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Resumo

Neste trabalho é investigado o impacto de um campo magnético externo na estru-

tura do diagrama de fases da Cromodinâmica Quântica (QCD). O estudo é realizado

utilizando o modelo efetivo de Nambu–Jona-Lasinio para três sabores acoplado

ao loop de Polyakov (modelo de PNJL). A interação de entanglement (modelo de

EPNJL) na presença de um campo magnético é também estudada. Ambas as

transições quiral e de desconfinamento na presença de um campo magnético ex-

terno podem ser analisadas usando os modelos de PNJL e EPNJL. Para o modelo de

EPNJL é verificado que a coincidência das temperaturas pseudocrı́ticas de ambas

as transições quiral e de deconfinamento dependem da parametrização da interação

de entanglement.

É realizado um estudo sistemático do efeito de um campo magnético externo

nas transições quiral e de desconfinamento a potencial quı́mico bariónico nulo, e.g.,

calculando a dependência das temperaturas pseudocrı́ticas com a intensidade do

campo magnético. O impacto de um campo magnético externo no comportamento

do quark estranho é analizado detalhadamente. É mostrado que a temperatura

pseudocrı́tica associada à transição quiral do quark estranho é pouco sensı́vel à

presença de um campo magnético externo. Além disso, a sua grande massa corrente

torna o quark estranho pouco sensı́vel ao termo de ’t Hooft, contrariamente à forte

influência que tem nos quarks leves. Ambos os modelos de PNJL e EPNJL prevêem

o efeito de Catálise Magnética a qualquer temperatura, mas não reproduzem o

efeito de Catálise Magnética Inversa (CMI) em redor da temperatura pseudocrı́tica

de transição, obtido em resultados recentes da LQCD.

Mostramos que é possı́vel reproduzir a CMI se a intensidade da interação entre

quarks diminuir com o campo magnético. Propomos dois mecanismos que repro-

duzem o efeito de CMI, que assumem o enfraquecimento da constante de acopla-

mento da interação escalar com o aumento da intensidade do campo magnético.

O diagrama de fases é calculado para vários cenários de isospin e estranhe-

sa, com especial ênfase na localização do ponto crı́tico. Partindo do modelo que

reproduz qualitativamente os resultados da LQCD a potencial quı́mico bariónico

nulo, introduzimos no modelo de PNJL um potencial quı́mico bariónico µB finito e

estudamos o impacto de um campo magnético externo na estrutura do diagrama

de fases T − µB da QCD. Para uma intensidade de campo magnético superior a

0.3 GeV2, é mostrado que, devido ao efeito da CMI, a temperatura do ponto crı́tico

varia ligeiramente, enquanto o potencial quı́mico bariónico se move para valores

menores, tornando mais acessı́vel a possı́vel deteção experimental do ponto crı́tico.
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Abstract

In this work the impact of an external magnetic field on the phase diagram stru-

cture of Quantum Chromodynamics (QCD) is investigated. The study is performed

using the three-flavor Nambu–Jona-Lasinio (NJL) effective model coupled to the

Polyakov loop (PNJL model). The entanglement interaction (EPNJL model) in a

magnetic field presence is also studied. Both the chiral and deconfinement tran-

sitions under the presence of an external magnetic field can be analyzed within

the PNJL and the EPNJL models. For the EPNJL model it is found that the coin-

cidence of both chiral and deconfinement pseudocritical temperatures depends on

the entanglement interaction parametrization.

We do a systematic study on the effect of an external magnetic field on the chiral

and the deconfinement transitions at zero baryonic chemical potential, e.g., calcu-

lating the pseudocritical temperatures dependence on the magnetic field strength.

The impact of the external magnetic field on the strange quark behavior is also

deeply analyzed. It is shown that the strange pseudocritical transition tempera-

ture is less sensitive to the magnetic field than the light quarks, due to the larger

strange quark current mass. Furthermore, its large current mass also makes the

strange quark less sensitive to the ’t Hooft term, as opposed to the strong influence

it has on the light quarks. Both the PNJL and the EPNJL models predict the Ma-

gnetic Catalysis effect at any temperature, and thus do not reproduce the Inverse

Magnetic Catalysis (IMC) effect near the pseudocritical transition temperature, as

seen in recent LQCD results.

We show that the IMC is obtained if the interaction strength between quarks

decreases with the magnetic field. We propose two mechanisms that reproduce

the IMC effect, which assume a weakening of the scalar coupling with increasing

magnetic field strength.

The phase diagram is calculated for several scenarios of isospin and strange-

ness, with special emphasis on the location of the Critical End Point (CEP). Star-

ting from the model that reproduces qualitatively the LQCD results at zero bary-

onic chemical potential, we introduce in the PNJL model a finite baryonic chemical

potential µB and study how the magnetic field affects the structure of the T − µB

diagram of QCD. For a magnetic field strength above 0.3 GeV2, it is shown that,

due to the IMC effect, the CEP temperature almost does not change while the CEP

baryonic chemical potential moves to smaller values, making a possible detection

of the CEP in the laboratory more accessible.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics

Quantum ChromoDynamics (QCD) is presently the theory of strong interactions, a

theoretical framework for understanding the dynamics of quarks and gluons. Two

of the main striking features of QCD are the spontaneous breaking of chiral symme-

try and confinement, both having a nonperturbative origin. The interaction among

quarks gets weaker when their distance decreases, and this feature is known as

asymptotic freedom [1]. Moreover, the interactions become stronger as the particle

separation increases. A quantitative understanding of this mechanism, which is

called confinement, is hard to obtain, even though we know the underlying theory.

Due to the nonabelian nature of QCD, in addition to interaction between quarks

and gluons, there are also gluon self-interaction terms and the QCD equations

are hard to solve on a purely mathematical ground. Though we can use pertur-

bation theory at short distances due to the asymptotic freedom property of QCD,

the known way to solve QCD in the strong coupling regime, relevant to nuclear

physics, is through numerical calculations of QCD on a discrete four-dimensional

space-time Lattice (LQCD) (for a review of LQCD results see [2,3]). Besides LQCD

simulations, the Dyson-Schwinger formalism provides an alternative approach to

study the QCD properties [4]. The QCD predictions in the strong coupling regime

can be tested in high-energy scattering experiments [5,6].

With the introduction of a finite baryon chemical potential in LQCD simulations,

the quark determinant that appears in the QCD partition function is no longer real

(sign problem), and standard Monte Carlo simulations are no longer possible. Al-

though LQCD methods that probe low chemical potential exist (see [3], e.g.), other

approaches such as effective models are a reliable way of getting an insight into the

whole phase structure of QCD. When the phenomenon under study is character-

ized by a natural separation of energy scales, effective theories become a powerful

framework. They are particularly important tools in QCD, where the relevant de-

1
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grees of freedom are quarks and gluons at high energies and hadronic matter at

low energies. Indeed, at energies below the nucleon mass, the most notable fea-

tures of QCD are the confinement of quarks and the spontaneous breaking of chiral

symmetry.

Critical behavior in QCD thermodynamics is generally related to the sponta-

neous breaking of a global symmetry [7]. The order parameter is the quantity

that establishes the state of a symmetry: it vanishes when the system shares the

symmetry of the Lagrangian, and it becomes non-zero when the symmetry is spon-

taneously broken.

The deconfinement in a gauge theory is related to the spontaneous breaking of

the global center symmetry. The Polyakov loop constitutes an order parameter for

the center symmetry: it is zero if the symmetry is realized (confined phase) and is

non-zero when the symmetry is broken (deconfined phase). Deconfinement is basi-

cally the phase transition from colorless bound states to color unbound states, i.e.,

from hadrons to unbound quarks and gluons in QCD or from glueballs to unbound

gluons in pure gauge theory. Therefore, due to the release of degrees of freedom,

we expect a sharp transition from a confined hadronic phase to deconfined phase

of non-interacting colored quarks and gluons. The presence of dynamical quarks

in QCD explicitly breaks the center symmetry. Nevertheless, the Polyakov loop

remains small up to a certain temperature and then increases rapidly in a very

narrow temperature interval, which coincides with the rapid increase of the energy

density, indicating a sudden change in the number of degrees of freedom from bound

to unbound color matter. Thus, some of the critical behavior, present in the gauge

theory, seems to persist even in the presence of dynamical quarks [7].

Chiral symmetry is a symmetry of the QCD Lagrangian for massless quarks.

In the vacuum of QCD the chiral symmetry is spontaneously broken, which is re-

lated to the dynamical generation of massive constituent quarks. Thus, the chiral

transition is the phase transition from a state in which the effective quark masses

are spontaneously generated to one of massless quarks. The chiral condensate 〈q̄q〉
is the order parameter for the chiral symmetry: it is non-zero when it is sponta-

neously broken, and zero when the symmetry is realized. Although the presence

of the current quark masses in real QCD Lagrangian breaks explicitly the chiral

symmetry, the chiral condensate 〈q̄q〉 is still an useful quantity to study the partial

restoration of the chiral symmetry.

1.2 The phase diagram of QCD

The phase diagram of QCD is a very timely subject of both theoretical and exper-

imental studies. One of the main questions we seek to answer is ”what are the

phases of strongly interacting matter?”. QCD predicts that when nuclear matter is
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compressed well beyond the density of atomic nuclei, a Quark-Gluon Plasma (QGP)

made of asymptotically free quarks and gluons is created. The same phase tran-

sition is also predicted by QCD at extreme temperatures, as the ones found in the

early universe. Therefore, under extreme conditions of density and/or temperature,

the hadronic matter should undergo a phase transition into a QGP state.

If the baryonic chemical potential µB is asymptotically large, perturbative QCD

methods can be applied. In this regime, the ground state of QCD at low tempera-

tures should consist of Color SuperConducting (CSC) phases [8, 9], in which quark

Cooper pairs are formed. Different Cooper pairing patterns should lead to distinct

CSC phases [9]. In a range of small temperatures it is expected a first-order phase

transition from hadronic matter to CSC phases. Based on several approaches that

study the phase diagram at finite µB, it is expected that the analytic transition,

seen in LQCD simulation at µB = 0, turns into a discontinuous chiral transition at

some critical point. This Critical-End-Point (CEP), at which the chiral phase tran-

sition changes its nature, is a fundamental landmark of the QCD phase diagram,

remaining its location and even its existence an open issue. All these insights and

expectations are reflected in Fig. 1.1, which is a structure map of the QCD phase

diagram.

Figure 1.1: Schematic structure of the QCD matter. The phase boundaries are in

solid lines and the different regions that can be probed by different HIC experi-

ments are also shown. Figure adapted from [10].

A review of our current understanding of the phase structure of QCD can be found

in [11]. A way of exploring the low temperature and high chemical potential region
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(few times the nuclear saturation density, ρ0 ∼ 0.16 fm−3) is through astrophysical

observations. In particular, the observation of neutron stars properties, such as

their radius and mass, allows us to constraint the Equation of State (EOS) of dense

QCD matter [10].

1.2.1 Heavy-Ion Collision experiments

The creation of the QGP has been one of the main goals of Heavy-Ion Collision

(HIC) experiments. By the asymptotic freedom property of QCD, quasi-free states

of quarks and gluons (QGP) predominates in matter created at sufficiently high

temperature and density. Some signatures of the QGP were confirmed by the NA49

experiment at the CERN SPS: the evidence for the onset of deconfinement was

found in central Pb+Pb collisions due to the rapid change of the energy depen-

dence for the yields of pions and kaons as well as for the shape of the transverse

mass spectra observed at 30A GeV [12]. QGP matter state was created, in the

high temperature and low baryonic chemical potential region, in the Relativistic

Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory and, more recently,

in the Large Hadron Collider at CERN. It was recognized already in RHIC that the

QGP is a strongly coupled plasma, which behaves like an almost perfect liquid [13].

While RHIC is able to explore temperatures close to the phase transition, the LHC

reaches temperatures well above those needed for the creation of QGP (see Fig.

1.1), allowing us to explore the expected transition from a strongly coupled liquid

to a weakly coupled gaseous phase at higher temperatures [14].

The colder and denser region of the QCD phase diagram, i.e. lower temperature

and high baryonic chemical potential, will be explored in the near future in HIC

experiments such as in the Facility for Anti-proton and Ion Research (FAIR) at GSI

Helmholtz Center for Heavy Ion Research or in the Nuclotron-based Ion Collider

Facility (NICA) at Joint Institute for Nuclear Research (JINR) [15,16].

There are several experimental programs, namely the Beam Energy Scan (BES-

I) program at RHIC, which has been ongoing since 2010, looking for experimental

signatures of a chiral first-order phase transition and the CEP, by colliding gold

ions at several energies [17]. Recently, the results of the moments of net charge

multiplicity distributions were presented by STAR Collaboration [18]. These mea-

surements can provide relevant information on the freeze-out conditions and can

help to clarify the existence of the CEP. However, future measurements with high

statistics data will be needed for a precise determination of the freeze-out condi-

tions and to make definitive conclusions regarding the CEP [18]. Also the dynamics

associated with HIC, such as finite correlation length and freeze-out effects, should

be considered in QCD calculations before definitive conclusions about the CEP can

be made [19]. If the CEP exists and is located for baryonic chemical potential lower

than 400 MeV, it is expected that the upcoming BES-II program can provide data
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on fluctuation and flow observables which should yield quantitative evidence for its

presence. Also the NA61/SHINE program at the CERN SPS aims for the search of

the CEP and to study the properties of the onset of deconfinement, through spectra

fluctuations and correlations analysis in light and heavy ion collisions [20]. Other-

wise, late in the decade, the FAIR facility at GSI and NICA at JINR will extend

the search of the CEP to even higher baryonic chemical potential (for a review on

the experimental search of the CEP see [21]). The experimental discovery of CEP

would be a landmark and a huge step on our understanding of the different states

of QCD matter.

1.2.2 Lattice QCD simulations

LQCD simulations with physical quark masses, at zero baryonic chemical poten-

tial, show an analytic transition, known as crossover, from ordinary hadronic ma-

tter to the QGP [22–24]. Real phase transitions are characterized by singular be-

havior at some temperature, allowing the definition of a critical temperature. In

an analytic transition, due to the absence of singular behavior, we cannot define

an unique critical temperature. Instead, only a pseudocritical temperature can be

defined, using, for instance, the inflexion point or peak position of some thermo-

dynamic observable. Thus, different pseudocritical temperatures can be obtained

from different observables [22, 25, 26]. The analytic nature of the QCD transition

with physical quark masses is related to the explicit breaking of the center and

chiral symmetries. Therefore, the order parameters that signal the deconfinement

and chiral phase transitions for real phase transitions, become only approximate in

2+1-flavors QCD with physical quark masses, showing an analytic behavior. Even

though we keep using them as order parameters, they are merely observables, re-

flecting the analytic nature of both phase transitions. The order parameters used

for chiral and deconfinement phase transitions are, normally, the renormalized chi-

ral condensate and renormalized Polyakov loop, respectively. Both quantities are

represented as a function of temperature in Fig. 1.2. The pseudocritical tempe-

ratures, calculated from the inflexion points, are 170 MeV for the deconfinement

phase transition and 157 MeV for the chiral phase transition [25, 26]. A pseudocri-

tical temperature range of 145 − 159 MeV is obtained using other chiral and several

thermodynamic observables [22,26].

Although the temperature dependence of the Polyakov loop can be calculate in

LQCD, it is difficult to define an inflection point and thus to define a pseudocritical

temperature from the Polyakov loop [27]. Instead of the Polyakov loop, it is also

possible to use the strange quark number susceptibility to define a deconfinement

pseudocritical temperature. The strange quark number susceptibility cs
2 behaves in

a similar way to the Polyakov loop and gives a pseudocritical temperature consis-
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tent with the one obtained from the Polyakov loop [25,26,28].
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Figure 1.2: The subtracted chiral condensate ∆l,s (left) and the renormalized

Polyakov loop (right) as a function of temperature. The figures were taken from

[26].

1.2.3 Strangeness and isospin asymmetry

There are several aspects that can influence the structure of the QCD phase di-

agram. Strangeness and isospin asymmetry are important degrees of freedom in

the QCD phase diagram. While in HIC the proton fraction is currently not smaller

than ∼ 0.4, much smaller proton fractions are expected in the interior of neutron

stars. The effect of isospin/charge asymmetry in the QCD phase diagram has re-

cently been discussed in [29]. Due to its relevance, strangeness must be considered

when discussing the QCD phase diagram.

As already mentioned, in nature the current masses of the quarks are not zero

and their values control the explicit amount of chiral symmetry breaking. Be-

cause the strange quark is significantly heavier than both the up and down quarks

(ms ≈ 26mud), it induces a much higher amount of explicit symmetry breaking than

its light partners. Considering the quark masses as external parameters and as-

suming isospin symmetry, i.e., mu = md, the nature of the phase transition at µB = 0
is given by the so-called Columbia plot of Fig. 1.3. In the limit of infinitely heavy

quarks (mi → ∞) we recover the pure SU(3) gauge theory, with a first-order de-

confinement phase transition (top right region). In the opposite limit, for three

massless quarks, a first-order chiral phase transition occurs (bottom left region).

Between these two limits, for 0 < mi < ∞, the nature of both transitions depends

on their exact values. We know from LQCD that in the physical point, i.e., using
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the real physical quark masses, both transitions are crossovers. When two mass-

less quarks (Nf = 2) are considered, i.e., mu = md = 0 and ms → ∞, the chiral phase

transition is of second-order. Furthermore, for three massless quarks (Nf = 3) the

chiral phase transition is of first-order. Therefore, when ms is reduced from in-

finity to zero, there should exist a critical ms value (tricritical point in Fig. 1.3) at

which the nature of the phase transition changes from second to first-order [30–32].

Figure 1.3: Schematic figure of the Columbia phase diagram for 3-flavor QCD at

zero chemical potential as a function of the light and heavy quark masses. The

right-top corner indicates the deconfinement phase transition in the pure gauge

system. Figure taken from [11].

The relevance of strangeness is transversal to all regions across the phase di-

agram. In the interior of neutron stars (high density and low temperature re-

gion) it is expected that strangeness is present either in the form of hyperons, a

kaon condensate or a core of deconfined quark matter [33]. The recent mass mea-

surement of two solar masses millisecond pulsars PSR J1614−2230 [34] and PSR

J1903+0327 [35] places quite strong constraints on the core composition of neutron

stars. The compatibility of these large masses with the appearance of strangeness

has been questioned on the basis of microscopic approaches to the hadronic equa-

tion of state [36–39]. Within a relativistic mean field approach it has been shown

that it is still possible to accommodate these large masses even considering the

presence of hyperons or kaons (see for instance [40–42]), since there is a large un-

certainty on the coupling of hyperons to nucleons. Another possibility is that the

interior of the neutron star contains a quark core [43].

In relativistic HIC the strange and multi-strange particle production is an im-

portant tool to investigate the properties of hot and dense matter created in the col-

lision, since there is no net strangeness content in the initially colliding nuclei [44].
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An enhanced production of strange particles in A−A compared to pp collisions was

one of the first signatures proposed for the deconfined quark-gluon plasma [45,46].

Very recently, the possibility of multiple chemical freeze-outs was suggested, in

particular, the strange freeze-out that would indicate a clear separation of pion and

kaon chemical freeze-outs [47]. Another alternative approach to treat the strange

particle freeze-out separately, with the full chemical equilibrium, was presented

in [48]: based on the conservation laws, the connection between the freeze-outs of

strange and non-strange hadrons was achieved.

Strangeness freeze-out in HIC is also getting the attention of LQCD community.

It was found that experimentally unobserved strange hadrons become thermody-

namically relevant in the vicinity of the QCD crossover, modifying the yields the

ground state of strange hadrons in HIC, which leads to significant reductions in

the chemical freeze-out temperature of strange hadrons [49]. However, the ques-

tion of whether hadrons of different quark composition freeze out simultaneously

or exhibit a flavor hierarchy is yet to be answered [50].

1.2.4 The presence of an external magnetic field

The QCD phase diagram also depends on external parameters, such as the pres-

ence of a magnetic field, that are interesting to investigate from both experimental

and theoretical points of view. Due to its far-reaching consequences in all regions of

the phase diagram, understanding QCD matter under extremely intense magnetic

fields is one of the most relevant topics in modern physics. Indeed, the compact as-

trophysical objects known as magnetars [51], which include soft gamma repeaters

and anomalous x-ray pulsars, are expected to have very strong magnetic fields in

their interior. In HIC it is also important to consider the presence of magnetic fields,

although time dependent and short lived [52, 53], they can reach high intensities

(of the order of eB ∼ 5 − 30 m2
π) and temperatures varying from 120 to 200 MeV. The

estimated value of the magnetic field strength for the LHC energy, for example, is

of the order of eB ∼ 15 m2
π [54]. Furthermore, the magnetic field might have played

an important role in the first phases of the universe [55,56].

At finite temperature, several LQCD studies have been performed to address

the influence of the magnetic field over the deconfinement and the chiral transi-

tions [57–63]. For a review in recent advances in the understanding of the phase

diagram in the presence of strong magnetic fields at zero quark chemical potentials

see [64].
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1.3 Quark matter under external magnetic fields

1.3.1 Theoretical frameworks

The effect of a constant external magnetic field in quark matter has been widely

studied using several effective models, which includes: the Nambu–Jona-Lasinio

(NJL) model [65–94], the Polyakov extended Nambu–Jona-Lasinio (PNJL) model

[95–107], the Hadron Resonance Gas (HRG) model [108], the Polyakov extended

Linear-Sigma model [109, 110], the MIT bag model [111–113], and the Quark-

Meson model (QMM) [114–117]. The impact of B was also investigated within the

Chiral Perturbation Theory (QPT) [118–122], the Function Renormalization Group

(FRG) [64,123,124], and the Sakai-Sugimoto holographic model [125–133].

The properties of quark matter in a magnetic field were investigated within the

NJL model for cold two-flavors [70], three-flavors [71, 77, 86], and three-flavors at

finite temperature [72, 89]. In [89] the contribution of the magnetized gluons to

the EOS of quark matter was estimated. The QCD phase diagram structure in the

presence of a magnetic field was analyzed within the NJL model [75,76,78,82,84],

PNJL model [106], and within the FRG approach [123]. The introduction of an

axial chemical potential and its impact on phase transitions, and thus on QCD

phase structure, is explored in the NJL model [67, 87], PNJL model [95, 96], and

in the PNJL model with entanglement and vector interactions [100]. The dressed

Polyakov loop in a magnetic field was studied in [97]. The formation and stability

of quark droplets in a magnetized environment was evaluated in [68]. The effect

of the anomalous magnetic moment of quarks on thermodynamical properties was

analyzed in [66]. Conserved charged correlations [101] and the surface tension of

quark matter [73] were also studied in a magnetic field presence.

The impact of an external magnetic field on mesons was explored in two-flavor

NJL model [65, 79, 83], CPT [121, 122], FRG [83], and Sakai-Sugimoto model [128,

130,133], being some of the main conclusions:

• the possible condensation of the charged vector meson in the vacuum [65,130,

133];

• the explicit breaking of Lorentz invariance by the magnetic field induces anisotropies

in the refraction index and screening mass of neutral mesons [79];

• the quark-pion coupling and neutral pion decay constants are different in lon-

gitudinal and transverse directions [83];

• the mass and decay constants of charged and neutral pions split, and the

transverse velocity of mesons decreases with B at all temperatures [121,122].
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1.3.2 The Magnetic Catalysis effect

The magnetic field has an impact on the dynamics of many physical systems, and

the relation of dimensional reduction with the symmetry breaking has been exten-

sively studied (for a recent review see [134]). An external constant magnetic field

enhances the generation of the fermion mass in 3+1 dimensions, and thus increases

the strength of chiral symmetry breaking [135, 136]. The underlying physics of

such mechanism, called Magnetic Catalysis (MC), was explored in [137–139]. It

was found that the dimensional reduction D → D − 2 is the origin of the MC phe-

nomenon: the charged fermions are restricted to quantized Landau levels in the

transverse plane of the applied magnetic field. The fermion paring, responsible for

the chiral condensate formation, is mainly provided by the fermions in the lowest

Landau level, whose dynamics is (D−2)−dimensional. Even at the weakest attrac-

tive fermion-antifermion interaction, the magnetic field leads to a generation of a

fermion mass, catalyzing the dynamical chiral symmetry breaking mechanism. MC

has been extensively studied in the literature, and its model-independent nature

suggests that it occurs for any fermion-antifermion attractive interaction [134].

1.3.3 Lattice QCD simulations

At finite temperature and zero baryonic chemical potential, the effect of a constant

external magnetic field on the properties of QCD matter has been the subject of

several studies using numerical simulations of LQCD [61–63, 140–145]. The ear-

lier LQCD simulations [62,142,143] using larger-than-physical quark masses sup-

ported the existence of the MC mechanism at any temperature. In [62], the proper-

ties of chiral and deconfinement transitions in the presence of a constant external

magnetic field were investigated for two-flavor QCD with pion masses in the range

200−480 MeV. Both pseudocritical temperatures increase (< 2% for eB ∼ 0.75 GeV2)

and the transitions become sharper with growing B.

More recent LQCD studies [57–61,63], which we will review below, were able to

bring down the quark masses to the respective physical values in their simulations.

The effect of an external magnetic field on the QCD phase transition at finite tem-

perature, for Nf = 2 + 1 flavors with physical quark masses, was performed in [57].

It was found that the dependence of the quark condensates on B is non-monotonic

and varies strongly with temperature (left panel of Fig. 1.4), and, as a result, the

chiral pseudocritical temperature Tc decreases with B (right panel of Fig. 1.4).
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Figure 1.4: The average light quark condensate as a function of B for several tem-

peratures (left), and the critical temperatures calculated from the inflexion points

of the quark condensate and the strange quark number susceptibility (right). The

figures were taken from [60] (left) and [57] (right).

The magnetic field suppresses the quark condensate near the transition temper-

ature, an effect known as Inverse Magnetic Catalysis (IMC), resulting in its non-

monotonic behavior as a function of B for certain temperatures (left panel of Fig.

1.4). This behavior of Tc is also supported by analyzing the chiral susceptibility

(right panel of Fig. 1.4). The non-monotonic behavior of the condensate depends

on the quark masses: for quarks having the physical strange quark mass value, a

monotonic behavior with B is obtained at any temperature. This might explain the

discrepancy with other LQCD results, where larger-than-physical quark masses

were used. The chiral susceptibility shows that the phase transition remains a

crossover, at least up to eB = 1.05 GeV2, even though it gets stronger with in-

creasing B. In [60], the chiral and strange quark condensates were calculated as a

function of B for several temperatures. As in [57], the behavior of the chiral con-

densate with B strongly depends on the temperature. At low temperatures, the

chiral condensate has a monotonic behavior with B, in accordance with the MC

mechanism, but a non-monotonic behavior is obtained for temperatures near the

transition temperature. On the other hand, the strange quark condensate has a

simple monotonic dependence with B and with temperature: it increases with B at

any temperature. This seems to indicate the existence of a certain mass threshold

value between the physical light and strange quark masses, above which the IMC

effect is not seen.

A decreasing critical temperature withB was also obtained analyzing the behav-

ior of other thermodynamic observables of the QCD equation of state for Nf = 2 + 1
flavors with physical quark masses [59], in agreement with the previous results for

the light quark condensate, strange quark number susceptibility, and the Polyakov

loop observables.
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In [58], the transition temperature of deconfinement, obtained from the renor-

malized Polyakov loop, decreases with the magnetic field strength. It agrees with

the results for the strange quark number susceptibility of [57] (see right panel of

Fig. 1.4).

The gluonic contribution to the interaction measure in a constant magnetic field

was studied in [146]. As for quarks, also the gluonic contribution is enhanced at

low temperatures and suppressed near the transition temperature. Therefore, glu-

ons, like the light quarks, undergo MC and IMC, even though they do not interact

directly with the magnetic field (gluons do not carry electric charge), but only indi-

rectly via quark loops.

The IMC scenario was also supported by other recent LQCD studies: the de-

confinement transition temperature decreases with B [63], and a non-monotonic

behavior of the condensate for eB < 0.8 GeV2 was obtained in [61].

The effect of strongB on chiral symmetry breaking in quenched and unquenched

QCD is studied in [147]. It was found a weakening of the MC effect caused by the

back-reaction of quarks on Yang-Mills sector. Aside from the MC effect on the quark

sector, the unquenched effects in the gluonic sector contribute to the condensate

suppression, in agreement with the LQCD result [58].

Recently, it was shown that the IMC prevails at the transition temperature re-

gion up to eB = 3.25 GeV2 [148]. Evidence of a first-order phase transition was

found in the asymptotically strong magnetic field limit of QCD, implying the exis-

tence of a CEP in the T − B phase diagram [148].

1.3.4 The Inverse Magnetic Catalysis effect

A physical mechanism behind IMC was proposed in [58], which we summarize in

the following. The effect of the magnetic field on chiral symmetry breaking was

separated in two distinct and competing mechanisms: sea and valence effects. The

former enhances the quark condensate while the later suppresses it in the tran-

sition region. Both effects rely on the interaction between the magnetic field and

low quark modes. The magnetic field explicitly appears in the Dirac operator and

directly influences its spectrum in any fixed gauge background. This is the valence

effect and explains the MC mechanism: the magnetic field enhances the spectral

density around zero, and thus, through the Banks-Casher relation [149], the quark

condensate. The other mechanism, the sea effect, arises from the B dependence

of the quark action, affecting the relative weight of different gauge configurations

in the path integral. The relative strength of both effects determines whether MC

or IMC occurs at a certain temperature. Around the transition temperature, they

show opposite effects: the suppression sea effect overcomes the enhancement va-

lence effect of the quark condensate, resulting in a net suppression of the conden-
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sate in that temperature region (IMC). Furthermore, it was shown that their rela-

tive strength strongly depends on the quark masses; thus, in order to describe IMC,

the physical quark masses must be used. The sea effect, responsible for weaken-

ing of the quark condensate around the transition temperature, is a consequence of

re-weight of gauge configurations in the path integral due to B. This re-weight dis-

favors small and favors large values of the Polyakov loop expectation value, being

more intense near the transition temperature.

