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Abstract 
 

 

Massive amounts of biomass are produced every year, including millions of tons of cellulose. 

This almost inexhaustible resource is thus as a stupendous viable alternative for conventional raw 

materials to be applied in a wide range of areas. Cellulose finds uses in applications of the major 

interest nowadays ranging from fiber production (textiles), to packaging and biofuels. Nevertheless, 

in order to produce most of these end products cellulose needs to be dissolved. Dissolution is a very 

non-trivial and challenging process; cellulose solvents are of remarkable different nature and thus 

the understanding of the delicate balance between the different interactions involved becomes 

difficult but essential. 

Nowadays there is a discussion going on in literature on the balance between hydrogen bonding and 

hydrophobic interactions in controlling the solution behavior of cellulose. The commonly accepted 

picture considers hydrogen bonding as the critical factor to understand the insolubility of cellulose. 

A recent view rather highlights the role of hydrophobic interactions in cellulose insolubility.  

In this treatise new evidences pointing out to the role of hydrophobic interactions on the solubility 

and regeneration behavior of cellulose are discussed. Using a set of different techniques and 

approaches the effect of selected additives on the rate and performance of dissolution of cellulose 

are explored.  

It was found that the influence of amphiphilic additives on the thermal stability and gelation of 

cellulose dopes in alkali-based solvents are illustrative examples of the amphiphilic character of the 

cellulose. Further experimental support comes from the enhancement in cellulose dissolution when 

using an amphiphilic cation instead of an inorganic cation. The quality of the amphiphilic solvent 

can also be tuned by addition of salts or cyclodextrins. The former is rationalized in terms of 

polyelectrolyte effect where salt is suggested to screen cellulose charges in strong alkali based 

systems while the later can be understood by specific cyclodextrin-amphiphilic ”host-guest” 

interactions.  

On the other hand acidic solvents reveal great efficiency to dissolve cellulose but chemical 

degradation occurs to some extent. The understanding of the solution state and the molecular 

organization is usually complicated. Additionally, the typical extremely low pH in cellulose dopes 

containing high acid concentrations limits the use of many techniques. In this respect, new 

methodologies were developed such as PT ssNMR, which has shown to be a very capable technique 

providing detailed molecular information of cellulose solutions.  
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Cellulose is partially a crystalline polymer where the amorphous fraction varies according to the raw 

material source, pre-treatments, etc. In a parallel work, the extraction of cellulose nanocrystals 

(CNCs) from cellulose derivatives was also evaluated. Surprisingly, the cellulose derivatives were 

found to be significantly crystalline as indicated by an unusual extraction of CNCs. However, while 

the microcrystalline cellulose (MCC starting material) and the extracted CNCs share the same 

crystalline organization (cellulose I polymorph), the cellulose derivatives (starting materials) were 

found to be of cellulose II type. Data shows that there are specific parts of cellulose that remain 

insoluble during all the modification process.  

The influence of different solvents over the level of dissolution of cellulose samples and the 

properties of the regenerated materials from these solutions are also discussed. It was found that 

solvents using amphiphilic cations are able to dissolve cellulose to a state of molecular dispersed 

solutions or close, contrary to inorganic cations, which are not so effective, leading to a colloidal 

aggregates solution. This level of dissolution results in a completely different regenerated materials, 

with different crystallinity indexes. All together these results support the importance of the 

amphiphilic character of cellulose and suggest that an effective dissolution strategy should strongly 

consider the role of hydrophobic interactions.  

 

 

 

 

 

 

KEYWORDS: Cellulose dissolution, Hydrophobic interactions, Hydrogen bonding, Amphiphilicity, 

Solvents, Gelation, PT ss NMR. 
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Resumo 
        

 

Sendo a celulose um recurso praticamente inesgotável, pois são geradas por ano milhares de 

toneladas de biomassa, esta apresenta-se como uma estupenda alternativa a matérias-primas 

convencionais num vasto número de aplicações. Produção de fibras têxteis, embalagens inovadoras 

e biocombustíveis são apenas alguns exemplos de elevado interesse nos dias que correm. Contudo, 

para se obterem muitos destes produtos finais é necessária a sua dissolução. Esse passo de 

dissolução da celulose é altamente desafiador e nada trivial; os solventes para a celulose são da mais 

variada natureza e, deste modo, um bom entendimento sobre o delicado balanço entre as diferentes 

interações moleculares envolvidas é complicado mas essencial. 

Atualmente existe uma intensa discussão na comunidade científica acerca do balanço entre o efeito 

das ligações de hidrogénio e das interações hidrofóbicas no comportamento da celulose em solução. 

O conceito de que as ligações de hidrogénio eram o factor fundamental no comportamento da 

celulose e eram as principais responsáveis pela sua insolubilidade foi dominante durante um longo 

período de tempo. No entanto, esta problemática foi recentemente revista e chamada a atenção para 

o papel das interações hidrofóbicas na insolubilidade da celulose.  

No presente estudo são descritas algumas evidências que reforçam o papel das interações 

hidrofóbicas no comportamento da celulose durante o processo de dissolução e regeneração. A partir 

de um conjunto de considerações e técnicas de caracterização reportam-se os efeitos de aditivos 

específicos sobre a eficiência e grau de dissolução da celulose.  

Verificou-se que a estabilidade térmica das soluções em solventes de base alcalina aumenta na 

presença de aditivos de polaridade intermédia e que aditivos anfifílicos previnem a gelificação das 

soluções; estes são exemplos ilustrativos do carater anfifílico da celulose. Outras evidências 

experimentais que suportam esse argumento provêm do aumento da eficiência de dissolução quando 

se usam catiões anfifílicos em vez de catiões inorgânicos no sistema de solvente. Observou-se ainda 

que a qualidade dos solventes anfifílicos pode ser alterada por adição de sais ou ciclodextrinas. A 

adição de sais pode ser racionalizada em termos de efeito de supressão de cargas dos grupos 

ionizados em meio fortemente alcalino, enquanto o efeito das ciclodextrinas pode ser entendido 

como a formação de um complexo ciclodextrinas-entidade anfifílica que diminui a disponibilidade 

da mesma em solução. 

Por outro lado, os solventes ácidos são muito eficazes a dissolver celulose, no entanto a dissolução é 

muitas vezes acompanhada por degradação química. O entendimento da organização molecular nas 

soluções de celulose é normalmente complicado. Além disso o pH da solução (extremamente baixo), 

devido à elevada concentração de ácido em solução, limita a aplicação de um elevado número de 
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técnicas. Contudo, a ressonância magnética com transferência de protão em estado sólido (PT 

ssNMR) revelou-se uma técnica muito eficaz, revelando importante informação ao nível molecular 

das soluções de celulose. Demostrou-se ainda ser uma excelente técnica para detetar, e identificar, 

possíveis produtos provenientes da degradação da celulose em solução. 

Reporta-se também a extração de nanocristais de celulose (CNCs) a partir de uma fonte pouco 

comum. Surpreendentemente os derivados de celulose mostraram-se significativamente cristalinos, 

contrariamente ao expectável, possibilitando a extração de CNCs. Porém, enquanto a celulose 

microcristalina (material de partida) e os nanocristais extraídos partilham o mesmo tipo de 

organização molecular (polimorfo de celulose I), os derivados de celulose (materiais de partida) 

apresentam uma organização molecular diferente (polimorfo de celulose II). Os resultados 

demonstram que existem áreas específicas das cadeias de celulose que permanecem insolúveis 

durante todo o processo de modificação (que envolve um passo de dissolução). Estes resultados 

estão de acordo com a ideia de que existe apenas um número muito limitado de solventes capazes de 

dissolver a celulose a um nível molecular. 

A influência do uso de solventes com diferentes características no grau de dissolução das amostras 

terá certamente implicações nas propriedades dos materiais regenerados. Verificou-se que diferentes 

níveis de dissolução resultam em materiais regenerados com diferentes morfologias e diferentes 

cristalinidades. Catiões anfifílicos levam a morfologias mais suaves e materiais regenerados menos 

cristalinos, o que mais uma vez coloca em realce o carater anfifílico da celulose. 

 

 

 

 

 

 

 

 

 

Palavras-chave: Dissolução de celulose, interações hidrofóbicas, ligações de hidrogénio, 

anfifilicidade, solventes, gelificação, PT ss NMR. 

 

 

 

 

 

 



1 

 

CHAPTER 1 

 

 
 

 

 

Introduction 

 
 

 

General aspects 
 

 

Consumers, industry and governments are increasingly demanding products 

from renewable and sustainable resources that are biodegradable, non-petroleum based, 

carbon neutral and, at the same time, generating low environmental, animal/human 

health and safety risks [1]. In this context, there is almost not any other raw material 

that offers such a broad variety of applications such as cellulose, the most biodegradable 

and abundant biopolymer on earth with an estimated annual synthesis in nature of ca. 

10
11

-10
12 

tons [2]. Cellulose is major component of wood, a widely used construction 

material, but it is also used in the form of natural textile fibers, such as cotton or flax, or 

in the form of panels and paper. Native cellulose is also a versatile starting material for 

subsequent chemical modification for the production of a variety of cellulose 

derivatives with applications in several areas such as food, printing, cosmetic, 

detergents, enhanced oil recovery, textile, pharmaceutical and domestic life [3, 4], but 

also for the production of regenerated cellulose-based threads and films [5]. Cellulose is 

a particularly stable polysaccharide; its stability, mainly due to the crystallinity 

presented, turns cellulose resistant to hydrolysis by weak acids and bases and also to the 
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hydrolytic action of enzymes because the glycosidic linkages are not readily accessible 

from microorganisms and fungi.  

Although biopolymers are promising options for many applications, a major concern is 

in many cases a limited solubility in water (and cellulose is a clear example of it) which 

makes their processing challenging. The solubility of the materials can be to some 

extent anticipated just from a structural analysis. However, this not always holds.  

Proteins, DNA or polysaccharides are made of small and water soluble blocks; and if 

one takes the example of cellulose, it is composed of repeating anhydroglucose units 

where each unit contains three hydroxyl groups (see figure 1.1). Despite its notable 

global hydrophilic character, cellulose is insoluble in water and in most common 

solvents [6-8]; it is relatively consensual that due to the elevated number of hydroxyl 

groups present in cellulose it can form a highly ordered network of intermolecular and 

intramolecular hydrogen bonds. This hydrogen bonding based mechanism, essentially 

represents the established vision on cellulose recalcitrance to dissolution [9]. Hydrogen 

bonding is typically pointed to explain cellulose molecular association in other systems, 

even in aqueous systems. In literature, the double helix association in DNA is 

sometimes suggested to be caused by hydrogen bonding [10]. However, a recent and 

more accurate view, of the double helix association shows that its association is mostly 

driven by hydrophobic interactions between the neighbouring stacks of base-pairs that, 

in general, cause the association and helix formation [11]. Definitely, hydrogen bonds 

are expected to occur, but are rather responsible for the structural selectivity of the 

associated state, while the driving force for association are the hydrophobic interactions.  

A similar thought can be applied to the cellulose case. Cellulose presents a structural 

anisotropy (discussed below) and therefore it is unclear why there is a substantial gain 

in free energy in moving a molecule with hydrogen bond capabilities such as water (that 

can act both as acceptor and donor in hydrogen bonding) from an aqueous medium to a 

less polar environment. The idea, that the insolubility of cellulose is only driven by 

hydrogen bonding, was recently revisited and it has been argued that hydrophobic 

interactions play an important role on cellulose solubility pattern. This alternative but 

complementary view is important in order to understand the molecular mechanisms for 

association in an aqueous media and develop suitable solvents for dissolution [6, 12, 

13].  
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Structure and properties of cellulose 
 

 

Cellulose is the major component of the cell walls of plants having an 

undisputed role among the raw materials to be used in a sustainable future.  In the cell 

walls it is typically combined with lignin and hemicelluloses and water [14] but 

cellulose can also be synthesized by bacteria or tunicates.  Cellulose was isolated for the 

first time by the French chemist Payen in 1838 [15] who extracted it from green plants 

and reported its elemental composition four years later [8].  

