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Abstra
t

This thesis is devoted to mathemati
al modelling and solution te
hniques for dynami


fa
ility lo
ation problems under un
ertainty. The un
ertainty regarding the evolution of

important problems' parameters along the planning horizon, su
h as setup and assignment


osts, as well as level or lo
ation of demand, is expli
itly in
orporated into the dynami


models through a �nite and dis
rete set of possible s
enarios.

In the present work we �rst propose a two�stage sto
hasti
 model for the un
apa
itated

problem. The �rst de
isions to be made are the strategi
 ones, where and when to lo
ate

the fa
ilities throughout the planning horizon. The se
ond�stage de
isions refer to the

assignment of the existing 
ustomers to the open fa
ilities over the whole planning horizon

under ea
h possible s
enario. As opposite to lo
ation de
isions, that must be made here

and now and should be valid for all possible future s
enarios, assignment 
an be de
ided

after the un
ertainty has been resolved and thus 
an be adjusted in ea
h time period to

ea
h possible s
enario. The obje
tive is to �nd a solution that minimizes the expe
ted

total 
ost over all possible s
enarios. This model is then extended to other situations,

re
ognizing that other features should be in
luded in the mathemati
al model to be able

to generate other possible solutions. A set of robust 
onstraints is in
orporated into that

model, that in spite of restri
ting the set of admissible solutions, it o�ers more informed

and robust solutions under un
ertainty. A multi�obje
tive problem wherein ea
h s
enario

gives rise to an obje
tive is then developed, and relations with other known problems are

established as well. For this latter model, requirements about s
enarios probabilities or

risk pro�les are dropped. Within this 
ontext, it is emphasized that the De
ision Maker

will have a better pi
ture of the 
ompromises that exist among the possible s
enarios. In

terms of models, we 
on
lude with several extensions 
onsidering 
apa
itated fa
ilities.

The possibility of unmet demand appears naturally in this 
lass of problems, giving rise

to other interesting and 
hallenging questions. We propose and dis
uss both mono and

multi�obje
tive approa
hes.

We pro
eed with the des
ription of the solution te
hniques that have been developed to

ta
kle the un
apa
itated problems. First we present a primal-dual heuristi
 approa
h

inspired on 
lassi
al works and a bran
h&bound s
heme integrating this same heuris-

ti
. Afterwards, a Lagrangean relaxation approa
h developed to ta
kle the problem with

robust 
onstraints is detailed. The 
al
ulation of non�dominated solutions for the multi�
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obje
tive problem is dis
ussed and illustrated. Finally, as the models and algorithms

were tested over sets of randomly generated problems, the 
omputational experiments

and results obtained are provided in
luding 
omparisons with general solvers.

The results of this work aim to help De
ision Makers in the di�
ult pro
ess of de
ision

making when dealing with lo
ation problems under un
ertainty, and thus should be in-

terpreted as de
ision support tools.

keywords: dynami
 lo
ation problems, un
ertainty, s
enarios, primal-dual heuristi
s,

optimization
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Resumo

Esta tese versa sobre modelação matemáti
a e algoritmos de resolução de problemas de

lo
alização dinâmi
a em 
ontextos de in
erteza. A in
erteza a
er
a de 
omo importantes

parâmetros dos problemas irão evoluir ao longo do tempo, tais 
omo 
ustos de instalação

de serviços e de afetação, lo
alização ou nível da pro
ura, é expli
itamente in
orporada

nos modelos dinâmi
os através de um 
onjunto �nito e dis
reto de 
enários.

Na presente dissertação, propomos em primeiro lugar um modelo esto
ásti
o de duas

fases para o problema de lo
alização sem restrições de 
apa
idades. As primeiras de-


isões a serem tomadas são as estratégi
as, onde e quando lo
alizar os serviços ao longo

do horizonte temporal. As de
isões de segunda fase referem-se à afetação dos 
lientes


om pro
ura aos serviços abertos ao longo do horizonte temporal para todos os 
enários

possíveis. Ao 
ontrário das de
isões de lo
alização, tomadas no presente e válidas para

todos os futuros possíveis, as de
isões de afetação podem ser tomadas após a realiza-

ção da in
erteza e ajustadas em 
ada período temporal a 
ada 
enário. O objetivo do

problema é en
ontrar uma solução que minimize o 
usto total esperado para todos os


enários possíveis. Este modelo é depois alargado a outras situações, re
onhe
endo-se

que outras 
ara
terísti
as devem ser in
luídas no modelo de modo a gerar outras soluções

para o problema. Um 
onjunto de restrições de robustez é in
orporado no modelo que,

apesar de restringir o 
onjunto de soluções admissíveis, ofere
e soluções mais informadas

e robustas em situações de in
erteza. Um problema multi�objetivo em que 
ada 
enário

origina um objetivo é depois apresentado, assim 
omo relações 
om outros problemas


onhe
idos. Requisitos a
er
a das probabilidades asso
iadas aos 
enários ou a
er
a de

per�s de ris
o são desne
essários. É ainda sublinhado que neste 
ontexto o Agente de De-


isão terá um melhor retrato dos 
ompromissos existentes entre os possíveis 
enários. Em

termos de modelos, 
on
luímos 
om várias extensões 
onsiderando serviços 
om 
apa
i-

dades limitadas. A possibilidade de pro
ura insatisfeita surge naturalmente nesta 
lasse

de problemas, dando lugar a outras interessantes e desa�antes questões. Propomos e

dis
utimos abordagens mono e multi�objetivo.

Pro
edemos à des
rição dos algoritmos 
onstruídos para resolução dos problemas sem

restrições de 
apa
idades. Apresentamos uma heurísti
a primal�dual inspirada em abor-

dagens 
lássi
as e um algoritmo bran
h&bound que integra aquela heurísti
a. Uma té
-

ni
a usando relaxação Lagrangeana é depois detalhada para resolução do problema 
om

v



as restrições de robustez. O 
ál
ulo de soluções não dominadas para o problema multi�

objetivo é dis
utido e ilustrado 
om um exemplo. Finalmente, 
omo tanto os modelos


omo os algoritmos foram testados 
om instân
ias geradas aleatoriamente, as experiên-


ias e resultados 
omputa
ionais são apresentados, in
luindo 
omparações 
om general

solvers.

Os resultados deste trabalho pretendem ajudar os Agentes de De
isão no difí
il pro
esso

de de
isão perante problemas de lo
alização em 
ontexto de in
erteza, e assim devem ser

interpretados 
omo ferramentas de apoio à de
isão.

palavras�
have: lo
alização dinâmi
a, in
erteza, 
enários, heurísti
as primais-duais,

otimização.
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Prelude

A Fa
ility Lo
ation Problem 
an be seen as the problem of e�
iently de
iding where to

lo
ate equipments/fa
ilities, being publi
 servi
es, su
h as hospitals or s
hools, or private

servi
es (plants, warehouses,...). The question of where to lo
ate may be asso
iated

with other questions: what size (
apa
ity) should be established; when to lo
ate; how

long to keep the fa
ilities operating; in the 
ase of fa
ilities whose purpose is to meet

the needs of a set of 
ustomers, how to assign 
ustomers to the fa
ilities, et
. Fa
ility

lo
ation problems have been widely studied by many resear
hers. From the literature

we 
an witness the diversity of situations 
onsidered and the 
orresponding diversity of

models developed, re�e
ting also the importan
e of su
h problems (e. g., Mir
handani

and Fran
is [60℄, Daskin [18℄, Revelle et al. [71℄). Dis
rete versus 
ontinuous or planar

models, deterministi
 versus sto
hasti
 or under un
ertainty, stati
 versus dynami
, are

only some 
lasses of lo
ation models that 
an be found in the literature (Krarup and

Pruzan [48℄).

This work is 
on
erned with dynami
 dis
rete fa
ility lo
ation problems where un
ertainty

is expli
itly 
onsidered through the use of s
enarios. Dis
rete lo
ation problems are those

problems in whi
h the fa
ilities to be lo
ated 
an only be pla
ed at a �nite number of

poten
ial sites sele
ted via some prior analysis (Mir
handani and Fran
is [60℄). The 
lass

of models that deal expli
itly with the presen
e of un
ertainty is usually 
alled lo
ation

under un
ertainty or sto
hasti
 lo
ation models. In su
h 
ases some of the problem input

parameters are only known with un
ertainty, as opposed to their deterministi
 
ounter-

parts where all the parameters are assumed to be known pre
isely. The in
orporation of

un
ertainty into 
lassi
al (deterministi
) lo
ation models 
omes from the re
ognition that

at the time of de
ision making it may not be possible to know with 
ertainty some of the

problem input parameters (level or lo
ation of demand, 
osts, for instan
e). Considering

that most lo
ation de
ision problems are strategi
 by nature, and that the de
isions made

are 
ostly to revert, with 
onsequen
es in the medium and long terms, the un
ertainty

inherent in most real fa
ility lo
ation problems should be expli
itly 
onsidered and rep-

resented in the 
onstru
ted models (Owen and Daskin [66℄). With su
h models De
ision

Makers �
an better prepare for and respond to� un
ertainty in strategi
 planning (Shapiro

[81℄).

During the last de
ades there has been 
onsiderable interest in lo
ation under un
ertainty

1



and a large volume of work is now available in spe
ialized papers and monographs. We


an �nd a primary division between un
ertainty and risk de
ision problems (Rosenhead et

al. [76℄). In situations under un
ertainty no probabilisti
 information about the un
ertain

parameters is advan
ed, whereas in risk de
ision problems it is assumed a perfe
t knowl-

edge about probability distributions. However, un
ertainty problems may be 
onverted

to risk de
ision problems by the 
onsideration of some probabilisti
 information, and the

term un
ertainty has been also used in risk de
ision situations. Regardless this and other


lassi�
ations, the works found in the literature may di�er in the sour
e of un
ertainty

(most of them in level or lo
ation of demand and/or 
osts), in the way un
ertainty is rep-

resented (mainly, sto
hasti
 programming and s
enario approa
hes), obje
tive fun
tions


onsidered, solution methods, et
. A review about these 
hallenging problems, where

many situations are 
onsidered, is given by Snyder [82℄. Even so, 
ompared with the

resear
h devoted to deterministi
 versions, the literature related to sto
hasti
 lo
ation

is still mu
h more limited, parti
ularly addressing dis
rete lo
ation problems. As stated

by the authors 
ited above and others, as most deterministi
 dis
rete lo
ation problems

are too 
omplex, formulated as mixed integer programming problems and 
lassi�ed as

NP -hard, the in
orporation of randomness in su
h models in
reases their 
omplexity

and hinders its use in the 
omputation of optimal solutions, whi
h makes this 
lass of

problems less attra
tive than deterministi
 formulations.

Another 
lass of problems within our s
ope of interest 
on
erns Dynami
 (or Multi-

period) Lo
ation problems. Dynami
 models are mainly 
on
erned with planning the

lo
ation and/or size of fa
ilities over time, su
h that the time dimension is expli
itly rep-

resented through the use of time dependent de
ision variables. Classi
al (stati
) models

are enri
hed with the answer to questions su
h as �when� to lo
ate (Ja
obsen [39℄). A

dynami
 lo
ation problem approa
h is usually ne
essary whenever the assignment 
osts


hange signi�
antly during the planning horizon or there are signi�
ant 
osts for relo-


ating fa
ilities (Erlenkotter [30℄). Dynami
 models may require a large volume of data,

whi
h makes them also less attra
tive and less studied than stati
 problems.

Dynami
 and sto
hasti
 lo
ation models are strongly related. Whenever it is ne
essary

to expli
itly 
onsider a planning horizon, un
ertainty appears due to unknown future


onditions that may lead to a limited knowledge about problem parameters (Owen and

Daskin [66℄). If the parameters of dynami
 lo
ation models 
hange deterministi
ally over

time, then it is not possible to in
orporate the un
ertainty inherent in real-world lo
ation

problems even though time dimension is expli
itly represented in the model. Consid-

ering both time and un
ertainty in lo
ation models allows the 
onsideration of more

realisti
 situations, although the resulting models be
ome more 
omplex than stati
 and

deterministi
 ones. Most of the work that has been done addresses single-period (stati
)

deterministi
 models, stati
 under un
ertainty models or deterministi
 dynami
 models,

although exploring many di�erent and relevant situations. There has been mu
h less

2



work 
onsidering expli
itly both time and un
ertainty in dis
rete lo
ation models.

The main obje
tive of this work is to support lo
ation de
ision making through the devel-

opment of mathemati
al models and algorithms that deal expli
itly with the un
ertainty

inherent in most dynami
 fa
ility lo
ation problems. The main 
ontributions of this the-

sis are summarized as follows: (i) development of a new model for the un
apa
itated

dis
rete dynami
 fa
ility lo
ation problem that 
onsiders expli
itly un
ertainty in many

of the problem's parameters via a set of s
enarios, as well as solution approa
hes to ta
kle

this problem, �rst a primal-dual heuristi
 approa
h inspired on 
lassi
al works and then a

bran
h&bound s
heme integrating this same heuristi
 to solve the problem to optimality

(ii) development of an extension of the �rst model 
onsidering robustness 
on
erns and

also a Lagrangean relaxation approa
h to ta
kle the problem (iii) development of a multi-

obje
tive approa
h for the un
apa
itated dynami
 lo
ation problem under un
ertainty

(iv) development of new models 
onsidering 
apa
itated fa
ilities.

Taking into a

ount the vast existing literature on fa
ility lo
ation, in Chapter 1 we

address di�erent lo
ation problems and perspe
tives that are somehow related to this

work. First, in se
tion 1.1 we review some 
lassi
al (stati
 and deterministi
) and de-

terministi
 dynami
 lo
ation problems. Some referen
es to these 
lasses of problems are

also provided. Se
tion 1.2 is devoted to the subje
t of Un
ertainty, where Sto
hasti
 and

S
enario approa
hes are addressed. We fo
us on those aspe
ts that are more important

to the forth
oming developments. In se
tion 1.3 an overview on past works 
on
erning

fa
ility lo
ation problems under un
ertainty is given. These works address both stati


and dynami
 approa
hes, from earlier to most re
ent ones, re�e
ting the variety and

ri
hness of the existing 
ontributions on fa
ility lo
ation under un
ertainty.

In Chapter 2 we des
ribe new models for dis
rete dynami
 lo
ation problems under un-


ertainty. We generalize some well known lo
ation models by in
orporating expli
itly

the un
ertainty in these models through a set of s
enarios. In se
tion 2.1 we revisit the


lassi
al un
apa
itated fa
ility lo
ation problem (UFLP), proposing a dynami
 and un-


ertain version of this problem. In this model, �xed and assignment 
osts are s
enario

dependent, as well as the set of 
ustomers and the set of potential lo
ations for fa
ili-

ties. The problem is formulated as an integer linear programming model, that 
ontains

the deterministi
 stati
 and dynami
 UFLP as parti
ular problems (NP-hard problems

(Cornuejols et al. [16℄)). Taking into a

ount the forth
oming developments in terms of

solution approa
hes to this problem (a primal�dual heuristi
) formulations for the dual

problem and 
omplementary sla
kness 
onditions are given as well. We end this se
tion


onsidering variations in the �rst model proposed. Due to the assumptions regarding un-


ertainty in potential fa
ility sites, the model here presented is more general than the �rst

3



introdu
ed. Afterwards, the �rst model proposed is further extended to other situations.

In se
tion 2.2 a regret based measure of robustness is in
orporated and the solutions

provided by this problem are analysed through illustrative examples. In se
tion 2.3 a

Multi�obje
tive approa
h is 
onsidered and relations with other lo
ations problems are

also provided. We advo
ate here the use of a multi�obje
tive approa
h as a valuable tool

in guiding the de
ision�making pro
ess under un
ertainty, as the De
ision Maker will

have a mu
h broader view of the 
ompromises that exist among the possible s
enarios.

In se
tion 2.4 we propose and dis
uss several extensions 
onsidering 
apa
itated fa
ilities.

Chapter 3 details the solutions approa
hes developed to ta
kle the problems presented

in the previous 
hapter. In se
tion 3.1 a primal-dual heuristi
 approa
h to ta
kle the

�rst model presented is des
ribed along with illustrative examples. This heuristi
 ap-

proa
h is dire
tly inspired on the approa
hes developed by Bilde and Krarup [13℄ and

Erlenkotter [29℄, and Van Roy and Erlenkotter [88℄, designed for the stati
 and dynami


versions of the UFLP, respe
tively. In se
tion 3.2 this same heuristi
 is in
orporated in

a bran
h&bound algorithm in order to solve the problem to optimality. Afterwards, in

se
tion 3.3 a Lagrangean relaxation approa
h developed to ta
kle the problem with ro-

bustness 
onstraints is des
ribed, whi
h uses also the primal-dual heuristi
. We end this


hapter explaining in se
tion 3.4 how Pareto�e�
ient solutions for the Multi-obje
tive

problem 
an be 
al
ulated following an intera
tive approa
h with an illustrative example.

Chapter 4 is devoted to the presentation and dis
ussion of the 
omputational experien
es


arried out to validate the proposed models and evaluate the performan
e of the 
orre-

sponding algorithms both in terms of solution quality and 
omputational time. First, in

se
tion 4.1 we dis
uss brie�y the issue of s
enarios' generation giving some referen
es to

the subje
t as well. The algorithm developed to generate test problems for the present

work is then des
ribed. The proposed models and solution te
hniques were tested over

sets of randomly generated test problems. In se
tion 4.2 the 
omputational results are

presented. For the models and algorithms des
ribed in the previous 
hapters, we present

some details about the solutions obtained for those problems, in parti
ular the quality of

the solutions in terms of gap, and also the 
omputational time spent by the algorithms.

Comparisons with the results of general solvers are provided as well.

The numbering system used in this work is the 
ommon one whereby (2.3.1) refers to

the 1st numbered equation in se
tion 3 of 
hapter 2. An analogous s
heme is followed

for propositions, �gures, tables, et
. All referen
es in the text are in the bibliography


hapter ordered alphabeti
ally.
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Chapter 1

Ba
kground and Related Literature

The literature devoted to fa
ility lo
ation problems is immense. Among the vast 
olle
tion

of works 
on
erning lo
ation problems, we have 
hosen to review in this text only those

works and perspe
tives that are somehow related to the lo
ation problems ta
kled in this

thesis. Most of these works extend 
lassi
al (stati
 and deterministi
) dis
rete lo
ation

problems with di�erentiating 
hara
teristi
s, in a sto
hasti
 or/and dynami
 setting. We

start with a short review on some 
lassi
al problems as well as on deterministi
 dynami


problems. Afterwards, the subje
t of un
ertainty modelling is dis
ussed. The fo
us goes

to two main approa
hes, the Sto
hasti
 and S
enario approa
hes, given not only their

relevan
e in the lo
ation literature but also the forth
oming developments of this thesis.

Spe
ially related with the S
enario approa
h, some notes and referen
es on robustness are

given. In the following se
tion, we 
onsider previous works that are devoted to dis
rete

lo
ation problems under un
ertainty (single-period and dynami
). We also review some

re
ent works about supply 
hain design problems under un
ertainty in whi
h lo
ation

de
isions are in
luded.

We stress that this 
hapter along with the additional works that will be 
ited throughout

this text have no pretensions of 
ompleteness. For other referen
es and extensive reviews

on fa
ility lo
ation under un
ertainty, the reader is referred to Louveaux [55℄, Kouvelis

and Yu [47℄ and Snyder [82℄.

1.1 Some 
lassi
al fa
ility lo
ation problems

The 
lassi
al un
apa
itated fa
ility lo
ation problem (UFLP), also known as the simple

plant lo
ation problem (SPLP), plays a 
entral role in the lo
ation resear
h �eld, not only

by itself but also integrated in other problems. The UFLP 
onsists of de
iding where to

lo
ate a number of fa
ilities among a �nite set of potential sites, in order to minimize

total 
osts (�xed fa
ility 
osts plus variable produ
tion 
osts and transportation 
osts to


ustomers). Sin
e the fa
ilities are un
apa
itated, all demands will be assigned to the

nearest open fa
ility. The size of an open fa
ility is 
omputed as the sum of the demands
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it serves. The UFLP has been extensively studied sin
e Kuehn and Hamburger [49℄ and

is known to be NP -hard (Cornuejols et al. [16℄). A well known variation of the UFLP is

the 
apa
itated fa
ility lo
ation problem (CFLP) in whi
h there is a known upper bound

to the 
apa
ity of ea
h fa
ility. In terms of formulation it is similar to the UFLP, with

additional 
apa
ity 
onstraints. It is possible that 
ustomers 
an no longer be assigned

to the 
losest open fa
ility. It is ne
essary to de�ne if the demand of ea
h 
ustomer 
an

be served by more than one open fa
ility, or if it has to be fully assigned to one and only

one fa
ility. The p�median problem (introdu
ed by Hakimi [34℄) 
onsists of �nding the

optimal lo
ation of exa
tly p fa
ilities in order to meet a given demand at the lowest

possible transportation 
ost.

The above problems are by far well known and detailed des
riptions and its variations

along with solution methods (mainly heuristi
 and approximation algorithms) may be

found in several books, papers and in the referen
es therein (e.g., Mir
handani and Fran-


is [60℄, Daskin [18℄, Korte and Vygen [46℄).

In a dynami
 setting, the works found in the literature may di�er in the way some timing

aspe
ts and other important issues are in
orporated and handled. We 
an �nd models

that 
onsider both the possibility of opening new fa
ilities during the planning horizon,

or the 
losure of fa
ilities that were opened at the beginning of the planning horizon.

Most of the times, on
e a fa
ility is opened, it stays open until the end of the planning

horizon. Similarly, on
e a fa
ility is 
losed it stays 
losed until the end of the planning

horizon. Nevertheless, there are models that 
onsider more �exible settings where a

fa
ility 
an be opened, 
losed and even reopened during the planning horizon. There are

models that 
onsider 
apa
ity 
onstraints or other type of 
onstraints like budget upper

bounds. The number and diversity of proposed solution methods is signi�
ant. One of

the earliest dynami
 un
apa
itated fa
ility lo
ation problem (DUFLP) was proposed by

Roodman and S
hwarz [74℄. The authors 
onsider the problem of 
losing up to a pre-

spe
i�ed number of initially open and operating fa
ilities as demand de
lines over a given

multiperiod planning horizon. It is also presented a bran
h and bound algorithm and

near optimal heuristi
 algorithms to solve the problem. In [75℄ the model is generalized to

solve a fa
ility phase-in/phase-out problem (i.e., opening new fa
ilities or 
losing initially

opened ones). A related model was proposed by Wesolowsky and Trus
ott [91℄ that


onsiders the possibility of removing and establishing fa
ilities in ea
h time period and

additional restri
tions on the maximum number of fa
ilities to be removed in ea
h period.

As solution method the authors propose a dynami
 programming approa
h. Roy and

Erlenkotter [88℄ also 
onsider the DUFLP, where new fa
ilities 
an be opened and initially

opened fa
ilities 
an be 
losed over the planning horizon. The authors present a bran
h-

and-bound pro
edure in
orporating a heuristi
 dual as
ent method, the latter initially

developed by Bilde and Krarup [13℄ and Erlenkotter [29℄ for the stati
 UFLP. More
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re
ently, Dias et al. [21℄ present a new version of the DUFLP that not only allows for the

opening and 
losing of fa
ilities over the time horizon but also their reopening, where �xed


osts in
lude also reopening 
osts. A primal-dual heuristi
 is proposed and 
omputational

results are presented. Regarding the 
apa
itated 
ase, referen
e to Erlenkotter [30℄ and

Ja
obsen [39℄, where not only introdu
tions to su
h problems are given and additional

di�
ulties that arise in the 
apa
itated 
ase are emphasized, but also earlier models and

solution methods are dis
ussed. More re
ently, models and solution methods for dynami



apa
itated problems are suggested by Dias et al. [22℄ and Soto and Uster[85℄. The reader

is referred to Dias [23℄ where an extensive study about dynami
 fa
ility lo
ation, both in

terms of models and solution te
hniques, is given, and to a re
ent review given by Ni
kel

and Saldanha da Gama [64℄, where many other referen
es 
an be found.

1.2 Un
ertainty modelling

Un
ertainty has been expli
itly in
orporated in fa
ility lo
ation models in several ways,

giving rise to several 
lasses of models and approa
hes. Un
ertainty appears typi
ally

in the distribution 
osts or travel times, produ
tion 
osts, and mainly in the lo
ation or

level of demand. A 
ommon approa
h to take un
ertainty into a

ount is through the

design of a set of possible s
enarios. In general, s
enarios 
an be interpreted as a limited

representation of the un
ertainty in problem data or un
ertainty about how the problem

parameters will evolve (Ro
kafellar and J-B Wets [72℄, Van der Heijden [87℄). Usually

a s
enario is any possible realization (dis
rete or interval) of the un
ertain problem pa-

rameters, and depending on the approa
h, s
enarios may require weights (probabilities)

asso
iated to them or not. Another possibility to take un
ertainty into a

ount is to


onsider the un
ertain parameters as random variables with an expli
it use of their prob-

ability distributions or density fun
tions. The 
orresponding models and related methods


an then be 
onsidered as belonging to the �eld of Sto
hasti
 Programming (SP) (Birge

and Louveaux [14℄). It should be noted here that a s
enario approa
h does not ex
lude

the possibility of using some sto
hasti
 programming te
hnique. Two�stage sto
hasti


programs with re
ourse and 
han
e 
onstrained programs, for instan
e, are two popular

sto
hasti
 approa
hes that have been applied to fa
ility lo
ation. The latter 
onsiders

a 
on�den
e level type 
onstraint, as two�stage sto
hasti
 programs with re
ourse are


hara
terized by two sets of de
isions: the �rst�stage de
isions are the de
isions that

have to be made before the random events 
an be observed (here and now de
isions) and

the se
ond�stage or re
ourse de
isions are those that 
an be de
ided after the un
ertainty

has been revealed. Let us detail here only some features of two-stage sto
hasti
 problems

with re
ourse, given its relevan
e within the sto
hasti
 lo
ation literature and the forth-


oming results of this work. The reader is referred to books (Birge and Louveaux [14℄,

Kall and Walla
e [42℄) and many papers wherein SP approa
hes are applied.

7



A standard two�stage sto
hasti
 programming problem with re
ourse, in short 2-SSPP,


an be formulated as follows:

(2-SSPP) min aTx + E[Q(x, ω)] (1.2.1)

s.t. x ∈ X ,

with

Q(x, ω) = min g(ω)Ty (1.2.2)

s.t. D(ω)y = h(ω) +W (ω)x,

y ∈ Y,

where X ⊆ IRn1
denotes the set of 
onstraints on the �rst stage variables, a ∈ IRn1

,

Y ⊆ IRn2
denotes the set of 
onstraints on the se
ond stage variables, ω is a random vari-

able from a probability spa
e (Ω, F , P) with Ω ⊆ IRk
, and (g(ω), D(ω), h(ω), W (ω))

are possible (real) un
ertain problem parameters that we assume here well dimensioned.

The symbol E[.] represents the mathemati
al expe
tation as usual.

The above formulation des
ribes well the nature of two�stage sto
hasti
 problems with

re
ourse, noti
ing however that other forms may be found in the literature. In the �rst

stage problem, the de
isions about the values of variables x must be made before the

realization of un
ertainty. Afterwards, for a given value of the �rst stage variables x and

on
e the un
ertainty is resolved, the values of the se
ond stage or re
ourse variables y are

sele
ted (se
ond stage problem). The obje
tive (1.2.1) is to minimize the 
ost of the stage

one de
isions plus the expe
ted 
ost of the stage two de
isions. The above formulation

emphasizes also that the se
ond stage problem de
omposes into independent subproblems

(1.2.2), one for ea
h realization of the un
ertain parameters. Although variables y depend

on the realization of ω, this is not expli
itly represented here be
ause the subproblem

for ea
h out
ome is de
oupled from all others out
omes. Those subproblems, also 
alled

re
ourse problems, are linked by the �rst stage de
isions. Whenever the re
ourse problems

are feasible for (at least) the �rst stage de
isions, the sto
hasti
 problem is said to have

(relatively) 
omplete re
ourse. In SP the feasibility of the re
ourse problems is usually

enfor
ed by the introdu
tion of arti�
ial re
ourse variables.