The physical mechanism behind the IMC phenomena is the subject of several

recent studies. It is argued in [150, 151] that the disagreement between effective

model predictions and the LQCD results can be explained if the mass gap is B-

independent, and of the order of ∼ ΛQCD. If this is the case, the decreasing of the

critical temperatures would be natural: the Boltzmann factor remains of similar

magnitude as B increases (∼ e−ΛQCD/T ). The authors argued that a B-independent

mass gap ofO(ΛQCD) can be obtained if it is dominantly generated by the nonpertur-

bative force mediated by the IR gluons. Both IR enhancement and UV suppression

of gluon exchanges are crucial to obtain a B-independent mass gap.

The Magnetic Inhibition mechanism was proposed in [152]: neutral mesons also

experience the dimensional reduction in strong magnetic fields, resulting in the

quark condensate suppression. Using a chiral model, the propagator of π0 was cal-

culated in strong B and it favors the chiral-symmetric phase, i.e., it has the opposite

effect of MC. The magnetic inhibition is enhanced by the temperature effects and

can overcome the MC at finite temperature.

Another proposed mechanism for IMC is given by the sphaleron transitions [81]

that occur near the transition temperature. The chiral imbalance generated by

the sphaleron transitions near the transition temperature is enhanced by B, de-

stroying the chiral paring and reducing the critical temperature of the chiral phase

transition. The chemical potential, which describes the chiral imbalance, is induced

dynamically by an axial-vector interaction within NJL models in [88,153].

The IMC crucially depends on the interaction between the quark determinant

and the Polyakov loop, which happens at the lowest part of the Dirac spectrum [58].

The increase of the Polyakov loop value with B suppresses low Dirac eigenvalues,

and thus the quark condensate is reduced. In the PNJL model the Polyakov loop

decreases with the magnetic field; therefore, the deconfinement pseudocritical tran-

sition temperature increases. In order to describe IMC within effective models, the

increase of the Polyakov loop with B should be taken into account. In [107], we

have proposed that the increase of the Polyakov loop value with B could be repro-

duced using a magnetic field dependence on T0 that is the only free parameter of the

Polyakov loop potential. Moreover, in order to reproduce IMC, the entanglement in-

teraction was required, i.e., the IMC was only reproduced within the EPNJL model.

Due to the explicit dependence of the quark interaction coupling on the Polyakov

loop, the entanglement interaction is responsible, through the imposed magnetic
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field dependence on T0, for the weakening of the four-quark scalar coupling with B.

Later in [104], we have proposed that the LQCD results on IMC could also be

reproduced qualitatively within both NJL and PNJL models, if we assume that the

magnetic field weakens the scalar four-quark coupling of the model. The scalar

coupling dependence on B can be traced back to the impact that the magnetic field

has on the QCD running coupling.

Finally, other approaches are in accordance with IMC. A decreasing critical tem-

perature of deconfinement with increasing B was found in hard-wall AdS/QCD, and

holographic duals of flavored and unflavored N = 4 super-Yang Mills theories [154].

The gluon and quark gap equations in a magnetic field were calculated in [155].

The underlying mechanism of IMC was attributed to the combination of gluon

screening and the weakening of the strong coupling with B. Several other stud-

ies point in the same direction [156–158]. The thermo-magnetic correction to the

quark-gluon vertex in the presence of a weak magnetic field, within the hard ther-

mal loop approximation, was computed in [156], showing that the effective thermo-

magnetic quark-gluon coupling decreases with B. The thermo-magnetic effect was

also explored in the linear sigma model at one-loop level, giving a decreasing crit-

ical temperature with B [157]. The one-loop thermo-magnetic correction to the

self-coupling was calculated in a model where charge scalars interact with B, and

it was shown to decrease with the magnetic field [158].

1.4 Work outline

This thesis is organized as follows. The local and global symmetries of QCD are

briefly reviewed in Chapter 2. The model formalism is introduced in Chapter 3.

Chapter 4 is based on our published results [103, 105, 107], where the effect of

the magnetic field on the quark condensates, and particularly, on both chiral and

deconfinement phase transitions is studied, within both PNJL and EPNJL models.

The influence of the magnetic field on the strange quark is analyzed, and also the

impact of both the ’t Hooft term and the current mass value of the strange quark

on the pseudocritical phase transition temperatures. The comparison between the

model predictions and the recent LQCD results, which was published in [107], is

discussed in Chapter 5.

Two approaches that reproduce the IMC effect are presented in Chapter 6,

which we have proposed in [104, 107]. Using the PNJL model that reproduces the

IMC at zero baryon chemical potential, we analyze the QCD phase diagram at fi-

nite baryonic potential in Chapter 7. In particular, we focus on how the magnetic

field affects the CEP location. The results were published in [106,159].

Finally, the conclusions of this study are drawn in Chapter 8.



Chapter 2

Theory of the strong interactions

Quantum Chromodynamics (QCD) is presently the theory of strong interactions.

Two of its important features are the chiral and center symmetries. These two

symmetries are realized in opposite limits of QCD: the center symmetry is an ex-

act symmetry in pure gauge theory (heavy-quark limit), and the chiral symmetry,

on the other hand, is an exact symmetry in the massless QCD (massless quark

limit). In nature, i.e., QCD with physical quark masses, both symmetries are only

approximate but still useful to study chiral and deconfinement transitions.

2.1 Local gauge symmetry

The QCD is a non-abelian gauge theory with an SU(3) gauge group. Its Lagrangian

is written as

LQCD =
∑

f

q̄f (iγµDµ −mf) qf − 1

4
Ga

µνG
µν
a (2.1)

where qf (q̄f ) is the quark (anti-quark) field for the f -flavor (f = u, d, s, c, t, b) and

mf is the f -flavor current quark mass. The quark masses are given in Table 2.1.

The local SU(3) gauge invariance requires that the covariant derivative Dµ has the

following form

Dµ = ∂µ − igtaAa
µ, (2.2)

where g is the QCD coupling, and ta = λa/2 are the generators of the Lie algebra

of SU(3) with λa representing the Gell-Mann matrices 1. The gluon field strength

tensor is

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , (2.3)

1We give a short review of the properties of the SU(N) group in Appendix A.

15
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where fabc are the anti-symmetric structure constants of the SU(3) group (see Ap-

pendix A).

Flavor Electric Charge (e) Mass [160]

u 2/3 2.3+0.7
−0.5 MeV

d −1/3 4.8+0.5
−0.3 MeV

s −1/3 95 ± 5 MeV

c 2/3 1.275 ± 0.025 GeV

b −1/3 4.18 ± 0.03 GeV

t 2/3 160.5+5
−4 GeV

Table 2.1: The quark masses and electric charges (natural units are used, c = 1).

In fact, the QCD Lagrangian can be constructed starting from the free fermionic

field Lagrangian

L = q̄ (iγµ∂µ −m) q, (2.4)

and demanding it to be invariant under a local gauge transformation of the quarks

fields:

q(x) → q
′

(x) = U(x)q(x), (2.5)

with

U(x) = exp (−itaθa(x)) , (2.6)

where θa(x) are space-time dependent real parameters; the space-time dependence

of the transformation parameters defines a local transformation.

The requirement of a local gauge invariance is only realized if the partial derivative

∂µ is replaced by the covariant derivative

Dµ = ∂µ − igAµ, (2.7)

where a vector gauge field Aµ term appears, which consists of eight Aa
µ fields

Aµ(x) =
λa

2
Aa

µ(x) = τaAa
µ(x) (a = 1, ..., 8). (2.8)

We see that the interaction between the gauge and the quark fields is a consequence

of the local gauge invariance requirement of the theory. Under a local gauge trans-

formation the gauge field Aµ(x) transforms as

Aµ(x) → A
′

µ(x) = U

(

Aµ(x) − i

g
U †∂µU

)

U †. (2.9)
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The gauge invariance implies that the gauge field Aµ must be massless, i.e., a AµA
µ

term would break explicitly the gauge invariance.

The kinetic term of the gauge fields,

Lkin =
1

4
Ga

µνG
µν
a , (2.10)

must also be invariant under a local SU(3) gauge transformation. For that the field

strength tensor must be modified as Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . Therefore,

starting with the free fermion Lagrangian [Eq. (2.4)] and requiring an invariance

under local gauge transformations [Eqs. (2.5)-(2.6)] we have arrived at the QCD

Lagrangian [Eq. (2.1)]. The requirement of a SU(3) local gauge invariance has cre-

ated not only quark-quark and quark-gluon interactions terms, but also three and

four gluon auto-interaction terms. These auto-interaction terms of the gauge fields,

which are absent in quantum electrodynamics, are responsible for the nonpertur-

bative effects of QCD.

2.2 Global symmetries

Besides the local SU(3) gauge symmetry of the QCD Lagrangian, there are also

global symmetries. The global symmetries are defined through space-time indepen-

dent transformation parameters. For global symmetries the space-time dependent

parameters θa(x) of Eqs. (2.5) and (2.6) become constant parameters θa .

In the limit of vanishing quark masses (chiral limit) the QCD Lagrangian is

invariant under the group of transformations

U(3)L ⊗ U(3)R = SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R,

which can be separated into axial and vector transformations,

U(3)L ⊗ U(3)R = SU(3)V ⊗ SU(3)A ⊗ U(1)V ⊗ U(1)A.

According to Noether’s theorem, for each conserved symmetry there is a conserved

current. In Table 2.2 we show the transformations under which the QCD La-

grangian is invariant, the conserved currents, and the manifestations of these sym-

metries in Nature. The SU(3)V and U(1)V symmetries ensure the conservation of

isospin and baryon number, respectively, while the SU(3)A and U(1)A symmetries

are transformations that involve the γ5 matrix and thus change the parity.

To make clear the difference between spontaneously and explicitly symmetry

breaking let us discuss each symmetry separately.
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Symmetry Transformation Current Name Manifestation in Nature

SU(3)V q → exp(−itaαa)q V a
µ = q̄γµtaq Isospin Approximately conserved

U(1)V q → exp(−iαV )q Vµ = q̄γµq Baryonic Conserved

SU(3)A q → exp(−iγ5taθa)q Aa
µ = q̄γµγ5taq Chiral Spontaneously broken

U(1)A q → exp(−iγ5αA)q Aµ = q̄γµγ5q Axial “ UA(1) problem”

Table 2.2: The QCD symmetries in the chiral limit.

2.2.1 Chiral symmetry

In the chiral limit, i.e., mu = md = ms = 0, the LQCD in invariant under chiral

symmetry SU(3)L ⊗ SU(3)R transformations. The quark spinors can be separated

into right- and left-handed contributions

qR = PRq, qL = PLq, (2.11)

where PR,L are the projection operators,

PR =
1

2
(1 + γ5), PL =

1

2
(1 − γ5). (2.12)

The group of transformations SU(3)L ⊗ SU(3)R can be parametrized as

qR,L = exp
(

iθa
R,Lλ

a/2
)

qR,L, (2.13)

and the conserved current,

jµ
R,L = q̄R,Lγµ

λa

2
qR,L, (2.14)

can be written as a combination of vector and axial-vector currents:

V a
µ = ja

R,µ + ja
L,µ (2.15)

Aa
µ = ja

R,µ − ja
L,µ. (2.16)

Therefore, the SU(3)L ⊗ SU(3)R group can be rewritten as

SU(3)L ⊗ SU(3)R = SU(3)V ⊗ SU(3)A.

The nontrivial QCD vacuum is responsible for the spontaneously breaking of chiral

symmetry

SU(3)L ⊗ SU(3)R → SU(3)V ,

which is closely related to the existence of non-zero quark condensate 〈q̄q〉,

〈q̄q〉 = 〈0|q̄q|0〉 = 〈0|ūu|0〉 + 〈0|d̄d|0〉 + 〈0|s̄s|0〉. (2.17)



2.2. GLOBAL SYMMETRIES 19

A non-vanishing value of the quark condensate leads to the spontaneous breaking

of the chiral symmetry, because the operator

q̄q = q̄RqL + q̄LqR (2.18)

mixes left- and right-handed quarks and is not invariant under chiral symmetry.

Hence, the quark condensate can be used as an order parameter for the chiral

symmetry,

〈q̄q〉 ⇒






6= 0 → broken chiral symmetry

= 0 → unbroken chiral symmetry.
(2.19)

The order parameter is a quantity that defines the state of the system, i.e., it van-

ishes when the state of the system shares the symmetry and it becomes non-zero

when the symmetry is broken.

From the experimental point of view the manifestation of chiral symmetry would

be the existence of parity doublets, i.e., a multiplet of particles with the same

mass and opposite parity for each multiplet of isospin (the chiral partners), in the

hadronic spectrum, which is not seen in Nature.

Furthermore, the chiral symmetry is not only spontaneously broken by the QCD

vacuum, but also explicitly by the Lagrangian mass term mq̄q, when the quark

masses are taken into account. In this case, the chiral symmetry is explicitly bro-

ken and the quark condensates will always have non-zero value.

Moreover, when the different quark masses are taken into account, also the SU(3)V

is explicitly broken (flavor symmetry breaking). Thus, when physical quark masses

are used, the chiral symmetry SU(3)L ⊗ SU(3)R is explicitly broken, and we have

SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R → U(1)L ⊗ U(1)R = U(1)A ⊗ U(1)V .

2.2.2 Axial symmetry

In the chiral limit, the LQCD is also invariant under U(1)A transformation (axial

symmetry). It is easy to show that the axial-vector current jµ
5 = q̄γµγ5q is conserved

(∂µj
µ
5 = 0) at classical level, but in quantum field theory an anomalous term appears

in the divergence of axial-vector current,

∂µj
µ
5 = − 3g2

32π2
ǫµνλσGa

µνG
a
λσ, (2.20)

even in the chiral limit. Using the functional integral, the entire generating func-

tional must be invariant under the U(1)A transformation and not only the ac-

tion [161]. The anomalous term is precisely the nontrivial contribution coming
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from the measure of the generating functional under the transformation. In fact, a

consistent quantum field theory requires modification of the short distance behav-

ior and leads to the breaking of axial symmetry [162].

If the symmetry U(1)A was a true symmetry of QCD it would imply the exis-

tence of a partner with opposite parity to each hadron. This is not experimentally

observed and therefore the symmetry must be broken.

In the end, only the U(1)V symmetry remains unbroken in the LQCD,

SU(3)L ⊗ SU(3)R ⊗ U(1)L ⊗ U(1)R → U(1)V ,

reflecting the conservation of baryon number.

2.2.3 Center symmetry

If we start from the QCD Lagrangian and impose the heavy-quark limit (mq → ∞),

we end up with pure gauge theory. Center symmetry is present in pure gauge the-

ory and is related, as we will see, to confinement.

The partition function in pure gauge theory is given by

Z =
∫

DAµ exp(−SP G) (2.21)

where SP G is the Euclidean pure gauge action

SP G = −1

2

∫ β

0
dτ
∫

d3xTr(GµνGµν), (2.22)

where the inverse temperature β plays the role of Euclidean time interval it. The

measure DAµ must fulfill the bosonic periodic boundary condition

Aµ(x, τ + β) = Aµ(x, τ), (2.23)

in Euclidean time direction. To satisfy the above periodic boundary condition, the

local gauge invariance transformation,

U(x, τ) = exp (−itaθa(x, τ)) , (2.24)

must be periodic in Euclidean time,

U(x, τ + β) = U(x, τ). (2.25)
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Nevertheless, Eq. (2.23) is also preserved under the so-called twist transformation

U(x, τ + β) = zU(x, τ), (2.26)

where the matrix z is an element of center symmetry Z3 of the SU(3) group:

z ∈ Z3 = I

{

e2iπ/3, e4iπ/3, e2iπ
}

with Z3 ⊂ SU(3),

where I = diag(1, 1, 1) is the identity matrix. It is straightforward to verify that the

elements of Z3 commute with all elements of SU(3) group. Therefore, pure gauge

theory possesses center symmetry.

In the presence of fermionic fields, which obey the anti-periodic boundary condi-

tions

q(x, τ + β) = −q(x, τ), (2.27)

under local gauge transformations q
′

= Uq transform as

q′(x, τ + β) = −zq′(x, τ). (2.28)

The only possible value for z is 1. Thus, the presence of fermionic fields explicitly

breaks the center symmetry.

The connection of the center symmetry with confinement is the following: if the

center symmetry is explicitly broken by the presence of fermionic fields, or sponta-

neously broken that happens at high temperature, then the quark potential cannot

be linear asymptotically [163].

An order parameter for the center symmetry and thus confinement/deconfinement

phase transition is the expectation value of the Polyakov loop

〈Φ(x)〉 =
〈

1

3
Tr [L(x)]

〉

. (2.29)

The Polyakov loop operator L(x) is defined through a closed Wilson loop around the

periodic imaginary time direction

L(x) = P exp

{

i
∫ β

0
dτA4(x, τ)

}

, (2.30)

where, A4 = iA0 is the temporal component of the Euclidean gauge field (A,A4),
and P denotes path ordering. The expectation value of the Polyakov loop under the

center symmetry transformation is given by

〈Φ(x)〉 → z〈Φ(x)〉. (2.31)
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Since the expectation value of the Polyakov loop is not invariant under a global

center symmetry, its value can be used as order parameter for the spontaneous

breaking of the center symmetry:

〈Φ(x)〉 ⇒






= 0 unbroken center symmetry

6= 0 broken center symmetry
(2.32)

We can write 〈Φ(x)〉 as

〈Φ(x)〉 = exp (−β∆Fq(x)) , (2.33)

where ∆Fq is the difference between the free energy of a gauge field theory contain-

ing an isolated and static quark, and the free energy of a pure gauge system [7,164].

In a confined phase, an infinite amount of free energy is required to add an isolated

quark to the system, thus 〈Φ(x)〉 = 0, and then we are in an unbroken center sym-

metry phase (confined phase). On the other hand, when 〈Φ(x)〉 6= 0 means that

∆Fq(x) → finite that signals a deconfined phase.

The quark fields break explicitly the center symmetry in QCD and Φ(x) has

no longer a zero expectation value. Anyway, the 〈Φ(x)〉 still is though an useful

quantity to study the deconfinement transition.



Chapter 3

Model formalism

The Nambu–Jona-Lasinio (NJL) model was proposed by Y. Nambu and G. Jona-

Lasinio in 1961 to explain the origin of the nucleon mass through the spontaneous

breaking of chiral symmetry [165, 166]. It was introduced on the grounds of an

analogy with the formation of an energy gap in the theory of superconductivity by

Bardeen, Cooper and Schrieffer (the so-called BCS theory). At that time, the model

was formulated in terms of nucleons, pions and scalar sigma mesons. Nowadays,

the fermionic degrees of freedom are associated with quarks. One of the features

of the model is the dynamical generation of a fermion mass through the breaking

of chiral symmetry: the spontaneous formation of a quark-antiquark pairs (like the

electron-electron paring in BSC theory) occurs if the attractive interaction between

quarks and antiquarks is strong enough.

The NJL model has been successful in explaining the dynamics of spontaneous

breaking of chiral symmetry, one of the important features of QCD, and its restora-

tion at high temperatures and densities/chemical potentials [167–170].

3.1 Three-flavor NJL model Lagrangian

The Lagrangian of the three-flavor NJL model is given by [169,170]:

LNJL = L0 + L4 + L6 (3.1)

L0 = q̄(iγµ∂µ − m̂)q = q̄(iγµ∂µ)q − q̄m̂q = Lkin + Lmass (3.2)

L4 =
1

2
G0

s

8
∑

a=0

[ ( q̄ λa q )2 + ( q̄ i γ5 λ
a q )2 ] (3.3)

L6 = K {det [q̄ (1 + γ5) q] + det [q̄ (1 − γ5) q]}. (3.4)

In the above, q = (u, d, s) is the quark field with three flavors (Nf = 3) and three

colors (Nc = 3), m̂ = diag(mu, md, ms) is the current quark mass matrix, and λa are

23



24 CHAPTER 3. MODEL FORMALISM

the flavor SUf (3) Gell-Mann matrices (a = 1, . . . , 8), with λ0 =
√

2
3

I (see Appendix

A).

The L4 term is a chirally symmetric scalar-pseudoscalar local four-point inter-

action. In the chiral limit (i.e., with Lmass = −q̄m̂q = 0), the combination L0 + L4 is

invariant under

SU(3)color ⊗ U(3)L ⊗ U(3)R = SU(3)color ⊗ SU(3)L ⊗ SU(3)R ⊗ U(1)V ⊗ U(1)A,

where the SU(3)color is a global – and not local, as in QCD – color symmetry. The

reduction to a global color symmetry prevents quark confinement in the model.

In the other hand, ’t Hooft suggested that the breaking of the U(1)A symmetry

can be described at the semi-classical level by instantons [171, 172]. The instan-

tons can play a crucial role in breaking explicitly the U(1)A symmetry, explaining

the different nature of the η′ meson mass. The U(1)A anomaly is responsible for

the flavor mixing effect that removes the degeneracy among several mesons. To

mimic this interaction in a purely fermionic effective theory, ’t Hooft proposed the

six quarks interaction term L6 that breaks the U(1)A symmetry and reproduces

the axial anomaly. Therefore, the L6 term breaks the U(3)L ⊗ U(3)R symmetry to

SU(3)L ⊗ SU(3)R ⊗ U(1)V .

The SU(3)L ⊗ SU(3)R symmetry is spontaneously broken to SU(3)V by the ap-

pearance of a non-vanishing quark condensate 〈ψ̄iψi〉, and, to a small degree, explic-

itly broken by the mass term Lmass. Furthermore, the SU(3)V symmetry is broken

by non-degenerate quark masses (ms > mu,d).

3.2 Mean-field approximation

In this section, we calculate the thermodynamic potential of the NJL model in the

Mean-Field Approximation (MFA). An operator in the MFA is assumed to have

small deviations from its thermal average. The L4 term contains four-fermion in-

teraction terms (q̄Γq)2, where Γ = 1, iγ5. The MFA consists in expanding the La-

grangian to first-order in (q̄Γq), around the thermal average 〈q̄Γq〉,
(q̄Γq)2 = (q̄Γq + 〈q̄Γq〉 − 〈q̄Γq〉)2

= (〈q̄Γq〉 + δ〈q̄Γq〉)2

= 〈q̄Γq〉2 + (δ〈q̄Γq〉)2 + 2〈q̄Γq〉δ〈q̄Γq〉
≈ 〈q̄Γq〉2 + 2〈q̄Γq〉δ〈q̄Γq〉
= 〈q̄Γq〉2 + 2〈q̄Γq〉(q̄Γq) − 2〈q̄Γq〉2

= 2〈q̄Γq〉(q̄Γq) − 〈q̄Γq〉2, (3.5)
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where the deviation from thermal average δ〈q̄Γq〉 = q̄Γq − 〈q̄Γq〉 is assumed to

be small, and as a first-order approximation we ignore higher-order fluctuations

(δ〈q̄Γq〉)2. We assume that the condensates 〈q̄iγ5λ
aq〉 are zero in the homogeneous

ground state. Using the explicit form of the gamma matrices (see Appendix A) the

flavor-mixing terms, i.e., 〈q̄iqj〉 with i 6= j, that appear in

8
∑

a=0

(q̄λaq),

for a = 1, 2, 4, 5, 6, 7, are also ignored since they violate flavor conservation. Thus,

keeping only the flavor conservation terms we obtain

∑

a=0,3,8

(q̄λaq) = (q̄λ0q) + (q̄λ3q) + (q̄λ8q) = 2
(

(q̄uqu)2 + (q̄dqd)2 + (q̄sqs)
2
)

. (3.6)

Therefore, the L4 term in the MFA becomes

L
MF A
4 = −G0

s

∑

i

〈q̄iqi〉2 + 2G0
s(q̄uqu)〈q̄uqu〉 + 2G0

s(q̄dqd)〈q̄dqd〉 + 2G0
s(q̄sqs)〈q̄sqs〉. (3.7)

The MFA of a six-fermion interaction term is

O1O2O3 ≈ 〈O1〉〈O2〉〈O3〉 + ((O1 − 〈O1〉)〈O2〉〈O3〉 + cyclic permutations)

= O1〈O2〉〈O3〉 + 〈O1〉O2〈O3〉 + 〈O1〉〈O2〉O3 − 2〈O1〉〈O2〉〈O3〉. (3.8)

Thus, the ’t Hooft term L6 in the MFA is given by

detf (q̄fOqf ) =
∑

i,j,k

ǫijk(q̄uOqi)(q̄dOqj)(q̄sOqk)

≈
∑

i,j,k

[(q̄uOqi)〈q̄dOqj〉〈q̄sOqk〉 + 〈q̄uOqi〉(q̄dOqj)〈q̄sOqk〉

+ 〈q̄uOqi〉〈q̄dOqj〉(q̄sOqk) − 2〈q̄uOqi〉〈q̄dOqj〉〈q̄sOqk〉]. (3.9)

Inserting the operator O = 1 ± γ5 and using both the flavor conservation, 〈q̄iqj〉 = 0
for i 6= j, and 〈q̄iγ5qj〉 = 0, we get

L
MF A
6 = 2K(q̄uqu)〈q̄dqd〉〈q̄sqs〉 + 2K(q̄dqd)〈q̄uqu〉〈q̄sqs〉 + 2K(q̄sqs)〈q̄uqu〉〈q̄dqd〉

− 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉. (3.10)

Gathering all the contributions, we obtain the Lagrangian of the NJL model in the

MFA

L
MF A
NJL = q̄(iγµ∂µ − M̂)q −G0

s

∑

i

〈q̄iqi〉2 − 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉, (3.11)
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with M̂ = diag(Mu,Md,Ms), where Mi are the constituent quark masses given by

the gap equations















Mu = mu − 2G0
s〈q̄uqu〉 − 2K〈q̄dqd〉〈q̄sqs〉

Md = md − 2G0
s〈q̄dqd〉 − 2K〈q̄sqs〉〈q̄uqu〉

Ms = ms − 2G0
s〈q̄sqs〉 − 2K〈q̄uqu〉〈q̄dqd〉.

(3.12)

We call Mi the constituent quark masses to distinguish them from the current

quark masses mi that appear in the Lagrangian. The constituent quark masses

are effective masses generated by the spontaneous breaking of chiral symmetry. In

this case, we speak of the spontaneous generation of an effective quark mass.

3.2.1 Thermodynamic potential

In thermal field theory the partition function of the grand-canonical ensemble is

given by

Z(β, µ) ≡ Tr
(

e−β(H−µN̂)
)

=
∑

i

∫

dΨi〈Ψi|e−β(H−µN̂)|Ψi〉, (3.13)

where β = 1/T is the inverse temperature, H is the system Hamiltonian, µ is the

chemical potential, and N̂ is the baryon number operator.

A possible approach to thermal field theory is the path integral formalism [173–

175]. The path integral may be defined in imaginary time, being more convenient

to study finite temperature systems. We need to perform an analytical continuation

from real to imaginary time (called Wick rotation) t → −iτ with τ ∈ R. The partition

function in Euclidean time τ is given by

Z(β, µ) = N

∫

Dq†
DqeSE , (3.14)

where SE is the Euclidean action,

SE =
∫ β

0
dτ
∫

d3x(LE − µN̂). (3.15)

Once the partition function Z(β, µ) is obtained, the thermodynamic potential can be

calculated by

Ω(β, µ) = − 1

βV
lnZ(β, µ). (3.16)

Transforming the NJL Lagrangian in the MFA (Eq. (3.11)) into imaginary time,

allows us to write the Euclidean action in the MFA as

SNJL =
∫ β

0
dτ
∫

d3xq̄S−1
0 q + βV U, (3.17)
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where

S−1
0 = −γ0 ∂

∂τ
+ iγ.∇ −M + µγ0 (3.18)

is the inverse fermionic propagator, and U is given by

U = −G0
s

∑

i

〈q̄iqi〉2 − 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉. (3.19)

Then, the thermodynamic potential can be written as

Ω(β, µ) = − 1

βV
lnZ0 − U, (3.20)

where the partition function Z0 is

Z0 =
∫

Dq†
Dq exp

(

∫ β

0
dτ
∫

d3xq̄S−1
0 q

)

. (3.21)

Instead of working in the (x, τ) space, we can move to the momentum-frequency

space (p, iωn) expanding the fermionic field q(x, τ) in Fourier series,

qα(x, τ) =
1√
V

∑

p,n

ei(p.x+ωnτ)qα,n(p). (3.22)

Due to the anti-periodic boundary conditions of the fermionic fields, q(x, 0) = −q(x, β),
only odd frequencies (called Matsubara frequencies) are allowed: ωn = (2n+ 1)πT .

The action S0, in the partition function Z0 of Eq. (3.21), becomes

S0 =
∫ β

0
dτ
∫

d3xq̄S−1
0 q = β

∑

p,n

q̄αn(p)
[

−iγ0ωn − γ.p −M + µγ0
]

qα′ n(p)

=
∑

p,n

q†
αn(p)Dαα′ (p)qα′ n(p), (3.23)

with

Dαα′ (p) = βγ0
[

−iγ0ωn − γ.p −M + µγ0
]

. (3.24)

The Z0 [Eq. (3.21)] is now a Gaussian integral over Grassman fields,

∫

∏

α

dq†
αn(p)dqαn(p) exp

(

∑

p,n

q†
αn(p)Dαα′ (p)qα′ n(p)

)

. (3.25)

Using the identity
∫ N
∏

i

dq†
idqi exp

(

q†Dq
)

= detD, (3.26)
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and ln detD = Tr lnD, we get

Ω(β, µ) = − 1

βV
Tr ln

[

βS−1(p, ωn)
]

− U, (3.27)

where the trace is in flavor, color, Dirac, and also in momentum-frequency (iωn,p)
spaces. The inverse quark propagator S−1(p, ωn) is given by

S−1(p, ωn) =
[

−iωn − γ0γ.p − γ0M + µ
]

. (3.28)

Calculating the trace

Tr ln
[

βS−1(p, ωn)
]

=
∑

n

∑

p

Trcolor Trflavor TrDirac ln
[

βS−1(p, ωn)
]

= V Trcolor Trflavor TrDirac

∫

d3p

(2π)3

∑

n

ln
[

βS−1(p, ωn)
]

. (3.29)

The sum over the Matsubara frequencies n can be calculated as follows (only the

main steps are shown, for a detailed calculation see [173]):

∑

n

TrDirac ln
[

βS−1(p, ωn)
]

= 2
∑

n

ln
{

β2
[

(ωn + iµ)2 + ω2
]}

=
∑

n

{

ln
[

β2(ω2
n(ω − µ)2)

]

+ ln
[

β2(ω2
n(ω + µ)2)

]}

= 2
[

βω + ln(1 + e−β(ω−µ)) + ln(1 + e−β(ω+µ))
]

, (3.30)

with ω =
√

p2 +M2. Therefore, we have

Tr ln
[

βS−1(p, ωn)
]

= 2V Nc

∑

i=u,d,s

∫

d3p

(2π)3

[

βωi + ln(1 + e−β(ωi−µ)) + ln(1 + e−β(ωi+µ))
]

.