Regarding its structure, cellulose is a linear homopolymer composed of D-

anhydroglucopyranose units (AGU), which are connected by β(1–4)-glycosidic bonds 

(figure 1.1) [16].  

 

Figure 1.1: Molecular structure of cellulose (n = value of degree of polymerization). 

 

The size of the cellulose molecules can be defined by the average degree of 

polymerization. The average molecular weight is estimated from the product of the 

degree of polymerization and the molecular mass of a single AGU. Each AGU has three 

hydroxyl groups (one primary and two secondary moieties that represent more than 

30% by weight), with the exception of the terminal units. These structural features, 

makes cellulose surface chemistry quite intriguing and opens a broad spectrum of 

potential reactions, which typically occur in the primary and secondary alcohols [17].  

In nature, cellulose is organized in a rather dense and highly hierarchal fashion, from the 

single AGU up to the micro and macro fibrils, where, as alluded to above, an extended 

intra- and intermolecular network of hydrogen bonds is responsible by the cohesion 

between cellulose molecules [18, 19]. The amphiphilic character of cellulose can be 

derived from its structure; the hydrophilic character is presented in the equatorial 
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direction of a glucopyranose ring, because all three hydroxyl groups are located on the 

equatorial positions of the ring. On the other hand, the hydrophobic character is found 

in the axial direction of the ring, (C-H bonds are located on the axial positions of the 

ring) [14, 20]. Therefore, it seems clear that cellulose molecules have an intrinsic 

structural anisotropy (figure 1.2) and due to the intra- and intermolecular hydrogen 

bonds there is the formation of rather flat ribbons, with sides with markedly different 

polarity [21-23]; it is expected that all these features considerably influence both the 

microscopic (e.g. interactions) and macroscopic (e.g. solubility) properties of cellulose.   

Yamane et al. has proposed that the wetting properties of regenerated cellulose can be 

attributed to such structural anisotropy [22]. Thus, an efficient solvent should be able to 

overcome these inter-sheet interactions, in order to efficiently dissolve cellulose [6, 12, 

13, 24-26].  

 

Figure 1.2: Hydrophilic and hydrophobic parts of the cellulose molecule: (left), lateral view of 

the glucopyranose ring plane showing the hydrogen atoms of C–H bonds on the axial positions 

of the ring. (right), top view of the glucopyranose ring plane highlighting hypothetic hydrogen 

bonding between the  hydroxyl groups located on the equatorial positions of the ring (adapted 

from [27]). 

 

Native cellulose is a semi-crystalline polymer and as expected for such class of 

polymers, cellulose can organize in different forms; in the cell wall of a plant, 

amorphous regions (low ordered) coexist with crystalline domains (highly ordered) 

[28]. The degree of crystallinity of the extracted cellulose, usually in the range of 40–

60%, is very dependent on the origin and also on the extraction process of the sample 

[18]. Curiously, the parallel arrangement found in nature (cellulose I polymorph), is not 

the most stable crystalline form of cellulose; when dissolved and recrystallized, 

cellulose chains adopt an anti-parallel arrangement, cellulose II polymorph [29, 30], a 

most stable form. This intriguing process is still unclear. However, it has been 

postulated that the transition from cellulose I to cellulose II results from the rotation of 

 

 

  

 

Hydrophobic region Hydrophilic region 
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the chains in the sheets of a microfibril around their axes, leading only to two variations 

of the dihedral angle at the glycosidic linkage [28, 31]. This transition can be induced 

for example by mercerization of the cellulose in alkali solutions [32].  

 

 

Processing cellulose 
 

 

Processing cellulose is usually a challenging step during the productive process. 

Cellulose is not a meltable polymer; the degradation temperature is lower than the 

melting temperature. Native cellulose, the majority of modified celluloses, as well as 

regenerated cellulose are not thermoplastic. Only a few cellulose derivatives display 

thermoplastic behaviour such as cellulose ethers (e.g. methyl cellulose, ethyl cellulose, 

hydroxyl ethyl cellulose, hydroxylpropyl cellulose, etc.) and cellulose esters such as 

cellulose alkanoates. Mixed cellulose esters showed limited thermoplastic processability 

[33]. 

Recent studies show that the degradation process is influenced by the crystallinity of the 

cellulose; generally it is initiated in the cellulose amorphous regions and thus, the 

smaller the size of the crystalline domains the lower the thermal stability of the sample 

[34]. Cellulose from the same origin can have different thermal stabilities depending on 

the extraction procedure. 

The alternative to melt cellulose is to dissolve it. Although there are many different 

solvents for cellulose, dissolution is very challenging step. Most of the solvent systems 

known have a limited capacity of dissolution (i.e. only a few percent of cellulose), are 

toxic and expensive, thus limiting their industrial uses. 

 

 

Solvents for cellulose 
 

 

As mentioned, cellulose is neither meltable nor soluble in usual solvents; water 

and typical organic solvents fail in this respect [12, 35]. However, this biopolymer is 

soluble in more striking media, several with no apparent common properties [36]. The 

huge difficulty in dissolution process can be attributed to the complexity of such a 
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biopolymeric network, the partial crystalline structure and the extended non covalent 

interactions among molecules, turning the chemical processing rather difficult.  

Cellulose solvents are usually divided in two main groups: derivatizing and non-

derivatizing solvents. In figure 1.3 the classification of the more common cellulose 

solvents is schematized. 

 

Figure 1.3: Schematic representation of the classification of cellulose solvents [37]. 

 

 

Historically, the first developed was a derivatizing solvent and was described about 150 

years ago [17]. As the name suggests, the “derivatizing” solvent group comprises all the 

systems where cellulose dissolution occurs via the chemical formation of a labile 

“unstable” ether, ester or acetal intermediate. The viscose process (NaOH + CS2) is the 

most common derivatizing method used on large scale [28, 38]. An interesting 

alternative to the viscose process uses urea as a key ingredient to form the cellulose 

carbamate intermediate which is soluble in an aqueous sodium hydroxide solution, with 

or without other additives such ZnO [39]. 

On the other hand, the “non-derivatizing solvent” systems comprise all solvents capable 

of dissolving cellulose only via physical intermolecular interactions. This class of 

solvents is particularly relevant for the organic chemistry of cellulose under 

homogeneous conditions. Historically significant, and of practical relevance also for 

analytical purposes, is the system introduced by Schweizer in 1857 [40]. Schweizer 

found that cupper salts and concentrated ammonia effectively dissolve cotton. Similar 

systems were developed and among the most popular the cuprammonium hydroxide or 
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simply “cuam” is widely used for degree of polymerization estimation by viscosity 

determination [41]. In the beginning of 19th century, ethylenediamine was found to be a 

good alternative to ammonia and also other complexing solvents were designed, such as 

the cadmium hydroxide in aqueous ethylenediamine, “cadoxen”, or nickel oxide in the 

same aqueous ethylenediamine, “nioxen” [36, 42, 43]. Similar alternative systems have 

been reported using mainly other transition metals (such as zinc or palladium) combined 

with an amine or ammonium compound. However, none of these systems have achieved 

full commercial success [36].  

Sobue et al. introduced a new approach and since this work it is known that cellulose is 

soluble in aqueous NaOH below 268 K within a specific concentration range of NaOH 

(7–10%) [44]. This system is cheap, potentially non-polluting, uses very common 

chemicals and relatively easy to handle. However these aqueous alkali systems do not 

completely disrupt the semicrystalline regions of cellulose and the solubility is limited 

to cellulose of relatively low degree of polymerization (up to ca. 250). The apparent 

solubility also depends on the degree of crystallinity and the crystalline arrangement. 

Pre-treatments such as steam explosion of the dissolving pulp have been successfully 

used to improve dissolution [45]. Other aqueous systems using bases, such as LiOH 

[46], or quaternary ammonium hydroxides are also capable of dissolving cellulose [28, 

36, 47]. More lately, the aqueous NaOH solutions were doped with additives such as 

polyethylene glycol, PEG [48], urea [49] and thiourea [50] and reported to enhance 

dissolution ratio and the stability of the dope. 

In 1932 Letters et al. investigated the swelling and dissolution of cellulose in highly 

concentrated aqueous zinc chloride solution; dissolution was only observed for salt 

concentrations above 63% (w/w) [51]. Several concentrated aqueous salts solutions 

were studied, however, only three water/salt systems were described as effective 

cellulose solvents: Ca(SCN)2/H2O [52], LiSCN/H2O [17] and ZnCl2/H2O [53]. Then 

Ca(SCN)2·3H2O showed the strong swelling and solvent action on cellulose [54]. 

Mixtures of NaSCN/KSCN with Ca(SCN)2·3H2O or dimethyl sulfoxide (DMSO) were 

also found to be able to dissolve cellulose. The molten system LiSCN·2H2O is 

described as an efficient cellulose solvent [37]. Recently, Leipner et al. reported that 

LiClO4·3H2O is a very effective solvent giving transparent cellulose solutions within a 

few minutes without any pre-treatment or activation [55]. In addition, mixtures of 

LiClO4·3H2O with Mg(ClO4)2·H2O or MgCl2.6H2O are also promising solvents [56]. 
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Also non-aqueous systems are apt to dissolve cellulose. Again, the solvent spectrum is 

large and the number of possible combinations is large. The first developed systems are 

composed of selected ammonium salts with some simple inorganic compounds, such as 

SO2 and NH3, and can indeed be considered as the origin of two large groups of non-

derivatizing non-aqueous solvent systems [36]. The first group generally comprises 

mixtures of a polar inorganic liquid, SO2, and an amine (primary, secondary, tertiary 

aliphatic or secondary alicyclic) [37]. Otherwise, the sulfur component can be modified 

to SOCl2. Appropriate polar liquids employed are for example N,N-dimethylformamide 

(DMF), DMSO, N,N-dimethylacetamide (DMAc) or formamide. From the ample 

diversity of possible mixtures, DMSO/SO2/diethylamine is one of the most versatile 

[57]. 

Among the polar liquids DMSO gained relevance due to the low toxicity presented; 

relevant mixtures of two-component solvents containing DMSO [37] such as 

DMSO/methylamine, DMSO/KSCN, DMSO/CaCl2, DMSO/formaldehyde and 

DMSO/substituted ammonium fluorides, such as tetrabutylammonium fluoride, TBAF 

(recently reported as a powerful solvent system capable of dissolving cellulose of 

reasonably high degree of polymerization (650) in a couple of minutes without any pre-

treatment at room temperature [58]) were developed. Systems using lithium salts in 

non-aqueous solutions are also very useful for cellulose analysis and for the preparation 

of a wide variety of derivatives. In this regard, the DMAc/LiCl mixture, developed by 

McCormick, should be highlighted [59].  

The Lyocell process, whose commercial potential has been demonstrated and is now 

applied in large scale, is based in the use of N-methylmorpholine-N-oxide (NMMO) as 

cellulose solvent, which emerged as the best of the amine-oxides in the late 1970's [17]. 

Solutions with up to 23 wt.% of cellulose can be obtained by dissolving the biopolymer 

in NMMO aqueous mixtures, and subsequently removing water under vacuum. 

Nevertheless, two main problems are still associated with the NMMO process; the 

instability of the solvent which demands major investments in safety technology and the 

tendency of the regenerated fiber towards fibrillation [60].  

