 50 recordings of 1 minute ac-

quired from 50 individuals, containing 411 cough epochs (single cough or

peal events), 383.4 seconds of speech, 24.55 seconds of laughter and 26 throat

clears.

3.2 Annotation Process

All the audio data was analyzed by an observer, using Audacity audio soft-

ware in order to obtain the annotation of explosive phases of cough sounds.

Each audio file was loaded into Audacity and, by listening to the audio, the

observer detected the cough sound. Also by observing the signal’s spectro-

gram, the onset and offset were finely adjusted. In Figure 3.2 we can find

the appearance of a cough sound in amplitude and their spectrogram.
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Figure 3.2: Audacity software interface with a signal loaded: top, waveform;
bottom, spectrogram. A single cough sound is highlighted, evidencing the
three phases and relating them with the status of the glottis.

The annotated onsets and offsets for each explosive phase of cough sounds

were used to obtain the annotation vector of each recording, which consists

in a vector containing the annotation of each frame-interval chosen a pri-

ori. In a later stage, the final voicing phases of each cough epoch were also

annotated by listening to the audio and observing the spectrogram of the

signal. If they did not occur, the offset of the final intermediate phases were

annotated. In Figure 3.3 we can find one annotated voicing phase and offset

of intermediate phase. The confusing events were also annotated by the same

method.
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Figure 3.3: The annotation of voicing phases and offset of intermediate
phases. In the top signal, the final voicing phase of a peal event with 2
cough sounds is highlighted. In the second signal, the offset of the interme-
diate phase of a single cough sound is pointed out.

3.3 Algorithm Design

3.3.1 Feature Extraction

A total of 79 features were calculated for each frame interval of the ana-

lyzed recordings. These features were extracted in 50-milliseconds frames,

without overlapping. Most of these features were computed using the open-

source MIR toolbox [Lartillot et al.] and VOICEBOX [Brookes et al.,2002]

for Matlab, covering a broad range of sound dimensions including frequency,

timbre, pitch, tonality and also speech-related analysis. All the 79 calculated

features are presented in Table 3.2.
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Feature Description Dimension Functions (Tool-

boxes)

Mean ener Mean of the squared data signal Energy mean (Matlab)

Peak Largest value of data signal Basic Operator max (Matlab)

Fft Mean of the decomposition of the en-

ergy of the data signal along 128 fre-

quencies using a Fast Fourier Trans-

form

Frequency mirspectrum + mirget-

data + mirstat (MIR

toolbox)

Evo Distance between the Fft of each suc-

cessive frames

Frequency mirflux + mirgetdata

(MIR toolbox)

Ter Modulates the energy by an atten-

uation in the lower and higher re-

gisters of the spectrum, and an em-

phasis around 25 KHz, where much of

the speech information is carried

Frequency mirspectrum + mirget-

data + mirstat (MIR

toolbox)

Bark Convert the Fft value in Hertz to the

Bark frequency scale

Frequency frq2bark (VOICE-

BOX)

Cent Convert the Fft value in Hertz to cents

scale

Frequency frq2cent (VOICEBOX)

Erb Convert the Fft value in Hertz to erb

rate scale

Frequency frq2erb (VOICEBOX)

Mel Convert the Fft value in Hertz to mel

scale

Frequency frq2mel (VOICEBOX)

Rhar Mean of the Hartley transform of data

signal

Frequency rhartley (VOICEBOX)

+ mirstat (MIR tool-

box)

Rdct Mean of the Discrete cosine transform

of data signal

Frequency rdct (VOICEBOX) +

mirstat (MIR toolbox)

Zoomfft Mean of the Discrete Fourier transform

evaluated over a linear frequency range

Frequency zoomfft (VOICEBOX)

+ mirstat (MIR tool-

box)

Rsfft Mean of the Fast Fourier Transform of

real symmetric data

Frequency rsfft (VOICEBOX) +

mirstat (MIR toolbox)

Vu Calculate volume unit level of data sig-

nal in linear units rather than dB

Frequency v ppmvu (VOICE-

BOX) + mirstat (MIR

toolbox)

Zerocross Calculate the number of times the data

signal crosses the X-axis

Timbre mirzerocross + mirget-

data (MIR toolbox)
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Rolloff(1:2) Calculate the frequency such that 85%

(Rolloff(1)) and 95% (Rolloff(2)) of the

total energy is contained below that

frequency

Timbre mirrolloff + mirgetdata

(MIR toolbox)

Brightness Fix the cut-off frequency of 1500 Hz

and calculate the amount of energy

above that frequency

Timbre mirbrightness + mir-

getdata (MIR toolbox)

Centroid Calculate the spectral distribution

centroid

Timbre mircentroid + mirget-

data (MIR toolbox)

Spread Calculate the spectral distribution

spread

Timbre mirspread + mirget-

data (MIR toolbox)

Skewness Calculate the spectral distribution

skewness

Timbre mirskewness + mirget-

data (MIR toolbox)

Kurtosis Calculate the spectral distribution kur-

tosis

Timbre mirkurtosis + mirget-

data (MIR toolbox)

Flatness Calculate the spectral distribution flat-

ness

Timbre mirflatness + mirget-

data (MIR toolbox)

Entropy Calculate the spectral distribution en-

tropy

Timbre mirentropy + mirget-

data (MIR toolbox)

Regularity Calculate the mean of the variation of

the successive peaks of the spectrum

Timbre mirregularity + mir-

getdata (MIR toolbox)

Mfcc(1:14) Calculate the mel-frequency cepstral

coefficients of 13 ranks, plus the coef-

ficient related to the average en-

ergy, that is by convention of rank 0

(Mfcc(1))

Timbre mirmfcc + mirgetdata

(MIR toolbox)