(3.31)

with ωi =
√

p2
i +M2

i . Finally, we can write down the thermodynamic potential of

the three-flavor NJL model in the MFA,

Ω(T, µ) = −2Nc

∑

i=u,d,s

∫

d3p

(2π)3

[

ωi + T ln(1 + e−β(ωi−µ)) + T ln(1 + e−β(ωi+µ))
]

+G0
s

∑

i

〈q̄iqi〉2 + 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉, (3.32)

where the constituent masses Mi are given by the gap equations [Eq. (3.12)].

As a first step of the MFA, we have expanded the Lagrangian terms (q̄Γq)2

around their thermal average 〈q̄Γq〉2
, where second-order fluctuations were ignored.
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The thermal average fields 〈q̄iqi〉 = φi are called quark condensates (Γ = 1). The

second step was to consider the quark condensates as constant fields in space-time,

which has allowed us to make the following step

SE =
∫ β

0
dτ
∫

d3xU(φi) = βV U(φi). (3.33)

The last step of the MFA is to assume that the φi field takes the classical value φ̄i,

which is the value that minimizes the action, i.e., the φ̄i configuration that makes

e−SE maximum, contributing considerably to the partition function Z ∼ ∫

dφ̄e−SE .

Therefore, the condensate values 〈q̄iqi〉 = φi can be calculated from

δSE

δφi

∣

∣

∣

∣

∣

φi=φ̄i

= 0 =⇒ δΩ

δφi

∣

∣

∣

∣

∣

φi=φ̄i

= 0. (3.34)

The quark condensates φ̄i = 〈q̄iqi〉 are then given by

〈q̄iqi〉 = − 2Nc

∫

d3p

(2π)3

Mi

ωi
[θ(Λ2 − p2

i ) − f(ωi − µ) − f̄(ωi + µ)], (3.35)

where f(ωi − µ)
(

f̄(ωi + µ)
)

is the Fermi distribution function for fermions (anti-

fermions).

The gap equations of the NJL model can also be calculated using the bosoniza-

tion formalism [167, 176]. Bosonization refers to the transformation in which the

Lagrangian quark bilinear forms are replaced by auxiliary variables, used to in-

tegrate out the quark fields. The bosonization is performed using the Hubbard-

Stratonovich transformations, where the fermionic degrees of freedom are replaced

by effective bosonic degrees of freedom. A brief review of the bosonization proce-

dure is given in Appendix B.

To fix the model, we need to calculate the pseudoscalar meson masses. There

are several approaches to calculate them, one way is using the mesonic correlators.

Correlation functions are thermal expectation values of time-ordered products of

operators, and their poles correspond to on-shell masses of mesons and baryons.

Correlation functions are calculated by expanding the effective action to second-

order around the stationary points [176]. Therefore, the meson spectra are obtained

as fluctuation corrections to the mean field approximation. The basic idea is to

expand the thermodynamic potential around its mean field limit. There are several

methods to examine these fluctuation corrections [167–169].
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3.3 Model parametrization

Being the NJL model non-renormalizable, a regularization procedure must be ap-

plied in order to deal with divergent quantities. There is no unique way to regu-

larize the model and several regularization schemes exist [168]. In this work we

use the three-momentum non-covariant cutoff scheme, where a cutoff p2 < Λ2 is

imposed on all divergent integrals only. Thus, we introduced a cutoff Λ in the UV

divergence term
∫

d3p
√

pi
2 +M2

i of the thermodynamic potential [Eq. (3.32)]. The

cutoff is one characteristic length scale for the interaction assumed to be much

larger than all relevant momenta.

The three-flavor NJL model has five free parameters: the current quark masses

mu, md, and ms, the four-fermion coupling strength G0
s, the six-fermion coupling

strength K, and the cutoff Λ. These free parameters are fixed in vacuum (T =
µ = 0) in order to reproduce experimental data or LQCD results. There are sev-

eral parametrization sets in the literature [169, 177, 178]. In this work we use the

parametrization set of [178], shown in Table 3.1, in which the current light quark

masses mu = md were set to 5.5 MeV, and the remaining four parameters were fitted

to reproduce: the pion mass Mπ, its decay constant fπ, the mass of the kaon meson

MK , and the mass of the η
′

meson Mη
′ .

Parameter set Physical quantities Predictions

[178] (MeV) (MeV)

mu = md = 5.5 MeV fπ = 92.4 Mσ = 728.8
ms = 140.7 MeV Mπ = 135.0 Mη = 514.8
Λ = 602.3 MeV MK = 497.7 Mu = Md = 367.7
G0

sΛ2 = 3.67 Mη′ = 960.8 Ms = 549.5

KΛ5 = −12.36 |〈 ¯ψu,dψu,d〉|1/3 = −241.9

|〈ψ̄sψs〉|1/3 = −257.7

Table 3.1: The parameters values of the model, the respective physical quantities

used on their fixing, and some predicted physical quantities.

3.4 Polyakov extended NJL model

Unlike the QCD, the NJL model is not invariant under a local SU(3) transforma-

tion, but only under a global transformation. Therefore, the NJL model has no con-

finement mechanism as QCD. The deconfinement feature is taken into account in

the NJL model by introducing an effective gluon potential in terms of the Polyakov
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loop in the Lagrangian [179–185]. The coupling of the quarks to the Polyakov loop

leads to the reduction of the weight of the quark degrees of freedom at low temper-

ature, as a consequence of the restoration of the center symmetry associated with

the confinement.

3.4.1 Polyakov loop potential

In Section 2.2.3, we have introduced the expectation value of the Polyakov loop

〈Φ(x)〉,

Φ ≡ 〈Φ(x)〉 =
〈

1

3
Trc [L(x)]

〉

with L(x) = P exp

{

i
∫ β

0
dτA4(x, τ)

}

, (3.36)

as an order parameter for confinement/deconfinement phase transition in pure

gauge theory. Hereafter, for simplicity, instead of calling expectation value of the

Polyakov loop to Φ, we just call it Polyakov loop.

The order parameter Φ that probes the state of the Z3 symmetry is obtained by

defining an effective Polyakov loop potential U(Φ, Φ̄) that respect all symmetries

and reproduce lattice results from pure gauge theory. The values of Φ and Φ̄ are

the ones which minimize the effective potential. The effective potential should be

invariant under U(1) symmetry, and include the center symmetry and its sponta-

neous breaking at high temperatures, in a deconfined phase. It must describe not

only a first-order phase transition (for Nc = 3), but also reproduce thermodynamic

lattice data of pure gauge theory.

There are several effective potentials available in the literature [186–189]. In

this work we use the logarithm potential [187]:

U

(

Φ, Φ̄;T
)

T 4
= −a (T )

2
Φ̄Φ + b(T )ln

[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

, (3.37)

where

a (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

and b(T ) = b3

(

T0

T

)3

are temperature-dependent coefficients. The logarithmic dependence limits the

Polyakov values to be always smaller than 1. The value Φ, Φ̄ → 1 is only obtained

in the asymptotically limit T → ∞. The parameters were fitted to reproduce ther-

modynamical lattice results in pure gauge: a0 = 3.51, a1 = −2.47, a2 = 15.2, and

b3 = −1.75. The parameter T0 is the critical temperature for the deconfinement

phase transition in pure gauge and is fixed to 270 MeV, according to lattice results.
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We show in Fig. 3.1 the effective potential as a function of Φ (at zero baryonic

chemical potential we have Φ = Φ̄) for several temperatures (left), and the min-

imum of the effective potential as a function of temperature in MeV (right). For

T < T0, the effective potential has only one minimum at Φ = 0, describing a con-

fined phase. At T = T0, the U shows two minimum at Φ = 0 and Φ ≈ 0.48 with the

same height, describing a first-order phase transition from a confined to a decon-

fined phase. For T > T0, the effective potential has one minimum at a finite Φ value

(deconfined phase).
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Figure 3.1: Effective potential U/T 4 [Eq. (3.37)] as a function of Φ for several tem-

peratures (left), and its minimum as a function of temperature in MeV (right).

The parameter T0 is the only free parameter of the effective potential and its

value reproduces the first-order phase transition of pure gauge system. When one

introduces the effective potential in the NJL, we want that the pseudocritical tem-

perature of the deconfined transition agrees with LQCD results, which for 2 + 1-

flavors with physical quark masses is TΦ
c = 170(4)(3) MeV [25], where the first

error comes from the statistical errors whereas the second error arises from the

accuracy of the scale determination. Thus, a rescale of T0 to 210 MeV is needed in

order to reproduce this TΦ
c LQCD result.

Let us stress that the Polyakov loop effective potential does not have any dynam-

ical degrees of freedom. Instead, it only describes a constant gauge field background

in which quarks propagate. Anyway, the potential was fitted in order to mimic the

pressure term, pglue(T ) = −U(Φmin(T );T ), of the gluonic degrees of freedom, repro-

ducing the right Stefan-Boltzmann limit for T → ∞.

Transverse gluons, which are thermodynamically relevant degrees of freedom

at high temperatures (T > 2.5Tc), are not taken into account in the PNJL model.

Thus, the range of applicability of the PNJL model is T ≤ (2 − 3)Tc [190].
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3.4.2 Coupling between quarks and the Polyakov loop

The coupling between quarks and gluon fields is accomplished via the covariant

derivative,

Dµ = ∂µ − iAµ. (3.38)

Once the spatial fluctuations of the Polyakov loop are ignored, only the time compo-

nent of the gluon needs to be considered, Aµ = δµ
0A0 (Polyakov gauge); in Euclidean

notation A0 = −iA4. Being the time component A4 a constant field, the Polyakov

loop operator becomes trivial,

L(x) = P exp

{

i
∫ β

0
dτA4

}

= eiβA4 (3.39)

L†(x) = P exp

{

−i
∫ β

0
dτA4

}

= e−iβA4 . (3.40)

Furthermore, six of the eight components of Aµ do not contain any physical infor-

mation. The Polyakov loop operator can be parametrized, in the Polyakov gauge,

only using two parameters [182]

L =









eiφ 0 0

0 eiφ
′

0

0 0 e−i(φ+φ
′

)









. (3.41)

With this ansatz, the Polyakov loop Φ = 1
3

Trc L and its conjugate are given by

Φ =
1

3

(

eiφ + eiφ
′

+ e−i(φ+φ
′

)
)

(3.42)

Φ̄ =
1

3

(

e−iφ + e−iφ
′

+ ei(φ+φ
′

)
)

. (3.43)

3.4.3 Gap equations

The quark propagator in a constant background field A4 is now

Si(p) = −(/p −Mi + γ0(µ− iA4))
−1, (3.44)

where p0 = iωn, and ωn = (2n+ 1)πT is the fermion Matsubara frequency.

The thermodynamic potential of the PNJL model can be obtained using the

same techniques of Section 3.2, and is given by [185,191]

Ω(Φ, Φ̄,Mi;T, µ) = U

(

Φ, Φ̄, T
)

+ g
S

∑

i=u,d,s

〈q̄iqi〉2 + 4K 〈q̄uqu〉 〈q̄dqd〉 〈q̄sqs〉 (3.45)

− 2Nc

∑

i=u,d,s

∫ d3p

(2π)3

{

Ei + T
(

z+
Φ (Ei) + z−

Φ (Ei)
)}
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where Ei =
√

p2 +M2
i is the quasi-particle energy for the quark i, and z±

Φ are the

partition function densities given by:

z+
Φ (Ei) ≡ Trc ln

[

1 + L†e−β E−

p

]

= ln
{

1 + 3
(

Φ̄ + Φe−β E−

p

)

e−β E−

p + e−3β E−

p

}

(3.46)

z−
Φ (Ei) ≡ Trc ln

[

1 + Le−β E+
p

]

= ln
{

1 + 3
(

Φ + Φ̄e−β E+
p

)

e−β E+
p + e−3β E+

p

}

, (3.47)

where E
(±)
i = Ei ∓ µ, the upper sign applying for fermions and the lower sign for

anti-fermions. The explicit diagonal form of the Polyakov line Eq. (3.41) and its

color traces, Eqs. (3.42) and (3.42), were used.

We obtain the gap equations by minimizing the thermodynamic potential [Eq.

(3.45)] with respect to the order parameters (Mu,Md,Ms,Φ, Φ̄). The quark gap equa-

tions are the same as in the NJL [Eq. (3.12)]:










Mu = mu − 2G0
s〈q̄uqu〉 − 2K〈q̄dqd〉〈q̄sqs〉

Md = md − 2G0
s〈q̄dqd〉 − 2K〈q̄sqs〉〈q̄uqu〉

Ms = ms − 2G0
s〈q̄sqs〉 − 2K〈q̄uqu〉〈q̄dqd〉.

The quark condensates 〈q̄iqi〉 are modified by the constant background field A4, and

are given by

〈q̄iqi〉 = − 2Nc

∫

d3p

(2π)3

Mi

Ei
[θ(Λ2 − p2) − f

(+)
Φ (Ei) − f

(−)
Φ (Ei)], (3.48)

where the modified distribution functions are

f
(+)
Φ (Ei) =

Φ̄e−β E−

p + 2Φe−2β E−

p + e−3β E−

p

1 + 3
(

Φ̄ + Φe−β E−

p

)

e−β E−

p + e−3β E−

p

(3.49)

f
(−)
Φ (Ei) =

Φe−β E+
p + 2Φ̄e−2β E+

p + e−3β E+
p

1 + 3
(

Φ + Φ̄e−β E+
p

)

e−β E+
p + e−3β E+

p

. (3.50)

Looking at the above modified distribution functions f
(±)
Φ (Ei) we see that as we

approach φ, φ̄ → 0 (”confined phase”) the Boltzmann 3-particle contributions dom-

inates. In the opposite limit, for φ, φ̄ → 1 (”deconfined phase”), all 1-, 2- and 3-

particle Boltzmann contributions are present. In the PNJL model the coupling of

quarks to the Polyakov loop produces a statistical suppression of the one- and two-

quark contributions to the thermodynamics and thus an improvement of the NJL

model results at low temperatures [185].

The Polyakov loop values are the ones that minimize the thermodynamic poten-

tial,
∂U

∂Φ
= 0 and

∂U

∂Φ̄
= 0, (3.51)
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and we obtain the following gap equations,

0 = T 4







−a(T )

2
Φ̄ − 6

b(T )
[

Φ̄ − 2Φ2 + Φ̄2Φ
]

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2







− 6T
∑

i=u,d,s

∫

d3p

(2π)3





e−2β E−

p

exp{z+
Φ (Ei)}

+
e−β E+

p

exp{z−
Φ (Ei)}



 (3.52)

0 = T 4







−a(T )

2
Φ − 6

b(T )
[

Φ − 2Φ̄2 + Φ̄Φ2
]

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2







− 6T
∑

i=u,d,s

∫

d3p

(2π)3





e−β E−

p

exp{z+
Φ (Ei)}

+
e−2β E+

p

exp{z−
Φ (Ei)}



 . (3.53)

In fact, the NJL model can be generalized to the PNJL model by introducing the

modified Fermi-Dirac distribution functions [185]:

f(Ei − µ) → f
(+)
Φ (Ei) =

Φ̄e−β E−

p + 2Φe−2β E−

p + e−3β E−

p

exp{z+
Φ (Ei)}

(3.54)

f(Ei − µ) → f
(−)
Φ (Ei) =

Φe−β E+
p + 2Φ̄e−2β E+

p + e−3β E+
p

exp{z−
Φ (Ei)}

. (3.55)

3.5 Introduction of an external magnetic field

Let us now introduce a static and constant external magnetic field in the z direction

Aµ
EM = δµ2x1B. (3.56)

In the PNJL model the coupling between the magnetic field B and quarks is imple-

mented via the covariant derivative

Dµ = ∂µ − iqfA
µ
EM − iAµ, (3.57)

where qf represents the f -quark electric charge (qd = qs = −qu/2 = −e/3), and Aµ

are the gluon fields [see Eq. (3.38)].

We obtain the modified fermion spectrum by solving the Dirac equation in a

constant magnetic background B,

En(pz) = ±
√

m2 + p2
z + 2|qfB|n, (3.58)
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where n = 0, 1, 2, ... is the Landau Level index. The Landau level index contains

both orbital, k = 0, 1, 2, ..., and spin, s = ±1
2
, contributions: n = k − s

qf

|qf |
+ 1

2
. There-

fore, we have

n = k + s+
1

2
, for the down and strange quarks (3.59)

n = k − s+
1

2
, for the up quark (3.60)

The Lowest Landau Level (LLL), n = 0, can only accommodate quarks with a zero

orbital quantum number (k = 0) and with a spin quantum number of s = −1
2

for

the strange and down quarks, and s = 1
2

for the up quark. The LLL is a spin po-

larized state. The Higher Landau Levels (HLL), n > 0, have a two-fold degeneracy.

Moreover, there is a infinite degeneracy for each Landau Level and for a fixed value

of pz, which is related to the py momentum value. The density of states is |eB|
2π

for

n = 0, and |eB|
π

for n > 0 [192]. The integrals, in the magnetic field presence, are

then modified as
∫ d3p

(2π)3
f(E) → |qB|

2π

∑

n

αn

∫ +∞

0

dpz

2π
f(En),

where αn = 2 − δn0, being 1 for the n = 0 (LLL) and 2 otherwise (HLL).

The thermodynamical potential Ω in the presence of a magnetic field can be

separated into three terms: one B independent Ωvac (vacuum contribution), one B
dependent Ωmag (magnetic contribution), and a term Ωmed (medium contribution)

that depends on B, chemical potential, and temperature [70–72]. They are given

by

Ωi
vac = −6

∫

Λ

d3pi

(2π)3
Ei (3.61)

Ωi
med = −T |qiB|

2π

∞
∑

n=0

αn

∫ +∞

−∞

dpi
z

2π

(

z+
Φ (En

i ) + z−
Φ (En

i )
)

(3.62)

Ωi
mag = −3(|qi|B)2

2π2

[

ζ
′

(−1, xi) − 1

2
(x2

i − xi) ln xi +
x2

i

4

]

(3.63)

where xi = M2
i /(2|qi|B), Ei =

√

M2
i + p2

i , E
n
i =

√

M2
i + (pz

i )2 + 2|qfB|n, and ζ
′

(−1, xi) =

dζ(z, xi)/dz|z=−1, being ζ(z, xi) the Riemann-Hurwitz zeta function. The terms Ωi
vac

are regularized by the three-momentum UV cutoff Λ of the NJL model. The details

of the regularization used are in [70], and a comparison with other model regular-

izations in [193]. The thermodynamic potential can be written as [70–72]

Ω(T, µ;B) =
∑

i=u,d,s

(

Ωi
vac + Ωi

med + Ωi
mag

)

+G0
s(Φ, Φ̄)

∑

i=u,d,s

〈q̄iqi〉2

+ 4K〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉 + U(Φ, Φ̄, T ). (3.64)
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The quark condensate 〈q̄iqi〉 can also be separated into three parts

〈q̄iqi〉 = 〈q̄iqi〉vac + 〈q̄iqi〉mag + 〈q̄iqi〉med,

which are given by [70–72]

〈q̄iqi〉vac = −6
∫

Λ

d3p

(2π)3

Mi

Ei
(3.65)

〈q̄iqi〉mag = −3mi|qi|B
2π2

[

ln Γ(xi) − 1

2
ln(2π) + xi − 1

2
(2xi − 1) ln(xi)

]

〈q̄iqi〉med =
3(|qi|B)2

2π

∞
∑

n

αn

∫ +∞

−∞

dpi
z

2π

(

f
(+)
Φ (En

i ) + f
(−)
Φ (En

i )
)

. (3.66)

Therefore, in the presence of the magnetic field, we must solve the gap equations

[Eq. (3.12)] at any (T, µ), using the above definitions for the quark condensates

〈q̄iqi〉, and then calculate the thermodynamic potential as a function of (T, µ). Ther-

mal transitions can occur between any LL at finite temperature and n runs from 0
(LLL) to ∞ in the medium expressions. In our numerical calculations, we stopped

at the LL which contributes only 10−8 to the net medium value.

3.6 Entanglement interaction

Due to the weak correlation between the chiral condensate and the Polyakov loop,

the PNJL model cannot reproduce LQCD data at imaginary chemical potential.

LQCD simulations are possible at imaginary µ (there is no sign problem). At imag-

inary chemical potential the thermodynamic potential of QCD has a Roberge-Weiss

(RW) periodicity [194]. LQCD simulations show that at µq = iθqT the order of

the RW transition at the end point T = TE is of first-order for small and larger

quark masses, but the order is weakened and could be second-order at intermedi-

ate masses [195, 196]. The entanglement interaction (EPNJL model) reproduces

the quark-mass dependence of the RW end point predicted by LQCD [197]. An

extension to the PNJL model was then proposed in [197]: a Φ dependence on the

effective four-quark vertex G0
s. The G0

s vertex of the NJL model can be seen as orig-

inated by one-gluon exchange diagram between two quarks and its higher-order

diagrams. If the time component of gluon field Aν has a finite expectation value

〈A0〉, which is related to Φ, then the G0
s is transformed into an effective vertex that

depends on Φ [197]. This phenomenological effective vertex Gs(Φ) (entanglement

interaction) generates a strong correlation between chiral and deconfinement phase

transitions. Its functional form is determined by the invariance under extended Z3

symmetry, chiral symmetry, and its strength must reproduce LQCD data at com-

plex µ [197–199].
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One possible functional form of Gs(Φ, Φ̄), which preserves chiral symmetry, C

symmetry, and extended Z3 symmetry, is [197]

Gs(Φ, Φ̄) = G0
s

[

1 − α1ΦΦ̄ − α2(Φ3 + Φ̄3))
]

, (3.67)

where α1 and α2 are free parameters.

The parametrization of the entanglement interaction, i.e., the (α1, α2) values,

was performed for both 2-flavors [197] and 2+1-flavors [199]. For the 2+1-flavors

case, using T0 = 150 MeV, the domain of (α1, α2) satisfying

{−1.5α1 + 0.3 < α2 < −0.86α1 + 0.32, α2 > 0} ,

reproduces the chiral crossover of 2+1-flavors LQCD at µ = 0 [200], and the transi-

tion nature of the Roberge-Weiss end point at θ = π [196].

As we will see in the next Chapter, the PNJL model gives a pseudocritical tem-

perature of deconfinement lower than the pseudocritical temperature of chiral tran-

sition. An opposite result is obtained in LQCD simulations, i.e., a higher pseudo-

critical deconfinement transition temperature is obtained. The introduction of the

entanglement interaction (EPNJL model) reduces the gap between both pseudocri-

tical temperatures of the PNJL, and thus goes in the right direction to reproduce

LQCD results even though we cannot reproduce a pseudocritical deconfinement

transition temperature higher than the pseudocritical chiral transition tempera-

ture.



Chapter 4

Hot quark matter under an

external magnetic field

In this Chapter, we study how an external magnetic field affects three-flavor quark

matter at zero baryonic chemical potential, using both PNJL and EPNJL models.

Pseudocritical temperatures of chiral and deconfinement transitions are calculated.

We determine how the entanglement interaction and its parametrization affect the

chiral and deconfinement transitions and several thermodynamical quantities.

The last section is devoted to the study of the strange quark chiral transition.

The strange quark differs from its light partners by mass scale: ms/mu,d ≈ 26 in all

three models (see Table 3.1). This mass scale difference produces a distinct behavior

between the light and strange quark sectors. The strange quark is coupled to the

light quarks through the six-quark interaction ’t Hooft term L6 [see Eq. (3.1)].

The ’t Hooft coupling K is fixed in the vacuum in order to reproduce the η
′

mass,

although its value could be medium dependent [169]. The value of the ’t Hooft

coupling also affects the structure of the QCD phase diagram; in particular, the

location of the CEP depends on its strength [188]. In the chiral limit (mu = md =
0), the pattern of chiral symmetry restoration at µB = 0 is also affected by the

current strange quark mass ms: it is restored via a first-order phase transition for

ms < mcrit
s ≈ 9 MeV, and via second-order phase transition for ms ≥ mcrit

s [201]. The

dependence of the tricritical point on the ms value is studied in [201]. Therefore, we

investigate the effect of the magnetic field on the strange quark chiral transition,

analyzing the impact of the ’t Hooft coupling K and the strange current quark mass

ms on the results.

39



40 CHAPTER 4. MAGNETIZED HOT QUARK MATTER

4.1 PNJL and EPNJL models results

At zero temperature and zero baryonic chemical potential, chiral symmetry of QCD

is broken explicitly by the current quark masses and spontaneously by the presence

of a non-vanishing quark condensate 〈q̄q〉. We expect that as the temperature in-

creases chiral symmetry is partially restored – the symmetry is completely restored

only in the chiral limit (mq = 0), where the order parameter 〈q̄q〉 vanishes in the re-

stored phase. Confinement is realized at low temperatures and we have a confined

phase (hadronic matter). With increasing temperature, a transition from confined

matter to deconfined matter takes place. To study these symmetries, we must de-

fine order parameters that probe the state of each symmetry at any temperature

and/or chemical potential. Since we are working with the (2+1)-flavors version of

the (E)PNJL models, we have three order parameters for the chiral symmetry (one

for each flavor), the quark condensates 〈q̄iqi〉 [Eq. (3.35)]. The Polyakov loop Φ [Eq.

(3.36)] is the order parameter for deconfinement transition.

At zero magnetic field, the chiral and deconfinement transitions are analytic

transitions (crossover transitions) in both PNJL [188] and EPNJL [197] models.

The crossover, unlike first- and second-order phase transitions, is characterized, as

already referred, by a smooth and continuous change of the order parameters and

thermodynamical quantities with temperature and/or chemical potential. There-

fore, only a pseudocritical temperature can be defined for a crossover [22, 25, 26].

We define the chiral pseudocritical temperature T χ
i for the i-quark as the temper-

ature at which the inflection point of the quark condensates 〈q̄iqi〉 occurs, i.e., the

temperature at which d2 〈q̄iqi〉 (T )/dT 2 = 0. The pseudocritical temperature for the

deconfinement transition TΦ
c is also defined as the inflection point of the Polyakov

loop. For each order parameter i, we define the respective susceptibility Ci as

Ci = −mπ
∂σf

∂T
, i = u, d, s (4.1)

CΦ = mπ
∂Φ

∂T
, (4.2)

where

σi(B, T ) =
〈q̄iqi〉 (B, T )

〈q̄uqu〉 (0, 0)
(4.3)

is the vacuum renormalized quark condensate. The multiplication by mπ in the

susceptibilities Cf ensures a dimensionless quantity and is just a matter of conve-

nience. Likewise, the minus sign in the quark susceptibilities ensures a positive

quantity. Because of the distinct electric charge of the up (qu = 2e/3) and the down

(qd = −e/3) quarks, the pseudocritical transitions T χ
u and T χ

d are different in the

presence of a magnetic field. Thus, we define the pseudocritical temperature of the
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chiral transition as T χ
c = (T χ

u +T χ
d )/2, where T χ

u and T χ
d are, respectively, the pseudo-

critical transition temperature for u- and d-quarks. The pseudocritical temperature

of the strange quark transition T χ
s will be analyzed in Section 4.3.

We show all order parameters (σi and Φ) and respective susceptibilities (Ci and

CΦ) as a function of temperature in Fig. 4.1, for three magnetic field intensities:

eB = 0, 0.4, and 0.8 GeV2. The Magnetic Catalysis (MC) effect is clear: the mag-

netic field enhances all quark condensates at any temperature. Moreover, as the

magnetic field increases, the effect of the electric charge of each quark becomes

dominant in the MC effect. For eB = 0.4 GeV2 and T < 175 MeV, the u-quark

condensate σu is already bigger than s-quark condensate σs despite its much lower

current mass (ms/mu,d ≈ 26). As a consequence of the MC mechanism, the inflection

point of both light quark condensates moves towards higher temperatures with in-

creasing magnetic field strength, and the pseudocritical temperature for the chiral

transition increases. For a fixed temperature, the Polyakov loop decreases with B
and the pseudocritical temperature of the deconfinement transition is also shifted

to higher temperatures, which is confirmed by the location of the CΦ maximum

value in the lower panels of Fig. 4.1, for both models.

We present the pseudocritical temperatures for the different transitions in Table

4.1 and Fig. 4.2. Due to the different electric charges, the pseudocritical tempera-

tures for u- and d-quark transitions become different as B increases although a

stronger difference occurs for the PNJL model. The effective mass of the u-quark

becomes larger due to its higher electric charge, affecting the behavior of the re-

spective quark condensate, see left (right) panel of Fig. 4.1 for the PNJL (EPNJL)

model. The partial restoration of chiral symmetry in the u-sector is delayed and

the transition occurs at a higher pseudocritical temperature than in the d-sector.

As the magnetic field becomes stronger, the separation between the chiral (dashed

green line) and deconfined (dashed-dotted blue line) pseudocritical transition tem-

peratures increases, as Table 4.1 and Fig. 4.2 show. This effect is much stronger

for the PNJL model than for the EPNJL model (see Fig. 4.2). In the EPNJL model,

the entanglement interaction creates a strong correlation between the quarks and

the Polyakov loop, making both pseudocritical temperatures T χ
c and TΦ

c almost co-

incident at zero magnetic field - this mechanism will be analyzed in detail in the

next Section. Anyway, this coincidence is destroyed by the magnetic field presence.

