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Abstract

This thesis is devoted to mathematical modelling and solution techniques for dynamic
facility location problems under uncertainty. The uncertainty regarding the evolution of
important problems’ parameters along the planning horizon, such as setup and assignment
costs, as well as level or location of demand, is explicitly incorporated into the dynamic
models through a finite and discrete set of possible scenarios.

In the present work we first propose a two-stage stochastic model for the uncapacitated
problem. The first decisions to be made are the strategic ones, where and when to locate
the facilities throughout the planning horizon. The second—stage decisions refer to the
assignment of the ezisting customers to the open facilities over the whole planning horizon
under each possible scenario. As opposite to location decisions, that must be made here
and now and should be valid for all possible future scenarios, assignment can be decided
after the uncertainty has been resolved and thus can be adjusted in each time period to
each possible scenario. The objective is to find a solution that minimizes the expected
total cost over all possible scenarios. This model is then extended to other situations,
recognizing that other features should be included in the mathematical model to be able
to generate other possible solutions. A set of robust constraints is incorporated into that
model, that in spite of restricting the set of admissible solutions, it offers more informed
and robust solutions under uncertainty. A multi—objective problem wherein each scenario
gives rise to an objective is then developed, and relations with other known problems are
established as well. For this latter model, requirements about scenarios probabilities or
risk profiles are dropped. Within this context, it is emphasized that the Decision Maker
will have a better picture of the compromises that exist among the possible scenarios. In
terms of models, we conclude with several extensions considering capacitated facilities.
The possibility of unmet demand appears naturally in this class of problems, giving rise
to other interesting and challenging questions. We propose and discuss both mono and
multi-objective approaches.

We proceed with the description of the solution techniques that have been developed to
tackle the uncapacitated problems. First we present a primal-dual heuristic approach
inspired on classical works and a branch&bound scheme integrating this same heuris-
tic. Afterwards, a Lagrangean relaxation approach developed to tackle the problem with

robust constraints is detailed. The calculation of non—-dominated solutions for the multi—
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objective problem is discussed and illustrated. Finally, as the models and algorithms
were tested over sets of randomly generated problems, the computational experiments
and results obtained are provided including comparisons with general solvers.

The results of this work aim to help Decision Makers in the difficult process of decision
making when dealing with location problems under uncertainty, and thus should be in-

terpreted as decision support tools.

keywords: dynamic location problems, uncertainty, scenarios, primal-dual heuristics,

optimization
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Resumo

Esta tese versa sobre modelagao matematica e algoritmos de resolugao de problemas de
localizacao dinamica em contextos de incerteza. A incerteza acerca de como importantes
parametros dos problemas irao evoluir ao longo do tempo, tais como custos de instalagao
de servicos e de afetacao, localizacao ou nivel da procura, é explicitamente incorporada
nos modelos dinadmicos através de um conjunto finito e discreto de cenérios.

Na presente dissertacao, propomos em primeiro lugar um modelo estocéstico de duas
fases para o problema de localizacao sem restricoes de capacidades. As primeiras de-
cisoes a serem tomadas sao as estratégicas, onde e quando localizar os servicos ao longo
do horizonte temporal. As decisoes de segunda fase referem-se & afetacao dos clientes
com procura aos servi¢os abertos ao longo do horizonte temporal para todos os cenérios
possiveis. Ao contrario das decisoes de localizacao, tomadas no presente e validas para
todos os futuros possiveis, as decisoes de afetacao podem ser tomadas apods a realiza-
¢ao da incerteza e ajustadas em cada periodo temporal a cada cenario. O objetivo do
problema é encontrar uma solucao que minimize o custo total esperado para todos os
cenarios possiveis. Este modelo é depois alargado a outras situacoes, reconhecendo-se
que outras caracteristicas devem ser incluidas no modelo de modo a gerar outras solugoes
para o problema. Um conjunto de restricoes de robustez é incorporado no modelo que,
apesar de restringir o conjunto de solugoes admissiveis, oferece solucoes mais informadas
e robustas em situacoes de incerteza. Um problema multi—objetivo em que cada cenério
origina um objetivo é depois apresentado, assim como relacoes com outros problemas
conhecidos. Requisitos acerca das probabilidades associadas aos cenarios ou acerca de
perfis de risco sdo desnecessarios. E ainda sublinhado que neste contexto o Agente de De-
cisao tera um melhor retrato dos compromissos existentes entre os possiveis cenarios. Em
termos de modelos, concluimos com varias extensoes considerando servicos com capaci-
dades limitadas. A possibilidade de procura insatisfeita surge naturalmente nesta classe
de problemas, dando lugar a outras interessantes e desafiantes questoes. Propomos e
discutimos abordagens mono e multi-objetivo.

Procedemos a descricao dos algoritmos construidos para resolucao dos problemas sem
restricoes de capacidades. Apresentamos uma heuristica primal-dual inspirada em abor-
dagens classicas e um algoritmo branch&bound que integra aquela heuristica. Uma téc-

nica usando relaxacao Lagrangeana é depois detalhada para resolucao do problema com



as restricoes de robustez. O célculo de solugoes nao dominadas para o problema multi-
objetivo é discutido e ilustrado com um exemplo. Finalmente, como tanto os modelos
como os algoritmos foram testados com instancias geradas aleatoriamente, as experién-
cias e resultados computacionais sao apresentados, incluindo comparagoes com general
solvers.

Os resultados deste trabalho pretendem ajudar os Agentes de Decisao no dificil processo
de decisao perante problemas de localizacao em contexto de incerteza, e assim devem ser

interpretados como ferramentas de apoio & decisao.

palavras—chave: localizacao dinamica, incerteza, cenarios, heuristicas primais-duais,

otimizacao.
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Prelude

A Facility Location Problem can be seen as the problem of efficiently deciding where to
locate equipments /facilities, being public services, such as hospitals or schools, or private
services (plants, warehouses,...). The question of where to locate may be associated
with other questions: what size (capacity) should be established; when to locate; how
long to keep the facilities operating; in the case of facilities whose purpose is to meet
the needs of a set of customers, how to assign customers to the facilities, etc. Facility
location problems have been widely studied by many researchers. From the literature
we can witness the diversity of situations considered and the corresponding diversity of
models developed, reflecting also the importance of such problems (e. g., Mirchandani
and Francis [60], Daskin [18], Revelle et al. [71]). Discrete versus continuous or planar
models, deterministic versus stochastic or under uncertainty, static versus dynamic, are
only some classes of location models that can be found in the literature (Krarup and
Pruzan [48]).

This work is concerned with dynamic discrete facility location problems where uncertainty
is explicitly considered through the use of scenarios. Discrete location problems are those
problems in which the facilities to be located can only be placed at a finite number of
potencial sites selected via some prior analysis (Mirchandani and Francis [60]). The class
of models that deal explicitly with the presence of uncertainty is usually called location
under uncertainty or stochastic location models. In such cases some of the problem input
parameters are only known with uncertainty, as opposed to their deterministic counter-
parts where all the parameters are assumed to be known precisely. The incorporation of
uncertainty into classical (deterministic) location models comes from the recognition that
at the time of decision making it may not be possible to know with certainty some of the
problem input parameters (level or location of demand, costs, for instance). Considering
that most location decision problems are strategic by nature, and that the decisions made
are costly to revert, with consequences in the medium and long terms, the uncertainty
inherent in most real facility location problems should be explicitly considered and rep-
resented in the constructed models (Owen and Daskin [66]). With such models Decision
Makers “can better prepare for and respond to” uncertainty in strategic planning (Shapiro
81]).

During the last decades there has been considerable interest in location under uncertainty



and a large volume of work is now available in specialized papers and monographs. We
can find a primary division between uncertainty and risk decision problems (Rosenhead et
al. [76]). In situations under uncertainty no probabilistic information about the uncertain
parameters is advanced, whereas in risk decision problems it is assumed a perfect knowl-
edge about probability distributions. However, uncertainty problems may be converted
to risk decision problems by the consideration of some probabilistic information, and the
term uncertainty has been also used in risk decision situations. Regardless this and other
classifications, the works found in the literature may differ in the source of uncertainty
(most of them in level or location of demand and/or costs), in the way uncertainty is rep-
resented (mainly, stochastic programming and scenario approaches), objective functions
considered, solution methods, etc. A review about these challenging problems, where
many situations are considered, is given by Snyder [82]. Even so, compared with the
research devoted to deterministic versions, the literature related to stochastic location
is still much more limited, particularly addressing discrete location problems. As stated
by the authors cited above and others, as most deterministic discrete location problems
are too complex, formulated as mixed integer programming problems and classified as
NP-hard, the incorporation of randomness in such models increases their complexity
and hinders its use in the computation of optimal solutions, which makes this class of

problems less attractive than deterministic formulations.

Another class of problems within our scope of interest concerns Dynamic (or Multi-
period) Location problems. Dynamic models are mainly concerned with planning the
location and/or size of facilities over time, such that the time dimension is explicitly rep-
resented through the use of time dependent decision variables. Classical (static) models
are enriched with the answer to questions such as “when” to locate (Jacobsen [39]). A
dynamic location problem approach is usually necessary whenever the assignment costs
change significantly during the planning horizon or there are significant costs for relo-
cating facilities (Erlenkotter [30]). Dynamic models may require a large volume of data,

which makes them also less attractive and less studied than static problems.

Dynamic and stochastic location models are strongly related. Whenever it is necessary
to explicitly consider a planning horizon, uncertainty appears due to unknown future
conditions that may lead to a limited knowledge about problem parameters (Owen and
Daskin [66]). If the parameters of dynamic location models change deterministically over
time, then it is not possible to incorporate the uncertainty inherent in real-world location
problems even though time dimension is explicitly represented in the model. Consid-
ering both time and uncertainty in location models allows the consideration of more
realistic situations, although the resulting models become more complex than static and
deterministic ones. Most of the work that has been done addresses single-period (static)
deterministic models, static under uncertainty models or deterministic dynamic models,

although exploring many different and relevant situations. There has been much less



work considering explicitly both time and uncertainty in discrete location models.

The main objective of this work is to support location decision making through the devel-
opment of mathematical models and algorithms that deal explicitly with the uncertainty
inherent in most dynamic facility location problems. The main contributions of this the-
sis are summarized as follows: (i) development of a new model for the uncapacitated
discrete dynamic facility location problem that considers explicitly uncertainty in many
of the problem’s parameters via a set of scenarios, as well as solution approaches to tackle
this problem, first a primal-dual heuristic approach inspired on classical works and then a
branch&bound scheme integrating this same heuristic to solve the problem to optimality
(ii) development of an extension of the first model considering robustness concerns and
also a Lagrangean relaxation approach to tackle the problem (iii) development of a multi-
objective approach for the uncapacitated dynamic location problem under uncertainty

(iv) development of new models considering capacitated facilities.

Taking into account the vast existing literature on facility location, in Chapter 1 we
address different location problems and perspectives that are somehow related to this
work. First, in section 1.1 we review some classical (static and deterministic) and de-
terministic dynamic location problems. Some references to these classes of problems are
also provided. Section 1.2 is devoted to the subject of Uncertainty, where Stochastic and
Scenario approaches are addressed. We focus on those aspects that are more important
to the forthcoming developments. In section 1.3 an overview on past works concerning
facility location problems under uncertainty is given. These works address both static
and dynamic approaches, from earlier to most recent ones, reflecting the variety and

richness of the existing contributions on facility location under uncertainty.

In Chapter 2 we describe new models for discrete dynamic location problems under un-
certainty. We generalize some well known location models by incorporating explicitly
the uncertainty in these models through a set of scenarios. In section 2.1 we revisit the
classical uncapacitated facility location problem (UFLP), proposing a dynamic and un-
certain version of this problem. In this model, fixed and assignment costs are scenario
dependent, as well as the set of customers and the set of potential locations for facili-
ties. The problem is formulated as an integer linear programming model, that contains
the deterministic static and dynamic UFLP as particular problems (NP-hard problems
(Cornuejols et al. [16])). Taking into account the forthcoming developments in terms of
solution approaches to this problem (a primal-dual heuristic) formulations for the dual
problem and complementary slackness conditions are given as well. We end this section
considering variations in the first model proposed. Due to the assumptions regarding un-

certainty in potential facility sites, the model here presented is more general than the first



introduced. Afterwards, the first model proposed is further extended to other situations.
In section 2.2 a regret based measure of robustness is incorporated and the solutions
provided by this problem are analysed through illustrative examples. In section 2.3 a
Multi—objective approach is considered and relations with other locations problems are
also provided. We advocate here the use of a multi-objective approach as a valuable tool
in guiding the decision—making process under uncertainty, as the Decision Maker will
have a much broader view of the compromises that exist among the possible scenarios.

In section 2.4 we propose and discuss several extensions considering capacitated facilities.

Chapter 3 details the solutions approaches developed to tackle the problems presented
in the previous chapter. In section 3.1 a primal-dual heuristic approach to tackle the
first model presented is described along with illustrative examples. This heuristic ap-
proach is directly inspired on the approaches developed by Bilde and Krarup [13| and
Erlenkotter [29], and Van Roy and Erlenkotter [88], designed for the static and dynamic
versions of the UFLP, respectively. In section 3.2 this same heuristic is incorporated in
a branch&bound algorithm in order to solve the problem to optimality. Afterwards, in
section 3.3 a Lagrangean relaxation approach developed to tackle the problem with ro-
bustness constraints is described, which uses also the primal-dual heuristic. We end this
chapter explaining in section 3.4 how Pareto—efficient solutions for the Multi-objective

problem can be calculated following an interactive approach with an illustrative example.

Chapter 4 is devoted to the presentation and discussion of the computational experiences
carried out to validate the proposed models and evaluate the performance of the corre-
sponding algorithms both in terms of solution quality and computational time. First, in
section 4.1 we discuss briefly the issue of scenarios’ generation giving some references to
the subject as well. The algorithm developed to generate test problems for the present
work is then described. The proposed models and solution techniques were tested over
sets of randomly generated test problems. In section 4.2 the computational results are
presented. For the models and algorithms described in the previous chapters, we present
some details about the solutions obtained for those problems, in particular the quality of
the solutions in terms of gap, and also the computational time spent by the algorithms.

Comparisons with the results of general solvers are provided as well.

The numbering system used in this work is the common one whereby (2.3.1) refers to
the 1st numbered equation in section 3 of chapter 2. An analogous scheme is followed
for propositions, figures, tables, etc. All references in the text are in the bibliography

chapter ordered alphabetically.



Chapter 1
Background and Related Literature

The literature devoted to facility location problems is immense. Among the vast collection
of works concerning location problems, we have chosen to review in this text only those
works and perspectives that are somehow related to the location problems tackled in this
thesis. Most of these works extend classical (static and deterministic) discrete location
problems with differentiating characteristics, in a stochastic or/and dynamic setting. We
start with a short review on some classical problems as well as on deterministic dynamic
problems. Afterwards, the subject of uncertainty modelling is discussed. The focus goes
to two main approaches, the Stochastic and Scenario approaches, given not only their
relevance in the location literature but also the forthcoming developments of this thesis.
Specially related with the Scenario approach, some notes and references on robustness are
given. In the following section, we consider previous works that are devoted to discrete
location problems under uncertainty (single-period and dynamic). We also review some
recent works about supply chain design problems under uncertainty in which location
decisions are included.

We stress that this chapter along with the additional works that will be cited throughout
this text have no pretensions of completeness. For other references and extensive reviews
on facility location under uncertainty, the reader is referred to Louveaux [55], Kouvelis
and Yu [47] and Snyder [82].

1.1 Some classical facility location problems

The classical uncapacitated facility location problem (UFLP), also known as the simple
plant location problem (SPLP), plays a central role in the location research field, not only
by itself but also integrated in other problems. The UFLP consists of deciding where to
locate a number of facilities among a finite set of potential sites, in order to minimize
total costs (fixed facility costs plus variable production costs and transportation costs to
customers). Since the facilities are uncapacitated, all demands will be assigned to the

nearest open facility. The size of an open facility is computed as the sum of the demands



it serves. The UFLP has been extensively studied since Kuehn and Hamburger [49] and
is known to be NP-hard (Cornuejols et al. [16]). A well known variation of the UFLP is
the capacitated facility location problem (CFLP) in which there is a known upper bound
to the capacity of each facility. In terms of formulation it is similar to the UFLP, with
additional capacity constraints. It is possible that customers can no longer be assigned
to the closest open facility. It is necessary to define if the demand of each customer can
be served by more than one open facility, or if it has to be fully assigned to one and only
one facility. The p-median problem (introduced by Hakimi [34]) consists of finding the
optimal location of exactly p facilities in order to meet a given demand at the lowest

possible transportation cost.

The above problems are by far well known and detailed descriptions and its variations
along with solution methods (mainly heuristic and approximation algorithms) may be
found in several books, papers and in the references therein (e.g., Mirchandani and Fran-
cis [60], Daskin [18], Korte and Vygen [46]).

In a dynamic setting, the works found in the literature may differ in the way some timing
aspects and other important issues are incorporated and handled. We can find models
that consider both the possibility of opening new facilities during the planning horizon,
or the closure of facilities that were opened at the beginning of the planning horizon.
Most of the times, once a facility is opened, it stays open until the end of the planning
horizon. Similarly, once a facility is closed it stays closed until the end of the planning
horizon. Nevertheless, there are models that consider more flexible settings where a
facility can be opened, closed and even reopened during the planning horizon. There are
models that consider capacity constraints or other type of constraints like budget upper
bounds. The number and diversity of proposed solution methods is significant. One of
the earliest dynamic uncapacitated facility location problem (DUFLP) was proposed by
Roodman and Schwarz [74]. The authors consider the problem of closing up to a pre-
specified number of initially open and operating facilities as demand declines over a given
multiperiod planning horizon. It is also presented a branch and bound algorithm and
near optimal heuristic algorithms to solve the problem. In [75] the model is generalized to
solve a facility phase-in/phase-out problem (i.e., opening new facilities or closing initially
opened ones). A related model was proposed by Wesolowsky and Truscott [91] that
considers the possibility of removing and establishing facilities in each time period and
additional restrictions on the maximum number of facilities to be removed in each period.
As solution method the authors propose a dynamic programming approach. Roy and
Erlenkotter [88] also consider the DUFLP, where new facilities can be opened and initially
opened facilities can be closed over the planning horizon. The authors present a branch-
and-bound procedure incorporating a heuristic dual ascent method, the latter initially
developed by Bilde and Krarup [13] and Erlenkotter [29] for the static UFLP. More

6



recently, Dias et al. [21] present a new version of the DUFLP that not only allows for the
opening and closing of facilities over the time horizon but also their reopening, where fixed
costs include also reopening costs. A primal-dual heuristic is proposed and computational
results are presented. Regarding the capacitated case, reference to Erlenkotter [30] and
Jacobsen [39], where not only introductions to such problems are given and additional
difficulties that arise in the capacitated case are emphasized, but also earlier models and
solution methods are discussed. More recently, models and solution methods for dynamic
capacitated problems are suggested by Dias et al. [22] and Soto and Uster|[85]. The reader
is referred to Dias [23| where an extensive study about dynamic facility location, both in
terms of models and solution techniques, is given, and to a recent review given by Nickel

and Saldanha da Gama [64], where many other references can be found.

1.2 Uncertainty modelling

Uncertainty has been explicitly incorporated in facility location models in several ways,
giving rise to several classes of models and approaches. Uncertainty appears typically
in the distribution costs or travel times, production costs, and mainly in the location or
level of demand. A common approach to take uncertainty into account is through the
design of a set of possible scenarios. In general, scenarios can be interpreted as a limited
representation of the uncertainty in problem data or uncertainty about how the problem
parameters will evolve (Rockafellar and J-B Wets [72]|, Van der Heijden [87]). Usually
a scenario is any possible realization (discrete or interval) of the uncertain problem pa-
rameters, and depending on the approach, scenarios may require weights (probabilities)
associated to them or not. Another possibility to take uncertainty into account is to
consider the uncertain parameters as random variables with an explicit use of their prob-
ability distributions or density functions. The corresponding models and related methods
can then be considered as belonging to the field of Stochastic Programming (SP) (Birge
and Louveaux [14]). It should be noted here that a scenario approach does not exclude
the possibility of using some stochastic programming technique. Two—stage stochastic
programs with recourse and chance constrained programs, for instance, are two popular
stochastic approaches that have been applied to facility location. The latter considers
a confidence level type constraint, as two—stage stochastic programs with recourse are
characterized by two sets of decisions: the first—stage decisions are the decisions that
have to be made before the random events can be observed (here and now decisions) and
the second-stage or recourse decisions are those that can be decided after the uncertainty
has been revealed. Let us detail here only some features of two-stage stochastic problems
with recourse, given its relevance within the stochastic location literature and the forth-
coming results of this work. The reader is referred to books (Birge and Louveaux [14],

Kall and Wallace [42]) and many papers wherein SP approaches are applied.
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A standard two-stage stochastic programming problem with recourse, in short 2-SSPP,

can be formulated as follows:
(2-SSPP) min o’z + E[Q(7,w)] (1.2.1)

s.t. v € X,
with

Q(r,w) = min g(w)'y (1.2.2)

s.t. D(w)y = h(w) + W(w)z,
yey,

where X C IR™ denotes the set of constraints on the first stage variables, a € IR"™,
Y C IR™ denotes the set of constraints on the second stage variables, w is a random vari-
able from a probability space (Q, F, P) with Q C IR*, and (g(w), D(w), h(w), W(w))
are possible (real) uncertain problem parameters that we assume here well dimensioned.

The symbol E[.] represents the mathematical expectation as usual.

The above formulation describes well the nature of two-stage stochastic problems with
recourse, noticing however that other forms may be found in the literature. In the first
stage problem, the decisions about the values of variables x must be made before the
realization of uncertainty. Afterwards, for a given value of the first stage variables x and
once the uncertainty is resolved, the values of the second stage or recourse variables y are
selected (second stage problem). The objective (1.2.1) is to minimize the cost of the stage
one decisions plus the expected cost of the stage two decisions. The above formulation
emphasizes also that the second stage problem decomposes into independent subproblems
(1.2.2), one for each realization of the uncertain parameters. Although variables y depend
on the realization of w, this is not explicitly represented here because the subproblem
for each outcome is decoupled from all others outcomes. Those subproblems, also called
recourse problems, are linked by the first stage decisions. Whenever the recourse problems
are feasible for (at least) the first stage decisions, the stochastic problem is said to have
(relatively) complete recourse. In SP the feasibility of the recourse problems is usually
enforced by the introduction of artificial recourse variables.

In most applications, usually it is assumed that the random variable w follows a discrete
distribution with finite support Q = {w!,...,w®}, called the scenario set. Denoting by
p° the probability of realization of the sth scenario w®, P(w = w®) = p®, and assuming
that p* > 0 for all w® € Q and that Zleps = 1, it is possible to rewrite the 2-
SSPP in an extensive form, the so—called deterministic equivalent programming problem
of 2-SSPP. In what follows, the uncertain problem parameters (g(w), D(w), h(w), W(w))

associated with a particular realization w®, i.e. with a scenario, is succinctly denoted



by (g%, D*, h®, W*) with associated probability p*. Then, the deterministic equivalent

programming problem of 2-SSPP can be written as follows:

S
min  a’z + ZpSQS(a:) (1.2.3)
s=1
s.t. x € X,
with
Q*(r) = min (¢%)'y (1.2.4)

s.t. D%y =h®+Woz
yey.

As we will see in the next section, two—stage approaches have been applied both in static
and dynamic location problems under uncertainty. An important feature in stochas-
tic programming, implicit in the above formulations, is the so—called non—antecipativity
principle that, in simple terms, requires that decisions are based only on the informa-
tion available at the current stage of the decision process and cannot anticipate future
outcomes of the uncertain parameters (i.e., Rockafellar and J-B Wets [72], Birge and
Louveaux [14]). Multi-stage problems are an extension of two-stage problems in which
uncertainty is resolved in more than one stage along the time horizon. More recently,
these stochastic programs have also been applied to dynamic problems, which can be

even harder to solve than two-stage programs (Dyer and Stougie [28]).