In most appli
ations, usually it is assumed that the random variable ω follows a dis
rete

distribution with �nite support Ω = {ω1, ..., ωS}, 
alled the s
enario set. Denoting by

ps the probability of realization of the sth s
enario ωs
, P (ω = ωs) = ps, and assuming

that ps > 0 for all ωs ∈ Ω and that

∑S

s=1 p
s = 1, it is possible to rewrite the 2�

SSPP in an extensive form, the so�
alled deterministi
 equivalent programming problem

of 2�SSPP. In what follows, the un
ertain problem parameters (g(ω), D(ω), h(ω), W (ω))

asso
iated with a parti
ular realization ωs
, i.e. with a s
enario, is su

in
tly denoted
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by (gs, Ds, hs, W s) with asso
iated probability ps. Then, the deterministi
 equivalent

programming problem of 2�SSPP 
an be written as follows:

min aTx +

S
∑

s=1

psQs(x) (1.2.3)

s.t. x ∈ X ,

with

Qs(x) = min (gs)Ty (1.2.4)

s.t. Dsy = hs +W sx

y ∈ Y.

As we will see in the next se
tion, two�stage approa
hes have been applied both in stati


and dynami
 lo
ation problems under un
ertainty. An important feature in sto
has-

ti
 programming, impli
it in the above formulations, is the so�
alled non�ante
ipativity

prin
iple that, in simple terms, requires that de
isions are based only on the informa-

tion available at the 
urrent stage of the de
ision pro
ess and 
annot anti
ipate future

out
omes of the un
ertain parameters (i.e., Ro
kafellar and J-B Wets [72℄, Birge and

Louveaux [14℄). Multi-stage problems are an extension of two�stage problems in whi
h

un
ertainty is resolved in more than one stage along the time horizon. More re
ently,

these sto
hasti
 programs have also been applied to dynami
 problems, whi
h 
an be

even harder to solve than two�stage programs (Dyer and Stougie [28℄).

A related issue addressed in the literature is robustness, spe
ially when fa
ed with s
enario-

based models. However, the 
on
ept of robustness may have di�erent meanings and in-

terpretations, being in reality a multi-fa
eted issue (Roy [78℄). A pioneer work about the

use of the robustness 
on
ept in strategi
 management is due to Rosenhead et al. [76℄.

The 
riterion robustness is �a measure of the �exibility whi
h an initial de
ision of a plan

maintains for a
hieving near-optimal states in 
onditions of un
ertainty�. The proposed


on
ept is developed through the 
ase study of a fa
tory lo
ation problem over time, and

here the robustness 
on
ept refers to individual fa
ilities, the ones that should be opened

�rst, when 
onsidering a time horizon under un
ertainty. Ever sin
e, several di�erent

robustness measures have been proposed in the literature, some of whi
h have already

been applied to fa
ility lo
ation under un
ertainty problems. As opposed to sensitivity

analysis, that measures the sensitivity of solutions to 
hanges in the input data (it is a

rea
tive approa
h to ta
kle un
ertainty), robustness should be taken into a

ount a priori

when the problem is formulated (Mulvey et al. [63℄, Kouvelis and Yu [47℄, Roy [78℄). For

instan
e, in de
ision environments with signi�
ant un
ertainty, rather than the �optimal�

solution for a spe
i�
 s
enario or even for the most likely s
enario, a risk averse de
i-

sion maker wants a robust de
ision, de�ned in this 
ontext as the one that performs well
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a
ross all s
enarios and hedges against the worst of all possible s
enarios ([47℄). Di�erent


riteria 
an then be used to sele
t among robust solutions, su
h as min-max and min-max

regret 
riteria. In brief, the min-max 
riterion aims at 
onstru
ting solutions having the

best possible performan
e in the worst 
ase; regret 
riterion aims at obtaining a solution

minimizing the maximum deviation, over all possible s
enarios, between the value of the

solution and the optimal value of the 
orresponding s
enario (Aissi et al. [4℄). A di�erent

robustness approa
h is given by Mulvey et al. [63℄. The authors 
onsider both solution

robust and model robust 
on
epts: a solution is robust if it remains 
lose to optimal for

any s
enario, and it is model robust if it remains almost feasible for any s
enario. As it is

unlikely that a given solution will remain both feasible and optimal for all s
enarios, the

authors propose a multi
riteria obje
tive approa
h that allows to measure the tradeo�

between solution and model robustness. Usually the above approa
hes are asso
iated

with the so�
alled Robust Optimization (Snyder [82℄). The above and other robustness

approa
hes are also dis
ussed and 
ompared in [19, 8, 12, 82, 83, 4, 11, 78℄, re�e
ting the

importan
e of the subje
t.

1.3 Overview on Single-period and Dynami
 fa
ility lo-


ation problems under un
ertainty

One of the earliest sto
hasti
 lo
ation problems known was presented by Mir
handani

and Odoni [61℄. The authors extend the 
on
ept of p�median to sto
hasti
 networks

where the distan
e (travel time) on any ar
 or the demand (
all rate) at any node may

be dis
rete random variables with known distributions. The authors prove that under

a set of assumptions an optimal solution exists at nodes of the network (satisfying the

Hakimi property, [34℄). Thus, the sto
hasti
 median lo
ation problem 
an be formulated

as an integer linear program (sin
e there is a �nite number of identi�able poten
ial fa-


ility sites). Later, Weaver and Chur
h [90℄ propose two solution pro
edures for this

problem, a heuristi
 and a bounding pro
edure based on the subgradient optimization of

the Lagrangian dual. Louveaux [54℄ presents a sto
hasti
 version of the UFLP in whi
h

demands, variable produ
tion and transportation 
osts, and selling pri
es (in
orporated

in the model) 
an be random. The problem is formulated as a two�stage sto
hasti


program with re
ourse, where the �rst�stage de
isions are the lo
ation and the size (
a-

pa
ity) of the fa
ilities to be established, and the se
ond�stage or re
ourse de
isions are

the allo
ation of the available produ
tion to the most pro�table demands. As opposed

to the deterministi
 
ase, the 
hoi
e of both the demands to be served and the size of

the fa
ilities to be established also be
omes part of the de
ision pro
ess. In this work

also a sto
hasti
 version of the p�median, de�ned as a two�stage sto
hasti
 program with

re
ourse, is presented, and relations between the sto
hasti
 versions of the p�median and
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the UFLP are dis
ussed. Solution methods are later presented by Louveaux and Peeters

[56℄. The authors propose a heuristi
 dual�based pro
edure, inspired on the method

developed by Erlenkotter [29℄ for the 
lassi
al (stati
 and deterministi
) UFLP. As the


omplexity of the problem in
reases with the randomness in the demands and 
osts, it

is assumed that all random variables have dis
rete distributions with only a small num-

ber of s
enarios. Laporte et al. [51℄ 
onsider a CFLP in whi
h 
ustomer demands are

sto
hasti
. The problem 
onsists of optimally determining the lo
ation and size of fa
il-

ities given that future 
ustomer demand is un
ertain. The obje
tive fun
tion minimizes

the di�eren
e between the sum of �xed fa
ility 
osts and average 
ost of operating trans-

portation servi
es between fa
ilities and 
ustomers (assignment 
osts), and the expe
ted

net revenue from supplying 
ustomers. The problem 
an also be viewed as a two�stage

sto
hasti
 integer program. Following the s
enario approa
h, Current et al. [17℄ address

lo
ation problems in whi
h the total number of fa
ilities to be sited is un
ertain. Two

de
ision 
riteria are 
onsidered in p-median based formulations: the minimization of the

maximum regret and the minimization of expe
ted opportunity loss. Under the de
ision


riteria, ea
h problem lo
ates an initial number of fa
ilities when the total number is un-

known. The approa
hes are illustrated with a sample problem. Serra and Marianov [80℄


onsider a p�median based model in whi
h travel times between nodes and/or demand at

nodes are un
ertain, des
ribed by s
enarios. Two p�median formulations are presented,

the min�max and the regret approa
hes. The authors propose a heuristi
 method for

both formulations, and a real appli
ation to the lo
ation of �re stations in Bar
elona is

presented. Snyder and Daskin [83℄ 
onsider the 
lassi
al (stati
) p�median and UFLP

problems with un
ertain demands and transportation 
osts, des
ribed by probabilisti


s
enarios. The models minimize expe
ted 
osts while making sure that the relative re-

gret for ea
h s
enario is no greater than a pre-spe
i�ed value (a new robustness measure

for optimization under un
ertainty). The relative regret of a solution asso
iated with

a given s
enario is 
al
ulated by the di�eren
e between the value of the solution under

that s
enario and the optimal value of the s
enario divided by this latter value. The

authors in
orporate regret into the problems's formulations by 
onsidering 
onstraints

that guarantee that the relative regret asso
iated with ea
h solution, for ea
h of the pos-

sible future s
enarios, is upper bounded. They also propose a Lagrangian de
omposition

algorithm to solve the 
orresponding optimization problems. In a re
ent work (Lim and

Sonmez [52℄) the same robustness measure is 
onsidered in a stati
 fa
ility p�median

relo
ation problem. Berman and Drezner [10℄ also 
onsider the p�median problem when

the total number of fa
ilities to be sited in the future is un
ertain. The problem seeks the

lo
ation for p fa
ilities that minimize the expe
ted weighted distan
e when up to q new

fa
ilities are added to the system in the future. The probability of adding 0 ≤ r ≤ q new

fa
ilities (possible s
enarios) is given. The authors prove that an optimal solution exists

with all the fa
ilities lo
ated on nodes (satisfying the Hakimi property), and formulate
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the problem as an integer program. Heuristi
 algorithms are suggested to solve the pro-

blem (fo
using in the 
ase q = 1; for q ≥ 2 it seems more di�
ult). A similar integer

programming model and a de
omposition algorithm to solve it is presented by Sonmez

and Lim [84℄. As opposed to the previous work, in this paper the problem allows the


losing of some of the fa
ilities that were opened initially, due to future demand 
hange,

and 
onsiders also budget restri
tions for the opening and 
losing of fa
ilities. Ravi and

Sinha [69℄ propose a two-stage sto
hasti
 version of the UFLP and an 8�approximation

algorithm

1

to solve it. Here, demand and �xed 
osts are both random, and fa
ilities may

be opened in either the �rst or se
ond stage. A related two-stage sto
hasti
 program

is proposed by Wang et al. [89℄ in whi
h servi
e installation 
osts are also 
onsidered

(servi
es must be installed at the open fa
ilities and ea
h 
ustomer must be assigned to

an open fa
ility at whi
h the servi
e requested by the 
ustomer is installed). The authors

propose a primal-dual approximation algorithm to solve the optimization problem. Lin

[53℄ proposes a sto
hasti
 version of the single�sour
e 
apa
itated fa
ility lo
ation pro-

blem in whi
h the demand is un
ertain. The obje
tive fun
tion is to minimize the total

system 
osts in
luding �xed fa
ility 
osts and 
osts of servi
ing ea
h demand point by its

assigned fa
ility. Simultaneously, re
ognizing that fa
ilities should provide an adequate

level of servi
e, the model also in
orporates fa
ility servi
e level requirements. These

requirements are formulated as 
han
e 
onstraints, being the probability that ea
h open

fa
ility 
an 
ope with the sto
hasti
 demand assigned. Mo and Harrison [62℄ propose

a 
on
eptual framework for robust supply 
hain design under demand un
ertainty. The

aim is to �nd a supply 
hain 
on�guration (or a group of 
on�gurations) that provides

robust performan
e under demand un
ertainty. Un
ertainty of demand is represented by

dis
rete s
enarios with known probabilities. First the authors de�ne various performan
e

measures of �robustness� (minimum total expe
ted 
ost, minimum varian
e of total 
ost,

minimum of maximum deviation, multiple 
riteria) emphasizing di�erent perspe
tives

of robust supply 
hain. As solution methods, the authors dis
uss expli
it enumeration

methods and SP methods. In the SP approa
h the problem is formulated as a 
lassi


two-stage sto
hasti
 program. The obje
tive fun
tion is to minimize total expe
ted 
ost,

whi
h in
ludes �xed 
osts of opening plants and warehouses, expe
ted shipping 
ost from

plants to warehouses and from warehouses to 
ustomers, and expe
ted outsour
ing 
ost

when 
ustomers' demands 
annot be satis�ed from warehouses. The authors dis
uss the

di�
ulties in using these approa
hes when the total number of s
enarios is large and

suggest that this number 
ould be redu
ed by a sampling based approa
h. Albareda-

Sambola et al. [7℄ 
onsider a two-stage sto
hasti
 program for a fa
ility lo
ation problem

where un
ertain demand is modelled by a Bernoulli distribution. Kiya and Davoudpour

1

An approximation algorithm is a 
�approximation algorithm (where 
 is the approximation ratio)

if it 
an be proven that the solution found by the algorithm is at most 
 times worse than the optimal

solution (in this 
ase, 
 times larger as it is a minimization problem).
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[44℄ extend the deterministi
 warehouse network re-design model to un
ertain opera-

tional parameters (demand and operational 
osts) des
ribed by probability distributions.

A two-stage sto
hasti
 program with re
ourse is presented and an algorithm based on

the Sample Average Approximation method 
ombined with Benders de
omposition and

other heuristi
 methods is developed.

Our attention returns now to those works wherein both un
ertainty and time are expli
-

itly 
onsidered. Jornsten and Bjorndal [40℄ 
onsider the DUFLP under un
ertainty, where

the �xed and variable 
osts are des
ribed via a set of s
enarios. To solve the dynami


and sto
hasti
 program, the authors use the s
enario and poli
y aggregation des
ribed

by Ro
kafellar and J-B Wets [72℄. The method is applied to a set of small illustrative

problems. Ahmed and Gar
ia [3℄ 
onsider a dynami
 
apa
ity a
quisition and assignment

problem under un
ertainty. The problem seeks a 
apa
ity expansion s
hedule for a set of

resour
es and the assignment of resour
e 
apa
ity to tasks over the multi-period planning

horizon. The problem 
an be viewed as the planning of lo
ations and 
apa
ities of distri-

bution 
enters (DCs) and the assignment of 
ustomers to the DCs. The model expli
itly

in
orporates un
ertainty in task pro
essing requirements and assignments 
osts via a set

of s
enarios. Although the problem is a multi-period one, the 
apa
ity planning de
isions

for all periods are made in period/stage one (thus, a two-stage sto
hasti
 programming

approa
h is adopted). Romau
h and Hartl [73℄ 
onsider a dynami
 fa
ility lo
ation pro-

blem with un
ertain demand, des
ribed by s
enarios. The problem seeks the optimal

de
isions for produ
tion, inventory and transportation, to serve the 
ustomers during a

�xed number of periods. It is assumed that the produ
tion sites have limited storage


apa
ities. The model is �rst solved by dynami
 programming and then a heuristi
 is

proposed, the Sample Average Approximation Method (SSA) adapted to the multi-period


ase. Albareda-Sambola et al. [5℄ present a multi-period lo
ation-assignment problem

under un
ertainty. It is a sto
hasti
 version of an earlier (deterministi
 and multi-period)

problem studied by the same authors. Here, the servi
e time periods of the 
ustomers

and the minimum number of 
ustomers to be served at ea
h time period are s
enario

dependent. The obje
tive is to minimize the expe
ted 
ost-penalty value (setup 
ost for

the open fa
ilities, assignment and servi
e 
ost, and penalty 
ost for not servi
ing 
us-

tomers with demand). More re
ently, the same authors present in [6℄ a new algorithm

for a multi�period lo
ation�assignment problem under un
ertainty, a Fix�and�Relax�

Coordination s
heme. Hernández et al. [36℄ present a multi-period sto
hasti
 model to

the lo
ation of prison fa
ilities under un
ertainty, where the un
ertain future demand

for 
apa
ity is represented by probabilisti
 s
enarios. The problem seeks the lo
ation

and sizes of a given number of new fa
ilities (jails) and determines where and when to

in
rease the 
apa
ity of both new and existing fa
ilities over a time horizon. Subje
t

to several 
onstraints (maximum inmate transfer distan
es, upper and lower bounds for
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fa
ility 
apa
ities, among others) the obje
tive is to minimize the expe
ted 
osts of the

prison system. The model is solved by a bran
h�and�
luster 
oordination s
heme (a

heuristi
 mixture of bran
h�and��x 
oordination and bran
h�and�bound s
hemes).

We next review some works where examples of fa
ility lo
ation problems integrated in

supply 
hain are proposed and where some other related referen
es 
an be found. Aghez-

zaf [2℄ �rst developed a deterministi
 
apa
ity planning and warehouse lo
ation model

for the supply 
hain (whi
h 
an be viewed as a multiple�sour
e 
apa
itated e
onomi
 lot-

sizing problem). Then the model is extended to un
ertain realizations of future market

demand (the only sour
e of un
ertainty) des
ribed by s
enarios. The author uses the 
on-


ept of robust optimization developed by Mulvey et al. [63℄ 
ombined with Lagrangean

relaxation methods. Pan and Nagi [67℄ also propose a robust optimization formulation

for a multiple layer supply 
hain network under demand un
ertainty. The un
ertainty

of demand is represented by probabilisti
 s
enarios. The obje
tive fun
tion in
ludes ex-

pe
ted total 
ost, 
ost variability and model infeasibility penalty by the 
onsideration

of a weighted penalty to unmet demand that may o

ur under a possible s
enario. The

problem in
ludes several de
isions: lo
ation, distribution, produ
tion, inventory. To solve

the problem a heuristi
 is developed and extensive 
omputational results are presented.

Pimentel et al. [68℄ develop a sto
hasti
 
apa
ity planning problem applied to a Global

Mining Supply Chain whi
h integrates lot sizing, 
apa
ity expansions, fa
ility lo
ation

and network design de
isions. Fa
ility lo
ation de
isions in
lude the opening, 
losing and

reopening of fa
ilities. The authors adopt a multi-stage integer sto
hasti
 formulation

where the evolution of the un
ertain parameters is represented by a dis
rete probability

s
enario tree

2

. An analysis of di�erent solution approa
hes, from exa
t to approximate

methods, with solutions provided by software CPLEX is given. Ni
kel et al. [65℄ propose

a multi�period multi�
ommodity sto
hasti
 supply 
hain network design problem whi
h

integrates, in addition to lo
ation and distribution de
isions, �nan
ial de
isions su
h as

what investments and loans to 
onsider in ea
h time period of the planning horizon.

Un
ertainty is asso
iated with future demand and return rates, represented by a set of

s
enarios. Servi
e level and risk measures are also in
luded in the model, both in the

obje
tive fun
tion. The problem is formulated as a multi�stage sto
hasti
 mixed�integer

linear programming problem. Due to 
omputational reasons, a more 
ompa
t formula-

tion of the problem is proposed whi
h is based upon the paths in the s
enario tree. In

order to measure the relevan
e of using a sto
hasti
 approa
h (the value of the sto
has-

ti
 programming approa
h), a deterministi
 problem derived from the sto
hasti
 one is

presented. Computational results in
luding 
omparisons between the sto
hasti
 and the

deterministi
 solutions are presented.

2

The nodes in period t 
onstitute the states of the world that 
an be distinguished from the informa-

tion available up to t ; the leaf nodes de�ne the s
enarios, whi
h represent the joint realizations of the

risky parameters over all periods.
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Chapter 2

Mathemati
al Models

The models proposed in this work 
an be applied to any situation in whi
h a 
ompany

has to do the planning of strategi
 lo
ation investments over a given period of time. As

emphasized earlier, the motivation to study lo
ation models whi
h expli
itly in
orporate

un
ertainty 
omes from the need to take into a

ount in the de
ision pro
ess the envi-

ronmental 
hanges that may o

ur during the planning horizon. The main sour
es of

un
ertainty 
onsidered in the models developed 
ome from the existen
e or la
k of 
us-

tomers, as well as 
osts asso
iated with the opening of fa
ilities and satisfying the 
lients'

demand. Costs for opening fa
ilities 
an 
hange due to the e
onomi
 environment, be-

havior of the real estate market, 
hanges in interest rates. Su
h 
osts 
an even hinder the

opening of a fa
ility. Assignment 
osts 
an 
hange due to 
hanges in road infrastru
tures,

new roads 
an be built while others may be
ome ina

essible, government poli
ies, pri
e

of fuel, tolls, for instan
e.

We have witnessed that the representation of un
ertainty in optimization models, ap-

plied also to lo
ation models, has been widely debated in the literature (e.g., Dembo [19℄,

Mulvey et al. [63℄, Van der Heijden [87℄, Kouvelis and Yu [47℄, Snyder [82℄, Durba
h

and Stewart [27℄). The s
enario approa
h appears as �an extremely powerful, 
onvenient

and natural way to represent un
ertainty� ([19℄) and 
an be more appropriate than a

sto
hasti
 one, espe
ially when the available information may not be su�
ient to sup-

port a sto
hasti
 programming model (Ro
kafellar and J-B Wets [72℄, Van der Heijden

[87℄). Under high un
ertain 
onditions, su
h as those that may o

ur during a multi-

period lo
ation problem, the design of s
enarios 
an be more a

urate than the use of

probability distributions or sto
hasti
 pro
ess (S
hoemaker [79℄, Van der Heijden [87℄). A

re
ent experimental study by Durba
h and Stewart [27℄, about the e�e
t of un
ertainty

representation on de
ision making in terms of several items (the di�
ulty experien
ed in

making a de
ision, for instan
e), indi
ates that the use of probability distributions ap-

peared to overload subje
ts, being more di�
ult to use than other 
on
ise formats su
h

as the use of s
enarios.
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We have 
hosen to represent un
ertainty in the models by a �nite and dis
rete set of

possible s
enarios. The study 
ited above only reinfor
es our 
hoi
e on the s
enario ap-

proa
h, dealing with dynami
 lo
ation problems under un
ertainty that are by themselves

harder to be understood by De
ision Makers. S
enarios are interpreted as �a thinking

tool and 
ommuni
ation devi
e that aid the managerial mind rather than repla
e it�, an

aid espe
ially useful under 
onditions of high un
ertainty and 
omplexity (S
hoemaker

[79℄). In some of the models presented, we also 
onsider probabilisti
 s
enarios and thus

we do not ex
lude here the use of sto
hasti
 approa
hes. In parti
ular, two�stage sto
has-

ti
 problems (brie�y reviewed in se
tion 1.2) that model well the real nature of lo
ation

problems, though the probabilities asso
iated with the s
enarios must also be advan
ed.

Several other questions (and di�
ulties) may arise whenever the un
ertainty is expli
itly

in
orporated into a model. For instan
e, it might be di�
ult to �nd a single solution de-

�ned as the best one in all possible future realizations of un
ertainty. Within this 
ontext,

the 
on
ept of best solution strongly depends on the attitude towards risk of the De
ision

Maker (DM). When the DM is assumed to be risk neutral, expe
ted 
ost 
riterion are

appropriated but, as already noted in se
tion 1.2, in the presen
e of di�erent risk pro�les

other features should be in
luded in the mathemati
al models in order to generate other

possible solutions.

This 
hapter is dedi
ated to the des
ription of the problems, mathemati
al modelling,

where integer and mixed-integer linear programming models are presented. We start in

se
tion 2.1 with an extension of the dynami
 un
apa
itated fa
ility lo
ation problem to an

un
ertain future (Marques and Dias [58℄). Later on, in se
tion 2.2 a regret based measure

of robustness is in
luded in this model. This measure is not new in the lo
ation literature,

but is expli
itly in
orporated in a dynami
 lo
ation problem for the �rst time (as far as

the authors know) (Marques and Dias [59℄). By the analysis of some illustrative examples,

it is possible to obtain a deeper knowledge about the problem and its possible solutions:

the possibility of a
hieving more robust solutions from small 
hanges in a given and less

robust solution, or the dis
overy of the 
ore fa
ilities, those that remain open even if the

robustness parameter varies. In se
tion 2.3 the dynami
 un
apa
itated lo
ation problem

under un
ertainty is 
onsidered as a multi-obje
tive problem, where ea
h s
enario will

give rise to one obje
tive (Dias and Marques [24℄). Within this 
ontext, the aim is to

a
hieve Pareto�e�
ient solutions. A single obje
tive lo
ation problem under un
ertainty

is ta
kled by resorting to a multi�obje
tive approa
h, and the 
on
ept of Pareto�e�
ien
y

is thus applied in the 
ontext of a single obje
tive problem under un
ertainty. It is

quite di�
ult to �nd the 
on
ept of Pareto e�
ien
y being applied in this 
ontext. We

have found several publi
ations dedi
ated to multi�obje
tive sto
hasti
 programming,

usually ta
kling the problem by redu
ing it to a single obje
tive sto
hasti
 program or

transforming it to a deterministi
 multi-obje
tive program (e.g., Hulsurkar et al. [37℄,
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Teghem Jr et al. [41℄, Urli and Nadeau [86℄, Abdelaziz [1℄, Gutjahr [33℄, Guillén et al.

[32℄,Cardona�Valdés et al. [15℄). Additional referen
es goes to the re
ent works proposed

by Lamboray and Vanderpooten [50℄, Ian
u and Tri
hakis [38℄, and Klamroth et al.

[45℄ wherein multiple obje
tive (deterministi
) 
ounterparts for un
ertain optimization

problems are introdu
ed and their relations to well known s
alar robust optimization

problems are dis
ussed.

In all the models proposed so far, as we assumed that fa
ilities are un
apa
itated, for

the �rst�stage lo
ation de
isions taken, it is 
ertain that total demand will be satis�ed

in the se
ond�stage (whatever the s
enario that will o

ur). In se
tion 2.4 we address


apa
itated problems, following mono and multi�obje
tive approa
hes to ta
kle these


hallenging problems.

2.1 Dynami
 un
apa
itated lo
ation problem under un-


ertainty

In this se
tion the dynami
 un
apa
itated fa
ility lo
ation problem is extended to un-


ertain realizations of the potential lo
ations for fa
ilities and the existen
e of 
ustomers

as well as �xed and variable 
osts. The future will be one of a �nite set of possibili-

ties, represented by s
enarios where ea
h s
enario 
hara
terizes the value of all problem's

parameters in a possible future.

The �rst de
isions to be made are where and when to lo
ate the fa
ilities. We assume

here that on
e a fa
ility is opened, it stays open until the end of the planning horizon.

Afterwards, it must be de
ided how to assign the existing 
ustomers over the whole plan-

ning horizon under ea
h possible s
enario. We are indeed in the presen
e of a two�stage

de
ision problem: lo
ation de
isions are strategi
 by nature so they must be de
ided here

and now and must be valid for all possible future s
enarios, whilst assignment de
isions


an be de
ided after the un
ertainty has been resolved and thus 
an be adjusted in ea
h

time period to ea
h possible s
enario. The aim of the problem is to �nd a good solution

that performs well a
ross all possible s
enarios without fo
using in a parti
ular s
enario.

More pre
isely, the obje
tive is to �nd a solution that minimizes the expe
ted total 
ost

(�xed plus assignment 
osts) over all possible s
enarios. A mixed linear programming

formulation for this problem is proposed. Let us introdu
e the notation that will be used

throughout this text.

The time horizon is represented by a �nite set of dis
rete time periods T = {1, ..., t, ..., T}.

The set of possible future s
enarios is denoted by S = {1, ..., s, ..., S}. In what follows,

suppose that ea
h s
enario s ∈ S will o

ur with probability ps su
h that ps > 0 and

∑

s∈S ps = 1.
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The set of potential fa
ility sites is denoted by J = {1, ..., j, ...,M} and the set of possible


ustomer lo
ations (or demand points) by I = {1, ..., i, ..., N}. These sets in
lude all

the potential fa
ility lo
ations and all the potential 
ustomers for all possible s
enarios,

despite the fa
t that for ea
h s
enario in parti
ular possibly only a subset of potential

lo
ations and a subset of 
ustomers is 
onsidered. Let us de�ne δsit as equal to 1 if 
us-

tomer i has a demand that has to be ful�lled during period t for s
enario s (in short, an

existing 
ustomer), and 0 otherwise. Then we have to guarantee that all 
ustomers su
h

that δsit = 1 are assigned to an open fa
ility, for all (t, s) ∈ T × S.

In terms of 
osts, the model 
onsiders not only �xed 
osts (opening and operating), but

also variable 
osts asso
iated with the assignment of 
ustomers to the fa
ilities. For

(j, t, s) ∈ J × T × S, let f s
jt be the �xed 
ost of establishing (opening) fa
ility j at the

beginning of period t plus the operating 
osts in all subsequent time periods, under s
e-

nario s; for (i, j, t, s) ∈ I × J × T × S, csijt represents the assignment 
ost of 
ustomer

i to fa
ility j in period t and under s
enario s. If it is not possible to open fa
ility j at

the beginning of time period t under s
enario s, then the 
orresponding �xed 
ost will be


onsidered equal to +∞. Su
h a situation 
an only o

ur for t > 1, given the possibility

that any new servi
e opens in that period.