A gap between chiral and deconfinement pseudocritical transition temperatures is

obtained, being, however, much wider in PNJL model than in the EPNJL model

(see Fig. 4.2).
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Figure 4.1: Vacuum renormalized quark condensates σi (top panel), the Polyakov

loop Φ (bottom panel), and their respective susceptibilities Ci as a function of tem-

perature, within PNJL (left) and EPNJL (right) models, for three magnetic field

strengths: eB = 0 GeV2 (red lines), eB = 0.4 GeV2 (green lines), and eB = 0.8 GeV2

(black lines)
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eB PNJL EPNJL

(GeV2) T u
c T d

c T χ
c TΦ

c T u
c T d

c T χ
c TΦ

c

0 200 200 200 171 187 187 187 184
0.2 209 208 208 172 193 193 193 187
0.4 226 224 225 174 206 205 206 195
0.6 246 242 244 178 222 221 222 204
0.8 267 257 262 182 240 237 238 214
1.0 288 271 279 186 257 252 255 224

Table 4.1: Pseudocritical temperatures in MeV for the chiral T χ
c = (T χ

u + T χ
d )/2 and

the deconfinement TΦ
c transitions, for both PNJL and EPNJL models with T0 = 210

MeV. We use T0 = 210 MeV in order to obtain TΦ
c (eB = 0) = 171 MeV as in LQCD

calculations - see Section 3.4.1.
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Figure 4.2: Pseudocritical temperatures for up quark, down quark, chiral, and de-

confinement transitions as a function of the magnetic field intensity, for PNJL (top

panel) and EPNJL (bottom panel).

In the (2+1)-flavor PNJL model, as in the two-flavor PNJL model [96–98], the

magnetic field has a smaller impact on the pseudocritical temperature of the decon-
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finement transition. As eB grows from 0 to 1 GeV2, the variation in the pseudocriti-

cal temperatures is ∆TΦ
c ≈ 15 MeV and ∆T χ

c ≈ 79 MeV. Moreover, the Polyakov loop

susceptibilities become narrower with increasing B, and eventually, for sufficiently

strong magnetic fields, a first-order phase transition might occur. A different be-

havior is obtained in the EPNJL model, where the ∆TΦ
c increases by ≈ 40 MeV,

as eB goes from 0 to 1 GeV2. Due to the entanglement interaction, the Polyakov

loop susceptibility peak is shifted towards higher temperatures together with the

Cu and Cd peaks. However, also due to the entanglement interaction, the Cu and Cd

peaks do not move to so high temperatures as in the PNJL model.

It is visible in the PNJL condensate susceptibilities Ci (left top panel of Fig. 4.1)

small peaks around the temperature of the CΦ peak location, which are induced

by the deconfinement transition [191, 202, 203]. They do not signal a chiral transi-

tion since the variation of the quark condensates (order parameters) are very small

around this temperature. A similar effect is seen in the EPNJL Polyakov loop sus-

ceptibility CΦ, but now are of the u- and d-quarks chiral transitions that induce

some bumps on the Polyakov loop close to the temperature of the Cu and Cd peaks

locations, which are visible on the right bottom panel of Fig. 4.1 for eB = 0.8 GeV2

(black lines).

To understand the magnetic field dependence of the pseudocritical temperatures

T i
c , we perform the parametrization of the crossover transition line introduced in

Refs. [62,115], which is valid for small values of the magnetic field (eB . 0.5 GeV2):

T i
c (eB)

T i
c (0)

= 1 +A

(

eB

m2
π

)α

(4.4)

The numerical values for the best-fit coefficients are given in Table 4.2. The results

show what Fig. 4.2 also reveals: the curvature for the deconfinement transition is

softer in the PNJL model than in the EPNJL model due to the entanglement inter-

action between the Polyakov loop and the chiral condensate. Besides the general

agreement of the obtained fit coefficients for the T χ
c (eB)/T χ

c (0) for both models with

the LQCD results obtained in [62], the EPNJL model is the one that has the closest

values.
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PNJL EPNJL

A α A α

T u
c (eB)/T u

c (0) 1.38 × 10−3 1.50 6.71 × 10−4 1.65

T d
c (eB)/T d

c (0) 1.20 × 10−3 1.52 5.90 × 10−4 1.68

T χ
c (eB)/T χ

c (0) 1.29 × 10−3 1.51 6.31 × 10−4 1.67

TΦ
c (eB)/TΦ

c (0) 5.87 × 10−5 1.90 4.42 × 10−4 1.61

Table 4.2: Coefficient A and exponent α of the expansion of the transition tempe-

ratures for small values of the magnetic field B [see Eq. (4.4)].

4.2 Entanglement interaction parametrization

In the present section, our aim is to deepen the comparison between the EPNJL and

PNJL models. Therefore, we continue to use T0 = 210 MeV in both models. The only

constraint we impose on the entanglement interaction parametrization, (α1, α2), is

that both chiral and deconfinement transitions are crossovers. To study how the

order parameters 〈q̄iqi〉 and Φ depend on the entanglement parametrization, we

define several sets listed in Table 4.3 that we analyze and compare. These sets

sample all the crossover region of the entanglement interaction.

4.2.1 The zero magnetic field case

In Fig 4.3 we show the vacuum normalized condensates σi, the Polyakov loop Φ, and

their susceptibilities Ci [see Eq. (4.2)] at zero magnetic field. An exact SU(2) isospin

symmetry occurs in the magnetic field absence, and thus σu = σd. The correlation

created by the entanglement interaction between the chiral and the deconfinement

transitions is clear seen in the Ci.

We recall that the pseudocritical temperatures in the PNJL are T χ
c = 200 MeV

and TΦ
c = 171 MeV, while the results for some parametrization sets that sample all

the crossover region are listed in Table 4.3. A conclusion from Table 4.3 is that

the restoration of chiral symmetry in the EPNJL model is influenced by the gauge

fields mimicked by the Polyakov loop: the deconfinement transition affects the chi-

ral transition, by decreasing the interaction responsible for the chiral symmetry

breaking Gs(Φ) [see Eq. (3.67)] and shifting the chiral symmetry restoration to

smaller temperatures; thus, bringing both transition temperatures closer to each
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other. Furthermore, the (0.45, 0.00) and (0.00, 0.50) sets are in the limit of turn-

ing the crossover transition into a first-order phase transition. This is reflected in

the susceptibility values at the pseudocritical temperatures, being these more pro-

nounced than for the (0.20, 0.20) set.

0

0.25

0.5

0.75

1

Φ
,
σ
u
,d

σu,d

Φ

0

10

20

30

C
Φ
,
C

u
,d

175 180 185 190 195

T (MeV)

(0.45, 0.00)
(0.20, 0.20)
(0.00, 0.50)

(α1, α2)

Figure 4.3: Normalized vacuum condensates σu and the Polyakov loop Φ (top panel),

and their respective susceptibilities (bottom panel), for three parametrization sets

(α1, α2).

(α1, α2) T χ
c [ MeV] TΦ

c [ MeV]

(0.45, 0.00) 184.6 184.5
(0.25, 0.10) 186.4 183.6
(0.20, 0.10) 187.3 182.1
(0.20, 0.20) 187.0 186.2
(0.10, 0.20) 188.4 184.6
(0.00, 0.50) 188.7 188.7

Table 4.3: Pseudocritical temperatures for the chiral T χ
c = (T u

c + T d
c )/2 and de-

confinement TΦ
c transitions, for several parametrization sets (α1, α2), with T0 = 210

MeV.
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We also notice that, even at zero magnetic field, the pseudocritical transition tem-

peratures are quite sensitive to the parametrization (α1, α2). They almost coin-

cide for (0.45, 0.00) and (0.00, 0.50) , but for (0.10, 0.20) and (0.20, 0.10) we obtain

∆Tc = T χ
c − TΦ

c = 3.8 MeV and ∆Tc = 5.2 MeV, respectively. Therefore, the coin-

cidence of the pseudocritical transition temperatures, the main feature of the en-

tanglement interaction [197], depends on its parametrization.

Now, we analyze within the EPNJL model, how the T0 value of the Polyakov

potential affects, in particular, the pseudocritical transition temperatures. We cal-

culate the pseudocritical temperatures T χ
c and TΦ

c as a function of T0, for three sets

of Table 4.3. The results are plotted in Fig. 4.4.
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Figure 4.4: Pseudocritical temperatures for chiral T χ
c = (T u

c + T d
c )/2 and deconfine-

ment TΦ
c transitions as a function of T0 for several sets (α1, α2).

There is a lower value of T0 (T 1st
0 ) for each set (α1, α2) that still gives a crossover

transition for both chiral and deconfinement transitions. A first-order phase tran-

sition occurs if T0 < T 1st
0 . The T 1st

0 values are: T 1st
0 = 186, 125, and 176 MeV, for

(0.45, 0.00), (0.20, 0.10), and (0.00, 0.40) sets, respectively. We see in Fig. 4.4 that

for T0 values close to T 1st
0 , the pseudocritical temperatures of both chiral and de-

confinement transitions coincide for all sets. The coincidence of the pseudocritical
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temperatures for T0 > T 1st
0 (crossover region) depends on the parametrization set.

A good coincidence is obtained for all range of T0 within the (0.45, 0.00), but a dif-

ference as large as ∆Tc ≈ 8 MeV is seen with the (0.20, 0.10) set. The PNJL model

result is also shown in Fig. 4.4, having a much larger gap ∆Tc that grows as T0

decreases.

4.2.2 The effect of an external magnetic field

Now, we are going to analyze how the magnetic field affects the pseudocritical tran-

sition temperatures and how it depends on the entanglement interaction parametriza-

tion. As we already saw, due to the different electric charges of the up (qu = 2e/3)

and down (qd = −e/3) quarks, the isospin symmetry is broken when an external

magnetic field is applied to the system, and the u- and d-quark chiral transitions do

not coincide anymore.

The pseudocritical temperatures as a function of the magnetic field B for T0 =
210 MeV (hereafter we use again T0 = 210 MeV in both models) are in Fig. 4.5, for

three sets: (0.45, 0.00), (0.20, 0.20) and (0.00, 0.35). The pseudocritical transition tem-

peratures coincide for (0.20, 0.20) and (0.00, 0.35) even with a finite magnetic field.

In the last set we obtain a first-order phase transition for eB > 0.91 GeV2, and for

lower values the coincidence on the pseudocritical transition temperatures is per-

fect. For (0.45, 0.00), unlike the other sets, the magnetic field breaks the coincidence

of the chiral and deconfinement transitions at eB ≈ 0.3 GeV2, and the deconfine-

ment pseudocritical transition temperature is less affected than the chiral pseudo-

critical transition temperature, even though the magnetic field has the same effect

for any (α1, α2) parametrization: for a given temperature, B enhances the quark

condensates and reduces the Polyakov loop value.

As a result of the charge difference between u- and d-quarks, we obtain a higher

pseudocritical transition temperature for the u- than d-quark, and this difference

grows as the magnetic field increases. This pattern was also found in the context

of the instanton-liquid model, modified by the Harrington-Shepard caloron solution

at finite T in the chiral limit [204], or in the Sakai-Sugimoto model [205].
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Figure 4.5: Pseudocritical temperatures as a function of the magnetic field for

three sets: (0.00, 0.35) (bottom panel), (0.20, 0.20) (middle panel), and (0.45, 0.00) (top

panel).

Next, we do a systematic study of the dependence of the pseudocritical tempera-

tures on the entanglement parametrization (α1, α2). First, we set α1 = α2 = α and

calculate the transition temperatures as a function of α, for three magnetic field

intensities: eB = 0, 0.4, and 0.6 GeV2. The results are in Fig. 4.6. As α increases,

the deconfinement pseudocritical temperature increases and the chiral pseudocri-

tical temperature decreases. At some critical value of α for eB = 0.4 and 0.6 GeV2,

the gap between both pseudocritical temperatures abruptly decreases before a first-

order phase transition sets in. The gray line of Fig. 4.6 indicates the region plotted

in the middle panel of Fig. 4.5, i.e., for the (0.20, 0.20) set.

The effect of varying the entanglement parametrization was already studied

in [98], using the two-flavor PNJL model with and without 8-quark interaction

term [206–208]. As in the present work, it was found the existence of a magnetic

field dependent critical value α1st, where the crossover is replaced by a first-order

phase transition. Figure 4.6 also shows that the α1st depends on B, having smaller
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values with increasing B. For α = 0 the entanglement interaction Gs(Φ) turns into

the coupling G0
s [see Eq. (3.67)], therefore, the EPNJL model reduces to the PNJL

model for α = 0. For any magnetic field strength, the EPNJL model always predicts

a smaller gap in ∆Tc = T χ
c −TΦ

c than the PNJL model. The ratio Gs(Φ)/G0
s is always

equal or smaller than one, which means that the model coupling responsible for the

chiral symmetry breaking in the PNJL model is always larger than the one in the

EPNJL model.
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Figure 4.6: Pseudocritical temperatures for chiral T χ
c and deconfinement TΦ

c tran-

sitions (top panel), and T i
c , with i = u, d,Φ, (bottom panel) as a function of (α, α), for

eB = 0, 0.4 and, 0.6 GeV2. The gray line is the case plotted in the middle panel of

the Fig. 4.5

Now, we set α1 = 0 or α2 = 0, and calculate the pseudocritical transition tempe-

ratures as a function of (0, α2) and (α1, 0), respectively. With α1 = 0 or α2 = 0, the

functional form of the entanglement interaction [see Eq. (3.67)] becomes G(Φ) ∝
α2Φ3 or G(Φ) ∝ α1Φ

2, respectively. The results are in Fig. 4.7 and show two main

differences:

• the α1st
1 grows with increasing B for (α1, 0) (left panel of Fig. 4.7). The tran-

sition remains a crossover at any magnetic field strength if we use an α1 that

gives a crossover transition at B = 0 (i.e., α1 < α1st
1 for B = 0). Nevertheless,
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some (α1, 0) parametrizations allow a first-order phase transition for low B,

while a crossover is obtained for higher values of B. The α1st
2 has the opposite

behavior in the (0, α2) case (right panel of Fig. 4.7): it is possible to select a

(0, α2) set where a crossover is obtained at B = 0, but a first-order phase tran-

sition emerges when B increases. This behavior is qualitatively similar to the

one found for (α, α) in Fig. 4.6;

• the gap ∆Tc decreases as α1 or α2 increase for a fixed B. While the TΦ
c smoothly

increases as α1 grows for (α1, 0) (left panel of Fig. 4.7), the T χ
c has a sudden

change at α1 values near the critical value α1st
1 and then follows the TΦ

c behav-

ior. The opposite happens in the (0, α2) case: at some α2 values the TΦ
c shows

a sudden increase and then it follows the T χ
c behavior (right panel of Fig. 4.7).

0.6 GeV2 (α1, 0)

0.4 GeV2

eB = 0

180

200

220

240

T
c
(M

eV
)

Tχ
c

TΦ
c

180

200

220

240

T
c
(M

eV
)

0 0.1 0.2 0.3 0.4 0.5 0.6
α1

Tu
c

T d
c

TΦ
c

0.6 GeV2

0.4 GeV2

eB = 0

(0, α2)

180

200

220

240

T
c
(M

eV
)

Tχ
c

TΦ
c

180

200

220

240

T
c
(M

eV
)

0 0.1 0.2 0.3 0.4 0.5
α2

Tu
c

T d
c

TΦ
c

Figure 4.7: Pseudocritical temperatures for chiral T χ
c and deconfinement TΦ

c tran-

sitions (top panels), and T i
c , with i = u, d,Φ, (bottom panels) as a function of (0, α2)

(right panels) and (α1, 0) (left panels), for eB = 0, 0.4, and 0.6 GeV2. The gray lines

are the cases plotted in the top and bottom panels of the Fig. 4.5 for (0.45, 0.00) and

(0.00, 0.35) sets, respectively.

The gray lines in both panels of Fig. 4.7 represent the (0.45, 0.00) and (0.00, 0.35)
parametrization sets discussed in Fig. 4.5. Their behavior becomes now clear: we

are close to a first-order phase transition for (0.45, 0.00) at low B (upper panel of

Fig. 4.5); however, the α1st
1 grows with increasing B and we are moving into the

crossover region where a ∆Tc gap emerges. Because at B = 0 we are already close
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to the α1st
2 for (0.00, 0.35) (bottom panel of Fig. 4.5), there is no ∆Tc gap at low B and

a first-order phase transition takes place for eB > 0.91 GeV2 (when α1st < 0.35).

4.2.3 Thermodynamics

In the following, we study the behavior of several thermodynamical quantities in

the presence of an external magnetic field. The dependence of these quantities on

the entanglement interaction parametrization is discussed.

Because we want to study how the entanglement parametrization affects the

thermodynamical quantities for fixed values of B, we normalize the thermodynam-

ical potential as follows

ΩR(B, T ) = Ω(B, T ) − Ω(B, 0), (4.5)

where Ω(B, T ) is given by Eq. (3.64). Herein, we only analyze the zero baryonic

chemical potential (µB = 0) case. Therefore, the thermodynamical quantities van-

ish at zero temperature for any B strength, i.e., ΩR(B, T = 0) = 0.

From the thermodynamic potential ΩR(B, T ) one can derive some important

thermodynamic observables, which can be calculated in lattice QCD. The pressure

P (B, T ) is given by

P (B, T ) = −ΩR(B, T ), (4.6)

the entropy density S by

S(B, T ) =

(

∂P

∂T

)

µ

, (4.7)

and from the following fundamental relation of thermodynamics, at zero baryonic

chemical potential, we can calculate the energy density E as

E(B, T ) = TS(B, T ) − P (B, T ). (4.8)

The interaction measure is defined as

∆(B, T ) =
E − 3P

T 4
, (4.9)

which quantifies the deviation from the equation of state of an ideal gas of mass-

less constituents. LQCD studies show that the interaction measure remains large

even at very high temperatures, where the Stefan–Boltzmann (SB) limit is not yet

reached, and thus some interactions must still be present.
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The speed of sound squared

v2
s(B, T ) =

(

∂P

∂E

)

V

, (4.10)

and the specific heat

CV (B, T ) =

(

∂E

∂T

)

V

, (4.11)

are important quantities that have also been calculated in LQCD.

For several entanglement parametrizations and the PNJL model, we plot in

Fig. 4.8 the scaled pressure P/T 4, scaled energy density E/T 4, and interaction mea-

sure ∆ as a function of temperature, for three magnetic field strengths: B = 0;

eB = 0.27 GeV2, being this value an estimation of the maximal magnetic field

strength for the LHC [54]; and 0.6 GeV2, an already very high magnetic field.

Due to the crossover nature of both the chiral and the deconfinement transitions,

the pressure, the energy density, and the interaction measure are continuous func-

tions of the temperature. We observe a similar behavior for the three parametriza-

tions of the EPNJL model: a sharp increase in the vicinity of the pseudocritical

transition temperature and then a tendency to saturate at the corresponding ideal

gas limit. The sharp increase in the PNJL model occurs at lower temperatures than

the corresponding effect in the EPNJL model due to the difference in the pseudo-

critical deconfinement transition temperature given by both models: TΦ
c = 171 MeV

in the PNJL model and TΦ
c = 182 − 189 MeV in the EPNJL (see Table 4.3). The

energy density sharply rises above the pseudocritical transition temperature in the

EPNJL. In the PNJL model, at eB = 0.6 GeV2, the energy density shows two bumps

corresponding to deconfinement and chiral transitions that are TΦ
c = 178 MeV and

T χ
c = 244 MeV (Fig. 4.8), respectively.

The EPNJL model has a much stronger crossover transition than the PNJL

model due to the entanglement interaction. The parametrization set (0.45, 0.00)
has the sharpest crossover transition. Instead, as the magnetic field increases, the

PNJL model shows a much softer and broader crossover transition due to the in-

creasing difference between the pseudocritical temperatures of deconfinement and

chiral transitions.
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Figure 4.8: The scaled energy density E/T 4 (top panel), the interaction measure

∆(T ) = (E − 3P )/T 4 (middle panel), and the scaled pressure P/T 4 (bottom panel)

as a function of temperature, for three magnetic field strengths: 0 (left panel), 0.27
(center panel), and 0.6 GeV2 (right panel) in both PNJL and EPNL models.

Figure 4.9 shows the scaled specific heat CV /T
3 and the speed of sound squared

v2
s as a function of the temperature, also for eB = 0, 0.27, and 0.6 GeV2. At high

temperatures a common limit is obtained for the two observables in both models.

This was expected since both models have the same number of degrees of freedom.

The specific heat increases strongly near the pseudocritical transition temperature

at B = 0, being much higher in the EPNJL model. Once more we see that the

PNJL model shows two peaks in CV at any B, caused by the distinct chiral and

deconfinement pseudocritical transitions temperatures. The first peak is due to the

deconfinement and the second to the chiral transition. The speed of sound squared

v2
s passes through a local minimum around the deconfinement pseudocritical tem-

perature, and then reaches the limit of 1/3 (SB limit) at high temperatures. This

minimum signals a fast change in the quark masses for both EPNJL and PNJL

models. The pattern of local minimum shown by v2
s as a function of the magnetic

field is related to the pseudocritical temperatures at which both transitions occur,

as in the case of the peaks of CV /T
3. Both models approach the SB limit for tempe-

ratures lower than 230 MeV for eB = 0 and eB = 0.27 GeV2 (left and middle panel

of Fig. 4.9), but for eB = 0.6 GeV2 (right panel of Fig. 4.9) the PNJL model is still

far from the SB limit because the chiral pseudocritical transition temperature only
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occurs at 244 MeV, while for the EPNJL model it occurs already for 222 MeV (see

Table 4.1).
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Figure 4.9: The scaled specific heat CV /T
3 (top panel) and speed of sound squared

v2
s (bottom panel) as a function of temperature, for three magnetic field strengths: 0

(left panel), 0.27 (center panel) and 0.6 GeV2 (right panel) in both PNJL and EPNJL

models.

It is interesting to look at each entanglement parametrization separately. For

(0.45, 0.00), we know (top panel of Fig. 4.5) that TΦ
c and T χ

c coincide at low B but

not at high B. This is also reflected in the quantities CV /T
3 and v2

s : at B = 0 the

(0.45, 0.00) parametrization has the maximum CV /T
3 among all the parametriza-

tions, but it decreases as we increase B; at 0.6 GeV2, aside from having the lowest

value, it has the broadest peak, signaling the increasing ∆Tc gap with B. The

(0.00, 0.35) parametrization has the lowest CV /T
3 peak at B = 0, but the highest at

eB = 0.6 GeV2, showing that the parametrization keeps the ∆Tc gap close to zero

at any magnetic field strength (see middle panel of Fig. 4.5), and with increas-

ing B the first-order phase transitions becomes closer. At last, for the (0.20, 0.20)
parametrization, the maximum value of CV /T

3 increases slightly with B. Looking

at Fig. 4.6, we see that at eB = 0.6 GeV2 we have α1st > 0.20, i.e., we are in the

crossover region for magnetic fields up to 0.6 GeV2.

To elucidate the relation between both the chiral and the deconfinement transi-

tions and the induced bumps on the thermodynamic observables, we show in Fig.

4.10 for the PNJL model the scaled specific heat CV /T
3 for several B values as a

function of temperature that is normalized by: the deconfinement pseudocritical

transition temperature TΦ
c (top panel), the down quark pseudocritical transition
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temperature T d
c (middle panel), and the up quark pseudocritical transition tem-

perature T u
c (bottom panel). In the top panel of Fig. 4.10 we clearly see that the

first peak location is exactly at the pseudocritical transition temperature of decon-

finement for any B value. Since we have defined the pseudocritical temperature of

deconfinement as the inflection point of the Polyakov loop, we realize that a pseudo-

critical temperature defined as the first peak location of CV /T
3 would give exactly

the same TΦ
c . Despite the small difference of T d

c − T u
c for low B values, it increases

with B (middle and bottom panels of Fig. 4.10), and at eB = 1.0 GeV2 a two bump

structure already appeared, being the first bump induced by the chiral transition

of the d-quark and the second by the u-quark. The bump structure of the speed of

sound squared v2
s would lead to the same conclusions.
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Figure 4.10: The scaled specific heat CV /T
3 for several B values as a function of

temperature that is renormalized by: the deconfinement pseudocritical transition

temperature TΦ
c (top panel), the d-quark pseudocritical transition temperature T d

c

(middle panel), and the u-quark pseudocritical transition temperature T u
c (bottom

panel)
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4.3 The strange quark transition

The enhancement in strangeness production is one possible signature of the QGP

formation [45]. Thus, the production of strange particles, like strange mesons and

baryons, can be used to study the features of QGP. Not only the strange quarks are

the easiest quarks to produce after the up and down quarks, but particles with non-

zero strange quarks can only be produced in the collision process (strange quarks

are absent from the original colliding nuclei). Therefore, the physics related to the

strange quarks can give us important information about the properties of the QGP

phase.

In the present section, we investigate the effect of the magnetic field on the

strange quark chiral transition. As we have mentioned in the introduction of the

present Chapter, several features of the QCD phase structure, e.g., the nature of

the chiral phase transition in the chiral limit (see Fig. 1.3 in Chapter 1), depend on

the current strange quark mass and also on the ’t Hooft coupling strength. There-

fore, we analyze the impact of the ’t Hooft coupling K and strange current quark

mass ms on the quark condensates and on their respective pseudocritical transition

temperatures, in the presence of an external magnetic field.

Let us first analyze the order parameters within the complete PNJL model, in-

cluding the ’t Hooft term. In Fig. 4.11 the normalized quark condensates, σi =
〈q̄iqi〉(B, T )/〈q̄uqu〉(0, 0), and their respective susceptibilities, Ci = −mπ∂σi/∂T , are

plotted for three magnetic field strengths.

As we have seen, the quark condensates are enhanced by the presence of the

magnetic field. Due to the quark electric charge difference, the up quark conden-

sate σu is larger than the strange quark condensate σs for eB = 0.8 GeV2, even

though the larger current mass of the strange quark (ms = 140.7 MeV) compared

with the up quark (mu = 5.5 MeV). The first peaks in the susceptibilities at low tem-

peratures are induced by the deconfinement transition, i.e., by the rapid change of

the Polyakov loop with temperature that signals the deconfinement transition (see

Section 4.1). As also pointed out in Section 4.1, the deconfinement transition is

quite insensitive to the presence of the magnetic field when compared with the chi-

ral transition. A pseudocritical temperature for the strange quark transition can

be defined through the third inflection point of its susceptibility. Despite not being

as noticeable as the first two Cs inflection points, which are originated by the de-

confinement and the up/down chiral transitions, a third inflection point is present

at T ≈ 250 MeV for eB up to ≈ 0.4 GeV2, as we will analyze in the following.



58 CHAPTER 4. MAGNETIZED HOT QUARK MATTER

0

0.5

1

1.5

2

σ
i

σu

σd

σs

0

2.5

5

7.5

C
i

150 175 200 225 250 275 300

T [MeV]

eB = 0.0

0.4

0.8

Figure 4.11: The quark condensates (top panel) and their susceptibilities (bottom

panel) as a function of temperature, for three magnetic field strengths: eB = 0, 0.4,

and 0.8 GeV2.
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4.3.1 The impact of the ’t Hooft term

In order to analyze the impact of the ’t Hooft term on the pseudocritical transition

temperatures as a function of the magnetic field strength, we consider two cases:

the PNJL model with (K 6= 0) and without (K = 0) the ’t Hooft term. The results

are shown in Fig. 4.12, where we have used the following two criteria to calculate

the pseudocritical temperatures.

Criterion I: the temperature T i
c at which the inflection point of the quark conden-

sate 〈q̄iqi〉 occurs (which is the definition that we have been using):

∂2〈q̄iqi〉(B, T )

∂T 2

∣

∣

∣

∣

∣

T =T i
c

= 0;

Criterion II: the temperature T i
c at which the quark condensate is half of its zero

temperature value 〈q̄iqi〉(B, 0):

〈q̄iqi〉(B, T i
c ) = 0.5〈q̄iqi〉(B, 0).

Using the first criterion (solid lines) for the K 6= 0 case (top panel of Fig. 4.12),

the pseudocritical temperature for the strange quark can only be determined up

to some maximum B value. For larger B values, the chiral transition for the u-

and d-quarks washes out the strange quark transition, and the inflection point

of the strange quark condensate, which defines the pseudocritical temperature of

the strange quark transition, cannot be defined anymore. This can be overcome if

the second criterion (dashed lines) is used. A similar behavior is obtained for the

s-quark using the second criterion, but with lower pseudocritical transition tem-

peratures. We also notice from the top panel of Fig. 4.12 that the pseudocritical

transition temperatures for the light quarks increase faster with B than for the

s-quark. In fact, the pseudocritical strange transition temperature is almost in-

sensitive to the magnetic field strength up to eB ≈ 0.4 GeV2, mainly due to its

larger effective mass. Another interesting aspect is the increasing split between

the pseudocritical temperatures at which chiral and deconfinement transitions oc-

cur for the light quarks. This particular feature was already found in the context

of the linear sigma model coupled to quarks and to the Polyakov loop in [109]. The

Sakai-Sugimoto model also predicts a similar behavior [205].
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Figure 4.12: The pseudocritical temperatures T i
c as a function of B for K 6= 0 (top

panel) and K = 0 (bottom panel) using two criteria: the peak of the susceptibilities

(solid lines) and half the vacuum value of the order parameters (dashed lines).

When we compare theK = 0 case (bottom panel of Fig. 4.12) with the K 6= 0 case

(top panel of Fig. 4.12), some important features should be pointed out concerning

the light quark sector. For K = 0 we have:

• For low B values, smaller chiral pseudocritical transition temperatures are

obtained, and the difference T u
c − T d

c increases faster with B;

• For low B values (eB . 0.2 GeV2), using the second criterion (dashed lines),

the deconfinement pseudocritical transition temperature is higher than the

chiral pseudocritical transition temperature, as obtained in LQCD calcula-

tions [26,209];

• The gap between the chiral and deconfinement pseudocritical transitions tem-

peratures is quite small for low B. When we turn on the ’t Hooft term, the

light chiral transition is pushed to higher temperature values due to the mix-

ing with the strange quark transition. We conclude that the chiral transitions

are strongly correlated due to the ’t Hooft term, and some features of the

QCD phase diagram are precisely defined by this term, e.g., the location of the

CEP [169,188].
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Furthermore, we also notice that the strange quark transition is almost insensitive

to the presence of the mixing term K: for both cases, K = 0 and K 6= 0, the strange

pseudocritical transition temperature remains almost unchanged (see Fig. 4.12).

