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Surface properties of distinct nanofibrillated celluloses assessed by inverse 

gas chromatography 

José A.F. Gamelas*, Jorge Pedrosa, Ana F. Lourenço, Paulo J. Ferreira

Department of Chemical Engineering, CIEPQPF, University of Coimbra, Pólo II – R. 

Silvio Lima, 3030-790 Coimbra, Portugal. *jafgas@eq.uc.pt.

Highlights:

Nanocelluloses were distinguished from each other for their surface properties 

Dispersion component of the surface energy ( s
d) at 40 ºC was of 42-52 mJm-2

Higher s
d value was found for enzymatic nanocellulose than for TEMPO-oxidised ones

For TEMPO-nanocelluloses acidity/basicity ratio increased with the fibrillation 

Results may have interest in the composites production area/coatings applications

Abstract

The adhesion and surface properties of nanocelluloses are an important issue to consider 

when using this material for composites production, in food packaging or coatings, as well as 

for determining the influence of added functional groups. In the present work, the surface 

properties of two nanofibrillated celluloses obtained by mild 2,2,6,6-tetramethylpiperidine-1-

oxyl radical (TEMPO)-mediated oxidation with distinct mechanical treatment intensity in a 

homogenizer (5 and 15 passes), and one nanofibrillated cellulose obtained by enzymatic 

process, were thoroughly assessed by inverse chromatography, at infinite dilution conditions. 

The dispersion component of the surface energy ( s
d) was 42-46 mJ m-2 at 40 ºC for the 

TEMPO nanofibres and 52 mJ m-2 for the enzymatic nanocellulose. It was confirmed, based 

on the determination of the specific components of the works of adhesion and enthalpies of 

adsorption with polar probes, that the surfaces of the materials have a more Lewis acidic than 
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Lewis basic character. Regarding TEMPO nanofibres, a slight increase of Lewis 

acidity/basicity ratio seemed to occur for the more nanofibrillated material (15-passes).

Higher specific interactions with polar probes were found for enzymatic nanocellulose. The 

higher values of s
d and specific interactions observed for the enzymatic nanocellulose could 

partly be due to the higher crystallinity of this sample. On the other hand, the increase of the 

acidity/basicity ratio (as well as of the s
d value) for the 15-passes vs. 5-passes TEMPO 

nanofibres was attributed to a higher exposition of the hydroxyl groups of cellulose at the 

surface of the former material.

Keywords: composites, inverse gas chromatography, nanocellulose, surface energy, Lewis 

acid-base character

Introduction

Nanofibrillated cellulose (NFC) is a type of cellulose fibres with nanosized diameters 

(typically in the range of 15-60 nm) and lengths up to several micrometers, being sometimes 

also referred to as microfibrillated cellulose (MFC). It is usually obtained from bleached kraft 

pulp or non-woody materials by a homogenization process under high pressure, which may be 

preceded by a chemical pre-treatment. The chemical pre-treatments are used to decrease the 

energy needed for fibrillation and can be of several types, namely enzymatic, 2,2,6,6-

tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation pre-treatment, 

carboxymethylation and acetylation processes. The chemical pre-treatment with NaClO 

(oxidant) and TEMPO and NaBr as catalysts at pH 10-11 is by far the most commonly 

employed.  Using this pre-treatment, the C6 hydroxyl groups of cellulose are converted to 

aldehyde and carboxylate groups, which enable the nanofibrils within the fibres to separate 

better from each other due to the repulsive forces between the ionized carboxylic acids [1]. 
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NFC possesses several properties that make it a potential interesting material for a wide 

range of applications. Amongst its more relevant properties are the relatively high specific 

surface area in comparison to that of the pristine cellulose fibres (values can be higher than 

100 m2/g), the viscosity (rheology) properties of the viscous NFC gel, the high tensile strength

and the high light transmittance of the corresponding NFC films. NFC has thus been used in 

formulations as a viscosity modifier, as gel for biomedical applications, as a mechanical 

reinforcement material in (nano)composites, including (nano)paper, for paper coating, in 

films for food packaging and for electronic devices [2-8]. Its barrier properties namely for the 

water vapour and molecular oxygen have been highlighted [1]. 