The de
isions to be made are where and when to lo
ate new fa
ilities, and how to assign

the existing 
ustomers over the whole planning horizon under ea
h possible s
enario. Let

x ∈ {0, 1}|J |×|T |
be the ve
tor of lo
ation de
isions su
h that xjt equals 1 if fa
ility j

is opened at the beginning of period t, and 0 otherwise, and y ∈ {0, 1}|I|×|J |×|T |×|S|
the

ve
tor of assignment de
isions su
h that ysijt equals 1 if 
ustomer i is assigned to fa
ility

j in period t under s
enario s, and 0 otherwise (we 
ould also 
onsider, for ea
h s ∈ S,

ve
tor ys ∈ {0, 1}|I|×|J |×|T |
, being the ve
tor of assignment de
isions for s
enario s only).

The obje
tive is to minimize expe
ted total 
ost in
luding �xed and assignment 
osts

over all s
enarios.

The dynami
 un
apa
itated fa
ility lo
ation problem under un
ertainty, in short DU-

FLPU, 
an be formulated in an extensive form as follows:
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(DUFLPU) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jt xjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijt y
s
ijt (2.1.1)

s.t.

∑

j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.1.2)

t
∑

τ=1

xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.1.3)

∑

t∈T

(−xjt) ≥ −1 ∀j ∈ J, (2.1.4)

x ∈ {0, 1}|J |×|T |, (2.1.5)

y ∈ {0, 1}|I|×|J |×|T |×|S|. (2.1.6)

The obje
tive fun
tion (2.1.1) minimizes the expe
ted total 
osts (�xed plus variable


osts). Constraints (2.1.2) require that in every time period under ea
h s
enario an

existing 
ustomer is assigned to exa
tly one fa
ility. Constraints (2.1.3) impose that an

existing 
ustomer 
an only be assigned to open fa
ilities. A 
ustomer 
an be assigned

to di�erent fa
ilities at di�erent time periods and di�erent s
enarios. Constraints (2.1.4)

ensure that ea
h fa
ility is opened at most on
e during the time horizon (lo
ated at the

same site in all s
enarios). Finally, (2.1.5)�(2.1.6) restri
t the de
ision variables to be

binary.

The above formulation 
ontains the UFLP ( |T | = |S| = 1 ) and the DUFLP ( |T | >

1, |S| = 1 ) as parti
ular problems, and has |J | |T | + |J | |I| |T | |S| binary variables and

|I| |T | |S|+ |J | |I| |T | |S|+ |J | restri
tions (not 
ounting the zero-one 
onstraints). Even

for moderate dimensions of these sets, (2.1.1)�(2.1.6) be
omes a quite large integer linear

program.

Remark 2.1.1 The DUFLPU is a two�stage sto
hasti
 model though a standard formu-

lation has not been expli
itly written here. In spite of the lo
ation de
isions being s
enario

independent, in the sense that they 
annot be 
hanged a

ording to ea
h s
enario in par-

ti
ular, the �xed 
ost 
an be 
onsidered s
enario dependent as it was assumed here. Note

that if we 
onsider fjt =
∑

s∈S p
sf s

jt, the obje
tive fun
tion (2.1.1) 
an be rewritten as

follows:

∑

t∈T

∑

j∈J

fjt xjt +
∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijt y
s
ijt. (2.1.7)

The model 
an now be expli
itly written as a two�stage program wherein the �xed 
osts

on the �rst stage are in fa
t expe
ted �xed 
osts. Throughout this text we will 
onsider
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mainly the form (2.1.1), but it should be stressed on
e more that lo
ation de
isions make

the DUFLPU non�separable by s
enarios as those de
isions must be valid for all s
enarios.

The �rst te
hnique developed to solve the DUFLPU is a primal-dual heuristi
 approa
h.

In order to apply this heuristi
, we present next the dual problem, the 
ondensed dual

problem and the 
omplementary sla
kness 
onditions between the dual and primal prob-

lems. The forth
oming formulations are 
ru
ial for the algorithm's des
ription whi
h is

only detailed in se
tion 3.1 for the interested readers.

2.1.1 Dual problem and 
omplementary sla
kness 
onditions

Consider the linear programming (LP) relaxation of the primal problem de�ned by

(2.1.1)�(2.1.4) and where restri
tions (2.1.5) and (2.1.6) are repla
ed by nonnegativ-

ity 
onstraints. De�ning in (2.1.1) Csijt = pscsijt and F s
jt = psf s

jt , and 
onsidering dual

variables vsit , ws
ijt and uj asso
iated with the restri
tions (2.1.2), (2.1.3) and (2.1.4),

respe
tively, the dual problem is given by:

max
∑

i∈I

∑

t∈T

∑

s∈S

δsit v
s
it −

∑

j∈J

uj (2.1.8)

subje
t to

vsit − ws
ijt ≤ C

s
ijt ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.1.9)

∑

i∈I

∑

s∈S

T
∑

τ=t

ws
ijτ − uj ≤

∑

s∈S

F s
jt ∀j ∈ J, t ∈ T , (2.1.10)

ws
ijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.1.11)

uj ≥ 0 ∀j ∈ J. (2.1.12)

For feasible variables vsit, by 
onstraints (2.1.9) and (2.1.11), we may set

ws
ijt = max{0, vsit − C

s
ijt} ∀i, j, t, s, (2.1.13)

to obtain the 
ondensed dual problem:

max
∑

i∈I

∑

t∈T

∑

s∈S

δsit v
s
it −

∑

j∈J

uj (2.1.14)

subje
t to

∑

i∈I

∑

s∈S

T
∑

τ=t

max{0, vsiτ − C
s
ijτ} − uj ≤

∑

s∈S

F s
jt ∀j, t, (2.1.15)
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uj ≥ 0 ∀j. (2.1.16)

The 
orresponding sla
k variables πjt for 
onstraints (2.1.15) are given by:

πjt =
∑

s∈S

F s
jt −

∑

i∈I

∑

s∈S

T
∑

τ=t

max{0, vsiτ − C
s
ijτ} + uj ∀j, t. (2.1.17)

Then, the 
omplementary sla
kness 
onditions are:

πjt xjt = 0 ∀j, t, (2.1.18)

vsit

(

∑

j

ysijt − δsit

)

= 0 ∀i, t, s, (2.1.19)

ws
ijt

(

t
∑

τ=1

xjτ − ysijt

)

= 0 ∀i, j, t, s, (2.1.20)

uj

(

1−
∑

t

xjt

)

= 0 ∀j, (2.1.21)

ysijt
(

vsit − C
s
ijt − ws

ijt

)

= 0 ∀i, j, t, s. (2.1.22)

As it is well known from duality theory, if the dual and primal solutions satisfy all 
om-

plementary sla
kness 
onditions, then the solutions are optimal. If not, the 
orresponding

primal solution is said to have gap.

2.1.2 Extensions regarding the un
ertainty in potential fa
ility

sites

It was assumed for the DUFLPU that if it is not possible to open fa
ility j at the beginning

of time period t under s
enario s, then the 
orresponding �xed 
ost is 
onsidered equal to

+∞. The �xed 
ost in
urred under that s
enario will be too high, and given the problem's

obje
tive fun
tion (2.1.1), the 
orresponding fa
ility lo
ation 
ertainly will not be sele
ted

to the set of open fa
ilities in that period of time. Consequently, this assumption will

only de
rease the number of potential fa
ility sites in that period of time.

Let us assume now that, even if it is not possible to open fa
ility j at the beginning of time

period t under s
enario s, it is still possible to open that fa
ility under other s
enario(s)

s′ 6= s for s′ ∈ S. In addition, the �xed 
ost 
an be equal to any value < +∞, i.e., it is

possible to attribute a �nite �xed 
ost to the possibility of not opening that servi
e in
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the future. This 
ost may be null (if the fa
ility will not be opened there will be no �xed


ost) or any positive value (representing 
osts no longer re
overable for instan
e).

In order to model this new and more realisti
 situation, let us assume that, for (j, t, s) ∈

J ×T ×S, the �xed 
ost f s
jt will be equal to any value in IR+

0 . In addition, let us de�ne,

for (j, t, s) ∈ J × T × S, parameter ρsjt as equal to 1 if it is possible to open fa
ility

j at the beginning of time period t under s
enario s, and 0 otherwise. As opposite to

the �rst model, in the present situation, even if ρsjt = 0, fa
ility lo
ation j remains as

a potential fa
ility site to open in period t, if and only if there is at least one s′ 6= s

with ρs
′

jt = 1. However, if xjt = 1 (fa
ility j is opened at the beginning of period t) and

ρsjt = 0 for some s
enario s, no assignments 
an be made to that fa
ility for all τ ≥ t

under that s
enario s, even if ρsjτ = 1 for some τ > t as the fa
ility is opened on
e and

the important ρ is on that period when the fa
ility is planned to be opened. Customers

will not be able to use that fa
ility under that s
enario(s) and so assignments should

not be made to that fa
ility. In terms of de
ision variables, the de�nitions introdu
ed

earlier are still valid here, though to a de
ision xjt = 1 should be also added the infor-

mation about ρsjt for all s ∈ S. In terms of problem formulations and solution approa
h,

small 
hanges have to be introdu
ed in the results already developed for the �rst problem.

The primal problem formulation is given by the primal problem (2.1.1)�(2.1.6) with


onstraints (2.1.3) repla
ed by

t
∑

τ=1

ρsjτ xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S. (2.1.23)

The above 
onstraints still impose that an existing 
ustomer 
an only be assigned to open

fa
ilities. However, in the present model, ea
h 
ustomer i in period t under s
enario s


an only be assigned to a fa
ility opened in τ and su
h that ρsjτ = 1, for τ ≤ t.

In terms of dual problem formulation, 
onsider (2.1.8)�(2.1.12) where 
onstraints (2.1.10)

are repla
ed by

∑

i∈I

∑

s∈S

T
∑

τ=t

ρsjτw
s
ijτ − uj ≤

∑

s∈S

F s
jt ∀j ∈ J, t ∈ T . (2.1.24)

Consequently, the 
ondensed dual problem is given by (2.1.14)�(2.1.16) with 
onstraints

(2.1.15) repla
ed by

∑

i∈I

∑

s∈S

T
∑

τ=t

ρsjτ max{0, vsiτ − C
s
ijτ} − uj ≤

∑

s∈S

F s
jt ∀j, t. (2.1.25)

The 
orresponding sla
k variables πjt for 
onstraints (2.1.25) are given by:
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πjt =
∑

s∈S

F s
jt −

∑

i∈I

∑

s∈S

T
∑

τ=t

ρsjτ max{0, vsiτ − C
s
ijτ} + uj ∀j, t. (2.1.26)

Finally, the 
omplementary sla
kness 
onditions are given by (2.1.18)�(2.1.22) where


onditions (2.1.20) are repla
ed by:

ws
ijt

(

t
∑

τ=1

ρsjτxjτ − ysijt

)

= 0 ∀i, j, t, s. (2.1.27)

In spite of this model being more general than the DUFLPU �rst introdu
ed, it requires

not only more (input) parameters but also additional information must be given whenever

lo
ation de
isions are taken. Mainly due to simpli
ity reasons, throughout this work we

will assume only the �rst situation des
ribed for the DUFLPU, hopping that this de
ision

will 
ontribute to an easier reading of this text.

2.2 Dynami
 un
apa
itated lo
ation problem under un-


ertainty with a regret based measure of robustness

We propose now a variation of the DUFLPU where a regret based measure of robustness

is in
orporated. The aim of this problem is still to �nd a good solution that performs

well a
ross all possible s
enarios, through the minimization of the expe
ted total 
ost

over all possible s
enarios, but the provided solution, if exists, is subje
t to additional


onstraints being a more robust solution in a 
ontext of un
ertainty. The 
on
ept of

regret is well known in the literature and has been used mainly in stati
 s
enario�based

lo
ation models (e.g., Snyder [82℄, Snyder and Daskin [83℄, Lim and Sonmez [52℄). In

simple terms, taking into a

ount that a de
ision has to be made 
onsidering several dif-

ferent s
enarios, regret 
an be understood as a measure of how mu
h will we lose due to

the fa
t that the optimal solution of the s
enario that 
ame to o

ur was not implemented.

In order to formulate and des
ribe the problem, let us �rst introdu
e additional notation

as well as some important de�nitions that were adapted from the stati
 
ase. For a given

solution (x, y) and for ea
h s ∈ S, let us represent the total 
ost a
hieved under s
enario

s by ζs(x, y) :

ζs(x, y) =
∑

t∈T

∑

j∈J

f s
jt xjt +

∑

t∈T

∑

i∈I

∑

j∈J

csijt y
s
ijt. (2.2.1)
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As already noted, lo
ation de
isions to the DUFLPU must be valid for all s
enarios.

Consider now ea
h single�s
enario minimization problem wherein the obje
tive fun
tion

is to minimize the total 
ost for a given s
enario only. We are fa
ed with |S| deterministi


dynami
 un
apa
itated fa
ility lo
ation problems (DUFLP), ea
h 
orresponding to one

single s
enario. Throughout this text we will refer to ea
h single�s
enario minimization

problem as DUFLP

s
and represent its optimal obje
tive fun
tion value by ζ∗s . Let us

assume that ζ∗s is known and su
h that ζ∗s > 0, for all s ∈ S.

Taking into a

ount that we are fa
ed with di�erent possible s
enarios (data 
hange for

di�erent s
enarios), the best solution of ea
h DUFLP

s
is expe
ted to be di�erent not only

from the best ones a
hieved under other s
enarios but from the best of the DUFLPU as

well. In what follows, we are only interested in feasible solutions of the DUFLPU that

are also feasible to DUFLP

s
for all s ∈ S. In the present 
ase, this will always happen

sin
e we are dealing with an un
apa
itated problem.

De�nition 2.2.1 The Regret of a feasible solution (x, y) of the DUFLPU asso
iated with

a given s
enario s ∈ S is de�ned by the di�eren
e between the value of the solution under

that s
enario and the optimal value of that s
enario:

Regs(x, y) = ζs(x, y)− ζ∗s . (2.2.2)

The relative regret is given by Regs(x, y)/ζ∗s .

Throughout this text we will use the terms regret and relative regret inter
hangeably.

The aim is to minimize the expe
ted total 
ost ensuring that the relative regret for ea
h

s
enario does not ex
eed a pre-spe
i�ed value α, α ≥ 0. Thus, for a given α ≥ 0, the

dynami
 un
apa
itated lo
ation problem under un
ertainty with a regret based measure

of robustness, in short α-DUFLPU, is formulated by (2.1.1)�(2.1.6) and the following


onstraints:

ζs(x, y) ≤ (1 + α)ζ∗s ∀s ∈ S. (2.2.3)

Constraints (2.2.3) impose that relative regret for ea
h s
enario is no greater than α.

A solution for the problem α-DUFLPU is su
h that the obje
tive fun
tion value under

any s
enario is at most 100α% worse than the s
enario's optimal solution. Thus, and

depending on the α value, a more demanding and robust solution is expe
ted to be found

for this problem than the solution to the DUFLPU, that 
an be seen as a∞-DUFLPU.We

will 
all throughout this text a feasible solution of the α-DUFLPU an α-robust solution.

De�nition 2.2.2 For a given α ≥ 0, a feasible solution of α-DUFLPU is 
alled an

α-robust solution.
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The approa
h developed to obtain α-robust solutions is des
ribed in se
tion 3.3.

2.2.1 Expe
ted total 
ost versus regret: illustrative examples

The e�e
t of in
orporating parameter α into the proposed dynami
 lo
ation problem

under un
ertainty is now illustrated. The tradeo� between the expe
ted total 
ost and α

is also analysed. It is worthwhile to study the 
ompromise that exists between expe
ted

total 
ost and maximum regret as the DM will be able to make a more informed de
ision,


hoosing the solution that is most �tted to his attitude towards risk.

Considering three randomly generated problem instan
es, problem α-DUFLPU has been

solved iteratively for several values of α, and the best feasible solution found in ea
h

iteration was re
orded. Initially, α was set to a large value and then it was redu
ed by

0.01 units at ea
h iteration until no feasible solution 
ould be found.

Example 2.2.1 Consider an instan
e with 10 time periods, 20 potential fa
ility sites,

100 possible 
ustomers and 5 s
enarios.

For this parti
ular instan
e, it was possible to prove that α-DUFLPU is infeasible for

α < 0.07. The best expe
ted total 
osts a
hieved for ea
h α are plotted in Figure 2.2.1.

We 
an see that the expe
ted total 
ost has a non de
reasing pattern as α de
reases.

In addition, the steep 
urve indi
ates that large redu
tions in regret are possible with

small in
reases in expe
ted total 
ost. These results are in a

ordan
e with similar results

already observed in stati
 models. A
hieving a more robust solution 
an sometimes be

a

omplished by small 
hanges in a given solution. This is depi
ted in Figure 2.2.2, where

two situations are 
ompared: 
onsidering a maximum relative regret of 19% and 7%. For

this parti
ular example, we 
an see that small 
hanges in lo
ation de
isions 
an lead to

more robust solutions.

Figure 2.2.1: Example 2.2.1:Expe
ted total 
ost versus α.
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Table 2.2.1: Example 2.2.1: Expe
ted total 
ost versus α.

α Best Obj In
rease Lo
ation De
isions

t=1 t=2 t=3 t=4 t=6

0.19 128127 0.0% 9;11;13;14;17 10;18 7 4 2

0.17 128151,2 0.02% 9;11;13;14;17 10;18 7 4 �

0.09 128257,8 0.09% 6;9;11;13;14;17 18 � 4;16 �

0.07 128433,4 0.24% 9;11;13;14;17 18 � 4;16 2

Table 2.2.1 depi
ts the solutions in detail. We report the best obje
tive fun
tion values

found for some values of α as well as the 
orresponding lo
ation de
isions. In 
olumn

'In
rease' we report the in
rease (in per
entage) of the best obje
tive fun
tion values

relative to the best one a
hieved with α = 0.19, given by the diferen
e between the best

obje
tive fun
tion value for ea
h α and the best one with α = 0.19 divided by this latter

value. We 
an see that it is possible to de
rease the relative regret from 19% to only 7%

with a slightly in
rease of 0.24% in the expe
ted obje
tive fun
tion value (illustrated in

Figure 2.2.2). Furthermore, we 
an gather additional information about this parti
ular

problem, su
h as the dis
overy of a set of '
ore' fa
ilities, the ones that stay open for all

values 
onsidered for parameter α.

Example 2.2.2 Consider two instan
es of the same size: 10 periods of time, 20 potential

fa
ility sites, 100 possible 
ustomers and 10 s
enarios.

The �rst instan
e proved to be infeasible for α < 0.06 and the se
ond one for α < 0.17.

The best solutions a
hieved for both problem instan
es, presented in Figure 2.2.3 and

Table 2.2.2, show a similar behavior to the one observed in example 2.2.1. It is also

possible to identify for both instan
es the 
orresponding set of 
ore fa
ilites.

Table 2.2.2: Example 2.2.2: Expe
ted total 
ost versus α.

α Best Obj In
rease Lo
ation De
isions

t=1 t=2 t=3 t=4 t=5 t=6

Inst 1 0.19 118189.8 0.00% 5;7;8;14 4;12;16 18 � � �

0.18 118580.0 0.33% 5;7;8;14 12;16 18 � � �

0.1 118614.8 0.36% 5;7;8;14;20 12;16 18 � � �

0.06 118757.5 0.48% 5;7;8;14;18 12;16 � � � �

Inst 2 0.22 106920.6 0.00% 6;7;10 � � � 5 17

0.21 107088.5 0.16% 6;7;10 � 17 � 5 �

0.2 108047.1 1.05% 6;10 � 17 � 5 �

0.18 108251.6 1.24% 6;10 � 17 8 5 �

0.17 108339.1 1.33% 6;10 � 17;20 � 5 �
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Figure 2.2.2: Example 2.2.1: Best lo
ation de
isions for α = 0.19 and α = 0.07.

(a) Initial network (b) t=1

(
) t=2 (d) t=3

(e) t=4 (f) t=6

(a) Initial network. White nodes represent potential fa
ility sites and gray nodes possible


ustomers. (b) � (f) Networks with best lo
ation de
isions. (•) represent fa
ilities opened
both for α = 0.19 and α = 0.07. (�) represent fa
ilities opened only for α = 0.19. (N)
represent fa
ilities opened only for α = 0.07.
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Figure 2.2.3: Example 2.2.2: Expe
ted total 
ost versus α.

(a) Instan
e 1 (b) Instan
e 2

The three instan
es used here for illustration purposes depi
t the general behavior ob-

served in similar problems. It is also possible to see that ea
h problem has its own

features, and there 
an be huge variations in the obtained results (namely regarding the

minimum relative regret value for whi
h the problem is still feasible) even for problems

of the same dimension.

2.3 Multi�obje
tive dynami
 un
apa
itated lo
ation pro-

blem under un
ertainty

Let us assume that it is not possible to 
onsider a priori any kind of assumptions regarding

the risk pro�le of the DM or even about his preferen
es. Then one possible approa
h is

to 
onsider the dynami
 fa
ility lo
ation problem under un
ertainty as a multi�obje
tive

problem where ea
h s
enario will give rise to one obje
tive. Thus, a set of obje
tive

fun
tions is de�ned instead of one single obje
tive fun
tion and a set of solutions is


al
ulated instead of only one. Within this 
ontext, the DM will have a mu
h broader

view of the 
ompromises that exist among the possible s
enarios.

Re
alling that the de�nition of ζs(x, y) is (2.2.1), the multi�obje
tive dynami
 un
apa
-

itated fa
ility lo
ation problem under un
ertainty, in short MODUFLPU, is de�ned as

follows:

(MODUFLPU) min {ζ1(x, y), ..., ζs(x, y), ..., ζS(x, y)} (2.3.1)

s.t.

(2.1.2)�(2.1.6).

In a multi-obje
tive problem, the solutions of interest are designated Pareto�e�
ient/non�

dominated solutions. In the present problem, non-dominated solutions will be the ones

su
h that it is not possible to improve the obje
tive fun
tion of one given s
enario without

deteriorating the obje
tive fun
tion of at least one other s
enario (de�nition 2.3.1).
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De�nition 2.3.1 Let (x, y) be an admissible solution for MODUFLPU. (x, y) is a Pareto�

e�
ient solution if and only if there is no other solution (x1, y1) su
h that ζs(x1, y1) ≤

ζs(x, y) for all s ∈ S and ζs(x1, y1) < ζs(x, y) for at least one s
enario s. The image of

an e�
ient solution in the obje
tive spa
e is 
alled a non�dominated solution.

Regardless the preferen
es or pro�le of the DM, assuming only his rationality, the in-

terest goes to Pareto�e�
ient solutions only. The pro
edure followed in this work to

generate non�dominated solutions to the MODUFLPU is only des
ribed and illustrated

in se
tion 3.4. In the rest of this se
tion our attention is restri
ted to results in whi
h the

approa
h was designed and to establish relations with other problems well known from

the literature.

Figure 2.3.1: Sets of non�dominated solutions.

(a) Instan
e with two s
enarios (b) Instan
e with three s
enarios

The non�dominated solutions of a multi�obje
tive problem 
an be a
hieved by solving

auxiliary programming problems. When dealing with integer or mixed-integer problems,


are has to be taken though to guarantee that the 
hosen pro
edure is 
apable of 
al
u-

lating non�supported non�dominated solutions (lying inside duality gaps). In this work

we resort to a result due to Ross and Soland [77℄, where an auxiliary mono�obje
tive

programming problem is 
onsidered, the well known optimization of a weighted sum of

the obje
tive fun
tions. The solutions to the original problem MODUFLPU are then

a
hieved by solving the auxiliary problem that is de�ned next.

Let ν ∈ IRS
be a ve
tor where ea
h 
omponent νs represents the weight asso
iated

with ea
h obje
tive fun
tion ζs of MODUFLPU, su
h that νs > 0 for all s ∈ S and

∑

s∈S νs = 1. In addition, let M ∈ IRS
be a ve
tor with 
omponents Ms being upper

bounds to the obje
tive fun
tion (total 
ost) a
hieved in ea
h s
enario s. It should be

stressed here that those weights ν do not represent any kind of DM's preferen
es. Those

weights 
an and should be 
hanged in a

ordan
e with M for instan
e (further details

about this issue are given in se
tion 3.4).
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The auxiliary programming problem to the MODUFLPU, in short AUX, is formulated

as follows:

(AUX) min
∑

s∈S

νsζs(x, y) (2.3.2)

s.t.

(2.1.2)�(2.1.6)

ζs(x, y) ≤Ms ∀s ∈ S. (2.3.3)

The next result, based in Ross and Soland [77℄, is parti
ularly important in what 
on-


erns the 
al
ulus of non�dominated solutions to MODUFLPU. Afterwards, some results

related with well known problems from the literature are given.

Proposition 2.3.1 For any ν ∈ IRS
su
h that νs > 0 for all s ∈ S and

∑

s∈S νs = 1,

(x, y) is an e�
ient solution of MODUFLPU if and only if it is the optimal solution of

AUX for someM∈ IRS
.

Proposition 2.3.2 The optimal solution of DUFLPU, the minimum expe
ted total 
ost

over all s
enarios, is a non�dominated solution of MODUFLPU.

Proof: Considering in AUX, for all s ∈ S, νs = ps and Ms large enough (
onstraints

(2.3.3) are redundant), the optimal solution of AUX is the minimum expe
ted total 
ost.

From proposition 2.3.1 we 
an 
on
lude that this solution is a non�dominated solution

of MODUFLPU.

Proposition 2.3.3 An α-robust solution is a non�dominated solution of MODUFLPU.

Proof: Considering in AUX, for all s ∈ S,Ms = (1+α)ζ∗s , the optimal solution of AUX

is α-robust as AUX has an α-DUFLPU form. In addition, from proposition 2.3.1, the

solution is a non-dominated solution to MODUFLPU.

AUX 
an also be used to 
al
ulate an e�
ient min-max solution. In a �rst stage, it is

ne
essary to solve the problem of minimizing the maximum 
ost under all s
enarios. This


an be done by solving the following programming problem:

(MIN-MAX) min ̺ (2.3.4)

s.t.

(2.1.2)�(2.1.6)

ζs(x, y) ≤ ̺ ∀s ∈ S. (2.3.5)
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Let ̺∗ be the optimal obje
tive fun
tion value of MIN-MAX.

Proposition 2.3.4 If in 
onstraints (2.3.3) Ms is de�ned su
h that Ms = ̺∗ for all

s ∈ S, then AUX will generate an e�
ient min�max solution.

Proof: Taking into a

ount that ̺∗ is the optimum of MIN-MAX (the obje
tive fun
tion

value for any s
enario s will be less than or equal to this value), it is easy to see that if

in 
onstraints (2.3.3)Ms is de�ned su
h thatMs = ̺∗ for all s ∈ S, then any e�
ient

solution 
al
ulated will also be a min-max solution.

A similar reasoning 
an be applied in order to obtain an e�
ient solution that minimizes

maximum regret.

Proposition 2.3.5 Consider problem MIN-MAX with restri
tions (2.3.5) repla
ed by

the following set:

Regs(x, y) ≤ ̺ ∀s ∈ S. (2.3.6)

If in AUX Ms is de�ned su
h that Ms = ζ∗s + ̺∗ for all s ∈ S, then AUX will generate

an e�
ient solution that minimizes maximum regret.

Proof: Taking into a

ount that regret for any s
enario is no greater than ̺∗, it is easy

to see that if in 
onstraints (2.3.3)Ms is de�ned su
h thatMs = ζ∗s + ̺∗ for all s ∈ S,

then any e�
ient solution 
al
ulated minimizes maximum regret.

2.4 Dynami
 
apa
itated lo
ation problems under un-


ertainty

The simultaneous 
onsideration of di�erent possible s
enarios and 
apa
ities asso
iated

with fa
ilities brings up other interesting questions and additional di�
ulties arise. This

se
tion is devoted to the modelling of 
apa
itated fa
ility lo
ation problems being ex-

tensions of some of the un
apa
itated models presented earlier. We �rst propose several

mono�obje
tive approa
hes that later will lead us to multi�obje
tive ones. We restri
t

our analysis to those problems in whi
h 
apa
ities are inputs to the problem, assumed to

be known pre
isely. We leave out of this study problems where the 
apa
ity (size) of fa-


ilities are de
ision variables (usually known as the 
lass of 
apa
ity planning/expansion

problems).