A related issue addressed in the literature is robustness, specially when faced with scenario-
based models. However, the concept of robustness may have different meanings and in-
terpretations, being in reality a multi-faceted issue (Roy [78|). A pioneer work about the
use of the robustness concept in strategic management is due to Rosenhead et al. [76].
The criterion robustness is “a measure of the flexibility which an initial decision of a plan
maintains for achieving near-optimal states in conditions of uncertainty”. The proposed
concept is developed through the case study of a factory location problem over time, and
here the robustness concept refers to individual facilities, the ones that should be opened
first, when considering a time horizon under uncertainty. Ever since, several different
robustness measures have been proposed in the literature, some of which have already
been applied to facility location under uncertainty problems. As opposed to sensitivity
analysis, that measures the sensitivity of solutions to changes in the input data (it is a
reactive approach to tackle uncertainty), robustness should be taken into account a priori
when the problem is formulated (Mulvey et al. [63], Kouvelis and Yu [47], Roy [78]). For
instance, in decision environments with significant uncertainty, rather than the “optimal”
solution for a specific scenario or even for the most likely scenario, a risk averse deci-

sion maker wants a robust decision, defined in this context as the one that performs well



across all scenarios and hedges against the worst of all possible scenarios ([47]). Different
criteria can then be used to select among robust solutions, such as min-max and min-max
regret criteria. In brief, the min-max criterion aims at constructing solutions having the
best possible performance in the worst case; regret criterion aims at obtaining a solution
minimizing the maximum deviation, over all possible scenarios, between the value of the
solution and the optimal value of the corresponding scenario (Aissi et al. [4]). A different
robustness approach is given by Mulvey et al. [63]. The authors consider both solution
robust and model robust concepts: a solution is robust if it remains close to optimal for
any scenario, and it is model robust if it remains almost feasible for any scenario. As it is
unlikely that a given solution will remain both feasible and optimal for all scenarios, the
authors propose a multicriteria objective approach that allows to measure the tradeoff
between solution and model robustness. Usually the above approaches are associated
with the so—called Robust Optimization (Snyder [82]). The above and other robustness
approaches are also discussed and compared in [19, 8, 12, 82, 83, 4, 11, 78|, reflecting the

importance of the subject.

1.3 Overview on Single-period and Dynamic facility lo-

cation problems under uncertainty

One of the earliest stochastic location problems known was presented by Mirchandani
and Odoni [61]. The authors extend the concept of p—median to stochastic networks
where the distance (travel time) on any arc or the demand (call rate) at any node may
be discrete random variables with known distributions. The authors prove that under
a set of assumptions an optimal solution exists at nodes of the network (satisfying the
Hakimi property, [34]). Thus, the stochastic median location problem can be formulated
as an integer linear program (since there is a finite number of identifiable potencial fa-
cility sites). Later, Weaver and Church [90] propose two solution procedures for this
problem, a heuristic and a bounding procedure based on the subgradient optimization of
the Lagrangian dual. Louveaux [54| presents a stochastic version of the UFLP in which
demands, variable production and transportation costs, and selling prices (incorporated
in the model) can be random. The problem is formulated as a two-stage stochastic
program with recourse, where the first—stage decisions are the location and the size (ca-
pacity) of the facilities to be established, and the second-stage or recourse decisions are
the allocation of the available production to the most profitable demands. As opposed
to the deterministic case, the choice of both the demands to be served and the size of
the facilities to be established also becomes part of the decision process. In this work
also a stochastic version of the p—median, defined as a two—stage stochastic program with

recourse, is presented, and relations between the stochastic versions of the p—median and
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the UFLP are discussed. Solution methods are later presented by Louveaux and Peeters
[56]. The authors propose a heuristic dual-based procedure, inspired on the method
developed by Erlenkotter [29] for the classical (static and deterministic) UFLP. As the
complexity of the problem increases with the randomness in the demands and costs, it
is assumed that all random variables have discrete distributions with only a small num-
ber of scenarios. Laporte et al. [51] consider a CFLP in which customer demands are
stochastic. The problem consists of optimally determining the location and size of facil-
ities given that future customer demand is uncertain. The objective function minimizes
the difference between the sum of fixed facility costs and average cost of operating trans-
portation services between facilities and customers (assignment costs), and the expected
net revenue from supplying customers. The problem can also be viewed as a two-stage
stochastic integer program. Following the scenario approach, Current et al. [17] address
location problems in which the total number of facilities to be sited is uncertain. Two
decision criteria are considered in p-median based formulations: the minimization of the
maximum regret and the minimization of expected opportunity loss. Under the decision
criteria, each problem locates an initial number of facilities when the total number is un-
known. The approaches are illustrated with a sample problem. Serra and Marianov [80]
consider a p—median based model in which travel times between nodes and/or demand at
nodes are uncertain, described by scenarios. Two p—median formulations are presented,
the min—max and the regret approaches. The authors propose a heuristic method for
both formulations, and a real application to the location of fire stations in Barcelona is
presented. Snyder and Daskin [83] consider the classical (static) p—median and UFLP
problems with uncertain demands and transportation costs, described by probabilistic
scenarios. The models minimize expected costs while making sure that the relative re-
gret for each scenario is no greater than a pre-specified value (a new robustness measure
for optimization under uncertainty). The relative regret of a solution associated with
a given scenario is calculated by the difference between the value of the solution under
that scenario and the optimal value of the scenario divided by this latter value. The
authors incorporate regret into the problems’s formulations by considering constraints
that guarantee that the relative regret associated with each solution, for each of the pos-
sible future scenarios, is upper bounded. They also propose a Lagrangian decomposition
algorithm to solve the corresponding optimization problems. In a recent work (Lim and
Sonmez [52]) the same robustness measure is considered in a static facility p—median
relocation problem. Berman and Drezner [10] also consider the p—median problem when
the total number of facilities to be sited in the future is uncertain. The problem seeks the
location for p facilities that minimize the expected weighted distance when up to ¢ new
facilities are added to the system in the future. The probability of adding 0 < r < g new
facilities (possible scenarios) is given. The authors prove that an optimal solution exists

with all the facilities located on nodes (satisfying the Hakimi property), and formulate
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the problem as an integer program. Heuristic algorithms are suggested to solve the pro-
blem (focusing in the case ¢ = 1; for ¢ > 2 it seems more difficult). A similar integer
programming model and a decomposition algorithm to solve it is presented by Sonmez
and Lim [84]. As opposed to the previous work, in this paper the problem allows the
closing of some of the facilities that were opened initially, due to future demand change,
and considers also budget restrictions for the opening and closing of facilities. Ravi and
Sinha [69] propose a two-stage stochastic version of the UFLP and an 8-approximation
algorithm! to solve it. Here, demand and fixed costs are both random, and facilities may
be opened in either the first or second stage. A related two-stage stochastic program
is proposed by Wang et al. [89] in which service installation costs are also considered
(services must be installed at the open facilities and each customer must be assigned to
an open facility at which the service requested by the customer is installed). The authors
propose a primal-dual approximation algorithm to solve the optimization problem. Lin
[53] proposes a stochastic version of the single-source capacitated facility location pro-
blem in which the demand is uncertain. The objective function is to minimize the total
system costs including fixed facility costs and costs of servicing each demand point by its
assigned facility. Simultaneously, recognizing that facilities should provide an adequate
level of service, the model also incorporates facility service level requirements. These
requirements are formulated as chance constraints, being the probability that each open
facility can cope with the stochastic demand assigned. Mo and Harrison [62] propose
a conceptual framework for robust supply chain design under demand uncertainty. The
aim is to find a supply chain configuration (or a group of configurations) that provides
robust performance under demand uncertainty. Uncertainty of demand is represented by
discrete scenarios with known probabilities. First the authors define various performance
measures of "robustness* (minimum total expected cost, minimum variance of total cost,
minimum of maximum deviation, multiple criteria) emphasizing different perspectives
of robust supply chain. As solution methods, the authors discuss explicit enumeration
methods and SP methods. In the SP approach the problem is formulated as a classic
two-stage stochastic program. The objective function is to minimize total expected cost,
which includes fixed costs of opening plants and warehouses, expected shipping cost from
plants to warehouses and from warehouses to customers, and expected outsourcing cost
when customers’ demands cannot be satisfied from warehouses. The authors discuss the
difficulties in using these approaches when the total number of scenarios is large and
suggest that this number could be reduced by a sampling based approach. Albareda-
Sambola et al. [7] consider a two-stage stochastic program for a facility location problem

where uncertain demand is modelled by a Bernoulli distribution. Kiya and Davoudpour

LAn approximation algorithm is a c-approximation algorithm (where ¢ is the approximation ratio)
if it can be proven that the solution found by the algorithm is at most ¢ times worse than the optimal
solution (in this case, ¢ times larger as it is a minimization problem).
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[44] extend the deterministic warehouse network re-design model to uncertain opera-
tional parameters (demand and operational costs) described by probability distributions.
A two-stage stochastic program with recourse is presented and an algorithm based on
the Sample Average Approximation method combined with Benders decomposition and

other heuristic methods is developed.

Our attention returns now to those works wherein both uncertainty and time are explic-
itly considered. Jornsten and Bjorndal [40] consider the DUFLP under uncertainty, where
the fixed and variable costs are described via a set of scenarios. To solve the dynamic
and stochastic program, the authors use the scenario and policy aggregation described
by Rockafellar and J-B Wets [72]. The method is applied to a set of small illustrative
problems. Ahmed and Garcia [3] consider a dynamic capacity acquisition and assignment
problem under uncertainty. The problem seeks a capacity expansion schedule for a set of
resources and the assignment of resource capacity to tasks over the multi-period planning
horizon. The problem can be viewed as the planning of locations and capacities of distri-
bution centers (DCs) and the assignment of customers to the DCs. The model explicitly
incorporates uncertainty in task processing requirements and assignments costs via a set
of scenarios. Although the problem is a multi-period one, the capacity planning decisions
for all periods are made in period/stage one (thus, a two-stage stochastic programming
approach is adopted). Romauch and Hartl [73] consider a dynamic facility location pro-
blem with uncertain demand, described by scenarios. The problem seeks the optimal
decisions for production, inventory and transportation, to serve the customers during a
fixed number of periods. It is assumed that the production sites have limited storage
capacities. The model is first solved by dynamic programming and then a heuristic is
proposed, the Sample Average Approximation Method (SSA) adapted to the multi-period
case. Albareda-Sambola et al. [5] present a multi-period location-assignment problem
under uncertainty. It is a stochastic version of an earlier (deterministic and multi-period)
problem studied by the same authors. Here, the service time periods of the customers
and the minimum number of customers to be served at each time period are scenario
dependent. The objective is to minimize the expected cost-penalty value (setup cost for
the open facilities, assignment and service cost, and penalty cost for not servicing cus-
tomers with demand). More recently, the same authors present in [6] a new algorithm
for a multi—period location—assignment problem under uncertainty, a Fix—and—Relax—
Coordination scheme. Hernéndez et al. [36] present a multi-period stochastic model to
the location of prison facilities under uncertainty, where the uncertain future demand
for capacity is represented by probabilistic scenarios. The problem seeks the location
and sizes of a given number of new facilities (jails) and determines where and when to
increase the capacity of both new and existing facilities over a time horizon. Subject

to several constraints (maximum inmate transfer distances, upper and lower bounds for
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facility capacities, among others) the objective is to minimize the expected costs of the
prison system. The model is solved by a branch—and—cluster coordination scheme (a

heuristic mixture of branch—and—fix coordination and branch—and—bound schemes).

We next review some works where examples of facility location problems integrated in
supply chain are proposed and where some other related references can be found. Aghez-
zaf [2| first developed a deterministic capacity planning and warehouse location model
for the supply chain (which can be viewed as a multiple—source capacitated economic lot-
sizing problem). Then the model is extended to uncertain realizations of future market
demand (the only source of uncertainty) described by scenarios. The author uses the con-
cept of robust optimization developed by Mulvey et al. [63] combined with Lagrangean
relaxation methods. Pan and Nagi [67] also propose a robust optimization formulation
for a multiple layer supply chain network under demand uncertainty. The uncertainty
of demand is represented by probabilistic scenarios. The objective function includes ex-
pected total cost, cost variability and model infeasibility penalty by the consideration
of a weighted penalty to unmet demand that may occur under a possible scenario. The
problem includes several decisions: location, distribution, production, inventory. To solve
the problem a heuristic is developed and extensive computational results are presented.
Pimentel et al. [68] develop a stochastic capacity planning problem applied to a Global
Mining Supply Chain which integrates lot sizing, capacity expansions, facility location
and network design decisions. Facility location decisions include the opening, closing and
reopening of facilities. The authors adopt a multi-stage integer stochastic formulation
where the evolution of the uncertain parameters is represented by a discrete probability
scenario tree 2. An analysis of different solution approaches, from exact to approximate
methods, with solutions provided by software CPLEX is given. Nickel et al. [65] propose
a multi—period multi-commodity stochastic supply chain network design problem which
integrates, in addition to location and distribution decisions, financial decisions such as
what investments and loans to consider in each time period of the planning horizon.
Uncertainty is associated with future demand and return rates, represented by a set of
scenarios. Service level and risk measures are also included in the model, both in the
objective function. The problem is formulated as a multi—stage stochastic mixed—integer
linear programming problem. Due to computational reasons, a more compact formula-
tion of the problem is proposed which is based upon the paths in the scenario tree. In
order to measure the relevance of using a stochastic approach (the value of the stochas-
tic programming approach), a deterministic problem derived from the stochastic one is
presented. Computational results including comparisons between the stochastic and the

deterministic solutions are presented.

2The nodes in period ¢ constitute the states of the world that can be distinguished from the informa-
tion available up to t; the leaf nodes define the scenarios, which represent the joint realizations of the
risky parameters over all periods.
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Chapter 2

Mathematical Models

The models proposed in this work can be applied to any situation in which a company
has to do the planning of strategic location investments over a given period of time. As
emphasized earlier, the motivation to study location models which explicitly incorporate
uncertainty comes from the need to take into account in the decision process the envi-
ronmental changes that may occur during the planning horizon. The main sources of
uncertainty considered in the models developed come from the existence or lack of cus-
tomers, as well as costs associated with the opening of facilities and satisfying the clients’
demand. Costs for opening facilities can change due to the economic environment, be-
havior of the real estate market, changes in interest rates. Such costs can even hinder the
opening of a facility. Assignment costs can change due to changes in road infrastructures,
new roads can be built while others may become inaccessible, government policies, price

of fuel, tolls, for instance.

We have witnessed that the representation of uncertainty in optimization models, ap-
plied also to location models, has been widely debated in the literature (e.g., Dembo [19],
Mulvey et al. [63], Van der Heijden [87], Kouvelis and Yu [47|, Snyder [82], Durbach
and Stewart [27]). The scenario approach appears as ”an extremely powerful, convenient
and natural way to represent uncertainty ([19]) and can be more appropriate than a
stochastic one, especially when the available information may not be sufficient to sup-
port a stochastic programming model (Rockafellar and J-B Wets [72]|, Van der Heijden
[87]). Under high uncertain conditions, such as those that may occur during a multi-
period location problem, the design of scenarios can be more accurate than the use of
probability distributions or stochastic process (Schoemaker [79], Van der Heijden [87]). A
recent experimental study by Durbach and Stewart [27], about the effect of uncertainty
representation on decision making in terms of several items (the difficulty experienced in
making a decision, for instance), indicates that the use of probability distributions ap-
peared to overload subjects, being more difficult to use than other concise formats such

as the use of scenarios.
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We have chosen to represent uncertainty in the models by a finite and discrete set of
possible scenarios. The study cited above only reinforces our choice on the scenario ap-
proach, dealing with dynamic location problems under uncertainty that are by themselves
harder to be understood by Decision Makers. Scenarios are interpreted as ”a thinking
tool and communication device that aid the managerial mind rather than replace it“, an
aid especially useful under conditions of high uncertainty and complexity (Schoemaker
[79]). In some of the models presented, we also consider probabilistic scenarios and thus
we do not exclude here the use of stochastic approaches. In particular, two—stage stochas-
tic problems (briefly reviewed in section 1.2) that model well the real nature of location
problems, though the probabilities associated with the scenarios must also be advanced.
Several other questions (and difficulties) may arise whenever the uncertainty is explicitly
incorporated into a model. For instance, it might be difficult to find a single solution de-
fined as the best one in all possible future realizations of uncertainty. Within this context,
the concept of best solution strongly depends on the attitude towards risk of the Decision
Maker (DM). When the DM is assumed to be risk neutral, expected cost criterion are
appropriated but, as already noted in section 1.2, in the presence of different risk profiles
other features should be included in the mathematical models in order to generate other

possible solutions.

This chapter is dedicated to the description of the problems, mathematical modelling,
where integer and mixed-integer linear programming models are presented. We start in
section 2.1 with an extension of the dynamic uncapacitated facility location problem to an
uncertain future (Marques and Dias [58|). Later on, in section 2.2 a regret based measure
of robustness is included in this model. This measure is not new in the location literature,
but is explicitly incorporated in a dynamic location problem for the first time (as far as
the authors know) (Marques and Dias [59]). By the analysis of some illustrative examples,
it is possible to obtain a deeper knowledge about the problem and its possible solutions:
the possibility of achieving more robust solutions from small changes in a given and less
robust solution, or the discovery of the core facilities, those that remain open even if the
robustness parameter varies. In section 2.3 the dynamic uncapacitated location problem
under uncertainty is considered as a multi-objective problem, where each scenario will
give rise to one objective (Dias and Marques [24]). Within this context, the aim is to
achieve Pareto—efficient solutions. A single objective location problem under uncertainty
is tackled by resorting to a multi-objective approach, and the concept of Pareto—efficiency
is thus applied in the context of a single objective problem under uncertainty. It is
quite difficult to find the concept of Pareto efficiency being applied in this context. We
have found several publications dedicated to multi-objective stochastic programming,
usually tackling the problem by reducing it to a single objective stochastic program or

transforming it to a deterministic multi-objective program (e.g., Hulsurkar et al. [37],
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Teghem Jr et al. [41], Urli and Nadeau [86], Abdelaziz [1], Gutjahr [33], Guillén et al.
[32],Cardona—Valdés et al. [15]). Additional references goes to the recent works proposed
by Lamboray and Vanderpooten [50], Iancu and Trichakis [38], and Klamroth et al.
[45] wherein multiple objective (deterministic) counterparts for uncertain optimization
problems are introduced and their relations to well known scalar robust optimization
problems are discussed.

In all the models proposed so far, as we assumed that facilities are uncapacitated, for
the first—stage location decisions taken, it is certain that total demand will be satisfied
in the second-stage (whatever the scenario that will occur). In section 2.4 we address
capacitated problems, following mono and multi-objective approaches to tackle these

challenging problems.

2.1 Dynamic uncapacitated location problem under un-

certainty

In this section the dynamic uncapacitated facility location problem is extended to un-
certain realizations of the potential locations for facilities and the existence of customers
as well as fixed and variable costs. The future will be one of a finite set of possibili-
ties, represented by scenarios where each scenario characterizes the value of all problem’s
parameters in a possible future.

The first decisions to be made are where and when to locate the facilities. We assume
here that once a facility is opened, it stays open until the end of the planning horizon.
Afterwards, it must be decided how to assign the ezisting customers over the whole plan-
ning horizon under each possible scenario. We are indeed in the presence of a two-stage
decision problem: location decisions are strategic by nature so they must be decided here
and now and must be valid for all possible future scenarios, whilst assignment decisions
can be decided after the uncertainty has been resolved and thus can be adjusted in each
time period to each possible scenario. The aim of the problem is to find a good solution
that performs well across all possible scenarios without focusing in a particular scenario.
More precisely, the objective is to find a solution that minimizes the expected total cost
(fixed plus assignment costs) over all possible scenarios. A mixed linear programming
formulation for this problem is proposed. Let us introduce the notation that will be used
throughout this text.

The time horizon is represented by a finite set of discrete time periods 7 = {1, ..., ¢,..., T}.
The set of possible future scenarios is denoted by S = {1, ..., s,...,S}. In what follows,
suppose that each scenario s € S will occur with probability p® such that p* > 0 and

ZSES ps =L
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The set of potential facility sites is denoted by J = {1, ..., 4, ..., M'} and the set of possible
customer locations (or demand points) by I = {1,...,4,..., N}. These sets include all
the potential facility locations and all the potential customers for all possible scenarios,
despite the fact that for each scenario in particular possibly only a subset of potential
locations and a subset of customers is considered. Let us define §}, as equal to 1 if cus-
tomer ¢ has a demand that has to be fulfilled during period ¢ for scenario s (in short, an
existing customer), and 0 otherwise. Then we have to guarantee that all customers such

that 3, = 1 are assigned to an open facility, for all (¢,s) € T x S.

In terms of costs, the model considers not only fixed costs (opening and operating), but
also variable costs associated with the assignment of customers to the facilities. For
(j;t,5) € J x T xS, let f5, be the fixed cost of establishing (opening) facility j at the
beginning of period ¢ plus the operating costs in all subsequent time periods, under sce-
nario s; for (i,j,t,5) € I x J X T x 8, ¢};; represents the assignment cost of customer
1 to facility j in period ¢ and under scenario s. If it is not possible to open facility j at
the beginning of time period ¢ under scenario s, then the corresponding fixed cost will be
considered equal to +00. Such a situation can only occur for ¢ > 1, given the possibility

that any new service opens in that period.

The decisions to be made are where and when to locate new facilities, and how to assign
the existing customers over the whole planning horizon under each possible scenario. Let
z € {0, 1}/IXI7I be the vector of location decisions such that x;; equals 1 if facility j
is opened at the beginning of period ¢, and 0 otherwise, and y € {0, 1}XIVIXITIXIS] the
vector of assignment decisions such that y;;, equals 1 if customer i is assigned to facility
j in period ¢ under scenario s, and 0 otherwise (we could also consider, for each s € S,
vector y° € {0, 1}IXIVIXITI "being the vector of assignment decisions for scenario s only).
The objective is to minimize expected total cost including fixed and assignment costs

over all scenarios.

The dynamic uncapacitated facility location problem under uncertainty, in short DU-

FLPU, can be formulated in an extensive form as follows:
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(DUFLPU) min - Y Y N pifhan + Y D> Y Y pe (2.1.1)

teT jed seS seS teT iel jed
s.t.
S y=0, VielteT,ses, (2.1.2)
Jj€J
t
wp -y >0 VieljeJteT,seS, (2.1.3)
=1
Z(_xjt) > 1 Vj e J, (2.1.4)
teT
z € {0, 1}17XI71 (2.1.5)
y € {0, 1}EXITIXITIxIS] (2.1.6)

The objective function (2.1.1) minimizes the expected total costs (fixed plus variable
costs). Constraints (2.1.2) require that in every time period under each scenario an
existing customer is assigned to exactly one facility. Constraints (2.1.3) impose that an
existing customer can only be assigned to open facilities. A customer can be assigned
to different facilities at different time periods and different scenarios. Constraints (2.1.4)
ensure that each facility is opened at most once during the time horizon (located at the
same site in all scenarios). Finally, (2.1.5)—(2.1.6) restrict the decision variables to be
binary.

The above formulation contains the UFLP (|7| = |S| = 1) and the DUFLP (|T]| >
1,|S] = 1) as particular problems, and has |J||T|+ |J||I||T||S| binary variables and
)| TS|+ || [I||T||S|+ |J| restrictions (not counting the zero-one constraints). Even
for moderate dimensions of these sets, (2.1.1)-(2.1.6) becomes a quite large integer linear

program.

Remark 2.1.1 The DUFLPU is a two—stage stochastic model though a standard formu-
lation has not been explicitly written here. In spite of the location decisions being scenario
independent, in the sense that they cannot be changed according to each scenario in par-
ticular, the fized cost can be considered scenario dependent as it was assumed here. Note

that if we consider fj; = Y sP°[5;, the objective function (2.1.1) can be rewritten as

Zijt Ty + ZZZZ PCijt Yije- (2.1.7)

teT jed seS teT i€l jeJ

follows:

The model can now be explicitly written as a two—stage program wherein the fixed costs

on the first stage are in fact expected fized costs. Throughout this text we will consider

19



mainly the form (2.1.1), but it should be stressed once more that location decisions make

the DUFLPU non-separable by scenarios as those decisions must be valid for all scenarios.

The first technique developed to solve the DUFLPU is a primal-dual heuristic approach.
In order to apply this heuristic, we present next the dual problem, the condensed dual
problem and the complementary slackness conditions between the dual and primal prob-
lems. The forthcoming formulations are crucial for the algorithm’s description which is

only detailed in section 3.1 for the interested readers.