The adhesion and surface properties of nanocellulose are key points that have to be 

considered regarding the aforementioned uses, for instance, in composites or in barrier 

materials [1, 9-10]. Studies on the surface properties of nanofibres have been generally 

focused on i) the determination of “surface” charge by zeta potential measurements or by 

polyelectrolyte titration, ii) the determination of the amount of carboxylate and aldehyde

groups formed during chemical pre-treatments, by conductometric and potentiometric 

titrations and, iii), the assessment of the chemical composition and reactivity of the 

nanocellulose surface during chemical pre-treatments/surface modification, by using X-ray 

photoelectron spectroscopy [1,10]. 

One powerful tool to assess the surface properties of solid materials is inverse gas 

chromatography (IGC). It enables to obtain the dispersion component of the surface energy, 

adsorption thermodynamic parameters with a wide range of polar substances (specific 

components of the free energy of adsorption, enthalpy and entropy of adsorption), Lewis acid-

base character of the surface, surface nanoroughness parameter, etc. [11-14]. Thus, using IGC 

a cellulosic fibrous material can be thoroughly characterized with respect to its surface 

chemical properties. Besides, this technique is advantageous over the classical contact angle 
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measurements for the analysis of porous, rough, heterogeneous and hydrophilic surfaces. Not 

many papers reported the use of IGC to analyse nanocellulose [15-19]. In particular, under 

infinite dilution conditions, the dispersion component of the surface energy was determined 

for cellulose nanofibers obtained by enzymatic pre-treatments [15] and cellulose nanofibers 

extracted from hemp fibre by acid hydrolysis [16]. For the latter, the Lewis acid-base 

characteristics were also assessed. The influence of the drying method on the surface energy 

of cellulose nanofibrils was also evaluated [18].

In the present work, two nanofibrillated celluloses obtained from an eucalypt bleached 

kraft pulp, by NaClO/TEMPO/NaBr pre-oxidation with distinct mechanical treatment

intensity, and one nanofibrillated cellulose obtained by enzymatic process, were thoroughly 

analysed for their surface properties by inverse chromatography. The results of these analyses 

with regard to a wide range of assessed parameters will be presented and discussed. 

Experimental 

TEMPO-oxidised cellulose nanofibres were obtained by firstly treating a bleached 

eucalypt pulp with NaClO (4 mmol/g of pulp) and catalytic amounts of TEMPO and NaBr, 

accordingly to a previously reported methodology [20]. The fibres were then passed through a 

homogeneizer (GEA Niro Soavi Panda Plus 2000) 5 times at 300 bar or 15 times (five passes 

at 300 bar and 10 passes at 600 bar), affording NFC-5p and NFC-15p, respectively. The 

enzymatic nanocellulose was purchased from Grenoble INP-Pagora. This sample was 

obtained from a softwood bisulfite pulp by treatment with endoglucanases followed by 

homogenization with 1 pass at 1000 bar and 4 passes at 1500 bar. The nanofibres suspensions 

were characterized for their general properties, as described below. 
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The suspensions were then freeze-dried and milled in order to obtain a solid material that 

was then packed into the IGC column for the physico-chemical surface analysis.

In order to evaluate the relative amount of nanofibrillar material in each original sample, 

the transmittance of NFC suspensions (0.1%, w/w) in the 400-800 nm visible range was 

measured using a Jascow V550 spectrophotometer. Besides, 40 ml of each NFC suspension, 

previously diluted up to 0.2% w/w, was centrifuged at 4500 rpm for 20 min, and the retained 

fraction was analyzed for its solid content and compared to the original to obtain by 

difference the percentage (w/w) of supernatant material. The results were an average of three

replicated measurements. To evaluate the nanofibres “surface” charge, zeta potential 

measurements were carried out in triplicate in a Zetasizer Nano ZS from Malvern 

Instruments. 

The inverse gas chromatography analysis was performed using a DANI GC 1000 digital 

pressure control gas chromatograph equipped with a hydrogen flame ionization detector. 

Stainless-steel columns, 0.5 m long and 0.4 cm inside diameter were washed with acetone and 

dried before packing. For each analysis, approximately 1 g of nanocellulose was packed into 

the gas chromatograph column. The columns were shaped in a smooth ‘‘U” to fit the 

detector/injector geometry of the instrument. The packed columns were conditioned overnight 

at 105 ºC, under a helium flow (P=0.1 bar), before any measurements were made. 

Measurements were carried out at four different temperatures (40, 45, 50 and 55 ºC) with the 

injector and detector kept at 180ºC and 200ºC, respectively. Helium was used as carrier gas. 