In order to understand how the magnetic field affects the strange quark and its

pseudocritical transition temperature, it is important to figure out the impact of

the chiral restoration of the light sector on its behavior. In Figs. 4.13 and 4.14 we

calculate, respectively, for K 6= 0 and K = 0: the strange quark susceptibilities Cs

(top panel), the derivative of the susceptibilities mπdCs/dT (middle panel), and the

susceptibilities of the light quarks Cu,d (bottom panel) for several values of B. For

the K 6= 0 case (Fig. 4.13), the strange quark transition is more strongly influenced

by the chiral restoration of the light sector than for the K = 0 case (Fig. 4.14). Due

to the mixing flavor effect of the ’t Hooft term (see the gap equations [Eq. (3.12)] the

most pronounced peak in the strange quark susceptibility Cs for K 6= 0 is originated

by the chiral transition of the up and down quarks (see upper and bottom panels of

Fig. 4.13).

The strange quark transition is reflected in the last inflection point of Cs. We

see that this inflection point disappears for eB = 0.6 GeV2 (middle panel of Fig.

4.13), being washed out by the transition of the light quarks. With no Hooft term

(K = 0), there is no flavor mixing in the gap equations, and therefore the pseu-

docritical temperature of the strange quark transition is clearly identified on its

susceptibility. Although some bumps still appear in the derivative of the Cs due to

the light quarks, their intensity is much weaker than the transition of the strange

quark itself. The absence of flavor mixing effect is confirmed in the bottom panel

of Fig. 4.14, where no direct coupling between the u- and d-quarks is seen as the

magnetic field increases, contrarily to what happens in the K 6= 0 case (see bottom

panel of Fig. 4.13).

4.3.2 The impact of the current strange quark mass

As we have seen in the last Section, due to its larger current mass (ms/mu,d ≈ 26),

the transition to the partially restored region for the strange quark has a different

behavior when compared with the light quarks. For low magnetic field strengths,

its pseudocritical temperature does not change much when compared with the light

quarks. As expected, the restoration of the chiral symmetry will depend not only

on the quark electric charges, but also on their current quark masses. Effects of the

magnetic field become noticeable when B becomes of the order of the quark mass

squared.
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Figure 4.13: The strange quark susceptibilities Cs (top panel), mπdCs/dT (middle

panel), and the up (solid lines) and down (dashed lines) quarks susceptibilities Cu,d

as a function of B with the ’t Hooft term.
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Next, we analyze how the restoration of the chiral symmetry depends on the

strange quark current mass ms value, keeping mu,d = 5.5 MeV fixed. This depen-

dence was already investigated in both NJL and PNJL models at zero magnetic

field [191,201]. In this section the PNJL model with ’t Hooft term (K = 12.36/Λ5) is

used.

Let us start by analyzing the impact of the current mass of the strange quark on

the quark condensates. The renormalized quark condensates are plotted as func-

tion of temperature in Fig. 4.15 for eB = 0.1 GeV2 (top panel) and 0.5 GeV2 (bottom

panel), using three values of strange current mass: ms = mu,d = 5.5 MeV (red lines),

40 MeV (black lines), and 140.7 MeV (green lines). The three quarks form an isospin

triplet for ms = mu,d that is broken by the magnetic field presence. Therefore, the

differences in the condensates are only induced by the electric charge difference of

each quark, having the σu the highest absolute value (|qu| = 2e/3), and both σd and

σs the lowest (|qd,s| = e/3). The effect of the charge is always present independently

of the quark masses.
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Figure 4.15: The quark condensates as a function of temperature with ms = mu,d =
5.5 MeV (red lines), ms = 40 MeV (black lines), and ms = 140.7 MeV (green lines),

for eB = 0.1 GeV2 (top panel) and 0.5 GeV2 (bottom panel).
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The degeneracy of σd and σs is lifted when we set mu,d 6= ms, i.e., for ms = 40
and 140.7 MeV. We see that for a low magnetic field strength, 0.1 GeV2 (top panel of

Fig. 4.15), with ms = mu,d (red), the up quark condensate has the highest value at

any temperature due to its electric charge. However, if ms = 40 (black line) or 140.7
MeV (green line), the strange quark condensate has the highest value. If ms is of

the order of mu,d, the MC effect is mainly determined by the quark electric charge

at low B, and it gets weaker with increasing ms. As the strange current quark mass

increases, the restoration of chiral symmetry in the light sector is pushed to higher

temperatures due to the flavor mixing induced by the ’t Hooft term. For larger

magnetic fields, e.g. 0.5 GeV2 (bottom panel of Fig. 4.15), and low temperatures,

the up and down quark condensates are not much affected by the ms value. At low

temperatures, the effect of the quark electric charge in MC predominates over the

effect of the strange current quark mass.

In Fig. 4.16, we fix the ms value to its physical current mass of 140.7 MeV,

and calculate the quark condensates (top panel) and masses (bottom panel) as a

function of B, for three temperatures: 190 (solid lines), 240 (dashed lines), and 270
MeV (dashed-dotted lines).

100

200

300

−
〈q̄
q〉

1
/
3
[M

eV
]

T = 190 MeV
T = 240
T = 270

0

200

400

600

M
i
[M

eV
]

0 0.2 0.4 0.6 0.8 1

eB [GeV2]

T = 190 MeV
T = 240
T = 270

Figure 4.16: The quark condensates (top panel) and masses (bottom panel) of the

strange (black lines), up (red lines), and down (blues) quarks as a function of B, for

three temperatures (ms = 140.7 MeV).
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The distinct behavior between both sectors is clear: at lowB and for both T = 240
and 270 MeV, the light quarks are in a restored chiral phase, but for higher value of

B, the magnetic field drives the light quarks into a chiral broken phase, manifested

in the sudden increase of the condensate values. This occurs for larger values of B
and temperature. The values of the strange quark condensate and mass are high

for all the calculated B range, and for the three temperatures. Although it is dif-

ficult to define the chiral restored/broken phase for the strange quark, a similar

behavior can be noticed when compared with the light sector, mainly by the quark

masses at T = 240 and 270 MeV (bottom panel of Fig. 4.16): the strange quark con-

densate increases slightly for low B , and there is a steeper increase of the masses

at some B value.

Next, we perform the same calculation as we did in Fig. 4.16, but now for three

ms values: 5.5 MeV (bottom panel), 40 MeV (middle panel), and 140.7 MeV (top

panel). The result is in Fig. 4.17. In the bottom panel we have three degenerate

quark masses and, as we mention before, the differences between the different fla-

vors are only due to the quark electric charge. As ms increases, in the center and

top left panels of Fig. 4.17, the strange quark condensate gets less affected by B,

reflecting its higher constituent mass and the consequent shift of the chiral restora-

tion to larger temperatures. As it can be seen on the right panel of Fig. 4.17, the

light sector also feels the change in ms. This is more clearly seen for T = 190 MeV

(solid lines): the condensates are softened with increasing ms. As we increase the

ms value, due to the flavor mixing, not only the pseudocritical transition tempera-

ture of the strange quark increases, but also the transition of the light quarks is

shifted to larger temperatures.
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Figure 4.17: The strange quark condensate (black) on the left panel, and up (red)

and down (blue) quark condensates on right panel as a function of B, for three

temperatures and three current strange quark mass values: 140.7 MeV (top panels),

40 MeV (middle panels), and 5.5 MeV (bottom panels).

Next, we calculate the pseudocritical temperatures as a function of B for two

cases: an intermediate case between the light and heavy quark sectors, ms = 40
MeV (top panel), and an extreme heavy case, ms = 300 MeV (bottom panel). The

result is presented in Fig. 4.18. Two main conclusions can be drawn:

• for ms = 40 MeV and at high magnetic fields (eB > 0.3 GeV2), the transition

of the strange quark occurs at the same pseudocritical temperature as the

down quark. This indicates that for a sufficiently high magnetic field, because

the current quark masses of all quarks are not too different, the pseudocriti-

cal temperatures at which the chiral symmetry restoration occur are mainly

determined by the quark electric charge;



68 CHAPTER 4. MAGNETIZED HOT QUARK MATTER

• for ms = 300 MeV, the pseudocritical temperature of the strange quark does

not change much with the magnetic field due to its very large mass.

Although the MC affects all quarks, the light sector shows an increase of the pseu-

docritical temperature with the magnetic field, while the strange sector is almost

insensitive at low magnetic fields, and increases only slightly for high magnetic

fields.
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Figure 4.18: The pseudocritical temperatures as a function of B for two current

quark mass values: ms = 40 MeV (top panel) and ms = 300 MeV (bottom panel).
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4.4 Conclusions

We have seen that an external magnetic field catalyzes the chiral symmetry break-

ing, effect known as Magnetic Catalysis (MC), in both the PNJL and the EPNJL

models: the magnetic field strengthens the quark condensates. The enhancement of

the quark condensates, due to the MC effect, occurs at any temperature, leading to

an increase pseudocritical temperature as a function of the magnetic field strength.

The effect of the electric charge of each quark becomes dominant as the magnetic

field increases, which is manifested in the increasing gap between the up and down

quark chiral pseudocritical transition temperatures with B. The Polyakov loop de-

creases with B for a fixed temperature, and the pseudocritical temperature of the

deconfinement transition is also shifted to higher temperatures in both models.

The entanglement interaction generates a strong correlation between the quark

condensates and the Polyakov loop, turning the gap between the pseudocritical tem-

peratures of the chiral and the deconfinement transitions smaller in the EPNJL

model. A systematic study of the dependence of the pseudocritical temperatures

on the entanglement parametrization (α1, α2) was performed. Even in the pres-

ence of a magnetic field, the coincidence of both pseudocritical temperatures can be

realized with a proper parametrization.

The pattern of local minimum shown by some thermodynamical quantities, such

as the speed of sound squared v2
s and the scaled specific heat CV /T

3, are related to

the pseudocritical temperatures at which both, chiral and deconfinement, transi-

tions occur. Due to the chiral restoration of the light quarks at lower temperatures,

the strange quark transition, which happens at higher temperatures, is not notice-

able in the thermodynamical quantities.

The impact of the ’t Hooft term and the current strange quark mass in the

strange quark transition was also studied. Without the ’t Hooft term there is no

flavor mixing in the EPNJL/PNJL model gap equations. While the light quarks are

affected by the flavor mixing, the strange quark is almost insensitive to its pres-

ence, even in the presence of an external magnetic field. This feature is related to

its higher current mass ms, when compared with the masses of the light quarks.





Chapter 5

(E)PNJL model versus LQCD

results

In the previous Chapter, we saw that the chiral pseudocritical transition tempera-

ture increases with the magnetic field strength in both EPNJL and PNJL models,

just as in almost all effective models and some older LQCD studies [62]. This be-

havior arises from the Magnetic Catalysis (MC) mechanism: the magnetic field

enhances the quark condensates at any temperature, leading to an increase of the

pseudocritical transition temperature with B. The strength of the MC depends on

the quark flavor due to the electric charge difference.

However, the most recent LQCD results show the inverse mechanism, the so-

called Inverse Magnetic Catalysis (IMC), where the quark condensate has a non-

monotonic behavior with B for temperatures around the pseudocritical transition

temperature region [57, 60]. Instead of enhancing, the magnetic field suppresses

the quark condensates near the pseudocritical transition temperature, giving them

a non-monotonic behavior as a function of B. Thus, a decreasing dependence of

the chiral pseudocritical transition temperature on the magnetic field was obtained

[57,60].

In the present Chapter, we compare both (E)PNJL models with the LQCD re-

sults [57,60], and confirm that the models do not reproduce IMC.

5.1 Behavior of the quark condensates

At zero temperature, the Polyakov loop is zero and all three NJL, PNJL, and EP-

NJL models coincide. In order to compare the models with the LQCD results, we

define, according to [60], the change of the quark condensate due to the magnetic
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field as

∆Σf (B, T ) = Σf(B, T ) − Σf (0, T ), (5.1)

with

Σf(B, T ) =
2Mf

m2
πf

2
π

[〈q̄fqf 〉 (B, T ) − 〈q̄fqf〉 (0, 0)] + 1, (5.2)

where m2
π is the vacuum pion mass (mπ = 135 MeV), and f 2

π the pion decay constant

(fπ = 87.9 MeV) of the NJL model in the chiral limit.

We compare the change of the PNJL renormalized condensate ∆(Σu + Σd)/2 at

zero temperature with LQCD results [60] in the top panel of Fig. 5.1. Our results

agree quantitatively well, and even at eB = 1 GeV2 the discrepancy is only ∼ 10 %,

which is much smaller than the prediction of chiral perturbation theory and two-

flavor PNJL model (see Ref. [60]). As expected, we obtain a quadratic dependence

of ∆(Σu + Σd)/2 on B for small fields (eB < m2
π), and a linear dependence for higher

fields (eB ≫ m2
π) [143].

Figure 5.1: ∆(Σu + Σd)/2 as a function of B at zero temperature for PNJL and

LQCD results [60] (top panel), and within PNJL for several temperatures (in MeV)

close to the pseudocritical temperatures (bottom panel): TΦ
c (B = 0) = 171 MeV for

deconfinement and T χ
c (B = 0) = 200 MeV for chiral transitions (see Table 4.1).

Using the PNJL model, we plot the change of average light quark condensate

∆(Σu + Σd)/2 as a function of the magnetic field intensity for several tempera-
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tures in bottom panel of Fig. 5.1. We see that ∆(Σu + Σd)/2 increases with B
for T < T χ

c (B = 0) due to the MC effect, being its value greater at higher tempe-

ratures. When T > T χ
c (B = 0) we are in the region where the partial restoration

of chiral symmetry already took place, where two competitive effects are present:

partial restoration of chiral symmetry and MC. The former effect prevails at lower

values of B, making the quark condensate approximately zero. The latter effect be-

comes dominant as the magnetic field increases and the quark condensate becomes

nonzero. As an example, let us take the T = 270 MeV case (purple line): since

T = 270 MeV is larger than T χ
c (B = 0), the quark condensate is approximately zero

already for small values of B and starts to increase around eB = 0.6 GeV2, which

is a strong enough magnetic field to counterbalance the effect of the restoration of

chiral symmetry. Therefore, the quark matter, which in the absence of a magnetic

field was in a chiral restored phase, is forced by B into a broken chiral phase again.

The EPNJL model results are qualitatively similar to PNJL model ones. How-

ever, it is important to remember some new features of the EPNJL model. As

already mentioned, the coincidence that exists between the deconfinement and chi-

ral pseudocritical transition temperatures at B = 0 (see Table 4.1 of Section 4.1)

is destroyed by the presence of an external magnetic field. When compared with

PNJL, the effect of the entanglement interaction (EPNJL model) is seen on the

larger (smaller) increase of TΦ
c (T χ

c ), as already discussed in the previous Chapter.

The values of light quark condensate sum (Σu + Σd)/2 and difference (Σu − Σd)
at zero temperature as functions of B from LQCD [60] and PNJL model (the NJL,

PNJL, and EPNJL models coincide at zero temperature) are in Table 5.1. Both the

average and the difference of light condensates are in good agreement with LQCD

results, especially at low magnetic fields. However, a significant difference between

PNJL and LQCD calculations occurs for larger values of B, with the LQCD predict-

ing a larger difference between both condensates. This means that the effect due to

the different electric charge of each quark is stronger in the LQCD calculations [60].

At zero temperature the model predictions agree qualitatively and, to some ex-

tent, quantitatively with LQCD results [57,60]. But when one compares the bottom

panel of Fig. 5.1 with Fig. 5.2 (taken from [60]), an absent feature from our results

shows up: there is no suppression of the quark condensate near the pseudocriti-

cal temperature. Instead, the quark condensate is enhanced at any temperature

by the magnetic field. Therefore, the model does not reproduce the non-monotonic

behavior of the condensates with B near the pseudocritical transition temperature

seen in LQCD results [57,60].
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T = 0
eB = 0 eB = 0.2 GeV2 eB = 0.4 GeV2

+/2 − +/2 − +/2 −
(E)PNJL 1 0 1.11 0.08 1.32 0.23

Latt. [60] 1 0 1.14(2) 0.09(2) 1.37(2) 0.28(2)

T = 0
eB = 0.6 GeV2 eB = 0.8 GeV2 eB = 1.0 GeV2

+/2 − +/2 − +/2 −
(E)PNJL 1.55 0.40 1.79 0.58 2.02 0.76

Latt. [60] 1.63(3) 0.47(3) 1.90(3) 0.67(3) 2.16(3) 0.87(3)

Table 5.1: The average light quark condensate (Σu + Σd)/2 and the difference

(Σu − Σd) for the (E)PNJL models together with the continuum extrapolated lat-

tice results at zero temperature [60].

Figure 5.2: The LQCD results for the average light quark condensate as a function

of B for several temperatures. The figure was taken from [60].
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To compare the average (Σu + Σd)/2 and difference (Σu − Σd) of the light quark

condensates at finite temperature with LQCD, we need to remove, somehow, the

IMC effect from LQCD results. For that, we calculate the quark condensate av-

erage and difference as a function of renormalized temperatures T/T χ
c (eB). The

average (top panel) and the difference (bottom panel) between light quark conden-

sates are plotted in Fig. 5.3 as a function of T/T χ
c (eB), for several values of B, for

the PNJL model (dashed lines), the EPNJL model (full lines), and also the LQCD

results [57,60].
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Figure 5.3: Light quark condensate average (top panel) and the light quark conden-

sate difference (bottom panel) together with the LQCD results [57,60] as a function

of temperature (renormalized by T χ
c (B)) for several values of eB (in GeV2).

The model results for (Σu +Σd)/2 in top panel of Fig. 5.3 show that, in general, both

PNJL and EPNJL models have the same behavior as LQCD results, except for a too

fast drop at the respective pseudocritical transition temperatures. A stronger MC

effect on u-quark at finite temperatures due to its larger electric charge is clear from

bottom panel of Fig. 5.3: the larger the magnetic field, the larger the difference be-

tween up and down quark condensates, and also the respective chiral pseudocritical

transition temperatures (see Table 4.1). This feature is particularly strong close to

the pseudocritical transition temperature, where curves for stronger fields have a

larger bump. This behavior was already found in [204], where the authors use the

instanton-liquid model, modified by the Harrington-Shepard caloron solution at fi-
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nite temperature, to investigate the chiral restoration in the presence of a strong

external magnetic field. Above the chiral pseudocritical transition temperature T χ
c ,

the quark masses are smaller due to partial restoration of chiral symmetry, pre-

vailing this effect over the MC effect. For these temperatures the u- and d-quark

condensate difference is small.

In order to understand the bumps that appear in Σu −Σd near the pseudocritical

transition temperature for both PNJL and EPNJL model (see bottom panel of Fig.

5.3), we remove the temperature renormalization and show in Fig. 5.4 the i-quark

condensate Σi, the difference Σu −Σd, and the susceptibilities of Σi, for eB = 0.4 (left

panel) and eB = 0.8 GeV2 (right panel), in both PNJL (blue) and EPNJL (black)

models.

Figure 5.4: The quark condensates Σi (top panels), the difference between the u-

and d-quark condensates Σu − Σd (center panels), and the quark condensates Σi

susceptibilities (bottom panels) as a function of temperature for the PNJL (blue)

and the EPNJL (black), for two magnetic field strengths: eB = 0.4 GeV2 (left) and

eB = 0.8 GeV2 (right).
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The appearance of these bumps are due to the change of susceptibilities behav-

ior, which is clearer for eB = 0.8 GeV2. The vertical gray lines indicate the tem-

perature at which the Σu − Σd takes its maximum value. For temperatures be-

low this value we have |dΣd/dT | > |dΣu/dT |, and above the opposite happens, i.e.,

|dΣd/dT | < |dΣu/dT |. Due to the charge difference, the MC is stronger for u- than

d-quarks, therefore: the decrease of the d-quark condensate with temperature is

faster at lower temperatures because the partial restoration of chiral symmetry in

the up sector is delayed; and at temperatures near the transition temperature re-

gion, the Σu must decrease with temperature faster than the Σd. Thus, the Σu − Σd

remains constant at low temperatures, then it increases up to a value below the

down quark chiral pseudocritical transition temperature, and finally decreases un-

til the chiral symmetry is restored. Instead, a monotonous decrease of the Σu − Σd

with temperature is seen in LQCD [60].

5.2 The crossover transition

LQCD results show that both chiral and deconfinement transitions remain as an-

alytic crossovers for magnetic fields, at least, up to 1 GeV2 [57]. In particular, the

u-quark transition width decreases only mildly and the height grows significantly.

The susceptibilities Cu and Cd are plotted as a function of T − Tc(eB) in Fig. 5.5 for

several magnetic field intensities.
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Figure 5.5: Relative changes in the temperature dependence of the chiral suscep-

tibility for the u-quark (left) and the d-quark (right) for different B values within

PNJL (top panel) and EPNJL (bottom panel).
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In order to have a measure of the transition temperature region, we calculate

the Full Widths at Half Maximum (FWHM) of the susceptibilities. The results

are in Table 5.2. The FWHM of both Cu and Cd increases with B in the EPNJL

model, indicating that the chiral transition becomes broader as B increases. The

height does not change much for Cd, but increases for Cu, showing a stronger MC

effect on the u-quark. Therefore, the EPNJL model predicts a broader crossover

with increasing B, not signaling a first-order phase transition for higher magnetic

field strengths. The PNJL model has a different behavior: the FWHM of both

Cu and Cd decreases until eB = 0.8 GeV2, and the height increases substantially

for the u-quark and slightly for the d-quark. Therefore, the PNJL model predicts

a narrower transition band and a stronger chiral transition as B increases up to

eB = 0.8 GeV2. For magnetic fields higher than eB = 0.8 GeV2, even though the

height of Cu and Cd still increases, as for lower B values, the FWHM of both Cu

and Cd increases. This behavior is understandable looking at the PNJL results in

the bottom panel of Fig. 5.4, where the separation of both the u- and d-quark chiral

transitions becomes more visible for magnetic fields higher than eB = 0.8 GeV2, and

the susceptibility of the d-quark becomes broader, reflecting not only its transition,

but also the transition of the u-quark occurring at higher but near temperatures.

PNJL EPNJL
eB (GeV2) u (MeV) d (MeV) u (MeV) d (MeV)

0.0 37 37 9 9
0.2 26 27 10 11
0.4 22 28 11 13
0.8 21 28 13 16
1.0 22 36 15 17

Table 5.2: Full Widths at Half Maximum (in MeV) of Cu and Cd of Fig. 5.5.

5.3 Conclusions

In this Chapter, we have confirmed that even though the models reproduce the

LQCD results at zero temperature they do not predict any suppression of the quark

condensates near the transition temperature region. The quark condensates have a

monotonic behavior: at any temperature they are increasing functions of the mag-

netic field strength, and thus no IMC effect is present. Anyway, both chiral and

deconfinement transitions are analytic crossovers within EPNJL/PNJL models for

magnetic fields up to 1 GeV2, in agreement with LQCD results [57,60].

In the next Chapter, we explore two mechanisms that reproduce the IMC effect

seen in LQCD results.



Chapter 6

Inverse Magnetic Catalysis

Recent LQCD calculations using Nf = 2 + 1 flavors with physical quark masses

have investigated the effect of an external magnetic field on QCD matter [57,58,60].

An unexpected result was obtained: the magnetic field suppresses the light quark

condensates – the light and strange quark sectors respond differently – near the

transition temperature region, the so-called Inverse Magnetic Catalysis (IMC) ef-

fect, resulting in a non-monotonic behavior of the light quark condensates with

B. The deconfinement pseudocritical transition temperature, calculated from the

renormalized Polyakov loop, also decreases with the magnetic field [58]. Further-

more, the strange quark number susceptibility that is also a quantity that signals

the deconfinement transition also decreases with B [57]. Therefore, these LQCD

results show that both pseudocritical temperatures of chiral, due to the suppres-

sion of the light quark condensates near the pseudocritical chiral transition, and

deconfinement transitions are decreasing functions of the magnetic field.

In [58], the effect of the magnetic field on chiral symmetry breaking was sep-

arated into two distinct mechanisms: sea and valence effects. The valence effect

explains the Magnetic Catalysis (MC) mechanism: the magnetic field enhances the

spectral density around zero, and thus, through Banks-Casher relation [149], the

quark condensate. The sea effect is a consequence of the re-weight of the gauge

configurations in the path integral due to B. This re-weight suppresses small and

favors large values of the Polyakov loop, being more intense around the pseudocri-

tical transition temperature. The increase of the Polyakov loop value suppresses

low Dirac eigenvalues, and thus the condensate is suppressed around the pseudo-

critical transition temperature (IMC effect).

The thermo-magnetic correction to the quark-gluon vertex in the presence of

a weak magnetic field within the hard thermal loop approximation was studied

in [156]. The authors have shown that the effective thermo-magnetic quark-gluon

79
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coupling decreases as a function of the field strength [156]. The effects of strong

magnetic fields on the QCD phase diagram solving the gluon and quark gap equa-

tions was performed in [155]. The main argument is that the phenomenon of IMC

is due to the combination of gluon screening effects and the weakening of the strong

coupling [155].

In this Chapter, based on several studies that show a weakening of the QCD

running coupling constant in the presence of an external magnetic field, two mech-

anisms are developed to incorporate into NJL-type models, through the model cou-

pling, the back-reaction of the magnetized quarks on the gauge fields, and investi-

gate if IMC can be reproduced.

6.1 The Polyakov loop with a B dependence

In (E)PNJL models the deconfinement is described by the Polyakov loop that cou-

ples weakly to the magnetic field, as we saw in Chapter 4. The Polyakov loop poten-

tial was originally parametrized to reproduce pure gauge lattice results (T0 = 270
MeV). Later, it was realized that the inclusion of dynamical quarks leads to a de-

crease of the scale parameter T0 to 210 MeV in order to obtain TΦ
c = 171 MeV. Since

a strong magnetic field affects dynamical quarks, one expects that the B presence

can also influence the value of T0.

One possible approach to mimic the back-reaction of the gluon sector to the

presence of an external magnetic field is to introduce a magnetic field dependent

T0(B), which reproduces the correct LQCD deconfinement transition temperatures

[57, 60]. This kind of procedure on T0 had already been proposed in a different

context [210–212]: based on renormalization group arguments, an explicit quark

chemical potential and Nf dependence on T0 in the Polyakov loop potential takes

into account the back-reaction of the quark degrees of freedom on the Polyakov loop.

Next, by imposing a magnetic field dependence through T0 in the Polyakov po-

tential within the (E)PNJL models, we analyze whether the LQCD results [57, 60]

can be reproduced. It should, however, be mentioned that a too small T0 value

originates a first-order phase transition for both chiral and deconfinement transi-

tions. We limit T0 to a range of values that preserve the crossover nature of both

transitions.
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6.1.1 Parametrization of the T0(eB)

We start by pointing out that it is impossible to implement the above scheme using

the PNJL model: even though a decreasing T0 with increasing B brings the decon-

finement pseudocritical transition temperature to lower values (as in LQCD [57]),

the chiral pseudocritical transition temperature, which is very sensitive to the mag-

netic field (see Chapter 4), still increases with B. The light quark condensate sup-

pression, which is originated by the decreasing of T0 with B, is insufficient to bring

the chiral pseudocritical transition temperature to lower values. Though we might

get a sufficient light quark condensate suppression for very low T0 values, the PNJL

model already predicts first-order phase transitions, unlike the crossover transi-

tions seen in LQCD [57].

However, as we saw in Section 4.2, the entanglement interaction [Eq. (3.67)]

creates a correlation between both deconfinement and chiral transitions. There-

fore, in the EPNJL model, the chiral transition is sensitive to the deconfinement

transition, being both pseudocritical temperatures very close, even in the presence

of a magnetic field. Setting the deconfinement transition at lower pseudocritical

temperatures with increasing B through T0(eB), the entanglement interaction gen-

erates the required light quark condensate suppression leading to a decreasing chi-

ral pseudocritical transition temperature. We can understand this distinct model

behavior as follows: in the EPNJL model the scalar couplingG0
s is not constant as in

PNJL model, but has a dependence on the Polyakov loop value Gs[Φ(T )]; therefore,

the Gs[Φ(T )] decreases because it depends on T0(eB) and on the temperature. Like

the PNJL model, also the EPNJL model predicts a first-order phase transition for

a too small T0 value, even at moderate magnetic field strengths. Anyway, there are

indications that a first-order deconfinement phase transition should appear in the

high magnetic field limit. Using general arguments, the existence of a Critical End

Point in the T −B diagram was proposed in [213]. Recently, it was found strong ev-

idence for a first-order deconfinement phase transition in the asymptotically strong

magnetic field limit of QCD, implying the presence of a Critical End Point in the

T − B QCD phase diagram [148].

In order to proceed, we fit a magnetic field dependent T0(eB) using the following

generic functional dependence,

T0(eB) = T0(eB = 0) + ζ(eB)2 + ξ(eB)4 (6.1)

to reproduce the pseudocritical temperature of the deconfinement transition [57].

One way to define a pseudocritical temperature for the deconfinement transition

is by the peak position of the Polyakov loop susceptibility, which is the definition
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we use throughout this work. However, as mentioned in Chapter 1, instead of the

Polyakov loop, it is also possible to use the strange quark number susceptibility,

χs =
T

V

∂2(lnZ)

∂µ2
s

,

to define a deconfinement pseudocritical temperature, where µs is the chemical po-

tential for the strange quarks. The strange quark number susceptibility behaves

in a way similar to the Polyakov loop. It was shown in the PNJL model that when

the quark mass of the strange quark is large enough, the susceptibility χs is pro-

portional to the Polyakov loop, which makes this quantity qualified as an order

parameter [28]. Therefore, the inflection point of χs gives a pseudocritical tempera-

ture consistent with the use of the peak position of the Polyakov loop susceptibility.