Another group of chemical compounds with high potential to dissolve cellulose are 

ionic liquids (ILs). Systems containing ILs were first employed by Graenacher, in the 

form of N-alkylpyridinium salts, for the dissolution of cellulose and as media for 

homogeneous chemical reactions [68]. Their potential was neglected for almost seventy 

years before the work of Swatloski et al. where several low melting ionic liquids (below 
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100 °C) were reported as cellulose solvents [61]. This work open a new and exciting 

field in cellulose research and, since then, a huge variety of ILs has been developed. It is 

important to note that the number of potential ion combinations available is estimated to 

provide around 10
12

 ILs [62]. Currently, the most efficient ILs for cellulose dissolution 

are mainly composed of a salt with halide [63], phosphonate [64], formate [65] or 

acetate [66] as anion, and imidazolium [67], pyridinium [68], choline [69], or 

phosphonium [70] as cation. An example of a recently synthesized ionic liquid with 

huge potential for fiber spinning (i.e. textile applications) is the 1,5-diaza-

bicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]) which is described as a powerful 

direct cellulose solvent [71]. The development of a process designated as Ioncell-F 

produces regenerated cellulose fiber with properties comparable (or even superior) to 

Lyocell [72]. 

 

 

Mechanisms of dissolution 
 

Due to the wide variety of solvents of different nature becomes unclear the 

understanding of the subtle balance between the different interactions acting during the 

solubilization process; although numerous and spread opinions, the more consensual 

vision among the leaders in the field has been that the key factor to dissolve cellulose 

resides in the solvent ability to break the abovementioned hydrogen bond network 

(intra- and intermolecular) [50]. The amphiphilic properties of cellulose were recently 

suggested to play an important role in cellulose solubility pattern and a careful 

examination of the interactions involved suggests that hydrophobic interactions should 

not be neglected in the cellulose dissolution process. Actually, hydrophobic interactions 

have been verified to clearly contribute to the crystal-like structure of cellulose and its 

stability over a hypothetical solution state; looking on the free energy simulations using 

oligomers it has been estimated that there is a 2.0 kcal/mol/residue contribution for the 

hydrophobic stacking while the estimated hydrogen bonding contribution is about eight 

times lower [14].  

Thermodynamically the dissolution of a compound in a solvent is, of course, governed 

by the free energy of mixing; this law is valid for all mixtures, involving small solutes 

or large molecules, such as cellulose [18]. A negative variation of the free energy means 
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that the mixing process will happen spontaneously. However, for the case of polymers, 

even when the free energy variation is favourable to dissolution, this could not occur, 

because the process may be too slow on the time scale of observation; strategies to 

increase the rate of dissolution involves heating and stirring in order to increase the 

contact between the polymer and the solvent. 

Generally the driving force for dissolution, or miscibility, is the entropy of mixing, and 

not as it is sometimes assumed favourable interactions between solvent and solute [12]. 

This explains the higher solubility of polyelectrolytes in water when compared with 

nonionic polymers. Charging up a polymer is always expected to help solubility in 

many solvent systems, as result of the huge contribution to the translational entropy of 

mixing promoted by the dissociated counterions. Most likely, this is the reason why 

cellulose tends to be more soluble/be more penetrated by the aqueous solvent at either 

high or low pH. Nevertheless, the pK values of the OH groups are such that rather 

extreme conditions are needed for either deprotonation or protonation; a pKa of 13.5 has 

been found for the deprotonation of the OH groups of C2 and C3 of AGU units of β-

cyclodextrin [73].  

On the other hand, an acceptable solvent for cellulose must be able to balance the low 

entropy gain with favourable solvent/polymer interactions. Since cellulose should be 

regarded as an amphiphilic molecule a good basis for the development of new solvents 

should focus, not only in eliminating hydrogen bonding but also, on 

reducing/eliminating hydrophobic interactions among cellulose chains. Both the 

amorphous and the crystalline regions can be affected by the solvent. However, the 

crystalline domains, characterized by a lower free energy than the amorphous one, 

should be more difficult to dissolve due to the reduced accessibility of the solvent  

caused by the high stability of the solid state [12]. This is particularly relevant since as 

mentioned above crystalline cellulose domains has an amphipathic-like structure; 

hydrophobic surfaces consisting of pyranose ring hydrogens and hydrophilic regions 

arising from the hydroxyl groups directed towards the sides of the ring [12, 23, 74]. In 

fact, this also follows from the earlier discussion on the effect of additives such as PEG, 

urea and thiourea on NaOH solutions as these additives are expected to weaken 

hydrophobic interactions among cellulose molecules (see discussion in the next 

section). 

Consequently, different activation processes are routinely applied to mainly transform 

the more ordered and less accessible (crystalline) domains of cellulose into disordered 
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and more accessible regions, in order to facilitate dissolution. It is argued that these 

alterations of the cellulose structure improve the solvent molecules accessibility to the 

cellulose chains [28]. The crystallinity effect in dissolution is still controversial despite 

some clear evidences of its effect. For example, it was showed that sisal pulp (e.g. fibers 

extracted from the Agave sisalana plant) can be easily dissolved than cotton linters in a 

particular solvent system; the enhanced solubility is attributed to the lower crystallinity 

index and smaller crystallite size compared to the latter one. After pre-treatment of 

cotton linter (e.g. mercerization), dissolution was considerably improved and this 

observation was related to the decrease in both the crystallinity index and average 

crystal size [75]. Also the high solubility of cellulose derivatives supports the 

importance of the crystallinity in the solubility pattern of cellulose. 

It is also important note that in the majority of the cases, cellulose is not dissolved down 

to the molecular level but rather forms stable colloidal dispersions where ordered 

cellulose aggregates of, at least, several hundred chains are present. The structure in 

solution has been proposed to consist of aggregates of fringed micelle type 

characterized by a highly ordered cylindrical core of aligned chains, which is insoluble 

in the solvent, and two spherical coronas surrounding the core ends [76]. Reaching 

molecularly dispersed systems has been challenging for nearly all known solvent 

systems. Recently, Cohen et al. reported that ionic liquids are able to dissolve cellulose 

down to a molecular level [77].  

Typically, the cations of ILs are bulky species with amphiphilic properties. Proof of this 

is that most literature agrees on the formation of aggregates or micelles of ionic liquids 

in water, similar to a surfactant behavior [78]. Such amphiphilicity should be considered 

when discussing the mechanism of dissolution of cellulose, as discussed above. Recent 

molecular dynamics simulations, carried out on cellulose oligomers and 1-ethyl-3-

methylimidazolium acetate (C2mimOAc), actually suggest that the cations are in close 

contact with the cellulose chains via hydrophobic interactions [79]. The same has been 

concluded when using urea [80].  
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Role of cellulose interactions in dissolution and regeneration: 

Amphiphilicity and Hydrophobic Interactions 

  
As discussed above, the dissolution of a polymer is governed by the free energy 

of mixing [81]. Small oligomers of cellulose as glucose, cellobiose and any other with 

degree of polymerization slightly higher (<10) are soluble in common solvents, such as 

water. As the molecular weight increases, the entropic contribution for dissolution 

decreases [82] and the solubility drops dramatically as the chain length increases [83].  

The entropy of mixing for polymers is composed by two terms: a translational term 

(related with the molecular weight of the polymer) and a second term related to the 

conformational freedom [12]. Flexible polymers can easily increase their 

conformational freedom on going into solution; on the other hand, stiff polymers cannot 

change the conformation and the gain in conformational freedom is very limited. 

Flexible polymers are, consequently, more soluble than rigid polymers. 

Since cellulose is a fairly rigid polymer, its ability to gain configurational entropy in 

solution is limited, lowering the solubility [84]. Also, native cellulose has a high 

molecular weight, which inevitably leads to a decrease in the entropic gain in the 

dissolution process leading to a very low solubility. In addition, the stiffness of the 

structure and the stacked chains by the hydrophobic regions that allow transverse 

hydrogen bonds, restrict the entropy of mixing, so that a negative free energy change is 

not reached. In these circumstances, favourable/unfavourable interactions between 

polymer and solvent are decisive in determining solubility/insolubility of cellulose in a 

solvent system. 

As alluded to water alone cannot dissolve cellulose, since the pair-wise hydrogen bond 

interactions involving water-water, carbohydrate-water, and carbohydrate-carbohydrate 

hydrogen bond interactions are about the similar magnitude, about 5 kcal/mol [12]. 

Therefore, hydrogen bonds might be responsible for keeping the linear cellulose chains 

arranged in sheets. On the other hand, as discussed above, the stacking of these sheets 

into the three-dimensional crystal structures of the cellulose material involves 

hydrophobic interactions. A theoretical work on the mean force calculations for the 

separation of cello-oligomers, have suggested that hydrophobic interactions contribute 

favorably to stabilizing a crystal-like stacked structure [85]. In fact, the driving force for 
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association is not exclusively van der Waals interactions [86, 87], but rather 

hydrophobic association driven by the liberation of structured water molecules [88]. 

The role of hydrophobic interactions in the cellulose solubility pattern is supported by 

some significant examples in literature. 

A clear support to this view comes from the work of Isobe et al., which described that 

urea even if it does not have direct interaction with cellulose, favours the alkali 

penetration into the cellulose crystalline regions by stabilizing the swollen cellulose 

molecules, while following the cellulose dissolution in the NaOH/urea based solvent 

[89]. The authors concluded that such stabilizing effect may result from the fact that 

urea prevents the hydrophobic mutual association of cellulose chains. 

Various substances of intermediate polarity such as poly(ethylene glycol), thiourea and 

urea can enhance the aqueous solubility of cellulose; also amphiphilic species, such as 

surfactants, have a positive impact in dissolution rate of cellulose  [6]. Actually, urea is 

normally used as agent for protein denaturation and it is rational to assume that the role 

of urea in cellulose dissolution is similar to protein denaturation [90]. Concerning 

protein denaturation, using urea, it was demonstrated that urea molecules accumulate 

around less polar side chains forming an interface between less polar protein surface 

and water. The resulting displacement of water molecules from the protein surface into 

bulk water is entropically and enthalpically favorable and reduces the hydrophobic 

effect, such that unfolding of the protein becomes favorable [91]. Urea is less polar than 

water and is well known for its ability to reduce/eliminate hydrophobic association in 

water. One other example of this is the increase in critical micelle concentration (cmc) 

promoted by the addition of urea to aqueous surfactants systems; this increment in cmc 

is driven by the inhibition of hydrophobic association of surfactants [92]. Obviously, the 

key point here is the nature of urea which can establish polar and/or apolar interactions 

with other molecules; this has been demonstrated using molecular modeling in protein 

denaturation process [91], but also the enhancement of its concentration close to model 

hydrophobic surfaces [93] and inside hydrophobic nanotubes [94] are examples of it. 

The investigation carried out by Xiong et al., using an aqueous NaOH based system, is 

another interesting example that supports the importance of hydrophobic interactions in 

cellulose behaviour. It was clearly shown that urea can improve the rate of dissolution 

by interaction via van der Waals forces with the hydrophobic regions of cellulose to 

prevent dissolved molecules from re-gathering [95]. In perfect agreement, the study 

carried out by Bergenstrahle-Wohlert et al., combining MD simulations and solid state 
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NMR on cellulose in pure water and in urea aqueous solutions [96] demonstrated that 

the local concentration of urea is significantly enhanced at the cellulose/solution 

interface. The study also showed that urea has a preferential orientation when binding to 

cellulose,   having the carbonyl oxygen (“hydrophilic part”), on average, pointing 

slightly away from the cellulose backbone and the nitrogen atoms (‘‘hydrophobic 

part’’), pointing in the direction of the cellulose backbone.  