Mfccd(1:14) Calculate the first derivative of mel-

frequency cepstral coefficients of 13

ranks, plus the coefficient related to

the first derivative of the average en-

ergy, that is by convention of rank 0

(Mfccd(1))

Timbre mirmfcc + mirgetdata

(MIR toolbox)

Mfccdd(1:14) Calculate the second derivative of mel-

frequency cepstral coefficients of 13

ranks, plus the coefficient related to

the second derivative of the average en-

ergy, that is by convention of rank 0

(Mfccdd(1))

Timbre mirmfcc + mirgetdata

(MIR toolbox)
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Roughness Calculate the estimation of the sens-

ory dissonance, or roughness, related

to the beating phenomenon whenever

pair of sinusoids are closed in frequency

Timbre mirroughness + mir-

getdata (MIR toolbox)

Midi Convert the Fft value in Hertz to midi

scale of semitones

Pitch frq2midi (VOICE-

BOX)

Pitch(1:2,1:2) Calculate the discretized note events

of the signal data, for no filterbank

configuration and Gammatone filter-

bank configuration (Pitch(1:2,:)) and

for each of this, calculate the mean of

the 2 best pitches (Pitch(:,1:2))

Pitch mirpitch + mirgetdata

(MIR toolbox)

Inharmonicity Calculate the amount of partials of the

signal data that are not multiples of

the fundamental frequency

Pitch mirinharmonicity +

mirgetdata (MIR

toolbox)

Key Calculate an estimation of tonal center

positions and their respective clarity of

the signal data

Tonality mirkey + mirgetdata

(MIR toolbox)

Mode Calculate an estimation of the modal-

ity of the signal data

Tonality mirmode + mirgetdata

(MIR toolbox)

Noisem Calculate an estimation of the noise

spectrum from noisy speech using min-

imum mean-square error method

Speech-related

analysis

estnoisem (VOICE-

BOX)

Noiseg Calculate an estimation of the noise

spectrum from noisy speech using min-

imum statistics

Speech-related

analysis

estnoiseg (VOICE-

BOX)

Teager Calculate the mean of the Teager en-

ergy of the signal data

Speech-related

analysis

teager (VOICEBOX)

Table 3.2: Description of the calculated features and the Matlab functions
used for each one.

3.3.2 Feature Selection

By merging the total feature matrix with the annotation vector, the final

Feature Matrix (FM matrix) is obtained. This FM will feed the classifier

and will also be used for feature selection. This FM matrix was exported as

an .arff format file for posterior loading in the WEKA data-mining software.
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The feature selection was based on the Relief [Robnik-Sikonja et al.,2003] al-

gorithm, which outputs a weight for each feature, based on which the feature

ranking is determined.

3.3.3 Classification

After obtaining the FM matrix and the features ranking, the classification

phase, based on the training-testing approach, was conducted to discriminate

between sound frames with and without cough.

The chosen classifier was the K-Nearest Neighbors (KNN) pattern re-

cognition algorithm. KNN is a simple and non-parametric approach that is

known to be a good choice when data distribution is unknown or difficult to

determine. The algorithm determines the class of a given pattern based on a

distance metrics (defined here as Euclidean) and on the class of surrounding

neighbor patterns. More precisely, the algorithm finds the closest k neighbors

by using the chosen distance metrics and the class of a given pattern will be

the class of the majority of its neighbors. In this way, the unique training

parameter is the number of neighbors (k).

Classification results were validated with repeated stratified 10-fold cross

validation (20 repetitions). Therefore, for the total analysis of the 50 sub-

ject’s data, training was carried out using collected data from 45 subjects,

while testing was performed with data from the remaining 5 subjects. In

each fold, the 5 tested subjects were changed.

Before classification, the assembled training and testing data were pre-

processed, and the set of selected features was rearranged by Principal Com-
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ponent Analysis, which uses an orthogonal transformation to convert the set

with possibly correlated features into a set of values linearly uncorrelated

called principal components. The reconstruction was performed using a 90%

value of the covariance.

3.3.4 Post-processing and Performance Analysis

The results obtained in the classification stage were then post-processed by

merging events spaced by less than 2 seconds, according to our definition of

cough epoch. For the explosive phases classification, the accuracy, recall and

precision metrics were obtained frame by frame by comparing the annotated

vector of explosive phases for the testing data and the resulting classifica-

tion vector, obtaining then the true positive, false positive and false negative

rates. The recall and precision metrics, obtained for each explosive phase,

were also obtained, defining a true detection as a classified event present in

some part of an annotated one. The recall, also known as sensitivity, is the

ratio of the number of true positive events to the total number of positive

events. The precision, also known as positive predictive value, is the ratio of

the number of true positive events to the sum of the number of true positive

events with false positive events.

As for the evaluation of approximate cough epochs detection accuracy, the

same procedure was applied, by merging events spaced less than 2 seconds.

To those resulting events, just the intermediate and voicing phases of the last

cough sound of each cough epoch were absent, comparing with true cough

epochs. This resulting vector was compared with the post-processed classi-

fication vector, obtaining the true positive, false positive and false negative

rates for the detected approximate cough epochs.
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The mean and standard deviation (STD) of the onset and offset flaw of

the successful detected events were computed as well. It was also measured

how many times a classified event encompassed two, three or four annotated

events, recording the mean and STD of the time lapse between those encom-

passed events.

Using only the annotation of the last voicing phases of each cough epoch,

the recall and precision metrics were calculated by this second approximation

of the cough epoch. To these resulting events, just the intermediate phases

of the last cough sound of each cough epoch were absent, when the voicing

phase was absent. Finally, to this last approximate events, the offset of the

last intermediate phases of each cough epoch was also included, resulting in

the real cough epochs recorded in the signal. The recall and precision metrics

were also obtained.