All the problem instan
es 
onsidered in the examples shown throughout this se
tion have

been randomly generated and solved by CPLEX MIP optimizer, v12.4.
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2.4.1 Mono-obje
tive approa
hes

Let us introdu
e the following notation, in addition to the one previously de�ned. For

j ∈ J , Kj denotes the 
apa
ity of fa
ility j in ea
h time period (expressed in units of

demand); for (i, t, s) ∈ I × T × S, let dsit be the total demand of 
ustomer i during time

period t under s
enario s; for (i, j, t, s) ∈ I × J ×T ×S, csijt denotes the assignment 
ost

of 
ustomer i's total demand to fa
ility j in time period t under s
enario s (in this 
ase

it is a fun
tion of dsit and the distan
e distsijt between (i, j) in t under s, here the unit

transportation 
ost, and thus csijt = distsijt d
s
it). In terms of de
ision variables: xjt equals

1 if fa
ility j is opened at the beginning of period t, and 0 otherwise; ysijt represents the

fra
tion of 
ustomer i's demand assigned to fa
ility j in time period t under s
enario s.

We assume here that the demand of ea
h 
ustomer 
an be assigned to more than one

fa
ility.

Considering the DUFLPU, de�ned by (2.1.1)�(2.1.6), a possible extension of this problem

where 
apa
ities are asso
iated with fa
ilities, naturally 
alled dynami
 
apa
itated lo-


ation problem under un
ertainty, in short DCFLPU, 
an be formulated in an extensive

form as follows:

(DCFLPU) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jt xjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijt y
s
ijt (2.4.1)

subje
t to

∑

j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.4.2)

∑

i∈I

dsity
s
ijt ≤ Kj

t
∑

τ=1

xjτ ∀j ∈ J, t ∈ T , s ∈ S, (2.4.3)

∑

t∈T

xjt ≤ 1 ∀j ∈ J, (2.4.4)

xjt ∈ {0, 1} ∀j ∈ J, t ∈ T , (2.4.5)

ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T . (2.4.6)

The above formulation is very similar to the one de�ned to the DUFLPU, namely the

obje
tive fun
tion (2.4.1) that minimizes the expe
ted total 
ost (�xed plus assignment


osts) over all s
enarios. The di�eren
e goes to 
onstraints (2.4.3) whi
h di
tate that


ustomers' demand 
an only be assigned to open fa
ilities and no fa
ility 
an supply

more than its 
apa
ity. This problem will have at least one admissible solution if and

only if total demand does not ex
eed total 
apa
ity under all possible s
enarios. However,
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it 
an be the 
ase that total demand may not be satis�ed under some s
enario(s) given the

established 
apa
ities. Consequently, the above problem 
an be infeasible, as opposite to

the DUFLPU where an admissible solution always exists for all s
enarios. For illustrative

purposes, 
onsider the small problem instan
e given in example 2.4.1.

Example 2.4.1 Consider a problem instan
e with 2 possible s
enarios, 2 time periods,

2 poten
ial fa
ility lo
ations and 4 possible 
ustomers. The possible demands of ea
h


ustomer in ea
h time period for both s
enarios are presented in table 2.4.1. The last

row presents total demands. In addition, 
onsider K1 = 90 and K2 = 150 (total potential


apa
ity equals 240 units).

Table 2.4.1: Possible 
ustomers'demand, (d1it, d
2
it).

t 1 2

1 (85,85) (93,88)

i 2 (49,49) (48,53)

3 (25,25) (28,23)

4 (68,68) (73,61)

(227,227) (242,225)

We 
an see that total 
apa
ity will not be su�
ient to satisfy total demand in time period

two under s
enario one. The above major problem 
an then be 
lassi�ed as infeasible

or a problem without 
omplete re
ourse, as it is designated in Sto
hasti
 Programming

be
ause there is not an admissible solution for all possible s
enarios.

A possible extension of model DCFLPU is to 
onsider unmet demand. More pre
isely,

when lo
ation de
isions are made, it is expli
itly assumed by the DM that total demand

may be unsatis�ed in the future. In addition, it is also assumed that a penalty 
ost is

in
urred for ea
h unit of demand not satis�ed.

Let us represent the fra
tion of the unmet demand of 
ustomer i during t and under

s by de
ision variable esit, for all (i, t, s). In addition, βs
it denotes the total 
ost of not

ful�lling the 
ustomer i's total demand during t under s. We 
onsider here a general

situation where the penalty 
osts 
an be di�erent for di�erent 
ustomers, but an equal

penalty 
ost for all 
ustomers 
ould also be 
onsidered. An extension of the DCFLPU


onsidering possible unmet demand 
an then be formulated as follows:

(DCFLPUII) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijty
s
ijt+

∑

s∈S

∑

t∈T

∑

i∈I

ps βs
it e

s
it

(2.4.7)
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subje
t to

∑

j∈J

ysijt + esit = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.4.8)

(2.4.3), (2.4.4),(2.4.5), (2.4.6),

esit ≥ 0 ∀i ∈ I, t ∈ T , s ∈ S. (2.4.9)

The obje
tive fun
tion (2.4.7) minimizes the expe
ted total 
osts in
luding �xed, assign-

ment and penalty 
osts asso
iated with unmet demands in the third term. Constraints

(2.4.8) ensure that the total demand of ea
h 
ustomer is distributed between met and

unmet demand.

Feasibility is guaranteed by formulation DCFLPUII and its best solution will result of

the 
ompromise de�ned by the problem's data. In parti
ular, the values of variables esit

will 
ertainly depend on the diferen
e between assignment 
osts and 
osts of not satisfy-

ing demand. Let us 
onsider again the problem instan
e of example 2.4.1 in whi
h total

demand in period two under s
enario one ex
eeds in two units the potential 
apa
ity.

In order to �t this problem to this new situation, we have 
onsidered for all 
ustomers

the penalty 
osts higher than the 
orresponding assignment 
osts, for illustrative pur-

poses only. The optimal solution for this new problem, where obviously both fa
ilities

are opened, results with e112 = 0.0215 and esit = 0.0 for all (i, t, s) 6= (1, 2, 1). Hen
e, and

as expe
ted, only two units of demand in time period two under s
enario one are not

satis�ed, in the present solution belonging to 
ustomer one.

Let us return to model DCFLPU and to those problems where the potential total 
a-

pa
ity is su�
ient to satisfy total demand. For instan
e, suppose that a third potential

fa
ility site with K3 ≥ 2 is added to the problem's data of example 2.4.1. First, it is

easy to see that the DCFLPU is feasible and has several admissible solutions in whi
h

demand is fully satis�ed. However, the best one will be dependent on the 
apa
ities,

setup 
osts of those three fa
ilities, assignment 
osts, in summary the problem's data.

Assuming here the extreme situation in whi
h the 
osts asso
iated with that third fa-


ility are all higher than the 
osts asso
iated with the other two servi
es, the question

goes to the pra
ti
ability in terms of 
osts of one solution where three fa
ilities have

to be opened in order to satisfy total demand (in the present 
ase, a third fa
ility is

opened to satisfy only the remaining two units under one single s
enario). This extreme

example is only to illustrate that, in spite of the DCFLPU being feasible, guaranteeing
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that total demand is satis�ed under all possible s
enarios, 
omes with a 
ost. Note that

model DCFLPUII 
an also be applied whenever the potential total 
apa
ity is su�
ient

to satisfy total demand. It 
an be used to analyse the tradeo� between expe
ted total


osts, in
luding �xed and assignment 
osts only, and expe
ted total 
osts asso
iated with

unmet demand. The penalty 
osts represent the weight or importan
e given to satisfying

demand. It is easy to see from the obje
tive fun
tion (2.4.7) that if higher penalty 
osts

are 
onsidered, more satis�ed demand is expe
ted, leading to an in
rease of the expe
ted

total 
osts asso
iated with satis�ed demand; on the other hand, smaller penalty 
osts

will lead to solutions with more unsatis�ed demand but also with smaller expe
ted 
osts

for satisfying demand. This reasoning leads us to multi-obje
tive approa
hes that will be

dis
ussed in the following sub�se
tion.

Before going any further, we shall remark that the above situations 
ould be modelled

through model DCFLPU with additional features instead of model DCFLPUII . Assume

that in the set of potential fa
ility sites there is a potential fa
ility site indexed by j = 0,

for instan
e, with zero �xed 
osts and with a huge 
apa
ity (at least large enough to

satisfy total demand). Throughout this text we will denote this new set of potential

fa
ility sites by J0 = J ∪ {0} su
h that f s
0t = 0 for all (t, s) and K0 = +∞. The demand

assigned to this virtual fa
ility, ysi0t for all (i, t, s), represents unsatis�ed demand, and

the assignment 
osts between this virtual fa
ility and 
ustomers, csi0t for all (i, t, s), are

in fa
t penalty 
osts. Hen
e, if in model DCFLPU, de�ned by (2.4.1)�(2.4.6), set J is

repla
ed by set J0 we get also an extension of DCFLPU with possible unmet demand.

Furthermore, 
onsidering csi0t = βs
it for all (i, t, s), both models DCFLPU and DCFLPUII

provide the same solution where ysi0t = esit for all (i, t, s). Considering this notation, the

optimal solution for the problem of example 2.4.1 with unmet demand is partially de-

pi
ted in �gure 2.4.1.

A di�erent perspe
tive 
an be given of the above problem. Assume that total demand

should be always satis�ed (at any 
ost). A possibility is to assume expli
itly future 
apa
-

ity shortages. Let us assume also that 
osts are asso
iated to su
h shortages, interpreted

in this 
ontext as penalty 
osts in
urred by the in
rease of the 
apa
ities (by having to

pay extra hours to employees, or buy some units in outsour
ing for instan
e). Let us

represent the 
apa
ity shortage of ea
h open fa
ility j during time period t and s
enario

s by de
ision variable osjt. Let θ denote the 
ost of ea
h unit of demand that is not sat-

is�ed by ea
h open fa
ility (equal for all fa
ilities). We assume also that shortage 
osts

are equal for all fa
ilities. An extension of the DCFLPU 
onsidering possible 
apa
ity

shortages 
an then be formulated as follows:
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Figure 2.4.1: Optimal solution for example 2.4.1 with unsatis�ed demand.
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(DCFLPUIII) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijty
s
ijt+

∑

s∈S

ps
∑

t∈T

∑

j∈J

θ osjt
(2.4.10)

s.t.

(2.4.2),

∑

i∈I

dsity
s
ijt ≤ Kj

t
∑

τ=1

xjτ + osjt ∀j ∈ J, t ∈ T , s ∈ S, (2.4.11)

osjt ≤M

t
∑

τ=1

xjτ ∀j ∈ J, t ∈ T , s ∈ S, (2.4.12)

(2.4.4),(2.4.5), (2.4.6),

osjt ≥ 0 ∀j ∈ J, t ∈ T , s ∈ S. (2.4.13)

The obje
tive fun
tion (2.4.10) minimizes the expe
ted total 
osts in
luding in the third

term the 
osts asso
iated with 
apa
ity shortages. Constraints (2.4.11) and (2.4.12),

where M represents a very large number, ensure that 
ustomers' demand 
an only be
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assigned to open fa
ilities and impose that the amount supplied by ea
h open fa
ility

must be no greater than its available 
apa
ity plus its 
apa
ity shortage. Note that an a

priori maximum shortage of ea
h fa
ility 
ould be also imposed, instead of 
onsidering M

in 
onstraints (2.4.12), although, in this 
ase, it is not possible to guarantee the existen
e

of an admissible solution.

2.4.2 Multi-obje
tive approa
hes

In this sub�se
tion we propose several multi-obje
tive approa
hes to the problems under

study, given several perspe
tives to 
apa
itated problems as well. In order to formulate

the next problems, 
onsider the set of potential fa
ility sites given by J0 = J ∪ {0},

in order to in
lude possible unsatis�ed demand into the models as explained above. In

what follows, we still represent the total 
ost (fa
ility lo
ation and assignment of satis�ed

demand 
osts) a
hieved in s
enario s by ζs(x, y). In addition, we represent the total 
ost

asso
iated with unmet demand in s
enario s by Us(y) :

Us(y) =
∑

t∈T

∑

i∈I

csi0ty
s
i0t. (2.4.14)

We �rst propose a bi�obje
tive problem where expe
ted total 
osts, in
luding �xed and

assignment 
osts only, and the expe
ted total penalty 
ost (asso
iated with unmet de-

mands) give rise to two distin
t obje
tive fun
tions. We 
an formulate this bi�obje
tive

dynami
 
apa
itated fa
ility lo
ation problem under un
ertainty, in short BODCFLPU,

as follows, where set J is repla
ed by set J0 in the set of 
onstraints:

(BODCFLPU) min

{

∑

s∈S

psζs(x, y),
∑

s∈S

psUs(y)

}

(2.4.15)

s.t.

(2.4.2)�(2.4.6).

The non-dominated solutions for this problem are the ones su
h that it is not possible to

improve the expe
ted total 
ost (�xed and assignment) for all s
enarios without deterio-

rating the expe
ted total penalty 
osts. Then, the analysis of the tradeo� between those

two obje
tives, dis
ussed earlier with model DCFLPUII , 
an be made through model

BODCFLPU, where a set of interesting solutions 
an be found and analyzed.

In order to o�er a better pi
ture of the 
ompromises that exist among the possible

s
enarios, a multi-obje
tive problem 
an be de�ned where ea
h s
enario will give rise to

one obje
tive. We are indeed proposing an extension of the multi-obje
tive approa
h

designed to the un
apa
itated 
ase, presented in se
tion 2.3, to the 
apa
itated problem.

Thus, and now without making any assumptions about the risk pro�le or about the
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preferen
es of the DM, we 
an formulate a multi�obje
tive dynami
 
apa
itated fa
ility

lo
ation problem under un
ertainty, in short MODCFLPU, as follows, where set J is

repla
ed by set J0 in the set of 
onstraints:

(MODCFLPU) min {ζ1(x, y) + U1(y), ..., ζs(x, y) + Us(y), ..., ζS(x, y) + US(y)}

(2.4.16)

s.t.

(2.4.2)�(2.4.6).

The non�dominated solutions of MODCFLPU, as well as the non�dominated solutions

of BODCFLPU, 
an be a
hieved by solving the 
orresponding auxiliary programming

problems. We omit in this text their formulations taking into a

ount its resemblan
e

to the MODUFLPU 
onsidered in se
tion 2.3. The non�dominated solutions 
an also be

a
hieved following the pro
edure illustrated in se
tion 3.4 for the MODUFLPU.

Strongly related with the type of fa
ilities under study, as well as the produ
ts or servi
es

provided by su
h fa
ilities, in reality it 
an be very di�
ult to estimate the unmet demand


osts. This task 
an be easier if there are supply 
ontra
ts that determine the fees that

have to be paid for ea
h unit of demand not satis�ed, but it 
an be a hard task as in

some health 
are servi
es for instan
e. In the models proposed so far, those 
osts are

given (possibly with un
ertainty), but we now drop this requirement. In what follows,

we may still have possible s
enarios where total demand may not be satis�ed. However,

the 
osts asso
iated with unsatis�ed demand are not known, not even with un
ertainty.

For simpli
ity reasons, we will represent the total unmet demand in s
enario s by Us(y)

but, under su
h 
ir
umstan
es, de�ned as follows:

Us(y) =
∑

t∈T

∑

i∈I

ysi0t. (2.4.17)

Note that, if (2.4.17) is 
onsidered instead of (2.4.14) in BODCFLPU, then the non-

dominated solutions of this model will represent 
ompromises between expe
ted total

unmet demand and expe
ted total 
ost.

Motivated by the previous model and taking into a

ount the unknown penalty 
osts, a

new problem 
an also be modelled that 
an provide additional information to the DM. To

the obje
tive fun
tions 
orresponding to the total 
osts in ea
h of the possible s
enarios

we add the set of fun
tions 
orresponding to the total unmet demand in ea
h s
enario

(if penalty 
osts are known, the total unmet demand 
ost 
ould be 
onsidered instead).

A new multi�obje
tive problem 
an be de�ned with 2S obje
tive fun
tions, where ea
h

s
enario will give rise to two distin
t obje
tives. The aim is to minimize simultaneously

total 
osts and total unmet demand for ea
h of the possible s
enarios.
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The new multi�obje
tive problem 
an then be formulated as follows, where set J is

repla
ed by set J0 in the set of 
onstraints:

(MODCFLPUII) min {ζ1(x, y), ..., ζs(x, y), ..., ζS(x, y), U1(y), ..., US(y)} (2.4.18)

s.t.

(2.4.2)�(2.4.6).

The non�dominated solutions for the present problem are the ones su
h that it is not

possible to improve the total 
ost (or total unmet demand) of one given s
enario with-

out deteriorating, at least, the total unmet demand (or total 
ost) of that s
enario or

the total 
ost or total unmet demand of one other s
enario. Bellow, we present an il-

lustrative example with a small problem instan
e. We report and analyse some of the

non�dominated solutions 
al
ulated for this parti
ular instan
e, with only two possi-

ble s
enarios but where the tradeo� between the four obje
tives 
an be observed. The

auxiliary programming problem to the MODCFLPUII , that has been 
onsidered in the


al
ulation of non�dominated solutions, is formulated next.

Let ν1 ∈ IRS
and ν2 ∈ IRS

be the ve
tors of weights asso
iated with the obje
tive

fun
tions of MODCFLPUII , su
h that ν1s > 0 and ν2s > 0 for all s ∈ S, and
∑

s∈S(ν1s +

ν2s) = 1. In addition,M1 ∈ IRS
andM2 ∈ IRS

represent the ve
tors of upper bounds to

the obje
tive fun
tions. Then, the auxiliary programming problem to the MODCFLPUII

is formulated as follows:

(CAUX) min
∑

s∈S

( ν1sζs(x, y) + ν2sUs(y) ) (2.4.19)

s.t.

(2.4.2)�(2.4.6)

ζs(x, y) ≤M1s ∀s ∈ S. (2.4.20)

Us(y) ≤M2s ∀s ∈ S. (2.4.21)

Example 2.4.2 Consider a problem instan
e with 2 possible s
enarios, 5 time periods,

15 poten
ial fa
ility lo
ations (in
luding the virtual one) and 50 possible 
ustomers.

In table 2.4.2 we detail twenty non�dominated solutions of this problem instan
e that

were found following an intera
tive pro
edure (see se
tion 3.4 where this solution ap-

proa
h is applied to the MODUFLPU). For ease in the exposition of the results only,

the solutions (obje
tive fun
tion values and the 
orresponding lo
ation de
isions) are or-

dered by non de
reasing values of the total 
ost for s
enario one, i.e. ζ1. The best values
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found for ea
h of the obje
tives are in bold. We 
an see that there are several sets of

solutions with the same lo
ation de
isions, same sites and time periods in whi
h fa
ilities

are opened, although with di�erent assignment de
isions. Solutions number 1 and 2 are

su
h an example, both with the best total 
ost for s
enario 1, the total 
ost for s
enario

2 improves but with an in
rease of the unmet demand for s
enario 2. A similar behavior

is observed between solutions 5 and 11, both with the best total 
ost for s
enario 2, the

total 
ost for s
enario 1 worsens but the unmet demand for s
enario 1 de
reases. In

solutions 3 and 4, with the same lo
ation de
isions as well, total 
osts deteriorate in both

s
enarios with an improve of total unmet demand. The solutions from number 12 to 20

were obtained sear
hing the regions de�ned by smaller upper bounds to the obje
tives U1

and U2, supposing that the DM is really interested in satisfying (almost) total demand

and there will be su�
ient resour
es to rea
h su
h goals. As shown by solution number

20, it is possible in this instan
e to satisfy total demand for both s
enarios, though with

the worst total 
osts observed. We note that we have 
hosen a problem instan
e where

these solutions belong to the set of admissible solutions. However, su
h admissible solu-

tions should be further analysed by the DM to de
ide if they are 'really' admissible (the

in
rease in the 
ost that enables that total demand will be satis�ed under all s
enarios

may be unbearable). It is out of our s
ope to present all the non�dominated solutions

for this problem. Taking into a

ount that in the present model we are dealing with

2S obje
tives, within an intera
tive approa
h the information given by the DM be
omes


ru
ial in order to restri
t the regions of sear
h, mainly in those problems where a huge

number of possibilities may arise. For this instan
e some other non�dominated solutions

were found with smaller values to total unmet demand, but no more by imposing smaller

bounds to total 
osts than the ones presented here. We 
on
lude stressing that fa
ilities

9, 10, 13 and 14 are opened at the beginning of the planning horizon in all of the non-

dominated solutions found.

Suppose that instead of model MODCFLPUII the DM is only interested in analyzing the


ompromise between expe
ted total 
osts and expe
ted total unmet demand. We return

then to model BODCFLPU. For illustrative purposes, we have 
onsidered the problem's

data of example 2.4.2 and �xed equal probabilities for both s
enarios. By this example, we


an 
on�rm that models MODCFLPUII and BODCFLPU are indeed di�erent problems.

In fa
t, within the set of twenty non�dominated solutions of the multi-obje
tive problem,

eight be
ome dominated on the bi-obje
tive problem. The non�dominated solutions for

this new problem are depi
ted in Figure 2.4.2, where it is easier to see that (expe
ted)

total 
osts in
reases as total satis�ed demand also in
reases (or total unsatis�ed demand

de
reases).
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Table 2.4.2: Example 2.4.2: Time period in whi
h ea
h fa
ility is opened.

Opened Fa
ilities

ζ1 ζ2 U1 U2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 368907 207845 165.14 125.98 1 1 2 1 1 1 1 1

2 368907 89370 165.04 128.31 1 1 2 1 1 1 1 1

3 369289 88547 166.95 128.68 1 1 2 4 1 1 1 1 1

4 369360.4 89459.8 165.50 125.50 1 1 2 4 1 1 1 1 1

5 381063 85252 166.99 129.10 1 1 1 1 1 1

6 420552.6 93738 125.50 127.46 1 1 2 1 2 1 1 1 3 1 1

7 420875.6 92719 125.50 127.46 1 1 2 1 2 1 1 1 1 1

8 421516.9 91581 125.50 127.12 1 1 2 4 2 1 1 1 1 1 1

9 555128 135632.2 99.50 99.50 1 1 2 4 2 1 1 3 1 1 1 1 1 1

10 904542 385418 49.50 49.50 1 1 2 1 2 1 1 3 1 1 1 1 1 1

11 998138 85252 145.16 129.10 1 1 1 1 1 1

12 1173015 806903 19.50 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

13 1222287.5 710482 14.50 8.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

14 1339496 806903 4.50 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

15 1395351 806903 0.50 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

16 1395351 814273 0.50 0.00 1 1 1 1 2 1 3 1 1 1 1 1 1 1

17 1395351 753989 0.50 4.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

18 1396208 608225 0.50 19.50 1 1 1 1 2 1 3 3 1 1 1 1 1 1

19 1402899 806903 0.00 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

20 2552968 1529019 0.00 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.4.2: Set of non�dominated solutions 
onsidering only two obje
tive fun
tions.
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Chapter 3

Solution Approa
hes

Primal-dual heuristi
s have proven their value when dealing with fa
ility lo
ation prob-

lems, whether being stati
 and deterministi
 (Erlenkotter [30℄), deterministi
 dynami


(Van Roy and Erlenkotter [88℄, Dias et al. [21℄) or stati
 under un
ertainty (Louveaux

and Peeters [56℄). From the existing literature we have witnessed though that su
h te
h-

niques have not been applied in dynami
 fa
ility lo
ation under un
ertainty yet. The


omplexity of the mathemati
al models under study as well as the su

ess of su
h te
h-

niques when ta
kling related problems, were the main reasons to develop a primal�dual

heuristi
 to ta
kle the DUFLPUD (Marques and Dias [58℄). This dual-based heuristi


is inspired on the 
lassi
al approa
hes developed by Bilde and Krarup[13℄, Erlenkotter

[29℄ and Van Roy and Erlenkotter [88℄. The main idea of the approa
h is to obtain good

solutions from the dual problem of the 
orresponding linear programming relaxation of

the primal problem, more pre
isely from the so�
alled 
ondensed dual problem. This

te
hnique is able to �nd admissible primal and dual solutions for feasible DUFLPUD.

The heuristi
's pro
edures (dual as
ent, primal and adjustment pro
edure) detailed in

se
tion 3.1 are designed to redu
e progressively the duality gap between dual and primal

obje
tive fun
tion values. In those problems for whi
h the heuristi
 is unable to �nd

the optimal solution, it is still able to provide upper and lower bounds to the optimum

of DUFLPUD, being thus always possible to evaluate the quality of the best solution

a
hieved. In order to solve DUFLPUD to optimality this primal�dual heuristi
 is in-

tegrated in a bran
h&bound approa
h (Marques and Dias [57℄). Instead of solving to

optimality relaxed versions of the original problems in ea
h node of the bran
h&bound

tree, we de
ided to use the dual-based heuristi
 to solve ea
h problem. Considering now

model α-DUFLPU, note that if 
onstraints (2.2.3) are relaxed, a problem with the same

stru
ture of the DUFLPU is obtained, allowing then the use of the primal-dual heuristi


to ta
kle that problem. Lagrangean relaxation is a well known te
hnique that allows the


al
ulation of lower bounds for integer programming problems (Reeves [70℄, Guignard

[31℄). Hen
e, a Lagrangean relaxation and a subgradient algorithm is developed to ta
kle

α-DUFLPU.
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There are several di�erent ways of dealing with a multi�obje
tive problem. One su
h way

is the so-
alled intera
tive approa
h. The intera
tive approa
h 
onsiders inter
hanging


al
ulation and dialogue phases. In the 
al
ulation phase a non-dominated solution is


al
ulated and showed to the DM. The DM will then rea
t by giving some new informa-

tion that will guide the 
al
ulation of the new non-dominated solution to be 
al
ulated

in the next iteration. The pro
ess 
ontinues until the DM is satis�ed with a given so-

lution or the whole set of non-dominated solutions is found (see, for instan
e, Dias et

al. [20℄). The major drawba
k of this approa
h has to do with the possibility of having


al
ulation phases taking too mu
h 
omputational time, not promoting a real-time in-

tera
tion and making the pro
ess not attra
tive to the DM. The main advantage has to

do with the ability of sear
hing areas of the solutions' surfa
e that are interesting to the

DM, not wasting time or resour
es 
al
ulating solutions that the DM will simply dis
ard.

Moreover, whenever a non-dominated solution is en
ountered, there is a region in the

obje
tive spa
e that is no longer interesting (the one that is dominated by this solution),

and another region where there 
annot be any admissible solutions (or else this solution

would not be non-dominated). So, it is possible, in ea
h iteration, to eliminate regions

from further sear
hes.

Another way of dealing with multi-obje
tive problems 
onsiders the a priori and o�-line


al
ulation of the whole set (or a signi�
ant number) of non-dominated solutions. The

solutions 
an then be presented to the DM, all at the same time, or using an intera
tive

approa
h similar to the one previously des
ribed. One of the advantages of this approa
h

is that the 
omputational burden of 
al
ulating the solutions is made a priori, promoting

a faster a
tion-rea
tion intera
tion with the DM sin
e no optimizations will be done.

The 
hoi
e between an intera
tive or a generation approa
h should be done 
onsidering

several aspe
ts of the problem su
h as its dimension or the time needed to 
al
ulate a

solution for instan
e. As stated in se
tion 2.3, the set of non�dominated solutions of

MODUFLPU is a
hieved by solving the auxiliary problem(s) AUX. It is quite easy to

embed the use of AUX in both an intera
tive and an o�-line generation pro
edure, where

the whole set of e�
ient solutions 
an be 
al
ulated. Note that the AUX formulation

presented 
an result in a 
omputationally heavy integer programming problem. It is a

NP-hard problem, and the 
omputational time needed to 
al
ulate a given solution will

be heavily dependent on the problem's dimension, espe
ially the number of s
enarios

and the number of potential fa
ility lo
ations. To solve AUX we 
an resort to general

solvers or use dedi
ated pro
edures, both exa
t and heuristi
 pro
edures. Although the

latter will not be able to guarantee the optimality of the 
al
ulated solution, they 
an

be a very good 
hoi
e espe
ially in the presen
e of an intera
tive pro
edure, where the

most important thing will be to de�ne a region of interest for the DM. It is even possible

to think of using a heuristi
 pro
edure in a �rst stage, and then an exa
t pro
edure to
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a
tually guarantee the optimality of the solution of interest. For illustrative purposes,


onsidering a problem instan
e we propose here an intera
tive pro
edure based on Dias

et al. [20℄, where all AUX problem instan
es were solved by a general solver.