Ionic liquids (ILs), a very promising group of solvents for cellulose, as discussed in the 

previous section, are composed of typically bulky cations with amphiphilic properties 

[62, 97, 98]. Even if there is no clear understanding on the role of individual ionic 

species in dissolution, it becomes clear that the high asymmetry in the IL species is 

fundamental and necessary for an efficient dissolution [6]. Such amphiphilicity is 

normally not considered when discussing the mechanism of cellulose dissolution, but is 

believed that this is determinant to understand their action in cellulose solubility. The 

dissolution of an amphiphilic polymer, such as cellulose, would be facilitated in 

solvents with amphiphilic properties and therefore the amphiphilic properties of all 

cations in ILs clearly fit this suggestion. 

Mostofian et al. presented a notable work supporting this idea, suggesting a synergistic 

approach for cellulose dissolution in ILs [99]. The authors performed all-atom MD 

simulations of a cellulose fiber in 1-butyl-3-methylimidazolium chloride (BmimCl) in 

order to clarify the role of cations and anions during dissolution and the preferential 

interactions of the IL ions with cellulose surfaces. The study reveals that while the Cl
-
 

anions predominantly interact with the cellulose surface hydroxyl groups, the Bmim
+
 

cations stack preferentially on the hydrophobic cellulose surfaces, governed by non-

polar interactions with cellulose. It is also suggested that the stacking interaction 

between solvent cation rings and cellulose pyranose rings can compensate the 

interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. 

This work not only reinforces the idea that ILs are a very promising class of solvents for 

cellulose, but also provides an essential molecular understanding of how ILs act, and 

more notably, highlights the concerted and distinct action of anions and cations on the 

hydrophobic and hydrophilic regions of cellulose surfaces, respectively, as the key to an 

efficient dissolution of an amphiphilic molecule such as cellulose.  

Another interesting study, recently presented by Isobe et al. [100] focused on the 

molecular regeneration of cellulose, both using a coagulant media or upon heating, in an 

aqueous alkali-urea solvent system, monitored by time resolved synchrotron X-ray 

http://www.chemspider.com/Chemical-Structure.2015917.html
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radiation. It is suggested that the gelation process is driven by the stack of the 

glucopyranose rings (conducted by hydrophobic interactions) to form monomolecular 

sheets, which then line up by hydrogen bonding to form Na-cellulose IV, a hydrate form 

of cellulose II). This idea has been hypothesized and supported by molecular dynamics 

first by Hermans [101] and later by Hayashi [102]. Afterwards, the theoretical work of 

Miyamoto et al. [23] simulated the regeneration of cellulose by MD, and supports the 

hypothesis of Hermans and Hayashi. However, this work of Isobe et al. constitutes the 

first experimental evidence of the development of hydrophobically stacked 

monomolecular sheets.  

Östlund et al. stated that the properties of the regenerated cellulose material can be 

tuned by the proper choice of the experimental conditions such as temperature and 

coagulation medium [103]. It is suggested that coagulation media of different polarity 

lead to regenerated materials with different morphologies and properties and this can be 

used to tune the properties of the end materials. As the polarity of the coagulant is 

increased, more ordered (crystalline) materials are obtained, the hydrophobic 

interactions between the polymer chains during regeneration being governed by the 

increased polarity of the coagulant.  

Rein et al. have used cellulose as novel and efficient eco-friendly emulsifying agent to 

form stable oil-in-water or water-in-oil dispersions, taking advantage of its 

amphiphilicity [104]. The authors interpret the dispersion stability as due to the ability 

of the hydrophilic hydroxyl groups to interact with the water while the more 

hydrophobic planes of the glucopyranose rings are situated towards the hydrocarbon oil. 

These dispersions were found to be stable for large periods of time, mainly the oil-in-

water dispersion with stability of more than one year, where neither flocculation nor 

coalescence was observed. 

Also Nawaz et al. noticed the amphiphilic properties of cellulose while studying the 

mechanism of mediated imidazole-catalysis acylation of cellulose, suggesting that the 

sub-sequent decrease in enthalpy during the N-butanoyl- to N-hexanoylimidazole 

conversion may be related to favorable hydrophobic interactions between the carbon 

chains of the N-acylimidazole and cellulosic surface, whose lipophilicity has increased, 

due to its partial acylation  [105]. Closely related Hauru et al. found that cellulose 

regeneration from IL solutions goes via the hydrophobic association of the less polar 

regions of cellulose [106].  
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An additional curious example comes from the deposition of carboxymetylcellulose 

(CMC) on polymer surfaces. Kargl et al. suggest that the amphiphilicity of cellulose 

surfaces is important for the irreversible deposition of CMC over a polymeric substrate 

with appropriate properties, i.e. better results were obtained in substrates not highly 

hydrophilic or very hydrophobic [107].  

Regarding the composite area, in the cellulose-acrylated epoxidized soybean oil 

(AESO) based biocomposite the presence of oil molecules was found in the cellulosic 

material,  suggesting the lack of covalent or hydrogen bonding between the two 

components [108]. The authors proposed that the dispersion of AESO molecules in the 

cellulose matrix is held by hydrophobic interactions between hydrocarbon chains of the 

AESO and hydrophobic domains of cellulose, playing a crucial role in the composite. 

From the facts mentioned above, it is indeed very striking that cellulose is amphiphilic 

in nature and hydrophobic interactions play an important role both in dissolution and 

regeneration.  

 

 

Motivation and scope 
 

As pointed out in the first chapter of this thesis, there are different points of view 

regarding which are the governing forces involved on the cellulose dissolution and 

regeneration processes. Also the level of dissolution, i.e. molecular dispersed cellulose 

chains vs. colloidal aggregates, is still a non consensual theme. Using a set of different 

techniques, described in chapter 2, in particular rheology, optical and electron 

microscopy, light scattering, small and wide angle X-ray scattering and NMR we have 

strengthened the molecular understanding of the cellulose dissolution. Part of the work 

was also performed in collaboration with the Department of Physical Chemistry at Lund 

University, Sweden and the Laboratory of Plant Biotechnology at the University of 

Algarve. 

The central scope of the thesis is to understand the balance between the interactions 

involved in cellulose dissolution and its impact on the degree of dissolution, solution 

state (i.e. molecular solutions or colloidal aggregates), and on the resultant regenerated 
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materials. This can contribute to the development of new efficient and environmental 

friendly solvents for cellulose. 

Until now, only a few solvent systems are described as able to dissolve cellulose into a 

molecular level [77] and  the same applies for cellulose derivatives. Cellulose 

modifications are expected to adversely affect the degree of crystallinity. However, 

cellulose derivatives are surprisingly highly crystalline and therefore can be used as 

sources for nanocrystalline cellulose. In chapter 3, section 3.1, the extraction and 

characterization of cellulose nanocrystals using cellulose derivatives is described and 

also there is a discussion on dissolution at a molecular level or the presence of colloidal 

aggregates.  

In section 3.2, is discussed a new NMR method, polarization transfer solid-state NMR, 

as applied to cellulose solutions. The advantage of the technique to provide robust 

information on the molecular-level about the dissolved and solid fractions of cellulose 

in aqueous dissolution media is demonstrated.  

In chapter 3, section 3.3 the dissolution of cellulose in alkali based aqueous solutions 

and the influence of additives on the dissolution performance are discussed.  

To a better understanding of the dissolution mechanism, a wide range of solvents for 

cellulose is used. In chapter 3 the main results are described for basic and acidic 

solvents.  

The balance between the interactions involved in cellulose dissolution and the stability 

of the cellulose solutions are discussed in section 3.5 of chapter 3. The results clearly 

indicate the improvement of the thermal and storing stability of the solutions when 

amphiphilic additives are in the solution. The thermal gelation is shifted to higher 

temperatures when surfactants are added to the solution, which provides support to the 

role of the hydrophobic interactions also in cellulose regeneration. 

The influence of the different solvent systems on the sample properties, regarding 

morphology and crystallinity of the regenerated materials, is discussed in chapter 3, 

section 3.6.  

In chapter 4 the main conclusions are gathered. 
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CHAPTER 2 

 

 
 

 

Materials and Methods 
 

 

Materials  
 

Microcrystalline cellulose (MCC) (Avicel PH-101, average particles size of 50 

µm and degree of polymerization of ca. 260), carboxymethyl cellulose (CMC) (Mw = 7 

× 10
5
 Da, degree of substitution of  0.9), zinc oxide (> 99% purity), sulfuric acid (98% 

purity ACS reagent), urea (99.5% purity), thiourea (>99% purity), alkyl-polyglucoside 

(APG), 50% solution, 1-butyl-3-methylimidazolium chloride (BmimCl) (>98% purity), 

4-methylmorpholine N-oxide monohydrate (NMMO) (>95% purity), 

tetrabutylphosphonium hydroxide (40% solution in water) and tetrabutylammonium 

hydroxide (TBAH) of chromatographic grade (as a 40 wt.% solution in water), 

methanesulfonic acid (anhydrous), glycerol (purity >99.5%), an aqueous surfactant 

solution (~35% active substance) of a derivative of betaine (N-(Alkyl C10-C16)-N,N-

dimethylglycine betaine), 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt and 

zinc chloride (reagent grade, purity >98%) were acquired from Sigma Aldrich. High 

molecular weight cellulose (Domsjö Pulp, degree of polymerization of ca. 745) was 

obtained from Domsjö Fabriker, Sweden.  NaOH pellets (>98% purity) and ortho-

phosphoric acid (purity 99%) were obtained from Fluka. Hydroxypropyl 

methylcellulose (HPMC, Methocel
®
 K15M Premium), 19–24% methoxyl and 7–12% 

hydroxypropyl, Mw = 4.3 × 10
5
 Da, was purchased from Dow Chemical Company. 

Dialysis bags (molecular weight cut-off 2000, Cellu Sep H1) were purchased from 



20 

 

Orange Scientific. The 
1
H NMR samples were prepared using D2O (99.8%) supplied by 

EURISO-TOP (France) 

 

 

Sample preparation  
 

Cellulose dissolution was obtained following the adapted standard procedures in 

literature [53, 109, 110]. Briefly, a known amount of cellulose was dispersed in a 85 

wt.% phosphoric acid pre-cooled at 5 ºC, the solution was stirred for 12 h until complete 

dissolution of MCC and achievement of a clear solution [109]. The dissolution of 

cellulose in H2SO4/glycerol was obtained by addition of a known amount of MCC in a 

solution of 66 wt.% of H2SO4 and 33 wt.% glycerol. The solution was heated at 60 ºC 

for 15 min to complete dissolution of cellulose. Dissolution in the highly concentrated 

salt system was achieved by dissolving the desired amount of MCC in a 60 wt.% 

ZnCl2/H2O solution at 80 ºC for 15 min [53]. 

Solutions in alkali-based systems were prepared by addition of a known amount of 

cellulose in a 8 % NaOH/H2O solution and then allowed to freeze at -20 ºC for 24 h. 

This was followed by thawing the solid frozen mass at room temperature under 

simultaneous vigorous mixing. The same procedure was followed with amphiphilic 

additives in the NaOH based systems but the additives were added before freezing the 

samples. On the other hand, for the TBAH based solvent, the dissolution procedure was 

simply the mixture of a known amount of cellulose with a 40 wt.% TBAH aqueous 

solution at room temperature for 30 min.  

The extraction procedure of CNCs was based on a previously reported method [111]. 

Briefly, 5 g of MCC powder was added to a 100 mL H2SO4 (65 wt.%) aqueous solution. 

The hydrolysis was carried out during 30 min at 65 °C and afterwards the reaction was 

quenched by the addition of a large excess of deionised water (250 mL) and the mixture 

was centrifuged at 3800 rpm for 15 min at room temperature. This centrifugation step 

was repeated several times before the suspension was dialyzed against distilled water 

for one week to neutralize the pH of solution and remove undesired salts. The resulting 

suspension was kept refrigerated for later use. The same procedure was followed for the 

extraction of CNCs from cellulose derivatives, HPMC and CMC. 
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Experimental techniques 
 

Polarized light microscopy 

  

 Optical microscopy is used in a wide range of applications, in different science 

fields such pharmacy, medicine, chemistry, biology and geology [112-115]. This 

technique is quite useful for a fast and facile analysis of the particle size and shape in 

solid compounds and also to analyze particles in a suspension. The use of polarized 

light microscopy (PLM) as a tool for crystallography extends back at least 200 years 

[112]. 