2.1.1 Dual problem and complementary slackness conditions

Consider the linear programming (LP) relaxation of the primal problem defined by
(2.1.1)-(2.1.4) and where restrictions (2.1.5) and (2.1.6) are replaced by nonnegativ-

ity constraints. Defining in (2.1.1) Ciii =

variables vf, w;;; and w; associated with the restrictions (2.1.2), (2.1.3) and (2.1.4),

pci and F3 = p° [, and considering dual

respectively, the dual problem is given by:

max ZZZ G5 v — Z u; (2.1.8)

i€l teT ses JjeJ

subject to

S S S
Uy — Wiy < Cijt

Viel,je JteT,seS, (2.1.9)
T

SN w, —w <Y F, Vi€ dteT, (2.1.10)

i€l seS 7=t SES

w;, >0 Viel,jeJteT,ses, (2.1.11)

u; >0 Vjel (2.1.12)

For feasible variables v, by constraints (2.1.9) and (2.1.11), we may set
wj = max{0, v}, — ijt} Vi, j,t, s, (2.1.13)
to obtain the condensed dual problem:

max ZZZ 05 vy — Z u; (2.1.14)

1€l teT ses JjeJ

subject to

T
DY max{0,v], — Cj b —u; <> F Vit (2.1.15)

i€l seS 1=t seS
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uw; >0 Vi (2.1.16)

The corresponding slack variables 7;, for constraints (2.1.15) are given by:

T
Tjp = Z = ZZZmaX{O,va — Ciir} + vy V7, t. (2.1.17)

seES 1€l seS 1=t

Then, the complementary slackness conditions are:

Tt Ty = 0 Vj,t, (2118)

vft <Z yfjt - 5ft> =0 VZ7 ta S, (2]_]_9)
J
t
T=1

u; <1—Zxﬁ> =0 VY (2.1.21)
t

e (0 = Ch — wiy) =0 Vijit.s. (2.1.22)

As it is well known from duality theory, if the dual and primal solutions satisfy all com-
plementary slackness conditions, then the solutions are optimal. If not, the corresponding

primal solution is said to have gap.

2.1.2 Extensions regarding the uncertainty in potential facility

sites

It was assumed for the DUFLPU that if it is not possible to open facility 7 at the beginning
of time period ¢ under scenario s, then the corresponding fixed cost is considered equal to
~+00. The fixed cost incurred under that scenario will be too high, and given the problem’s
objective function (2.1.1), the corresponding facility location certainly will not be selected
to the set of open facilities in that period of time. Consequently, this assumption will
only decrease the number of potential facility sites in that period of time.

Let us assume now that, even if it is not possible to open facility j at the beginning of time
period ¢ under scenario s, it is still possible to open that facility under other scenario(s)
s’ # s for ¢ € S. In addition, the fixed cost can be equal to any value < 4o0, i.e., it is

possible to attribute a finite fixed cost to the possibility of not opening that service in
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the future. This cost may be null (if the facility will not be opened there will be no fixed

cost) or any positive value (representing costs no longer recoverable for instance).

In order to model this new and more realistic situation, let us assume that, for (j,¢,s) €
J x T x &, the fixed cost f5; will be equal to any value in RS . In addition, let us define,
for (j,t,s) € J x T x S, parameter p}, as equal to 1 if it is possible to open facility
j at the beginning of time period ¢ under scenario s, and 0 otherwise. As opposite to
the first model, in the present situation, even if pj, = 0, facility location j remains as
a potential facility site to open in period ¢, if and only if there is at least one s’ # s
with pj; = 1. However, if z;; = 1 (facility j is opened at the beginning of period ¢) and
pj; = 0 for some scenario s, no assignments can be made to that facility for all 7 > ¢
under that scenario s, even if p; =1 for some 7 > ¢ as the facility is opened once and
the important p is on that period when the facility is planned to be opened. Customers
will not be able to use that facility under that scenario(s) and so assignments should
not be made to that facility. In terms of decision variables, the definitions introduced
earlier are still valid here, though to a decision z;; = 1 should be also added the infor-
mation about pj, for all s € S. In terms of problem formulations and solution approach,

small changes have to be introduced in the results already developed for the first problem.

The primal problem formulation is given by the primal problem (2.1.1)-(2.1.6) with
constraints (2.1.3) replaced by

t
 phri -y =0 VieljelteT,seS. (2.1.23)

=1
The above constraints still impose that an existing customer can only be assigned to open

facilities. However, in the present model, each customer i in period ¢ under scenario s

can only be assigned to a facility opened in 7 and such that pj =1, for 7 <+.

In terms of dual problem formulation, consider (2.1.8)—(2.1.12) where constraints (2.1.10)

are replaced by

T
DD s mu <Y F ViedteT. (2.1.24)

i€l seS 1=t seS

Consequently, the condensed dual problem is given by (2.1.14)—(2.1.16) with constraints
(2.1.15) replaced by

T
SN pmax{0,0], — C b —u; <Y OF;, Vit (2.1.25)

i€l seS T=t SES

The corresponding slack variables 7;; for constraints (2.1.25) are given by:
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T
T= > Fh = 3 DY pomax{0,0f — 5 +uy Vit (2.1.26)

seS i€l seS T=t

Finally, the complementary slackness conditions are given by (2.1.18)—(2.1.22) where
conditions (2.1.20) are replaced by:

t
Wije (Z PirTir = yfjt> =0 Vijts. (2.1.27)
T=1

In spite of this model being more general than the DUFLPU first introduced, it requires
not only more (input) parameters but also additional information must be given whenever
location decisions are taken. Mainly due to simplicity reasons, throughout this work we
will assume only the first situation described for the DUFLPU, hopping that this decision

will contribute to an easier reading of this text.

2.2 Dynamic uncapacitated location problem under un-

certainty with a regret based measure of robustness

We propose now a variation of the DUFLPU where a regret based measure of robustness
is incorporated. The aim of this problem is still to find a good solution that performs
well across all possible scenarios, through the minimization of the expected total cost
over all possible scenarios, but the provided solution, if exists, is subject to additional
constraints being a more robust solution in a context of uncertainty. The concept of
regret is well known in the literature and has been used mainly in static scenario—based
location models (e.g., Snyder [82], Snyder and Daskin [83|, Lim and Sonmez [52]). In
simple terms, taking into account that a decision has to be made considering several dif-
ferent scenarios, regret can be understood as a measure of how much will we lose due to

the fact that the optimal solution of the scenario that came to occur was not implemented.

In order to formulate and describe the problem, let us first introduce additional notation
as well as some important definitions that were adapted from the static case. For a given

solution (z,y) and for each s € S, let us represent the total cost achieved under scenario
s by oz, y) :

Cs(z,y) = Z Z f;t Tjp + Z Z Z ijt yfjt' (2.2.1)

teT jeJ teT i€l jeJ
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As already noted, location decisions to the DUFLPU must be valid for all scenarios.
Consider now each single-scenario minimization problem wherein the objective function
is to minimize the total cost for a given scenario only. We are faced with |S| deterministic
dynamic uncapacitated facility location problems (DUFLP), each corresponding to one
single scenario. Throughout this text we will refer to each single-scenario minimization
problem as DUFLP® and represent its optimal objective function value by ¢!. Let us
assume that ¢} is known and such that ¢; > 0, for all s € S.

Taking into account that we are faced with different possible scenarios (data change for
different scenarios), the best solution of each DUFLP? is expected to be different not only
from the best ones achieved under other scenarios but from the best of the DUFLPU as
well. In what follows, we are only interested in feasible solutions of the DUFLPU that
are also feasible to DUFLP?® for all s € S. In the present case, this will always happen

since we are dealing with an uncapacitated problem.

Definition 2.2.1 The Regret of a feasible solution (x,y) of the DUFLPU associated with
a given scenario s € S is defined by the difference between the value of the solution under

that scenario and the optimal value of that scenario:

Regs(x, y) = gs(xay) - C: (222)

The relative regret is given by Reg®(x,y)/(k.

Throughout this text we will use the terms regret and relative regret interchangeably.

The aim is to minimize the expected total cost ensuring that the relative regret for each
scenario does not exceed a pre-specified value o, a > 0. Thus, for a given a > 0, the
dynamic uncapacitated location problem under uncertainty with a regret based measure
of robustness, in short a-DUFLPU, is formulated by (2.1.1)—(2.1.6) and the following

constraints:

Cs(zyy) < (14 a)(; Vs € S. (2.2.3)

Constraints (2.2.3) impose that relative regret for each scenario is no greater than «.
A solution for the problem a-DUFLPU is such that the objective function value under
any scenario is at most 100 % worse than the scenario’s optimal solution. Thus, and
depending on the « value, a more demanding and robust solution is expected to be found
for this problem than the solution to the DUFLPU, that can be seen as a co-DUFLPU. We
will call throughout this text a feasible solution of the a-DUFLPU an a-robust solution.

Definition 2.2.2 For a given o > 0, a feasible solution of a-DUFLPU is called an

a-robust solution.
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The approach developed to obtain a-robust solutions is described in section 3.3.

2.2.1 Expected total cost versus regret: illustrative examples

The effect of incorporating parameter « into the proposed dynamic location problem
under uncertainty is now illustrated. The tradeoff between the expected total cost and «
is also analysed. It is worthwhile to study the compromise that exists between expected
total cost and maximum regret as the DM will be able to make a more informed decision,
choosing the solution that is most fitted to his attitude towards risk.

Considering three randomly generated problem instances, problem a-DUFLPU has been
solved iteratively for several values of «, and the best feasible solution found in each
iteration was recorded. Initially, o was set to a large value and then it was reduced by

0.01 units at each iteration until no feasible solution could be found.

Example 2.2.1 Consider an instance with 10 time periods, 20 potential facility sites,

100 possible customers and 5 scenarios.

For this particular instance, it was possible to prove that a-DUFLPU is infeasible for
a < 0.07. The best expected total costs achieved for each « are plotted in Figure 2.2.1.
We can see that the expected total cost has a non decreasing pattern as « decreases.
In addition, the steep curve indicates that large reductions in regret are possible with
small increases in expected total cost. These results are in accordance with similar results
already observed in static models. Achieving a more robust solution can sometimes be
accomplished by small changes in a given solution. This is depicted in Figure 2.2.2, where
two situations are compared: considering a maximum relative regret of 19% and 7%. For
this particular example, we can see that small changes in location decisions can lead to

more robust solutions.

Figure 2.2.1: Example 2.2.1:Expected total cost versus a.

Expected total cost
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Table 2.2.1: Example 2.2.1: Expected total cost versus a.

a | Best Obj | Increase Location Decisions
t=1 t=2 t=3 t=4 t=6
0.19 | 128127 0.0% 9;11;13;14;17  10;18 7 4 2
0.17 | 128151,2 | 0.02% 9;11;13;14;17  10;18 7 4 -
0.09 | 128257,8 | 0.09% | 6;9;11;13;14;17 18 - 4;16
0.07 | 128433,4 | 0.24% 9;11;13;14;17 18 - 4;16

o |

Table 2.2.1 depicts the solutions in detail. We report the best objective function values
found for some values of a as well as the corresponding location decisions. In column
'Increase’ we report the increase (in percentage) of the best objective function values
relative to the best one achieved with o = 0.19, given by the diference between the best
objective function value for each o and the best one with o = 0.19 divided by this latter
value. We can see that it is possible to decrease the relative regret from 19% to only 7%
with a slightly increase of 0.24% in the expected objective function value (illustrated in
Figure 2.2.2). Furthermore, we can gather additional information about this particular
problem, such as the discovery of a set of 'core’ facilities, the ones that stay open for all

values considered for parameter a.

Example 2.2.2 Consider two instances of the same size: 10 periods of time, 20 potential

facility sites, 100 possible customers and 10 scenarios.

The first instance proved to be infeasible for @ < 0.06 and the second one for o < 0.17.
The best solutions achieved for both problem instances, presented in Figure 2.2.3 and
Table 2.2.2, show a similar behavior to the one observed in example 2.2.1. It is also

possible to identify for both instances the corresponding set of core facilites.

Table 2.2.2: Example 2.2.2: Expected total cost versus a.

a | Best Obj | Increase Location Decisions
t=1 t=2 t=3 t=4 t=5 t=6
Inst 1 | 0.19 | 118189.8 | 0.00% 5:7;8;14  4;12;16 18 - - -
0.18 | 118580.0 | 0.33% 5;7;8;14 12;16 18 - - -
0.1 | 118614.8 | 0.36% | 5;7;8;14;20 12;16 18 - - -
0.06 | 118757.5 | 0.48% | 5;7;8;14;18  12;16 - -

Inst 2 | 0.22 | 106920.6 | 0.00% 6;7;10 - - - 5 17
0.21 | 107088.5 | 0.16% 6;7;10 - 17 - 5 -
0.2 | 108047.1 | 1.05% 6;10 - 17 - Y -
0.18 | 108251.6 | 1.24% 6;10 - 17 8 Y -
0.17 | 108339.1 | 1.33% 6;10 - 1720 - 5 -
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Figure 2.2.2: Example 2.2.1: Best location decisions for « = 0.19 and a = 0.07.
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(a) Initial network. White nodes represent potential facility sites and gray nodes possible
customers. (b) — (f) Networks with best location decisions. (e) represent facilities opened
both for a = 0.19 and « = 0.07. (M) represent facilities opened only for o = 0.19. (A)
represent facilities opened only for ae = 0.07.
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Figure 2.2.3: Example 2.2.2: Expected total cost versus a.
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(b) Instance 2

The three instances used here for illustration purposes depict the general behavior ob-
served in similar problems. It is also possible to see that each problem has its own
features, and there can be huge variations in the obtained results (namely regarding the
minimum relative regret value for which the problem is still feasible) even for problems

of the same dimension.

2.3 Multi-objective dynamic uncapacitated location pro-

blem under uncertainty

Let us assume that it is not possible to consider a priori any kind of assumptions regarding
the risk profile of the DM or even about his preferences. Then one possible approach is
to consider the dynamic facility location problem under uncertainty as a multi—objective
problem where each scenario will give rise to one objective. Thus, a set of objective
functions is defined instead of one single objective function and a set of solutions is
calculated instead of only one. Within this context, the DM will have a much broader
view of the compromises that exist among the possible scenarios.

Recalling that the definition of ((z,y) is (2.2.1), the multi-objective dynamic uncapac-
itated facility location problem under uncertainty, in short MODUFLPU, is defined as

follows:

(MODUFLPU) min  {((x,y), ..., (2, y), ..., (s(z,y)} (2.3.1)

S.t.
(2.1.2)—(2.1.6).

In a multi-objective problem, the solutions of interest are designated Pareto—efficient /non—
dominated solutions. In the present problem, non-dominated solutions will be the ones
such that it is not possible to improve the objective function of one given scenario without

deteriorating the objective function of at least one other scenario (definition 2.3.1).
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Definition 2.3.1 Let (x,y) be an admissible solution for MODUFLPU. (x,y) is a Pareto-
efficient solution if and only if there is no other solution (x1,y1) such that (s(zq,1y1) <
Cs(x,y) for all s € S and (s(x1,y1) < (s(z,y) for at least one scenario s. The image of

an efficient solution in the objective space is called a non—dominated solution.

Regardless the preferences or profile of the DM, assuming only his rationality, the in-
terest goes to Pareto—efficient solutions only. The procedure followed in this work to
generate non-dominated solutions to the MODUFLPU is only described and illustrated
in section 3.4. In the rest of this section our attention is restricted to results in which the
approach was designed and to establish relations with other problems well known from

the literature.

Figure 2.3.1: Sets of non-dominated solutions.

scenario 2
=
&
o

scenario 1

(a) Instance with two scenarios (b) Instance with three scenarios

The non-dominated solutions of a multi-objective problem can be achieved by solving
auxiliary programming problems. When dealing with integer or mixed-integer problems,
care has to be taken though to guarantee that the chosen procedure is capable of calcu-
lating non—supported non-dominated solutions (lying inside duality gaps). In this work
we resort to a result due to Ross and Soland [77], where an auxiliary mono-objective
programming problem is considered, the well known optimization of a weighted sum of
the objective functions. The solutions to the original problem MODUFLPU are then

achieved by solving the auxiliary problem that is defined next.

Let v € IRY be a vector where each component v, represents the weight associated
with each objective function (; of MODUFLPU, such that v, > 0 for all s € S and
Y sesVs = 1. In addition, let M € IR® be a vector with components M, being upper
bounds to the objective function (total cost) achieved in each scenario s. It should be
stressed here that those weights v do not represent any kind of DM’s preferences. Those
weights can and should be changed in accordance with M for instance (further details

about this issue are given in section 3.4).
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The auxiliary programming problem to the MODUFLPU, in short AUX, is formulated

as follows:

(AUX) min Y vz, y) (2.3.2)
SES
S.t.
(2.1.2)—(2.1.6)

Gs(r,y) < M;  VseS. (2.3.3)

The next result, based in Ross and Soland [77], is particularly important in what con-
cerns the calculus of non—dominated solutions to MODUFLPU. Afterwards, some results

related with well known problems from the literature are given.

Proposition 2.3.1 For any v € R® such that vy > 0 for all s € S and YosesVs = 1,
(z,y) is an efficient solution of MODUFLPU if and only if it is the optimal solution of
AUX for some M € RY.

Proposition 2.3.2 The optimal solution of DUFLPU, the minimum expected total cost

over all scenarios, is a non—dominated solution of MODUFLPU.

Proof: Considering in AUX, for all s € S, v, = p* and M large enough (constraints
(2.3.3) are redundant), the optimal solution of AUX is the minimum expected total cost.

From proposition 2.3.1 we can conclude that this solution is a non—dominated solution
of MODUFLPU.

Proposition 2.3.3 An a-robust solution is a non—dominated solution of MODUFLPU.

Proof: Considering in AUX, for all s € S, M, = (14 )7, the optimal solution of AUX
is a-robust as AUX has an a-DUFLPU form. In addition, from proposition 2.3.1, the
solution is a non-dominated solution to MODUFLPU.

AUX can also be used to calculate an efficient min-max solution. In a first stage, it is
necessary to solve the problem of minimizing the maximum cost under all scenarios. This

can be done by solving the following programming problem:
(MIN-MAX) min o (2.3.4)

S.t.
(2.1.2)—(2.1.6)

CGlr,y) <o  VseS. (2.3.5)
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Let o* be the optimal objective function value of MIN-MAX.

Proposition 2.3.4 If in constraints (2.3.3) M is defined such that My = o* for all

s €S, then AUX will generate an efficient min—maz solution.

Proof: Taking into account that ¢* is the optimum of MIN-MAX (the objective function
value for any scenario s will be less than or equal to this value), it is easy to see that if
in constraints (2.3.3) M, is defined such that Mg = p* for all s € S, then any efficient

solution calculated will also be a min-max solution.

A similar reasoning can be applied in order to obtain an efficient solution that minimizes

maximum regret.

Proposition 2.3.5 Consider problem MIN-MAX with restrictions (2.58.5) replaced by
the following set:
Reg®(z,y) <o  VseS. (2.3.6)

If in AUX M is defined such that My = (F 4+ 0" for all s € S, then AUX will generate

an efficient solution that minimizes maximum regret.

Proof: Taking into account that regret for any scenario is no greater than o*, it is easy
to see that if in constraints (2.3.3) M is defined such that M, = (* + ¢* for all s € S,

then any efficient solution calculated minimizes maximum regret.

2.4 Dynamic capacitated location problems under un-

certainty

The simultaneous consideration of different possible scenarios and capacities associated
with facilities brings up other interesting questions and additional difficulties arise. This
section is devoted to the modelling of capacitated facility location problems being ex-
tensions of some of the uncapacitated models presented earlier. We first propose several
mono-objective approaches that later will lead us to multi-objective ones. We restrict
our analysis to those problems in which capacities are inputs to the problem, assumed to
be known precisely. We leave out of this study problems where the capacity (size) of fa-
cilities are decision variables (usually known as the class of capacity planning/expansion
problems).

All the problem instances considered in the examples shown throughout this section have
been randomly generated and solved by CPLEX MIP optimizer, v12.4.

31



2.4.1 Mono-objective approaches

Let us introduce the following notation, in addition to the one previously defined. For
j € J, K; denotes the capacity of facility j in each time period (expressed in units of
demand); for (i,t,s) € I x T x S, let d3, be the total demand of customer i during time
period ¢ under scenario s; for (i, 7,t,s) € [ x J x T X S, ¢, denotes the assignment cost
of customer i’s total demand to facility j in time period ¢ under scenario s (in this case
it is a function of dj, and the distance dist;, between (i, j) in ¢ under s, here the unit
transportation cost, and thus cf;, = dist;, d3;). In terms of decision variables: x;; equals
L if facility j is opened at the beginning of period ¢, and 0 otherwise; y;;, represents the
fraction of customer i’s demand assigned to facility 7 in time period ¢ under scenario s.
We assume here that the demand of each customer can be assigned to more than one
facility.

Considering the DUFLPU, defined by (2.1.1)-(2.1.6), a possible extension of this problem
where capacities are associated with facilities, naturally called dynamic capacitated lo-
cation problem under uncertainty, in short DCFLPU, can be formulated in an extensive

form as follows:

(DCFLPU) min > Y Y pfhaa Y Y D> e (2.4.1)

teT jed seS seS teT iel jeJd
subject to
STy=05 VielteT,seS, (2.4.2)
jeJ
t
S diy <KDY w,  VjeJteT,sES, (2.4.3)
el T=1
<1l Viel (2.4.4)
teT
zjp€{0,1}  VjeEJSLeT, (2.4.5)
Y =0  Viel,jeJteT. (2.4.6)

The above formulation is very similar to the one defined to the DUFLPU, namely the
objective function (2.4.1) that minimizes the expected total cost (fixed plus assignment
costs) over all scenarios. The difference goes to constraints (2.4.3) which dictate that
customers’ demand can only be assigned to open facilities and no facility can supply
more than its capacity. This problem will have at least one admissible solution if and

only if total demand does not exceed total capacity under all possible scenarios. However,
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it can be the case that total demand may not be satisfied under some scenario(s) given the
established capacities. Consequently, the above problem can be infeasible, as opposite to
the DUFLPU where an admissible solution always exists for all scenarios. For illustrative

purposes, consider the small problem instance given in example 2.4.1.

Example 2.4.1 Consider a problem instance with 2 possible scenarios, 2 time periods,
2 potencial facility locations and j possible customers. The possible demands of each
customer in each time period for both scenarios are presented in table 2.4.1. The last
row presents total demands. In addition, consider Ky = 90 and Ky = 150 (total potential
capacity equals 240 units).

Table 2.4.1: Possible customers’demand, (dL, d%).

t ] 1 2
1| (85,85) (93,88)
i 2| (49,49) (48,53)
3| (25,25) (28,23)
4| (68,68) (73,61)
(227,227) (242,225)

We can see that total capacity will not be sufficient to satisfy total demand in time period
two under scenario one. The above major problem can then be classified as infeasible
or a problem without complete recourse, as it is designated in Stochastic Programming

because there is not an admissible solution for all possible scenarios.

A possible extension of model DCFLPU is to consider unmet demand. More precisely,
when location decisions are made, it is explicitly assumed by the DM that total demand
may be unsatisfied in the future. In addition, it is also assumed that a penalty cost is
incurred for each unit of demand not satisfied.

Let us represent the fraction of the unmet demand of customer ¢ during ¢ and under
s by decision variable e, for all (i,¢,s). In addition, /3, denotes the total cost of not
fulfilling the customer i’s total demand during ¢ under s. We consider here a general
situation where the penalty costs can be different for different customers, but an equal
penalty cost for all customers could also be considered. An extension of the DCFLPU

considering possible unmet demand can then be formulated as follows:

(DCFLPU,)  min 3.5 S 0+ 3.3 3> wes i +

teT jeJ seS seS teT i€l jeJ

DD e

seS teT iel

(2.4.7)
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subject to

Yoy ten =0, VielteT,seS, (2.4.8)

jeT

(2.4.3), (2.4.4),(2.4.5), (2.4.6),

e, >0 Viel,teT,seS. (2.4.9)

The objective function (2.4.7) minimizes the expected total costs including fixed, assign-
ment and penalty costs associated with unmet demands in the third term. Constraints
(2.4.8) ensure that the total demand of each customer is distributed between met and

unmet demand.

Feasibility is guaranteed by formulation DCFLPU;; and its best solution will result of
the compromise defined by the problem’s data. In particular, the values of variables e,
will certainly depend on the diference between assignment costs and costs of not satisfy-
ing demand. Let us consider again the problem instance of example 2.4.1 in which total
demand in period two under scenario one exceeds in two units the potential capacity.
In order to fit this problem to this new situation, we have considered for all customers
the penalty costs higher than the corresponding assignment costs, for illustrative pur-
poses only. The optimal solution for this new problem, where obviously both facilities
are opened, results with e{, = 0.0215 and ef, = 0.0 for all (i,t,s) # (1,2,1). Hence, and
as expected, only two units of demand in time period two under scenario one are not

satisfied, in the present solution belonging to customer one.