In the framework of lattice QCD calculations, the strange quark number suscep-

tibility is also a very interesting quantity because no renormalization ambiguities

appear [26].

Therefore, we use the strange quark number susceptibility LQCD data of [57]

to fit the Eq. (6.1). The pseudocritical deconfinement transition temperature calcu-

lated from χs at zero magnetic field is 173.9 MeV [57]. This value it compatible with

170(4)(3) MeV obtained from the renormalized Polyakov loop [25], where the first

error comes from the statistical errors and the second from the scale determination

accuracy. Thus, a rescale of the T0 value to 186 MeV is needed to reproduce the

TΦ
c (B = 0) = 173.9 value of LQCD (see Table 6.1). The calculated fit values, ζ and ξ

of Eq. (6.1), are in the first line of Table 6.1.

T0(eB = 0) TΦ
c T χ

c eBmax ζ ξ
[MeV] [MeV] [MeV] [GeV2] [MeV/GeV4] [MeV/GeV8]

186 173.9 176.0 0.25 −646.491 78.8961
195 177.4 179.9 0.30 −845.467 2813.38
270 214.0 216.0 0.61 −162.632 −545.027

Table 6.1: The pseudocritical temperatures for chiral T χ
c and deconfinement TΦ

c

transitions for three values of T0(B = 0) within EPNJL model. The eBmax is the

magnetic field value above which a first-order phase transition sets in. ζ and ξ are

fitting parameters of Eq. (6.1)

The T0(eB) parametrization, which we represent as a blue line in Fig. 6.1, gives

rise to a first-order phase transition for eB > 0.25 GeV2. A similar scenario also

occurs if we fit T0(B) to reproduce the upper limit of the pseudocritical deconfine-

ment transition temperature, which is TΦ
c = 177.4 MeV for B = 0 (Fig. 10 of [57]).
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This parametrization gives a crossover for eB . 0.3 GeV2, see Table 6.1 and red

line of Fig. 6.1. A larger analytic transition range can be obtained if the quark

back-reaction is not accounted for, i.e., if we set T0 = 270 MeV as obtained in pure

gauge for B = 0, giving TΦ
c = 214 MeV, 40 MeV higher than the prediction of LQCD

data [57]. This parametrization is in the third line of Table 6.1 and is represented

by a black line in Fig. 6.1. It reproduces LQCD values for TΦ
c (B) [57] shifted by

an amount of 40 MeV for magnetic fields up to 0.61 GeV2, above which a first-order

phase transition also occurs.
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Figure 6.1: T0 as a function of B, defined by Eq. (6.1), using different values of

T0(B = 0) of Table 6.1: 270 (black line), 195 (red line), and 186 MeV (blue line).

6.1.2 EPNJL model results with T0(eB)

To better illustrate the effect of the T0(eB) parametrization we use the last scenario

of Table 6.1 (i.e., T0(eB = 0) = 270 MeV), because larger magnetic field strengths

are attained.

We plot the change of the average light quark condensate, ∆(Σu + Σd)/2, as a

function of magnetic field in the top panel of Fig. 6.2, up to eB = 0.61 GeV2, for

T = 0 and several temperatures close to T χ
c (eB = 0).

The main conclusions are:

• The qualitative behavior of Fig. 5.2 from LQCD results is reproduced: a

monotonic behavior of the condensates as a function of the magnetic field for

low temperatures, and a non-monotonic behavior for temperatures around the

transition temperature;
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Figure 6.2: The average light quark condensates ∆(Σu + Σd)/2 as a function of eB
in GeV2 for several temperatures in MeV (top panel) and and the Polyakov loop as

a function of temperature, for different values of eB in GeV2 (bottom panel) using

the EPNJL model with T0(B) defined in Eq. (6.1).

• The curve for zero temperature has the highest ∆(Σu + Σd)/2 values as it

happens for LQCD results (see Fig. 5.2);

• The non-monotonic behavior of ∆(Σu + Σd)/2 with B for 200 < T < 220 MeV

can only be attributed to the IMC effect; Instead of enhancing, the magnetic

field suppresses the quark condensates.

• The ∆(Σu + Σd)/2 has negative values for temperatures near 200 MeV. By Eq.

(5.1) we see that negative values of ∆(Σu + Σd)/2 means Σf (0, T ) > Σf(B, T ):
the quark condensate has a lower value in the B presence (the quark conden-

sate is suppressed by B);

• The Polyakov loop behavior shown in the bottom panel of Fig. 6.2 follows the

same trend predicted by the LQCD [58]: for a given temperature it increases

with B and presents a stiffer variation at the transition region. From the

bottom panel of the figure is also clear that the transition region moves to

smaller values of T .

Similar results are obtained if the T0(eB = 0) includes the quark back-reaction (i.e.
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the first and second lines of Table 6.1), however, in a smaller magnetic field inten-

sity range, if we restrict the chiral and deconfinement transitions to a crossover

nature.

We plot in Fig. 6.3 the pseudocritical temperature for both the deconfinement

(dashed lines) and the chiral (dotted line) transitions, for the three scenarios of

T0(eB = 0) shown in Table 6.1: 270 MeV (black), 195 MeV (red), and 186 MeV (blue).

In agreement with LQCD [57, 60], both pseudocritical temperatures decrease with

increasing magnetic field.
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Figure 6.3: EPNJL results with T0(B) defined in Eq. (6.1): pseudo-critical tempe-

ratures as a function of B, for different values of T0(B) presented in Table 6.1: 270
MeV (black), 195 MeV (red), and 186 MeV (blue).

6.2 A magnetic field dependent coupling

In [214] it is shown that there is a strong screening effect of the gluon interactions

in the region of low momenta, relevant for chiral symmetry breaking. In [155,156],

the IMC mechanism is attributed to the combination of gluon screening effects and

the weakening of the strong coupling.

In the NJL model the quarks interact through local current-current coupling. In

the QCD vacuum the color fields propagate in a small region (∼ 0.2 fm), correspond-

ing to a characteristic momentum scale Λ ∼ 1 GeV. In perturbative QCD, a non-local

interaction between two quark color currents generates the non-local one-gluon ex-

change interaction between quarks. For temperatures around the pseudocritical

temperature (∼ 200 MeV) the strong screening effects experienced by the gluons

cannot be handled perturbatively. Restricting the color interaction to a short dis-

tance scale Λ−1, larger than the typical quark momentum scale, the non-local in-
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teraction between quarks can be approximated by a local coupling G between their

color currents. This effective coupling G ∼ ḡ2Λ−2 encodes the QCD coupling g av-

eraged over the relevant distance scale, in combination with the square correlation

length Λ−2 [215]. The gluon degrees of freedom were absorbed into the four-quark

interaction. Therefore, if the QCD coupling is affected by the presence of an exter-

nal magnetic field, it should be reflected in the four-quark interaction coupling G0
s

of the NJL model.

6.2.1 Parametrization of the Gs(eB) in the NJL model

The way the QCD coupling αs is related to the scale
√

|eB| in leading-order and for

sufficiently strong magnetic fields (eB ≫ Λ2
QCD) is investigated in [214] and is given

by

αs(eB) ∼ 1

b ln |eB|
Λ2

QCD

, (6.2)

where b = (11Nc − 2Nf )/12π = 27/12π, and the energy scale
√

|eB| is fixed only up

to a factor of order 1 [214].

To analyze the effect of a magnetic field running coupling in the NJL model, we

use, as a first step, the simple ansatz

Gs(eB) = G0
s/ ln

(

e+ |eB|/Λ2
QCD

)

. (6.3)

The high magnetic field limit (B → ∞) gives a zero coupling constant (Gs → 0),

and in the opposite limit, i.e., for zero magnetic field (B → 0), we get Gs = G0
s. The

magnetic field weakens the NJL coupling; thus, we have Gs(eB) < G0
s at any B

strength, and in the zero magnetic field limit the usual NJL model parametrization

value G0
s is recovered.

The chiral normalized pseudocritical temperatures are given in Fig. 6.4, for

Gs = G0
s (the normal NJL model) and Gs(eB). When we use Gs = G0

s, the model

predicts an increasing T χ
c /T

χ
c (eB = 0) for all range of magnetic fields, as we saw

in the previous Chapter. With Gs(eB) defined by Eq. (6.3), the T χ
c /T

χ
c (eB = 0) de-

creases for low magnetic fields (eB < 0.3 GeV2), though much faster than LQCD,

and increases for higher B values. The T χ
c /T

χ
c (eB = 0) decreasing dependence with

B arises from the IMC effect. Thus, with this simple ansatz, the model predicts a

decreasing pseudocritical transition temperature due to the IMC mechanism at low

B. Anyway, the logarithm dependence of the running coupling αs(p
2) of QCD is valid

for high momentum transfers p ≫ 1 GeV. Therefore, the αs(eB) ∝ ln(|eB|/Λ2
QCD)−1
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dependence may not be suitable for the low magnetic field range (eB < 1 GeV2).
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Figure 6.4: The normalized pseudocritical temperatures of the chiral transition

(T χ
c (eB = 0) = 178 MeV for the NJL model) as a function of B: in the NJL model

with a magnetic field dependent coupling Gs(eB) (blue dashed line), with a constant

coupling G0
s (black solid line), and the lattice results (red dots) [57].

Since there is no LQCD data available for αs(eB), we use another strategy: we fit

Gs(eB) to reproduce the normalized pseudocritical temperature of the chiral tran-

sition T χ
c (B)/T χ

c (eB = 0) (we are reproducing the temperature decrease ratio) ob-

tained in LQCD calculations [57]. The resulting fit function of Gs(eB) is shown in

Fig. 6.5 and has the following functional dependence:

Gs(ζ) = G0
s

(

1 + a ζ2 + b ζ3

1 + c ζ2 + d ζ4

)

(6.4)

where a = 0.0108805, b = −1.0133 × 10−4, c = 0.02228, d = 1.84558 × 10−4, and

ζ = eB/Λ2
QCD. We have used ΛQCD = 300 MeV. The chiral pseudocritical transi-

tion temperature as a function of the magnetic field is shown in Fig. 6.6. The

parametrization Gs(eB) was obtained using the LQCD results [57] for the chiral

pseudocritical transition temperatures in the range 0 < eB < 1 GeV2. From asymp-

totic freedom we expect that as B → ∞ we have Gs(eB) → 0. The above polynomial

form ensures that Gs goes as 1/eB for B → ∞.
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Figure 6.5: The fitted Gs(eB) dependence [Eq. (6.4)] calculated in the NJL model

that reproduces LQCD normalized chiral pseudocritical transition temperature [57]

shown in Fig. 6.6.
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Figure 6.6: The chiral pseudocritical transition temperature in the NJL model with

the Gs(eB) dependence [Eq. (6.4)] (blue line) and the LQCD result [57] on the left

panel, and the respective normalized chiral pseudocritical transition temperature

on the right.
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6.2.2 NJL model results with Gs(eB)

The behavior of the quark condensates with the magnetic field within the NJL

model is shown in Figs. 6.7-6.10.

Figure 6.7 shows ∆(Σu + Σd)/2 as a function of B for several temperatures, with

Gs(eB) defined in Eq. (6.4) (top panel) and Gs = G0
s (bottom panel). The ∆(Σu+Σd)/2

calculated with Gs(eB) shows the same behavior as LQCD calculations: at low and

high temperatures the magnetic field enhances the condensates (MC effect), but at

temperatures near the pseudocritical chiral transition temperature it suppresses

the condensates. For Gs = G0
s case, MC is predicted at any temperature.

The same conclusions are obtained from Fig. 6.8, where the average of the light
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Figure 6.7: The NJL model light chiral condensate change ∆(Σu + Σd)/2 as a func-

tion of B, for several values of temperature in MeV, with the magnetic field depen-

dent coupling Gs(eB) (top panel), and with a constant coupling G0
s (bottom panel).

quark condensate is plotted as function of T for several values of B. The lattice re-

sults extracted from [57] have also been included in the top panel, together with the

results obtained with Gs(eB) from Eq. (6.4). The overall behavior is reproduced by

the NJL model with the Gs(eB). A very different result is obtained with a constant

coupling G0
s (see bottom panel of Fig. 6.8), where the transition occurs for larger

temperatures with increasing B.
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Figure 6.8: The light chiral condensate average (Σu + Σd)/2 as a function of tem-

perature for several values of eB in GeV2 in the NJL model, with a magnetic field

dependent coupling Gs(eB) from Eq. (6.4) compared with LQCD results [57] (top

panel), and a constant coupling G0
s (bottom panel). The LQCD data was normalized

by T χ
c (eB = 0) = 160 MeV [57] and the NJL model results by T χ

c (eB = 0) = 178 MeV.
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In Figs. 6.9 and 6.10 the difference between the light quark condensates is plot-

ted as a function of temperature for several values of B, and as a function of B for

several temperatures, respectively. The lattice results from [57] are also included

in the top panel of Fig. 6.9 together with the results for the Gs(eB) case. For com-

parison, we also show the results for Gs = G0
s in the bottom panel of Fig. 6.9.
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Figure 6.9: The chiral condensate difference Σu − Σd as a function of temperature,

for several values of eB in GeV2, in the NJL model, calculated with a magnetic

field dependent coupling Gs(eB) [Eq. (6.4)] compared with LQCD results [57] (top

panel), and a constant coupling G0
s (bottom panel). The LQCD data was normalized

by T χ
c (eB = 0) = 160 MeV [57] and the NJL model results by T χ

c (eB = 0) = 178 MeV.

The bumps present in curves for the Gs = G0
s case (bottom panel of Fig. 6.9)

around the transition temperatures do not appear when Gs(eB) is used (top panel

of Fig. 6.9), where a reasonable agreement with the LQCD results is achieved. As

we saw in the previous Chapter, these bumps result of a stronger MC effect on the

u-quark, due to its larger electric charge (the larger the magnetic field the larger

the difference between u- and d-condensates, and the respective chiral transition

temperatures), being this feature particularly strong close to the transition temper-

ature, where the curves for stronger fields have a larger bump. When Gs = Gs(eB),
the partial restoration of chiral symmetry mechanism prevails over the MC, due
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to a weaker interaction, and the bumps will disappear in accordance with LQCD

results. The Σu − Σd value in the top panel of Fig. 6.9 always decreases with the

temperature for any B.

The condensate difference Σu −Σd is plotted as a function of B for several tempe-

ratures in Fig. 6.10. The larger electric charge of the u-quark makes the difference

Σu − Σd always positive (i.e. Σu > Σd) for any temperature and B. As the tem-

perature increases, due to the restoration of chiral symmetry, the values of the

constituent light quark masses approximate their current values of mu = md = 5.5
MeV; thus, for a fixed value of B, the Σu − Σd is a decreasing function of tempera-

ture. Therefore, at higher temperatures, e.g., T = 270 MeV (solid black line), the

Σu − Σd is low due to the partial restoration of the chiral symmetry. The IMC ef-

fect is also seen for T = 160 MeV (dashed orange line) and T = 170 MeV (dotted

purple line). A non-monotonic behavior with B arises, being the inflection point for

T = 160 MeV at higher B than for T = 170 MeV: this reflects in a decrease of the

chiral pseudocritical transition temperature with B.
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Figure 6.10: The NJL chiral condensate difference Σu − Σd as a function of eB for

several values of temperature in MeV with a magnetic field dependent coupling

Gs(eB) [Eq. (6.4)].

We next analyze the T − B phase diagram obtained within the NJL with the

magnetic field dependent coupling. The calculated chiral pseudocritical transition

temperature is shown in Fig. 6.11 for a range of magnetic field intensities larger

than the one used in the fit.
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Figure 6.11: The normalized pseudocritical temperature of the chiral transition

as a function of eB in the NJL model, with the magnetic field dependent coupling

Gs(eB) [Eq. (6.4)] (blue line) and LQCD results (red dots) [57].

For eB ≈ 1.1 GeV2, the pseudocritical temperature starts to increase with B. This

behavior was also obtained by some LQCD calculations [61], which predict that the

MC effect is dominant at high values of B. A chiral first-order phase transition ap-

pears for eB ≈ 1.25 GeV2 . The LQCD as well as the NJL results from Fig. 6.8 show

that the average chiral condensate slope increases with increasing magnetic field.

Thus, if this behavior persists for higher magnetic field strengths, it is expected

from the LQCD results that the transition turns into a first-order at some critical

B; therefore, a Critical End Point is expected in the T − B diagram [148,213].

6.2.3 PNJL model results with Gs(eB)

In the present section, we consider the PNJL model. As we already said, in the

PNJL model the quark degrees of freedom are coupled to a Polyakov loop field

which allows us to study the deconfinement transition at finite temperature. Sev-

eral studies about the deconfinement and chiral symmetry restoration of hot QCD

matter in the presence of an external magnetic field have recently been made

[101,105,106]. Now, we will take for the scalar coupling the same magnetic field de-

pendent parametrization Gs(eB) obtained in the previous section [Eq. (6.4)]. Next,

we will discuss the effect of the magnetic field on the Polyakov loop and on the

quark condensates .

It should be remembered that in this model, besides the chiral point-like cou-

pling between quarks, the gluon dynamics is reduced to a simple static background

field, represented by the Polyakov loop. As referred in Section 3.4, we set the pa-

rameter T0 in the Polyakov loop as 210 MeV, which takes into account the quark

back-reaction and reproduces a deconfinement pseudocritical temperature of 171
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MeV.

In Fig. 6.12 we plot both the chiral and the deconfinement pseudocritical tran-

sition temperatures as a function of B. Both T χ
c and TΦ

c are decreasing functions

of B as in LQCD [57]. Due to the existing coupling in the PNJL model between

the Polyakov loop field and the quarks, the Gs(eB) affects both the chiral and the

deconfinement transitions. Both pseudocritical temperatures have a very similar

dependence on B. The gap between them can be reduced by increasing the T0 value

of the Polyakov potential or using the EPNJL model.
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Figure 6.12: The chiral and deconfinement transitions temperatures as a function

of B in the PNJL, using the magnetic field dependent coupling Gs(eB) [Eq. (6.4)].

The effect of the magnetic field on the Polyakov loop is clear in Fig. 6.13, where

we plot Φ as a function of the magnetic field intensity for different values of the

temperature (left panel), and as a function of temperature for several magnetic

field strengths (right panel).

For example, at T = 150 MeV (red line in the left panel) the Polyakov loop value

increases with B, i.e., the deconfinement transition is shifted to lower temperature

due to the magnetic field. This can be confirmed by the displacement of the in-

flection point of the Polyakov loop (right panel) towards lower temperatures with

increasing B. The suppression of the condensates induced by the magnetic field

dependence of the coupling Gs(eB) translates into an increase of the Polyakov loop.

The effect of the magnetic field on Φ is stronger for temperatures in the respective

crossover transition region (see left panel of Fig. 6.13), showing the same behavior

as LQCD results [58].
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Figure 6.13: The value of the Polyakov loop as a function of B for several values of

T in MeV (left panel) and as a function of T for several values of B in GeV2 (right

panel).

We plot the change of the average chiral condensate ∆(Σu + Σd)/2 as a function

of B for several temperatures in Fig. 6.14. As in the LQCD [57], the model gives a

non-monotonic behavior with B for temperatures near the transition temperature

and a monotonous increase for lower and higher temperatures.
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Figure 6.14: The light chiral condensate ∆(Σu+Σd)/2 as a function of eB, for several

values of temperature in MeV, in the PNJL model.

In Fig. 6.15, both the (Σu + Σd)/2 (top panel) and the Σu − Σd (bottom panel)

are plotted as a function of the temperature, normalized by the pseudocritical tem-

perature at zero magnetic field, for several magnetic field strengths, and compared

with the LQCD results [57]. Just as already obtained for NJL model, the general

behavior of the LQCD results are reproduced.
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Figure 6.15: The average (Σu + Σd)/2 (top panel) and the difference (Σu − Σd) (bot-

tom panel) of the light chiral condensates as a function of temperature, for several

values of eB in GeV2, and the LQCD results [57]. The LQCD data was normalized

by T χ
c (eB = 0) = 160 MeV [57] and the PNJL model results by T χ

c (eB = 0) = 200
MeV.

We observe that a SU(3) symmetry of the point-like effective interactions be-

tween quarks is assumed in the magnetic background. However, it is expected that

the electromagnetic field breaks this symmetry, and, in fact, the comparison with

the LQCD results for Σu − Σd (in bottom panel of Fig. 6.15) suggests that the up

quark interaction is depleted with respect to down quark. That seems reasonable

as the effect of the magnetic field on the up quark is larger than in the down quark,

and therefore the interaction between the up quarks should become weaker with

respect to the down quarks as the magnetic field increases.

6.3 Comparison between the two approaches

An effective Polyakov potential that depends on the magnetic field, through the

parameter T0(eB), could describe the IMC effect only within the EPNJL model, as

we saw in Section 6.1. Neither the PNJL model nor the two-flavor thermal quark-

meson model [116] were able to reproduce the IMC effect with a T0 dependence on

the magnetic field. These results are in accordance with the ones of the Section

6.2: the coupling Gs, which in the EPNJL model depends on the Polyakov loop, be-
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comes weaker at the crossover transition region, where the Polyakov loop increases.

This is shown in the top panel of Fig. 6.16, where the coupling Gs[Φ(T )] of Section

6.1 is plotted for several temperatures (dashed curves) and, for comparison, the

parametrization Gs(eB) [Eq. (6.4)] is also included (solid black line). It is inter-

esting to realize that in the range eB < 0.6 GeV2, the curve obtained for T = 210
MeV (blue dashed line), which is close to the deconfinement pseudocritical transi-

tion temperature TΦ
c = 214 MeV at T0(B = 0) = 270 MeV (see Table 6.1), behaves

in accordance with the results of the Gs(eB) parametrization (solid black line). No

IMC effect was obtained within the PNJL model because the parameter T0(eB) does

not affect the coupling Gs.

In Fig. 6.16 we compare the pseudocritical transition temperatures as a function

of B (middle panel) and the Polyakov loop as a function of T/TΦ
c (eB = 0) (bottom

panel) for the Gs(eB) (solid lines) and T0(eB) (dashed lines) parametrizations.

The pseudocritical transition temperatures for Gs(eB) have a smoother decrease

with B, reflecting the B dependence of Gs instead of the B and T dependences of

Gs(Φ) (see top panel of Fig. 6.16). Furthermore, the difference between the chiral

and the deconfinement pseudocritical transitions temperatures is almost constant

with B for Gs(eB), and much larger than for T0(eB). Because the entanglement

interaction couples the Polyakov loop and the quark condensates, the coincidence

of T χ
c and TΦ

c at B = 0 disappears, but they approximate again at eB = 0.61 GeV2

due to the emergence of a first-order phase transition (see top panel of Fig. 6.16).

The PNJL model predicts crossover transitions for this magnetic field range, and

thus theGs(eB) coupling does not change its normal behavior of predicting different

temperatures for T χ
c and TΦ

c . The Polyakov loop behavior with the temperature

(bottom panel) shows two main differences. For T0(eB) in the EPNJL model, the

variation of Φ is much more intense and the stronger deconfinement transition for

eB = 0.6 GeV2 is signaling the emergence of a first-order phase transition for larger

B values. Furthermore, the inflection point of the Polyakov loop moves to much

lower values for T0(eB) (dashed lines) than Gs(eB) (solid lines), and thus a bigger

decrease of TΦ
c with B is obtained for T0(eB) (see middle panel).
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Figure 6.16: Comparison between Gs(eB) (full lines) and T0(eB) (dashed lines). Top

panel: The scalar coupling Gs versus the magnetic field, the black full line is the

parametrization defined in [Eq. (6.4)] and plotted in Fig. 6.5; middle panel: the chi-

ral and deconfinement pseudocritical transition temperatures versus the magnetic

field; bottom panel: the Polyakov loop versus the temperature normalized by the

deconfinement pseudocritical transition temperature TΦ
c for B = 0, respectively, 171

MeV (PNJL with Gs(eB)) and 214 MeV (EPNJL with T0(eB)).
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6.4 The strange quark transition

In this section, using the Gs(eB) parametrization calculated in the previous sec-

tion, we focus on its effect on the strange quark transition. We plot the quark

condensates and their susceptibilities in Fig. 6.17. All pseudocritical transition

temperatures plotted in Fig. 6.18 decrease with B. Looking at the condensates

behavior (top panel of Fig. 6.17), we see that all of them are enhanced at low tem-

peratures and suppressed at temperatures near the transition temperature. Also

the first peaks in the susceptibilities, induced by the deconfinement transition, are

shifted to lower temperatures with increasing B (see bottom panel of Fig. 6.17).

Just as in Section 4.3, we define the same two criteria to calculate the pseudo-

critical transition temperatures:

Criterion I: the temperature T i
c at which the inflection point of the quark conden-

sate 〈q̄iqi〉 occurs (which is the definition that we have been using):

∂2〈q̄iqi〉(B, T )

∂T 2

∣

∣

∣

∣

∣

T =T i
c

= 0;

Criterion II: the temperature T i
c at which the quark condensate is half of its zero

temperature value 〈q̄iqi〉(B, 0):

〈q̄iqi〉(B, T i
c ) = 0.5〈q̄iqi〉(B, 0).

We show in the bottom panel of Fig. 6.17 a zoom of the strange transition region.

Even though we are using the magnetic field dependent coupling Gs(eB), and thus

the light quark susceptibilities peaks are moving to lower temperature values (see

Fig. 6.17), the strange quark transition, which is reflected on the third peak of its

susceptibility, is also washed out for eB > 0.58 GeV2. Anyway, for eB < 0.58, we

clearly see in the zoom of Fig. 6.17 that the inflection point moves to lower tempe-

ratures, i.e., the T s
c decreases with B. For eB > 0.58, we use the second criterion

(dashed lines) to define a pseudocritical temperature for the strange quark transi-

tion.

All the pseudocritical transition temperatures T i
c are plotted in Fig. 6.18. For

each T i
c , both criteria show similar dependence with B. The TΦ

c has the biggest

gap between both criteria and is the only pseudocritical temperature that shows

higher values for the second criterion (dashed lines). We see from Fig. 6.18 that the

strange quark pseudocritical transition temperature (solid and dashed green lines)

is the one that decreases the most with B.
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Figure 6.17: The quark condensates and their susceptibilities as a function of tem-

perature for eB = 0.0, 0.4 and 0.8 GeV2, using Gs(eB).
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It is important to notice that the IMC effect is strongly influenced by the ’t Hooft

term. Indeed, in Fig. 6.19 the up, down, and strange quark condensates normalized

to their values at zero magnetic field are plotted for Gs(eB) case, in three different

scenarios:

i) with the ’t Hooft term (K 6= 0) (top panel);

ii) without the ’t Hooft term (K = 0), but no refitting of the couplings in order to

reproduce the vacuum properties of the pion and kaon (middle panel);

iii) without the ’t Hooft term (K = 0), and using the parametrization proposed

in [216], which reproduces the pion and kaon properties (bottom panel).

Just like the up and down quarks, the strange quark also shows the IMC effect

(solid lines in top panel of Fig. 6.19). The strange quark condensate presents a

non-monotonic behavior as a function of B, and thus its pseudocritical transition

temperature is a decreasing function of B (solid and dashed green lines of Fig.

6.18). This behavior is not following the trend indicated in [60], where the strange

quark condensate is said to increase with growing B for all temperatures. When

we turn off the ’t Hooft term (middle panel), the strange quark (solid lines) still

undergoes IMC; furthermore, the pattern does not change much when compared

with the K = 0 case (top panel). This can be understand as follows. Due to its

larger current mass, the flavor mixing effect does not affect much its pseudocritical

transition temperature, when compared with the up and down quarks for Gs = G0
s

(see Fig 4.12 of Section 4.3). Therefore, it is expected that this feature persists even

when one uses Gs(eB), but now the T s
c is a decreasing function of B.

For the light quarks, as we saw in Fig 4.12 of Section 4.3, the gap between T u
c

and T d
c increases substantially for K = 0, being T u

c bigger due to its larger elec-

tric charge. Now, using the Gs(eB) and K = 0, the down quark will feel the IMC

at lower temperatures than the up quark (see dashed lines in middle panel): for

T = 250 MeV (green lines) the down quark undergoes IMC as the up quark is al-

ready feeling the MC effect again, i.e., for the up quark the IMC effect occurs at a

higher temperature region than for the down quark.

The results of the bottom panel of Fig. 6.19 were also obtained excluding the ’t

Hooft term, but using a different parametrization that describes the vacuum prop-

erties of the pion and kaon [216]. The general behavior is similar to the results

shown in the middle panel although the up quark shows a behavior closer to the

upper panel, where the ’t Hooft term was included. This is due to the larger mass

of the up quark, within this parametrization [216], that compensates the effect of

the strong magnetic field due to its larger charge.
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Figure 6.19: The ratios of the u, d and s condensates, 〈qiq̄i〉(T, eB)/〈qiq̄i〉(T, 0), as

a function of eB, for several values of T [0 (blue lines), 180 (red lines), 200 (black

lines) and 250 (green lines) MeV] using Gs(eB): including the ’t Hooft term (upper

panel), excluding the ’t Hooft term without refitting the other parameters (middle

panel), and excluding the ’t Hooft term and using the parametrization of Ref. [216]

(bottom panel).
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It is worth pointing out that the behavior of the strange quark condensate is

somehow expectable. On one hand, being the strange quark the one with larger

current mass, it does not feel a strong MC effect for weak fields. Moreover, its

charge is half of the up quark charge, and, therefore, it is also not as affected by the

magnetic field as the up quark. On the other hand, the IMC effect is implemented

in the present model through a parametrization of the scalar coupling, and, con-

sequently, it is switched on as soon as B > 0. From these two effects, it results

that the strange quark also feels the IMC effect. This is clearly seen by switching

off the ’t Hooft term, where no mixing with the up quark occurs, and the strange

condensate still decreases for low B, even for T = 0 (blue solid line in the middle

panel of Fig. 6.19).