The simplest PLM is essentially a bright field microscope with a rotating stage and 

plane-polarizing filters placed below (the polarizer) and above (the analyzer) the 

specimen these being generally the main differences from a standard transilluminating 

microscope [116]. 

Light from an ordinary light source (natural light) that vibrates in random directions is 

called nonpolarized light. In contrast, light with vertical vibration that travels within a 

single plane is called linearly polarized light. Circularly polarized light and elliptically 

polarized light are obtained when the vibration plane rotates forward. In figure 2.1 the 

three types of polarized light are represented. 

 

Figure 2.1: Types of polarized light [117]. 

 

A polarizing plate (polarizing filter) or polarizing prism is often used as the device to 

change natural light to linearly polarized light (figure 2.2). Configuring the primary and 

secondary polarizing devices in the orthogonal directions of each transmitting linearly 

polarized ray will “cut” the light. Such a state in which the primary light polarizing 

device is the polarizer and the secondary device is the analyzer is called crossed nicols. 

Parallel nicols is the state in which the analyzer is rotated to make the direction of the 

transmitting linearly polarized light match with the polarizer, and the amount of light 

transmittance is maximized.  

 

 

 

linearly polarized light               circularly polarized light              elliptically polarized light 
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Figure 2.2: a) crossed nicols and b) parallel nicols. (P) polarizer; (A) analyzer [117]. 

 

A Linkam LTS 120 microscope equipped with a Q imaging station (Qicam) Fast 1394 

camera was used to evaluate cellulose dissolution in the solvent systems used. Samples 

were kept between cover slips and illuminated with linearly polarized light and analyzed 

through a crossed polarizer. Images were captured and analyzed using an appropriate 

Qcapture software. 

In figure 2.3 two examples of images obtained for the dissolution of cellulose in the 

TBAH/H2O system are presented. A large amount of birefringent areas (bright) are 

clearly visible on the left side (0 min) while no insoluble material is detected after 

30min. 

 

Figure 2.3: Images of 5.0 wt.% of MCC in TBAH/H2O (40:60), at t = 0 min (left) and t = 

30min (right). Temperature was kept at 20 ºC. The scale bars represent 100 µm. 

 

 

 

a) 

b) 
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Scanning Electron Microscopy 

 

The scanning electron microscopy (SEM) is routinely used to generate high-

resolution images. This technique uses a high-energy focused beam of electrons to 

generate a variety of signals at the surface of the solid specimens. The electron source 

used in SEM can be a tungsten filament a LaB6 or Schottky emitter, or even a tungsten 

field-emission tip. Because the maximum accelerating voltage (typically 30 kV) is 

lower than for a transmission electron microscope (TEM), the electron gun is smaller, 

requiring less insulation [118]. Accelerated electrons in an SEM carry significant 

amounts of kinetic energy, and this energy is dissipated as a variety of signals produced 

by the electron-sample interactions, which result when the incident electrons are 

deccelerated in the solid sample. These signals include secondary electrons (that 

produce SEM images), backscattered electrons (BSE), diffracted backscattered electrons 

(EBSD that are used to determine crystal structures and orientations of minerals), 

photons (characteristic X-rays that are used for elemental analysis and continuum X-

rays), visible light (cathodoluminescence–CL) and heat. 

The signals that derive from electron-sample interactions reveal valuable information 

about the sample including external morphology (texture), chemical composition, and 

crystalline structure and preferred orientation of materials composing the sample. In 

most applications, data are collected over a selected area of the surface of the sample, 

and a 2-dimensional image is generated displaying spatial variations of these properties. 

Modern SEM equipments are capable of providing an image resolution typically 

between 1 nm and 10 nm. This is not as good as the ones obtained with TEM but 

nevertheless much superior when compared to common light microscopy. In addition, 

SEM images have a relatively large depth of focus: specimen features that are displaced 

from the plane of focus appear almost sharply in focus. This feature results from the fact 

that electrons in the SEM (or the TEM) travel very close to the optic axis, a requirement 

for obtaining good image resolution [119]. 

The major advantages of a SEM, compared with a TEM, are the easy preparation of the 

sample specimens and the fast data acquisition [118]. In figure 2.4 a schematic 

illustration of a scanning electron microscope is presented. 

 

 

 



24 

 

 

 

Figure 2.4: Schematic diagram of a scanning electron microscope with a CRT display (adapted 

from [118]). 

 

The SEM is also capable of performing chemical analysis of selected areas on the 

sample; this approach is particularly useful for a qualitative or semi-quantitative 

determination of the chemical composition (using energy-dispersive spectrometry, 

EDS), crystalline structure, and crystal orientations (using EBSD). Secondary electrons 

and backscattered electrons are commonly used for imaging samples: while secondary 

electrons are most valuable for showing morphology and topography of samples, 

backscattered electrons are particularly relevant for illustrating contrasts in composition 

in multiphase samples (i.e. for rapid phase discrimination) [120].  

The EDS analysis is based on the X-ray generation that is produced by inelastic 

collisions of the incident electrons with electrons in discrete orbitals (shells) of atoms in 

the sample. As the excited electrons return to lower energy states, they yield X-rays that 

are of a fixed wavelength (that is related to the difference in energy levels of electrons 

in different shells for a given element). Thus, characteristic X-rays are produced for 

each element in a mineral that is "excited" by the electron beam. SEM analysis is 

considered to be "non-destructive"; that is, x-rays generated by electron interactions do 

not lead to volume loss of the sample, so it is possible to analyze the same material 

repeatedly. 
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A high resolution (Schottky) Environmental Scanning Electron Microscopy (FEG-

ESEM), equipped with the analytical systems X-ray microanalysis (EDS) and 

backscattered electron diffraction pattern analysis (EBSD) was used to observe the 

morphology and microstructure of the samples (model Quanta 400FEG ESEM/EDAX 

Genesis X4M). Typically, 50 μL of a suspension was dropped onto a clean glass lamella 

followed by drying for 24 h in a kiln and then sputtered with an approximately 6 nm 

thin Au/Pd film by cathodic pulverization using a SPI Module Sputter Coater before 

SEM analysis. The same procedure was followed for the regenerated and starting 

materials which, after being dried at room temperature, were also placed onto a glass 

lamella using an appropriate support tape and then sputtered as previously described for 

the suspension case. The accelerating voltage ranged from 5 to 15 kV. In figure 2.5 an 

example of an SEM micrograph obtained for a raw cellulose sample is displayed. 

The cryo-scanning electron microscopy (Cryo-SEM) was carried out using a JEOL 

JSM-6301F (Tokyo, Japan), an Oxford Instruments INCA Energy 350 (Abingdon, UK), 

and a Gatan Alto 2500 (Pleasanton, CA, USA). Cryo preparation techniques for SEM 

have become  essential  for  the  observation  of  wet  or  beam-sensitive  specimens  to  

minimize  potential  morphological  particle  changes. The cellulose derivatives 

dispersions were dropped on a grid, rapidly cooled in a liquid nitrogen slush (- 210 °C), 

and transferred under vacuum to the cold stage of the preparation chamber.  Here, the 

samples were fractured, sublimated (4 minutes, - 90 °C) to reveal greater detail, and 

coated with a gold-palladium alloy. Finally, the specimens were moved under vacuum 

into the SEM chamber where they were observed at - 150 °C). 
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Figure 2.5: SEM micrograph of microcrystalline cellulose after dispersion in water. The scale 

bar represents 10 µm. 

 

X-Ray diffraction 

 

Since the first X-ray diffraction experiment on a single crystal in 1912, 

performed by Max von Laue, X-ray crystallography is recognized to be of major 

importance in natural sciences [121]. Max von Laue discovered that crystalline 

substances act as three-dimensional diffraction gratings for X-ray wavelengths similar 

to the spacing of the planes in a crystal lattice. X-ray diffraction (XRD) is a reasonably 

rapid analytical technique primarily used for phase identification of a crystalline 

material and can provide information on, for instance, unit cell dimensions. Typically, 

the analyzed material is finely ground, homogenized, and the average bulk composition 

is determined. 

Diffraction effects are observed when electromagnetic radiation impinges on periodic 

structures with geometrical variations on the length scale of the wavelength of the 

radiation. The interatomic distances in crystals and molecules, ca. 0.15 to 0.4 nm, 

correspond to the wavelengths of X-rays, with photon energies between 3 and 8 keV 

and wavelengths in a range of 0.1 to 10 Å [121]. Accordingly, phenomena such as 

constructive and destructive interference should become observable when crystalline 

and molecular structures are exposed to X-rays [122]. 
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There are three different types of interaction in the relevant energy range. Two inelastic 

processes (photoionization and energy transference) and one elastic, useful for structural 

investigations, the Thomson scattering [122]. The wavelength λ of X-rays is conserved 

for Thomson scattering in contrast to the two inelastic scattering processes mentioned 

earlier. 

The high degree of order and periodicity in a crystal can be envisioned by selecting sets 

of crystallographic lattice planes that are occupied by the atoms comprising the crystal. 

The planes are all parallel to each other and intersect the axes of the crystallographic 

unit cell. Any set of lattice planes can be indexed by an integer triple hkl with the 

meaning that a/h, a/k and a/l now specify the points of intersection of the lattice planes 

with the unit cell edges. This system of geometrical ordering of atoms on 

crystallographic planes is known as the Miller indices hkl. 

Up to now, what has been known as the “Laue conditions” and the “Bragg equation” 

has formed the basis of X-ray diffraction of crystalline materials. The interaction of the 

incident X-rays with the sample produces constructive interference (and a diffracted 

ray) when conditions satisfy Bragg's Law (nλ=2d sin θ). This law relates the wavelength 

of electromagnetic radiation to the diffraction angle and the lattice spacing in a 

crystalline sample. These diffracted X-rays are then detected, processed and counted. 

By scanning the sample through a range of 2θ angles, all possible diffraction directions 

of the lattice should be attained due to the random orientation of the powdered material. 

Conversion of the diffraction peaks to d-spacings allows identification, for instance, of a 

given mineral because each mineral has a set of unique d-spacings. Typically, this is 

achieved by comparison of d-spacings with standard reference patterns [122]. In figure 

2.6 a schematic representation of a θ/2θ diffraction in Bragg-Brentano geometry is 

represented. 
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Figure 2.6: Schematic representation of a θ/2θ diffraction in Bragg-Brentano geometry 

(adapted from [122]). 

 

The X-Ray Diffraction (XRD) experiments were performed on a Siemens D5000 X-ray 

diffractometer, sensitive to crystalline phases down to 3% of the bulk. This equipment 

consists of a θ/2θ diffraction instrument operating in the reflection geometry. CuKα1 is 

used as radiation source with λ = 1.54056 Å, focused by a primary Ge crystal 

monochromator. The detector is a standard scintillation counter. The Cu tube runs at 40 

mA and 40 kV.  The cooling is supplied by an internal water-filled recirculation chilling 

system, running at approximately 16 ºC with a flow rate of 4-4.5 L/min. The slit 

arrangement is a 2 mm pre-sample slit, 2 mm post-sample slit and a 0.2 mm detector 

slit. The footprint size used was 0.005 degrees. The crystallinity index (CrI) was 

estimated from the diffracted intensity data using the method suggested by Segal et al., 

equation 2.1 [123]: 

      
         

    
                                             (2.1) 

where I002 is the maximum intensity of the (002) lattice diffraction and Iam is the 

intensity of diffraction at 2θ = 18º.  