Let us return to model DCFLPU and to those problems where the potential total ca-
pacity is sufficient to satisfy total demand. For instance, suppose that a third potential
facility site with K3 > 2 is added to the problem’s data of example 2.4.1. First, it is
easy to see that the DCFLPU is feasible and has several admissible solutions in which
demand is fully satisfied. However, the best one will be dependent on the capacities,
setup costs of those three facilities, assignment costs, in summary the problem’s data.
Assuming here the extreme situation in which the costs associated with that third fa-
cility are all higher than the costs associated with the other two services, the question
goes to the practicability in terms of costs of one solution where three facilities have
to be opened in order to satisfy total demand (in the present case, a third facility is
opened to satisfy only the remaining two units under one single scenario). This extreme

example is only to illustrate that, in spite of the DCFLPU being feasible, guaranteeing
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that total demand is satisfied under all possible scenarios, comes with a cost. Note that
model DCFLPU/; can also be applied whenever the potential total capacity is sufficient
to satisfy total demand. It can be used to analyse the tradeoff between expected total
costs, including fixed and assignment costs only, and expected total costs associated with
unmet demand. The penalty costs represent the weight or importance given to satisfying
demand. Tt is easy to see from the objective function (2.4.7) that if higher penalty costs
are considered, more satisfied demand is expected, leading to an increase of the expected
total costs associated with satisfied demand; on the other hand, smaller penalty costs
will lead to solutions with more unsatisfied demand but also with smaller expected costs
for satisfying demand. This reasoning leads us to multi-objective approaches that will be

discussed in the following sub—section.

Before going any further, we shall remark that the above situations could be modelled
through model DCFLPU with additional features instead of model DCFLPU;;. Assume
that in the set of potential facility sites there is a potential facility site indexed by j = 0,
for instance, with zero fixed costs and with a huge capacity (at least large enough to
satisfy total demand). Throughout this text we will denote this new set of potential
facility sites by Jo = J U {0} such that f5, = 0 for all (¢,s) and Ky = +00. The demand
assigned to this virtual facility, y, for all (i,t,s), represents unsatisfied demand, and
the assignment costs between this virtual facility and customers, ¢}, for all (i, s), are
in fact penalty costs. Hence, if in model DCFLPU, defined by (2.4.1)—(2.4.6), set J is
replaced by set Jy we get also an extension of DCFLPU with possible unmet demand.
Furthermore, considering ¢, = /;; for all (i,¢, s), both models DCFLPU and DCFLPU/;
provide the same solution where yj, = €, for all (i,¢, s). Considering this notation, the
optimal solution for the problem of example 2.4.1 with unmet demand is partially de-

picted in figure 2.4.1.

A different perspective can be given of the above problem. Assume that total demand
should be always satisfied (at any cost). A possibility is to assume explicitly future capac-
ity shortages. Let us assume also that costs are associated to such shortages, interpreted
in this context as penalty costs incurred by the increase of the capacities (by having to
pay extra hours to employees, or buy some units in outsourcing for instance). Let us
represent the capacity shortage of each open facility j during time period ¢ and scenario
s by decision variable o3;,. Let 6 denote the cost of each unit of demand that is not sat-
isfied by each open facility (equal for all facilities). We assume also that shortage costs
are equal for all facilities. An extension of the DCFLPU considering possible capacity

shortages can then be formulated as follows:
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Figure 2.4.1: Optimal solution for example 2.4.1 with unsatisfied demand.
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(DCFLPUIII) min Z Z Zpsf x]t + Z Z Z Zp C’thyljt

teT jeJ seS sES teT iel jeJd

(2.4.10)
DI L
seS teT jeJ
s.t.
(2.4.2),
> &y < K; Zxﬂ +0, Vj€JteT,s€S, (2.4.11)
el =1
oy <M xj,  VjeJteT,seS, (2.4.12)
(2.4.4),(2.4.5), (2.4.6),
0% >0 ViedJteT,ses. (2.4.13)

The objective function (2.4.10) minimizes the expected total costs including in the third
term the costs associated with capacity shortages. Constraints (2.4.11) and (2.4.12),

where M represents a very large number, ensure that customers’ demand can only be
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assigned to open facilities and impose that the amount supplied by each open facility
must be no greater than its available capacity plus its capacity shortage. Note that an a
priori maximum shortage of each facility could be also imposed, instead of considering M
in constraints (2.4.12), although, in this case, it is not possible to guarantee the existence

of an admissible solution.

2.4.2 Multi-objective approaches

In this sub—section we propose several multi-objective approaches to the problems under
study, given several perspectives to capacitated problems as well. In order to formulate
the next problems, consider the set of potential facility sites given by Jo, = J U {0},
in order to include possible unsatisfied demand into the models as explained above. In
what follows, we still represent the total cost (facility location and assignment of satisfied
demand costs) achieved in scenario s by (s(z,y). In addition, we represent the total cost

associated with unmet demand in scenario s by Us(y) :

Us(y) = Z Z CiotYior- (2.4.14)

teT el
We first propose a bi—objective problem where expected total costs, including fixed and
assignment costs only, and the expected total penalty cost (associated with unmet de-
mands) give rise to two distinct objective functions. We can formulate this bi-objective
dynamic capacitated facility location problem under uncertainty, in short BODCFLPU,

as follows, where set .J is replaced by set Jy in the set of constraints:

(BODCFLPU)  min {Zpsgs(x,y), ZpsUs(y)} (2.4.15)
seS seS
s.t.
(2.4.2)-(2.4.6).

The non-dominated solutions for this problem are the ones such that it is not possible to
improve the expected total cost (fixed and assignment) for all scenarios without deterio-
rating the expected total penalty costs. Then, the analysis of the tradeoff between those
two objectives, discussed earlier with model DCFLPU;;, can be made through model

BODCFLPU, where a set of interesting solutions can be found and analyzed.

In order to offer a better picture of the compromises that exist among the possible
scenarios, a multi-objective problem can be defined where each scenario will give rise to
one objective. We are indeed proposing an extension of the multi-objective approach
designed to the uncapacitated case, presented in section 2.3, to the capacitated problem.

Thus, and now without making any assumptions about the risk profile or about the
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preferences of the DM, we can formulate a multi—objective dynamic capacitated facility
location problem under uncertainty, in short MODCFLPU, as follows, where set .J is

replaced by set Jy in the set of constraints:

(MODCFLPU)  min  {G(z,y) + Ui(y), .-, G(z,y) + Us(y), ... Cs(z, y) + Us(y) }
(2.4.16)
s.t.
(2.4.2)-(2.4.6).

The non—dominated solutions of MODCFLPU, as well as the non—dominated solutions
of BODCFLPU, can be achieved by solving the corresponding auxiliary programming
problems. We omit in this text their formulations taking into account its resemblance
to the MODUFLPU considered in section 2.3. The non-dominated solutions can also be
achieved following the procedure illustrated in section 3.4 for the MODUFLPU.

Strongly related with the type of facilities under study, as well as the products or services
provided by such facilities, in reality it can be very difficult to estimate the unmet demand
costs. This task can be easier if there are supply contracts that determine the fees that
have to be paid for each unit of demand not satisfied, but it can be a hard task as in
some health care services for instance. In the models proposed so far, those costs are
given (possibly with uncertainty), but we now drop this requirement. In what follows,
we may still have possible scenarios where total demand may not be satisfied. However,
the costs associated with unsatisfied demand are not known, not even with uncertainty.
For simplicity reasons, we will represent the total unmet demand in scenario s by Us(y)

but, under such circumstances, defined as follows:

Usw) =YD v (2.4.17)

teT iel

Note that, if (2.4.17) is considered instead of (2.4.14) in BODCFLPU, then the non-
dominated solutions of this model will represent compromises between expected total
unmet demand and expected total cost.

Motivated by the previous model and taking into account the unknown penalty costs, a
new problem can also be modelled that can provide additional information to the DM. To
the objective functions corresponding to the total costs in each of the possible scenarios
we add the set of functions corresponding to the total unmet demand in each scenario
(if penalty costs are known, the total unmet demand cost could be considered instead).
A new multi-objective problem can be defined with 25 objective functions, where each
scenario will give rise to two distinct objectives. The aim is to minimize simultaneously

total costs and total unmet demand for each of the possible scenarios.
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The new multi—objective problem can then be formulated as follows, where set J is

replaced by set Jy in the set of constraints:

(MODCFLPUy) min  {G(x,y), ..., (2, y), ..., Cs(z, ), UL (y), ..., Us(y)} (2.4.18)

s.t.
(2.4.2)-(2.4.6).

The non—dominated solutions for the present problem are the ones such that it is not
possible to improve the total cost (or total unmet demand) of one given scenario with-
out deteriorating, at least, the total unmet demand (or total cost) of that scenario or
the total cost or total unmet demand of one other scenario. Bellow, we present an il-
lustrative example with a small problem instance. We report and analyse some of the
non—dominated solutions calculated for this particular instance, with only two possi-
ble scenarios but where the tradeoff between the four objectives can be observed. The
auxiliary programming problem to the MODCFLPU/,;, that has been considered in the
calculation of non—dominated solutions, is formulated next.

Let 1, € RY and v, € IR® be the vectors of weights associated with the objective
functions of MODCFLPUj;, such that v, > 0 and 5, > 0 forall s € S, and > (15 +
ves) = 1. In addition, M; € R® and M, € IR¥ represent the vectors of upper bounds to
the objective functions. Then, the auxiliary programming problem to the MODCFLPU/,

is formulated as follows:

(CAUX) min Z ( VlsCs(xa y) + VZsUs(y) ) (2419)

seS

s.t.
(2.4.2)-(2.4.6)

(s(r,y) < Mys Vs€S. (2.4.20)

Uy) < My Vs €S, (2.4.21)

Example 2.4.2 Consider a problem instance with 2 possible scenarios, 5 time periods,

15 potencial facility locations (including the virtual one) and 50 possible customers.

In table 2.4.2 we detail twenty non-dominated solutions of this problem instance that
were found following an interactive procedure (see section 3.4 where this solution ap-
proach is applied to the MODUFLPU). For ease in the exposition of the results only,
the solutions (objective function values and the corresponding location decisions) are or-

dered by non decreasing values of the total cost for scenario one, i.e. (;. The best values
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found for each of the objectives are in bold. We can see that there are several sets of
solutions with the same location decisions, same sites and time periods in which facilities
are opened, although with different assignment decisions. Solutions number 1 and 2 are
such an example, both with the best total cost for scenario 1, the total cost for scenario
2 improves but with an increase of the unmet demand for scenario 2. A similar behavior
is observed between solutions 5 and 11, both with the best total cost for scenario 2, the
total cost for scenario 1 worsens but the unmet demand for scenario 1 decreases. In
solutions 3 and 4, with the same location decisions as well, total costs deteriorate in both
scenarios with an improve of total unmet demand. The solutions from number 12 to 20
were obtained searching the regions defined by smaller upper bounds to the objectives U;
and Us, supposing that the DM is really interested in satisfying (almost) total demand
and there will be sufficient resources to reach such goals. As shown by solution number
20, it is possible in this instance to satisfy total demand for both scenarios, though with
the worst total costs observed. We note that we have chosen a problem instance where
these solutions belong to the set of admissible solutions. However, such admissible solu-
tions should be further analysed by the DM to decide if they are 'really’ admissible (the
increase in the cost that enables that total demand will be satisfied under all scenarios
may be unbearable). It is out of our scope to present all the non—dominated solutions
for this problem. Taking into account that in the present model we are dealing with
25 objectives, within an interactive approach the information given by the DM becomes
crucial in order to restrict the regions of search, mainly in those problems where a huge
number of possibilities may arise. For this instance some other non—dominated solutions
were found with smaller values to total unmet demand, but no more by imposing smaller
bounds to total costs than the ones presented here. We conclude stressing that facilities
9, 10, 13 and 14 are opened at the beginning of the planning horizon in all of the non-

dominated solutions found.

Suppose that instead of model MODCFLPU;; the DM is only interested in analyzing the
compromise between expected total costs and expected total unmet demand. We return
then to model BODCFLPU. For illustrative purposes, we have considered the problem’s
data of example 2.4.2 and fixed equal probabilities for both scenarios. By this example, we
can confirm that models MODCFLPU;; and BODCFLPU are indeed different problems.
In fact, within the set of twenty non—dominated solutions of the multi-objective problem,
eight become dominated on the bi-objective problem. The non-dominated solutions for
this new problem are depicted in Figure 2.4.2, where it is easier to see that (expected)
total costs increases as total satisfied demand also increases (or total unsatisfied demand

decreases).
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Table 2.4.2: Example 2.4.2: Time period in which each facility is opened.

Opened Facilities

(1 Co U, Us 00123456789 1011121314
1| 368907 207845 165.14 12598 | 1|1 2 1 11 11
2| 368907 89370  165.04 12831 | 1|1 2 1 11 11
3| 369289 88547  166.95 128.68 | 1|1 2 4 1 11 11
41 369360.4  89459.8 165.50 12550 | 1|1 2 4 1 11 11
5| 381063 85252 166.99 129.10 | 1 1 11 11
6 | 420552.6 93738 12550 12746 [ 1|1 2 1 2 1 113 11
7| 420875.6 92719 12550 12746 [ 1|1 2 1 2 1 11 11
8 | 421516.9 91581 125,50 12712 | 1|1 2 4 2 11 11 11
9| 555128  135632.2 99.50 9950 (1|1 2 4 2 113111111
100 904542 385418 4950 4950 | 1|1 2 1 2 113111111
11 998138 85252 145.16 129.10 | 1 1 11 11
120 1173015 806903 1950 050 |[1]1 1 1 2 131111111
13 1222287.5 710482 1450 850 | 1|1 1 1 2 131111111
14 1339496 806903 4.50 050 (11112 131111111
15 1395351 806903 0.50 050 |11 11 2 131111111
16/ 1395351 814273 0.50 0.00 |11 11 2 131111111
17 1395351 753989 0.50 450 [1]1 11 2 131111111
18 1396208 608225 0.50 1950 |11 1 1 2 133111111
19 1402899 806903  0.00 050 (11112 131111111
200 2552968 1529019 0.00 0.00 11111111111 111

Figure 2.4.2: Set of non-dominated solutions considering only two objective functions.
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Chapter 3
Solution Approaches

Primal-dual heuristics have proven their value when dealing with facility location prob-
lems, whether being static and deterministic (Erlenkotter [30]), deterministic dynamic
(Van Roy and Erlenkotter [88], Dias et al. [21]) or static under uncertainty (Louveaux
and Peeters [56]). From the existing literature we have witnessed though that such tech-
niques have not been applied in dynamic facility location under uncertainty yet. The
complexity of the mathematical models under study as well as the success of such tech-
niques when tackling related problems, were the main reasons to develop a primal-dual
heuristic to tackle the DUFLPUD (Marques and Dias [58]). This dual-based heuristic
is inspired on the classical approaches developed by Bilde and Krarup[13|, Erlenkotter
[29] and Van Roy and Erlenkotter [88]. The main idea of the approach is to obtain good
solutions from the dual problem of the corresponding linear programming relaxation of
the primal problem, more precisely from the so—called condensed dual problem. This
technique is able to find admissible primal and dual solutions for feasible DUFLPUD.
The heuristic’s procedures (dual ascent, primal and adjustment procedure) detailed in
section 3.1 are designed to reduce progressively the duality gap between dual and primal
objective function values. In those problems for which the heuristic is unable to find
the optimal solution, it is still able to provide upper and lower bounds to the optimum
of DUFLPUD, being thus always possible to evaluate the quality of the best solution
achieved. In order to solve DUFLPUD to optimality this primal-dual heuristic is in-
tegrated in a branch&bound approach (Marques and Dias [57]). Instead of solving to
optimality relaxed versions of the original problems in each node of the branch&bound
tree, we decided to use the dual-based heuristic to solve each problem. Considering now
model a-DUFLPU, note that if constraints (2.2.3) are relaxed, a problem with the same
structure of the DUFLPU is obtained, allowing then the use of the primal-dual heuristic
to tackle that problem. Lagrangean relaxation is a well known technique that allows the
calculation of lower bounds for integer programming problems (Reeves [70], Guignard
[31]). Hence, a Lagrangean relaxation and a subgradient algorithm is developed to tackle
a-DUFLPU.
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There are several different ways of dealing with a multi-objective problem. One such way
is the so-called interactive approach. The interactive approach considers interchanging
calculation and dialogue phases. In the calculation phase a non-dominated solution is
calculated and showed to the DM. The DM will then react by giving some new informa-
tion that will guide the calculation of the new non-dominated solution to be calculated
in the next iteration. The process continues until the DM is satisfied with a given so-
lution or the whole set of non-dominated solutions is found (see, for instance, Dias et
al. [20]). The major drawback of this approach has to do with the possibility of having
calculation phases taking too much computational time, not promoting a real-time in-
teraction and making the process not attractive to the DM. The main advantage has to
do with the ability of searching areas of the solutions’ surface that are interesting to the
DM, not wasting time or resources calculating solutions that the DM will simply discard.
Moreover, whenever a non-dominated solution is encountered, there is a region in the
objective space that is no longer interesting (the one that is dominated by this solution),
and another region where there cannot be any admissible solutions (or else this solution
would not be non-dominated). So, it is possible, in each iteration, to eliminate regions

from further searches.

Another way of dealing with multi-objective problems considers the a priori and off-line
calculation of the whole set (or a significant number) of non-dominated solutions. The
solutions can then be presented to the DM, all at the same time, or using an interactive
approach similar to the one previously described. One of the advantages of this approach
is that the computational burden of calculating the solutions is made a priori, promoting
a faster action-reaction interaction with the DM since no optimizations will be done.
The choice between an interactive or a generation approach should be done considering
several aspects of the problem such as its dimension or the time needed to calculate a
solution for instance. As stated in section 2.3, the set of non—dominated solutions of
MODUFLPU is achieved by solving the auxiliary problem(s) AUX. It is quite easy to
embed the use of AUX in both an interactive and an off-line generation procedure, where
the whole set of efficient solutions can be calculated. Note that the AUX formulation
presented can result in a computationally heavy integer programming problem. It is a
NP-hard problem, and the computational time needed to calculate a given solution will
be heavily dependent on the problem’s dimension, especially the number of scenarios
and the number of potential facility locations. To solve AUX we can resort to general
solvers or use dedicated procedures, both exact and heuristic procedures. Although the
latter will not be able to guarantee the optimality of the calculated solution, they can
be a very good choice especially in the presence of an interactive procedure, where the
most important thing will be to define a region of interest for the DM. It is even possible

to think of using a heuristic procedure in a first stage, and then an exact procedure to
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actually guarantee the optimality of the solution of interest. For illustrative purposes,
considering a problem instance we propose here an interactive procedure based on Dias

et al. [20], where all AUX problem instances were solved by a general solver.

3.1 Primal-Dual heuristic

For ease in the exposition, let us reindex, for each scenario s, Cj;, for each (i,t) in

nondecreasing order as Cft(k), for k =1,2, ..., kj, where kj, denotes the number of facility-
to-customer links for (¢,¢) under scenario s. Thus, Cft(l) = minje ;{C;}; }. For convenience,
) = +00,V (i,t, s).

Let I'" be the set of pseudo customers (i,t, s) corresponding to the dual variables v, that

. s(k2+1
we also include Cit( i

the procedure will try to increase. Initially, It will be equal to all possible combinations
(i,t,s) € I x T xS, except those such that 0;, = 0. Later, I™ will be set within the
respective procedures. We note that a customer without demand does not contribute to
the improvement of the dual objective function value and does not also contribute to any
violation of the complementary slackness conditions. Thus, these customers are excluded
from the ascent procedures.

The steps of the heuristic are as follows:
1. Set v, = CoV, W (i,t,5), and u; = 0,V j.
Set [T ={(i,t,s) € [ x T xS :65 =1}
2. Execute the dual ascent procedure.
3. Execute the primal procedure. If an optimal solution is found, then stop.

4. Execute the primal-dual adjustment procedure.

The heuristic stops when the optimal solution is found or when there are no primal or

dual improvements after a given number of trials within the adjustment procedure.

3.1.1 Dual ascent procedure

This procedure, that may start with any dual feasible solution, will try to increase the
values of variables v belonging to set ™. The increase of such variables will lead to an
increase of the dual objective function value and, simultaneously, to the decrease of some
slacks’ values (see step 6). The maximum value that variables v}, can take is limited by
restrictions (2.1.15). Equivalently, we can also consider slacks defined by (2.1.17) and ac-
knowledge that these slacks have to remain nonnegative. Instead of increasing the value

of each dual variable v}, as much as possible in one single step, the procedure follows an
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iterative approach: in each iteration, the algorithm will try to increase a dual variable
v;; to the smallest C;;, that is greater than or equal to the current vj, value. If this is not
possible, due to the fact that at least one slack would become negative, than the variable
is increased as much as possible guaranteeing that all slacks remain nonnegative (steps
4, 5 and 6). The procedure is repeated until it is not possible to increase the value of
any variable v}, because of the slacks that are already equal to zero. The slacks that are

equal to zero will define the set of candidate facility locations.

In what follows, (4,t, s),, with ¢ < |I xT x &S|, represents a given, but arbitrary, sequence

of pseudo customers.

1. Consider any dual feasible solution {v},} such that v}, > c;(”,v (i,t,s), and mj >
0,V (4,1).
For each (i,t,s) define k(i,t,s) = min{k : vy < C:®}. If v5 = C2*") | then
k(i t,s) < k(i,t,s) + 1.

2. (i,t,8) « (i,t,s); and g < 1; 7 = 0.
3. If (i, t,s) ¢ I Vv &5 =0, then go to step 7.

4. Set Aj; = min{m;, : vj; — Cj;; > 0,7 < t}.

5. If As > CFOED) s then A5, = CiFOE) s — 10 k(i t, s) < k(i) t,5) + 1.

6. For all j € J with vj, — C, > 0, set mj, = mjr — A%, 7 < 1 set v, = vy, + Aj).

7. If ¢ <|IT], then ¢ < ¢+ 1, (i,t,s) < (i,t,s), , and return to step 3.

8. If r =1, then return to step 2, otherwise stop.

3.1.2 Primal procedure

From the dual ascent procedure results the dual feasible solution {v{"} with an objective
function value v}, and associated slacks {77;} A corresponding primal feasible solution,
{«7;} and {y;;;}, can be constructed, with an objective function value v.
In order to describe the primal procedure, let us first define the following sets:
J*={(,t) e IxT :7}, =0}
Ji={jeJ:(jr)eJ 1<t} VteT;
J,- ={j € J : facility j is open at time t}, Vt € T.
In addition, define #,(j) = min{y : j € JF} and t5(j) = max{y < t,(j) : (j,7) € J*}.
Then,
Jt={({j.t2(y)) € J x T : j € JI for some 7}.

46



The set J* corresponds to all (j,¢) such that j can be opened at the beginning of ¢
without violating (2.1.18); set J;* corresponds to all j that can be opened up to ¢; set J,"
corresponds to all j that are actually open during ¢; set J+ C J* corresponds to all j
that open at the beginning of ¢, i.e., J* dictates what facilities are actually opened and
when (location decisions).

The facilities that are considered first (step 2) are the ones that at a given time ¢ should
be assigned to a given customer (7, s), according to conditions (2.1.20), called essential
facilities. Other facilities are only opened if strictly necessary (step 3). If a facility j
needs to be open at some time period(s) and the first time period when it needs to be
open is t, then it will be opened at the beginning of time period ¢5(7), defined as being the
time period closest to ¢ such that the corresponding slack is equal to zero. It should be
noted that, as we are dealing with an uncapacitated location problem, there will always
be an admissible solution that can be built in this way: we can be sure that there exists
at least one facility j such that 7;; is equal to zero (at least one facility can be opened at
the beginning of the first time period). If this was not true, then it would still be possible
to improve the dual solution by increasing at least one v}, dual variable.

The steps of the primal procedure are as follows:
1. Set J© = J," =0, Vt. Build J* and J}, Vt.

2. Foreach t € T, if j € J; such that 3(z, s) : v;;" > Cy;, and vj;” < 5,V 5" € JP\{j},
then JF = JtU{j}, Vr > t.

3. For each (i,t,s), if j € J;" with vit > Cii, then

JI=Jfu{je Jr:Cy =min{C;, v > C5 )}, VT >t

ijt ij't
4. Build J*.