At last, the recall and precision metrics for the explosive phases detected

on peals of cough were obtained. For each peal, the true number of explosive

phases was compared with the number of single hits detected by classific-

ation on the event interval. Moreover, the mean of the energy signal, was

calculated in the detected explosive phases and approximate cough epochs.

Also the mean of the maximum energy in each detected event interval was

calculated.

The complete software for feature extraction and learning was run under

Windows 8.1 on a 2.9 GHz I7 3520M PC with 8 GB of RAM, using Matlab

R2012a 64-bits, Weka v3.6 and Audacity 2.0.5.
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Chapter 4

Results and Discussion

In this chapter it is presented the results of our work, discussing their relev-

ance, importance and comparison with other similar methods.

All data acquisition was accomplished without external noise cancelation

to prove the impact of this in the chest sounds signal. The sampling fre-

quency of the recording system used was appropriated given that Chunmei

et al.[Chunmei et al.,2013] located the frequencies of cough with and without

sputum below 2000 Hz, our Nyquist frequency range top.

The auscultation sites considered resulted from the predicted ausculta-

tion sites for the WELCOME project vest, excluding the anterior sites, more

suitable for heart sounds auscultation. By consulting a pulmonologist phys-

ician from the research project group, it was considered the lower basal sites

as the best for pulmonary auscultation. Between the right and left side it

was not found any reference and it was chosen the right side to minimize the

auscultation of heart beats.
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The preliminary 15-seconds acquisitions revealed to be insufficient, and

we preferred to repeat this short-time acquisition four times for each subject,

rather than extend the time interval, to facilitate the script of the subjects.

The commanded start of the events by feedback of the acquisition technician

assured the spacing of more than 2 seconds between events. For the con-

fusing events tested, sneezing was discarded by the inability of reproducing

voluntarily, and forced expirations were found to be present in the foregoing

part of the cough events recorded, so it would test the ruggedness of our ap-

proach by the deviation of the onset of detected events. Speech events were

more requested to the subjects, resulting in an increased prevalence of those

relative to others, because of the ethic importance of discarding sound seg-

ments containing speech. Furthermore, we advocate that noisy and powerful

throat clears, which can be confounded by the classifier as a cough sound,

are not so bad to be counted, as an important respiratory event too.

To minimize the inherent errors of parallax on the adjustments in the

annotation phase, the observer tried to obtain values scaled visually with

precision of around 0.05 seconds, and it was considered that a frame was

part of a given event if more than half of the frame belonged to the noted

event.

The established frame length of 50 milliseconds is in the order of the

standard magnitude for microphone audio processing and the frame lengths

of other similar studies. The results with no overlapping showed a good

performance, but still, it was roughly tried the use of frames with overlap,

achieving much longer computations and lower results. It may be a con-

sequence of the already low performances frame by frame, which with the
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frame overlap should lower even more. Thus, it is was not followed up this

study.

Our definition of cough event as an epoch that contains cough sounds

spaced no more than 2 seconds, as valid as every other aforementioned, res-

ults in 411 cough events counted in the final total audio data. In those cough

events, we found a total of 896 explosive phases, and consequently, the same

number of 3-phase cough sounds. The merging of the annotated and the

detected explosive phases obtained an approximation of cough events, since

the final intermediate and voicing phases of each event are not accounted for

in the result of that merging process. The assured condition of no spacing

of less than 2 seconds between events confirms that no pair of fits of cough

was merged after this procedure, and it was confirmed that no fit of cough

of our data have a spacing of more than 2 seconds between subsequent ex-

plosive phases, ensuring that no fit of cough was splitted after this procedure.

KNN algorithm was chosen due to its simplicity and lower computation,

and proved to be efficient for the desired classification. This allows its ap-

plicability in continuous monitoring systems, with limited battery.

We performed tests in the whole dataset (WPG+RPG), and for the WPG

and RPG groups alone. For all of the testing groups, the Relief algorithm

ranking is shown in Table 4.1.

For all of the testing groups, the most relevant feature was the key, ob-

tained by the mirkey function of MIRtoolbox, which relates with tonality

and gives a broad estimation of tonal center positions and their respective
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WPG+RPG WPG RPG
1st Key Key Key
2nd Evo Evo Evo
3rd PitchNoFilterbank Mfcc4 Mfcc4
4th Midi Midi Midi
5th Cent Cent Cent
6th Mfcc4 PitchNoFilterbank PitchNoFilterbank
7th Rolloff95 Mfcc1 Mfcc1
8th Mfcc1 Mfcc0 Mfcc0
9th Mfcc0 Mfcc11 Mfcc11
10th Mode Rolloff95 Rolloff95

Table 4.1: Results obtained for Feature Selection. Rakings up to the 10 best
features

clarity. Minimally, key consists of tonic plus the mode. Mode represents an

estimation of the modality of the signal, i.e., if the signal frame corresponds

to a major or a minor scale. Modes and scales may or may not have a tonic,

e.g., the chromatic scale has no tonic, and the C major music scale has the

tonic C. Mode feature, also present in the ranking, calculates an estimation

of the modality of the signal, and also relates with tonality. This Key fea-

ture proved to be very relevant in our explosive phase detection approach.

It shows that explosive phases of cough have a tonal center distinct from

the tonal center of all other sounds tested, i.e., the tonic elements (which

tend to assert their dominance over all others) in explosive phases seem to

be distinctive.

For the remaining selected features, it can be found a maintenance of

the occurrences in the three testing groups. This reveals the relevance of

these features for the problem, and also the proximity between the groups.