An example of the obtained spectra for native microcrystalline cellulose is presented in 

figure 2.7. In the obtained diffraction pattern it is possible to observe a major peak 

centred at around ca. 22.5° (002) with a side peak at 20.5° (021) typical for the cellulose 
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I crystalline polymorph [124]. Other characteristic reflections for a cellulose I type 

structure can be found at 14.7° (101), 16.6° (101) and 34.7° (040). 

 

Figure 2.7: XRD diffraction pattern obtained for native microcrystalline cellulose.  

 

 

Optical transmittance measurements 

 

   

The turbidity of a sample can be easily determined by using Ultraviolet/Visible 

absorption spectroscopy (UV/VIS). UV/VIS has been used as routine research method 

in ordinary chemistry laboratories for many years. The technique is almost universal in 

its application [125]. 

In UV/VIS spectroscopy, one studies how a sample interacts to light. The way light 

interacts with matter can be summarized in four different manners: absorption, 

transmission, emission and scattering [126]. When a light beam passes through a 

substance or a solution, part of it may be absorbed and the remainder transmitted 

through the sample. The ratio between the intensities of the incident light (I0) to that 

exiting the sample (It), at a particular wavelength, is defined as the transmittance (T). 

This is often expressed as the percentage of transmittance (%T), which is the 

transmittance multiplied by 100 (equation 2.2). 

    
  

  
                                                     (2.2) 

The transmittance and absorbance are deeply related. Mathematically, absorbance is the 

negative logarithm of transmittance (A=-log T). There is an exponential relationship 
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between the relative absorption (It /I0) and the concentration (c) and path length (l) of 

the absorbing substance [127]. The linear relationship between absorbance (A), 

concentration (c) and path length (l) is known as the Beer-Lambert law (A=ɛcl). In this 

relation, ɛ is the molar attenuation coefficient of the attenuating specie. The linearity 

can be highly affected by scatter [125]. If the sample is turbid, the incident light will be 

scattered and, as result, less radiation will fall on the detector and a falsely high 

absorbance reading will be observed. 

If the experimental setup is made in a way to use a wavelength where the involved 

chemical species do not absorb, it can be assumed that all apparent absorbance is 

actually due to light scattering from the non-dissolved particles, and in this case the 

turbidity can be related with undissolved cellulose particles in solution.  

A single beam T70 UV–vis spectrophotometer (PG Instruments Ltd) was used for the 

optical transmittance measurements. Essentially, the cellulose solutions were placed in a 

couvette cell (dimensions of 1 cm × 1 cm × 5 cm) and the transmittance was fallowed at 

600 nm. In figure 2.8 the variation of the transmittance of a solution of cellulose in 

strong alkali medium (tetrabutylammonium hydroxide) as function of the addition of a 

salt (KCl) is presented. 

 

Figure 2.8: Photos (left) and transmittance (right) of cellulose dissolved in strong alkali (TBAH 

solution) with progressive addition of KCl. 

 

 

Rheometry  

 

 The understanding of the flow behavior of a certain material when subjected to a 

deformation force is the basis of the rheological studies. The type of deformation 

depends on the state of matter; for example, gases and liquids will flow when a force is 
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applied, whilst solids will deform and are expected to regain their shape when the force 

is removed (pure elastic behaviour). In other words, rheology studies the ‘‘handling 

properties of materials’’. The utility of many of the materials we make use every day is 

due to their unique rheological behaviour and that is one of the reasons why many 

chemists spend a lot of time in developing formulations to have specific textures, flow 

properties, etc. [128].  

Rheological techniques help to understand the molecular organization and to anticipate 

the mechanical properties of materials, thus having applications in a large number of 

industrial processes in which, for instance, the viscosity control is required. Two main 

groups of rheological tests can be applied: rotational and oscillatory tests. In figure 2.9 

the forces applied to a certain sample using a parallel plate geometry are depicted. 

 

Figure 2.9: Parallel plats depiction of shear rate (adapted from [129]). 

 

The height, h, is much smaller when compared with the dimensions of the plates, 

usually in the range of µm. The velocity profile can be considered linear and its gradient 

is constant. Shear rate (  ) defines how quickly a fluid is induced to flow, and is related 

with the applied force (σ) by a constant of proportionality, viscosity ( ), as described in 

equation 2.3. 

                                                                 (2.3) 

The oscillatory linear viscoelastic experiments measure the response function, or the 

complex modulus, G*(ω) = G’(ω) + iG’’(ω). This provides information about the 

relaxation of the microstructure of the system as a function of the frequency of 

oscillation, ω. The elastic component is described by the rheological variable G’, 

storage modulus, and represents the mechanical energy stored and recovered (per period 

of oscillation). The viscous component is described by the rheological variable G’’, the 

loss modulus, and it measures the mechanical energy lost as heat during the viscous 
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flow [130]. Solutions presenting G’>G’’ have a solid-like behavior and solutions were 

G’’>G’ have a liquid-like behavior. Given the proper conditions, some samples can 

show a solid-to-liquid transition (G’=G’’) [131]. The more solid the sample is the more 

energy is necessary to provide in order for the material to flow.  

Cellulose solutions are often not stable and gelation occurs either with time or with 

temperature. Therefore, the determination of shear viscosity of the cellulose samples is a 

critical parameter for processing both regarding dissolution and regeneration issues.  

All the rheological experiments were conducted using a controlled stress Reologica 

Stresstech rheometer equipped with an automatic gap setting. All samples were allowed 

to equilibrate for 10 min before the measurements. A cone-and-plate measuring 

geometry (1º, 50 mm diameter) was used with a solvent trap to prevent sample 

evaporation. A temperature control unit ensures a temperature variation in the sample 

chamber not larger than 0.1 ºC of the set value. The oscillatory studies with temperature 

ramps were performed either on a heating or cooling mode at a fixed rate of 1 °C/min. 

The storage (G’) and loss (G’’) moduli were recorded at a constant frequency (1 Hz) 

and stress (2 Pa). Flow curves were determined using the same equipment setup and a 

shear rate range of 1-100s
-1

, keeping the temperature constant at 20 ºC. The effect of the 

amphiphilic additives on the shear viscosity of cellulose solutions in NaOH/H2O is 

presented in figure 2.10. 

 

Figure 2.10: Flow curves of 5 wt.% microcrystalline cellulose in aqueous alkali solution, 

without additives and in the presence of additives (thiourea and surfactant).   
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Fourier Transform Infrared spectroscopy (FTIR) 

 

 

 Infrared spectroscopy is one of the most versatile techniques used in chemistry 

and certainly one of the most important analytical methods available. It is a versatile 

experimental technique and it is relatively easy to obtain reliable spectra from samples 

in virtually any state. Liquids, solutions, pastes, powders, films, fibers, gases and 

surfaces can all be examined with a judicious choice of the sampling technique. As a 

consequence of improved instrumentation, a variety of new sensitive techniques have 

now been developed in order to examine formerly intractable samples [132]. 

The FTIR technique is based on the vibrations of the atoms in a molecule. An infrared 

spectrum is commonly obtained by shining infrared radiation (wave number range from 

400 to 4000 cm
-1

 [133]) through a sample and determining what fraction of the incident 

radiation is absorbed at a particular energy. The energy at which any peak in an 

absorption spectrum appears corresponds to the frequency of a vibration of a part of 

molecule. In order to produce a measurable absorption signal in infrared spectroscopy 

the vibrational mode must cause a change in the dipole moment of the molecule. The 

larger this change is, the more intense will be the absorption band [132]. 

Historically, dispersive instruments, available since the 1940s, were used to obtain 

infrared spectra. In recent decades, a very different method has replaced the dispersive 

instrument. Fourier-transform infrared spectrometers (FTIR) are now predominantly 

used and have dramatically improved the acquisition of infrared spectra [134]. 

 

Figure 2.11: Basic components of a FTIR spectrometer (adapted from [134]).  

 

The sample preparation is a crucial step in analytical chemistry. The traditional 

transmittance methods can be limited in terms of the analysis of some peculiar samples. 

Reflectance techniques may be used for samples that are difficult to analyse by the 

conventional transmittance methods. Attenuated total reflectance (ATR) spectroscopy 

utilizes the phenomenon of total internal reflection, in which a beam of radiation 

entering a crystal will undergo total internal reflection, when the angle of incidence at 

the interface between the sample and crystal is greater than the critical angle. The latter 

is a function of the refractive indices of the two surfaces. The beam penetrates a fraction 
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of a wavelength beyond the reflecting surface when a material, that selectively absorbs 

radiation, is in close contact with the reflecting surface. This technique has several 

advantages when compared with transmittance methods, such as the minimal sample 

preparation and the capability of the analysis of almost all types of samples. FTIR can 

be applied in the cellulose field in order to study the structure and arrangements of the 

cellulose molecules, estimate the degree of crystallinity, and also in investigations 

involving modifications of cellulose, such as after cellulose oxidation [135]. 

The segments in the cellulose polymer chain are expected to vibrate differently in well-

ordered crystalline phases in comparison to less ordered amorphous phases and, 

therefore, it is possible to assign absorption bands to crystalline and amorphous regions 

and estimate a kind of crystallinity index (CrI) from FTIR. This is one of the simplest 

methods but one should keep in mind that the extracted values are not absolute. 

O'Connor et al. [135] established that the absorption band at around 1430 cm
−1

 is 

characteristic of crystalline areas in the polymer and the absorption band at 890 cm
−1

 

typical of amorphous regions; the ratio of these two bands was established as a 

“crystallinity index”, later referred to as the “lateral order index” (LOI). Later, Nelson 

and O'Connor [136] defined another crystalline parameter from the ratio of absorption 

bands at 1370 cm
−1

 and 2900 cm
−1

, the so called “total crystallinity index” (TCI). The 

TCI is said to be proportional to the crystallinity degree of cellulose while LOI is 

correlated to the overall degree of order in cellulose [137, 138].  

The infrared spectra were recorded at 25 °C with an ATR-FTIR spectrophotometer 

Thermo Nicolet, IR300 (USA), using an universal ATR sampling accessory. The FTIR 

spectral analysis was performed within the wave number range of 400-4000 cm
−1

. A 

total of 256 scans run to collect each spectrum at a resolution of 1 cm
−1

 in the 

transmission mode. The CrI (also referred to as “lateral order index” - LOI) was 

estimated from the ratio between the absorption band at 1430 cm
−1

 and the absorption 

band at 890 cm
−1

 [135, 139]. Additionally, the “total crystallinity index” (TCI) was 

estimated from the ratio between the bands at 1370 cm
−1

 and 2900 cm
−1

 [136]. In figure 

2.12 the obtained IR spectrum for microcrystalline cellulose is presented. 
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Figure 2.12: FTIR spectrum of native microcrystalline cellulose. 

 

 

Nuclear Magnetic Resonance 
 

 

 One of the most important spectroscopic techniques for structure elucidation is 

nuclear magnetic resonance (NMR) spectroscopy. The physical foundation of NMR 

spectroscopy is based on the magnetic properties of the atomic nuclei. The interaction of 

the nuclear magnetic moments with an external magnetic field, B0, leads, according to 

the rules of quantum mechanics, to different nuclear energy levels because the magnetic 

energy of the nucleus is restricted to certain discrete values, Ei, the so-called 

“eigenvalues”. Associated with the eigenvalues are the “eigenstates”, also called 

stationary states, which are the only states in which an elementary particle can exist. 