5. Update J;", Vt. Assign each (i,t,s) to facility j € J;% with lowest C?

ijt*

3.1.3 Primal-Dual adjustment procedure

The primal-dual adjustment procedure will try to enforce the conditions (2.1.20) that
are still being violated by the current solution. The violation of these conditions means
that, for a given scenario s, time period ¢ and customer 7, there are at least two variables
w;;, different from zero such that the corresponding facilities j are both open in period
t. The only way of satisfying (2.1.20) would be to assign customer i to more than one
opened facility, which is not admissible from the primal problem point of view. This
procedure will try to change the current dual solution, by decreasing the value of at least
one variable v, (and thus possibly decreasing the value of some variables wj;,), such that
at least two slacks will be increased. The changes in the slacks’ values may lead to the

increase of other dual variables increasing the dual objective function value.
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In order to describe the primal-dual procedure, let us first consider the additional sets:

Jir={j:3Ir<t|(4,7) € J and v, > Cf,}, V(ist, 5);

Jir={j:3Ir <t|(j,7) € JT and vy, > C5 ), V(ist, 5);

[jt ={(i,7,s): JF ={j} for T > t}, V(j,1).
In addition, we denote a best source and a second-best source for (i,t,s) in J;" by j(i,t, s)
and j'(i,t, s), respectively:

Sinse = minge +{CH, 1 V(0 4, 5);
Coirasn = Mile pr isir 9 {Chet, V(6 2, 5) for | Ji > 1.

And we define, Cj;” = max;{Cy;; : v, > C;; }.
For a given (i,t,s), the set J3* represents all facilities j that can be open at period
t (because a slack 7;, is equal to zero for some 7 < t) and such that if j is open then
customer ¢ can be assigned to j at period ¢ under scenario s. Similarly, for a given (1, ¢, s),
the set J;© considers all facilities that are in operation during period ¢ in the current
primal solution, and such that customer ¢ would have to be assigned to j in period ¢
under scenario s to guarantee the satisfaction of (2.1.20). If [J5| > 1, for some (i, s),
then a complementary slackness condition (2.1.20) is violated. In such case, the decrease
of the variable v}, causes the increase of at least two slacks 7}, associated with distinct
facilities (step 4). Set [ ]t corresponds to all variables v;. whose value can be increased
with the increase of slacks m;.,7 < ¢, and that must be constructed to the execution of
the dual ascent procedure (step 5).

The steps of the primal-dual adjustment are:

1. (i,t,8) < (i,t,5)1,q < 1; set vp = v}, and vp = v}; set r = 0.
2. If |J57| < 1, then go to step 9.

3. If [;Ei,t,s)t = and ];(z,t,s)t = (), then go to step 9.

4. For each (j,7), with 7 <t and v, > Cj},, set mj; = mj, +vj, — Ci,™; set v;, = Cjy~ .
5. (a) Set I = [;Ei,t,s)t U [;/_(i,t,s)t and execute the dual ascent procedure.

(b) Set It =1TU{(i,t,s)} and execute the dual ascent procedure.

(c) Set IT =1 x T xS and execute the dual ascent procedure.
6. If v}, is changed, then return to step 2.
7. Execute the primal procedure.

8. If neither v}, > vp nor v}, < vp, then r < r + 1; otherwise 7 <— 0 and update vp

and vp.
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9. If up > vp, Or 1 = Tppee or ¢ = |I X T X S|, then stop; otherwise g < q¢+1, (i, ¢, s) <

(i,t,5)q, and return to step 2.

As the primal—dual heuristic for the DUFLPUD has been described, we now explain the
changes that have to be made in the above procedures in order to adjust the approach
for the version of the problem considered in subsection 2.1.2. The procedures are in fact
very similar for both situations, but the variations are crucial. First, it is worthwhile to
compare slack variable values defined by (2.1.17) and (2.1.26), for the first and second
situations, respectively. Note that (2.1.26) will not be decreased whenever pj, = 0, for
some 7 > t and s. Consequently, during the research for the set of candidate facility
locations, within the dual ascent procedure (subsection 3.1.1), the pseudo-customers
under that scenario will no longer contribute to the decrease of the slack values and thus
to the opening of these facility sites. However, it is possible that other pseudo—customers,
under other scenarios s’ # s for which ,oj; = 1, might contribute to the decrease of
the slack and thus to a new set of candidate facility locations for that scenarios only.
Consequently, in terms of primal procedure (subsection 3.1.2), in addition to consider
assignments only to open facilities, that were opened at the beginning of some time

period ¢, it must be also guaranteed that those facilities are such that p}, = 1.

3.1.4 Illustrative examples

We illustrate the heuristic by two small examples. Real-world problems are typically
much larger and provide more challenging situations. For the sake of simplicity, we
consider problems with only two scenarios, both with p! = 0.70 and p? = 0.30, three time
periods (T' = 3), three potencial facility locations (M = 3) and four potencial customers
(N = 4). In terms of the primal formulations, we are dealing with problems with only

81 decision variables and 99 restrictions.

Example 3.1.1 Consider the problem’s data in Tables 3.1.1-3.1.3: possible customers,
assignment and fized costs, respectively. We note that at t = 1 (present time) the input
data is the same for both scenarios. In table 3.1.1 we can see that, under scenario
2, customer 1°s demand’s should not be considered in period t = 3 nor customer 4’s
demand’s for periods t > 1.

The weighted assignment costs are presented in Table 3.1.4. The initial dual solution and
the initial slacks (derived after the weighting of the fized costs) are shown in Tables 3.1.5
and 3.1.6, respectively.

The dual ascent procedure tries to increase the variables v}, belonging to I, following
an arbitrary sequence of these variables. We chose to consider the variables ordered by
increasing values of ¢, s and 4, respectively. We show below some of the first steps of the

algorithm.
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Table 3.1.1: Possible customers, (8}, 0%).

t |1 2 3

=W N =

Table 3.1.2: Assignment costs, (¢}, ;).

igt) “igt
1 2 3
1 2 3 1 2 3 1 2 3
2 | (10,10) (6,6)  (6,6) | (11,12) (7,7)  (8,11) | (12,11) (7,7)  (10,13)
3 (6,6) (10,10) (12,12) (7,9) (11,13) (13,13) | (7,10) (13,15) (13,14)
4 (474) (777) (12712) (67) (1057) (14,7) (777) (1177) (1477)
Table 3.1.3: Fixed costs, f7;.
13 1 2 3
sN\Jj|1 2 3 1 2 3 1 2 3
1 7 8 4oo| 9 10 11| 400 11 12
2 7 8 4oo |12 10 12| 400 15 12
Table 3.1.4: Weighted assignment costs, Cj,.
1 2 3
J 1 2 3 1 2 3 1 2 3
1135 49 7049 56 91|63 56 133
s=1 ¢ 2|70 42 42|77 49 56|84 49 7.0
3142 70 84149 77 91149 91 9.1
4128 49 84|42 70 98|49 77 98
1115 21 30|30 27 42| - - -
s=2 ¢+ 230 18 18|36 21 33|33 21 39
3118 30 36|27 39 39|30 45 4.2
4112 21 36 - - — - - -
(t,s) = (1,1)
1= 1:

min{rj; : vy, —Ci;y >0} =1 =7, A} =min{7,49-35} =14, my =7—-14 =
J
5.6, vi, = 3.5+ 1.4 = 4.9;
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Table 3.1.5: Initial dual solution, (v}, vZ).

t | 1 2 3
1] (35, 1.5) (49,27 (5.6,-)
i 2| (4.2,1.8) (4.9,2.1) (4.9,2.1)
31 (4.2, 1.8) (4.9,2.7) (4.9, 3.0)
41(28,1.2) (4.21) (4.9,-)

Table 3.1.6: Initial slacks, m;;.

t |1 2 3
170 99 +oo

j 2|80 100 122
3| 400 113 12.0

1=2:
min{r;; : vy — Cy;y > 0} = min{my, m3} = 8, Ay = min{8,4.2 — 4.2} = 0,
J J

va = 4.2;

1= 3:
mjin{7rj1 vy —Cg;y > 0} = my = 5.6, Ay = min{5.6,7 — 4.2} = 2.8, m; =
5.6—28=28 v, =42+28="T;

1= 4:
mjm{wj1 coy —Chjy > 0 = my = 28, Al = min{2.8,49 - 28} =21, m; =
28—-21=0.7 v}, =28+21=409.

The algorithm proceeds to (¢, s) = (1,2), increasing v}, to 2.1 and v3; to 1.9. Afterwards,
for t = 2 and s = 1, v{, is blocked by 7, = 0; for i = 2:

min{r;;, : 0%2—621]»2 >0, 7 <2} = min{myy, mn} = My = 8, AL, = min{8,5.6—-4.9} =
07 7y =8 — 07 =73 g = 10— 0.7 = 9.3, v}, = 4.9+ 0.7 = 5.6.
The dual ascent procedure continues until all the dual variables are blocked by some
slack. At the end, we obtain the dual solution {v;;"} and associated slacks {7};} shown in
Tables 3.1.7 and 3.1.8, respectively. In addition, at the end of this procedure u; = 0, Vj.
The corresponding dual objective function value is equal to v}, = 87.8.
With sets J* = {(1,1), (2,1)}, J; = {1,2}, V¢, the primal procedure advances with sets
Jt = J*and J;” = J;,Vt. In fact, facilities 1 and 2 are both essencial for some customers
at t = 1. For instance, vy > Ciy, but vy < Cd;;, and v3] > C2, but v3 < C%,, thus
t1(j) = ta(4) = 1, j = 1,2. Then, v} = 87.8 = v}, which means that the optimal solu-
tion has been found (illustrated in Figure 3.1.1). Despite the simplicity of this example,
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some of the inherent features of a nondeterministic and dynamic problem can be observed.

Table 3.1.7: Dual solution from the ascent procedure, (vi,", vi").

t | 1 2
1](4.9,21) (4.9,3.0) (6.3-)
i 2] (6,1.8) (5.6,3.3) (7.0,3.3)
3 (7,1.9  (4.9,27) (4.9,3.0)
4(4.9,12) (42  (4.91)

Table 3.1.8: Slacks, 7.

t |1 2 3

1] 0 99 +oo
j 2| 0 38 82
3| 400 11.3 12

Figure 3.1.1: Optimal solution for example 3.1.1

4 4 4
2 3 2 3 2 3
s=1
1\2 1\2 1 2
1 1 1
4
2 3 2 3 2 3
s=2 ><
1\2 1 2 1 2
1 1

Example 3.1.2 Consider the problem’s data in Tables 3.1.9-3.1.11. As in the previous
example, at t = 1 the input data is the same for both scenarios. The weighted assignment
costs are presented in Table 3.1.12. The initial dual solution and the initial slacks are

shown in Tables 3.1.13 and 3.1.14, respectively.

52



Table 3.1.9: Possible customers, (87, 02).

t

=W N =

Table 3.1.10: Assignment costs, (cjj;, ¢5;;)-
t 1 2 3
] 1 2 3 1 2 3 1 2 3
1 (575) (878) (10710) (777) (977) (1177) (977) (1277) (1277)
i 2788 (55) (66) | (1L8) (67) (7.9) | (13,13) (7.8) (10,12)
31(66) (55) (77) | (7,7) (68) (8,12) | (7.8)  (9.8) (8,13)
4 (474) (676) (878) (677) (777) (977) (777) (877) (977)
Table 3.1.11: Fixed costs, f5.
t 1 2 3
sN\J|1 2 3|1 2 3 1 2 3
1 15 17 13117 19 14| +o0 20 15
2 15 17 13118 19 15| +o0 21 15
Table 3.1.12: Weighted assignment costs, C7;.
t 1 2 3
J 1 2 3 1 2 3 1 2 3
1135 56 7049 6.3 77|63 84 8.4
s=1 4 2|56 35 42|77 42 49191 49 7.0
3142 35 49149 42 5649 6.3 56
4128 42 5642 49 63|49 56 6.3
1115 24 30| - - — | — — -
s=2 4 2|24 15 18|24 21 27|39 24 36
3118 1.5 21|21 24 36|24 24 39
4112 18 24| - -  — | — — -

After the dual ascent procedure, we obtain the dual solution and associated slacks shown
in Tables 3.1.15 and 3.1.16, respectively. At the end of this procedure u; = 0, Vj. We can
see that all dual variables belonging to I were increased, except the one corresponding

to the pseudo customer (i,t,s)

value is equal to v}, = 94.4.
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Table 3.1.13: Initial dual solution, (v}, vZ).

t | 1 2 3
1](35,1.5) (4.9,) (6.3,-)

i 2| (3.5,1.5) (4.2,21) (4.9,2.4)
31 (3.5, 1.5) (4.2,2.1) (4.9,2.4)
41(28,1.2) (4.21) (4.9,-)

Table 3.1.14: Initial slacks, 7.

t |1 2 3
150 17.3 +oo

1
j 21170 19.0 20.3
3113.0 14.3 15.0

Table 3.1.15: Dual solution from the ascent procedure, (v;;", v:")
t | 1 2 3
1 (77 3) (6377) (8477)
i 2| (56,24) (7.7,24) (8.1, 3.6)
3| (4.9, 1.8) (4.9,24) (5.6, 2.4)
1] (5.6,1.8)  (49-) (5.6,

Table 3.1.16: Slacks, 7};.

t |1 2 3
1[00 114 +oo
j 2[00 101 159
3|71 104 139

With sets J* = {(1,1), (2,1)}, J; = {1,2}, V¢, the primal procedure advances with
sets J* = J* and J;' = J,Vt. Facilities 1 and 2 are both essential at ¢t = 3, then
t1(1) = t1(2) = 3 and t5(1) = t2(2) = 1. The primal objective function value equals
vh = 98.5 > v}, so the heuristic continues to the primal-dual adjustment procedure.
The previous result means that at least one of the conditions (2.1.20) is violated. For
instance, v > Cij;, for j = 1,2, thus [J{{"| = 2.

The best source and the second-best source for pseudo costumer (i,t,s) = (1,1,1)
are, respectively, j(1,1,1) = 1 and j/(1,1,1) = 2. In addition, I} = {(3,3,1)} and
I ={(2,3,1),(2,3,2)}. Within the primal-dual adjustment procedure, slacks 7, and
75, are increased v]; —Ci; = 7—5.6 = 1.4 units and vy] is decreased to C{; = 5.6. After
the dual ascent procedures, initially with I = {(3,3,1),(2,3,1),(2,3,2)}, no further
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improvements are possible. The resulting dual solution is presented in Table 3.1.17, with
associated slacks presented in Table 3.1.18. The dual objective function value is updated
to vp = 95.1.

Table 3.1.17: Dual solution after the dual ascent procedures within the primal-dual ad-
justment procedure.

t | 1 2 3
(5.6, 3) (6.3,-) (8.4,-)
(5.6,2.4) (7.7,2.4) (9.2, 3.9)
(4.9,1.8) (4.9,2.4) (6.3,2.4)
(5.6,1.8)  (4.9,) (5.6,-)

=W N =

Table 3.1.18: Slacks after the dual ascent procedures within the primal-dual adjustment
procedure.

¢t |1 2 3
1[06 106 +oo

j 2100 87 145
3] 5 83 118

From the primal procedure results J* = J© = {(2,1)}, and J;* = {2}, V¢, then vp =

95.1 = vp, which means that the heuristic found the optimal solution.

3.2 Branch&Bound approach

The branch&bound algorithm can be summarized as follows. The original problem DU-
FLPU is first solved in the root node using the dual-based heuristic. If the solution
calculated is not the optimal solution (or in cases where it is, but we cannot prove it
because of a duality gap), the searching proceeds with a branch&bound scheme that
guarantees that the optimal solution is found (if enough time and computational re-
sources are available). The branching is based on those location decision variables that
contribute to the complementary slackness violations of the current solution. After some
tests, we decided to follow a simple rule and choose the first location variable found that
contributes to these violations. Other rules were tested (taking into account the fixed
facility costs, expected gains/losses in terms of assignment costs in choosing a second—
best source instead of selecting the best source for a given customer), but no significant
improvements were observed, especially in large sized problems. Inspired on previous
works (Erlenkotter [29], Van Roy and Erlenkotter [88] and Dias et al. [21]), location
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variables are fixed first to zero and then to one. The tree is searched using a depth
search procedure. Setting a variable to one is achieved by changing the corresponding
fixed cost to zero. To use the current dual solution in the next branch&bound tree node,
some changes may have to be made to guarantee dual admissibility (some dual variables
must be reduced, with a corresponding increase in some of the slacks). When fixing a
variable to zero, its fixed cost is set equal to +o00, guaranteeing the admissibility of the
current dual solution that will be used in the next tree node. A node is fathomed only
if the current problem is infeasible, the optimal solution of the current problem has been
found or the current dual objective function value is worse than the best primal objective
function value found so far.

The computational results are provided in subsection 4.2.2.

3.3 Lagrangean relaxation approach

To be able to formulate and solve the problem a-DUFLPU (section 2.2), it is necessary
to calculate the optimal solution (f for each scenario s € S. These (deterministic) |S]
problems can be solved to optimality by the branch&bound procedure proposed earlier
or by a general solver (CPLEX, for instance). Assume then that ¢’ is known and such
that (¢ > 0, for all s € S.

The Lagrangean relaxation of problem a-DUFLPU, in short LR a-DUFLPU, with respect
to the constraint set (2.2.3) can be defined through the introduction of the Lagrange
multipliers \; > 0,Vs € S. Each )\, is associated with the corresponding constraint and

brought into the objective function, as follows:

(LRa-DUFLPU)  min Y S > p izt Y. D 3 > 0+

teT jed seS seS teT iel jed
(3.3.1)
SN0 DEES 390 IEHAIIRILY
SES teT jed teT el jeJ
s. t.

(2.1.2)~(2.1.6).

The algorithm has been designed considering two well known results from Lagrangean
Relaxation (e.g., Reeves [70], Guignard [31]) adapted for the present problem in the

following proposition.

Proposition 3.3.1 The optimal solution of LRa-DUFLPU, for Ay > 0,Vs € S, gives
a lower bound to the optimal solution of the original problem a-DUFLPU. In addition,
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a solution of LR a-DUFLPU that satisfies also constraint set (2.2.3) provides an upper
bound to the optimum of a-DUFLPU.

We have decided to use the efficient primal—dual heuristic to solve problem LR a-DUFLPU.
In order to apply the primal-dual heuristic to the present problem, the objective function

(3.3.1) is rewritten as follows:

DD W N+ YD DD 0T+ A (3.3.2)

teT jeJ seS seS teT i€l jeJ

Notice that constant — " o As(1 + )¢} is not considered in (3.3.2), being only added

to the final objective function value. Defining in (3.3.2) F3, = (p° + \)f5; and Cjj, =
(p®+As)cij » the formulations already presented for the DUFLPU in subsection 2.1.1, for
the dual problem, the condensed dual problem, as well as the complementary slackness
conditions between dual and primal problems are still valid for the LR a-DUFLPU. Hence,
LR a-DUFLPU can be solved by the primal-dual heuristic presented in section 3.1. Re-
call that the heuristic’s procedures are designed to reduce progressively the duality gap
between dual and primal objective function values. Even if the heuristic is unable to
find the optimal solution of LR a-DUFLPU, it is still able to provide a good lower bound
to the optimal objective function value of a-DUFLPU, in this case through the dual

objective function value as stated in the next proposition.

Proposition 3.3.2 The best dual solution calculated by the primal-dual heuristic applied
to LRa-DUFLPU provides a lower bound to the optimal objective function value of a-
DUFLPU.

Proof: Let us represent the optimum of a-DUFLPU by Opt(a-DUFLPU) and the op-
timum of LR a-DUFLPU by Opt(LRa-DUFLPU). In addition, let (zp, zp) be the
primal and dual solutions calculated by the primal-dual heuristic for LR a-DUFLPU
and its dual, respectively. If zp = zp, then zp = Opt(LR a-DUFLPU) which provides a
lower bound to Opt(a-DUFLPU) (proposition 3.3.1). If the heuristic’s solutions are such
that zp < zp, then, from duality theory, we know that zp < Opt(LR a-DUFLPU) <
Opt(a-DUFLPU), so zp is a valid lower bound to Opt(a-DUFLPU).

Let us now turn to the generation of upper bounds. Taking into account the objective
function (2.1.1) and the set of constraints (2.2.3), it is trivial to prove that the objective
function value of a-DUFLPU is bounded above by > _p*(1 + a)¢}. This value can then
be considered as a first upper bound to the optimum of a-DUFLPU. Furthermore, if a
lower bound calculated at any iteration is greater than this value, then a-DUFLPU is
infeasible.

The primal solution calculated by the heuristic can be admissible or not for a-DUFLPU. If
it is admissible, then it represents an upper bound to the optimal solution of a-DUFLPU.
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After executing the primal-dual heuristic to LR a-DUFLPU, a local search procedure is
performed. This local search procedure will explore the neighborhood of the current
solution, trying to reach feasibility or trying to improve the objective function value
(reaching better upper bounds). The neighborhood is considered to be the set of solutions
that are equal to the current one with the exception of the opening time period of one
facility. The local search procedure tries to change the time period when a given facility
is opened, or tries not to open the facility at all. Whenever a better solution is found,
it becomes the current solution and the local search continues until it is not possible to
find better solutions in the neighborhood of the current solution.

A standard subgradient algorithm is used to update the Lagrange multipliers. Let us

define subgradients G for the relaxed constraints, evaluated at the current solution, by:

Go= Y3 fran+ > Y. Y ey —(1+a), VseS.

teT jed teT i€l jeJ

In addition, let 7 represent the step size for the Lagrange multipliers and z the step size
coefficients for the Lagrange multipliers.
Initially, in iteration k = 0, AP = 0,Vs € S,

and in iteration k > 0,

UB® — [ B®)
AP = max{0, A" + 7G,}, with 7 = 2

.G

where UB® and LB®) are the most recent upper and lower bounds achieved.

During the execution of the algorithm, the best upper and lower bounds achieved are
updated and recorded, in order to calculate the solution gap, which is one of the estab-
lished stopping criteria. The stopping criteria as other details of the algorithm will be

discussed further in subsection 4.2.3.

3.4 Multi—objective approach

We will explain in this section a procedure to tackle the MODUFLPU. As stated in
section 2.3, the knowledge of non—dominated solutions to the original MODUFLPU is
achieved by solving the auxiliary problem(s) AUX. In an interactive approach, the dia-
logue phase with the DM consists in defining new values to the righthand side of con-
straints (2.3.3), the M values. These values will then define the regions of search. In
a generating approach, M, values can be automatically generated in a way that guar-
antees that the whole objective space is explored. The automatic generation of vector
M can be done resorting to two simple data structures: a binary tree, with as much
levels as the number of scenarios, and a matrix. Each time a new solution is calculated,

based on a given vector M, a binary tree is generated such that it will define all pos-
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sible future vectors M. These vectors are then recorded in a matrix so that they can
be retrieved in future iterations. To give a simple example of this procedure, consider
a problem with three scenarios. The initial vector M is set to (M7, M3, M3). Solving
AUX with this vector, assume that the non-dominated solution ((},(3,¢3) is obtained,
where ¢ < M}, ¢ < ML (3 < M} taking into account constraints (2.3.3). Based on
both the given vector M and the achieved solution, a binary tree can be built as shown

in figure 3.4.1.

Figure 3.4.1: Binary tree for automatic generation of vector M.

N P P P

Mg G My G My G My G
The path from the root to each node of the tree will define a possible new future vector
M. In the present example, eight vectors are defined, (M7, M3, (3), (M1, (3, M3) or
(M1, ¢3,¢3) for example, corresponding to eight possible search regions. These vectors
can be stored in a matrix, so that they can be retrieved in a future iteration of the
algorithm. Whenever a new solution is calculated, a new binary tree is built and the
corresponding vectors added to the matrix. Note, however, that to some of these vectors
will correspond infeasible problems and thus should not be recorded and used. For in-
stance, (({,(3,¢3) will not be interesting because it corresponds to an infeasible problem
(otherwise (¢{,¢;,¢3) would not be a non-dominated solution). Other vectors will end
up with optimal solutions that are already known such as (M1, M3 M) for instance.
Furthermore, knowing that one given problem is impossible will allow us to conclude that
other M vectors will also lead to impossible problems and then it is not worth to explore
the corresponding region. This search method is easily implementable and will guarantee

that the whole objective space is explored.