Evo is the second best feature for all groups, and gives an estimate distance
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between the Fast Fourier Transform (FFT) of the signal in each successive

frames. This means that there is a leap in the FFT in the beginning of

the explosive phase frames, which is expected and already verified in the

annotation. Mfcc4 corresponds to the value of the fourth Mel Frequency

Cepstral Coefficient (MFCC), as Mfcc1 is the first coefficient and Mfcc11 is

the eleventh coefficient. The Mfcc0 corresponds to the coefficient related to

the average energy. MFCC’s are features widely used in automatic speech

recognition. The selection of those features reveal therefore the importance

of the spectral shape of the sound for identifying explosive phases. Midi is

the mean by frame of the conversion of the FFT of the signal to midi scale

of semitones. Cent is the mean by frame of the conversion of the FFT of

the signal in Hertz to the logarithmic cents scale. Like a decibel’s relation to

intensity, a cent is a ratio between two close frequencies. Those scale changes

give to the features an ability to detect variations in the FFT of the signal.

PitchNoFilterbank calculate the mean of the best pitch of the discretized

note events of the signal data, for no filterbank configuration. These two

features demonstrates the importance of the pitch in explosive phase detec-

tion. Pitch is a perceptual property that allows the ordering of sounds on

a frequency-related scale [Klapuri et al.,2006]. It depends on the frequency

and is used in music to describe the extent at which a note is high or low. The

explosive phase can therefore be interpreted as a high note event. Rolloff95

calculates the roll-off frequency, the frequency such that 95% of the total

energy is contained below that value. This metric relates with timbre, which

gives an idea of the quality of a sound. It is expected to obtain a higher

roll-off frequency for the explosive phase frames, which are characterized by

a high frequency content. PitchNoFilterbank is related with pitch analysis

and calculate the mean of the best pitch of the discretized note events of
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the signal data, for no filterbank configuration. A filterbank is filter shape

inspired by the auditory system.

The whole set of best features are related with all sound dimensions ana-

lyzed, not being found a pattern that allows to say that one is more relevant

than another. This reveals flexibility in characterization of our sound signal,

with several areas of sound analysis contributing for the identification of the

explosive phase.

We proceeded to the fixation of best k value for the KNN and the optimal

number of features, in order to maximize results, for all of the testing groups.

The best k value was selected by considering, iteratively, odd numbers in the

range of 3 to 15, for the set of the first 20 ranked features, representing

25% of the whole set of 79 features. This procedure was performed with

5 cycles of repeated stratified 10-fold cross validation method, with the fi-

nal result obtained by the mean of the set of results. The fixation of the k

value was done by maximization of the result of the F1 score, a measure of

accuracy that considers both the recall and precision metrics, event by event.

After setting the best k, the optimal number of features was determined

experimentally by using a simple forward feature selection approach that

consists on adding one feature at a time based on the resulting ranking by

the Relief algorithm. This procedure was also performed with 5 cycles of

repeated stratified 10-fold cross validation method, obtaining the best four

numbers of features by set. For those, a 20 cycle method was performed,

to determine the best final number by maximization of the result of the F1

score event by event. One exception occurred in RPG testing group, where
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bigger values were achieved for the set length of 20 features. Here, it was

tested set lengths until 30 features with 5 cycles of repeated stratified 10-fold

cross validation, performing then a 20 cycles test for the best four numbers

of features, confirming then the best result under 20 features. So, it was

considered still valid to select the k value for the set of the first 20 ranked

features in here.

The results for maximization of the k value are shown in Table 4.2,

Table 4.3 and Table 4.4. The results for maximization of the number of

features for WPG+RPG are shown in Table 4.5 and Table 4.6. The results

for maximization of the number of features for WPG are shown in Table 4.7

and Table 4.8. The results for maximization of the number of features for

RPG are shown in Table 4.9 and Table 4.10.

k value 3 5 7 9 11 13 15

Recall by 1st

approx. cough

epochs

86.4% 86.1% 86.3% 86.7% 86.9% 86.7% 86.8%

Precision by

1st approx.

cough epochs

80.2% 81.7% 81.6% 83.6% 85.0% 84.9% 84.6%

Table 4.2: Results obtained for WPG+RPG analysis (5 cycles), with optim-
ized k=11 (F1 score = 85.9%)
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k value 3 5 7 9 11 13 15

Recall by 1st

approx. cough

epochs

85.4% 85.4% 84.9% 84.9% 86.9% 85.2% 84.5%

Precision by

1st approx.

cough epochs

80.5% 81.9% 82.2% 83.0% 82.6% 81.9% 83.4%

Table 4.3: Results obtained for WPG analysis (5 cycles), with optimized
k=11 (F1 score = 84.7%)

k value 3 5 7 9 11 13 15

Recall by 1st

approx. cough

epochs

92.0% 88.1% 89.2% 88.5% 87.2% 87.8% 87.2%

Precision by

1st approx.

cough epochs

76.9% 74.2% 83.8% 78.7% 80.9% 83.8% 81.6%

Table 4.4: Results obtained for RPG analysis (5 cycles), with optimized k=7
(F1 score = 86.4%)
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Number of features Recall by 1st approx.

cough epochs

Precision by 1st approx.

cough epochs

1 0.0% 0%

2 74.0% 76.5%

3 80.1% 80.6%

4 84.1% 82.5%

5 84.6% 85.2%

6 82.6% 83.8%

7 86.2% 83.0%

8 86.3% 85.0%

9 85.5% 84.0%

10 86.8% 84.8%

11 85.5% 82.3%

12 87.1% 83.8%

13 86.4% 82.8%

14 87.9% 84.5%

15 86.4% 83.4%

16 86.3% 84.0%

17 87.3% 83.7%

18 86.3% 84.8%

19 87.3% 84.3%

20 87.0% 83.5%

Table 4.5: Results obtained for WPG+RPG analysis (5 cycles), with op-
timized numbers of [8 14 18 19] features (F1 score = [85.6% 86.1% 85.5%
85.8%])
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Number of features Recall by 1st approx.