3.1 Primal-Dual heuristi


For ease in the exposition, let us reindex, for ea
h s
enario s, Csijt for ea
h (i, t) in

nonde
reasing order as C
s(k)
it , for k = 1, 2, ..., ks

it, where k
s
it denotes the number of fa
ility-

to-
ustomer links for (i, t) under s
enario s. Thus, C
s(1)
it = minj∈J{C

s
ijt}. For 
onvenien
e,

we also in
lude C
s(ks

it
+1)

it = +∞, ∀ (i, t, s).

Let I+ be the set of pseudo 
ustomers (i, t, s) 
orresponding to the dual variables vsit that

the pro
edure will try to in
rease. Initially, I+ will be equal to all possible 
ombinations

(i, t, s) ∈ I × T × S, ex
ept those su
h that δsit = 0. Later, I+ will be set within the

respe
tive pro
edures. We note that a 
ustomer without demand does not 
ontribute to

the improvement of the dual obje
tive fun
tion value and does not also 
ontribute to any

violation of the 
omplementary sla
kness 
onditions. Thus, these 
ustomers are ex
luded

from the as
ent pro
edures.

The steps of the heuristi
 are as follows:

1. Set vsit = C
s(1)
it , ∀ (i, t, s), and uj = 0, ∀ j.

Set I+ = {(i, t, s) ∈ I × T × S : δsit = 1}.

2. Exe
ute the dual as
ent pro
edure.

3. Exe
ute the primal pro
edure. If an optimal solution is found, then stop.

4. Exe
ute the primal�dual adjustment pro
edure.

The heuristi
 stops when the optimal solution is found or when there are no primal or

dual improvements after a given number of trials within the adjustment pro
edure.

3.1.1 Dual as
ent pro
edure

This pro
edure, that may start with any dual feasible solution, will try to in
rease the

values of variables vsit belonging to set I+. The in
rease of su
h variables will lead to an

in
rease of the dual obje
tive fun
tion value and, simultaneously, to the de
rease of some

sla
ks' values (see step 6). The maximum value that variables vsit 
an take is limited by

restri
tions (2.1.15). Equivalently, we 
an also 
onsider sla
ks de�ned by (2.1.17) and a
-

knowledge that these sla
ks have to remain nonnegative. Instead of in
reasing the value

of ea
h dual variable vsit as mu
h as possible in one single step, the pro
edure follows an
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iterative approa
h: in ea
h iteration, the algorithm will try to in
rease a dual variable

vsit to the smallest Csijt that is greater than or equal to the 
urrent vsit value. If this is not

possible, due to the fa
t that at least one sla
k would be
ome negative, than the variable

is in
reased as mu
h as possible guaranteeing that all sla
ks remain nonnegative (steps

4, 5 and 6). The pro
edure is repeated until it is not possible to in
rease the value of

any variable vsit be
ause of the sla
ks that are already equal to zero. The sla
ks that are

equal to zero will de�ne the set of 
andidate fa
ility lo
ations.

In what follows, (i, t, s)q, with q ≤ |I×T ×S|, represents a given, but arbitrary, sequen
e

of pseudo 
ustomers.

1. Consider any dual feasible solution {vsit} su
h that vsit ≥ C
s(1)
it , ∀ (i, t, s), and πjt ≥

0, ∀ (j, t).

For ea
h (i, t, s) de�ne k(i, t, s) = min{k : vsit ≤ C
s(k)
it }. If vsit = C

s(k(i,t,s))
it , then

k(i, t, s)← k(i, t, s) + 1.

2. (i, t, s)← (i, t, s)1 and q ← 1; r = 0.

3. If (i, t, s) /∈ I+ ∨ δsit = 0, then go to step 7.

4. Set ∆s
it = minj{πjτ : v

s
it − C

s
ijt ≥ 0, τ ≤ t}.

5. If ∆s
it > C

s(k(i,t,s))
it − vsit, then ∆s

it = C
s(k(i,t,s))
it − vsit; r = 1; k(i, t, s)← k(i, t, s) + 1.

6. For all j ∈ J with vsit − C
s
ijt ≥ 0, set πjτ = πjτ −∆s

it, τ ≤ t; set vsit = vsit +∆s
it.

7. If q < |I+|, then q ← q + 1, (i, t, s)← (i, t, s)q , and return to step 3.

8. If r = 1, then return to step 2, otherwise stop.

3.1.2 Primal pro
edure

From the dual as
ent pro
edure results the dual feasible solution {vs+it } with an obje
tive

fun
tion value v+D, and asso
iated sla
ks {π+
jt}. A 
orresponding primal feasible solution,

{x+
jt} and {y

s+
ijt}, 
an be 
onstru
ted, with an obje
tive fun
tion value v+P .

In order to des
ribe the primal pro
edure, let us �rst de�ne the following sets:

J∗ = {(j, t) ∈ J × T : π+
jt = 0};

J∗
t = {j ∈ J : (j, τ) ∈ J∗, τ ≤ t}, ∀t ∈ T ;

J+
t = {j ∈ J : fa
ility j is open at time t}, ∀t ∈ T .

In addition, de�ne t1(j) = min{γ : j ∈ J+
γ } and t2(j) = max{γ ≤ t1(j) : (j, γ) ∈ J∗}.

Then,

J+ = {(j, t2(j)) ∈ J × T : j ∈ J+
τ for some τ}.
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The set J∗

orresponds to all (j, t) su
h that j 
an be opened at the beginning of t

without violating (2.1.18); set J∗
t 
orresponds to all j that 
an be opened up to t; set J+

t


orresponds to all j that are a
tually open during t; set J+ ⊆ J∗

orresponds to all j

that open at the beginning of t, i.e., J+
di
tates what fa
ilities are a
tually opened and

when (lo
ation de
isions).

The fa
ilities that are 
onsidered �rst (step 2) are the ones that at a given time t should

be assigned to a given 
ustomer (i, s), a

ording to 
onditions (2.1.20), 
alled essential

fa
ilities. Other fa
ilities are only opened if stri
tly ne
essary (step 3). If a fa
ility j

needs to be open at some time period(s) and the �rst time period when it needs to be

open is t, then it will be opened at the beginning of time period t2(j), de�ned as being the

time period 
losest to t su
h that the 
orresponding sla
k is equal to zero. It should be

noted that, as we are dealing with an un
apa
itated lo
ation problem, there will always

be an admissible solution that 
an be built in this way: we 
an be sure that there exists

at least one fa
ility j su
h that πj1 is equal to zero (at least one fa
ility 
an be opened at

the beginning of the �rst time period). If this was not true, then it would still be possible

to improve the dual solution by in
reasing at least one vsi1 dual variable.

The steps of the primal pro
edure are as follows:

1. Set J+ = J+
t = ∅, ∀t. Build J∗

and J∗
t , ∀t.

2. For ea
h t ∈ T , if j ∈ J∗
t su
h that ∃(i, s) : vs+it ≥ C

s
ijt and vs+it < Csij′t, ∀ j

′ ∈ J∗
t \{j},

then J+
τ = J+

τ ∪ {j}, ∀τ ≥ t.

3. For ea
h (i, t, s), if ∄j ∈ J+
t with vs+it ≥ C

s
ijt, then

J+
τ = J+

τ ∪
{

j ∈ J∗
t : Csijt = min{Csij′t : v

s
it ≥ C

s
ij′t}

}

, ∀τ ≥ t.

4. Build J+
.

5. Update J+
t , ∀t. Assign ea
h (i, t, s) to fa
ility j ∈ J+

t with lowest Csijt.

3.1.3 Primal�Dual adjustment pro
edure

The primal�dual adjustment pro
edure will try to enfor
e the 
onditions (2.1.20) that

are still being violated by the 
urrent solution. The violation of these 
onditions means

that, for a given s
enario s, time period t and 
ustomer i, there are at least two variables

ws
ijt di�erent from zero su
h that the 
orresponding fa
ilities j are both open in period

t. The only way of satisfying (2.1.20) would be to assign 
ustomer i to more than one

opened fa
ility, whi
h is not admissible from the primal problem point of view. This

pro
edure will try to 
hange the 
urrent dual solution, by de
reasing the value of at least

one variable vsit (and thus possibly de
reasing the value of some variables ws
ijt), su
h that

at least two sla
ks will be in
reased. The 
hanges in the sla
ks' values may lead to the

in
rease of other dual variables in
reasing the dual obje
tive fun
tion value.
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In order to des
ribe the primal�dual pro
edure, let us �rst 
onsider the additional sets:

Js∗
it = {j : ∃τ ≤ t | (j, τ) ∈ J∗

and vsit ≥ C
s
ijt}, ∀(i, t, s);

Js+
it = {j : ∃τ ≤ t | (j, τ) ∈ J+

and vsit > C
s
ijt}, ∀(i, t, s);

I+jt = {(i, τ, s) : J
s∗
iτ = {j} for τ ≥ t}, ∀(j, t).

In addition, we denote a best sour
e and a se
ond-best sour
e for (i, t, s) in J+
t by j(i, t, s)

and j′(i, t, s), respe
tively:

Csij(i,t,s)t = minj∈J+
t

{Csijt}, ∀(i, t, s);

Csij′(i,t,s)t = minj∈J+
t
,j 6=j(i,t,s){C

s
ijt}, ∀(i, t, s) for |J

s+
it | > 1.

And we de�ne, Cs−it = maxj{C
s
ijt : v

s
it > C

s
ijt}.

For a given (i, t, s), the set Js∗
it represents all fa
ilities j that 
an be open at period

t (be
ause a sla
k πjτ is equal to zero for some τ ≤ t) and su
h that if j is open then


ustomer i 
an be assigned to j at period t under s
enario s. Similarly, for a given (i, t, s),

the set Js+
it 
onsiders all fa
ilities that are in operation during period t in the 
urrent

primal solution, and su
h that 
ustomer i would have to be assigned to j in period t

under s
enario s to guarantee the satisfa
tion of (2.1.20). If |Js+
it | > 1, for some (i, t, s),

then a 
omplementary sla
kness 
ondition (2.1.20) is violated. In su
h 
ase, the de
rease

of the variable vsit 
auses the in
rease of at least two sla
ks πjτ , asso
iated with distin
t

fa
ilities (step 4). Set I+jt 
orresponds to all variables vsiτ whose value 
an be in
reased

with the in
rease of sla
ks πjτ , τ ≤ t, and that must be 
onstru
ted to the exe
ution of

the dual as
ent pro
edure (step 5).

The steps of the primal-dual adjustment are:

1. (i, t, s)← (i, t, s)1, q ← 1; set vD = v+D and vP = v+P ; set r = 0.

2. If |Js+
it | ≤ 1, then go to step 9.

3. If I+
j(i,t,s)t = ∅ and I+

j′(i,t,s)t = ∅, then go to step 9.

4. For ea
h (j, τ), with τ ≤ t and vsit > C
s
ijt, set πjτ = πjτ + vsit − C

s−
it ; set vsit = C

s−
it .

5. (a) Set I+ = I+
j(i,t,s)t ∪ I+

j′(i,t,s)t and exe
ute the dual as
ent pro
edure.

(b) Set I+ = I+ ∪ {(i, t, s)} and exe
ute the dual as
ent pro
edure.

(
) Set I+ = I × T × S and exe
ute the dual as
ent pro
edure.

6. If vsit is 
hanged, then return to step 2.

7. Exe
ute the primal pro
edure.

8. If neither v+D > vD nor v+P < vP , then r ← r + 1; otherwise r ← 0 and update vD

and vP .
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9. If vD ≥ vP , or r = rmax or q = |I×T ×S|, then stop; otherwise q ← q+1, (i, t, s)←

(i, t, s)q, and return to step 2.

As the primal�dual heuristi
 for the DUFLPUD has been des
ribed, we now explain the


hanges that have to be made in the above pro
edures in order to adjust the approa
h

for the version of the problem 
onsidered in subse
tion 2.1.2. The pro
edures are in fa
t

very similar for both situations, but the variations are 
ru
ial. First, it is worthwhile to


ompare sla
k variable values de�ned by (2.1.17) and (2.1.26), for the �rst and se
ond

situations, respe
tively. Note that (2.1.26) will not be de
reased whenever ρsjτ = 0, for

some τ ≥ t and s. Consequently, during the resear
h for the set of 
andidate fa
ility

lo
ations, within the dual as
ent pro
edure (subse
tion 3.1.1), the pseudo�
ustomers

under that s
enario will no longer 
ontribute to the de
rease of the sla
k values and thus

to the opening of these fa
ility sites. However, it is possible that other pseudo�
ustomers,

under other s
enarios s′ 6= s for whi
h ρs
′

jτ = 1, might 
ontribute to the de
rease of

the sla
k and thus to a new set of 
andidate fa
ility lo
ations for that s
enarios only.

Consequently, in terms of primal pro
edure (subse
tion 3.1.2), in addition to 
onsider

assignments only to open fa
ilities, that were opened at the beginning of some time

period t, it must be also guaranteed that those fa
ilities are su
h that ρsjt = 1.

3.1.4 Illustrative examples

We illustrate the heuristi
 by two small examples. Real-world problems are typi
ally

mu
h larger and provide more 
hallenging situations. For the sake of simpli
ity, we


onsider problems with only two s
enarios, both with p1 = 0.70 and p2 = 0.30, three time

periods (T = 3), three poten
ial fa
ility lo
ations (M = 3) and four poten
ial 
ustomers

(N = 4). In terms of the primal formulations, we are dealing with problems with only

81 de
ision variables and 99 restri
tions.

Example 3.1.1 Consider the problem's data in Tables 3.1.1�3.1.3: possible 
ustomers,

assignment and �xed 
osts, respe
tively. We note that at t = 1 (present time) the input

data is the same for both s
enarios. In table 3.1.1 we 
an see that, under s
enario

2, 
ustomer 1's demand's should not be 
onsidered in period t = 3 nor 
ustomer 4's

demand's for periods t > 1.

The weighted assignment 
osts are presented in Table 3.1.4. The initial dual solution and

the initial sla
ks (derived after the weighting of the �xed 
osts) are shown in Tables 3.1.5

and 3.1.6, respe
tively.

The dual as
ent pro
edure tries to in
rease the variables vsit belonging to I+, following

an arbitrary sequen
e of these variables. We 
hose to 
onsider the variables ordered by

in
reasing values of t, s and i, respe
tively. We show below some of the �rst steps of the

algorithm.
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Table 3.1.1: Possible 
ustomers, (δ1it, δ
2
it).

t 1 2 3

1 (1,1) (1,1) (1,0)

i 2 (1,1) (1,1) (1,1)

3 (1,1) (1,1) (1,1)

4 (1,1) (1,0) (1,0)

Table 3.1.2: Assignment 
osts, (c1ijt, c
2
ijt).

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 (5,5) (7,7) (10,10) (7,10) (8,9) (13,14) (9,�) (8,�) (19,�)

i 2 (10,10) (6,6) (6,6) (11,12) (7,7) (8,11) (12,11) (7,7) (10,13)

3 (6,6) (10,10) (12,12) (7,9) (11,13) (13,13) (7,10) (13,15) (13,14)

4 (4,4) (7,7) (12,12) (6,�) (10,�) (14,�) (7,�) (11,�) (14,�)

Table 3.1.3: Fixed 
osts, f s
jt.

t 1 2 3

s � j 1 2 3 1 2 3 1 2 3

1 7 8 +∞ 9 10 11 +∞ 11 12

2 7 8 +∞ 12 10 12 +∞ 15 12

Table 3.1.4: Weighted assignment 
osts, Csijt.

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 3.5 4.9 7.0 4.9 5.6 9.1 6.3 5.6 13.3

s = 1 i 2 7.0 4.2 4.2 7.7 4.9 5.6 8.4 4.9 7.0

3 4.2 7.0 8.4 4.9 7.7 9.1 4.9 9.1 9.1

4 2.8 4.9 8.4 4.2 7.0 9.8 4.9 7.7 9.8

1 1.5 2.1 3.0 3.0 2.7 4.2 � � �

s = 2 i 2 3.0 1.8 1.8 3.6 2.1 3.3 3.3 2.1 3.9

3 1.8 3.0 3.6 2.7 3.9 3.9 3.0 4.5 4.2

4 1.2 2.1 3.6 � � � � � �

(t, s) = (1, 1)

i = 1:

min
j
{πj1 : v

1
11−C

1
1j1 ≥ 0} = π11 = 7 , ∆1

11 = min{7, 4.9−3.5} = 1.4, π11 = 7−1.4 =

5.6, v111 = 3.5 + 1.4 = 4.9;
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Table 3.1.5: Initial dual solution, (v1it, v
2
it).

t 1 2 3

1 (3.5, 1.5) (4.9, 2.7) (5.6,�)

i 2 (4.2, 1.8) (4.9, 2.1) (4.9, 2.1)

3 (4.2, 1.8) (4.9, 2.7) (4.9, 3.0)

4 (2.8, 1.2) (4.2,�) (4.9,�)

Table 3.1.6: Initial sla
ks, πjt.

t 1 2 3

1 7.0 9.9 +∞
j 2 8.0 10.0 12.2

3 +∞ 11.3 12.0

i = 2:

min
j
{πj1 : v121 − C

1
2j1 ≥ 0} = min

j
{π21, π31} = 8 , ∆1

21 = min{8, 4.2 − 4.2} = 0,

v121 = 4.2;

i = 3:

min
j
{πj1 : v131 − C

1
3j1 ≥ 0} = π11 = 5.6 , ∆1

31 = min{5.6, 7 − 4.2} = 2.8, π11 =

5.6− 2.8 = 2.8, v131 = 4.2 + 2.8 = 7;

i = 4:

min
j
{πj1 : v141 − C

1
4j1 ≥ 0} = π11 = 2.8 , ∆1

41 = min{2.8, 4.9 − 2.8} = 2.1, π11 =

2.8− 2.1 = 0.7, v141 = 2.8 + 2.1 = 4.9.

The algorithm pro
eeds to (t, s) = (1, 2), in
reasing v211 to 2.1 and v231 to 1.9. Afterwards,

for t = 2 and s = 1, v112 is blo
ked by π11 = 0; for i = 2:

min
j
{πjτ : v

1
22−C

1
2j2 ≥ 0, τ ≤ 2} = min{π21, π22} = π21 = 8 , ∆1

22 = min{8, 5.6−4.9} =

0.7, π21 = 8− 0.7 = 7.3, π22 = 10− 0.7 = 9.3, v122 = 4.9 + 0.7 = 5.6.

The dual as
ent pro
edure 
ontinues until all the dual variables are blo
ked by some

sla
k. At the end, we obtain the dual solution {vs+it } and asso
iated sla
ks {π+
jt} shown in

Tables 3.1.7 and 3.1.8, respe
tively. In addition, at the end of this pro
edure uj = 0, ∀j.

The 
orresponding dual obje
tive fun
tion value is equal to v+D = 87.8.

With sets J∗ = {(1, 1), (2, 1)}, J∗
t = {1, 2}, ∀t, the primal pro
edure advan
es with sets

J+ = J∗
and J+

t = J∗
t , ∀ t. In fa
t, fa
ilities 1 and 2 are both essen
ial for some 
ustomers

at t = 1. For instan
e, v1+21 > C1221 but v1+21 < C1211, and v2+31 > C2311 but v2+31 < C2321, thus

t1(j) = t2(j) = 1, j = 1, 2. Then, v+P = 87.8 = v+D, whi
h means that the optimal solu-

tion has been found (illustrated in Figure 3.1.1). Despite the simpli
ity of this example,
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some of the inherent features of a nondeterministi
 and dynami
 problem 
an be observed.

Table 3.1.7: Dual solution from the as
ent pro
edure, (v1+it , v2+it ).

t 1 2 3

1 (4.9, 2.1) (4.9, 3.0) (6.3,�)

i 2 (6, 1.8) (5.6, 3.3) (7.0, 3.3)

3 (7, 1.9) (4.9, 2.7) (4.9, 3.0)

4 (4.9, 1.2) (4.2,�) (4.9,�)

Table 3.1.8: Sla
ks, π+
jt.

t 1 2 3

1 0 9.9 +∞
j 2 0 3.8 8.2

3 +∞ 11.3 12

Figure 3.1.1: Optimal solution for example 3.1.1
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Example 3.1.2 Consider the problem's data in Tables 3.1.9�3.1.11. As in the previous

example, at t = 1 the input data is the same for both s
enarios. The weighted assignment


osts are presented in Table 3.1.12. The initial dual solution and the initial sla
ks are

shown in Tables 3.1.13 and 3.1.14, respe
tively.
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Table 3.1.9: Possible 
ustomers, (δ1it, δ
2
it).

t 1 2 3

1 (1,1) (1,0) (1,0)

i 2 (1,1) (1,1) (1,1)

3 (1,1) (1,1) (1,1)

4 (1,1) (1,0) (1,0)

Table 3.1.10: Assignment 
osts, (c1ijt, c
2
ijt).

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 (5,5) (8,8) (10,10) (7,�) (9,�) (11,�) (9,�) (12,�) (12,�)

i 2 (8,8) (5,5) (6,6) (11,8) (6,7) (7,9) (13,13) (7,8) (10,12)

3 (6,6) (5,5) (7,7) (7,7) (6,8) (8,12) (7,8) (9,8) (8,13)

4 (4,4) (6,6) (8,8) (6,�) (7,�) (9,�) (7,�) (8,�) (9,�)

Table 3.1.11: Fixed 
osts, f s
jt.

t 1 2 3

s � j 1 2 3 1 2 3 1 2 3

1 15 17 13 17 19 14 +∞ 20 15

2 15 17 13 18 19 15 +∞ 21 15

Table 3.1.12: Weighted assignment 
osts, Csijt.

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 3.5 5.6 7.0 4.9 6.3 7.7 6.3 8.4 8.4

s = 1 i 2 5.6 3.5 4.2 7.7 4.2 4.9 9.1 4.9 7.0

3 4.2 3.5 4.9 4.9 4.2 5.6 4.9 6.3 5.6

4 2.8 4.2 5.6 4.2 4.9 6.3 4.9 5.6 6.3

1 1.5 2.4 3.0 � � � � � �

s = 2 i 2 2.4 1.5 1.8 2.4 2.1 2.7 3.9 2.4 3.6

3 1.8 1.5 2.1 2.1 2.4 3.6 2.4 2.4 3.9

4 1.2 1.8 2.4 � � � � � �

After the dual as
ent pro
edure, we obtain the dual solution and asso
iated sla
ks shown

in Tables 3.1.15 and 3.1.16, respe
tively. At the end of this pro
edure uj = 0, ∀j. We 
an

see that all dual variables belonging to I+ were in
reased, ex
ept the one 
orresponding

to the pseudo 
ustomer (i, t, s) = (3, 3, 2). The 
orresponding dual obje
tive fun
tion

value is equal to v+D = 94.4.
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Table 3.1.13: Initial dual solution, (v1it, v
2
it).

t 1 2 3

1 (3.5, 1.5) (4.9,�) (6.3,�)

i 2 (3.5, 1.5) (4.2, 2.1) (4.9, 2.4)

3 (3.5, 1.5) (4.2, 2.1) (4.9, 2.4)

4 (2.8, 1.2) (4.2,�) (4.9,�)

Table 3.1.14: Initial sla
ks, πjt.

t 1 2 3

1 15.0 17.3 +∞
j 2 17.0 19.0 20.3

3 13.0 14.3 15.0

Table 3.1.15: Dual solution from the as
ent pro
edure, (v1+it , v2+it ).

t 1 2 3

1 (7, 3) (6.3,�) (8.4,�)

i 2 (5.6, 2.4) (7.7, 2.4) (8.1, 3.6)

3 (4.9, 1.8) (4.9, 2.4) (5.6, 2.4)

4 (5.6, 1.8) (4.9,�) (5.6,�)

Table 3.1.16: Sla
ks, π+
jt.

t 1 2 3

1 0.0 11.4 +∞
j 2 0.0 10.1 15.9

3 7.1 10.4 13.9

With sets J∗ = {(1, 1), (2, 1)}, J∗
t = {1, 2}, ∀t, the primal pro
edure advan
es with

sets J+ = J∗
and J+

t = J∗
t , ∀ t. Fa
ilities 1 and 2 are both essential at t = 3, then

t1(1) = t1(2) = 3 and t2(1) = t2(2) = 1. The primal obje
tive fun
tion value equals

v+P = 98.5 > v+D, so the heuristi
 
ontinues to the primal�dual adjustment pro
edure.

The previous result means that at least one of the 
onditions (2.1.20) is violated. For

instan
e, v1+11 > C11j1, for j = 1, 2, thus |J1+
11 | = 2.

The best sour
e and the se
ond-best sour
e for pseudo 
ostumer (i, t, s) = (1, 1, 1)

are, respe
tively, j(1, 1, 1) = 1 and j′(1, 1, 1) = 2. In addition, I+11 = {(3, 3, 1)} and

I+21 = {(2, 3, 1), (2, 3, 2)}. Within the primal-dual adjustment pro
edure, sla
ks π+
11 and

π+
21 are in
reased v1+11 −C

1−
11 = 7−5.6 = 1.4 units and v1+11 is de
reased to C1−11 = 5.6. After

the dual as
ent pro
edures, initially with I+ = {(3, 3, 1), (2, 3, 1), (2, 3, 2)}, no further
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improvements are possible. The resulting dual solution is presented in Table 3.1.17, with

asso
iated sla
ks presented in Table 3.1.18. The dual obje
tive fun
tion value is updated

to vD = 95.1.

Table 3.1.17: Dual solution after the dual as
ent pro
edures within the primal-dual ad-

justment pro
edure.

t 1 2 3

1 (5.6, 3) (6.3,�) (8.4,�)

i 2 (5.6, 2.4) (7.7, 2.4) (9.2, 3.9)

3 (4.9, 1.8) (4.9, 2.4) (6.3, 2.4)

4 (5.6, 1.8) (4.9,�) (5.6,�)

Table 3.1.18: Sla
ks after the dual as
ent pro
edures within the primal-dual adjustment

pro
edure.

t 1 2 3

1 0.6 10.6 +∞
j 2 0.0 8.7 14.5

3 5 8.3 11.8

From the primal pro
edure results J∗ = J+ = {(2, 1)}, and J+
t = {2}, ∀t, then vP =

95.1 = vD, whi
h means that the heuristi
 found the optimal solution.

3.2 Bran
h&Bound approa
h

The bran
h&bound algorithm 
an be summarized as follows. The original problem DU-

FLPU is �rst solved in the root node using the dual-based heuristi
. If the solution


al
ulated is not the optimal solution (or in 
ases where it is, but we 
annot prove it

be
ause of a duality gap), the sear
hing pro
eeds with a bran
h&bound s
heme that

guarantees that the optimal solution is found (if enough time and 
omputational re-

sour
es are available). The bran
hing is based on those lo
ation de
ision variables that


ontribute to the 
omplementary sla
kness violations of the 
urrent solution. After some

tests, we de
ided to follow a simple rule and 
hoose the �rst lo
ation variable found that


ontributes to these violations. Other rules were tested (taking into a

ount the �xed

fa
ility 
osts, expe
ted gains/losses in terms of assignment 
osts in 
hoosing a se
ond�

best sour
e instead of sele
ting the best sour
e for a given 
ustomer), but no signi�
ant

improvements were observed, espe
ially in large sized problems. Inspired on previous

works (Erlenkotter [29℄, Van Roy and Erlenkotter [88℄ and Dias et al. [21℄), lo
ation
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variables are �xed �rst to zero and then to one. The tree is sear
hed using a depth

sear
h pro
edure. Setting a variable to one is a
hieved by 
hanging the 
orresponding

�xed 
ost to zero. To use the 
urrent dual solution in the next bran
h&bound tree node,

some 
hanges may have to be made to guarantee dual admissibility (some dual variables

must be redu
ed, with a 
orresponding in
rease in some of the sla
ks). When �xing a

variable to zero, its �xed 
ost is set equal to +∞, guaranteeing the admissibility of the


urrent dual solution that will be used in the next tree node. A node is fathomed only

if the 
urrent problem is infeasible, the optimal solution of the 
urrent problem has been

found or the 
urrent dual obje
tive fun
tion value is worse than the best primal obje
tive

fun
tion value found so far.

The 
omputational results are provided in subse
tion 4.2.2.