Let us now turn to the choice of the vector of weights v in order to define the objective
function of AUX. As noted before, these weights can and should be changed in accordance
with vector M in order to help decreasing the computational time needed to calculate a
solution (|20]). For instance, if M is more demanding for a given scenario, meaning that
M is close to the best objective function value (, then the respective objective function

weight should be increased. One simple way of doing this is setting v as follows:

v, = 1—%,% €S, (3.4.1)

v
Ve = —=——,¥s € S.

Zs Vs
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We next illustrate a solution approach to the MODUFLPU by one small problem, follow-
ing an interactive procedure based on Dias et al. [20] where all AUX problem instances
were solved by CPLEX v12.6 .

Example 3.4.1 Consider a problem instance with 25 potential facility sites, 100 possible

customers, 10 time periods and 2 scenarios.

Initially, and in order to delineate the region of interest, the solutions with the best
possible objective function value for each scenario should be calculated. These solu-
tions can be achieved considering in AUX binary vectors v and large values to M. The
solutions obtained for the present problem are depicted in the objective space in fig-
ure 3.4.2: (138023, 153313) with the optimum cost of scenario 1 and (218195, 139854)
with the optimum of scenario 2. The DM is now free to set the vector M. Let us as-
sume that he does not want to explore any particular region, so he decides to consider
(My, M) = (218195, 153313) based on the two non—dominated solutions already cal-
culated. With weights (v1,15) = (0.32,0.68), calculated according to (3.4.1), the new
solution reached is (138902, 142526) (figure 3.4.3).

Figure 3.4.2: Solutions with the optimum Figure 3.4.3: The first non-dominated so-
of each scenario. lution calculated.

L]
(138023, 153313) 153000 (138023, 153313)

scenario 2
scenario 2
s
I
&

B (138202, 122526)

[218195,139854) (218195,139854)

scenario 1 scenario 1

Considering the newly calculated non-dominated solution, it is easy to see that two
regions of the objective space are no longer of interest. This is illustrated in figure 3.4.4:
as region A has only solutions that are dominated by the solution calculated, region B
has only non-admissible solutions.

The DM can then decide whether to explore region C or region D. Let us assume that
he would explore region D. Then M; will remain equal to 218195 and M5 will be set to
142526 (given by the new non—dominated solution just calculated). Figure 3.4.5 shows
the new solution calculated, (141836, 141936). The procedure would be repeated until
the DM is satisfied or the whole objective space has been explored. The whole set of

non—dominated solutions found for this problem is depicted in figure 3.4.6. It is possible
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Figure 3.4.4: Regions A and B discarded from further searches.

148000
[y} C A
2
=
m
c
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o
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(138902, 142526)
B D
138000 139000 140000 141000 142000 143000
scenario 1

to observe the compromises that exist between the two scenarios. The location decisions
in each of the non—dominated solutions, which facilities are to be opened and when, are
detailed in table 3.4.1. We can observe that a set of seven facilities is opened exactly in

the same time period in all solutions calculated.

Figure 3.4.5: A new non-dominated solu-  Figure 3.4.6: The set of non-dominated so-

tion. lutions.
154000 154000
L]
152000 | 1138023,153313) 152000
150000 150000 P
~N ~N
2 -]
3 3
m
:
# 144000 (138902, 142525) -
»
(141836, 141336) (218195,130854)
-2 ()
138000
138000 148000 158000 168000 178000 188000 198000 208000 218000 228000 138000 148000 158000 168000 178000 188000 198000 208000 218000
scenario 1 scenario 1
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Table 3.4.1: Example 3.4.1: Time period in which each facility is opened.
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Chapter 4
Computational Experiments

The algorithms developed to tackle the DUFLPU, the primal-dual heuristic approach
(section 3.1) and the branch&bound approach (section 3.2), as well as the Lagrangean
relaxation procedure developed to solve a-DUFLPU (section 3.3), have been tested over
sets of different problem instances. As we are not aware of the existence of benchmark
problem instances that could be easily adapted to conform to the presented models, we
have chosen to randomly generate problem instances. It should be pointed out that the
generation of the data to a decision model under uncertainty is in itself an active area
of research, mainly in what concerns stochastic programming models (see, for instance,
Dupacova [25], Dupacova et al. [26], Kaut and Wallace [43], Heitsch and Romisch [35]).
Scenario based stochastic programs, in which the true underlying probability distribu-
tions are replaced by discrete distributions concentrated in a finite number of points
(scenarios), or sequence of events, with probabilities, often require a specific form of the
input (as multistage problems require scenario trees for example). The variety of meth-
ods for generating scenarios available in the literature is thus significant: sampling and
sampling-based methods, moment matching, path-based methods which generate com-
plete paths/scenarios, optimal discretization, etc. These methods depend on the decision
model, level of knowledge about the underlying probability distributions or stochastic
processes, availability of historical data, opinion of experts, etc. The total number of
scenarios generated by some of these methods is too large and thus with higher compu-
tational difficulties. To overcome such difficulties, there are also methods for reducing
the total number of scenarios (for details see the works cited above and the references
therein for example).

There are possibly many ways in which one could generate the scenarios for the pro-
posed models. In a real-world setting such scenarios may be advanced by experts for
example. The purpose of the algorithm that has been developed for the generation of
test problems (described in section 4.1) is only to create input data to the models, in a
simple, understandable and fast manner, in order to make possible the realization of the

tests. Herein, the generated scenarios are some kind of "what if* scenarios. As we are in
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the presence of a dynamic problem under uncertainty, data must change simultaneously
over time and among the different scenarios. Furthermore, we considered different di-
mensions for the test problems, by varying the number S of scenarios, number 7" of time
periods, number M of possible facility locations and number N of possible customers.
Our purpose was first to evaluate the quality of the solutions achieved by the developed
algorithms in terms of gap, given by the difference between the best objective function
value found by each algorithm and the best known lower bound on the optimal value
divided by this best known lower bound. We also analyzed the algorithms in terms of
the computational time spent on the searching process. Even though we are dealing with
strategic decisions, where time usually is not determinant, faster algorithms permit the
consideration of larger and diverse problems, enriching the decision making process. For
a-DUFLPU in particular, being able to solve it for several different values of maximum
regret will allow the DM to get a better picture of the compromises that exist. How-
ever, it is desirable that this process takes place within a reasonable computational time.
The results obtained by general solvers considering the same sets of problems are also

presented.

4.1 Generation of test problems

The algorithm that was developed for the generation of test problems can be summa-
rized as follows. First, the network of the problem is randomly generated, including the
location of the nodes (potencial facility sites and possible customer locations) and arcs
between them. This network will be valid for all time periods and scenarios. Then, we
consider the generation of the data for all time periods of scenario 1: arc costs, con-
sequently assignment costs, set of potential facility sites and corresponding fixed costs,
and set of customer locations. Scenario 1 is called the basic scenario as it is from this
scenario that all the others will be constructed. Thus, for the other scenarios, for the
first time period we consider the data generated for the basic scenario (the first time
period corresponds to the present situation that is not scenario dependent), as for each
one of the other periods of time the data may change with some probability. For the
sake of simplicity, these input probabilities are only dependent of the scenarios but these
could be also dependent of other items such as periods of time, arcs, facility or customer
locations. This is a very important feature of the procedure, since it will allow the gener-
ation of problems well distinct. As far as scenario probabilities (p®) are concerned, these
were randomly generated such that the sum of all probabilities is equal to 1. Below we
provide the approach used in the generation of all test problems (in general). Table 4.1.1
presents some input values that were considered and that must be known before the gen-
eration procedure. For ease in the exposition, let us first consider the following additional

notation:

64



J§ : Set of potencial facility locations that can be selected (opened) at the beginning
of time period ¢t € T for scenario s € S,

I?: Set of customer locations with demand during period ¢ € T for scenario s € S,
where J7 C J and I} C I.

Table 4.1.1: Input values.

MaxX 1000

MazxY 1000

Parc 0.75

d 50

Parce 0.80

P} 0.80 for s =1 and 0.5 Vs # 1
2 0.80 for s =1 and 0.3 Vs # 1
Pe 0.10

Di 0.40

Dot 0.60

Data generation steps

1. Random generation of (x,y)—coordinates in a rectangular area of size MazX X
MazxY corresponding to the location of |J| 4+ |I| nodes (potencial facility sites plus

possible customer locations).

2. Random generation of arcs between the network nodes with probability pg..; af-
terwards, if there isn’t an arc between two nodes “close” (the Euclidean distance

between them is less than d), an arc is created between them with probability

parcc > parc-

3. For s =1 (basic scenario):

3.1 for t = 1: random generation of costs associated with arcs, according to a

Uniform distribution U[lc, uc];
for each t > 2, each arc cost is equal to the cost generated in period ¢t — 1 plus
a changing factor randomly generated.
3.2 for each ¢t > 1:
i. calculation of the shortest path between each possible customer location
and each potential facility location.

ii. random generation of set J}, with J! # ), and fixed costs:

each location j is included in J! with probability p};
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— if j € J}, then the fixed cost at j is randomly generated from a
Uniform distribution U[lf,uf], and for each 7 > ¢ the fixed cost is

increased by a changing factor randomly generated;
— if j ¢ J}, then the fixed cost at j is set to +oo.

iii. random generation of set I}: each customer i is included in I} with prob-
ability p!; in addition, for ¢ > 3, if i was included in I} , and excluded

from I! |, then i is included in I} with probability p. < 0.5.
4. For s # 1 (other scenarios):

4.1 for t = 1, consider the data generated for the basic scenario and t = 1.
4.1 for each ¢t > 2:

i. each arc cost that was generated for time period ¢ of the basic scenario
(basic cost) changes in time period ¢ of scenario s with probability p2;
if a variation occurs, then the arc cost is equal to the basic cost plus a

changing factor ©, randomly generated.

ii. calculation of the shortest path between each possible customer location
and each potential facility location.

iii. random generation of set J; and fixed costs:
each location j is included in Ji with probability pj;

— if j € JF N J}, then the fixed cost at j that was generated for time
period ¢ of the basic scenario (basic cost) changes in time period ¢ of
scenario s with probability pi; if a variation occurs, then the fixed
cost is equal to the basic cost plus a changing factor ©; randomly
generated;

— if j € J; but j ¢ J!, then the fixed cost at j is randomly generated
from a Uniform distribution U[lf,uf], and for each 7 > t the fixed

cost is increased by a changing factor randomly generated;
— if j ¢ J7, then fixed cost at j is set to +o0.

iv. random generation of set I7: the demand state of customer i that was
generated for time period ¢ of the basic scenario changes in time period ¢

of scenario s with probability p;.

4.2 Computational results

The computational results obtained are presented in the next subsections. The algorithms
were all coded in C-language and the computational experiments were carried out on a
AMD Turion(tm) X2 Dual-Core Mobile RM-70 processor at 2.00 GHz with 3.00 GB of
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RAM. Gap is given in percentage and the computational time in seconds. The time
results do not include the time required to read the problems’ data, only the time to
solve them. The general solver used to make comparisons with the primal-dual heuristic
is LPSolve v5.5.2.0 [9]. Afterwards, thanks to IBM Academic Initiative, the results refer
to CPLEX MIP optimizer, v12.4.

4.2.1 Primal-Dual heuristic

The input values of (S, T, M, N) used in the random generation of the test problems are
given in Table 4.2.1. For each combination of (5,7, M, N), with N > M, five instances
were randomly generated. Different random seeds were used for each of the instances.
We have, in total, 780 instances, that were solved by the heuristic and by LpSolve. We
decided to stop the solver if its solution time exceeded 7200 seconds (s). We note that
the smallest instance considered has 1025 variables with 1205 constraints but the largest
has 3000750 variables with 3060050 constraints.

Table 4.2.1: Parameters used in the random generation of the test problems.

S 2 5 10 20
T 5 10 15 —
M 5 10 20 50
N 20 50 100 200

In Tables 4.2.2-4.2.5 we summarize the computational results obtained. Each table cor-
responds to a given number of scenarios. We report the minimum and maximum number
of opened facilities (dimension of the set J*) as well as the minimum, average and maxi-
mum gap (in percentage) on the five instances solved for each combination of (T, M, N).
The following tables also show the solution times (in seconds) of the heuristic and the
solver. We report the minimum, average and maximum time spent by the heuristic and
by the solver to solve each group of five instances. The primal-dual heuristic was able
to solve all the 780 instances. As far as the solver results are concerned, the solver
could not solve some of the five instances, due to lack of memory to read the problem or
the execution time has exceeded 7200 s. We report these cases and statistics refer only
to those instances that were solved. Whenever the solver was not able to solve any of

"*7 Only on the larger instances, with

the five instances, the solver time is given as
(S, T, M, N) = (20,15, 50, 200), the heuristic exceeded the time limit established a priori.
In terms of solution quality, the worst gap, 4.02%, was observed with instances with 20
scenarios and with T'= 15, M = 50 and N = 100. Within each S-scenario problems, in
average, the larger gaps were observed in instances with largest M and N.

The average results for all S—scenario problems are reported in the last row of the cor-

responding tables. We can see that the number of scenarios considered do not result
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in markedly different solution qualities. However, the execution times required by the
solver are clearly higher than those required by the heuristic, especially for large sized
problems. In most of the test problems with large dimensions the solver could not solve
them in less than 7200 s. The heuristic time can vary a lot, even for problems with the
same size. For example, for instances with (S, 7T, M, N) = (10, 15, 20,200) the execution
time ranges from 0.28 to 1231.29 s, in average 508.18 seconds.

The computational results show that the heuristic is capable of finding very good quality

solutions in reasonable computational times, clearly outperforming the general solver.

As it is well known, when solving integer programming problems general solvers tend to
reach a good admissible (sometimes optimal) solution fast, and then spend a lot of time
trying to improve this solution or proving that the solution is optimal. So comparing the
computational time of a dedicated heuristic to that of a general solver can be seen as
unfair to the general solver. That is why we have repeated all the computational tests
but now using the general solver as an heuristic procedure: for each set of instances, we
have limited the maximum computational time spent by the general solver considering
this maximum time equal to the maximum time spent by the heuristic and then compare
the quality of the solutions found by the two approaches. When this time limit was
considered, and for all test problems, the solver was not able to find any admissible
solution (upper and lower bounds of the optimal primal objective function value were
equal to '+oo’ and '—o0’, respectively). It should be noted that the minimum times
presented by the solver (see Tables 4.2.2-4.2.5) are greater than the maximum times

spent by the heuristic to compute the solution for the same problems.
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Table 4.2.2: Computational results for 2-scenario problems.

T M N |JT gap (%) Heur. time (s) Solver time (s)
min max min aver max min aver  max min aver max
5 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 0.08 0.11 0.16
5 5 50 2 4 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.64 0.83
5 5 100 4 5) 0.00 0.00 0.00 0.00 0.00 0.00 2.23 2.64 3.32
5 5 200 5 5 0.00 0.00 0.00 0.00 0.04 0.09 7.85 8.62 9.91
5 10 20 3 4 0.00 0.11 0.44 0.00 0.02 0.06 0.19 0.38 0.53
5 10 50 5 7 0.00 0.13 0.36 0.00 0.06 0.17 1.48 2.33 3.42
5 10 100 5 7 0.00 0.03 0.14 0.00 0.08 0.27 5.01 7.36 8.81
5 10 200 7 9 0.00 0.00 0.00 0.00 0.37 1.81 18.24 25.13 31.51
5 20 50 5 9 0.00 041 1.52 0.05 0.13 0.30 4.56 6.57 9.66
5 20 100 8 10 0.00 0.05 0.15 0.03 0.83 1.51 20.65 23.25 27.02
5 20 200 10 13 0.00 0.01 0.04 0.02 3.24 12.29 74.54 101.52 121.56
5 50 100 13 16 0.19 0.64 1.85 048 3.23 5.13 75.04 169.58  264.31
5 50 200 18 22 0.11 033 0.67 6.29 1341 19.44 391.73 471.97 620.62
10 5 20 3 4 0.00 0.00 0.00 0.00 0.00 0.02 0.30 0.37 0.45
10 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.02 1.79 2.43 3.03
10 5 100 5 5) 0.00 0.00 0.00 0.00 0.03 0.11 8.14 8.53 9.24
10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.08 24.16 31.05 43.01
10 10 20 3 6 0.00 0.03 0.12 0.00 0.01 0.02 0.86 1.34 1.89
10 10 50 6 8 0.00 0.00 0.00 0.00 0.01 0.03 4.62 5.61 7.27
10 10 100 7 10 0.00 0.00 0.00 0.00 0.01 0.02 16.91 19.99 21.40
10 10 200 9 10 0.00 0.00 0.00 0.00 0.02 0.08 72.24 87.83 109.93
10 20 50 8 12 0.00 0.06 0.32 0.08 0.58 1.25 13.43 23.38 33.29
10 20 100 11 15 0.00 0.04 0.20 0.11 0.98 2.26 71.04 82.84 101.03
10 20 200 16 19 0.00 0.01 0.06 0.09 1.72 6.77 233.77  270.59  361.19
10 50 100 19 23 037 1.08 239 195 6.33 11.25 39889 546.24  746.12
10 50 200 26 30 0.19 035 0.61 40.17 52.61 90.46 1510.53 1737.18 1880.55
155 20 3 5) 0.00 0.00 0.00 0.00 0.01 0.06 0.70 0.91 1.28
155 50 4 5 0.00 0.00 0.00 0.00 0.00 0.00 4.09 5.09 6.19
15 5 100 5 5) 0.00 0.00 0.00 0.00 0.04 0.09 16.65 19.49 22.07
15 5 200 5 5 0.00 0.00 0.00 0.00 0.34 1.64 71.09 80.89 91.23
15 10 20 4 7 0.00 0.00 0.00 0.00 0.00 0.02 1.72 2.70 3.67
15 10 50 7 9 0.00 0.00 0.00 0.00 0.01 0.03 11.00 12.75 14.56
15 10 100 8 10 0.00 0.00 0.00 0.00 0.03 0.11 37.30 49.85 67.16
15 10 200 10 10 0.00 0.00 0.00 0.02 0.02 0.02 155.06  215.19  247.49
15 20 50 9 12 0.00 0.03 0.13 0.31 1.02 1.97 47.00 54.76 71.79
15 20 100 14 16 0.00 0.07 0.21 0.02 1.62 747  114.54 168.61 217.79
15 20 200 17 20 0.00 0.00 0.00 0.27 1.16 3.23  620.72 696.22  878.47
15 50 100 23 28 0.35 0.76 1.31 239 5.40 9.50 1064.62 1768.31 2946.97
15 50 200® 32 37 0.00 0.52 2.28 58.62 106.2 210.2 2699.81 3370.90 3957.47
Aver 0.03 0.12 0.33 2.84 5.12 9.94 200.09 258.54 331.95

& Solver was unable to solve one of the instances with T'= 15, M = 50 and N = 200.
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Table 4.2.3: Computational results for 5-scenario problems.

T M N [T gap (%) Heur. time (s) Solver time (s)
min max min aver max min aver max min aver max
5 5 20 1 2 0.00 0.00 0.00 0.00 0.00 0.02 0.47 0.51 0.56
5 5 50 2 3 0.00 0.00 0.00 0.00 0.01 0.02 3.42 4.29 5.54
5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 10.48 14.21 18.70
5 5 200 4 5 0.00 0.00 0.00 0.00 0.01 0.03 38.05 51.95 61.87
5 10 20 2 3 0.00 0.00 0.00 0.00 0.02 0.06 1.50 2.06 3.42
5 10 50 3 5 0.00 0.07 0.36 0.00 0.19 0.55 8.80 11.93 17.44
5 10 100 5 7 0.00 0.00 0.00 0.00 2.63 10.19 35.65 41.94 53.42
5 10 200 7 8 0.00 0.00 0.00 0.00 0.24 0.66 138.92 176.28 204.44
5 20 50 5 6 0.00 0.39 1.41 0.08 0.74 1.89 33.79 51.27 66.67
5 20 100 7 8 0.00 0.19 0.56 0.02 5.38 10.78 93.54 184.33 240.07
5 20 200 9 13 0.00 0.08 0.26 2.14 3426  52.57  602.52 840.71 1084.33
5 50 100 10 12 0.00 0.15 0.49 4.57 14.99  23.76 687.40 984.75 1292.27
5 50 200 14 18 0.16 0.24 034 4997 9449 188.82 3258.87 4243.81 5243.82
10 5 20 2 4 0.00 0.06 0.29 0.00 0.04 0.20 2.26 2.50 3.00
105 50 4 5 0.00 0.06 0.31 0.00 0.14 0.50 10.95 15.89 21.92
10 5 100 4 ) 0.00 0.00 0.00 0.02 0.02 0.03 44.06 46.75 51.28
10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.05 201.49 226.94 273.97
10 10 20 3 4 0.00 0.29 1.46 0.00 0.31 1.11 6.68 9.70 11.59
10 10 50 4 7 0.00 0.10 0.33 0.00 0.86 3.48 36.16 51.28 65.13
10 10 100 7 8 0.00 0.00 0.00 0.02 0.17 0.56 154.46 185.67 238.81
10 10 200 9 10 0.00 0.00 0.00 0.03 0.04 0.05 364.87  566.97 853.41
10 20 50 7 9 0.00 0.25 0.57 1.45 4.93 8.81 128.76 205.82 276.32
10 20 100 8 13 0.00 0.02 0.12 0.27 9.71 27.44  489.92 688.11 914.27
10 20 200 13 18 0.00 0.01 0.01 2.18 19.64 68.11 1766.34 2640.57 3348.20
10 50 100 15 19 030 0.74 134 11.22 50.01 82.74 3048.36 479548  7152.59
10 50 200 20 24 0.83 1.05 140 210.62 344.60 432.31 * * *
155 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 5.65 5.99 6.13
155 50 4 5 0.00 0.00 0.00 0.02 0.02 0.03 29.97 33.62 41.12
15 5 100 4 5 0.00 0.00 0.00 0.03 0.07 0.19 107.89 126.81 140.43
155 200 5 5 0.00 0.00 0.00 0.05 0.06 0.09 493.69 554.62 653.95
15 10 20 3 ) 0.00 0.00 0.00 0.22 0.68 1.95 15.91 18.10 20.97
15 10 50 6 7 0.00 0.00 0.00 0.00 0.04 0.11 96.13 124.75 148.18
15 10 100 8 9 0.00 0.01 0.04 0.03 1.97 8.94 444.77  489.07 061.88
15 10 200 10 10 0.00 0.00 0.00 0.06 0.32 1.36 1187.18 1471.82 1701.38
1520 50 7 9 0.00 0.11 0.39 2.81 10.82  25.55 316.88 353.42 404.52
15 20 100 9 15  0.00 0.13 041 4.99 23.75 4855 1043.98 1300.18 1491.25
15 20 200 14 18 0.00 0.01 0.03 1.75 53.01 156.41 4576.93 5245.83 6506.93
15 50 100* 17 24 0.68 1.47 272 2343 60.40 120.53 6564.31 6882.34 7200.37
15 50 200 24 30 042 1.30 1.87 20.58 338.01 639.04 * * *
Aver 0.06 0.17 0.38 8.63 27.50 49.17 690.82 882.44 1091.36

& Solver was unable to solve three of the instances with T'= 15, M = 50 and N = 100.
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Table 4.2.4: Computational results for 10-scenario problems.