Through a radiofrequency (RF) transmitter, transitions between these states can be 

stimulated. The absorption of energy is then detected in an RF receiver and recorded as 

a spectral line, the so-called resonance signal (figure 2.13) [140]. In this way, a 

spectrum can be generated for a molecule containing atoms whose nuclei have non-zero 

magnetic moments. Among these nuclei are the proton, 
1
H, the fluorine nucleus, 

19
F, the 

nitrogen isotopes, 
14

N and 
15

N, and many others of chemical interest. The carbon 

nucleus, 
12

C, which is extremely important in chemistry, has, like all other nuclei with 

even mass and even atomic number, no magnetic moment. Therefore, NMR studies 

with carbon are limited to the stable isotope 
13

C, which has a natural abundance of only 

1.1% [141]. 
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Figure 2.13: Generic formation of a NMR signal (adapted from [140]). 

 

NMR studies are very useful in the cellulose field. They are applied, for example, in the 

determination of the cellulose polymorph type and to analyse the crystalline or non 

crystalline cellulose fractions [142, 143]. NMR can also be used as an alternative 

method to X-ray diffraction or as a complementary technique. Among the different 

NMR experimental techniques, the widely used 
13

C NMR Cross-Polarization/Magic 

Angle Spinning (CP/MAS) is of valuable relevance for cellulose chemists [142, 143]. 

As alluded to this technique is an excellent tool for the determination of the structure 

and the crystallinity of solid samples. NMR has in its high-resolution and solid-state 

features been applied to both dissolved and solid cellulose. An innovative approach has 

been recently suggested for polarization transfer solid-state NMR (PT ssNMR) that 

combines features of both high resolution and solid-state NMR, thus enabling studies of 

all the constituent phases in complex materials with solid, liquid and liquid crystalline 

domains [144]. 

This new approach demonstrates potential for the detailed characterization of both the 

liquid and the solid phases in cellulose dissolution media. The PT ssNMR method gives 

information about molecular structure, conformation, and packing through the 
13

C 

chemical shifts. It also provides information about molecular dynamics via the signal 

intensities obtained with the polarization transfer schemes CP (cross polarization) and 

INEPT (insensitive nuclei enhanced by polarization transfer). 

1
H NMR measurements: 

1
H NMR spectra were recorded at 25.0 (±0.1) ºC on a Varian 

500 MHz spectrometer using a 5 mm NMR probe. Spectra were obtained with residual 

solvent (HOD) presaturation and the acquired parameters included 24 k data points 

covering a spectral width of 8 kHz, a radiofrequency excitation pulse of 45º and a scan 
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repetition time of 15 s to allow for full magnetic relaxation of proton nuclei. The 

resonance at 0 ppm due to the Si-(CH3)3 signal, from 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid sodium salt (TSP) at tracer concentration (below 3 µM), was used as 

internal reference. 

The method of continuous variation has been used to determine the stoichiometry of the 

β-cyclodextrin:tetrabutylammonium hydroxide (β-CD:TBAH) interaction; for that, 

samples were prepared by dissolving an amount of the solids in D2O to achieve a 

concentration of β-CD and TBAH of 1.01 and 1.02 mM, respectively. The TBAH was 

previously lyophilized overnight just before using and the pH of D2O was adjusted to 

12.08 with the addition of NaOD, in order to keep the pH of β-CD:TBAH solutions 

constant. 

The binding constant was computed by using experimental 
1
H NMR chemical shifts of 

TBA
+
 nuclei for mixed solutions with different [β-CD]/[TBAH] molar ratios, and 

keeping the [TBAH] constant and equal to 1.20 mM.     

PT ssNMR measurements: The NMR spectra were recorded using a 4 mm HR-MAS 

rotor (Bruker, Germany) specifically designed for retaining liquids during magic angle 

spinning (MAS). NMR experiments were performed at 25 ºC on a Bruker AVII-500 

spectrometer operating at 
1
H and 

13
C Larmor frequencies of 500 and 125 MHz, 

respectively, with a 4 mm 
13

C/
31

P/
1
H E-free probe (Bruker, Germany). PT ssNMR data 

was recorded using 5 kHz magic angle spinning (MAS), 88 kHz two pulse phase 

modulation (TPPM) decoupling, 20 ms acquisition time, 300 ppm spectral width, and 

80 kHz nutation frequency for 90º and 180º pulses. CP was performed with tCP = 1 ms, 

80 kHz 
13

C nutation frequency, and linear ramp from 72 to 88 kHz 
1
H nutation 

frequency. The time delays for refocused INEPT were τ = 1.8 ms and τ’ = 1.2 ms. Each 

spectrum was recorded by accumulating 3072 transients with 5 s recycle delay, giving a 

measurement time of 12.5 h per sample. The time-domain data was zero-filled from 755 

to 8192 complex points, Fourier transformed with 100 Hz line broadening, 

automatically phase corrected, and baseline corrected using customized Matlab scripts 

based on matNMR. In figure 2.14 the pulse sequences used are presented and in figure 

2.15 the obtained spectrum for microcrystalline cellulose (solid) is depicted. 
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Figure 2.14: Polarization transfer solid-state NMR (PT ssNMR) pulse sequences (a–c) with 

detection of the 
13

C signal under 
1
H decoupling and magic-angle spinning (MAS). Direct 

polarization (DP) is using the thermal equilibrium polarization of 
13

C, while CP and INEPT rely 

on polarization transfer from 
1
H to 

13
C. Narrow and broad vertical lines indicate 90º and 180º 

radiofrequency pulses [144]. 

 

 

Figure 2.15: PT ssNMR spectrum for microcrystalline cellulose in the initial dry state. 

 

 

Dynamic Light Scattering 

 

 

 Dynamic light scattering (DLS, also known as photon correlation spectroscopy, 

PCS, or quasi-elastic light scattering, QELS) is widely used as an effective technique 

for the estimation of the average particle size in colloidal suspensions, typically ranging 

from 2 nm to 2 μm [145, 146]. 

In a DLS experiment, a laser source provides the monochromatic incident light, which 

interacts with the small particles in solution, in Brownian motion. Then, through the 

Rayleigh scattering process, particles whose sizes are sufficiently small compared to the 

wavelength of the incident light will diffract the incident light in all directions with 

different wavelengths and intensities as a function of time. The larger the particle, the 

slower the Brownian motion will be. Since the scattering pattern of the light is highly 

correlated to the size distribution of the analyzed particles, the size-related information 

of the sample can be acquired by mathematically processing the spectral characteristics 

of the scattered light.  
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In this method, the diffusion coefficients of the scattering particles are firstly 

determined, and the average diameters are then calculated from these coefficients using 

the Stokes–Einstein relationship (equation 2.4), where d(H) is the hydrodynamic 

diameter, k is the Boltzmann’s constant, T is the absolute temperature, η is the viscosity 

and D is translational diffusion coefficient [147].  

      
  

    
                                                    (2.4)   

The relation between the translational diffusion coefficient (or hydrodynamic radius) 

and the actual dimensions of non-spherical particles depends on the particle shape. 

The size is obtained from the correlation function, which describes the decay of the 

intensity of the scattered light as a function of time, and contains the diffusion 

coefficient information required in the Stokes-Einstein equation. The diffusion 

coefficient is obtained by fitting the correlation function with a suitable algorithm, such 

as the cumulants analysis, which determines a mean size and polydispersity index (PI). 

In the case of polydisperse samples a different algorithm should be used such as the 

non-negatively constrained least squares (NNLS) or CONTIN to deconvolute the 

measured intensity autocorrelation function of the sample into a number of intensity 

values each associated with a discrete size band [148]. The size distribution can be 

extracted from the fluctuations in the data of the scattered light using cumulant 

expansion or other methods; the obtained results can be expressed using one of three 

kinds of distribution index, usually used in size analysis: number weighted distribution, 

volume weighted distribution, and intensity weighted distribution. In figure 2.16 the 

correlation function and the size distribution by intensity obtained for a sample of 

microcrystalline cellulose are presented. 

 

Figure 2.16: Correlogram and size distribution by intensity obtained for 0.5 wt.% 

microcrystalline cellulose in TBAH/H2O system. Temperature was kept at 25 ºC. 

  

 

 

a) b) 
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CHAPTER 3 
 

 

 

 

Results and discussion 

 

3.1 - Cellulose derivatives: Crystallinity and solution state.  
 

  

In theory, a successful polymer dissolution completely eliminates the 

supramolecular structure resulting in a clear solution where the polymer is molecularly 

dispersed. Experience with synthetic polymers reveals that these solutions are typically 

mostly fully dispersed down to the molecular level. This has led to the simplified 

conclusion that either a polymer is dissolved or not. However, this two-option rule does 

not always hold; intermediate stages between swelling and complete solubility exist and 

cellulose and its derivatives are clear examples of it [149]. 

In the majority of the cases, cellulose and its derivatives only rarely form molecularly 

dispersed solutions; cellulose is not dissolved down to a molecular level but rather 

forms stable colloidal dispersions where ordered cellulose aggregates are present 

(aggregation numbers between 10 to 800 have been estimated) [76].  

On the other hand, cellulose derivatives are known as being highly soluble. This high 

solubility of cellulose derivatives is excellent for applications such as in food, 

pharmaceuticals or drug delivery [9]. In general, cellulose derivatives result from the 

non-homogeneous substitution of the hydroxyl groups in each anhydroglucose ring by 

other functional groups. Cellulose modification occurs first in the amorphous domains 

and later in the crystalline regions. Nevertheless, during this process, a large decrease in 
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the crystallinity of the substance is expected to occur [150]; this is one of the arguments 

to explain the high solubility of these derivatives. From such high solubility the 

formation of molecularly dispersed solutions can be anticipated; Kamide et al. reports 

that a cellulose derivative (CMC), with high degree of substitution, forms a gel-like 

solution while the residual small crystalline regions act as cross-linking points [150]. 

Therefore, at a first glance, one could argue that cellulose derivatives are not an obvious 

choice as a source of nanocrystals. To our knowledge, cellulose nanocrystals, CNCs, 

have never been extracted from cellulose derivatives and therefore we here report the 

initial results regarding their extraction and characterization. Scanning electron 

microscopy (SEM) and dynamic light scattering (DLS) were used to study the 

morphology while FTIR and X-ray diffraction were further used to infer about more 

detailed molecular information of the extracted CNCs. 

 

Materials and methods 

 

The materials and methods used are described in chapter 2. 

 

Results 

 

The chemical modification of cellulose includes activation of the polymer by 

dissolution in suitable solvents, conversion of the dissolved cellulose with reactive 

compounds, and control of the functionalization pattern by using protecting groups 

[151]. Suitable solvent systems, such as DMAc/LiCl or ionic liquids typically present a 

high cellulose dissolution efficiency, which consequently makes possible to achieve a 

high substitution degree, as well as a homogenous distribution of the substitutions. At 

the end of the derivatization process the obtained product is usually highly soluble in 

water or in other solvents.  

The cellulose derivatives (commercial samples) used in the present work form clear 

solutions when dispersed in water. Thus, from a macroscopic point of view, cellulose is 

completely dissolved. However, looking into these samples using electronic microscopy 

(Cryo-SEM) it is possible to observe polymer aggregates, even at very low 

concentration, below the estimated overlap concentration (ca. 0.7 wt.% [152]). In figure 

3.1 micrographs of cellulose derivatives in water are presented. 
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Figure 3.1: Cryo-SEM micrographs of 0.1 wt.% of carboxymethyl cellulose (CMC) (left) and 

hydroxypropyl methylcellulose (HPMC) (right). The scale bars represent 30 µm. 

 

These micrographs show aggregates of cellulose in solution, which suggest that we do 

not have molecular dispersed solutions. Carboxymethyl cellulose sodium salt (NaCMC) 

aqueous solutions have been found to form molecular dispersed solutions in aqueous 

medium [152]. Moreover, it has been found that the degree of solubility is strictly 

dependent on the degree of substitution; a less substituted (more hydrophobic) NaCMC 

shows a larger fraction of aggregates. Xiquan et al. indicate that for degrees of 

substitution above 1, the obtained CMC solutions are molecularly dispersed [153]. On 

the other hand, for samples with a degree of substitution below 0.82 the presence of 

crystalline aggregates (cellulose II polymorph) in solution is reported. 