cough epochs

Precision by 1st approx.

cough epochs

8 86.6% 84.6%

14 86.3% 84.5%

18 86.4% 83.8%

19 86.8% 83.8%

Table 4.6: Results obtained for WPG+RPG analysis (20 cycles), with op-
timized number of 8 features (F1 score = 85.6%)
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Number of features Recall by 1st approx.

cough epochs

Precision by 1st approx.

cough epochs

1 0.0% 0.0%

2 73.5% 76.80%

3 82.5% 80.37%

4 82.5% 81.52%

5 81.6% 83.10%

6 80.7% 82.20%

7 80.6% 82.25%

8 79.8% 81.74%

9 78.7% 82.70%

10 84.2% 81.65%

11 84.4% 82.68%

12 85.2% 81.69%

13 83.9% 82.39%

14 84.2% 85.16%

15 85.0% 82.09%

16 86.1% 84.12%

17 85.2% 81.49%

18 85.5% 83.55%

19 85.2% 83.34%

20 83.2% 83.54%

Table 4.7: Results obtained for WPG analysis (5 cycles), with optimized
numbers of [12 14 16 18] features (F1 score = [83.4%, 84.7%, 85.1%, 84.5%])
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Number of features Recall by 1st approx.

cough epochs

Precision by 1st approx.

cough epochs

12 84.6% 84.0%

14 84.9% 83.7%

16 85.0% 83.0%

18 85.1% 83.4%

Table 4.8: Results obtained for WPG analysis (20 cycles), with optimized
number of 12 features (F1 score = 84.3%)

Number of features Recall by 1st approx.

cough epochs

Precision by 1st approx.

cough epochs

1 21.9% 34.0%

2 77.5% 81.8%

3 85.3% 74.3%

4 85.8% 72.9%

5 88.8% 75.1%

6 88.1% 82.3%

7 85.3% 76.4%

8 83.6% 76.9%

9 83.8% 74.8%

10 83.9% 72.9%

11 89.8% 82.6%

12 86.8% 79.8%

13 89.0% 79.9%

14 91.0% 86.3%
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15 88.8% 79.6%

16 89.9% 82.8%

17 88.5% 83.6%

18 88.6% 83.6%

19 91.7% 82.5%

20 88.2% 82.7%

21 88.1% 78.8%

22 88.1% 83.8%

23 89.3% 79.8%

24 88.2% 80.7%

25 87.6% 79.4%

26 89.3% 79.6%

27 90.7% 85.0%

28 90.4% 83.6%

29 89.5% 81.5%

30 87.7% 84.0%

Table 4.9: Results obtained for RPG analysis (5 cycles), with optimized
numbers of [14, 19, 26 27] features (F1 score = [88.6%, 86.9%, 87.8%, 86.9%])
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Number of features Recall by 1st approx.

cough epochs

Precision by 1st approx.

cough epochs

14 88.5% 81.6%

19 88.7% 81.6%

26 89.9% 80.1%

27 88.5% 81.2%

Table 4.10: Results obtained for RPG analysis (20 cycles), with optimized
number of 19 features (F1 score = 85.0%)

With the fixed k value and number of ranked features for each testing

group, the final results for the testing groups were obtained by redoing 20

cycles of repeated stratified 10-fold cross validation method. The overall

results of recall and precision metrics for the cough sounds detection are

present in Table 4.11.



53

WPG+RPG WPG RPG

Recall frame by frame 42.4% 42.6% 40.5%

Precision frame by frame 65.1% 65.6% 63.2%

Recall by explosive phases 77.3% 75.2% 76.0%

Precision by explosive phases 66.4% 68.1% 61.7%

Recall by 1st approx. cough epochs 86.6% 84.6% 88.8%

Precision by 1st approx. cough epochs 84.3% 83.1% 81.9%

Recall by 2st approx. cough epochs 89.8% 88.2% 93.3%

Precision by 2st approx. cough epochs 87.3% 86.5% 85.6%

Precision by cough epochs 90.0% 88.6% 93.3%

Recall by cough epochs 87.6% 87.2% 85.6%

Table 4.11: Results obtained for all analysis (20 cycles).

The overall results are similar for the three testing groups, revealing the

robustness and applicability of this approach. As more phases are being

added to the final target events, better scores are achieved. This shows that

some misclassified explosive phases are present in both the intermediate and

voicing phases of cough sounds. This misclassified events are more present

in voicing phases, because of the higher improvement in metrics from the

1st approximate cough epochs to the 2nd approximate cough epochs, than

from the 2nd approximate cough epochs to the real cough epochs. Actually,

there was no improvement in this last, in the RPG group, which shows that

no misclassified events occurred in the intermediate phases of cough sounds

here. As it was verified during the annotation, in some subjects, voicing

phases can be quite similar to the explosive phases, revealing the absence of

prosody-related characteristics, such as harmonics in spectrogram, as shown
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in Figure 4.1.

Figure 4.1: Different patterns of the voicing phase by subject: in the first
signal it is highlighted the final voicing phase of one peal of three cough
sounds, very similar with the initial explosive phases; in the second signal
it is highlighted the final voicing phase of a single cough sound, with the
presence of the harmonics related with prosody.

Since in fits of cough the chances of classifying at least one of the mul-

tiple explosive phases are higher, and only one positive hit here results in

a successful classified event, it can be assumed that the increase in results

in due to single cough sounds that are not classified in explosive phases, as

intended, but are then detected, mostly, in the voicing phase. Although this

was not the objective, it can be important to understand that some voicing

phases are not as prosody-related as others, depending on the subject, and

those others may show similarities with the explosive phases, in the internal

sound.