3.3 Lagrangean relaxation approa
h

To be able to formulate and solve the problem α-DUFLPU (se
tion 2.2), it is ne
essary

to 
al
ulate the optimal solution ζ∗s for ea
h s
enario s ∈ S. These (deterministi
) |S|

problems 
an be solved to optimality by the bran
h&bound pro
edure proposed earlier

or by a general solver (CPLEX, for instan
e). Assume then that ζ∗s is known and su
h

that ζ∗s > 0, for all s ∈ S.

The Lagrangean relaxation of problem α-DUFLPU, in short LRα-DUFLPU, with respe
t

to the 
onstraint set (2.2.3) 
an be de�ned through the introdu
tion of the Lagrange

multipliers λs ≥ 0, ∀s ∈ S. Ea
h λs is asso
iated with the 
orresponding 
onstraint and

brought into the obje
tive fun
tion, as follows:

(LRα-DUFLPU) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijty
s
ijt+

∑

s∈S

λs

(

∑

t∈T

∑

j∈J

f s
jtxjt +

∑

t∈T

∑

i∈I

∑

j∈J

csijty
s
ijt − (1 + α)ζ∗s

)

(3.3.1)

s. t.

(2.1.2)�(2.1.6).

The algorithm has been designed 
onsidering two well known results from Lagrangean

Relaxation (e.g., Reeves [70℄, Guignard [31℄) adapted for the present problem in the

following proposition.

Proposition 3.3.1 The optimal solution of LRα-DUFLPU, for λs ≥ 0, ∀s ∈ S, gives

a lower bound to the optimal solution of the original problem α-DUFLPU. In addition,

56



a solution of LRα-DUFLPU that satis�es also 
onstraint set (2.2.3) provides an upper

bound to the optimum of α-DUFLPU.

We have de
ided to use the e�
ient primal�dual heuristi
 to solve problem LRα-DUFLPU.

In order to apply the primal-dual heuristi
 to the present problem, the obje
tive fun
tion

(3.3.1) is rewritten as follows:

∑

t∈T

∑

j∈J

∑

s∈S

(ps + λs)f
s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

(ps + λs)c
s
ijty

s
ijt. (3.3.2)

Noti
e that 
onstant −
∑

s∈S λs(1 + α)ζ∗s is not 
onsidered in (3.3.2), being only added

to the �nal obje
tive fun
tion value. De�ning in (3.3.2) F s
jt = (ps + λs)f

s
jt and Csijt =

(ps+λs)c
s
ijt , the formulations already presented for the DUFLPU in subse
tion 2.1.1, for

the dual problem, the 
ondensed dual problem, as well as the 
omplementary sla
kness


onditions between dual and primal problems are still valid for the LRα-DUFLPU. Hen
e,

LRα-DUFLPU 
an be solved by the primal�dual heuristi
 presented in se
tion 3.1. Re-


all that the heuristi
's pro
edures are designed to redu
e progressively the duality gap

between dual and primal obje
tive fun
tion values. Even if the heuristi
 is unable to

�nd the optimal solution of LRα-DUFLPU, it is still able to provide a good lower bound

to the optimal obje
tive fun
tion value of α-DUFLPU, in this 
ase through the dual

obje
tive fun
tion value as stated in the next proposition.

Proposition 3.3.2 The best dual solution 
al
ulated by the primal�dual heuristi
 applied

to LRα-DUFLPU provides a lower bound to the optimal obje
tive fun
tion value of α-

DUFLPU.

Proof: Let us represent the optimum of α-DUFLPU by Opt(α-DUFLPU) and the op-

timum of LRα-DUFLPU by Opt(LRα-DUFLPU). In addition, let (zP , zD) be the

primal and dual solutions 
al
ulated by the primal�dual heuristi
 for LRα-DUFLPU

and its dual, respe
tively. If zP = zD, then zP = Opt(LRα-DUFLPU) whi
h provides a

lower bound to Opt(α-DUFLPU) (proposition 3.3.1). If the heuristi
's solutions are su
h

that zD < zP , then, from duality theory, we know that zD < Opt(LRα-DUFLPU) ≤

Opt(α-DUFLPU), so zD is a valid lower bound to Opt(α-DUFLPU).

Let us now turn to the generation of upper bounds. Taking into a

ount the obje
tive

fun
tion (2.1.1) and the set of 
onstraints (2.2.3), it is trivial to prove that the obje
tive

fun
tion value of α-DUFLPU is bounded above by

∑

s p
s(1 + α)ζ∗s . This value 
an then

be 
onsidered as a �rst upper bound to the optimum of α-DUFLPU. Furthermore, if a

lower bound 
al
ulated at any iteration is greater than this value, then α-DUFLPU is

infeasible.

The primal solution 
al
ulated by the heuristi
 
an be admissible or not for α-DUFLPU. If

it is admissible, then it represents an upper bound to the optimal solution of α-DUFLPU.
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After exe
uting the primal-dual heuristi
 to LRα-DUFLPU, a lo
al sear
h pro
edure is

performed. This lo
al sear
h pro
edure will explore the neighborhood of the 
urrent

solution, trying to rea
h feasibility or trying to improve the obje
tive fun
tion value

(rea
hing better upper bounds). The neighborhood is 
onsidered to be the set of solutions

that are equal to the 
urrent one with the ex
eption of the opening time period of one

fa
ility. The lo
al sear
h pro
edure tries to 
hange the time period when a given fa
ility

is opened, or tries not to open the fa
ility at all. Whenever a better solution is found,

it be
omes the 
urrent solution and the lo
al sear
h 
ontinues until it is not possible to

�nd better solutions in the neighborhood of the 
urrent solution.

A standard subgradient algorithm is used to update the Lagrange multipliers. Let us

de�ne subgradients Gs for the relaxed 
onstraints, evaluated at the 
urrent solution, by:

Gs =
∑

t∈T

∑

j∈J

f s
jt xjt +

∑

t∈T

∑

i∈I

∑

j∈J

csijt y
s
ijt − (1 + α)ζ∗s , ∀s ∈ S.

In addition, let π represent the step size for the Lagrange multipliers and z the step size


oe�
ients for the Lagrange multipliers.

Initially, in iteration k = 0, λ
(k)
s = 0, ∀s ∈ S,

and in iteration k > 0,

λ
(k+1)
s = max{0, λ

(k)
s + πGs}, with π = z

UB(k) − LB(k)

∑

s G
2
s

,

where UB(k)
and LB(k)

are the most re
ent upper and lower bounds a
hieved.

During the exe
ution of the algorithm, the best upper and lower bounds a
hieved are

updated and re
orded, in order to 
al
ulate the solution gap, whi
h is one of the estab-

lished stopping 
riteria. The stopping 
riteria as other details of the algorithm will be

dis
ussed further in subse
tion 4.2.3.

3.4 Multi�obje
tive approa
h

We will explain in this se
tion a pro
edure to ta
kle the MODUFLPU. As stated in

se
tion 2.3, the knowledge of non�dominated solutions to the original MODUFLPU is

a
hieved by solving the auxiliary problem(s) AUX. In an intera
tive approa
h, the dia-

logue phase with the DM 
onsists in de�ning new values to the righthand side of 
on-

straints (2.3.3), the Ms values. These values will then de�ne the regions of sear
h. In

a generating approa
h, Ms values 
an be automati
ally generated in a way that guar-

antees that the whole obje
tive spa
e is explored. The automati
 generation of ve
tor

M 
an be done resorting to two simple data stru
tures: a binary tree, with as mu
h

levels as the number of s
enarios, and a matrix. Ea
h time a new solution is 
al
ulated,

based on a given ve
tor M, a binary tree is generated su
h that it will de�ne all pos-
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sible future ve
tors M. These ve
tors are then re
orded in a matrix so that they 
an

be retrieved in future iterations. To give a simple example of this pro
edure, 
onsider

a problem with three s
enarios. The initial ve
tor M is set to (M1
1,M

1
2,M

1
3). Solving

AUX with this ve
tor, assume that the non-dominated solution (ζ11 , ζ
1
2 , ζ

1
3) is obtained,

where ζ11 ≤ M
1
1, ζ

1
2 ≤ M

1
2, ζ

1
3 ≤ M

1
3 taking into a

ount 
onstraints (2.3.3). Based on

both the given ve
torM and the a
hieved solution, a binary tree 
an be built as shown

in �gure 3.4.1.

Figure 3.4.1: Binary tree for automati
 generation of ve
torM.

M1
1

M1
2

M1
3 ζ13

ζ12

M1
3 ζ13

ζ11

M1
2

M1
3 ζ13

ζ12

M1
3 ζ13

The path from the root to ea
h node of the tree will de�ne a possible new future ve
tor

M. In the present example, eight ve
tors are de�ned, (M1
1,M

1
2, ζ

1
3), (M

1
1, ζ

1
2 ,M

1
3) or

(M1
1, ζ

1
2 , ζ

1
3) for example, 
orresponding to eight possible sear
h regions. These ve
tors


an be stored in a matrix, so that they 
an be retrieved in a future iteration of the

algorithm. Whenever a new solution is 
al
ulated, a new binary tree is built and the


orresponding ve
tors added to the matrix. Note, however, that to some of these ve
tors

will 
orrespond infeasible problems and thus should not be re
orded and used. For in-

stan
e, (ζ11 , ζ
1
2 , ζ

1
3) will not be interesting be
ause it 
orresponds to an infeasible problem

(otherwise (ζ11 , ζ
1
2 , ζ

1
3) would not be a non-dominated solution). Other ve
tors will end

up with optimal solutions that are already known su
h as (M1
1,M

1
2,M

1
3) for instan
e.

Furthermore, knowing that one given problem is impossible will allow us to 
on
lude that

otherM ve
tors will also lead to impossible problems and then it is not worth to explore

the 
orresponding region. This sear
h method is easily implementable and will guarantee

that the whole obje
tive spa
e is explored.

Let us now turn to the 
hoi
e of the ve
tor of weights ν in order to de�ne the obje
tive

fun
tion of AUX. As noted before, these weights 
an and should be 
hanged in a

ordan
e

with ve
torM in order to help de
reasing the 
omputational time needed to 
al
ulate a

solution ([20℄). For instan
e, ifM is more demanding for a given s
enario, meaning that

Ms is 
lose to the best obje
tive fun
tion value ζ∗s , then the respe
tive obje
tive fun
tion

weight should be in
reased. One simple way of doing this is setting ν as follows:

νs = 1−
Ms − ζ∗s

ζ∗s
, ∀s ∈ S, (3.4.1)

νs =
νs

∑

s νs
, ∀s ∈ S.
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We next illustrate a solution approa
h to the MODUFLPU by one small problem, follow-

ing an intera
tive pro
edure based on Dias et al. [20℄ where all AUX problem instan
es

were solved by CPLEX v12.6 .

Example 3.4.1 Consider a problem instan
e with 25 potential fa
ility sites, 100 possible


ustomers, 10 time periods and 2 s
enarios.

Initially, and in order to delineate the region of interest, the solutions with the best

possible obje
tive fun
tion value for ea
h s
enario should be 
al
ulated. These solu-

tions 
an be a
hieved 
onsidering in AUX binary ve
tors ν and large values toM. The

solutions obtained for the present problem are depi
ted in the obje
tive spa
e in �g-

ure 3.4.2: (138023, 153313) with the optimum 
ost of s
enario 1 and (218195, 139854)

with the optimum of s
enario 2. The DM is now free to set the ve
tor M. Let us as-

sume that he does not want to explore any parti
ular region, so he de
ides to 
onsider

(M1,M2) = (218195, 153313) based on the two non�dominated solutions already 
al-


ulated. With weights (ν1, ν2) = (0.32, 0.68), 
al
ulated a

ording to (3.4.1), the new

solution rea
hed is (138902, 142526) (�gure 3.4.3).

Figure 3.4.2: Solutions with the optimum

of ea
h s
enario.

Figure 3.4.3: The �rst non�dominated so-

lution 
al
ulated.

Considering the newly 
al
ulated non-dominated solution, it is easy to see that two

regions of the obje
tive spa
e are no longer of interest. This is illustrated in �gure 3.4.4:

as region A has only solutions that are dominated by the solution 
al
ulated, region B

has only non-admissible solutions.

The DM 
an then de
ide whether to explore region C or region D. Let us assume that

he would explore region D. ThenM1 will remain equal to 218195 andM2 will be set to

142526 (given by the new non�dominated solution just 
al
ulated). Figure 3.4.5 shows

the new solution 
al
ulated, (141836, 141936). The pro
edure would be repeated until

the DM is satis�ed or the whole obje
tive spa
e has been explored. The whole set of

non�dominated solutions found for this problem is depi
ted in �gure 3.4.6. It is possible
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Figure 3.4.4: Regions A and B dis
arded from further sear
hes.

to observe the 
ompromises that exist between the two s
enarios. The lo
ation de
isions

in ea
h of the non�dominated solutions, whi
h fa
ilities are to be opened and when, are

detailed in table 3.4.1. We 
an observe that a set of seven fa
ilities is opened exa
tly in

the same time period in all solutions 
al
ulated.

Figure 3.4.5: A new non�dominated solu-

tion.

Figure 3.4.6: The set of non�dominated so-

lutions.
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Table 3.4.1: Example 3.4.1: Time period in whi
h ea
h fa
ility is opened.

Opened Fa
ilities

ζ1 ζ2 2 3 4 5 6 7 9 11 14 16 18 20 22 24 25

138023 153313 1 1 � 7 6 4 2 2 3 2 4 6 3 2 �

138228 150276 1 1 � 7 6 4 2 2 3 2 4 6 3 2 1

138237 150257 1 1 � 7 6 4 2 2 3 3 4 6 3 2 1

138360 150238 1 1 � 7 6 4 2 2 3 3 4 � 3 2 1

138384 150093 1 1 � � 6 4 2 2 3 2 4 6 3 2 1

138393 150074 1 1 � � 6 4 2 2 3 3 4 6 3 2 1

138564 145957 1 1 � 7 6 4 2 5 3 2 4 6 3 2 �

138720 145827 1 1 � � 6 4 2 5 3 2 4 6 3 2 �

138746 142709 1 1 � 7 6 4 2 5 3 2 4 6 3 2 1

138869 142690 1 1 � 7 6 4 2 5 3 2 4 � 3 2 1

138902 142526 1 1 � � 6 4 2 5 3 2 4 6 3 2 1

139281 142430 1 1 7 � 6 4 2 5 3 2 4 6 3 2 1

141238 142389 � 1 � 7 6 4 2 5 3 2 4 6 3 2 1

141457 142365 � 1 � � 6 4 2 5 3 2 4 6 3 2 1

141695 142200 � 1 7 � 6 4 2 5 3 2 1 6 3 2 1

141836 141936 � 1 7 � 6 4 2 5 3 2 4 6 3 2 1

145742 140500 1 1 � � 6 4 2 5 3 2 4 2 3 2 1

146121 140404 1 1 7 � 6 4 2 5 3 2 4 2 3 2 1

147507 140307 � 1 � 7 6 4 2 5 3 2 4 2 3 2 1

218195 139854 � 1 7 � 6 4 2 5 3 2 4 2 3 2 1
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Chapter 4

Computational Experiments

The algorithms developed to ta
kle the DUFLPU, the primal�dual heuristi
 approa
h

(se
tion 3.1) and the bran
h&bound approa
h (se
tion 3.2), as well as the Lagrangean

relaxation pro
edure developed to solve α-DUFLPU (se
tion 3.3), have been tested over

sets of di�erent problem instan
es. As we are not aware of the existen
e of ben
hmark

problem instan
es that 
ould be easily adapted to 
onform to the presented models, we

have 
hosen to randomly generate problem instan
es. It should be pointed out that the

generation of the data to a de
ision model under un
ertainty is in itself an a
tive area

of resear
h, mainly in what 
on
erns sto
hasti
 programming models (see, for instan
e,

Dupa
ova [25℄, Dupa
ova et al. [26℄, Kaut and Walla
e [43℄, Heits
h and Romis
h [35℄).

S
enario based sto
hasti
 programs, in whi
h the true underlying probability distribu-

tions are repla
ed by dis
rete distributions 
on
entrated in a �nite number of points

(s
enarios), or sequen
e of events, with probabilities, often require a spe
i�
 form of the

input (as multistage problems require s
enario trees for example). The variety of meth-

ods for generating s
enarios available in the literature is thus signi�
ant: sampling and

sampling-based methods, moment mat
hing, path-based methods whi
h generate 
om-

plete paths/s
enarios, optimal dis
retization, et
. These methods depend on the de
ision

model, level of knowledge about the underlying probability distributions or sto
hasti


pro
esses, availability of histori
al data, opinion of experts, et
. The total number of

s
enarios generated by some of these methods is too large and thus with higher 
ompu-

tational di�
ulties. To over
ome su
h di�
ulties, there are also methods for redu
ing

the total number of s
enarios (for details see the works 
ited above and the referen
es

therein for example).

There are possibly many ways in whi
h one 
ould generate the s
enarios for the pro-

posed models. In a real-world setting su
h s
enarios may be advan
ed by experts for

example. The purpose of the algorithm that has been developed for the generation of

test problems (des
ribed in se
tion 4.1) is only to 
reate input data to the models, in a

simple, understandable and fast manner, in order to make possible the realization of the

tests. Herein, the generated s
enarios are some kind of �what if� s
enarios. As we are in
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the presen
e of a dynami
 problem under un
ertainty, data must 
hange simultaneously

over time and among the di�erent s
enarios. Furthermore, we 
onsidered di�erent di-

mensions for the test problems, by varying the number S of s
enarios, number T of time

periods, number M of possible fa
ility lo
ations and number N of possible 
ustomers.

Our purpose was �rst to evaluate the quality of the solutions a
hieved by the developed

algorithms in terms of gap, given by the di�eren
e between the best obje
tive fun
tion

value found by ea
h algorithm and the best known lower bound on the optimal value

divided by this best known lower bound. We also analyzed the algorithms in terms of

the 
omputational time spent on the sear
hing pro
ess. Even though we are dealing with

strategi
 de
isions, where time usually is not determinant, faster algorithms permit the


onsideration of larger and diverse problems, enri
hing the de
ision making pro
ess. For

α-DUFLPU in parti
ular, being able to solve it for several di�erent values of maximum

regret will allow the DM to get a better pi
ture of the 
ompromises that exist. How-

ever, it is desirable that this pro
ess takes pla
e within a reasonable 
omputational time.

The results obtained by general solvers 
onsidering the same sets of problems are also

presented.

4.1 Generation of test problems

The algorithm that was developed for the generation of test problems 
an be summa-

rized as follows. First, the network of the problem is randomly generated, in
luding the

lo
ation of the nodes (poten
ial fa
ility sites and possible 
ustomer lo
ations) and ar
s

between them. This network will be valid for all time periods and s
enarios. Then, we


onsider the generation of the data for all time periods of s
enario 1: ar
 
osts, 
on-

sequently assignment 
osts, set of potential fa
ility sites and 
orresponding �xed 
osts,

and set of 
ustomer lo
ations. S
enario 1 is 
alled the basi
 s
enario as it is from this

s
enario that all the others will be 
onstru
ted. Thus, for the other s
enarios, for the

�rst time period we 
onsider the data generated for the basi
 s
enario (the �rst time

period 
orresponds to the present situation that is not s
enario dependent), as for ea
h

one of the other periods of time the data may 
hange with some probability. For the

sake of simpli
ity, these input probabilities are only dependent of the s
enarios but these


ould be also dependent of other items su
h as periods of time, ar
s, fa
ility or 
ustomer

lo
ations. This is a very important feature of the pro
edure, sin
e it will allow the gener-

ation of problems well distin
t. As far as s
enario probabilities (ps) are 
on
erned, these

were randomly generated su
h that the sum of all probabilities is equal to 1. Below we

provide the approa
h used in the generation of all test problems (in general). Table 4.1.1

presents some input values that were 
onsidered and that must be known before the gen-

eration pro
edure. For ease in the exposition, let us �rst 
onsider the following additional

notation:
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Js
t : Set of poten
ial fa
ility lo
ations that 
an be sele
ted (opened) at the beginning

of time period t ∈ T for s
enario s ∈ S,

Ist : Set of 
ustomer lo
ations with demand during period t ∈ T for s
enario s ∈ S,

where Js
t ⊆ J and Ist ⊆ I.

Table 4.1.1: Input values.

MaxX 1000
MaxY 1000
parc 0.75

d 50

parcc 0.80

psf 0.80 for s = 1 and 0.5 ∀s 6= 1
psc 0.80 for s = 1 and 0.3 ∀s 6= 1
pc 0.10

psa 0.40

pscf 0.60

Data generation steps

1. Random generation of (x, y)−
oordinates in a re
tangular area of size MaxX ×

MaxY 
orresponding to the lo
ation of |J |+ |I| nodes (poten
ial fa
ility sites plus

possible 
ustomer lo
ations).

2. Random generation of ar
s between the network nodes with probability parc; af-

terwards, if there isn't an ar
 between two nodes �
lose� (the Eu
lidean distan
e

between them is less than d), an ar
 is 
reated between them with probability

parcc > parc.

3. For s = 1 (basi
 s
enario):

3.1 for t = 1: random generation of 
osts asso
iated with ar
s, a

ording to a

Uniform distribution U [lc, uc];

for ea
h t ≥ 2, ea
h ar
 
ost is equal to the 
ost generated in period t− 1 plus

a 
hanging fa
tor randomly generated.

3.2 for ea
h t ≥ 1:

i. 
al
ulation of the shortest path between ea
h possible 
ustomer lo
ation

and ea
h potential fa
ility lo
ation.

ii. random generation of set J1
t , with J1

1 6= ∅, and �xed 
osts:

ea
h lo
ation j is in
luded in J1
t with probability p1f ;
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− if j ∈ J1
t , then the �xed 
ost at j is randomly generated from a

Uniform distribution U [lf, uf ], and for ea
h τ > t the �xed 
ost is

in
reased by a 
hanging fa
tor randomly generated;

− if j /∈ J1
t , then the �xed 
ost at j is set to +∞.

iii. random generation of set I1t : ea
h 
ustomer i is in
luded in I1t with prob-

ability p1c ; in addition, for t ≥ 3, if i was in
luded in I1t−2 and ex
luded

from I1t−1, then i is in
luded in I1t with probability pc < 0.5.

4. For s 6= 1 (other s
enarios):

4.1 for t = 1, 
onsider the data generated for the basi
 s
enario and t = 1.

4.1 for ea
h t ≥ 2:

i. ea
h ar
 
ost that was generated for time period t of the basi
 s
enario

(basi
 
ost) 
hanges in time period t of s
enario s with probability psa;

if a variation o

urs, then the ar
 
ost is equal to the basi
 
ost plus a


hanging fa
tor Θa randomly generated.

ii. 
al
ulation of the shortest path between ea
h possible 
ustomer lo
ation

and ea
h potential fa
ility lo
ation.

iii. random generation of set Js
t and �xed 
osts:

ea
h lo
ation j is in
luded in Js
t with probability psf ;

− if j ∈ Js
t ∩ J1

t , then the �xed 
ost at j that was generated for time

period t of the basi
 s
enario (basi
 
ost) 
hanges in time period t of

s
enario s with probability pscf ; if a variation o

urs, then the �xed


ost is equal to the basi
 
ost plus a 
hanging fa
tor Θf randomly

generated;

− if j ∈ Js
t but j /∈ J1

t , then the �xed 
ost at j is randomly generated

from a Uniform distribution U [lf, uf ], and for ea
h τ > t the �xed


ost is in
reased by a 
hanging fa
tor randomly generated;

− if j /∈ Js
t , then �xed 
ost at j is set to +∞.

iv. random generation of set Ist : the demand state of 
ustomer i that was

generated for time period t of the basi
 s
enario 
hanges in time period t

of s
enario s with probability psc.

4.2 Computational results

The 
omputational results obtained are presented in the next subse
tions. The algorithms

were all 
oded in C�language and the 
omputational experiments were 
arried out on a

AMD Turion(tm) X2 Dual�Core Mobile RM�70 pro
essor at 2.00GHz with 3.00GB of
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RAM. Gap is given in per
entage and the 
omputational time in se
onds. The time

results do not in
lude the time required to read the problems' data, only the time to

solve them. The general solver used to make 
omparisons with the primal�dual heuristi


is LPSolve v5.5.2.0 [9℄. Afterwards, thanks to IBM A
ademi
 Initiative, the results refer

to CPLEX MIP optimizer, v12.4.

4.2.1 Primal-Dual heuristi


The input values of (S, T,M,N) used in the random generation of the test problems are

given in Table 4.2.1. For ea
h 
ombination of (S, T,M,N), with N > M , �ve instan
es

were randomly generated. Di�erent random seeds were used for ea
h of the instan
es.

We have, in total, 780 instan
es, that were solved by the heuristi
 and by LpSolve. We

de
ided to stop the solver if its solution time ex
eeded 7200 se
onds (s). We note that

the smallest instan
e 
onsidered has 1025 variables with 1205 
onstraints but the largest

has 3000750 variables with 3060050 
onstraints.

Table 4.2.1: Parameters used in the random generation of the test problems.

S 2 5 10 20

T 5 10 15 �

M 5 10 20 50

N 20 50 100 200

In Tables 4.2.2�4.2.5 we summarize the 
omputational results obtained. Ea
h table 
or-

responds to a given number of s
enarios. We report the minimum and maximum number

of opened fa
ilities (dimension of the set J+
) as well as the minimum, average and maxi-

mum gap (in per
entage) on the �ve instan
es solved for ea
h 
ombination of (T,M,N).

The following tables also show the solution times (in se
onds) of the heuristi
 and the

solver. We report the minimum, average and maximum time spent by the heuristi
 and

by the solver to solve ea
h group of �ve instan
es. The primal�dual heuristi
 was able

to solve all the 780 instan
es. As far as the solver results are 
on
erned, the solver


ould not solve some of the �ve instan
es, due to la
k of memory to read the problem or

the exe
ution time has ex
eeded 7200 s. We report these 
ases and statisti
s refer only

to those instan
es that were solved. Whenever the solver was not able to solve any of

the �ve instan
es, the solver time is given as ' * '. Only on the larger instan
es, with

(S, T,M,N) = (20, 15, 50, 200), the heuristi
 ex
eeded the time limit established a priori.

In terms of solution quality, the worst gap, 4.02%, was observed with instan
es with 20

s
enarios and with T = 15, M = 50 and N = 100. Within ea
h S-s
enario problems, in

average, the larger gaps were observed in instan
es with largest M and N .

The average results for all S�s
enario problems are reported in the last row of the 
or-

responding tables. We 
an see that the number of s
enarios 
onsidered do not result
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in markedly di�erent solution qualities. However, the exe
ution times required by the

solver are 
learly higher than those required by the heuristi
, espe
ially for large sized

problems. In most of the test problems with large dimensions the solver 
ould not solve

them in less than 7200 s. The heuristi
 time 
an vary a lot, even for problems with the

same size. For example, for instan
es with (S, T,M,N) = (10, 15, 20, 200) the exe
ution

time ranges from 0.28 to 1231.29 s, in average 508.18 se
onds.

The 
omputational results show that the heuristi
 is 
apable of �nding very good quality

solutions in reasonable 
omputational times, 
learly outperforming the general solver.