T M N | gap (%) Heur. time (s) Solver time (s)
minmax min aver max min aver max min aver max
5 5 20 2 3 0.00 0.07 0.36 0.00 0.22 0.53 2.89 3.19 3.84
5 5 50 3 3 0.00 0.00 0.00 0.00 0.12 0.58 12.62 17.11 23.32
5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 08.38 65.14 73.29
5 5 200 4 5 0.00 0.00 0.00 0.02 0.03 0.03 207.31 230.73 243.10
5 10 20 1 4 0.00 0.02 0.11 0.00 0.36 0.62 6.96 9.89 12.84
5 10 50 3 5 0.00 0.03 0.14 0.00 1.93 6.94 45.43 66.04 109.22
5 10 100 4 5 0.00 0.00 0.00 0.09 5.44 23.95 148.47 255.05 351.09
5 10 200 6 8 0.00 0.02 0.10 0.05 4.33 10.64 795.18 1038.60 1442.13
5 20 50 4 6 0.00 0.14 0.46 1.89 5.10 8.74 155.02 226.56 356.30
5 20 100 6 &8 0.00 0.25 1.27 2.40 8.23 17.85 541.68 796.70 909.26
5 20 200 8 12 0.00 0.03 0.10 26.57 164.40 341.20 2121.63 2988.89  4074.88
5 50 100 8 12 0.00 0.17 0.57 34.94 7929 121.93 3436.65 4215.17  5468.21
5 50 200 14 19 1.22 2.07 3.25 418.86 634.12 946.89 * * *
10 5 20 2 3 0.00 0.00 0.00 0.00 0.01 0.02 7.89 11.65 16.07
10 5 50 3 5 0.00 0.00 0.00 0.02 0.03 0.08 50.67 65.89 95.52
10 5 100 4 5 0.00 0.00 0.00 0.03 0.04 0.05 197.23 221.54 247.67
10 5 200 5 5 0.00 0.00 0.00 0.06 0.09 0.14 810.00 868.02 992.83
10 10 20 2 4 0.00 0.00 0.00 0.02 0.32 1.25 27.33 32.99 43.54
10 10 50 4 6 0.00 0.06 0.30 0.03 9.70 34.91 182.36 223.63 320.38
10 10 100 6 8 0.00 0.00 0.00 0.06 1.24 3.78 696.07 877.82 961.08
10 10 200 8 10 0.00 0.00 0.00 0.11 0.12 0.13 2308.36  2687.90  3046.52
10 20 50 6 9 0.00 033 0.97 6.51 27.74  49.41 584.74 954.05 1261.76
10 20 100 9 11 0.00 0.19 0.67 7.22 73.58 205.44 2551.49 3135.98  3598.62
10 20 200 13 15 0.00 0.04 0.12 1.79 243.75 460.86 * * *
10 50 100 13 17 0.62 1.66 2.27 73.26 225.40 334.34 * * *
10 50 200 18 25 0.50 1.23 2.30 1091.9 1871.4 2703.6 * * *
15 5 20 3 4 0.00 0.00 0.00 0.02 1.33 6.54 21.09 30.78 38.45
15 5 50 4 5 0.00 0.00 0.00 0.05 0.07 0.13 149.46 168.39 188.90
15 5 100 4 5 0.00 0.00 0.00 0.08 0.20 0.41 545.28 595.69 690.44
155 200 5 5 0.00 0.00 0.00 0.14 0.44 1.47 1953.11  2107.77  2261.94
15 10 20 3 5 0.00 0.07 0.37 0.28 1.62 4.68 65.30 88.62 126.95
15 10 50 4 7 0.00 0.00 0.00 0.05 1.25 3.65 447 81 497.29 550.57
15 10 100 7 9 0.00 0.00 0.00 0.11 10.99 4196 1472.00 1997.70  2838.22
15 10 200* 9 10 0.00 0.00 0.00 0.17 0.21 0.23 5932.49  6218.71 6353.24
15 20 50 6 8 0.00 0.18 0.35 0.78 17.82  40.72 137477 1757.89  2792.24
15 20 100> 8 12 0.00 0.23 0.69 8.19 70.07 115.46 4948.38 5251.97  5518.58
15 20 200 14 18 0.00 0.02 0.05 0.28 508.18 1231.3 * * *
15 50 100 17 23 1.14 1.95 2.85 187.43 427.05 785.32 * * *
15 50 200 22 28 0.41 1.23 1.91 526.03 1771.8 3170.6 * * *
Aver 0.10 0.26 0.49 61.27 158.15 273.75 995.56 1178.35 1406.59

2 Solver was unable to solve one of the instances with 7 = 15, M = 10 and N = 200. " Solver was
unable to solve two of the instances with 7' = 15, M = 20 and N = 100.
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Table 4.2.5: Computational results for 20—scenario problems.

T M N || gap (%) Heur. time (s) Solver time (s)
minmax min aver max  min aver max min aver max
5 5 20 1 3 0.00 0.01 0.07 0.00 0.13 0.61 9.42 12.28 17.64
5 5 50 3 4 0.00 0.00 0.00 0.02 0.71 3.45 61.84 70.29 95.61
5 5 100 3 4 0.00 0.00 0.00 0.03 30.86 154.19  222.89  286.07  381.81
5 5 200 4 5 0.00 0.00 0.00 0.06 0.08 0.09 1001.93 1109.75 1302.44
5 10 20 2 4 0.00 0.22 1.08 0.02 2.53 4.96 37.78 45.14 57.60
5 10 50 3 4 0.00 0.08 0.39 1.26 14.10 23.99 257.40  291.35  309.33
5 10 100 5 6 0.00 0.00 0.00 3.09 71.90 24559  877.80 1069.26 1361.01
5 10 200 6 &8 0.00 0.03 0.15 0.09 14520 638.04 2729.54 3547.23 4662.37
5 20 50 4 6 0.00 013 0.63 0.36 21.11 44.29 499.04  993.34 1600.09
5 20 100 6 8 0.00 0.19 0.82 19.64 101.85 22291 2429.08 3547.42 4711.87
5 20 200 9 13 0.01 0.57 147 47.05 621.55 1342.97 * * *
5 50 100 8 14 1.28 2.01 2.75 202.60 310.82 359.07 * * *
5 50 200 16 20 1.85 2.47 3.33 383.79 1812.6 2803.42 * * *
10 5 20 2 3 0.00 0.00 0.00 0.03 0.55 1.78 34.05 47.44 67.78
10 5 50 3 4 0.00 0.00 0.00 0.06 0.07 0.09 256.78  266.85  277.40
10 5 100 4 5 0.00 0.00 0.00 0.13 0.15 0.19 1023.39 1138.34 1499.16
10 5 200 5 5 0.00 0.00 0.00 0.23 0.27 0.33 3540.65 3699.76 4046.42
10 10 20 2 4 0.00 0.23 1.16 0.05 2.61 6.44 128.87  157.65  201.02
10 10 50 4 5 0.00 0.00 0.00 0.08 23.42 45.74 791.93  949.63 1187.52
10 10 100 6 7 0.00 0.00 0.00 0.16 8.25 38.05  2891.10 3888.13 4534.98
10 10 200 9 10 0.00 0.00 0.00 0.30 1.62 3.76 * * *
10 20 50 5 8 0.00 0.12 0.56 34.94 140.44 225.34 2789.70 3035.98 3677.72
10 20 100 &8 11 0.02 0.43 1.03 53.57 193.76  409.70 * * *
10 20 200 13 14 0.01 0.16 0.38 689.88 1786.9 3325.52 * * *
10 50 100 13 16 0.68 1.82 3.55 21551 74885 1289.9 * * *
10 50 200 18 21 0.62 1.10 2.25 1860.6 3639.3 4646.8 * * *
15 5 20 2 3 0.00 0.00 0.00 0.06 9.97 49.55 107.58 123.71 157.44
15 5 50 3 5 0.00 0.00 0.00 0.14 0.17 0.19 537.65  648.65  858.02
155 100 4 5 0.00 0.00 0.00 0.28 0.42 0.86 2195.15 2440.06 2643.19
155 200 5 5 0.00 0.00 0.00 0.50 0.57 0.70 * * *
15 10 20 2 5 0.00 0.14 0.72 0.06 12.31 43.73 296.65  414.25  614.06
15 10 50 5 6 0.00 0.00 0.00 0.17 79.82  297.60 1564.88 2319.46 2902.85
15 10 100 7 10 0.00 0.02 0.10 0.34 8.53 37.82 * * *
15 10 200 9 10 0.00 0.00 0.00 0.61 0.65 0.73 * * *
15 20 50 6 9 0.05 0.70 2.32 49.64 19852 353.08 * * *
15 20 100 11 13 0.02 0.34 0.49 109.61 435.24 641.11 * * *
15 20 200 10 15 0.00 0.08 0.32 403.70 2561.1 5787.24 * * *
15 50 100 16 18 0.96 2.49 4.02 414.34 1973.1 3138.74 * * *
15 50 200 22 26 1.35 1.89 3.01 6442.4 13133.7 16098.22 * * *
Aver 0.18 0.39 0.78 280.40 '720.35 1084.28 1055.87 1308.78 1615.97
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4.2.2 Branch&Bound approach

To assess the ability of the branch&bound approach we have considered randomly gener-
ated different problem instances according to table 4.2.1 and following the same procedure
already described for the primal—dual heuristic. Thus, we have also 780 instances in total,
that were solved by the branch&bound approach and by CPLEX MIP optimizer, v12.4,
that was used with its default settings. We have established a maximum computational
time for the execution of branch&bound algorithm equal to one hour! (no time limit was
imposed to CPLEX).

Tables 4.2.6-4.2.7 summarize the computational results obtained in terms of primal so-
lution quality achieved in the root node and by the branch&bound algorithm. We report
the minimum, average and maximum gap (in percentage) on the five instances solved
for each combination of (S,7T, M, N). The average results for all S—scenario problems
are reported in the last row of the corresponding tables. Tables ?7-?? show the solution
times (minimum, average and maximum times, in seconds, on the five instances) of the
branch&bound, CPLEX, and also the time needed to calculate the admissible solution
of the root node. Due to the time limit restriction, the branch&bound was not able to
calculate the optimal solution of some instances. As far as CPLEX results are concerned,
the solver could not also solve to optimality some of the problems out of the five instances,
due to lack of memory to proceed the calculation. We report these cases and solution gaps
are provided. However, if these solution gaps exceeded 10% (gaps excessively high when
compared with solution gaps provided by our procedure), we have decided to exclude
them from the time statistics. We report these cases and CPLEX statistics refer only to
those instances that were solved to optimality or presented a reasonable gap. Whenever
CPLEX was not able to solve any of the five instances, the solver time is given as ’*’ (in
such cases, due to lack of memory to read the problems).

The computational results show that the admissible primal solution calculated in the
root node is of very good quality, and is obtained in reasonable computational times.
The maximum time needed to compute the root node solution is, for most problems
(around 60%), lower than the minimum time required by CPLEX for the same problems.
The worst results in terms of gap are observed in instances with M € {20,50}, but still
with a maximum gap of 4.01% ((S, T, M, N) = (20, 15,50, 100)). Within each S-scenario
problems, in average, the larger gaps are observed in instances with largest M and N.
Nevertheless, the branch&bound algorithm is able to improve significantly the quality
of the primal solution calculated in the root node. It should be noted that CPLEX has
better computational times than branch&bound for M € {20,50} and N € {100,200},
in general, but as the number of scenarios increases (especially for problems with 20

scenarios), CPLEX shows difficulties in providing a better solution or even to be able to

!This criterion is tested only at the beginning of each node, thus the final computational time may
in fact be higher than the time limit established a priori.
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generate a feasible solution. From our computational tests we have observed that different
problem instances of the same size can make the optimization algorithms behave very
differently, both in terms of the computational times and solution quality. To give an
example, considering the 5 instances with size (S, 7T, M, N) = (20,10, 50,100), we have
observed the following: the branch&bound algorithm was able to calculate the optimal
solution of 2 out of the 5 problems using 1 (after only 215.5 sec) and 3 nodes of the
tree, respectively. For the other problems, the algorithm was unable to calculate the
optimal solutions due to the time limit restriction, but still improved the solution of two
problems (using 6 and 7 nodes of the tree). CPLEX was able to calculate the optimum
of one problem only (715 sec), and could not provide feasible solutions for any of the
other problems due to memory restrictions. These different behaviors make us think that
time should be spent looking at the problem’s characteristics to try and delineate more

efficient branching rules.

74



Table 4.2.6: Solution quality (in %) for problems with 2 and 5 scenarios.
S=2 S=5

T M N Root B&B Root B&B

min aver max min aver maxX | min aver max min aver max
5 5 20 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 5 50 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 5 100| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 5 200( 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 10 20 | 0.00 0.11 0.44 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 10 50 | 0.00 0.13 0.36 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 10 100| 0.00 0.03 0.14 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 10 200( 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
5 20 50 | 0.00 0.41 1.52 0.00 0.00 0.00 | 0.00 0.39 1.41 0.00 0.00 0.00
5 20 100| 0.00 0.02 0.12 0.00 0.00 0.00 | 0.00 0.19 0.56 0.00 0.00 0.00
5 20 200| 0.00 0.01 0.04 0.00 0.00 0.00 | 0.00 0.08 0.26 0.00 0.00 0.00
5 50 100| 0.03 0.62 1.85 0.00 0.00 0.00 | 0.00 0.15 0.49 0.00 0.00 0.00
5 50 200| 0.00 0.30 0.58 0.00 0.00 0.00 | 0.16 0.23 0.34 0.00 0.00 0.00
105 20 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.06 0.29 0.00 0.00 0.00
10 5 50 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.06 0.31 0.00 0.00 0.00
10 5 100| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
10 5 200| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
10 10 20 | 0.00 0.03 0.12 0.00 0.00 0.00 | 0.00 0.29 1.46 0.00 0.00 0.00
10 10 50 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.10 0.33 0.00 0.00 0.00
10 10 100| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
10 10 200| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
10 20 50 | 0.00 0.06 0.32 0.00 0.00 0.00 | 0.00 0.25 0.57 0.00 0.00 0.00
10 20 100| 0.00 0.04 0.20 0.00 0.00 0.00 | 0.00 0.02 0.12 0.00 0.00 0.00
10 20 200| 0.00 0.01 0.06 0.00 0.00 0.00 | 0.00 0.01 0.01 0.00 0.00 0.00
10 50 100| 0.37 0.68 1.17 0.00 0.00 0.00 | 0.08 0.46 1.25 0.00 0.02 0.10
10 50 200| 0.02 0.25 0.45 0.00 0.02 0.08 | 0.02 0.15 0.40 0.00 0.10 0.23
155 20 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
155 50 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
155 100| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
155 200| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
15 10 20 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
15 10 50 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
15 10 100| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.01 0.04 0.00 0.00 0.00
15 10 200| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
15 20 50 | 0.00 0.03 0.13 0.00 0.00 0.00 | 0.00 0.11 0.39 0.00 0.00 0.00
15 20 100| 0.00 0.05 0.21 0.00 0.00 0.00 | 0.00 0.05 0.13 0.00 0.00 0.00
15 20 200| 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.01 0.03 0.00 0.00 0.00
15 50 100| 0.26 0.52 0.90 0.00 0.00 0.00 | 0.29 0.61 1.20 0.00 0.48 1.20
15 50 200| 0.00 0.34 1.47 0.00 0.11 0.57 | 0.00 0.37 1.06 0.00 0.26 0.75

0.02 0.09 0.26 0.00 0.00 0.02 | 0.01 0.09 0.27 0.00 0.02 0.06
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Table 4.2.7: Solution quality (in %) for problems with 10 and 20 scenarios.

S=10 S=20

T M N Root B&B Root B&B

min aver maX Imin aver max | min aver max min aver max
5 5 20 | 0.00 0.07 0.36 0.00 0.00 0.00{ 0.00 0.01 0.07 0.00 0.00 0.00
5 5 50 | 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00 0.00 0.00 0.00 0.00
5 5 100| 0.00 0.00 0.00 0.00 0.00 0.00 { 0.00 0.00 0.00 0.00 0.00 0.00
5 5 200( 0.00 0.00 0.00 0.00 0.00 0.00{ 0.00 0.00 0.00 0.00 0.00 0.00
5 10 20 | 0.00 0.03 0.11 0.00 0.00 0.00 { 0.00 0.22 1.08 0.00 0.00 0.00
5 10 50 | 0.00 0.03 0.14 0.00 0.00 0.00 { 0.00 0.08 0.39 0.00 0.00 0.00
5 10 100| 0.00 0.00 0.00 0.00 0.00 0.00 { 0.00 0.00 0.00 0.00 0.00 0.00
5 10 200( 0.00 0.00 0.00 0.00 0.00 0.00 { 0.00 0.00 0.00 0.00 0.00 0.00
5 20 50 | 0.00 0.14 046 0.00 0.00 0.00 { 0.00 0.13 0.63 0.00 0.00 0.00
5 20 100( 0.00 0.25 1.27 0.00 0.00 0.00 { 0.00 0.19 0.82 0.00 0.00 0.00
5 20 200( 0.00 0.03 0.10 0.00 0.00 0.00 { 0.00 0.19 0.61 0.00 0.03 0.15
5 50 100| 0.00 0.17 0.57 0.00 0.00 0.00 | 0.08 0.70 1.42 0.00 0.46 1.42
5 50 200] 0.31 0.84 163 0.24 0.60 1.02 | 1.85 247 3.33 1.62 2.10 2.87
105 20 | 0.00 0.00 0.00 0.00 0.00 0.00 { 0.00 0.00 0.00 0.00 0.00 0.00
105 50 | 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
10 5 100| 0.00 0.00 0.00 0.00 0.00 0.00 { 0.00 0.00 0.00 0.00 0.00 0.00
10 5 200| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
10 10 20 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.23 1.16 0.00 0.00 0.00
10 10 50 | 0.00 0.06 0.30 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
10 10 100| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
10 10 200| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
10 20 50 | 0.00 048 1.43 0.00 0.00 0.00 | 0.00 0.12 0.56 0.00 0.00 0.00
10 20 100| 0.00 0.06 0.20 0.00 0.00 0.00 | 0.00 0.14 0.34 0.00 0.00 0.00
10 20 200| 0.00 0.01 0.03 0.00 0.00 0.00 [ 0.00 0.07 0.22 0.00 0.04 0.13
10 50 100| 0.00 0.64 0.92 0.00 041 0.77 | 0.00 1.43 3.55 0.00 1.10 2.57
10 50 200| 0.13 0.39 1.05 0.00 031 1.05 | 0.56 1.08 225 056 1.08 2.25
155 20 | 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
155 50 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
155 100| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
155 200| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
1510 20 | 0.00 0.07 0.37 0.00 0.00 0.00 | 0.00 0.14 0.72 0.00 0.00 0.00
15 10 50 | 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
15 10 100| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.02 0.08 0.00 0.00 0.00
15 10 200| 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.00 0.00 0.00 0.00 0.00
15 20 50 | 0.00 0.00 0.00 0.00 0.00 0.00 [ 0.00 0.06 0.28 0.00 0.00 0.00
15 20 100| 0.00 0.06 0.24 0.00 0.00 0.00 | 0.00 0.02 0.07r 0.00 0.01 0.05
15 20 200| 0.00 0.01 0.03 0.00 0.00 0.00 | 0.00 0.01 0.04 0.00 0.01 0.04
15 50 100| 0.05 1.05 225 0.00 042 1.14 | 095 230 4.01 0.65 2.17 3.81
15 50 200 0.26 1.12 1.79 026 1.01 1.79 | 1.27 184 3.01 1.27 184 3.01

0.02 0.14 0.34 0.01 0.07 0.15 | 0.12 0.29 0.63 0.11 0.23 0.42
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Table 4.2.8: Computational time (in sec.) for 2-scenario problems.

T M N Root B&B CPLEX(®

min aver max min aver max min aver max
5 5 20 0.00 0.00 0.02 0.00 0.01 0.02 0.06 0.07 0.11
5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.17 0.17
5 5 100 | 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.51 0.73
5 5 200 | 0.00 0.03 0.08 0.00 0.03 0.08 0.92 1.03 1.25
5 10 20 0.00 0.01 0.03 0.00 0.02 0.06 0.11 0.17 0.27
5 10 50 0.00 0.06 0.17 0.00 0.11 0.30 0.34 0.36 0.41
5 10 100 | 0.00 0.08 0.23 0.00 0.12 0.31 0.76 0.88 0.95
5 10 200 | 0.00 0.26 1.28 0.00 0.26 1.28 2.04 2.19 2.37
5 20 50 0.03 0.13 0.30 0.03 1.60 5.57 0.72 2.38 6.93
5 20 100 | 0.03 0.83 1.51 0.03 1.82 5.87 1.89 3.18 5.46
5 20 200 | 0.02 3.24 12.29 0.02 9.29 26.86 | 4.77 6.32 11.67
5 50 100 | 048 3.23 5.13 0.89 76.01 184.24 | 5.16 27.34 67.10
5 50 200 | 6.29 13.41 19.44 4524  259.14 600.12 | 17.53 2747  58.70
10 5 20 0.00 0.00 0.02 0.00 0.00 0.02 0.11 0.13 0.16
10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.38 0.41
10 5 100 | 0.00 0.03 0.08 0.00 0.03 0.08 0.80 0.90 1.00
10 5 200 | 0.00 0.02 0.08 0.00 0.05 0.22 2.12 2.24 2.31
10 10 20 0.00 0.01 0.02 0.00 0.03 0.09 0.23 0.27 0.30
10 10 50 0.00 0.01 0.03 0.00 0.02 0.08 0.73 0.86 1.09
10 10 100 | 0.00 0.01 0.02 0.00 0.01 0.02 2.09 2.16 2.25
10 10 200 | 0.00 0.02 0.08 0.00 0.02 0.08 5.05 5.23 5.66
10 20 50 0.08 0.58 1.25 0.08 1.09 3.24 1.56 2.50 5.54
10 20 100 | 0.09 0.89 2.26 0.09 2.47 10.16 | 4.32 4.57 4.79
10 20 200 | 0.09 1.68 6.57 0.09 1.79 6.57 | 12.04 12.39 12.59
10 50 100 | 1.95 6.33 11.25  33.68  247.76  432.53 | 17.83 64.68 106.77
10 50 200 | 40.17 52.61  90.46 434.76 1238.78 3624.30| 44.73 69.14 156.31
15 5 20 0.00 0.01 0.06 0.00 0.01 0.06 0.17 0.20 0.23
15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.66 0.70
15 5 100 | 0.00 0.03 0.09 0.00 0.03 0.09 1.19 1.32 1.45
15 5 200 | 0.00 0.32 1.56 0.00 0.32 1.56 3.20 3.53 3.90
15 10 20 0.00 0.00 0.02 0.00 0.00 0.02 0.39 0.41 0.44
15 10 50 0.00 0.01 0.02 0.00 0.01 0.02 1.06 1.27 1.44
15 10 100 | 0.00 0.03 0.11 0.00 0.03 0.11 2.67 3.26 3.88
15 10 200 | 0.02 0.02 0.02 0.02 0.02 0.02 9.11 9.50 9.67
15 20 50 0.31 0.99 1.97 0.31 1.16 2.62 2.54 3.32 5.16
15 20 100 | 0.02 1.55 7.27 0.02 1.56 7.27 6.44 6.98 7.74
15 20 200 | 0.20 0.95 2.26 0.20 1.18 2.73 | 23.31 2391 24.62
15 50 100 | 2.39 5.40 9.50  417.53 1751.79 3604.30| 72.45 185.26 314.83
15 50 200 | 58.62 106.15 210.16 81.59 1469.96 3617.16| 59.87 90.70  183.60

2.84 5.10 9.80 26.01 129.91 311.23| 7.94 14.56 25.97

1 (T, M,N) = (15,50,200): solution gap of 2.54% in one instance.
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Table 4.2.9: Computational time (in sec.) for 5-scenario problems.