The results by testing group are present in Table 4.12, Table 4.13 and

Table 4.14, .
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Value

Accuracy frame by frame 95.7%

Recall frame by frame 42.4%

Precision frame by frame 65.1%

Recall by 1st approx. cough epochs 86.6%

Precision by 1st approx. cough epochs 84.3%

True Positive Events 6985

False Positive Events 1330

False Negatives Events 1074

Onset (mean) 17.3 ms

Onset (STD) 318.9 ms

Offset (mean) 83.1 ms

Offset (STD) 194.3 ms

Number of encompassed events 0

Time lapse between encompassed events (mean) 0 ms

Time lapse between encompassed events (STD) 0 ms

Recall (fits of cough) 59.6%

Precision (fits of cough) 91.2%

Mean energy of the signal in explosive phases detected 0.1059 a. u.

Mean energy of the signal in 1st approx. cough epochs detected 0.0724 a. u.

Mean peak energy of the signal in 1st approx. cough epochs

detected

0.5561 a. u.

Elapsed time 8298 s

Table 4.12: Results obtained for WPG+RPG analysis, with k= 11 and 8
ranked features.
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Value

Accuracy frame by frame 97.1%

Recall frame by frame 42.6%

Precision frame by frame 65.6%

Recall by 1st approx. cough epochs 84.6%

Precision by 1st approx. cough epochs 83.1%

True Positive Events 5689

False Positive Events 867

False Negatives Events 728

Onset (mean) 50.2 ms

Onset (STD) 284.6 ms

Offset (mean) 232.8 ms

Offset (STD) 222.8 ms

Number of encompassed events 0

Time lapse between encompassed events (mean) 0 ms

Time lapse between encompassed events (STD) 0 ms

Recall (fits of cough) 57.7%

Precision (fits of cough) 90.7%

Mean energy of the signal in explosive phases detected 0.1049 a. u.

Mean energy of the signal in 1st approx. cough epochs detected 0.0730 a. u.

Mean peak energy of the signal in 1st approx. cough epochs

detected

0.5161 a. u.

Elapsed time 7854 s

Table 4.13: Results obtained for WPG analysis, with k=11 and 12 ranked
features.
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Value

Accuracy frame by frame 95.7%

Recall frame by frame 40.5%

Precision frame by frame 63.2%

Recall by 1st approx. cough epochs 88.8%

Precision by 1st approx. cough epochs 81.9%

True Positive Events 1551

False Positive Events 304

False Negatives Events 108

Onset (mean) 47.4 ms

Onset (STD) 184.1 ms

Offset (mean) 227.0 ms

Offset (STD) 203.6 ms

Number of encompassed events 294

Time lapse between encompassed events (mean) 182.0 ms

Time lapse between encompassed events (STD) 21.2 ms

Recall (fits of cough) 58.4%

Precision (fits of cough) 88.5%

Mean energy of the signal in explosive phases detected 0.1034 a. u.

Mean energy of the signal in 1st approx. cough epochs detected 0.0659 a. u.

Mean peak energy of the signal in 1st approx. cough epochs

detected

0.6715 a. u.

Elapsed time 1191 s

Table 4.14: Results obtained for RPG analysis, with k=7 and 19 ranked
features.



58

The achieved measures of onset and offset (mean and STD) reveal some

difficulties to pinpoint the initial and final instants of the approximated cough

events detected. It can be assumed that the major contribution for these

values comes from deviations in detection of the fits of cough approximate

events, since those have much longer duration than explosive phases alone.

Therefore, in the detection of fits, if one or more explosive phases from the

beginning or the ending miss the detection, the flaw is in the order of more

than a 3-phase cough sound duration, around 350.7 seconds [Olia et al.,2000].

The onset vagueness should represent the expected imperfection of the detec-

tion. However, the higher values of STD for the onset suggest that the flaw

in missed detections of the first explosive phase of peal events is balanced

with prior detections, which can be justified by detections in the initial forced

expiration before the first explosive phase. The higher values in mean offset

suggest difficulties in the detection of last explosive phases of peal events,

which can be understood by the gradual decrease in the intensity of the sig-

nal in explosive phases during the peal event, leading to missed detections in

the end of peals. The high value of STD in offset insinuate that this missed

detections are also balanced with late detections, which can be caused by de-

tections in intermediate and voicing phases of the last 3-phase cough sound of

each peal event. Figure 4.2 illustrates the possible misclassification intervals

of the signal. All this values suggest that the windowing of events should be

improved.
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Figure 4.2: Possible justifications for misclassified detections: in the first
signal it is highlighted the first explosive phase of one peal of three cough
sounds, which can be missed, adding a positive onset error; in the second
signal it is highlighted the initial forced expiration before the cough sound,
which ca be classified as explosive phase, adding a negative onset error; in the
third signal it is highlighted the last explosive phase of one peal of four cough
sounds, which is weaker than the previous ones and can be missed, adding
a positive offset error; in the fourth signal it is highlighted the final forced
expiration after a peal of cough sounds, which ca be classified as explosive
phase, adding a negative offset error; in the last signal it is highlighted the
final intermediate and voicing phases, which ca be classified as explosive
phase, also adding a negative offset error.

For the encompassed events, only WPG analysis obtained classified events

that encompassed annotated ones. Around 18% of the all detected events

were covering more than one real events. This can be the result of misclassi-

fications between events due to high frequency-component forced inspirations

and expirations of the subjects with respiratory perturbations, probably be-
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cause of the presence of sputum or wheeze. In WPG+RPG and WPG ana-

lysis, no detected events encompassed the annotated ones.