6.5 Thermodynamical quantities

Finally, in this section we calculate for different scenarios the following thermo-

dynamical quantities: the pressure P (T,B) [Eq. (4.6)], the energy density E [Eq.

(4.8)], the interaction measure ∆ = (E − 3P )/T 4 [Eq. (4.9)], the speed of sound

squared v2
s [Eq. (4.10)], and the specific heat CV [Eq. (4.11)].

In Figs. 6.20-6.21 we plot these quantities for a magnetic field eB = 0.3 GeV2

(the order of the maximal magnetic field strength for the LHC [54]) for three sce-

narios:

• In the left panel of Fig. 6.20 the ’t Hooft term is included (K 6= 0) and the

constant scalar coupling G0
s is used;

• In the right panel of Fig. 6.20 the ’t Hooft term is included (K 6= 0) and the

magnetic dependent scalar coupling Gs(eB) is used;

• In Fig. 6.21 the ’t Hooft term is excluded (K = 0) and the constant scalar

coupling G0
s is used.

The vertical lines in Fig. 6.20 indicate the position of the maximum of the quark

susceptibilities for the PNJL with the ’t Hooft term and with the constant scalar

coupling G0
s.

As discussed before, comparing both Figs. 6.20 and 6.21, we see that the ’t

Hooft term pushes the deconfinement and the chiral transition temperatures to

larger temperatures. Moreover, due to the flavor mixing effect, the up and down

quarks susceptibilities maximum coincide approximately when we include the ’t

Hooft term (Fig. 6.20), but occur at quite different temperatures without the ’t

Hooft term (Fig. 6.21).
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Figure 6.20: The following thermodynamical quantities using the PNJL model with

the ’t Hooft term, forGs = G0
s (left panel) and Gs = Gs(eB) (right panel), for eB = 0.3

GeV2: the scaled energy density E/T 4, the interaction measure ∆ = (E − 3P )/T 4,

and the scaled pressure P/T 4 as a function of temperature T (top panel); the scaled

specific heat CV /T
3, and speed of sound squared v2

s (middle panel); and the quark

susceptibilities Ci (bottom panel) as a function of temperature T . The vertical lines

indicate the position of the maximum of the quark susceptibilities for the Gs = G0
s

case.
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Figure 6.21: The following thermodynamical quantities using the PNJL model

without the ’t Hooft term and Gs = G0
s for eB = 0.3 GeV2: the scaled energy density

E/T 4, the interaction measure ∆ = (E − 3P )/T 4, and the scaled pressure P/T 4 as a

function of temperature T (top panel); the scaled specific heat CV /T
3, and speed of

sound squared v2
s (middle panel); and the quark susceptibilities Ci (bottom panel)

as a function of temperature T . The vertical lines indicate the position of the max-

imum of the quark susceptibilities.

For the three different scenarios considered it is seen that the scaled pressure

(blue line), the energy density (red line), and thus the interaction measure (black

line) in top panels are continuous functions of the temperature as expected due to

the crossover transition. There is a sharp increase in the vicinity of the deconfine-

ment pseudocritical transition temperature and then a tendency to saturate at the

corresponding ideal gas limit. Excluding the ’t Hooft term (Fig. 6.21) makes all

curves smoother. The sharper increase occurs at lower temperatures if a magnetic

field dependent coupling Gs(eB) (right panel of Fig. 6.20) is considered because the

pseudocritical transition temperatures are pushed to lower values.
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The middle panels of Figs. 6.20-6.21 show the specific heat CV /T
3 (blue line)

and the speed of sound squared v2
s (red line) as a function of the temperature. The

specific heat presents two peaks caused by the distinct pseudocritical temperatures

of deconfinement and chiral transitions. Again, the effect of Gs(eB) that pushes the

peaks to lower temperatures is clearly seen. Moreover, there is a larger superpo-

sition between the Polyakov loop and both up and down quark susceptibilities and

less pronounced peaks are observed. Due to the absence of the flavor mixing effect,

the pseudocritical transition temperatures for the up and down quark are different,

and thus the second peak that corresponds to the chiral transition is almost washed

out when the ’t Hooft term is excluded (Fig. 6.21).

The speed of sound squared v2
s passes through a local minimum around the

deconfinement pseudocritical transition temperature and reaches the limit of 1/3
(Stefan-Boltzmann limit) at high temperature. The minimum indicates the fast

change in the quark masses. A second inflection occurs at the chiral pseudocritical

transition temperature. As expected from the previous discussion, both features

are more pronounced within the PNJL with ’t Hooft term and a constant scalar

coupling (Figs. 6.20 and 6.21). For the magnetic field considered (eB = 0.3 GeV2),

the peak of the strange quark susceptibility has no effect on the represented ther-

modynamical quantities, showing that the influence of the light quark sector is

predominant over the strange quark one because the restoration of the chiral sym-

metry already happened in the light quark sector.

6.6 Conclusions

We have started this Chapter by summarizing several studies that connect the IMC

effect to the weakening of the QCD running coupling in the presence of an external

magnetic field. We have developed two mechanisms that incorporate into NJL-

type models, through the model coupling and the free parameter of the Polyakov

potential T0, the back-reaction of the magnetized quarks on the gauge fields, and

investigate if IMC could be reproduced.

Deconfinement is taken into account in the E/PNJL models by an effective gluon

potential that describes a constant gauge field background on which quarks prop-

agate. The Polyakov potential is fitted to reproduce thermodynamic lattice data of

pure gauge theory [184]. The only free parameter of the Polyakov potential is the

T0 value that sets the onset of deconfinement for pure gauge theory, which is a first-

order phase transition at T0 = 270 MeV. In the E/PNJL models the T0 value must

be rescale to match the pseudocritical temperature of the deconfinement transition

of LQCD. Then, to mimic the back-reaction of the gluon sector to the presence of
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an external magnetic field, we have introduced a magnetic field dependent T0(B),
which reproduces the correct LQCD deconfinement transition temperatures in the

magnetic field presence. Within the EPNJL model the IMC effect was reproduced.

Although, the crossover nature of the transitions was only reproduced up to a max-

imum magnetic field strength, above which a first-order phase transition occurs.

The IMC effect was reproduced in the EPNJL model but not in the PNJL model.

While the scalar coupling G0
s is constant in PNJL model, it depends on the Polyakov

loop value Gs[Φ(T )] in the EPNJL model; therefore, the Gs[Φ(T )] decreases because

it depends on T0(eB) and on the temperature.

In the E/P/NJL models, the gluon degrees of freedom are absorbed into the four-

quark interaction term; thus, the effective NJL scalar coupling G0
s encodes the QCD

coupling averaged over the relevant distance scale. Therefore, if the QCD coupling

is affected by the presence of an external magnetic field, it should be reflected in

the four-quark interaction coupling G0
s of the NJL model. Then, we have directly

introduced a magnetic field dependence on the scalar coupling G0
s that mimics the

weakening of the strong coupling in the magnetic field presence. We have fitted

the Gs(eB) dependence to reproduce the normalized pseudocritical temperatures of

the chiral transition T χ
c (B)/T χ

c (eB = 0) (the temperature decrease ratio) obtained

in LQCD calculations [57]. The difference and average light quark condensates

as a function of temperature for several magnetic field strengths obtained within

the PNJL model shows similar behavior as in LQCD [57]. Furthermore, also the

Polyakov loop follows the same trend given by LQCD [58]: it increases with B
for a given temperature, making the pseudocritical deconfinement temperature a

decreasing function of the magnetic field intensity.





Chapter 7

QCD Phase Diagram in an external

magnetic field

In this Chapter, we will extend our study to finite baryon chemical potential an-

alyzing the effect of an external magnetic field on several quark matter phase di-

agram scenarios. The influence of strong external magnetic fields on the struc-

ture of the QCD phase diagram is also very important because it can have rel-

evant consequences on measurements in heavy-ion collisions at very high ener-

gies [54,217,218].

There are several aspects that can influence the location of the Critical-End-

Point (CEP) like the strangeness or isospin content of the in-medium or the pres-

ence of an external magnetic field [106]. Indeed, in Ref. [78], within the NJL

model, it was verified that the size of the first-order phase transition segment of

the transition line expands with increasing B in such a way that the CEP becomes

located at higher temperature and smaller chemical potential values. This was also

verified by using the Ginzburg-Landau effective action formalism with the renor-

malized quark-meson model [117]. Due to its relevance for the understanding of

the QCD phase diagram, we discuss how the CEP’s location in the T − µB phase

diagram changes with isospin asymmetry, and confirm previous results obtained

within other models, showing it might not exist at sufficiently high isospin asym-

metry [29, 219, 220]. We also consider the strangeness effect in the QCD phase

diagram, analyzing different chemical equilibrium conditions.

Finally, we study the impact of the Gs(eB) parametrization [Eq. (6.4)], calcu-

lated in the previous Chapter, on CEP’s location.

109
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7.1 Location of the CEP

We are going to discuss several scenarios that can influence the location of the CEP

by starting to choose different values of isospin and strangeness chemical poten-

tials. Let us denote the chemical potentials of strangeness by µS, of charge by µQ,

and baryon number by µB, for a positive unit charge of strangeness, electric, and

baryon, respectively. The chemical potential of a particle i with baryon Bi, electric

Qi, and strangeness Si charges is [33]

µi = BiµB +QiµQ + SiµS.

The quark chemical potentials µi are written as a function of µS, µQ, and µB by

µu =
1

3
µB +

2

3
µQ, (7.1)

µd =
1

3
µB − 1

3
µQ, (7.2)

µs =
1

3
µB − 1

3
µQ − µS. (7.3)

The baryonic and charge densities are respectively

ρB =
∑

i

Biρi =
1

3
(ρu + ρd + ρs) (7.4)

ρQ =
∑

i

Qiρi =
1

3
(2ρu − ρd − ρs) − ρe, (7.5)

where ρe is the electron density.

For zero temperature a first-order chiral phase transition is obtained at some

µcrit
B . As the temperature increases the first-order phase transition persists up

to the CEP. At the CEP, the chiral phase transition becomes a second-order one.

Along the line of a first-order phase transition the thermodynamic potential has

two degenerate minima, which are separated by a finite potential barrier making

the potential non-convex. The height of the barrier decreases as the temperature

increases and disappears at the CEP. Again, this pattern is characteristic of a first-

order phase transition: the two minima correspond, respectively, to the phases of

broken and restored symmetry [191].

7.1.1 Without external magnetic field

To figure out the effect of the Polyakov loop on the CEP’s location, we calculate the

temperature, baryonic chemical potential, and baryonic density at the CEP for both
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NJL and PNJL models.

With the definitions of Eqs. (7.1)-(7.3), we can introduce different quark matter

scenarios that we analyze within both models:

• zero charge (µQ = 0), or zero isospin chemical potential (µI = 0), and zero

strangeness chemical potential (µS = 0). In terms of quark chemical potentials

becomes µu = µd = µs;

• zero charge (µQ = 0), or zero isospin chemical potential (µI = 0), and strangeness

chemical potential of µS = 1
3
µB. In terms of quark chemical potentials becomes

µu = µd and µs = 0;

• symmetric quark matter with equal amount of u, d, and s quarks (ρu = ρd =
ρs), also known as strange quark matter;

• β-equilibrium matter (assuming neutrino escape): µu − µd = µQ = −µe and

µd = µs (µS = 0).

The four different scenarios results are plotted in Fig. 7.1, and the respective CEP

values are given in Table 7.1.
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Figure 7.1: The CEP’s location on a T − µB diagram (left) and T − ρB (right) (in

units of nuclear saturation density ρ0 = 0.16 fm−3) under the four scenarios consid-

ered: all quark chemical potentials equal (circle), the strange quark chemical po-

tential equal to zero (diamond), all quark densities equal (star), and β−equilibrium

condition (triangle) within NJL and PNJL models. No external magnetic field is

considered.

As already discussed in [191, 202, 203], the Polyakov loop (i.e., in the PNJL model)

shifts the CEP to higher temperatures (TCEP), more than two times higher (see
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Table 7.1) than in the NJL model, and slightly smaller baryonic chemical poten-

tials (µCEP
B ), or, slightly higher baryonic densities (ρCEP

B ). The CEP’s location in

β−equilibrium quark matter occurs for one of the largest chemical potentials, only

slightly below the one obtained for strange quark matter. However, it is interesting

to see that for β−equilibrium, the CEP occurs at lower temperatures. The reason

becomes clear when analyzing the right panel of Fig. 7.1: the β−equilibrium quark

matter being more asymmetric is less bound and, therefore, the transition to a chi-

rally symmetric phase occurs at a smaller temperature and density than for the

symmetric case.

NJL PNJL

TCEP µCEP
B ρCEP

B /ρ0 TCEP µCEP
B ρCEP

B /ρ0

[MeV] [MeV] [MeV] [MeV]

µu = µd = µs 68 949 1.82 155 874 1.98
µu = µd; µs = 0 68 954 1.77 157 890 1.84
ρu = ρd = ρs 74 1022 2.34 160 918 2.47

β−equilibrium 57 1003 1.60 146 924 1.84

Table 7.1: The temperature TCEP, baryonic chemical potential µCEP
B , and baryonic

density ρCEP
B at CEP, for the NJL and the PNJL models. The baryonic density is in

nuclear saturation density units, ρ0 = 0.16 fm−3.

From Fig. 7.1 and Table 7.1 we see that for β−equilibrium matter the CEP oc-

curs at larger baryonic chemical potentials and smaller temperatures. Being the

only scenario that breaks the isospin symmetry, we conclude that the CEP’s loca-

tion depends on the isospin µI value. In the following, we analyze the effect of

isospin asymmetry |µu − µd| = |µI | = |µQ| in our system and focus our discussion on

the PNJL model.

To study in a more systematic way the effect of the isospin µI on CEP, we take

the strange quark chemical potential equal to zero (µs = 0) and increase system-

atically µd with respect to µu. We are interested in the d-quark rich matter as it

occurs in HIC and neutron stars: isospin asymmetry presently attained in HIC cor-

responds to µu < µd < 1.1µu, and neutron matter has µd ∼ 1.2µu. Larger isospin

asymmetries are also possible in π− rich matter [40,220].
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In Fig. 7.2, we calculate the CEP’s location as a function of isospin asymmetry

|µI | = |µu − µd|. For reference, we also plot the CEP for µu = µd = µs by a red circle.

The corresponding quark densities ρu and ρd are given Table 7.2. With increasing

isospin asymmetry the CEP moves to smaller temperatures and larger baryonic

chemical potentials (it can be understood by the same arguments as previously

given for β−equilibrium case). Eventually, for quark matter with large enough

asymmetry, the CEP disappears from the phase diagram. This threshold value cor-

responds to µd ≃ 1.45µu and is represented in the figure by a star, at T = 0. This

scenario corresponds to |µu − µd| = |µI | = |µQ| = 130 MeV, below the pion mass and,

therefore, no pion condensation occurs under these conditions. The effect of pion

condensation on the QCD phase diagram for finite chemical potentials has recently

been discussed in [220–222]. We remark that, as pointed out in [29], where the ef-

fect of isospin on the QCD phase diagram has also been discussed, a larger isospin

chemical potential corresponds to smaller baryonic chemical potential due to the

definition of the baryonic chemical potential: the study was performed within the

two-flavor quark-meson model and the relation µB = 3µq = 3
2
(µu +µd) was used [29];

in the present work, from Eqs. (7.1)-(7.3), we have µB = µu +2µd. Therefore, in both

works, the TCEP decreases when the isospin asymmetry increases.
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Figure 7.2: PNJL model results for CEP’s location in a temperature T versus bary-

onic potential µB (left panel) and temperature T versus baryonic density ρB (right

panel) diagrams, for several isospin chemical potential µI = |µu − µd| values. The

full line is the first-order phase transition line for zero isospin matter (µd = µu,

µs = 0). The strange chemical potential is set to zero, µs = 0. There is no CEP for

µd > 1.45µu. The baryonic density is in nuclear saturation density units, ρ0 = 0.16
fm−3.
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The right panel of Fig. 7.2 shows CEP’s location in temperature T versus bary-

onic density ρB diagram. For µu < µd < 1.2µu, the baryonic density of CEP de-

creases with asymmetry, but for µd & 1.2µu, the opposite occurs, and at the thresh-

old (µd = 1.45µu) ρB ∼ 1.91ρ0 the CEP disappears (see Table 7.2).

CEP TCEP [MeV] µCEP
B [MeV] ρCEP

B /ρ0 ρCEP
u /ρB ρCEP

d /ρB

µd = µu 157 890 1.84 1.50 1.50
µd = 1.1µu 154 915 1.83 1.28 1.72
µd = 1.2µu 144 962 1.79 1.04 1.96
µd = 1.3µu 115 1035 1.81 0.75 2.25
µd = 1.4µu 62 1103 1.96 0.50 2.50
µd = 1.45µu ∼ 0 1126 2.02 0.39 2.61

Table 7.2: The temperature TCEP, baryonic chemical potential µCEP
B , baryonic den-

sity ρCEP
B , and light quark densities (ρCEP

u and ρCEP
d ) at CEPs, for different ratio µd/µu

scenarios, with µs = 0 (ρs = 0). The baryonic and quark densities are in nuclear sat-

uration density units, ρ0 = 0.16 fm−3.

7.1.2 With an external magnetic field

In the following, we focus on how the magnetic field affects the CEP’s location, for

symmetric quark matter: µu = µd = µs.

The obtained T −µB phase diagram is presented in the left panel of Fig. 7.3 and

shows a trend very similar to that of the results previously obtained for the NJL

in [78]: as the intensity of the magnetic field increases, the temperature at which

the CEP occurs (TCEP) increases monotonically (see Fig. 7.3 right panel) and the

corresponding baryonic chemical potential (µCEP
B ) decreases until the critical value

eB ∼ 0.4 GeV2 is reached; for stronger magnetic fields both TCEP and µCEP
B increase.

In the middle panel of Fig. 7.3 the CEP is given in a T versus baryonic density

ρB/ρ0 plot, and it can be seen that the ρCEP
B always increases as the magnetic field

increases from 0 to 1 GeV2.
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Figure 7.3: Location of the CEP on a diagram T vs the baryonic chemical potential

µB (left panel), vs the baryonic density ρB (middle panel), and vs magnetic field eB
(right panel)

To understand these behaviors at finite density we start by considering the case

at T = 0 where a first-order phase transition takes place. In the left panel of Fig.

7.4, we present the critical chemical potential (µcrit
B ) at which the first-order phase

transition occurs. The pattern followed by µcrit
B at T = 0 in the PNJL model is simi-

lar, although for smaller values, to the one reported in [78] at T = 1 MeV and also

at higher temperatures: a slow decrease for 0 < eB < 0.06 GeV2, a faster decrease

until 0.12 − 0.18 GeV2 and a monotonically increase afterwards. We verify a lower-

ing of µcrit
B with B until eB = 0.25 GeV2. The slow decrease in µcrit

B for increasing

magnetic field strength in the range 0 ≤ eB . 0.08 GeV2 is followed by a faster

decrease for 0.08 . eB . 0.25 GeV2. Stronger field strengths result in a monoton-

ically increasing of µcrit
B . This change in behavior corresponds to the point where

just one Landau level (LL) is filled for each flavor in the partially chiral restored

phase. Indeed, the stronger the magnetic field, the larger the spacing between the

levels.

At T = µB = 0 a stronger magnetic field results in an increase of the mass of

the quarks (the increase is larger for Mu than Md due to the difference in electric

charges). At finite density, however, µcrit
B starts to decrease with increasing mag-

netic fields, indicating an easier transition to the partially chiral restored phase

[129]. This result was already seen in [78]. For eB above 0.25 GeV2, µcrit
B increases.
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Figure 7.4: The critical chemical potential µcrit
B at T = 0 MeV versus the magnetic

field (left panel) and the up, and down quarks effective masses at the CEP (right

panel) as a function of the magnetic field intensity.

Also noteworthy to point out is the existence of a range of magnetic fields,

0.083 . eB . 0.1 GeV2, where at least two first-order phase transitions occur (see

left panel of Fig. 7.41), in accordance with what was found in the two-flavor [82,84]

and three-flavor NJL models [86]. This cascade of transitions will result in the ex-

istence of multiple CEPs at finite temperature. The CEP on which we focus most of

our attention in the present and next sections is the one that subsists to the highest

temperature.

As was discussed above, in the weak magnetic field regime, an increasing mag-

netic field results in a smaller µcrit
B for the first-order transition at T = 0, even if

the quarks masses have already started to increase. As this corresponds to a shift

of the first-order transition line towards a smaller chemical potential, the observed

decrease in µCEP
B follows naturally. This effect is dominant over that of the increase

of the quark masses at the CEP (both quark masses at the CEP increase with mag-

netic field strength for eB . 0.125 GeV2) which should hinder the first-order partial

chiral restoration (see right panel of Fig. 7.4). A similar behavior is also obtained

within the NJL model used in [78].

Above a critical strength for the magnetic fields, eB & 0.125 GeV2, there is a

clear asymmetry in the CEP quark mass response to an increasing magnetic field

strength: a strong decrease in Md as opposed to the smooth increase in Mu (due to

the charge difference the d−quark coupling to the magnetic field is weaker). This

behavior is accompanied by an increase of the baryonic density at which the CEP

1Around eB ≈ 0.085 GeV2 a small third phase transition (not visible on Fig. 7.4) can be found on

a very small range.
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occurs (right panel of Fig. 7.3).

For stronger magnetic fields (eB & 0.4 GeV2) both TCEP and µCEP
B increase (see

left panel of Fig. 7.3). This can be understood as a result of a decreasing number

of occupied LL due to the large intensity of the field and the greater difficulty in

restoring chiral symmetry.

In the following, we focus on how the magnetic field affects the CEP’s location,

for two quark matter scenarios:

• isospin symmetric quark matter (µu = µd and µs = 0);

• isospin asymmetric quark matter (µd = 1.45µu and µs = 0):

The obtained results are in Table 7.3 and Fig. 7.5. For reference, we also show

the results for symmetric quark matter (µu = µd = µs) obtained above. Figure 7.5

shows the results in a temperature versus baryonic chemical potential diagram (top

panel), temperature versus baryonic density (middle panel), and the quark density

fractions ρi versus baryonic density ρB (bottom panel) for several magnetic field

strength values, within the three scenarios above.

µu = µd = µs µu = µd; µs = 0

eB TCEP µCEP
B ρCEP

B /ρ0 TCEP µCEP
B ρCEP

B /ρ0

[GeV
2] [MeV] [MeV] [MeV] [MeV]

0.0 155 874 1.98 157 890 1.84
0.1 159 845 2.03 160 867 1.85
0.2 181 721 2.68 183 741 2.40
0.3 192 674 3.54 194 692 3.13
0.4 199 672 4.60 202 684 4.01
0.5 206 681 5.83 210 688 5.02
0.6 214 692 7.22 217 708 6.15
0.7 221 713 8.81 225 726 7.37
0.8 229 732 10.58 234 740 8.63
0.9 236 758 12.59 243 755 10.00
1.0 244 779 14.67 253 763 11.38

Table 7.3: The temperature, baryonic chemical potential and density at the CEPs

for different values of the magnetic field and two different scenarios: µu = µd = µs

and µu = µd, µs = 0. The baryonic density is given in terms of the saturation density

ρ0 = 0.16 fm−3.
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Figure 7.5: The T as a function of µB (top panel) and ρB (middle panel). The full

lines are the first-order transitions at B = 0. Three scenarios are shown: µu = µd =
µs (red dots), µu = µd; µs = 0 (blue diamonds) and µd = 1.45µu, µs = 0 (black squares)

corresponding to the threshold isospin asymmetry above which no CEP occurs. In

the last case for strong enough magnetic fields and low temperatures two or more

CEPs exist at different temperatures for a given magnetic field intensity (pink and

blue squares). The bottom panel shows the u, d and s quark fractions as a function

of the baryonic density: µu = µd = µs (dashed line), µu = µd and µs = 0 (dotted line),

and µd = 1.45µu; µs = 0 (full line).
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For the isospin symmetric quark matter scenario (blue diamonds), the magnetic

field affects the CEP in a very similar way to the previous case, i.e. symmetric

quark matter: the CEP’s temperature is only slightly larger and its baryonic den-

sity is also slightly smaller.

As we have seen in Fig. 7.2, isospin asymmetrical matter with µd ≃ 1.45µu (with

µs = 0) removes the CEP from the phase diagram, i.e. for µd & 1.45µu, the chiral

phase transition is a crossover at zero temperature. When one applies an external

magnetic field, the CEP is recovered, thus, if µd & 1.45µu, the magnetic field can

drive again a first-order phase transition. When µd ≃ 1.45µu two CEPs might ap-

pear for eB <0.1 GeV2 . For sufficiently small values of B the TCEP is small and the

Landau level effects are visible.

The presence of an external magnetic field affects differently the u- and d-quarks

in a complex pattern due to their different electric charges. A consequence is the

possible appearance of two or more CEPs for a given magnetic field intensity. In

our case two CEPs occur at different values of T and µB at the same magnetic field

intensity for 0.03 . eB . 0.07 GeV2. Only one CEP remains above 0.07 GeV2. For

stronger fields we get TCEP > 100 MeV and the Landau level effects are completely

washed out at these temperatures. In the lower panel of Fig. 7.5, we plot the u
and d quark fractions corresponding to each CEP at different magnetic fields and

for µd = 1.45µu as a function of the baryonic density: it is seen that as the magnetic

field becomes more intense the u-quark fraction comes closer to the d-quarks frac-

tion. This is due to the larger charge of the u-quark and the fact that the quark

density is proportional to the absolute value of the charge times the magnetic field

intensity.

Finally, it is also important to point out that for low B values at zero tempera-

ture all three scenarios presented in top panel of Fig. 7.5 show that the µcrit
B , where

the chiral phase transition takes place, decreases with increasing B [123], indicat-

ing an easier transition to the partially chiral restored phase. However, at large B
values this tendency disappears and µcrit

B increases with B, in accordance with [78].

7.2 The IMC effect on CEP

Now, we want to analyze how the Gs(eB) parametrization proposed in Section 6.2

affects the QCD phase diagram pattern. The Gs(eB) [Eq. (6.4)] was parametrized

to reproduce LQCD results at µ = 0. The sign problem limits LQCD calculations

to zero chemical potential, and, therefore, we do not know the impact that a finite

baryonic chemical potential might have on the IMC mechanism.
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In the following, we compare the following two scenarios for symmetric matter

(µu = µd = µs):

Case I: we take the usual Gs = G0
s and no IMC effects are included (discussed in

Section 7.1.2);

Case II: we useGs(eB) [Eq. (6.4)] allowing IMC effects on the QCD phase diagram.

The effect of the IMC on the CEP’s location (Case II) is presented in Fig. 7.6 (red

points) in the T −µB plane (left panel) and in the T −ρB/ρ0 plane (middle panel), for

different intensities of the magnetic field, and in the T −eB plane (right panel). For

comparison we include in the same figure the CEP location without IMC effects,

Case I (black curve).
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Figure 7.6: Location of the CEP in TCEP versus µCEP
B (left panel) and TCEP versus

ρCEP
B (right panel) diagrams, for different intensities of the magnetic field without

IMC effects Gs = G0
s (red curve) and with IMC effects Gs = Gs(eB) (black curve).

We clearly observe a different behavior between these two scenarios: at B = 0 both

CEPs coincide but, already for small values of B, the CEP occurs at lower tempera-

tures in Case II, keeping, however, a similar behavior to Case I until eB ∼ 0.3 GeV2.

The larger differences start for stronger magnetic fields: in Case II the position of

the CEP oscillates between TCEP ≈ 169 and TCEP ≈ 177 MeV while the chemical

potential takes increasingly smaller values; in Case I both values of T and µB for

the CEP increase (see black curve, left panel of Fig. 7.6). In the middle panel of Fig.

7.6 the position of the CEP in the T − ρB/ρ0 plane is presented. Comparing Cases
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I and II, it is found that the IMC effect on the CEP results on its shift to smaller

temperatures and densities especially for higher values of the magnetic field.

The reason of these behaviors lies in the fact that the weakening of the coupling

Gs(eB) will make the restoration of chiral symmetry easier. Increasing the mag-

netic field is not sufficient to counteract this effect as can be seen in Fig. 7.7 where

we plot the quark masses (Mu-black line; Md-red line; Ms-blue line) as function of

µB for the respective TCEP at eB = 0.1 and eB = 0.5 GeV2.
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500 600 700 800 900 1000 1100 1200
0

100

200

300

400

500

600

 Case I  
          (T CEP = 159 MeV)

 Case II 

          (T CEP = 151 MeV)

M
i ( M

eV
 )

 B (MeV)

eB = 0.5 GeV 2

300 400 500 600 700 800

0

100

200

300

400

500

600

700

 Case I  
          (T CEP = 206 MeV)

 Case II 

          (T CEP = 175 MeV)

M
i ( M

eV
 )

 B (MeV)

Figure 7.7: Masses of the quarks as function of µB at the respective TCEP for two

intensities of the magnetic field: eB = 0.1 GeV2 (left panel) and : eB = 0.5 GeV2

(right panel).

At eB = 0.1 GeV2 (left panel) the Gs is barely affected by the magnetic field when

IMC effects are included, and the values of the quark masses are very close to each

other for both cases: in Case II the CEP occurs at smaller temperature and at near,

slightly higher, chemical potential. When eB = 0.5 GeV2 (right panel) the quark

masses in Case I have increased with respect to the B = 0 case (due to the MC

effect), being the restoration of chiral symmetry more difficult to achieve. However,

when Gs = Gs(eB), Case II, the masses of the quarks are smaller than their B = 0
value (due to IMC effect) leading to a faster restoration of chiral symmetry at small

temperatures and chemical potentials.

Eventually, with the increase of B the CEP would move toward µB = 0 and the

deconfinement and chiral phase transitions would always be of first-order. There

are indications that a first-order deconfinement phase transition should appear in

the high magnetic field limit, and thus the existence of a Critical-End-Point in the

T − B diagram [148,213].
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7.3 Conclusions

In this Chapter we have studied the QCD phase diagram for several quark matter

scenarios. Being the CEP a point in the QCD phase diagram which existence can

define the pattern of chiral phase transition, i.e., the point where the chiral phase

transition changes from a crossover to first-order, we gave special emphasis to its

location.