Small quantities of probe ) were injected into the carrier gas, allowing work 

under infinite dilution conditions. The probes used for the IGC data collection were n-pentane 

(C5), n-hexane (C6), n-heptane (C7), n-octane (C8), n-nonane (C9), trichloromethane (TCM, 

Lewis acidic probe), tetrahydrofurane (THF, basic), ethyl acetate (ETA, amphoteric) and 

acetone (amphoteric). It should be noted that polar probes with similar molecular surface area 
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values and different electron donating/acceptor properties were chosen, in order to assess only 

the effect of Lewis acid-base interactions with the materials surface. All probes were of 

chromatographic grade and were used as received (Sigma–Aldrich). Methane was used as the 

reference probe. The retention times were the average of three injections and were determined 

by the peak maximum for the n-alkanes and TCM or by the Conder and Young method for 

THF, ETA and acetone, which provided less symmetrical chromatograms [21]. The 

coefficient of variation between runs was typically lower than 3%. Two columns were 

prepared for each material with the final results being the average of two separate 

measurement series. The theoretical aspects of inverse gas chromatography have been 

previously described [11-13]. Using this technique, the dispersion component of the surface 

energy, and the specific components of the work of adhesion, enthalpy and entropy of 

adsorption of polar probes on the surface of the analysed materials were obtained. The values 

of the molecular surface area (a) and dispersion component of the surface energy ( l
d) of the 

probes used for the IGC analysis can be found elsewhere [11-12].

Additionally, the crystallinity of the freeze-dried NFCs was assessed using X-ray 

diffraction. X-ray diffraction data were collected in a Philips X’Pert diffractometer operating 

in the Bragg-Brentano configuration with Co-k =1.79 Å) source at a current of 35 mA and 

an accelerating voltage of 40 kV. Data were collected by the step counting method (step 

0.025º and time 1.0 range of 5-50º. The crystallinity was determined by the Segal 

method as (ICr-Iam)/Icr*100, where Icr refers to the intensity of the reflection from the 002 

plane at about 26º and Iam is the intensity of the amorphous halo between the reflection around 

19º and the reflection from the 002 plane [22]. There are other methods for determination of 

crystallinity based on the X-ray diffraction peaks area or using other techniques such as solid-

state 13C NMR [23]. For the purposes of the present study, i.e., to differentiate TEMPO and 

enzymatic cellulose nanofibres, the Segal method is appropriate.  
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FTIR-ATR spectra were obtained using a Jasco FT/IR-4200 spectrometer. The spectra 

were recorded in the 500–4000 cm  range with a resolution of 4 cm  and a number of scans 

of 64. 

Results and discussion

The percentage of fibrillar material separated at the supernatant by centrifugation, 

determined as described in the experimental section and noted as “yield”, as well as the zeta 

potential and transmittance results are shown in Table 1. The zeta potential values of NFC-5p

and NFC-15p are negative and similar, in agreement with the presence of ionized carboxylic 

acids at the surface of nanofibres generated during the oxidative pre-treatment with 

NaClO/TEMPO/NaBr. On the other hand, a low negative value was obtained for enzymatic 

nanocellulose, corresponding to an unstable colloidal dispersion. With regard to the yield, a 

very low value was obtained for the enzymatic nanocellulose. This is essentially a 

consequence of the easy aggregation and sedimentation of enzymatic nanofibres, because 

their zeta potential is close to zero. Thus, during the centrifugation of the enzymatic 

nanocellulose suspension, most of the nanofibres do not remain in the supernatant but, 

instead, deposit in the form of aggregates, and for this reason, a low yield value is obtained. 

The values for NFC-5p and NFC-15p were significantly higher and the highest was the one of 

the NFC-15p sample (95%), as expected due to the more extensive mechanical treatment. The 

visible spectra of the NFC suspensions in the transmittance mode (Fig. 1) confirmed the 

different relative amount of nanofibres/aggregation degree of nanofibres in the materials 

suspensions, that is, for the TEMPO-oxidised celluloses a higher amount of nanosized 

material (15-passes vs. 5-passes) provides a clearer dispersion thus giving a higher 
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transmittance. For the enzymatic nanocellulose the high aggregation degree of nanofibres 

yields a very low transmittance. 