T M N Root B&B CPLEX(®

min aver max min aver max min aver max
5 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.16 0.17
5 5 50 0.00 0.01 0.02 0.00 0.01 0.02 0.50 0.55 0.64
5 5 100| 0.00 0.01 0.02 0.00 0.01 0.02 1.23 1.27 1.30
5 5 200| 0.00 0.01 0.03 0.00 0.01 0.03 2.98 3.15 3.37
5 10 20 0.00 0.01 0.05 0.00 0.01 0.05 0.33 0.34 0.36
5 10 50 0.00 0.18 0.55 0.00 0.37 1.47 1.15 1.26 1.40
5 10 100| 0.00 2.63 10.19 0.00 3.16 10.19 2.43 3.36 5.94
5 10 200| 0.00 0.23 0.66 0.00 0.23 0.66 7.21 7.37 7.52
5 20 50 0.08 0.70 1.72 0.08 3.08 6.93 2.29 3.37 5.87
5 20 100| 0.02 5.38 10.78 0.02 13.00 22.48 5.77 11.65 29.22
5 20 200| 2.14 34.26  52.57 5.71 131.14  384.53 | 22.67 42.81 99.15
5 50 100| 4.57 14.99  23.76 25.16 71.50 124.04 | 22.25 36.06 79.39
5 50 200| 49.97 94.49 188.82 537.22 1708.13 3121.40| 77.69 131.91 254.75
10 5 20 0.00 0.04 0.20 0.00 0.05 0.25 0.38 0.55 1.19
10 5 50 0.00 0.13 0.50 0.00 0.39 1.78 1.20 1.27 1.31
10 5 100 0.00 0.02 0.03 0.00 0.02 0.03 2.75 3.00 3.37
10 5 200| 0.02 0.03 0.05 0.02 0.03 0.05 7.29 7.65 7.89
10 10 20 0.00 0.31 1.11 0.00 0.80 2.62 0.83 0.95 1.11
10 10 50 0.00 0.86 3.48 0.00 2.05 6.91 2.56 2.83 3.25
10 10 100| 0.02 0.16 0.53 0.02 0.16 0.53 6.46 6.68 6.88
10 10 200 0.03 0.04 0.05 0.03 0.04 0.05 22.40 23.27 24.09
10 20 50 1.45 4.93 8.81 7.00 22.13 39.56 6.41 12.19 23.18
10 20 100 0.25 9.70 27.44 0.25 15.21 50.59 18.21 18.96 20.64
10 20 200 2.15 19.59  68.11 2.15 127.16 566.25 | 53.68 57.85 69.75
10 50 100| 11.22 50.01 82.74  440.05 1672.13 3601.46| 69.59 321.40 556.18
10 50 200| 210.62 344.60 432.31 3672.54 3723.90 3843.65| 200.18 244.33 297.48
15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.59 0.66
15 5 50 0.00 0.02 0.03 0.00 0.02 0.03 1.86 1.98 2.03
15 5 100 0.03 0.06 0.19 0.03 0.06 0.19 4.43 4.68 4.90
15 5 200 0.05 0.06 0.09 0.05 0.06 0.09 15.29 15.60 15.91
15 10 20 0.22 0.63 1.95 0.33 1.06 3.76 1.23 1.81 3.42
15 10 50 0.00 0.03 0.06 0.00 0.03 0.06 4.51 4.60 4.65
15 10 100| 0.03 1.97 8.94 0.03 2.58 12.00 12.22 14.67 23.31
15 10 200 0.06 0.32 1.36 0.06 0.32 1.36 38.41 39.64 40.73
15 20 50 2.81 10.82  25.55 2.81 14.30 32.21 9.95 11.94 14.03
15 20 100| 4.99 23.75  48.55 4.99 74.52 161.87 | 33.23  41.48 63.80
15 20 200( 19.19 64.08 156.41 19.19 95.58 282.41 | 91.23 93.13 95.00
15 50 100| 23.43 60.40 120.53 738.02 2553.79 3768.07| 111.53 594.58 1426.71
15 50 200| 20.58 338.01 639.04 2986.28 3663.47 4178.27| 264.97 264.97 264.97

9.07 27.78 49.16 216.46 356.42 518.61| 28.92 52.15 88.86

(@) (T, M, N) = (10,50, 200): solution gap of 5.04% in one instance; (T, M, N) = (15, 50, 200):

statistics

refer only to one instance, as gaps on the other four were ezcessively high-ranged from 61% to 70%.
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Table 4.2.10: Computational time (in sec.) for 10-scenario problems.

M N Root B&B CPLEX(®

min aver max min aver max min aver max
20 0.00 0.20 0.53 0.00 0.24 0.73 0.38 0.66 1.65
50 0.00 0.11 0.50 0.00 0.11 0.50 1.12 1.23 1.34
100 0.00 0.01 0.02 0.00 0.01 0.02 2.92 3.17 3.48
5 200 0.02 0.03 0.03 0.02 0.03 0.03 7.64 7.95 8.38
10 20 0.00 0.33 0.45 0.00 0.54 1.28 0.92 1.25 2.14
50 0.00 1.91 6.94 0.00 6.77 31.25 2.81 4.90 12.78
10 100 0.05 5.30 23.34 0.05 6.27 23.34 7.13 7.85 8.69
10 200 0.05 3.47 9.61 0.05 3.47 9.61 21.72 2282  26.07
20 50 1.73 5.06 8.74 1.73 7.05 12.56 6.90 7.94 10.58
20 100 2.40 8.13 17.85 4.49 31.27 85.94 | 21.17 32.71  67.05
20 200| 26.57 164.40 341.20 26.57 221.01 437.28 | 58.87 64.29 72.42
50 100| 34.94 79.29 12193 52.39 588.56 1301.41| 69.14 139.48 259.37
200| 418.86 634.12 946.89 3723.94 3935.26 4273.85| 524.82 959.66 1527.31
10 5 20 0.00 0.01 0.02 0.00 0.01 0.02 0.83 0.90 0.98
10 5 50 0.02 0.03 0.08 0.02 0.03 0.08 2.67 2.88 3.17
10 5 100 0.03 0.04 0.05 0.03 0.04 0.05 7.44 7.88 8.14
10 5 200 0.06 0.08 0.08 0.06 0.08 0.08 21.68 23.37  24.98
10 10 20 0.00 0.29 1.20 0.00 0.29 1.20 1.93 2.10 2.43
10 10 50 0.03 9.70 34.91 0.03 15.07  59.16 6.66 9.36 19.19
10 10 100 0.06 1.23 3.78 0.06 1.23 3.78 21.11  22.02  22.50
10 10 200 0.11 0.11 0.13 0.11 0.11 0.13 55.16 57.02  59.45
10 20 50 6.16 27.61 49.41 6.16 91.57 207.54 | 18.80 55.25 132.16
10 20 100 7.22 73.58 20544 722 357.21 803.21 | 56.55 118.88 226.20
10 20 200 1.64 241.84 460.86 1.64 302.18 0648.24 | 127.48 136.49 152.48
10 50 100| 73.26 225.40 334.34 73.26 2847.19 3658.22| 161.01 612.17 841.99
10 50 200| 1091.86 1871.35 2703.61 3344.55 4004.48 4996.68| 401.34 610.96 820.58
15 5 20 0.02 1.33 6.54 0.02 2.06 10.22 1.53 1.78 1.95
15 5 50 0.05 0.07 0.13 0.05 0.07 0.13 4.98 5.10 5.34
15 5 100 0.08 0.20 0.41 0.08 0.20 0.41 14.98 15.69 16.65
15 5 200 0.14 0.43 1.47 0.14 0.43 1.47 43.07 45.16  47.69
15 10 20 0.28 1.62 4.68 0.28 10.41 34.41 3.21 3.77 4.88
15 10 50 0.05 1.24 3.57 0.05 1.24 3.57 12.81 13.24 13.73
15 10 100 0.11 10.94  41.96 0.11 1094 4196 | 37.46 40.84 46.11
15 10 200 0.17 0.21 0.23 0.17 0.21 0.23 99.33 103.01 105.32
15 20 50 0.78 17.82  40.72 0.78 46.89 158.57 | 32.93 43.70 72.59
15 20 100 8.19 58.64 105.66  8.19  270.82 796.27 | 95.40 164.64 398.57
15 20 200 0.28 508.17 1231.29 0.28  625.82 1231.29| 217.14 248.22 310.01
15 50 100| 187.43 427.05 785.32 2662.76 3490.24 3750.85| 313.22 361.24 409.27
15 50 200| 526.03 1771.76 3170.56 3674.49 4156.30 4983.22 * * *
61.25 157.77 273.45 348.46 539.38 706.89| 65.37 104.20 151.25

N
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—
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ot
o

@ (T,M,N) = (5,50,200): gap of 2.28% in one instance, and gaps excessively high in two instances;
(T, M,N) = (10,50, 100): two excessively high gaps (15%; 19%); (T, M, N) = (10, 50,200): three exces-
sively high gaps (around 60%). (T, M, N) = (15,20,200): one gap of 0.29%; (T, M, N) = (15,50, 100):
two excessively high gaps (62%; 69%) and one instance without any feasible solution.
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Table 4.2.11: Computational time (in sec.) for 20-scenario problems.

T M N Root B&B CPLEX(®

min aver max min aver max min aver max
5 o5 20 0.00 0.13 0.61 0.00 0.38 1.87 0.80 1.48 3.00
5 5 50 0.02 0.65 3.15 0.02 0.65 3.15 2.85 3.16 3.53
5 o5 100 0.03 30.86 154.19 0.03 30.86 154.19 7.86 9.43 14.35
5 5 200 0.06 0.08 0.09 0.06 0.08 0.09 25.26 26.22 27.11
5 10 20 0.02 2.52 4.90 0.02 6.26 20.87 2.11 2.51 2.75
5 10 50 1.09 13.61 23.99 1.09 21.88 42.84 7.89 16.82 47.86
5 10 100 3.09 70.80 245.59 3.09 108.01  431.64 | 24.32 28.15 37.46
5 10 200 0.09 145.04  638.04 0.09 145.04 638.04 | 64.19 73.17 101.15
5 20 50 0.34 21.11 44.29 0.34 113.64 43597 | 20.61 74.18 221.68
5 20 100| 19.64 101.85 22291 19.64  403.43 1015.67 | 56.89 117.68 288.10
5 20 200| 47.05 621.55 134297 5831 2219.18 4636.38 | 164.66 537.78 1190.23
5 50 100| 202.60 310.82  359.07 988.31 2449.90 3983.55 | 264.14 468.16 883.07
5 50 200| 383.79 1812.58 2803.42 3981.65 4692.20 5493.17 * * *
10 5 20 0.03 0.55 1.78 0.03 1.15 4.79 2.11 2.22 2.29
10 5 50 0.06 0.07 0.09 0.06 0.07 0.09 8.25 8.55 8.71
10 5 100, 0.13 0.15 0.19 0.13 0.15 0.19 23.53 24.93 26.16
10 5 200 0.23 0.27 0.33 0.23 0.27 0.33 58.75 61.76  65.38
10 10 20 0.03 2.56 6.22 0.03 3.01 6.22 5.46 5.95 7.49
10 10 50 0.08 23.42 45.74 0.08 23.42 45.74 2591 2731 29.84
10 10 100 0.16 7.62 35.22 0.16 7.62 35.22 55.93 5888  61.87
10 10 200, 0.30 1.62 3.76 0.30 2.45 7.57 131.67 137.53 140.46
10 20 50 34.41 140.33  225.34  34.41  352.87 1008.43| 62.28 75.39 97.60
10 20 100| 53.57 193.76  409.70 107.17 1642.17 3957.66 | 141.54 228.71 470.41
10 20 200| 689.88 1786.88 3325.52 689.88 2822.17 4521.18 | 313.94 390.26 512.89
10 50 100| 215.51 748.85 1289.93 215.51 3259.06 4482.38| 715.61 715.61 715.61
10 50 200| 1860.63 3639.29 4646.76 4283.56 4696.01 5646.12 * * *
15 5 20 0.06 9.97 49.55 0.06 9.97 49.55 4.23 4.46 4.57
15 5 50 0.14 0.17 0.19 0.14 0.17 0.19 1534 16.33 17.22
15 5 100| 0.27 0.42 0.86 0.27 0.42 0.86 40.19 45.06 47.83
15 5 200 0.50 0.57 0.70 0.50 0.57 0.70 97.42 105.32 109.15
15 10 20 0.06 12.31 43.73 0.06 32.01 142.21 | 10.97 20.22 54.18
15 10 50 0.17 79.79 297.60 0.17 157.06  683.95 | 42.01 46.75 61.62
15 10 100| 0.34 8.53 37.82 0.34 35.66 139.39 | 104.63 108.50 111.84
15 10 200| 0.61 0.65 0.73 0.61 0.65 0.73 221.55 233.70 241.26
15 20 50 49.64 19852  353.08 49.64 1109.26 3475.71 | 104.99 24458 616.14
15 20 100| 109.61 435.24 641.11 109.61 2080.56 3728.63 | 228.11 283.64 332.78
15 20 200| 364.42 2457.07 5352.72 364.42 2525.55 5352.72 * * *
15 50 100| 414.34 1973.06 3138.74 3914.32 4599.44 5882.31 * * *
15 50 200| 6064.95 12619.44 15228.66 6064.95 12619.44 15228.66 * * *

269.69 704.43 1050.75 535.62 1183.91 1827.15 89.88

123.66 192.81

@) (T, M, N) = (5,50,100): one ezcessively high gap (39%); (T, M, N) = (10,50, 100): CPLEX was only
able to solve one of the instances (no feasible solutions were provided for the other four).
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4.2.3 Lagrangean relaxation approach

In order to analyze the model a-DUFLPU and to assess the efficiency of the proposed
algorithmic approach, six data sets were considered, with input values of (S, T, J, I) given
in Table 4.2.12. The corresponding number of variables and constraints are also provided.

For each one of these six sets, forty instances were randomly generated.

Table 4.2.12: Dimension of the test problems.

Set | S T J I |num var num const
I 10 10 20 100 | 200200 210030
IT |10 10 20 200 | 400200 420030
IIT | 10 10 40 100 | 400400 410050
IV |10 20 20 100 | 400400 420030
V |20 10 20 100 | 400200 420040
VI |50 5 20 100 | 500100 525070

We have considered o € {0.075,0.10,0.15,0.20}. The stopping criteria were established
after some preliminary tests. The maximum computational time for the execution of the
algorithm is two hours for problems with 20 and 50 scenarios and one hour for all other
problems. In addition, we have also established as stopping criterium the quality of the
best solution achieved by the algorithm, measured by the gap between the best known
upper and lower bounds: 2% for the problems with 20 and 50 scenarios and 1.5% for
all the others. We have also imposed a maximum number of iterations which could vary
from 20 to 50 (largest instances). The computational results provided in this section were
obtained considering a step size coefficient z = 1 which gave the best results in general.
Other initial values of z as well as lowering z after a few iterations of the algorithm were
tested without significant improvements in results.

Table 4.2.13 summarizes the computational results obtained. For each data set and for
each a, column ’feas/inf/ind’ reports the number of instances for which a feasible solution
was found by the algorithm, the number of instances identified as infeasible and also the
number of instances for which the algorithm was unable to achieve a feasible solution
(solution indeterminate). The statistics shown in the next columns refer only to the
subsets of instances for which a feasible solution was found (feasible instances). For each
« and for each feasible instance, the increase of the best objective function value relative
to the best one achieved for a = 0.2 was calculated. Column ’increase’ depicts the average
increase (in percentage) obtained for each «. The next columns report the minimum,
average and maximum gap on the feasible instances, and the minimum, average and
maximum time (in seconds) spent by the algorithm to solve each set of feasible instances.
For each set, the last row shows the average results for gap and time.

We can see that the number of feasible instances decreases as « decreases in all sets,

due to infeasibility of some instances or due to the algorithm being unable to achieve a
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feasible solution. The algorithm stopped with indeterminate solutions in only 7.6% of
all 960 problems, due to the time limit established a priori, remaining the doubt about
the feasibility of those instances. As expected, the objective function values increase as
regret decreases. In terms of solution quality, the larger gaps were observed in sets V
and VI, sets with larger number of scenarios, but the quality of the solutions is still very
good. The worst gap equals 1.72% and was observed for instances with 50 scenarios.
Apparently, the decrease of parameter a does not seem to cause a deterioration in the
quality of the solutions in terms of gap, noticing however that the dimensions of the
samples with problems for smaller values of a are very small. The computational time
spent by the algorithm can vary a lot, even for problems within the same set (same size)
and same «. The higher execution times were observed in set ITI, with larger number of
potential facility locations, and sets V and VI with larger number of scenarios.

We have solved the same sets of problems using an exact algorithm, CPLEX MIP opti-
mizer, v12.4, with the same stopping criteria. The results are reported in Table 4.2.14.
CPLEX stopped with indeterminate solutions in 10% of all 960 problems, due to lack of
memory. Considering only set VI, CPLEX was unable to find a feasible solution in 19.4%
of those 160 problems as Lagrangean relaxation approach stopped with indeterminate
solutions in only 8%. We noticed that within sets I to V the indeterminate instances of
CPLEX were almost the same for which our algorithm was also unable to find a feasible
solution, except 11 instances for which only our algorithm was able to find a feasible
solution and 6 feasible instances only achieved by CPLEX. The results for these sets
are very similar, reflecting that some instances are the hardest for both optimization
algorithms. In terms of solution quality, CPLEX provides smaller average gaps than the
Lagrangean relaxation approach, although less feasible instances were found by CPLEX,
in particular in set VI with larger number of scenarios. In addition, CPLEX’s maximum
gap 1.97% is greater than the worst gap 1.72% achieved by the algorithm (achieved in
sets V and VI, respectively, both for & = 0.2). In terms of computational time, CPLEX
can also vary a lot. We can see that for all problems, the minimum computational time
was obtained by the algorithm, in same cases clearly outperforming CPLEX. In terms of
average computational times, CPLEX is better than the algorithm on sets IIT and VT,
thought less feasible solutions were achieved by the solver.

In order to gather more information about the set of indeterminate instances, the com-
putational time of one hour was increased to two hours in some of the sets. However, the
algorithms were only able to find more infeasible instances, though very few.

In brief, the computational results show that the Lagragean relaxation approach is capa-
ble of finding very good quality solutions in reasonable computational times. It should
be noted that CPLEX has better average gaps and computational times for some of the
problems considered. However, for problems with larger number of scenarios the solver

shows more difficulties to generate feasible solutions.
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Table 4.2.13: Computational results.

increase gap time
Set feas/inf/ind | (%) (%) (sec.)

o mean min mean max min mean max

1 0.2 40/0/0 0.00 0.00 0.23 1.05 | 9.95 119.13 873.9
0.15 39/0/1 0.17 0.00 0.30 1.32 | 9.20 130.02 1621.2

0.1 32/8/0 0.23 0.00 0.09 0.55 | 21.07 211.38 1567.9

0.075 14/26/0 0.29 0.00 0.04 0.39 | 28.23 22241 1031.7
0.00 0.17 0.83 | 17.12 170.74 1273.7

II 0.2 40/0/0 0.00 0.00 0.09 0.51 1.2 327.2 1117.4
0.15 40/0/0 0.19 0.00 0.25 1.14 1.3 352.7 1126.5

0.1 38/0/2 0.25 0.00 0.19 0.99 1.3 449.2 1602.9

0.075 18/11/11 0.26 0.00 0.12 0.90 | 30.2 585.9 3029.4
0.00 0.17 0.89 | 8.47 428.77 1719.1

111 0.2 40/0/0 0.00 0.00 0.39 1.37 | 527 944.4 3609.0
0.15 40/0/0 0.06 0.00 0.35 1.10 | 52.9 1008.3  3691.9

0.1 25/9/6 0.14 0.00 0.25 0.83 | 98.2 789.1 3706.5

0.075 8/26/6 0.18 0.00 0.17 0.64 | 97.9 807.6 3528.9
0.00 0.29 0.99 | 75.42 887.33 3634.1

v 0.2 40/0/0 0.00 0.00 0.29 1.46 5.5 303.2 2486.5
0.15 40/0/0 0.24 0.00 0.45 1.46 5.5 367.2 1753.8

0.1 23/1/16 0.28 0.00 0.33 1.33 5.5 586.4 3111.0

0.075 8/21/11 0.29 0.00 0.12 0.68 5.6 289.5 742.2
0.00 0.30 1.23 | 5.53 386.6 2023.4

A% 0.2 40/0/0 0.00 0.00 0.31 1.59 | 88.4 480.3 2718.8
0.15 36/0/4 0.37 0.00 0.32 1.51 88.6 630.7 1951.6

0.1 18/20/2 0.44 0.00 0.28 1.05 | 127.0 769.9 3415.6

0.075 5/34/1 0.48 0.00 0.14 0.52 | 128.6 505.4 1449.7
0.00 0.26 1.17 | 108.2 596.6 2383.9

VI 0.2 40/0/0 0.00 0.00 0.24 1.72 | 594 929.8 3883.9
0.15 40/0/0 0.03 0.00 0.19 1.24 | 576 1058.5 6631.6

0.1 33/3/4 0.14 0.00 0.11  0.99 | 58.3 857.4 3124.8

0.075 17/14/9 0.44 0.00 0.04 0.33 | 165.6 781.2 1608.7
0.00 0.15 1.07| 85.2 906.7 3812.3
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Table 4.2.14: Computational results using CPLEX.

Set feas/inf/ind gap (%) time (sec.)

o min mean max min mean max
1 0.2 40/0/0 0.00 0.15 1.26 54.40 130.48 1071.06
0.15 39/0/1 0.00 0.21 1.46 54.41 150.48 475.98
0.1 32/8/0 0.00 0.17 1.40 69.94 341.02 1711.57

0.075 14/26/0 0.00 0.01 0.13 61.04 177.86 488.88
0.00 0.13 1 59.95 199.96 936.87

11 0.2 40/0/0 0.00 0.04 0.91 160.4 232.8 404.9

0.15 40/0/0 0.00 0.05 0.91 159.9 292.7 947.4

0.1 38/0/2 0.00 0.10 0.77 158.9 567.3 3082.2

0.075 18/11/11 0.00 0.04 0.38 167.2 685.7 2206.7
0.00 0.06 0.74 | 161.61 444.62 1785.28

111 0.2 40/0/0 0.00 0.29 1.37 138.3 404.5 1193.1
0.15 38/0/2 0.00 0.27 1.42 137.7 568.8 2218.1

0.1 25/9/6 0.00 0.17 1.08 144.6 877.0 3502.1

0.075 8/26/6 0.00 0.10 0.34 145.8 520.1 1596.8
0.00 0.21 1.05 | 141.59 592.62 2127.51

v 0.2 37/0/3 0.00 0.10 0.95 139.7 268.2 917.8
0.15 36/0/4 0.00 0.16 1.30 149.0 425.9 1999.4

0.1 23/1/16 0.00 0.15 0.65 161.4 793.4 3600.5

0.075 12/21/7 0.00 0.15 0.58 200.2 1116.5 3268.7
0.00 0.14 0.87 | 162.60 651.02 2446.59

A% 0.2 40/0/0 0.00 0.22 1.97 181.1 424.2 1861.5
0.15 38/0/2 0.00 0.32 1.51 201.7 934.7 4122.6

0.1 16/20/4 0.00 0.18 0.73 196.6 896.2 3567.0

0.075 5/34/1 0.00 0.00 0.00 198.8 409.3 784.4
0.00 0.18 1.05 | 194.6 666.1 2583.8

VI 0.2 37/0/3 0.00 0.2 1.77 | 287.2 504.2 1106.1
0.15 37/0/3 0.00 0.11 1.72 293.9 520.7 1092.9

0.1 25/3/12 0.00 0.00 0.01 288.1 416.9 975.6

0.075 13/14/13 0.00 0.00 0.00 294.3 384.9 590.9
0.00 0.08 0.88 | 290.9 456.7 941.4
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Postlude

We have been concerned with facility location problems under uncertainty, adding a hum-
ble contribution to the location research field, through the development of mathematical
models and solution methods for this class of problems. We are dealing with difficult
problems, but with a growing importance from a practical point of view as such prob-
lems may reflect better the uncertain world in which we live.

In this work, we have considered several discrete dynamic facility location problems un-
der uncertainty. The uncertainty, in many of the problems’ parameters, is explicitly
represented in the models by a set of possible future scenarios. The classical DUFLP is
addressed through several models and perspectives along Chapter 2: an extension consid-
ering uncertainty, that contains the classical deterministic static and dynamic problems
as particular problems; an extension of the previous model with robust constraints related
with the uncertain future; a multi—objective approach where each scenario is interpreted
as one objective. We have considered several models with capacity facilities that bring
additional difficulties but other interesting situations arise as well. In terms of models, we
have limited ourselves to certain assumptions such as to objective functions minimizing
expected total costs or total cost. Other objective functions that can better represent the
attitude towards risk of different Decision Makers should be considered as well. Other
extensions to these problems could consider the introduction of the possibility of closing
already opened facilities to increase the range of applicability of the models. Mainly
within capacitated problems there is still a considerable amount of situations to be ex-
plored. The incorporation of robust constraints into those models related with upper
bounds on satisfied demand is an ongoing problem.

Efficient techniques were developed in Chapter 3 to cope with the uncapacitated prob-
lems, being an alternative to solvers that show more difficulties to find solutions for large—
sized problems (Chapter 4). The effect of data to the performance of those algorithms also
needs further study. We have not developed dedicated solution approaches to tackle the
capacitated models yet, hence it is also a possible future work. Classical heuristics have a
major drawback: changes in the problem’s formulation (additional restrictions, changes
in the objective function, for instance), imply changes in the procedures with high costs
due to the time spent developing new dedicated procedures. Meta-heuristics, namely

genetic algorithms, have the advantage of being flexible and intelligent algorithms, that

85



can be easily customized to be applied to different problems with different specificities.
The flexibility advantage comes, usually, at the cost of computational time. This is why
hybrid methods will possibly have to be thought incorporating all the available informa-

tion about the problem.

“The best way to handle uncertainty, and to make decisions under uncertainty, is to
accept uncertainty, make a strong effort to structure it and understand it, and finally,

make it part of the decision making reasoning” (Kouvelis and Yu [47]).
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