The detections in all testing groups were very precise in terms of explosive

phases detected on peals of cough, which evidences that the approach does

not detect more explosive phases than the ones that really happened. This

shows that the algorithm do not miss positive frames in the middle of an

explosive phase, because if that happened, a real explosive phase could be

interpreted as two or more, and there would be peals with more single events

detected than the ones that really happened, increasing the rate of false pos-

itives. Since each 3-phase cough sound has explosive phase, the number of

explosive phases detected can be interpreted as the same as the number of

3-phase cough sounds. So, the achieved results represent the capability to

discriminate how many cough sounds can be detected in a peal event, provid-

ing important information about the pattern of coughing. However, the lower

sensitivity values point out that some explosive phases of peal events are not

detected, as predicted above.

The energy metrics intended to give a rough estimation of both the energy

peak intensity and the overall energy of the cough sounds, one of the three

characteristics of the cough sound which provide important clinical informa-

tion. Its relevance is evidenced in the differences of the values for the WPG

and RPG groups. The mean peak energy of the signal in the approximate

cough epochs detected is substantially higher in the RPG group, which is

due to a louder cough sound, with high frequencies resulting probably from

the presence of sputum or wheeze, in this group. However, for mean energy

of the signal in explosive phases and 1st approximate cough epochs detec-
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ted, the values are slightly higher for the WPG group. For the first metric,

as referred in [Tracey et al.,2011], the explosive phase is characterized by a

rapid increase in signal energy, and as we can see in Figure 3.2, the higher

amplitudes can just be present in a small fraction of the complete explosive

phase, so the differences showed in peak analysis can be attenuated by the

whole contribution of the explosive phase interval. In the other metric, it can

be mainly due to a significant contribution of the intermediate and voicing

phases, present in the analyzed interval, which may attenuate the differences

showed in peak analysis. The similar values for this metric in all groups may

indicate that the mean energy of the internal signal in the cough epochs is

similar to subjects with and without respiratory perturbations.

The achieved results used relatively small sets of features, and the time

needed for processing one hour of recording (WPG+RPG) was around 2

hours and 7 minutes, in the processor system described in Chapter 3. We

found no reference about computation times of the systems described in

Chapter 2, in comparable analysis proceedings.

Our results are comparable to the mentioned works in Chapter 2, al-

though they were not obtained on the same database. Drugman et al.

[Drugman et al.,2012], with the similar explosive phase detection approach,

obtained an event detection specificity and recall of 88%, for audio signal

analysis in voluntary protocols performed by only 20 healthy subjects. The

specificity, also known as true negative rate, is the ratio of the number of

true negative events to the sum of the number of false positive events with

true negative events. They also applied the same method to the signal of a

contact microphone over trachea and over thorax, achieving both specificity
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and recall of 71%. In [Drugman et al.,2013] the signal of a contact micro-

phone placed on the throat is compared to other signal analysis, in voluntary

protocols performed by 32 healthy subjects, and results also fall short of

expectations when compared with ambient audio signal analysis for same

purposes, but they do not use the explosive phase detection approach. To

the best of our knowledge, no other scientific works tried the internal chest

sound signal alone for automatic cough counting, getting to know if our bet-

ter results in a wider population are due to the acquisition site. However,

this signal solves one of the disadvantages of the commonly used ambient au-

dio signal, mentioned in [Drugman et al.,2013] - the external noise. In chest

sounds signal, only the subject’s internal acts can confuse the classification.

As we have seen in Chapter 2, LCM system achieved an overall recall

and specificity of 91% and 99%[Birring et al.,2008], but it requires a hu-

man expert to develop a statistical model tailored for each recording. The

fully automatic application of the HMM trained on ambient audio features

in [Birring et al.,2008] achieved a low recall of 71%, with missed identifica-

tions in both candidates selection and cough event validation phases. Ap-

plying HMM seems promissing, but with some authors claiming that coughs

acoustic differing characteristics need to be fully considered in the design of

algorithms [Chunmei et al.,2013], and with this results for automatic detec-

tion, the signs may indicate a better way to solve the problem.

The HACC system achieved a specificity of 96% and a recall of 80% in

ambient audio recordings from 30 smoking subjects. Although the system

does not automatically count cough (just identifies, labels and shows the

cough events in the graphical user interface), its identification seems pro-
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missing. The event detection logic based on adaptable thresholding select

the candidates, which are then classified into cough and non-cough events

by the use of PNNs trained in characteristic spectral coefficients calculated

from 75 cough events and 75 non-cough events. The application of the PNNs

in ambient audio signal shows acceptable results, but recall values should be

increased and also needs to be assessed in a broader population.

A fully automated cough-counting industrial device, like the VitaloJAK

system, seems to support this, since when experimented in continuous mon-

itoring data from 10 subjects with respiratory perturbations achieved a recall

of 97.5% and a specificity of 97.7% [McGuinness et al.,2007b]. This results

are obtained with a physiological approach tailoring, with the use of acoustic

parameters extracted from voluntary coughs performed by the subjects, get-

ting to know more information about the system. It is also not revealed if it

is used an explosive phase approach for the detection. What is certain is that

it is not fully automatic, one of the specifications for the ideal cough monitor.

The PulmoTrack-CC system shows good performance (recall of of 96%

and a specificity of 94% on voluntary cough from 12 volunteers), but re-

quires a piezoelectric belt, one lapel microphone and two contact micro-

phones, which despite being applicable to continuous monitoring, are not

as comfortable as the use of a single signal. The other industrial device,

LS system, had worse performances, with a recall of 78.1% and a precision

of 84.6% for a study in continuous monitoring data from 8 COPD patients

[Coyle et al.,2005].
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Chapter 5

Conclusions and Future Work

The results achieved for quantification of cough showed that the explosive

detection approach is a reliable method for identifying cough sounds, making

use of this mandatory phase in cough, which is also the most homogeneous

and predictive phase, and with continuous spectral characteristics during all

the time interval for the internal sound. The explosive phase detection ap-

proach shows robustness across subjects with different respiratory perturba-

tions and mitigates the inherent difficulty of the variety of patterns in cough.