Please, insert Table 1

Please, insert Figure 1

The dispersion component of the surface energy ( s
d) at 40 ºC of the studied 

nanocelluloses was in the range of 42-52 mJ m-2 and was found to increase in the following 

order: NFC-5p < NFC-15p < enzymatic nanocellulose (Table 2). The values here obtained for 

the TEMPO nanocelluloses are comparable to that previously reported, at infinite dilution 

conditions, for cellulose nanofibers extracted from hemp fibre by acid hydrolysis and 

mechanical treatment (42 mJ m-2) [16]. However, the s
d value found here for the enzymatic 

nanocellulose was significantly higher than those reported in a previous study for cellulose 

nanofibres also obtained by enzymatic pre-treatments ( s
d values at 40 ºC of 37–45 mJ m-2) 

[15]. On the other hand, significantly higher values have been obtained for bacterial cellulose 

(61 mJ m-2) [17].

Please, insert Table 2

The slight increase of s
d from NFC-5p to NFC-15p can be related to the aforementioned

increase of the fibrillation, since a more nanofibrillated material will have a larger number of

hydroxyl groups, which are considered to have a major contribution to the dispersion 

component of the surface energy of cellulose [18,25], accessible on the surface for interaction 

with the IGC apolar probes. The differences in the s
d values between the TEMPO-oxidised 

nanocelluloses and the enzymatic nanocellulose can partly be due to the different crystallinity 

of the nanocelullose samples. It has been proposed previously that more crystalline celluloses 

show a higher surface energy [26,27]. In particular, bacterial cellulose nanocrystals samples, 

possessing a high crystallinity index, showed s
d values higher than 60 mJ m-2 [17,19]. In 
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order to confirm this hypothesis, X-ray diffractograms of the NFC-15p and enzymatic 

nanocellulose samples were recorded. As shown in Figure 2, the crystallinity of the enzymatic 

nanocellulose was much higher than that of NFC-15p (see the intensity of the reflection peaks 

relatively to the amorphous halo), being estimated a crystallinity index of 79% for enzymatic 

nanocellulose and of 65% for NFC-15p. Thus, the higher crystallinity of the enzymatic 

nanocellulose can be, at least partially, responsible for the higher dispersion component of the 

surface energy observed for this sample. Other impurities present at the NFCs surface, not 

analysed in the present study, will also have an influence on the surface energy. These results 

confirm the influence of the nature of treatment used for obtaining the nanocelluloses on their 

surface energy. Besides, and as usually reported for cellulosic materials [16,28], a decreasing 

trend of the s
d value with temperature for the several nanocelluloses types was found (Figure 

3).

Please, insert Figure 2

Please, insert Figure 3

The Lewis acid-base characteristics of the nanocelluloses surfaces were assessed firstly 

based on the calculation of the specific component of the work of adhesion (Wa
s) of several 

polar probes (Figure 4 and Table 2). The results indicate that the nanocelluloses surfaces have

significantly higher affinity for Lewis amphoteric (acetone, ETA) and basic (THF) probes 

than for acidic (TCM) probe. Similar conclusions can be held for the - Ga
s values, because 

these are related to the works of adhesion by - Ga
s = N.a.Wa

s (N is the Avogadro number) and 

the molecular surface area values of the used polar probes are similar, thus giving similar 

trends (not presented in Table 2 for a matter of simplicity). The acidic surface character is

mainly due to the presence of acidic hydroxyl groups in the cellulose structure [25, 28-30]. 

For NFC-5p and NFC-15p, the carboxylate groups formed during the oxidative pre-treatment 

of cellulose should have a minor contribution to the Lewis acidity, since they are mostly in 
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the ionized (COO-) form and not in the protonated (COOH, acidic) one (note that the analysed 

freeze-dried samples were obtained from NFC aqueous suspensions at pH around 7). This was 

confirmed by measuring the FTIR-ATR spectra of the NFC samples. In fact, the spectra of the 

TEMPO-oxidised cellulose nanofibres showed in the 1500-1800 cm-1 region a band at 1605

cm-1 due to the CO stretching of the ionized form of the acid [31], in addition to a shoulder at 

ca. 1640 cm-1 due to the OH bending of absorbed water; the characteristic carboxylic acid 

band at 1720-1730 cm-1 [31] was not detected (Figure 5). For the enzymatic nanocellulose 

only the OH bending vibration of water was observed (Figure 5).

A slight increase of the Wa
s(THF)/Wa

s(TCM) ratio (Table 2) was observed from NFC-5p 

to NFC-15p probably due to a higher exposition of the acidic groups at the surface of NFC-

15p, as a consequence of the higher fibrillation of the latter material. Accordingly, the Wa
s

values with amphoteric probes also increased for NFC-15p. 