We have started by showing that the PNJL model, when compared with the NJL

model, predicts a CEP at higher temperatures and lower baryonic chemical poten-

tial for all quark matter scenarios. Then, using the PNJL model, the role played

by the isospin asymmetry in the CEP’s location was explored. As the isospin asym-

metry increases, the CEP shifts to lower temperatures and higher baryon chemical

potentials, disappearing from the phase diagram for µd/µu > 1.45.

Later, an external magnetic field was introduced in the PNJL model and the

CEP’s location for symmetric quark matter is calculated. We have obtained a very

similar pattern as previously obtained for the NJL model [78]: as the magnetic field

strength increases up to eB ∼ 0.4 GeV2, the CEP occurs at lower µB and higher

T , and then for eB > 0.4 GeV2 both the T and µB of the CEP became increasing

functions of eB. Also as in previous NJL/PNJL studies [82, 84, 86], a cascade of

first-order phase transitions was found, resulting in the existence of multiple CEPs

at finite but lower temperatures.

Finally, in the last section, the impact of the IMC effect on the CEP’s location

was analyzed. Using the Gs(eB) parametrization proposed in Section 6.2, which

reproduces the IMC effect at zero chemical potential, the impact on the CEP’s be-

havior was explored. It turns out that the weakening of the scalar coupling with

eB drives the CEP to lower chemical potentials (and lower baryon densities) keep-

ing its temperature in small variation range. For higher magnetic fields, the CEP

moves to even lower chemical potentials and, eventually, disappears from the phase

diagram, turning the crossover at µB = 0 into a first-order chiral phase transition.



Chapter 8

Final Remarks

We have started this work by studying the effect of an external magnetic field on

three-flavor quark matter, using both the PNJL and the EPNJL models. As in most

effective models, the quark condensates undergo the Magnetic Catalysis (MC) effect

at any temperature. As a result, the pseudocritical temperature of the chiral tran-

sition increases with the magnetic field strength. The Polyakov loop is also affected

by the magnetic field presence: for a given temperature it increases with B; there-

fore, the pseudocritical temperature of the deconfinement transition also increases

with B, even though it suffers a much weaker effect than the chiral pseudocritical

transition temperature.

The chiral and the deconfinement pseudocritical transition temperatures be-

have differently with the magnetic field in both models: due to the entanglement in-

teraction, which induces a strong correlation between the quarks and the Polyakov

loop, the magnetic field has a stronger impact on the pseudocritical temperature

of the deconfinement transition in the EPNJL model than in the PNJL model.

Also the gap between the pseudocritical temperatures of the chiral and the de-

confinement transitions is smaller in the EPNJL model. We have concluded that

the possible coincidence of the chiral and the deconfinement pseudocritical transi-

tion temperatures, a feature of the entanglement interaction at zero magnetic field,

depends on the chosen parametrization for the entanglement interaction at finite

B. Furthermore, some parametrizations lead to the appearance of first-order phase

transitions for the deconfinement and the chiral transitions at high B, while others

maintain the crossover nature for any B strength (at least up to eB = 1 GeV2).

Looking at the thermodynamics of both models, we have shown that both tran-

sitions are easier to identify in the thermodynamic observables of the PNJL model

than in the EPNJL model, mainly due to the closeness of the pseudocritical transi-

tion temperatures in the EPNJL model. The influence of the light quark sector on

the thermodynamical observables is predominant over the strange quark because

the restoration of the chiral symmetry has already happened in the light quark sec-

123
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tor. Concerning the strange quark, due to its much higher current mass value, the

pseudocritical temperature of its chiral transition turned out to be almost insen-

sitive to the presence of the magnetic field, when compared with the chiral pseu-

docritical temperatures of the light quarks. Furthermore, its large current mass

also makes the strange quark less sensitive to the ’t Hooft term, as opposed to the

strong influence it has on the light quarks.

The results of both the EPNJL and the PNJL models were compared with the

LQCD results [57, 58, 60]. Even though the models reproduce qualitatively well

the MC effect seen in LQCD at zero temperature, they do not predict the Inverse

Magnetic Catalysis (IMC) effect at temperatures near the transition temperature

region. Since these models predict the MC effect at any temperature, the pseudo-

critical temperature of the chiral transitions increases with B, contrarily to LQCD

results. Nevertheless, both models predict a crossover transition nature that per-

sists up to 1 GeV2, in agreement with LQCD.

We have then proposed two mechanisms that reproduce IMC. Using the EPNJL

model we introduce through the Polyakov potential parameter T0, which controls

the onset temperature of deconfinement in pure gauge theory, a magnetic field de-

pendence. The magnetic field dependence T0(eB) was motivated by the LQCD re-

sults [58] in which the magnetic field was seen to suppress small and favor large

values of the Polyakov loop. Because the Polyakov potential is fixed in pure gauge

theory, we have used its only free parameter T0 to introduce in the model the back-

reaction of the magnetized quarks on the gauge fields. Using this mechanism the

IMC effect was reproduced, but above a critical magnetic field strength a first-order

phase transition was obtained, in disagreement with LQCD. Furthermore, the IMC

effect was only obtained using the EPNJL model. The entanglement interaction,

through the magnetic field dependent T0(eB), is responsible for a weakening of the

four-quark scalar interaction coupling with B, which turned out to be the key in-

gredient for reproducing the IMC mechanism.

Later, based on the dependence of the QCD coupling αs on the magnetic field

[214], all the qualitative results of LQCD were reproduced by introducing a mag-

netic field dependence directly on the scalar interaction coupling of the NJL/PNJL

models. The decreasing of Gs(eB) with the magnetic field is essential, within effec-

tive quark models, to mimic the expected running of the coupling with the magnetic

field strength. With this mechanism, both pseudocritical temperatures of the de-

confinement and of the chiral transitions decrease with the magnetic field strength.

The MC effect on the light quark condensates is obtained for low and high tempera-

tures and the IMC effect appears near the transition temperature region. Concern-

ing the strange quark we saw that, in spite of its large current mass, it also feels the

IMC effect. In fact, the pseudocritical transition temperature of the strange quark
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is the one that decreases the most, contrarily to what happens with a constant cou-

pling. We also investigated the influence of the IMC on several thermodynamical

quantities, such as the sound velocity and the specific heat.

Finally, we have investigated the whole phase diagram in the presence of a mag-

netic field for several quark matter scenarios of isospin and strangeness. We gave

special relevance to the location of the CEP. It was shown that isospin asymmetry

shifts the CEP to larger baryon chemical potentials and smaller temperatures. At

large asymmetries the CEP disappears. However, a strong enough magnetic field

drives the system into a first-order phase transition again, leading to the appear-

ance of the CEP. When the IMC effect is introduced at zero chemical potential in

the model (as seen in LQCD), the location of the CEP is moved to lower baryon

chemical potential values if the magnetic field strength increases, while the tem-

perature almost does not change. This behavior contrasts with the results obtained

with constant couplings, where it was shown that above a certain magnetic field

both TCEP and µCEP
B increase. Also the baryonic density at the CEP is affected:

including the IMC effects, it increases only 1/3 of the expected if IMC effects were

not considered, making the CEP much more accessible in the laboratory.

This work was fruitful in new and interesting results. With these results we

hope to have contributed to clarify some relevant and timely physical topics that are

attracting the attention of the physics community. On the other hand, there are is-

sues that remain challenges to future researches. Among the possible perspectives

of work, we highlight that an important bridge between theory and experiments

can be provided by the study of the light scalar and pseudoscalar meson spectrum

properties. The dependence of the meson masses on the temperature and mag-

netic field allows to study the effective restoration of chiral symmetry. Due to the

crossover nature of the transition to the QGP, in the temperature region between

(1 − 2)Tc, quark and gluon quasi-particles and pre-hadronic bound states can coex-

ist [223, 224]. Therefore, the mesons can provide a good probe of the Quark-Gluon

Plasma (QGP) properties and are important observables of HIC experiments. As

future work, we would like to investigate how the meson properties at finite tem-

perature are influenced by external magnetic fields. Concerning compact stars, it

remains to be investigated how the formation and evolution of a protoneutron star

would be affected by the presence of a strong magnetic field, in particular if quark

degrees of freedom are present in an early stage of the star. In hadronic neutron

stars magnetic fields above ∼ 1018 Gauss (∼ 0.02 GeV2) are not expected because

the star would be gravitationally unstable, however, quark stars are self-bound

and stronger magnetic fields could exist inside a stable star.





Appendix A

SU(N ) group

Let us denote by τa the N2 − 1 hermitian traceless matrices of the SU(N) alge-

bra. The 1
2
τa are the generators of the SU(N) group, normalized as

trτaτb = 2δab (a, b) = 1, 2, ..., N2 − 1. (A.1)

The τa are the Pauli matrices (see [176]) for N = 2, and the Gell-Mann matrices for

N = 3,

λ0 =
√

2
3







1 0 0
0 1 0
0 0 1





 ; λ1 =







0 1 0
1 0 0
0 0 0





 ; λ2 =







0 −i 0
i 0 0
0 0 0





 ;

λ3 =







1 0 0
0 −1 0
0 0 0





 ; λ4 =







0 0 1
0 0 0
1 0 0





 ; λ5 =







0 0 −i
0 0 0
i 0 0





 ;

λ6 =







0 0 0
0 0 1
0 1 0





 ; λ7 =







0 0 0
0 0 −i
0 i 0





 ; λ8 =
√

1
3







1 0 0
0 1 0
0 0 −2





 .

. (A.2)

The matrices τa and iτa satisfy

τaτb =
2

N
δab + (dabc + ifabc)τc, (A.3)

and have the following commutation and anti-commutation relations

[τa, τb] = τaτb − τbτa = 2ifabcτc {τa, τb} = τaτb + τbτa = 4
N
δab + 2dabcτc

tr [τa, τb] τc = 4ifabc tr{τa, τb}τc = 4dabc,
(A.4)
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where the fabc and dabc are the symmetric and antisymmetric group structure con-

stants. For N = 2, fabc = ǫabc and dabc = 0. For N = 3, the nonvanishing terms are

given in Table A.1.

Any N ×N matrix can be written using τa matrices:

K = a0 + aaτa a0 = 1
N

trK aa = 1
2
trτaK (A.5)

For SU(2) and SU(3) the detK is given by:

detK = a2
0 − a2

a (N = 2)

detK = a3
0 − a0a

2
a + 2

3
dabcaaabac (N = 3)

. (A.6)

abc fabc abc fabc abc fabc

123 1 118 1/
√

3 355 1/2
147 1/2 146 1/2 366 −1/2
156 −1/2 157 1/2 377 −1/2

246 1/2 228 1/
√

3 448 −1/(2
√

3)

257 1/2 247 −1/2 558 −1/(2
√

3)

345 1/2 256 1/2 668 −1/(2
√

3)

367 −1/2 338 1/
√

3 778 −1/(2
√

3)

458
√

3/2 344 1/2 888 −1/
√

3

678
√

3/2

Table A.1: SU(3) group structure constants.



Appendix B

Bosonization

One can write the partition function of a boson field as
∫

Dφ exp

[

−1

2

∫ β

0
dτ
∫

d3xφD(τ,x)φ

]

= (detD(τ,x))1/2,

using the formula
∫ +∞

−∞
dx1...dx2 exp

[

−1

2

∫ β

0
dτ
∫

d3xφD(τ,x)φ

]

= (detD(τ,x))1/2.

Doing a scalar shift on the bosonic field

qi → φi ± 2G(q̄Oiq),

where q̄Oiq is a scalar Dirac bilinear, and G is a constant. Using D = 1/2G, we have

exp

[

−
∫ β

0
dτ
∫

d3xG(q̄Oiq)
2

]

∫

Dφi exp

[

∫ β

0
dτ
∫

d3x

(

− φ2
i

4G
∓ φi(q̄Oiq)

)]

= det
(

1

2G

)1/2

,

and thus we can write

exp

[

∫ β

0
dτ
∫

d3xG(q̄Oiq)
2

]

= N
′

∫

Dφi exp

[

∫ β

0
dτ
∫

d3x

(

− φ2
i

4G
± φiq̄Oiq

)]

.

The N
′

is a thermodynamical irrelevant factor. The four-fermion interaction is

transformed into a two-fermion interaction coupled to a boson field via Yukawa

coupling. Notice there is no approximation in the above transformation. Applying

the Hubbard-Stratonovich transformation to the L4 term of the LNJL [Eq. (3.1)], we

obtain

exp

{

∫ β

0
dτ
∫

d3x
G0

s

2

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λ
aq)2

]

}

=
∫

Dφa
1Dφ

b
2 exp

[

∫ β

0
dτ
∫

d3x

(

− 1

2G0
s

(

(φa
i )2 + (φb

i)
2
)

+ φa
i (q̄γaq) + φb

j(q̄iγ5γaq)

)]

,
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where we have defined Oi = 1, and Oj = iγ5. The bosonization consists in the

analytical integration of the quadratic fermion terms from the Euclidean action,

obtaining an effective Euclidean action that only depends on the introduced bosonic

degrees of freedom. Applying this procedure to the L0 + L4 term of the LNJL [Eq.

(3.1)], noting that
G0

s

2

∑

a

(q̄λaq) = G0
s

∑

i=u,d,s

(q̄iqi)
2 ,

and 〈q̄iγ5q〉 vanishes in a homogeneous ground state, we will end up with only three

non-vanishing bosonic fields: φu
1 , φd

1, and φs
1. Now, to move forward, we need to intro-

duce the MFA approximation: replace the auxiliary bosonic fields by their classical

fields
δSE

δφa
i

∣

∣

∣

∣

∣

φa
1
=φ̄a

1

= 0,

and neglect fluctuations around their classical fields thermal expectation values.

Calculating the thermal expectation value of the classical bosonic fields we get for

〈φu
1〉, 〈φd

1〉, and 〈φs
1〉, the quark condensates 〈q̄uqu〉, 〈q̄dqd〉, and 〈q̄sqs〉, respectively,

given by Eq. (3.35) that satisfy the gap equations [Eqs (3.12)], without the ’t Hooft

term.

To bosonize the SU(3) NJL model of Eq. (3.1) we need to rewrite the Lagrangian

in a more appropriate form, converting the six-quark interaction L6 into a four-

quark interaction term. The details can be found in [216].
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Deconfinement transition in two-flavor lattice QCD with dynamical overlap

fermions in an external magnetic field, Phys.Rev. D90 no. 3, (2014) 034501,

arXiv:1312.5628 [hep-lat].

[64] J. O. Andersen, W. R. Naylor, and A. Tranberg, Chiral and deconfinement

transitions in a magnetic background using the functional renormalization

group with the Polyakov loop, JHEP 1404 (2014) 187, arXiv:1311.2093

[hep-ph].

[65] H. Liu, L. Yu, and M. Huang, Charged and neutral vector ρ mesons in a

magnetic field, Phys.Rev. D91 no. 1, (2015) 014017, arXiv:1408.1318

[hep-ph].

[66] S. Fayazbakhsh and N. Sadooghi, Anomalous magnetic moment of hot

quarks, inverse magnetic catalysis, and reentrance of the chiral symmetry

broken phase, Phys.Rev. D90 no. 10, (2014) 105030, arXiv:1408.5457

[hep-ph].

[67] A. A. Andrianov, D. Espriu, and X. Planells, Chemical potentials and parity

breaking: the Nambu-Jona-Lasinio model, Eur.Phys.J. C74 no. 2, (2014)

2776, arXiv:1310.4416 [hep-ph].

[68] D. Ebert and K. Klimenko, Quark droplets stability induced by external

magnetic field, Nucl.Phys. A728 (2003) 203–225, arXiv:hep-ph/0305149

[hep-ph].

http://dx.doi.org/10.1007/JHEP08(2014)177
http://arxiv.org/abs/1406.0269
http://dx.doi.org/10.1103/PhysRevD.86.071502
http://arxiv.org/abs/1206.4205
http://dx.doi.org/10.1103/PhysRevD.89.054512
http://arxiv.org/abs/1310.7876
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://arxiv.org/abs/1005.5365
http://dx.doi.org/10.1103/PhysRevD.90.034501
http://arxiv.org/abs/1312.5628
http://dx.doi.org/10.1007/JHEP04(2014)187
http://arxiv.org/abs/1311.2093
http://dx.doi.org/10.1103/PhysRevD.91.014017
http://arxiv.org/abs/1408.1318
http://dx.doi.org/10.1103/PhysRevD.90.105030
http://arxiv.org/abs/1408.5457
http://dx.doi.org/10.1140/epjc
http://arxiv.org/abs/1310.4416
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.021
http://arxiv.org/abs/hep-ph/0305149


BIBLIOGRAPHY 147

[69] S. Ghosh, S. Mandal, and S. Chakrabarty, Chiral properties of QCD vacuum

in magnetars- A Nambu-Jona-Lasinio model with semi-classical

approximation, Phys.Rev. C75 (2007) 015805, arXiv:astro-ph/0507127

[astro-ph].

[70] D. Menezes, M. Benghi Pinto, S. Avancini, A. Perez Martinez, and

C. Providencia, Quark matter under strong magnetic fields in the

Nambu-Jona-Lasinio Model, Phys.Rev. C79 (2009) 035807,

arXiv:0811.3361 [nucl-th].

[71] D. Menezes, M. Benghi Pinto, S. Avancini, and C. Providencia, Quark matter

under strong magnetic fields in the su(3) Nambu-Jona-Lasinio Model,

Phys.Rev. C80 (2009) 065805, arXiv:0907.2607 [nucl-th].

[72] S. Avancini, D. Menezes, and C. Providencia, Finite temperature quark

matter under strong magnetic fields, Phys.Rev. C83 (2011) 065805.

[73] A. F. Garcia and M. B. Pinto, Surface tension of magnetized quark matter,

Phys.Rev. C88 no. 2, (2013) 025207, arXiv:1306.3090 [hep-ph].

[74] R. Farias, K. Gomes, G. Krein, and M. Pinto, Importance of asymptotic

freedom for the pseudocritical temperature in magnetized quark matter,

Phys.Rev. C90 no. 2, (2014) 025203, arXiv:1404.3931 [hep-ph].

[75] D. Ebert, K. Klimenko, M. Vdovichenko, and A. Vshivtsev, Magnetic

oscillations in dense cold quark matter with four fermion interactions,

Phys.Rev. D61 (2000) 025005, arXiv:hep-ph/9905253 [hep-ph].

[76] J. K. Boomsma and D. Boer, The Influence of strong magnetic fields and

instantons on the phase structure of the two-flavor NJL model, Phys.Rev.

D81 (2010) 074005, arXiv:0911.2164 [hep-ph].

[77] B. Chatterjee, H. Mishra, and A. Mishra, Vacuum structure and chiral

symmetry breaking in strong magnetic fields for hot and dense quark matter,

Phys.Rev. D84 (2011) 014016, arXiv:1101.0498 [hep-ph].

[78] S. S. Avancini, D. P. Menezes, M. B. Pinto, and C. Providencia, The QCD

Critical End Point Under Strong Magnetic Fields, Phys.Rev. D85 (2012)

091901, arXiv:1202.5641 [hep-ph].

[79] S. Fayazbakhsh, S. Sadeghian, and N. Sadooghi, Properties of neutral

mesons in a hot and magnetized quark matter, Phys.Rev. D86 (2012) 085042,

arXiv:1206.6051 [hep-ph].

http://dx.doi.org/10.1103/PhysRevC.75.015805
http://arxiv.org/abs/astro-ph/0507127
http://dx.doi.org/10.1103/PhysRevC.79.035807
http://arxiv.org/abs/0811.3361
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://arxiv.org/abs/0907.2607
http://dx.doi.org/10.1103/PhysRevC.83.065805
http://dx.doi.org/10.1103/PhysRevC.88.025207
http://arxiv.org/abs/1306.3090
http://dx.doi.org/10.1103/PhysRevC.90.025203
http://arxiv.org/abs/1404.3931
http://dx.doi.org/10.1103/PhysRevD.61.025005
http://arxiv.org/abs/hep-ph/9905253
http://dx.doi.org/10.1103/PhysRevD.81.074005
http://arxiv.org/abs/0911.2164
http://dx.doi.org/10.1103/PhysRevD.84.014016
http://arxiv.org/abs/1101.0498
http://dx.doi.org/10.1103/PhysRevD.85.091901
http://arxiv.org/abs/1202.5641
http://dx.doi.org/10.1103/PhysRevD.86.085042
http://arxiv.org/abs/1206.6051


148 BIBLIOGRAPHY

[80] G. N. Ferrari, A. F. Garcia, and M. B. Pinto, Chiral Transition Within

Effective Quark Models Under Magnetic Fields, Phys.Rev. D86 (2012)

096005, arXiv:1207.3714 [hep-ph].

[81] J. Chao, P. Chu, and M. Huang, Inverse magnetic catalysis induced by

sphalerons, Phys.Rev. D88 (2013) 054009, arXiv:1305.1100 [hep-ph].

[82] R. Z. Denke and M. B. Pinto, Influence of a repulsive vector coupling in

magnetized quark matter, Phys.Rev. D88 no. 5, (2013) 056008,

arXiv:1306.6246 [hep-ph].

[83] S. Fayazbakhsh and N. Sadooghi, Weak decay constant of neutral pions in a

hot and magnetized quark matter, Phys.Rev. D88 no. 6, (2013) 065030,

arXiv:1306.2098 [hep-ph].

[84] P. G. Allen and N. N. Scoccola, Quark matter under strong magnetic fields in

SU(2) NJL-type models: parameter dependence of the cold dense matter

phase diagram, Phys.Rev. D88 (2013) 094005, arXiv:1309.2258

[hep-ph].

[85] E. J. Ferrer, V. de la Incera, I. Portillo, and M. Quiroz, New look at the QCD

ground state in a magnetic field, Phys.Rev. D89 no. 8, (2014) 085034,

arXiv:1311.3400 [nucl-th].

[86] A. Grunfeld, D. Menezes, M. Pinto, and N. Scoccola, Phase structure of cold

magnetized quark matter within the SU(3) NJL model, Phys.Rev. D90 no. 4,

(2014) 044024, arXiv:1402.4731 [hep-ph].

[87] G. Cao, L. He, and P. Zhuang, Collective modes and Kosterlitz-Thouless

transition in a magnetic field in the planar Nambu-Jona-Lasino model,

Phys.Rev. D90 no. 5, (2014) 056005, arXiv:1408.5364 [hep-ph].

[88] L. Yu, H. Liu, and M. Huang, Spontaneous generation of local CP violation

and inverse magnetic catalysis, Phys.Rev. D90 no. 7, (2014) 074009,

arXiv:1404.6969 [hep-ph].

[89] P.-C. Chu, X. Wang, L.-W. Chen, and M. Huang, Quark magnetar in the

three-flavor Nambu–Jona-Lasinio model with vector interactions and a

magnetized gluon potential, Phys.Rev. D91 no. 2, (2015) 023003,

arXiv:1409.6154 [nucl-th].

[90] B. Chatterjee, H. Mishra, and A. Mishra, CP violation and chiral symmetry

breaking in hot and dense quark matter in the presence of a magnetic field,

Phys.Rev. D91 no. 3, (2015) 034031, arXiv:1409.3454 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.86.096005
http://arxiv.org/abs/1207.3714
http://dx.doi.org/10.1103/PhysRevD.88.054009
http://arxiv.org/abs/1305.1100
http://dx.doi.org/10.1103/PhysRevD.88.056008
http://arxiv.org/abs/1306.6246
http://dx.doi.org/10.1103/PhysRevD.88.065030
http://arxiv.org/abs/1306.2098
http://dx.doi.org/10.1103/PhysRevD.88.094005
http://arxiv.org/abs/1309.2258
http://dx.doi.org/10.1103/PhysRevD.89.085034
http://arxiv.org/abs/1311.3400
http://dx.doi.org/10.1103/PhysRevD.90.044024
http://arxiv.org/abs/1402.4731
http://dx.doi.org/10.1103/PhysRevD.90.056005
http://arxiv.org/abs/1408.5364
http://dx.doi.org/10.1103/PhysRevD.90.074009
http://arxiv.org/abs/1404.6969
http://dx.doi.org/10.1103/PhysRevD.91.023003
http://arxiv.org/abs/1409.6154
http://dx.doi.org/10.1103/PhysRevD.91.034031
http://arxiv.org/abs/1409.3454


BIBLIOGRAPHY 149

[91] S. Shi, Y.-C. Yang, Y.-H. Xia, Z.-F. Cui, X.-J. Liu, et al., Dynamical chiral

symmetry breaking in the NJL model with a constant external magnetic

field, Phys.Rev. D91 no. 3, (2015) 036006, arXiv:1503.00452 [hep-ph].

[92] M. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in

strong magnetic field: evidence from the Nambu–Jona-Lasinio model,

Phys.Rev.Lett. 106 (2011) 142003, arXiv:1101.0117 [hep-ph].

[93] E. Gorbar, V. Miransky, and I. Shovkovy, Surprises in relativistic matter in a

magnetic field, Prog.Part.Nucl.Phys. 67 (2012) 547–551, arXiv:1111.3401

[hep-ph].

[94] D. P. Menezes, M. B. Pinto, L. B. Castro, P. Costa, and C. Providência,

Repulsive Vector Interaction in Three Flavor Magnetized Quark and Stellar

Matter, Phys.Rev. C89 no. 5, (2014) 055207, arXiv:1403.2502

[nucl-th].

[95] W.-j. Fu, Y.-x. Liu, and Y.-l. Wu, Chiral Magnetic Effect and QCD Phase

Transitions with Effective Models, Int.J.Mod.Phys. A26 (2011) 4335–4365,

arXiv:1003.4169 [hep-ph].

[96] K. Fukushima, M. Ruggieri, and R. Gatto, Chiral magnetic effect in the

PNJL model, Phys.Rev. D81 (2010) 114031, arXiv:1003.0047 [hep-ph].

[97] R. Gatto and M. Ruggieri, Dressed Polyakov loop and phase diagram of hot

quark matter under magnetic field, Phys.Rev. D82 (2010) 054027,

arXiv:1007.0790 [hep-ph].

[98] R. Gatto and M. Ruggieri, Deconfinement and Chiral Symmetry Restoration

in a Strong Magnetic Background, Phys.Rev. D83 (2011) 034016,

arXiv:1012.1291 [hep-ph].

[99] K. Kashiwa, Entanglement between chiral and deconfinement transitions

under strong uniform magnetic background field, Phys.Rev. D83 (2011)

117901, arXiv:1104.5167 [hep-ph].

[100] R. Gatto and M. Ruggieri, Hot Quark Matter with an Axial Chemical

Potential, Phys.Rev. D85 (2012) 054013, arXiv:1110.4904 [hep-ph].

[101] W.-j. Fu, Fluctuations and correlations of hot QCD matter in an external

magnetic field, Phys.Rev. D88 no. 1, (2013) 014009, arXiv:1306.5804

[hep-ph].

http://dx.doi.org/10.1103/PhysRevD.91.036006
http://arxiv.org/abs/1503.00452
http://dx.doi.org/10.1103/PhysRevLett.106.142003
http://arxiv.org/abs/1101.0117
http://dx.doi.org/10.1016/j.ppnp.2012.01.026
http://arxiv.org/abs/1111.3401
http://dx.doi.org/10.1103/PhysRevC.89.055207
http://arxiv.org/abs/1403.2502
http://dx.doi.org/10.1142/S0217751X11054541
http://arxiv.org/abs/1003.4169
http://dx.doi.org/10.1103/PhysRevD.81.114031
http://arxiv.org/abs/1003.0047
http://dx.doi.org/10.1103/PhysRevD.82.054027
http://arxiv.org/abs/1007.0790
http://dx.doi.org/10.1103/PhysRevD.83.034016
http://arxiv.org/abs/1012.1291
http://dx.doi.org/10.1103/PhysRevD.83.117901
http://arxiv.org/abs/1104.5167
http://dx.doi.org/10.1103/PhysRevD.85.054013
http://arxiv.org/abs/1110.4904
http://dx.doi.org/10.1103/PhysRevD.88.014009
http://arxiv.org/abs/1306.5804


150 BIBLIOGRAPHY

[102] J. O. Andersen and A. A. Cruz, Two-color QCD in a strong magnetic field:

The role of the Polyakov loop, Phys.Rev. D88 no. 2, (2013) 025016,

arXiv:1211.7293 [hep-ph].

[103] M. Ferreira, P. Costa, and C. Providência, Strange quark chiral phase

transition in hot 2+1-flavor magnetized quark matter, Phys.Rev. D90 no. 1,

(2014) 016012, arXiv:1406.3608 [hep-ph].

[104] M. Ferreira, P. Costa, O. Lourenço, T. Frederico, and C. Providência, Inverse

magnetic catalysis in the (2+1)-flavor Nambu-Jona-Lasinio and

Polyakov-Nambu-Jona-Lasinio models, Phys.Rev. D89 no. 11, (2014)

116011, arXiv:1404.5577 [hep-ph].

[105] M. Ferreira, P. Costa, and C. Providência, Deconfinement, chiral symmetry

restoration and thermodynamics of (2+1)-flavor hot QCD matter in an

external magnetic field, Phys.Rev. D89 no. 3, (2014) 036006,

arXiv:1312.6733 [hep-ph].

[106] P. Costa, M. Ferreira, H. Hansen, D. P. Menezes, and C. Providência, Phase

transition and critical end point driven by an external magnetic field in

asymmetric quark matter, Phys.Rev. D89 no. 5, (2014) 056013,

arXiv:1307.7894 [hep-ph].

[107] M. Ferreira, P. Costa, D. P. Menezes, C. Providência, and N. Scoccola,

Deconfinement and chiral restoration within the SU(3)

Polyakov–Nambu–Jona-Lasinio and entangled

Polyakov–Nambu–Jona-Lasinio models in an external magnetic field,

Phys.Rev. D89 no. 1, (2014) 016002, arXiv:1305.4751 [hep-ph].
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