As it is well known, when solving integer programming problems general solvers tend to

rea
h a good admissible (sometimes optimal) solution fast, and then spend a lot of time

trying to improve this solution or proving that the solution is optimal. So 
omparing the


omputational time of a dedi
ated heuristi
 to that of a general solver 
an be seen as

unfair to the general solver. That is why we have repeated all the 
omputational tests

but now using the general solver as an heuristi
 pro
edure: for ea
h set of instan
es, we

have limited the maximum 
omputational time spent by the general solver 
onsidering

this maximum time equal to the maximum time spent by the heuristi
 and then 
ompare

the quality of the solutions found by the two approa
hes. When this time limit was


onsidered, and for all test problems, the solver was not able to �nd any admissible

solution (upper and lower bounds of the optimal primal obje
tive fun
tion value were

equal to '+∞' and '−∞', respe
tively). It should be noted that the minimum times

presented by the solver (see Tables 4.2.2�4.2.5) are greater than the maximum times

spent by the heuristi
 to 
ompute the solution for the same problems.
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Table 4.2.2: Computational results for 2�s
enario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

min max min aver max min aver max min aver max

5 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 0.08 0.11 0.16

5 5 50 2 4 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.64 0.83

5 5 100 4 5 0.00 0.00 0.00 0.00 0.00 0.00 2.23 2.64 3.32

5 5 200 5 5 0.00 0.00 0.00 0.00 0.04 0.09 7.85 8.62 9.91

5 10 20 3 4 0.00 0.11 0.44 0.00 0.02 0.06 0.19 0.38 0.53

5 10 50 5 7 0.00 0.13 0.36 0.00 0.06 0.17 1.48 2.33 3.42

5 10 100 5 7 0.00 0.03 0.14 0.00 0.08 0.27 5.51 7.36 8.81

5 10 200 7 9 0.00 0.00 0.00 0.00 0.37 1.81 18.24 25.13 31.51

5 20 50 5 9 0.00 0.41 1.52 0.05 0.13 0.30 4.56 6.57 9.66

5 20 100 8 10 0.00 0.05 0.15 0.03 0.83 1.51 20.65 23.25 27.02

5 20 200 10 13 0.00 0.01 0.04 0.02 3.24 12.29 74.54 101.52 121.56

5 50 100 13 16 0.19 0.64 1.85 0.48 3.23 5.13 75.04 169.58 264.31

5 50 200 18 22 0.11 0.33 0.67 6.29 13.41 19.44 391.73 471.97 620.62

10 5 20 3 4 0.00 0.00 0.00 0.00 0.00 0.02 0.30 0.37 0.45

10 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.02 1.79 2.43 3.03

10 5 100 5 5 0.00 0.00 0.00 0.00 0.03 0.11 8.14 8.53 9.24

10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.08 24.16 31.05 43.01

10 10 20 3 6 0.00 0.03 0.12 0.00 0.01 0.02 0.86 1.34 1.89

10 10 50 6 8 0.00 0.00 0.00 0.00 0.01 0.03 4.62 5.61 7.27

10 10 100 7 10 0.00 0.00 0.00 0.00 0.01 0.02 16.91 19.99 21.40

10 10 200 9 10 0.00 0.00 0.00 0.00 0.02 0.08 72.24 87.83 109.93

10 20 50 8 12 0.00 0.06 0.32 0.08 0.58 1.25 13.43 23.38 33.29

10 20 100 11 15 0.00 0.04 0.20 0.11 0.98 2.26 71.04 82.84 101.03

10 20 200 16 19 0.00 0.01 0.06 0.09 1.72 6.77 233.77 270.59 361.19

10 50 100 19 23 0.37 1.08 2.39 1.95 6.33 11.25 398.89 546.24 746.12

10 50 200 26 30 0.19 0.35 0.61 40.17 52.61 90.46 1510.53 1737.18 1880.55

15 5 20 3 5 0.00 0.00 0.00 0.00 0.01 0.06 0.70 0.91 1.28

15 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.00 4.09 5.09 6.19

15 5 100 5 5 0.00 0.00 0.00 0.00 0.04 0.09 16.65 19.49 22.07

15 5 200 5 5 0.00 0.00 0.00 0.00 0.34 1.64 71.09 80.89 91.23

15 10 20 4 7 0.00 0.00 0.00 0.00 0.00 0.02 1.72 2.70 3.67

15 10 50 7 9 0.00 0.00 0.00 0.00 0.01 0.03 11.00 12.75 14.56

15 10 100 8 10 0.00 0.00 0.00 0.00 0.03 0.11 37.30 49.85 67.16

15 10 200 10 10 0.00 0.00 0.00 0.02 0.02 0.02 155.06 215.19 247.49

15 20 50 9 12 0.00 0.03 0.13 0.31 1.02 1.97 47.00 54.76 71.79

15 20 100 14 16 0.00 0.07 0.21 0.02 1.62 7.47 114.54 168.61 217.79

15 20 200 17 20 0.00 0.00 0.00 0.27 1.16 3.23 620.72 696.22 878.47

15 50 100 23 28 0.35 0.76 1.31 2.39 5.40 9.50 1064.62 1768.31 2946.97

15 50 200

a
32 37 0.00 0.52 2.28 58.62 106.2 210.2 2699.81 3370.90 3957.47

Aver 0.03 0.12 0.33 2.84 5.12 9.94 200.09 258.54 331.95

a
Solver was unable to solve one of the instan
es with T = 15, M = 50 and N = 200.
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Table 4.2.3: Computational results for 5�s
enario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

min max min aver max min aver max min aver max

5 5 20 1 2 0.00 0.00 0.00 0.00 0.00 0.02 0.47 0.51 0.56

5 5 50 2 3 0.00 0.00 0.00 0.00 0.01 0.02 3.42 4.29 5.54

5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 10.48 14.21 18.70

5 5 200 4 5 0.00 0.00 0.00 0.00 0.01 0.03 38.05 51.95 61.87

5 10 20 2 3 0.00 0.00 0.00 0.00 0.02 0.06 1.50 2.06 3.42

5 10 50 3 5 0.00 0.07 0.36 0.00 0.19 0.55 8.80 11.93 17.44

5 10 100 5 7 0.00 0.00 0.00 0.00 2.63 10.19 35.65 41.94 53.42

5 10 200 7 8 0.00 0.00 0.00 0.00 0.24 0.66 138.92 176.28 204.44

5 20 50 5 6 0.00 0.39 1.41 0.08 0.74 1.89 33.79 51.27 66.67

5 20 100 7 8 0.00 0.19 0.56 0.02 5.38 10.78 93.54 184.33 240.07

5 20 200 9 13 0.00 0.08 0.26 2.14 34.26 52.57 602.52 840.71 1084.33

5 50 100 10 12 0.00 0.15 0.49 4.57 14.99 23.76 687.40 984.75 1292.27

5 50 200 14 18 0.16 0.24 0.34 49.97 94.49 188.82 3258.87 4243.81 5243.82

10 5 20 2 4 0.00 0.06 0.29 0.00 0.04 0.20 2.26 2.50 3.00

10 5 50 4 5 0.00 0.06 0.31 0.00 0.14 0.50 10.95 15.89 21.92

10 5 100 4 5 0.00 0.00 0.00 0.02 0.02 0.03 44.06 46.75 51.28

10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.05 201.49 226.94 273.97

10 10 20 3 4 0.00 0.29 1.46 0.00 0.31 1.11 6.68 9.70 11.59

10 10 50 4 7 0.00 0.10 0.33 0.00 0.86 3.48 36.16 51.28 65.13

10 10 100 7 8 0.00 0.00 0.00 0.02 0.17 0.56 154.46 185.67 238.81

10 10 200 9 10 0.00 0.00 0.00 0.03 0.04 0.05 364.87 566.97 853.41

10 20 50 7 9 0.00 0.25 0.57 1.45 4.93 8.81 128.76 205.82 276.32

10 20 100 8 13 0.00 0.02 0.12 0.27 9.71 27.44 489.92 688.11 914.27

10 20 200 13 18 0.00 0.01 0.01 2.18 19.64 68.11 1766.34 2640.57 3348.20

10 50 100 15 19 0.30 0.74 1.34 11.22 50.01 82.74 3048.36 4795.48 7152.59

10 50 200 20 24 0.83 1.05 1.40 210.62 344.60 432.31 * * *

15 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 5.65 5.99 6.13

15 5 50 4 5 0.00 0.00 0.00 0.02 0.02 0.03 29.97 33.62 41.12

15 5 100 4 5 0.00 0.00 0.00 0.03 0.07 0.19 107.89 126.81 140.43

15 5 200 5 5 0.00 0.00 0.00 0.05 0.06 0.09 493.69 554.62 653.95

15 10 20 3 5 0.00 0.00 0.00 0.22 0.68 1.95 15.91 18.10 20.97

15 10 50 6 7 0.00 0.00 0.00 0.00 0.04 0.11 96.13 124.75 148.18

15 10 100 8 9 0.00 0.01 0.04 0.03 1.97 8.94 444.77 489.07 561.88

15 10 200 10 10 0.00 0.00 0.00 0.06 0.32 1.36 1187.18 1471.82 1701.38

15 20 50 7 9 0.00 0.11 0.39 2.81 10.82 25.55 316.88 353.42 404.52

15 20 100 9 15 0.00 0.13 0.41 4.99 23.75 48.55 1043.98 1300.18 1491.25

15 20 200 14 18 0.00 0.01 0.03 1.75 53.01 156.41 4576.93 5245.83 6506.93

15 50 100

a
17 24 0.68 1.47 2.72 23.43 60.40 120.53 6564.31 6882.34 7200.37

15 50 200 24 30 0.42 1.30 1.87 20.58 338.01 639.04 * * *

Aver 0.06 0.17 0.38 8.63 27.50 49.17 690.82 882.44 1091.36

a
Solver was unable to solve three of the instan
es with T = 15, M = 50 and N = 100.
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Table 4.2.4: Computational results for 10�s
enario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

minmax min aver max min aver max min aver max

5 5 20 2 3 0.00 0.07 0.36 0.00 0.22 0.53 2.89 3.19 3.84

5 5 50 3 3 0.00 0.00 0.00 0.00 0.12 0.58 12.62 17.11 23.32

5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 58.38 65.14 73.29

5 5 200 4 5 0.00 0.00 0.00 0.02 0.03 0.03 207.31 230.73 243.10

5 10 20 1 4 0.00 0.02 0.11 0.00 0.36 0.62 6.96 9.89 12.84

5 10 50 3 5 0.00 0.03 0.14 0.00 1.93 6.94 45.43 66.04 109.22

5 10 100 4 5 0.00 0.00 0.00 0.09 5.44 23.95 148.47 255.05 351.09

5 10 200 6 8 0.00 0.02 0.10 0.05 4.33 10.64 795.18 1038.60 1442.13

5 20 50 4 6 0.00 0.14 0.46 1.89 5.10 8.74 155.02 226.56 356.30

5 20 100 6 8 0.00 0.25 1.27 2.40 8.23 17.85 541.68 796.70 909.26

5 20 200 8 12 0.00 0.03 0.10 26.57 164.40 341.20 2121.63 2988.89 4074.88

5 50 100 8 12 0.00 0.17 0.57 34.94 79.29 121.93 3436.65 4215.17 5468.21

5 50 200 14 19 1.22 2.07 3.25 418.86 634.12 946.89 * * *

10 5 20 2 3 0.00 0.00 0.00 0.00 0.01 0.02 7.89 11.65 16.07

10 5 50 3 5 0.00 0.00 0.00 0.02 0.03 0.08 50.67 65.89 95.52

10 5 100 4 5 0.00 0.00 0.00 0.03 0.04 0.05 197.23 221.54 247.67

10 5 200 5 5 0.00 0.00 0.00 0.06 0.09 0.14 810.00 868.02 992.83

10 10 20 2 4 0.00 0.00 0.00 0.02 0.32 1.25 27.33 32.99 43.54

10 10 50 4 6 0.00 0.06 0.30 0.03 9.70 34.91 182.36 223.63 320.38

10 10 100 6 8 0.00 0.00 0.00 0.06 1.24 3.78 696.07 877.82 961.08

10 10 200 8 10 0.00 0.00 0.00 0.11 0.12 0.13 2308.36 2687.90 3046.52

10 20 50 6 9 0.00 0.33 0.97 6.51 27.74 49.41 584.74 954.05 1261.76

10 20 100 9 11 0.00 0.19 0.67 7.22 73.58 205.44 2551.49 3135.98 3598.62

10 20 200 13 15 0.00 0.04 0.12 1.79 243.75 460.86 * * *

10 50 100 13 17 0.62 1.66 2.27 73.26 225.40 334.34 * * *

10 50 200 18 25 0.50 1.23 2.30 1091.9 1871.4 2703.6 * * *

15 5 20 3 4 0.00 0.00 0.00 0.02 1.33 6.54 21.09 30.78 38.45

15 5 50 4 5 0.00 0.00 0.00 0.05 0.07 0.13 149.46 168.39 188.90

15 5 100 4 5 0.00 0.00 0.00 0.08 0.20 0.41 545.28 595.69 690.44

15 5 200 5 5 0.00 0.00 0.00 0.14 0.44 1.47 1953.11 2107.77 2261.94

15 10 20 3 5 0.00 0.07 0.37 0.28 1.62 4.68 65.30 88.62 126.95

15 10 50 4 7 0.00 0.00 0.00 0.05 1.25 3.65 447.81 497.29 550.57

15 10 100 7 9 0.00 0.00 0.00 0.11 10.99 41.96 1472.00 1997.70 2838.22

15 10 200

a
9 10 0.00 0.00 0.00 0.17 0.21 0.23 5932.49 6218.71 6353.24

15 20 50 6 8 0.00 0.18 0.35 0.78 17.82 40.72 1374.77 1757.89 2792.24

15 20 100

b
8 12 0.00 0.23 0.69 8.19 70.07 115.46 4948.38 5251.97 5518.58

15 20 200 14 18 0.00 0.02 0.05 0.28 508.18 1231.3 * * *

15 50 100 17 23 1.14 1.95 2.85 187.43 427.05 785.32 * * *

15 50 200 22 28 0.41 1.23 1.91 526.03 1771.8 3170.6 * * *

Aver 0.10 0.26 0.49 61.27 158.15 273.75 995.56 1178.35 1406.59

a
Solver was unable to solve one of the instan
es with T = 15, M = 10 and N = 200. b

Solver was

unable to solve two of the instan
es with T = 15, M = 20 and N = 100.
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Table 4.2.5: Computational results for 20�s
enario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

minmax min aver max min aver max min aver max

5 5 20 1 3 0.00 0.01 0.07 0.00 0.13 0.61 9.42 12.28 17.64

5 5 50 3 4 0.00 0.00 0.00 0.02 0.71 3.45 61.84 70.29 95.61

5 5 100 3 4 0.00 0.00 0.00 0.03 30.86 154.19 222.89 286.07 381.81

5 5 200 4 5 0.00 0.00 0.00 0.06 0.08 0.09 1001.93 1109.75 1302.44

5 10 20 2 4 0.00 0.22 1.08 0.02 2.53 4.96 37.78 45.14 57.60

5 10 50 3 4 0.00 0.08 0.39 1.26 14.10 23.99 257.40 291.35 309.33

5 10 100 5 6 0.00 0.00 0.00 3.09 71.90 245.59 877.80 1069.26 1361.01

5 10 200 6 8 0.00 0.03 0.15 0.09 145.20 638.04 2729.54 3547.23 4662.37

5 20 50 4 6 0.00 0.13 0.63 0.36 21.11 44.29 499.04 993.34 1600.09

5 20 100 6 8 0.00 0.19 0.82 19.64 101.85 222.91 2429.08 3547.42 4711.87

5 20 200 9 13 0.01 0.57 1.47 47.05 621.55 1342.97 * * *

5 50 100 8 14 1.28 2.01 2.75 202.60 310.82 359.07 * * *

5 50 200 16 20 1.85 2.47 3.33 383.79 1812.6 2803.42 * * *

10 5 20 2 3 0.00 0.00 0.00 0.03 0.55 1.78 34.05 47.44 67.78

10 5 50 3 4 0.00 0.00 0.00 0.06 0.07 0.09 256.78 266.85 277.40

10 5 100 4 5 0.00 0.00 0.00 0.13 0.15 0.19 1023.39 1138.34 1499.16

10 5 200 5 5 0.00 0.00 0.00 0.23 0.27 0.33 3540.65 3699.76 4046.42

10 10 20 2 4 0.00 0.23 1.16 0.05 2.61 6.44 128.87 157.65 201.02

10 10 50 4 5 0.00 0.00 0.00 0.08 23.42 45.74 791.93 949.63 1187.52

10 10 100 6 7 0.00 0.00 0.00 0.16 8.25 38.05 2891.10 3888.13 4534.98

10 10 200 9 10 0.00 0.00 0.00 0.30 1.62 3.76 * * *

10 20 50 5 8 0.00 0.12 0.56 34.94 140.44 225.34 2789.70 3035.98 3677.72

10 20 100 8 11 0.02 0.43 1.03 53.57 193.76 409.70 * * *

10 20 200 13 14 0.01 0.16 0.38 689.88 1786.9 3325.52 * * *

10 50 100 13 16 0.68 1.82 3.55 215.51 748.85 1289.9 * * *

10 50 200 18 21 0.62 1.10 2.25 1860.6 3639.3 4646.8 * * *

15 5 20 2 3 0.00 0.00 0.00 0.06 9.97 49.55 107.58 123.71 157.44

15 5 50 3 5 0.00 0.00 0.00 0.14 0.17 0.19 537.65 648.65 858.02

15 5 100 4 5 0.00 0.00 0.00 0.28 0.42 0.86 2195.15 2440.06 2643.19

15 5 200 5 5 0.00 0.00 0.00 0.50 0.57 0.70 * * *

15 10 20 2 5 0.00 0.14 0.72 0.06 12.31 43.73 296.65 414.25 614.06

15 10 50 5 6 0.00 0.00 0.00 0.17 79.82 297.60 1564.88 2319.46 2902.85

15 10 100 7 10 0.00 0.02 0.10 0.34 8.53 37.82 * * *

15 10 200 9 10 0.00 0.00 0.00 0.61 0.65 0.73 * * *

15 20 50 6 9 0.05 0.70 2.32 49.64 198.52 353.08 * * *

15 20 100 11 13 0.02 0.34 0.49 109.61 435.24 641.11 * * *

15 20 200 10 15 0.00 0.08 0.32 403.70 2561.1 5787.24 * * *

15 50 100 16 18 0.96 2.49 4.02 414.34 1973.1 3138.74 * * *

15 50 200 22 26 1.35 1.89 3.01 6442.4 13133.7 16098.22 * * *

Aver 0.18 0.39 0.78 280.40 720.35 1084.28 1055.87 1308.78 1615.97
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4.2.2 Bran
h&Bound approa
h

To assess the ability of the bran
h&bound approa
h we have 
onsidered randomly gener-

ated di�erent problem instan
es a

ording to table 4.2.1 and following the same pro
edure

already des
ribed for the primal�dual heuristi
. Thus, we have also 780 instan
es in total,

that were solved by the bran
h&bound approa
h and by CPLEX MIP optimizer, v12.4,

that was used with its default settings. We have established a maximum 
omputational

time for the exe
ution of bran
h&bound algorithm equal to one hour

1

(no time limit was

imposed to CPLEX).

Tables 4.2.6�4.2.7 summarize the 
omputational results obtained in terms of primal so-

lution quality a
hieved in the root node and by the bran
h&bound algorithm. We report

the minimum, average and maximum gap (in per
entage) on the �ve instan
es solved

for ea
h 
ombination of (S, T,M,N). The average results for all S�s
enario problems

are reported in the last row of the 
orresponding tables. Tables ??�?? show the solution

times (minimum, average and maximum times, in se
onds, on the �ve instan
es) of the

bran
h&bound, CPLEX, and also the time needed to 
al
ulate the admissible solution

of the root node. Due to the time limit restri
tion, the bran
h&bound was not able to


al
ulate the optimal solution of some instan
es. As far as CPLEX results are 
on
erned,

the solver 
ould not also solve to optimality some of the problems out of the �ve instan
es,

due to la
k of memory to pro
eed the 
al
ulation. We report these 
ases and solution gaps

are provided. However, if these solution gaps ex
eeded 10% (gaps ex
essively high when


ompared with solution gaps provided by our pro
edure), we have de
ided to ex
lude

them from the time statisti
s. We report these 
ases and CPLEX statisti
s refer only to

those instan
es that were solved to optimality or presented a reasonable gap. Whenever

CPLEX was not able to solve any of the �ve instan
es, the solver time is given as ' * ' (in

su
h 
ases, due to la
k of memory to read the problems).

The 
omputational results show that the admissible primal solution 
al
ulated in the

root node is of very good quality, and is obtained in reasonable 
omputational times.

The maximum time needed to 
ompute the root node solution is, for most problems

(around 60%), lower than the minimum time required by CPLEX for the same problems.

The worst results in terms of gap are observed in instan
es with M ∈ {20, 50}, but still

with a maximum gap of 4.01% ((S, T,M,N) = (20, 15, 50, 100)). Within ea
h S-s
enario

problems, in average, the larger gaps are observed in instan
es with largest M and N .

Nevertheless, the bran
h&bound algorithm is able to improve signi�
antly the quality

of the primal solution 
al
ulated in the root node. It should be noted that CPLEX has

better 
omputational times than bran
h&bound for M ∈ {20, 50} and N ∈ {100, 200},

in general, but as the number of s
enarios in
reases (espe
ially for problems with 20

s
enarios), CPLEX shows di�
ulties in providing a better solution or even to be able to

1

This 
riterion is tested only at the beginning of ea
h node, thus the �nal 
omputational time may

in fa
t be higher than the time limit established a priori.
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generate a feasible solution. From our 
omputational tests we have observed that di�erent

problem instan
es of the same size 
an make the optimization algorithms behave very

di�erently, both in terms of the 
omputational times and solution quality. To give an

example, 
onsidering the 5 instan
es with size (S, T,M,N) = (20, 10, 50, 100), we have

observed the following: the bran
h&bound algorithm was able to 
al
ulate the optimal

solution of 2 out of the 5 problems using 1 (after only 215.5 se
) and 3 nodes of the

tree, respe
tively. For the other problems, the algorithm was unable to 
al
ulate the

optimal solutions due to the time limit restri
tion, but still improved the solution of two

problems (using 6 and 7 nodes of the tree). CPLEX was able to 
al
ulate the optimum

of one problem only (715 se
), and 
ould not provide feasible solutions for any of the

other problems due to memory restri
tions. These di�erent behaviors make us think that

time should be spent looking at the problem's 
hara
teristi
s to try and delineate more

e�
ient bran
hing rules.
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Table 4.2.6: Solution quality (in %) for problems with 2 and 5 s
enarios.

S=2 S=5

T M N Root B&B Root B&B

min aver max min aver max min aver max min aver max

5 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 20 0.00 0.11 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 50 0.00 0.13 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 100 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 20 50 0.00 0.41 1.52 0.00 0.00 0.00 0.00 0.39 1.41 0.00 0.00 0.00

5 20 100 0.00 0.02 0.12 0.00 0.00 0.00 0.00 0.19 0.56 0.00 0.00 0.00

5 20 200 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.08 0.26 0.00 0.00 0.00

5 50 100 0.03 0.62 1.85 0.00 0.00 0.00 0.00 0.15 0.49 0.00 0.00 0.00

5 50 200 0.00 0.30 0.58 0.00 0.00 0.00 0.16 0.23 0.34 0.00 0.00 0.00

10 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.29 0.00 0.00 0.00

10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.31 0.00 0.00 0.00

10 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 20 0.00 0.03 0.12 0.00 0.00 0.00 0.00 0.29 1.46 0.00 0.00 0.00

10 10 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.33 0.00 0.00 0.00

10 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 20 50 0.00 0.06 0.32 0.00 0.00 0.00 0.00 0.25 0.57 0.00 0.00 0.00

10 20 100 0.00 0.04 0.20 0.00 0.00 0.00 0.00 0.02 0.12 0.00 0.00 0.00

10 20 200 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00

10 50 100 0.37 0.68 1.17 0.00 0.00 0.00 0.08 0.46 1.25 0.00 0.02 0.10

10 50 200 0.02 0.25 0.45 0.00 0.02 0.08 0.02 0.15 0.40 0.00 0.10 0.23

15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00

15 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 20 50 0.00 0.03 0.13 0.00 0.00 0.00 0.00 0.11 0.39 0.00 0.00 0.00

15 20 100 0.00 0.05 0.21 0.00 0.00 0.00 0.00 0.05 0.13 0.00 0.00 0.00

15 20 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00

15 50 100 0.26 0.52 0.90 0.00 0.00 0.00 0.29 0.61 1.20 0.00 0.48 1.20

15 50 200 0.00 0.34 1.47 0.00 0.11 0.57 0.00 0.37 1.06 0.00 0.26 0.75

0.02 0.09 0.26 0.00 0.00 0.02 0.01 0.09 0.27 0.00 0.02 0.06
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Table 4.2.7: Solution quality (in %) for problems with 10 and 20 s
enarios.

S=10 S=20

T M N Root B&B Root B&B

min aver max min aver max min aver max min aver max

5 5 20 0.00 0.07 0.36 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00

5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 20 0.00 0.03 0.11 0.00 0.00 0.00 0.00 0.22 1.08 0.00 0.00 0.00

5 10 50 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.08 0.39 0.00 0.00 0.00

5 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 20 50 0.00 0.14 0.46 0.00 0.00 0.00 0.00 0.13 0.63 0.00 0.00 0.00

5 20 100 0.00 0.25 1.27 0.00 0.00 0.00 0.00 0.19 0.82 0.00 0.00 0.00

5 20 200 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.19 0.61 0.00 0.03 0.15

5 50 100 0.00 0.17 0.57 0.00 0.00 0.00 0.08 0.70 1.42 0.00 0.46 1.42

5 50 200 0.31 0.84 1.63 0.24 0.60 1.02 1.85 2.47 3.33 1.62 2.10 2.87

10 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 1.16 0.00 0.00 0.00

10 10 50 0.00 0.06 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 20 50 0.00 0.48 1.43 0.00 0.00 0.00 0.00 0.12 0.56 0.00 0.00 0.00

10 20 100 0.00 0.06 0.20 0.00 0.00 0.00 0.00 0.14 0.34 0.00 0.00 0.00

10 20 200 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.07 0.22 0.00 0.04 0.13

10 50 100 0.00 0.64 0.92 0.00 0.41 0.77 0.00 1.43 3.55 0.00 1.10 2.57

10 50 200 0.13 0.39 1.05 0.00 0.31 1.05 0.56 1.08 2.25 0.56 1.08 2.25

15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 20 0.00 0.07 0.37 0.00 0.00 0.00 0.00 0.14 0.72 0.00 0.00 0.00

15 10 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00

15 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 20 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.28 0.00 0.00 0.00

15 20 100 0.00 0.06 0.24 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.01 0.05

15 20 200 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.01 0.04

15 50 100 0.05 1.05 2.25 0.00 0.42 1.14 0.95 2.30 4.01 0.65 2.17 3.81

15 50 200 0.26 1.12 1.79 0.26 1.01 1.79 1.27 1.84 3.01 1.27 1.84 3.01

0.02 0.14 0.34 0.01 0.07 0.15 0.12 0.29 0.63 0.11 0.23 0.42
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Table 4.2.8: Computational time (in se
.) for 2�s
enario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.00 0.02 0.00 0.01 0.02 0.06 0.07 0.11

5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.17 0.17

5 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.51 0.73

5 5 200 0.00 0.03 0.08 0.00 0.03 0.08 0.92 1.03 1.25

5 10 20 0.00 0.01 0.03 0.00 0.02 0.06 0.11 0.17 0.27

5 10 50 0.00 0.06 0.17 0.00 0.11 0.30 0.34 0.36 0.41

5 10 100 0.00 0.08 0.23 0.00 0.12 0.31 0.76 0.88 0.95

5 10 200 0.00 0.26 1.28 0.00 0.26 1.28 2.04 2.19 2.37

5 20 50 0.03 0.13 0.30 0.03 1.60 5.57 0.72 2.38 6.93

5 20 100 0.03 0.83 1.51 0.03 1.82 5.87 1.89 3.18 5.46

5 20 200 0.02 3.24 12.29 0.02 9.29 26.86 4.77 6.32 11.67

5 50 100 0.48 3.23 5.13 0.89 76.01 184.24 5.16 27.34 67.10

5 50 200 6.29 13.41 19.44 45.24 259.14 600.12 17.53 27.47 58.70

10 5 20 0.00 0.00 0.02 0.00 0.00 0.02 0.11 0.13 0.16

10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.38 0.41

10 5 100 0.00 0.03 0.08 0.00 0.03 0.08 0.80 0.90 1.00

10 5 200 0.00 0.02 0.08 0.00 0.05 0.22 2.12 2.24 2.31

10 10 20 0.00 0.01 0.02 0.00 0.03 0.09 0.23 0.27 0.30

10 10 50 0.00 0.01 0.03 0.00 0.02 0.08 0.73 0.86 1.09

10 10 100 0.00 0.01 0.02 0.00 0.01 0.02 2.09 2.16 2.25

10 10 200 0.00 0.02 0.08 0.00 0.02 0.08 5.05 5.23 5.66

10 20 50 0.08 0.58 1.25 0.08 1.09 3.24 1.56 2.50 5.54

10 20 100 0.09 0.89 2.26 0.09 2.47 10.16 4.32 4.57 4.79

10 20 200 0.09 1.68 6.57 0.09 1.79 6.57 12.04 12.39 12.59

10 50 100 1.95 6.33 11.25 33.68 247.76 432.53 17.83 64.68 106.77

10 50 200 40.17 52.61 90.46 434.76 1238.78 3624.30 44.73 69.14 156.31

15 5 20 0.00 0.01 0.06 0.00 0.01 0.06 0.17 0.20 0.23

15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.66 0.70

15 5 100 0.00 0.03 0.09 0.00 0.03 0.09 1.19 1.32 1.45

15 5 200 0.00 0.32 1.56 0.00 0.32 1.56 3.20 3.53 3.90

15 10 20 0.00 0.00 0.02 0.00 0.00 0.02 0.39 0.41 0.44

15 10 50 0.00 0.01 0.02 0.00 0.01 0.02 1.06 1.27 1.44

15 10 100 0.00 0.03 0.11 0.00 0.03 0.11 2.67 3.26 3.88

15 10 200 0.02 0.02 0.02 0.02 0.02 0.02 9.11 9.50 9.67

15 20 50 0.31 0.99 1.97 0.31 1.16 2.62 2.54 3.32 5.16

15 20 100 0.02 1.55 7.27 0.02 1.56 7.27 6.44 6.98 7.74

15 20 200 0.20 0.95 2.26 0.20 1.18 2.73 23.31 23.91 24.62

15 50 100 2.39 5.40 9.50 417.53 1751.79 3604.30 72.45 185.26 314.83

15 50 200 58.62 106.15 210.16 81.59 1469.96 3617.16 59.87 90.70 183.60

2.84 5.10 9.89 26.01 129.91 311.23 7.94 14.56 25.97

(1) (T,M,N) = (15, 50, 200): solution gap of 2.54% in one instan
e.
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Table 4.2.9: Computational time (in se
.) for 5�s
enario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.16 0.17