Please, insert Figure 4

Please, insert Figure 5

Following a trend similar to that of the s
d values, higher Wa

s values were obtained for the 

enzymatic nanocellulose. The substitution of a few hydroxyl groups for carboxylate groups 

(COO- Na+) in the TEMPO NFCs would generate, in principle, a reduction of the Lewis 

acidity and an increase of the Lewis basicity of the material because hydroxyl is mainly an

electron acceptor (acidic) group while COO- is mainly an electron donor (basic) group. In 

fact, the TEMPO NFCs showed lower specific affinities with THF (basic probe) and with 

acetone and ETA (amphoteric probes with more Lewis basic than Lewis acidic character [11-

12]) than the enzymatic nanocellulose. However, the affinity with an acidic probe such as 

TCM was not higher for the TEMPO NFCs. This indicates that other factors must also be 

considered in order to understand the differences in the magnitude of the specific interactions 

of polar probes on the nanofibres surface. As demonstrated above by X-ray diffraction, the 

enzymatic nanocellulose is much more crystalline than the NFC-15p (Fig. 2). Thus, it is 
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probable that the overall higher specific interactions observed with the enzymatic 

nanocellulose, in comparison to those with the TEMPO NFCs, can also be due to the higher 

crystallinity of the former (higher crystallinity affords stronger intermolecular interactions) 

[19]. It should be noted that previously Siddiqui et al. [15] used IGC to obtain the s
d value of 

an enzymatic nanocellulose but could not measure the magnitude of the interaction with polar 

probes (due to the low amount of packed material). Overall, the specific interactions results

indicate that the treatment used to produce enzymatic nanocellulose can render the surface 

even more Lewis polar than the surface of NFCs obtained by TEMPO-mediated oxidation, in 

terms of the highest-energy sites assessed by IGC.

The specific component of the enthalpy and entropy of adsorption, Ha
s and Sa

s, 

respectively, of each polar probe on the nanocelluloses surface were also evaluated from the 

plots of Ga
s/T versus 1/T at four different temperatures (40, 45, 50 and 55 ºC). As a 

consequence of the poor linear fittings/very low correlations of Ga
s/T versus 1/T obtained for 

enzymatic nanocellulose (r values lower than 0.8), no Ha
s and Sa

s acceptable data are

presented for this material. It should be noted that the Ha
s and Sa

s results are dependent on a

large number of retention time measurements, carried out at several temperatures, and in these 

circumstances propagated errors can have a greater influence on the final results.

The results of Ha
s and Sa

s for NFC-5p and NFC-15p (Table 3) confirmed the higher 

interactions with the amphoteric and basic probes, as demonstrated e.g., by the 

Ha
s(THF)/ Ha

s(TCM) ratio. When comparing the two TEMPO nanofibrillated celluloses it 

is noted that both the specific enthalpic (- Ha
s) and entropic (- Sa

s) terms for the adsorption 

of polar probes are typically lower with NFC-15p. The resulting specific components of the 

free energy of adsorption (- Ga
s) or the related specific components of the work of adhesion 

(Table 2) were higher for the more nanofibrillated cellulose, because - Ga
s = – Ha

s – T.(-

Sa
s). Thus, in what respects the Gibbs free energy of adsorption and the corresponding 
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entropic contribution, the adsorption of polar probes is more favoured for NFC-15p, although 

the opposite trend is revealed by the enthalpic term comparison. In addition, there was an

increase of the Ha
s(THF)/ Ha

s(TCM) enthalpic ratio from NFC-5p to NFC-15p, in 

accordance with the trend observed for the aforementioned Wa
s(THF)/Wa

s(TCM) ratio. 

Please, insert Table 3

Overall, the results of the specific interactions with Lewis acidic (TCM) and basic (THF) 

probes, namely the Wa
s, - Ga

s and - Ha
s values, suggested that all the studied NFCs have a 

more Lewis acidic than Lewis basic character. Previously, it has been reported, based on the 

determination of the Lewis acidity (Ka) and basicity (Kb) constants, that hemp cellulose 

nanocrystals [16] and cellulose nanofibrils after different drying methods [18] were more 

basic than acidic (Kb >Ka) .We may note that the straight comparison of the Ka values with the 

Kb values should be made with due caution, as previously discussed [12 and references 

therein]. The comparison of the magnitude of specific interactions with different probes may 

be more appropriate to assess the Lewis acid-base character of the material surface.