Future work on our method involves trying other classifiers, testing in am-

bulatory data and the use of other features. The use of inputs for tailoring

parameters by each subject can also improve the efficiency, if we were willing

to pay the price of loss of autonomy.

Our results refute the idea that chest sound signal analysis provide no sig-

nificant performances when compared with ambient audio signal analysis, for

automatic cough detection. Moreover, internal sound demonstrates advant-

ages in one of the main challenges of audio signal analysis, the external-to-

subject noise. As an important implication, we have a significant reduction
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on the captured sound and external speech, relevant in ethic terms. Besides,

the subject internal events like cough, speech, laughter, throat clears, forced

expirations, etc. seem to be better characterized by this signal. Here, some

features related with tonality, pitch, timbre and spectral analysis reveal them-

selves very descriptive. It is worth noticing that the achieved results were

originated from analyzing concise sets of features, not being necessary large

loads of data and computation, something important in continuous monitor-

ing for battery saving. Thus, the internal sound analysis through a contact

microphone gathers attention for applications in new generation of smart

clothing, seeming to be less inconvenient and less intrusive than a lapel mi-

crophone, and also suitable for portable and diminished batteries.

The measures of the onset and offset flaw reveal some difficulties on win-

dowing the explosive phases. This metrics are more relevant for the onset,

since the explosive phase is the first phase of the cough sound, and so, its

onset is the onset of the cough sound itself. For the whole dataset, it was

not detected events that covered more than one real 1st approximate cough

epochs, and a high score for the number of cough sounds by peal events was

attained. Along with the onset exactness, those metrics can contribute for

better pattern assessing of the cough sounds.

The energy metrics of the squared sound signal are a preliminary attempt

to have a rough estimation of the energy intensity invested in cough sounds,

which may provide important clinical information. Further analysis between

different pathologies are needed to assess the importance of this metrics.

For classification of the cough sound, no performance parameters ana-
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lyzed the acoustic properties, because our approach only identifies the first

explosive phase, while this characteristics are important to analyze in inter-

mediate and voicing phases, for sputum and wheeze prediction, among other

clinical information.

Improvements are needed in the post-processing methods to identify in-

termediate and voicing phase, and thereby obtain the complete cough event,

which can then be analyzed in terms of acoustic properties. This can be

solved with methods to identify the characteristic intermediate phase in the

presence of sputum or finding speech related moments in a neighborhood

of the explosive phase. A promising solution could be to integrate various

events such as speech, throat clears, laughter and sneezes, as well as cough it-

self, in the classification, since chest sound signal seems to characterize those

more minutely and with less ambiguity than ambient audio sound. Thereby,

it could be obtained the complete cough sound, which can then be analyzed

in terms of acoustic properties, as well as pattern and intensity, for better

assessing.
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Appendix A

Testing Population - Biometric

Data

Name Age Sex Height Weight HealthStatus

ID1 16 Fem 1.65 70 WPG

ID2 37 Fem 1.65 59 WPG

ID3 43 Fem 1.65 70 WPG

ID4 16 Masc 1.72 59 Cold

ID5 28 Masc 1.75 79 WPG

ID6 16 Fem 1.65 71 WPG

ID7 26 Fem 1.66 66 WPG

ID8 24 Fem 1.67 57 WPG

ID9 26 Fem 1.72 61 WPG

ID10 16 Masc 1.83 82 WPG

ID11 43 Masc 1.78 100 Cold

ID12 23 Masc 1.72 73 WPG

ID13 42 Masc 1.78 75 WPG

ID14 25 Fem 1.69 62 Asthma

ID15 27 Masc 1.7 66 WPG
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Name Age Sex Height Weight HealthStatus

ID16 25 Masc 1.92 81 WPG

ID17 25 Fem 1.63 48 Rhinitis

ID18 18 Masc 1.74 72 WPG

ID19 10 Masc 1.38 29 Asthma

ID20 24 Fem 1.62 55 WPG

ID21 39 Fem 1.7 90 WPG

ID22 73 Masc 1.7 78 Cold

ID23 42 Fem 1.64 82 Cold

ID24 42 Fem 1.63 88 WPG

ID25 41 Masc 1.73 90 Cold

ID26 40 Masc 1.52 70 WPG

ID27 72 Fem 1.56 74 Cold

ID28 42 Fem 1.56 54 WPG

ID29 48 Fem 1.55 70 WPG

ID30 26 Masc 1.71 70 Cold

ID31 25 Masc 1.72 70 WPG

ID32 8 Fem 1.4 50 Asthma

ID33 24 Fem 1.6 50 WPG

ID34 24 Fem 1.6 55 Cold

ID35 24 Masc 1.83 90 WPG

ID36 52 Masc 1.7 92 WPG

ID37 26 Fem 1.68 65 WPG

ID38 26 Masc 1.7 78 WPG

ID39 43 Masc 1.82 98 WPG

ID40 22 Masc 1.79 73 WPG
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Name Age Sex Height Weight HealthStatus

ID41 24 Masc 1.86 100 WPG

ID42 22 Fem 1.7 56 WPG

ID43 22 Masc 1.69 74 WPG

ID44 26 Fem 1.54 47 WPG

ID45 25 Fem 1.67 60 WPG

ID46 45 Fem 1.68 65 WPG

ID47 41 Masc 1.68 87 WPG

ID48 78 Fem 1.52 70 Bronchitis

ID49 24 Masc 1.65 60 Smoker

ID50 27 Masc 1.78 73 WPG

Table A.1: Biometric Data for the whole testing population. For ethical
reasons, the names are fictitious. Parameters: Name, Age (years), Sex (Fem-
inine/Masculine), Height(meters), Weight (kilograms), Health Status (WPG
- without respiratory perturbations, other - with respiratory perturbations)
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