5 5 50 0.00 0.01 0.02 0.00 0.01 0.02 0.50 0.55 0.64

5 5 100 0.00 0.01 0.02 0.00 0.01 0.02 1.23 1.27 1.30

5 5 200 0.00 0.01 0.03 0.00 0.01 0.03 2.98 3.15 3.37

5 10 20 0.00 0.01 0.05 0.00 0.01 0.05 0.33 0.34 0.36

5 10 50 0.00 0.18 0.55 0.00 0.37 1.47 1.15 1.26 1.40

5 10 100 0.00 2.63 10.19 0.00 3.16 10.19 2.43 3.36 5.94

5 10 200 0.00 0.23 0.66 0.00 0.23 0.66 7.21 7.37 7.52

5 20 50 0.08 0.70 1.72 0.08 3.08 6.93 2.29 3.37 5.87

5 20 100 0.02 5.38 10.78 0.02 13.00 22.48 5.77 11.65 29.22

5 20 200 2.14 34.26 52.57 5.71 131.14 384.53 22.67 42.81 99.15

5 50 100 4.57 14.99 23.76 25.16 71.50 124.04 22.25 36.06 79.39

5 50 200 49.97 94.49 188.82 537.22 1708.13 3121.40 77.69 131.91 254.75

10 5 20 0.00 0.04 0.20 0.00 0.05 0.25 0.38 0.55 1.19

10 5 50 0.00 0.13 0.50 0.00 0.39 1.78 1.20 1.27 1.31

10 5 100 0.00 0.02 0.03 0.00 0.02 0.03 2.75 3.00 3.37

10 5 200 0.02 0.03 0.05 0.02 0.03 0.05 7.29 7.65 7.89

10 10 20 0.00 0.31 1.11 0.00 0.80 2.62 0.83 0.95 1.11

10 10 50 0.00 0.86 3.48 0.00 2.05 6.91 2.56 2.83 3.25

10 10 100 0.02 0.16 0.53 0.02 0.16 0.53 6.46 6.68 6.88

10 10 200 0.03 0.04 0.05 0.03 0.04 0.05 22.40 23.27 24.09

10 20 50 1.45 4.93 8.81 7.00 22.13 39.56 6.41 12.19 23.18

10 20 100 0.25 9.70 27.44 0.25 15.21 50.59 18.21 18.96 20.64

10 20 200 2.15 19.59 68.11 2.15 127.16 566.25 53.68 57.85 69.75

10 50 100 11.22 50.01 82.74 440.05 1672.13 3601.46 69.59 321.40 556.18

10 50 200 210.62 344.60 432.31 3672.54 3723.90 3843.65 200.18 244.33 297.48

15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.59 0.66

15 5 50 0.00 0.02 0.03 0.00 0.02 0.03 1.86 1.98 2.03

15 5 100 0.03 0.06 0.19 0.03 0.06 0.19 4.43 4.68 4.90

15 5 200 0.05 0.06 0.09 0.05 0.06 0.09 15.29 15.60 15.91

15 10 20 0.22 0.63 1.95 0.33 1.06 3.76 1.23 1.81 3.42

15 10 50 0.00 0.03 0.06 0.00 0.03 0.06 4.51 4.60 4.65

15 10 100 0.03 1.97 8.94 0.03 2.58 12.00 12.22 14.67 23.31

15 10 200 0.06 0.32 1.36 0.06 0.32 1.36 38.41 39.64 40.73

15 20 50 2.81 10.82 25.55 2.81 14.30 32.21 9.95 11.94 14.03

15 20 100 4.99 23.75 48.55 4.99 74.52 161.87 33.23 41.48 63.80

15 20 200 19.19 64.08 156.41 19.19 95.58 282.41 91.23 93.13 95.00

15 50 100 23.43 60.40 120.53 738.02 2553.79 3768.07 111.53 594.58 1426.71

15 50 200 20.58 338.01 639.04 2986.28 3663.47 4178.27 264.97 264.97 264.97

9.07 27.78 49.16 216.46 356.42 518.61 28.92 52.15 88.86

(1) (T,M,N) = (10, 50, 200): solution gap of 5.04% in one instan
e; (T,M,N) = (15, 50, 200): statisti
s
refer only to one instan
e, as gaps on the other four were ex
essively high�ranged from 61% to 70%.
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Table 4.2.10: Computational time (in se
.) for 10�s
enario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.20 0.53 0.00 0.24 0.73 0.38 0.66 1.65

5 5 50 0.00 0.11 0.50 0.00 0.11 0.50 1.12 1.23 1.34

5 5 100 0.00 0.01 0.02 0.00 0.01 0.02 2.92 3.17 3.48

5 5 200 0.02 0.03 0.03 0.02 0.03 0.03 7.64 7.95 8.38

5 10 20 0.00 0.33 0.45 0.00 0.54 1.28 0.92 1.25 2.14

5 10 50 0.00 1.91 6.94 0.00 6.77 31.25 2.81 4.90 12.78

5 10 100 0.05 5.30 23.34 0.05 6.27 23.34 7.13 7.85 8.69

5 10 200 0.05 3.47 9.61 0.05 3.47 9.61 21.72 22.82 26.07

5 20 50 1.73 5.06 8.74 1.73 7.05 12.56 6.90 7.94 10.58

5 20 100 2.40 8.13 17.85 4.49 31.27 85.94 21.17 32.71 67.05

5 20 200 26.57 164.40 341.20 26.57 221.01 437.28 58.87 64.29 72.42

5 50 100 34.94 79.29 121.93 52.39 588.56 1301.41 69.14 139.48 259.37

5 50 200 418.86 634.12 946.89 3723.94 3935.26 4273.85 524.82 959.66 1527.31

10 5 20 0.00 0.01 0.02 0.00 0.01 0.02 0.83 0.90 0.98

10 5 50 0.02 0.03 0.08 0.02 0.03 0.08 2.67 2.88 3.17

10 5 100 0.03 0.04 0.05 0.03 0.04 0.05 7.44 7.88 8.14

10 5 200 0.06 0.08 0.08 0.06 0.08 0.08 21.68 23.37 24.98

10 10 20 0.00 0.29 1.20 0.00 0.29 1.20 1.93 2.10 2.43

10 10 50 0.03 9.70 34.91 0.03 15.07 59.16 6.66 9.36 19.19

10 10 100 0.06 1.23 3.78 0.06 1.23 3.78 21.11 22.02 22.50

10 10 200 0.11 0.11 0.13 0.11 0.11 0.13 55.16 57.02 59.45

10 20 50 6.16 27.61 49.41 6.16 91.57 207.54 18.80 55.25 132.16

10 20 100 7.22 73.58 205.44 7.22 357.21 803.21 56.55 118.88 226.20

10 20 200 1.64 241.84 460.86 1.64 302.18 648.24 127.48 136.49 152.48

10 50 100 73.26 225.40 334.34 73.26 2847.19 3658.22 161.01 612.17 841.99

10 50 200 1091.86 1871.35 2703.61 3344.55 4004.48 4996.68 401.34 610.96 820.58

15 5 20 0.02 1.33 6.54 0.02 2.06 10.22 1.53 1.78 1.95

15 5 50 0.05 0.07 0.13 0.05 0.07 0.13 4.98 5.10 5.34

15 5 100 0.08 0.20 0.41 0.08 0.20 0.41 14.98 15.69 16.65

15 5 200 0.14 0.43 1.47 0.14 0.43 1.47 43.07 45.16 47.69

15 10 20 0.28 1.62 4.68 0.28 10.41 34.41 3.21 3.77 4.88

15 10 50 0.05 1.24 3.57 0.05 1.24 3.57 12.81 13.24 13.73

15 10 100 0.11 10.94 41.96 0.11 10.94 41.96 37.46 40.84 46.11

15 10 200 0.17 0.21 0.23 0.17 0.21 0.23 99.33 103.01 105.32

15 20 50 0.78 17.82 40.72 0.78 46.89 158.57 32.93 43.70 72.59

15 20 100 8.19 58.64 105.66 8.19 270.82 796.27 95.40 164.64 398.57

15 20 200 0.28 508.17 1231.29 0.28 625.82 1231.29 217.14 248.22 310.01

15 50 100 187.43 427.05 785.32 2662.76 3490.24 3750.85 313.22 361.24 409.27

15 50 200 526.03 1771.76 3170.56 3674.49 4156.30 4983.22 * * *

61.25 157.77 273.45 348.46 539.38 706.89 65.37 104.20 151.25

(1) (T,M,N) = (5, 50, 200): gap of 2.28% in one instan
e, and gaps ex
essively high in two instan
es;

(T,M,N) = (10, 50, 100): two ex
essively high gaps (15%; 19%); (T,M,N) = (10, 50, 200): three ex
es-

sively high gaps (around 60%). (T,M,N) = (15, 20, 200): one gap of 0.29%; (T,M,N) = (15, 50, 100):
two ex
essively high gaps (62%; 69%) and one instan
e without any feasible solution.
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Table 4.2.11: Computational time (in se
.) for 20�s
enario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.13 0.61 0.00 0.38 1.87 0.80 1.48 3.00

5 5 50 0.02 0.65 3.15 0.02 0.65 3.15 2.85 3.16 3.53

5 5 100 0.03 30.86 154.19 0.03 30.86 154.19 7.86 9.43 14.35

5 5 200 0.06 0.08 0.09 0.06 0.08 0.09 25.26 26.22 27.11

5 10 20 0.02 2.52 4.90 0.02 6.26 20.87 2.11 2.51 2.75

5 10 50 1.09 13.61 23.99 1.09 21.88 42.84 7.89 16.82 47.86

5 10 100 3.09 70.80 245.59 3.09 108.01 431.64 24.32 28.15 37.46

5 10 200 0.09 145.04 638.04 0.09 145.04 638.04 64.19 73.17 101.15

5 20 50 0.34 21.11 44.29 0.34 113.64 435.97 20.61 74.18 221.68

5 20 100 19.64 101.85 222.91 19.64 403.43 1015.67 56.89 117.68 288.10

5 20 200 47.05 621.55 1342.97 58.31 2219.18 4636.38 164.66 537.78 1190.23

5 50 100 202.60 310.82 359.07 988.31 2449.90 3983.55 264.14 468.16 883.07

5 50 200 383.79 1812.58 2803.42 3981.65 4692.20 5493.17 * * *

10 5 20 0.03 0.55 1.78 0.03 1.15 4.79 2.11 2.22 2.29

10 5 50 0.06 0.07 0.09 0.06 0.07 0.09 8.25 8.55 8.71

10 5 100 0.13 0.15 0.19 0.13 0.15 0.19 23.53 24.93 26.16

10 5 200 0.23 0.27 0.33 0.23 0.27 0.33 58.75 61.76 65.38

10 10 20 0.03 2.56 6.22 0.03 3.01 6.22 5.46 5.95 7.49

10 10 50 0.08 23.42 45.74 0.08 23.42 45.74 25.91 27.31 29.84

10 10 100 0.16 7.62 35.22 0.16 7.62 35.22 55.93 58.88 61.87

10 10 200 0.30 1.62 3.76 0.30 2.45 7.57 131.67 137.53 140.46

10 20 50 34.41 140.33 225.34 34.41 352.87 1008.43 62.28 75.39 97.60

10 20 100 53.57 193.76 409.70 107.17 1642.17 3957.66 141.54 228.71 470.41

10 20 200 689.88 1786.88 3325.52 689.88 2822.17 4521.18 313.94 390.26 512.89

10 50 100 215.51 748.85 1289.93 215.51 3259.06 4482.38 715.61 715.61 715.61

10 50 200 1860.63 3639.29 4646.76 4283.56 4696.01 5646.12 * * *

15 5 20 0.06 9.97 49.55 0.06 9.97 49.55 4.23 4.46 4.57

15 5 50 0.14 0.17 0.19 0.14 0.17 0.19 15.34 16.33 17.22

15 5 100 0.27 0.42 0.86 0.27 0.42 0.86 40.19 45.06 47.83

15 5 200 0.50 0.57 0.70 0.50 0.57 0.70 97.42 105.32 109.15

15 10 20 0.06 12.31 43.73 0.06 32.01 142.21 10.97 20.22 54.18

15 10 50 0.17 79.79 297.60 0.17 157.06 683.95 42.01 46.75 61.62

15 10 100 0.34 8.53 37.82 0.34 35.66 139.39 104.63 108.50 111.84

15 10 200 0.61 0.65 0.73 0.61 0.65 0.73 221.55 233.70 241.26

15 20 50 49.64 198.52 353.08 49.64 1109.26 3475.71 104.99 244.58 616.14

15 20 100 109.61 435.24 641.11 109.61 2080.56 3728.63 228.11 283.64 332.78

15 20 200 364.42 2457.07 5352.72 364.42 2525.55 5352.72 * * *

15 50 100 414.34 1973.06 3138.74 3914.32 4599.44 5882.31 * * *

15 50 200 6064.95 12619.44 15228.66 6064.95 12619.44 15228.66 * * *

269.69 704.43 1050.75 535.62 1183.91 1827.15 89.88 123.66 192.81

(1) (T,M,N) = (5, 50, 100): one ex
essively high gap (39%); (T,M,N) = (10, 50, 100): CPLEX was only

able to solve one of the instan
es (no feasible solutions were provided for the other four).
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4.2.3 Lagrangean relaxation approa
h

In order to analyze the model α-DUFLPU and to assess the e�
ien
y of the proposed

algorithmi
 approa
h, six data sets were 
onsidered, with input values of (S, T, J, I) given

in Table 4.2.12. The 
orresponding number of variables and 
onstraints are also provided.

For ea
h one of these six sets, forty instan
es were randomly generated.

Table 4.2.12: Dimension of the test problems.

Set S T J I num var num 
onst

I 10 10 20 100 200200 210030

II 10 10 20 200 400200 420030

III 10 10 40 100 400400 410050

IV 10 20 20 100 400400 420030

V 20 10 20 100 400200 420040

VI 50 5 20 100 500100 525070

We have 
onsidered α ∈ {0.075, 0.10, 0.15, 0.20}. The stopping 
riteria were established

after some preliminary tests. The maximum 
omputational time for the exe
ution of the

algorithm is two hours for problems with 20 and 50 s
enarios and one hour for all other

problems. In addition, we have also established as stopping 
riterium the quality of the

best solution a
hieved by the algorithm, measured by the gap between the best known

upper and lower bounds: 2% for the problems with 20 and 50 s
enarios and 1.5% for

all the others. We have also imposed a maximum number of iterations whi
h 
ould vary

from 20 to 50 (largest instan
es). The 
omputational results provided in this se
tion were

obtained 
onsidering a step size 
oe�
ient z = 1 whi
h gave the best results in general.

Other initial values of z as well as lowering z after a few iterations of the algorithm were

tested without signi�
ant improvements in results.

Table 4.2.13 summarizes the 
omputational results obtained. For ea
h data set and for

ea
h α, 
olumn 'feas/inf/ind' reports the number of instan
es for whi
h a feasible solution

was found by the algorithm, the number of instan
es identi�ed as infeasible and also the

number of instan
es for whi
h the algorithm was unable to a
hieve a feasible solution

(solution indeterminate). The statisti
s shown in the next 
olumns refer only to the

subsets of instan
es for whi
h a feasible solution was found (feasible instan
es). For ea
h

α and for ea
h feasible instan
e, the in
rease of the best obje
tive fun
tion value relative

to the best one a
hieved for α = 0.2 was 
al
ulated. Column 'in
rease' depi
ts the average

in
rease (in per
entage) obtained for ea
h α. The next 
olumns report the minimum,

average and maximum gap on the feasible instan
es, and the minimum, average and

maximum time (in se
onds) spent by the algorithm to solve ea
h set of feasible instan
es.

For ea
h set, the last row shows the average results for gap and time.

We 
an see that the number of feasible instan
es de
reases as α de
reases in all sets,

due to infeasibility of some instan
es or due to the algorithm being unable to a
hieve a
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feasible solution. The algorithm stopped with indeterminate solutions in only 7.6% of

all 960 problems, due to the time limit established a priori, remaining the doubt about

the feasibility of those instan
es. As expe
ted, the obje
tive fun
tion values in
rease as

regret de
reases. In terms of solution quality, the larger gaps were observed in sets V

and VI, sets with larger number of s
enarios, but the quality of the solutions is still very

good. The worst gap equals 1.72% and was observed for instan
es with 50 s
enarios.

Apparently, the de
rease of parameter α does not seem to 
ause a deterioration in the

quality of the solutions in terms of gap, noti
ing however that the dimensions of the

samples with problems for smaller values of α are very small. The 
omputational time

spent by the algorithm 
an vary a lot, even for problems within the same set (same size)

and same α. The higher exe
ution times were observed in set III, with larger number of

potential fa
ility lo
ations, and sets V and VI with larger number of s
enarios.

We have solved the same sets of problems using an exa
t algorithm, CPLEX MIP opti-

mizer, v12.4, with the same stopping 
riteria. The results are reported in Table 4.2.14.

CPLEX stopped with indeterminate solutions in 10% of all 960 problems, due to la
k of

memory. Considering only set VI, CPLEX was unable to �nd a feasible solution in 19.4%

of those 160 problems as Lagrangean relaxation approa
h stopped with indeterminate

solutions in only 8%. We noti
ed that within sets I to V the indeterminate instan
es of

CPLEX were almost the same for whi
h our algorithm was also unable to �nd a feasible

solution, ex
ept 11 instan
es for whi
h only our algorithm was able to �nd a feasible

solution and 6 feasible instan
es only a
hieved by CPLEX. The results for these sets

are very similar, re�e
ting that some instan
es are the hardest for both optimization

algorithms. In terms of solution quality, CPLEX provides smaller average gaps than the

Lagrangean relaxation approa
h, although less feasible instan
es were found by CPLEX,

in parti
ular in set VI with larger number of s
enarios. In addition, CPLEX's maximum

gap 1.97% is greater than the worst gap 1.72% a
hieved by the algorithm (a
hieved in

sets V and VI, respe
tively, both for α = 0.2). In terms of 
omputational time, CPLEX


an also vary a lot. We 
an see that for all problems, the minimum 
omputational time

was obtained by the algorithm, in same 
ases 
learly outperforming CPLEX. In terms of

average 
omputational times, CPLEX is better than the algorithm on sets III and VI,

thought less feasible solutions were a
hieved by the solver.

In order to gather more information about the set of indeterminate instan
es, the 
om-

putational time of one hour was in
reased to two hours in some of the sets. However, the

algorithms were only able to �nd more infeasible instan
es, though very few.

In brief, the 
omputational results show that the Lagragean relaxation approa
h is 
apa-

ble of �nding very good quality solutions in reasonable 
omputational times. It should

be noted that CPLEX has better average gaps and 
omputational times for some of the

problems 
onsidered. However, for problems with larger number of s
enarios the solver

shows more di�
ulties to generate feasible solutions.
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Table 4.2.13: Computational results.

in
rease gap time

Set feas/inf/ind (%) (%) (se
.)

α mean min mean max min mean max

I 0.2 40/0/0 0.00 0.00 0.23 1.05 9.95 119.13 873.9

0.15 39/0/1 0.17 0.00 0.30 1.32 9.20 130.02 1621.2

0.1 32/8/0 0.23 0.00 0.09 0.55 21.07 211.38 1567.9

0.075 14/26/0 0.29 0.00 0.04 0.39 28.23 222.41 1031.7

0.00 0.17 0.83 17.12 170.74 1273.7

II 0.2 40/0/0 0.00 0.00 0.09 0.51 1.2 327.2 1117.4

0.15 40/0/0 0.19 0.00 0.25 1.14 1.3 352.7 1126.5

0.1 38/0/2 0.25 0.00 0.19 0.99 1.3 449.2 1602.9

0.075 18/11/11 0.26 0.00 0.12 0.90 30.2 585.9 3029.4

0.00 0.17 0.89 8.47 428.77 1719.1

III 0.2 40/0/0 0.00 0.00 0.39 1.37 52.7 944.4 3609.0

0.15 40/0/0 0.06 0.00 0.35 1.10 52.9 1008.3 3691.9

0.1 25/9/6 0.14 0.00 0.25 0.83 98.2 789.1 3706.5

0.075 8/26/6 0.18 0.00 0.17 0.64 97.9 807.6 3528.9

0.00 0.29 0.99 75.42 887.33 3634.1

IV 0.2 40/0/0 0.00 0.00 0.29 1.46 5.5 303.2 2486.5

0.15 40/0/0 0.24 0.00 0.45 1.46 5.5 367.2 1753.8

0.1 23/1/16 0.28 0.00 0.33 1.33 5.5 586.4 3111.0

0.075 8/21/11 0.29 0.00 0.12 0.68 5.6 289.5 742.2

0.00 0.30 1.23 5.53 386.6 2023.4

V 0.2 40/0/0 0.00 0.00 0.31 1.59 88.4 480.3 2718.8

0.15 36/0/4 0.37 0.00 0.32 1.51 88.6 630.7 1951.6

0.1 18/20/2 0.44 0.00 0.28 1.05 127.0 769.9 3415.6

0.075 5/34/1 0.48 0.00 0.14 0.52 128.6 505.4 1449.7

0.00 0.26 1.17 108.2 596.6 2383.9

VI 0.2 40/0/0 0.00 0.00 0.24 1.72 59.4 929.8 3883.9

0.15 40/0/0 0.03 0.00 0.19 1.24 57.6 1058.5 6631.6

0.1 33/3/4 0.14 0.00 0.11 0.99 58.3 857.4 3124.8

0.075 17/14/9 0.44 0.00 0.04 0.33 165.6 781.2 1608.7

0.00 0.15 1.07 85.2 906.7 3812.3
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Table 4.2.14: Computational results using CPLEX.

Set feas/inf/ind gap (%) time (se
.)

α min mean max min mean max

I 0.2 40/0/0 0.00 0.15 1.26 54.40 130.48 1071.06

0.15 39/0/1 0.00 0.21 1.46 54.41 150.48 475.98

0.1 32/8/0 0.00 0.17 1.40 69.94 341.02 1711.57

0.075 14/26/0 0.00 0.01 0.13 61.04 177.86 488.88

0.00 0.13 1 59.95 199.96 936.87

II 0.2 40/0/0 0.00 0.04 0.91 160.4 232.8 404.9

0.15 40/0/0 0.00 0.05 0.91 159.9 292.7 947.4

0.1 38/0/2 0.00 0.10 0.77 158.9 567.3 3582.2

0.075 18/11/11 0.00 0.04 0.38 167.2 685.7 2206.7

0.00 0.06 0.74 161.61 444.62 1785.28

III 0.2 40/0/0 0.00 0.29 1.37 138.3 404.5 1193.1

0.15 38/0/2 0.00 0.27 1.42 137.7 568.8 2218.1

0.1 25/9/6 0.00 0.17 1.08 144.6 877.0 3502.1

0.075 8/26/6 0.00 0.10 0.34 145.8 520.1 1596.8

0.00 0.21 1.05 141.59 592.62 2127.51

IV 0.2 37/0/3 0.00 0.10 0.95 139.7 268.2 917.8

0.15 36/0/4 0.00 0.16 1.30 149.0 425.9 1999.4

0.1 23/1/16 0.00 0.15 0.65 161.4 793.4 3600.5

0.075 12/21/7 0.00 0.15 0.58 200.2 1116.5 3268.7

0.00 0.14 0.87 162.60 651.02 2446.59

V 0.2 40/0/0 0.00 0.22 1.97 181.1 424.2 1861.5

0.15 38/0/2 0.00 0.32 1.51 201.7 934.7 4122.6

0.1 16/20/4 0.00 0.18 0.73 196.6 896.2 3567.0

0.075 5/34/1 0.00 0.00 0.00 198.8 409.3 784.4

0.00 0.18 1.05 194.6 666.1 2583.8

VI 0.2 37/0/3 0.00 0.2 1.77 287.2 504.2 1106.1

0.15 37/0/3 0.00 0.11 1.72 293.9 520.7 1092.9

0.1 25/3/12 0.00 0.00 0.01 288.1 416.9 975.6

0.075 13/14/13 0.00 0.00 0.00 294.3 384.9 590.9

0.00 0.08 0.88 290.9 456.7 941.4
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Postlude

We have been 
on
erned with fa
ility lo
ation problems under un
ertainty, adding a hum-

ble 
ontribution to the lo
ation resear
h �eld, through the development of mathemati
al

models and solution methods for this 
lass of problems. We are dealing with di�
ult

problems, but with a growing importan
e from a pra
ti
al point of view as su
h prob-

lems may re�e
t better the un
ertain world in whi
h we live.

In this work, we have 
onsidered several dis
rete dynami
 fa
ility lo
ation problems un-

der un
ertainty. The un
ertainty, in many of the problems' parameters, is expli
itly

represented in the models by a set of possible future s
enarios. The 
lassi
al DUFLP is

addressed through several models and perspe
tives along Chapter 2: an extension 
onsid-

ering un
ertainty, that 
ontains the 
lassi
al deterministi
 stati
 and dynami
 problems

as parti
ular problems; an extension of the previous model with robust 
onstraints related

with the un
ertain future; a multi�obje
tive approa
h where ea
h s
enario is interpreted

as one obje
tive. We have 
onsidered several models with 
apa
ity fa
ilities that bring

additional di�
ulties but other interesting situations arise as well. In terms of models, we

have limited ourselves to 
ertain assumptions su
h as to obje
tive fun
tions minimizing

expe
ted total 
osts or total 
ost. Other obje
tive fun
tions that 
an better represent the

attitude towards risk of di�erent De
ision Makers should be 
onsidered as well. Other

extensions to these problems 
ould 
onsider the introdu
tion of the possibility of 
losing

already opened fa
ilities to in
rease the range of appli
ability of the models. Mainly

within 
apa
itated problems there is still a 
onsiderable amount of situations to be ex-

plored. The in
orporation of robust 
onstraints into those models related with upper

bounds on satis�ed demand is an ongoing problem.

E�
ient te
hniques were developed in Chapter 3 to 
ope with the un
apa
itated prob-

lems, being an alternative to solvers that show more di�
ulties to �nd solutions for large�

sized problems (Chapter 4). The e�e
t of data to the performan
e of those algorithms also

needs further study. We have not developed dedi
ated solution approa
hes to ta
kle the


apa
itated models yet, hen
e it is also a possible future work. Classi
al heuristi
s have a

major drawba
k: 
hanges in the problem's formulation (additional restri
tions, 
hanges

in the obje
tive fun
tion, for instan
e), imply 
hanges in the pro
edures with high 
osts

due to the time spent developing new dedi
ated pro
edures. Meta-heuristi
s, namely

geneti
 algorithms, have the advantage of being �exible and intelligent algorithms, that
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an be easily 
ustomized to be applied to di�erent problems with di�erent spe
i�
ities.

The �exibility advantage 
omes, usually, at the 
ost of 
omputational time. This is why

hybrid methods will possibly have to be thought in
orporating all the available informa-

tion about the problem.

�The best way to handle un
ertainty, and to make de
isions under un
ertainty, is to

a

ept un
ertainty, make a strong e�ort to stru
ture it and understand it, and �nally,

make it part of the de
ision making reasoning� (Kouvelis and Yu [47℄).
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