Conclusions

Inverse gas chromatography (IGC) enabled to evaluate the surface properties of 

nanocelluloses obtained by different methods, namely by a pre-treatment with 

NaClO/TEMPO/NaBr and by an enzymatic process. Two TEMPO-oxidised samples, 

obtained using a mild chemical pre-treatment (4 mmol NaClO/g pulp) but a different intensity 

of mechanical treatment in a homogenizer (5- and 15-passes), were considered. 

The dispersion component of the surface energy was in the range of 42-52 mJ m-2 (at 40 

ºC), being obtained a higher value for enzymatic nanocellulose. TEMPO-oxidised nanofibres 
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obtained after 15-passes in a homogenizer also showed a higher s
d value than those obtained 

after 5 passes. Concerning the specific interactions with polar probes, they were always of 

higher magnitude with the amphoteric and basic probes, as measured by the specific 

components of the works of adhesion and enthalpies of adsorption. The highest specific 

interactions were found for enzymatic nanocellulose. For the TEMPO-oxidised nanofibres, a

slight increase of acidity/basicity ratio seemed to occur with the increase of the intensity of 

the applied mechanical treatment. Overall, the behaviour of nanocelluloses was not much 

different from that expected for cellulose molecules but some differences between the 

samples surfaces were clearly revealed by the calculation of the surface energy parameters,

using IGC at infinite dilution conditions.
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Figure captions

Fig. 1. Visible spectra in the transmittance mode of 0.1% suspensions of NFC-5p, NFC-15p

and enzymatic nanocellulose.

Fig. 2. X-ray diffractograms of NFC-15p and enzymatic nanocellulose.

Fig. 3. s
d values at several temperatures for NFC-5p, NFC-15p and enzymatic nanocellulose.

Fig. 4. Plots of RTln(Vn) vs. 2N a( l
d)0.5 for NFC-5p, NFC-15p and enzymatic nanocellulose at 

40 ºC.

Fig. 5. FTIR-ATR spectra of NFC-15p and enzymatic nanocellulose (see the highlighted 

region). 

Note: old Figs 1 and 6 were removed.
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Table 1. Results on the production of cellulose nanofibres by TEMPO-mediated oxidation 
and enzymatic process

Material
Zeta Potential 

(mV)
Yield (%)a Transmittance

(600 nm, %)
NFC-5p -41±4 63±3 23
NFC-15p -46±3 95±1 56

Enzym NFC -12±2 8±1 5
a Determined as the percentage of supernatant material relative to the original sample after
centrifugation at 4500 rpm for 20 min
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Table 2. Dispersion component of the surface energy ( s
d, mJ m-2) and specific component of 

the work of adhesion (Wa
s, mJ m-2) of polar probes for TEMPO-oxidised cellulose nanofibres 

and enzymatic nanocellulosea

Material s
d Wa

s

(TCM)
Wa

s

(THF)
Wa

s

(acetone)
Wa

s

(ETA)
Wa

s(THF)/
Wa

s(TCM)

NFC-5p 41.7 0.4 5.2 0.6 21.7 0.1 28.0 0.6 23.5 0.3 4.2
NFC-15p 46.2 2.4 4.4 0.2 23.4 0.5 32.1 0.3 25.8 0.5 5.4
Enzym NFC 51.5 0.8 6.2 0.2 26.9 0.6 36.9 0.5 28.5 0.1 4.4

aValues at 40 ºC calculated following Schultz and Lavielle approach [24].
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Table 3. Specific components of the enthalpy and entropy of adsorption for TEMPO-oxidised 
cellulose nanofibresa

Material Probe
- Ha

s

(x106, mJ/mol)
- Sa

s

(x104, mJ/mol)
- Hs (THF)/
- Hs (TCM)

NFC-5p

TCM 8.9 1.7 2.4 0.6
THF 19.0 2.8 4.2 0.9

Acetone 19.5 0.5 3.9 0.2
ETA 22.6 4.5 5.1 1.4

2.2

NFC-15p

TCM 5.2 2.3 1.3 0.8
THF 13.9 2.7 2.4 0.8

Acetone 15.9 1.9 2.4 0.6
ETA 12.6 0.1 1.6 0.01

2.8

afrom measurements in the 40-55 ºC range. Correlation coefficients for the linear plots of 
Ga

s/T versus 1/T were in the range of 0.95-1.00.
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Fig. 3
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Fig. 4
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Figure 5
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Fig. 1
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