In this section, the extraction and characterization of CNCs from two cellulose 

derivatives, CMC and HPMC is reported and for comparison purposes, microcrystalline 

cellulose was also used.  

In figure 3.2 the micrographs of the three starting materials used are presented. 
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Figure 3.2: SEM micrographs of native celluloses used: MCC (top), CMC (middle) and HPMC 

(bottom) [154]. 

 

Coarse particles of different sizes are observed in all cases. Additionally, in the CMC 

case, soft elongated aggregates are also visible. When the dry powders are suspended in 

water, the crystalline cellulose sample (MCC) presents coarse particles with an average 

size around 50 μm, while the cellulose derivatives (for instance, HPMC) present 

particles with a smaller average size, i.e. between 2 and 5 μm (figure 3.3). The larger 

size of the MCC particles might also reflect some aggregation due to the lower 

solubility in water. On the other hand, the cellulose derivatives are water-soluble and, 

therefore, individual particles are expected to disperse more efficiently in the solvent. 
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Figure 3.3: SEM micrographs of MCC (left) and HPMC (right). In both cases, 0.1% cellulose 

was dispersed in water [154]. 

 

The SEM micrographs of the cellulose nanocrystals (CNCs) suspensions extracted from 

the cellulose derivatives CMC and HPMC are shown in figure 3.4 (panels c, d and 

panels e, f, respectively). For comparison, micrographs of the CNCs from the MCC 

sample are shown on the top of figure 3.4 (panels a and b). The CNCs from MCC 

(figure 3.4, a and b) are wider (ca. 200-300 nm) and longer (ca. 1 μm) than the CNCs 

from the cellulose derivatives: CMC (figure 3.4, c and d) shows individual crystallites 

which are approximately 50-100 nm wide and 300-600 nm long while the crystallites 

from HPMC (figure 3.4, e and f) are approximately 50-100 nm wide and 300-400 nm 

long. In both systems, a small fraction of larger needle-like crystals can also be 

observed. One should mention that the dimensions estimated by SEM are significantly 

bigger than those obtained from AFM for the CNCs extracted from MCC [155]. Among 

other possible reasons, this might suggest self association of rods along a single axial 

direction already in the solution state, or during specimen preparation for SEM. 

Additionally, the mechanical treatment provided to disperse CNCs as a uniform stable 

suspension might not be enough to separate all CNCs rods as individual entities and 

thus the size is consequently overestimated. 
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Figure 3.4: SEM micrographs of CNCs extracted from MCC (a and b), CMC (c and d) and 

HPMC (e and f) [154]. 

 

The size of the CNC particles was also estimated from photon correlation spectroscopy 

(PCS). Since PCS is a light-scattering method, the measured CNC particle size values 

are the z-average (intensity mean) hydrodynamic diameters of equivalent spheres and 

do not represent the actual physical dimensions of the rod-like CNC particles. However, 

the extracted values are valid for comparison purposes. In table 3.1 some structural 

parameters derived from the different techniques used are represented. 
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Table 3.1: Characteristics (i.e. dimensions, zeta potential and CrI) of CNCs extracted from 

HPMC, CMC and MCC. 

 L, Length (nm) Average 

width (d) 

(nm)a 

Average 

Aspect 

ratio 

(L/d) 

Zeta potential 

(mV) 

Crystallinity 

 SEM DLS 
FTIR X-rayd  

(%) LOIb TCIc 

CNCHPMC 300-400 260 50-100 3-8 

3.3-10 

-8.6 1.19 (0.53) 1.47 (0.95) 53 (81) 

77 (75) 

59 (57) 

CNCMCC 1000 820 100-300 -51.5 0.73 (0.70) 0.95 (0.87) 

CNCCMC 300-600 218 50-100 3-6 -33.2 1.29 (0.98) 1.34 (0.77) 

a
 estimated from the SEM micrographs.  

b “
Lateral Order Index” (LOI) estimated from the ratio between the vibration band at 1430 cm

-1
 and the 

band at 890 cm
-1 

([156]) 
c 

“Total Crystallinity Index” (TCI) estimated from the ratio of absorption bands at 1372 cm
-1

 and 2900 

cm
-1 

([157]). 
d 
“Crystallinity index” estimated from the method suggested by Segal et al., equation 2.1 ([123]).  

 

The first observation is that, not surprisingly, the average size estimated from PCS is 

smaller than the size estimated from SEM. More importantly, and in agreement with the 

SEM analysis, the average particle size of the CNCs extracted from HPMC and CMC is 

considerably smaller than the one from MCC. Another useful information is the aspect 

ratio (defined as the length-to-diameter, L/d) which is an important factor and a 

controlling parameter for the mechanical properties of nano-composites [155]. 

Typically, CNCs with a high aspect ratio tend to give the best reinforcing effect [158] 

and this parameter depends on the original cellulose characteristics and extraction 

conditions (i.e. temperature, acid concentration, time, etc.). Here, the L/d values found 

were very similar (L/d ∼ 3–10) and in agreement with previous reports for Avicel 

whiskers [158]. An additional important characteristic of CNCs, when prepared in 

sulfuric acid, is that the particles possess negatively charged surfaces coming from the 

esterification of hydroxyl groups by sulfate ions. This process is expected to enhance 

CNC colloidal stability in aqueous solutions due to the electrostatic repulsion among the 

charged particles. The determined zeta-potential is presented in table 3.1. Essentially, 

the zeta-potential measures the mobility of a distribution of charged particles as they are 

subjected to an electric field. The CNCs extracted from the MCC show an average zeta 

potential of -51.5 mV. On the other hand, the CNCs extracted from cellulose 

derivatives, HPMC and CMC, present an average zeta potential of -8.6 mV and -33.2 

mV, respectively. The less negative zeta potential of the former might be important for 

biocompatibility issues, however the colloidal stability of the samples is poorer and 

flocculation is frequently observed. This lower absolute value of the zeta potential can 

be rationalized as follows: when the amorphous regions of the HPMC are hydrolyzed, 
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the remaining crystallites are expected to preserve their structure. It is reasonable to 

assume that the isolated crystals possess hydroxypropyl and methyl modifications from 

the original HPMC and, therefore, are less susceptible for esterification when compared 

with the hydroxyl groups in CNCs derived from MCC (i.e. the ether modifications are 

more stable in acidic media than the hydroxyls, which can be readily esterified). Thus, a 

higher surface charge is anticipated for the CNCs extracted from MCC while a much 

lower charge density is expected for the CNCs from HPMC. The same is valid for the 

CNCs derived from CMC with the difference that in this case even if no etherification 

occurs the crystallites possess already charged carboxylate groups and, therefore, the 

zeta potential of the CMC nanocrystals is found in-between the zeta-potentials of 

HPMC and MCC. 

Figure 3.5 shows the FTIR spectra of native celluloses as well as of extracted CNCs. 

Both native cellulose and extracted CNCs are found to be very similar with only slight 

differences, mainly regarding intensity. In all cases, the characteristic bands can be 

identified [137, 138]; the broad absorption in the range of 3100–3600 cm
−1

 can be 

ascribed to the stretching of the –OH groups (with typical sharpening at 3400 cm
−1

) 

[159-161] while the peak at 2900 cm
−1

 appears due to C-H stretching [159, 161]. An 

intense band between 1600 and 1650 cm
−1

 originates from the absorbed moisture (i.e. 

bending mode of water absorbed to cellulose) [162]. The deformation, wagging and 

twisting modes of anhydroglucopyranose vibration are shown from 600 to 1800 cm
−1

. 

More specifically, the absorbance at around 900 cm
−1

 can be assigned to the C-H 

deformation mode of the glycosidic linkage between the glucose units [163, 164], while 

the absorbance bands between 1000 cm
−1

 and 1200 cm
−1

 are attributed mainly to the C-

O stretching in major ether bands [164]. We note that the changes observed in the zeta 

potential measurements are not clearly evident in the FTIR analysis mainly due to the 

fact that some of the expected vibrational bands from the esterification are masked by 

other major bands (i.e. the vibrational modes of C-H and O-H superimpose and 

dominate the spectra). Nevertheless, in some cases, we can see in the extracted crystal 

signs of these vibration bands such as in figure 3.5 (top spectrum of CNCs from MCC 

shows a small peak at around 833 cm
−1

 which can be assigned to the S-O stretching) or 

the signal from the CNCs from the HPMC where a band at around 1250 cm
−1

 can be 

assigned to the C-O-S stretching mode. 
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Figure 3.5: FTIR spectra of a) MCC (gray line) and extracted CNCMCC (black line), b) CMC 

(gray line) and extracted CNCCMC (black line) and c) HPMC (gray line) and extracted CNCHPMC 

(black line) [154]. 
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As described in chapter 2, it is possible to estimate a crystallinity index (CrI) from 

FTIR. In table 3.1, both TCI and LOI are presented. The numbers inside the parentheses 

represent the indices for the initial cellulose (MCC, CMC and HPMC). Regardless of 

the method of calculation, the CrI estimated from FTIR always increases for the CNCs. 

This is somehow expected since during the extraction and purification procedure the 

amorphous areas are likely removed and thus the crystallinity increases. Another 

important observation is that the native cellulose derivatives, CMC and HPMC, are 

already quite crystalline and the CNCs extracted from them present both TCI and LOI 

indices higher than the ones corresponding to the CNCs extracted from MCC. 

This high crystallinity of the cellulose derivatives is not trivial to understand. 

Modifications are expected to affect adversely the good packing of cellulose chains in 

crystals (i.e. decrease the crystallinity and enhance solubility). This is why essentially 

any modification done on cellulose tends to make it more soluble in water; apart from 

HPMC and CMC, other notable examples are, for instance, methyl cellulose (MC) and 

hydroxyethylcellulose (HEC).  

The former is highly soluble in water, even if from a polarity point of view it would be 

expected to be less soluble. In the latter case, also highly soluble, substitution would not 

change the number of hydrogen bonds (typical argument used to explain cellulose 

insolubility in water) compared to unmodified cellulose. Therefore, it is somehow 

surprising that the (water soluble) cellulose derivatives studied here present such a 

significant initial crystallinity. Although relevant, the data suggests that crystallinity is 

indeed not the critical parameter for cellulose solubility. 

The X-ray diffraction patterns of cellulose starting materials and extracted CNCs are 

represented in figure 3.6. In line with the FTIR measurements, the first important 

observation is that, despite HPMC and CMC being modified polymers, it is clear that 

both are significantly crystalline in nature as can be inferred from the diffraction peaks. 
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Figure 3.6: XRD diffraction patterns: smoothed raw data of a) MCC (black line) and extracted 

CNCMCC (gray line), b) CMC (black line) and extracted CNCCMC (gray line) and c) HPMC 

(black line) and extracted CNCHPMC (gray line) [154]. 

 

While this is expected for the MCC, it is more striking for the cellulose derivatives 

CMC and HPMC. As one can see, the diffraction pattern of MCC is characterized by a 

major peak centered around 22.5° (002) with a side peak at 20.5° (021) typical for a 

cellulose I crystalline polymorph [165]. Other characteristic reflections for a cellulose I 

type structure can be found at 14.7° (101), 16.6° (101) and 34.7° (040). The extracted 

CNCs have the same diffraction pattern as the native MCC. The synthesis of the 

cellulose derivatives changes the crystalline structure to a cellulose II type polymorph, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

0

10

20

30

 

in
te

n
s

ity
 / a

.u
.

 

in
te

n
s

it
y

 /
 a

.u
.

10

15

20

25

30

 

in
te

n
s

it
y

 /
 a

.u
. 

3

6

9

in
te

n
s

ity
 / a

.u
.

 

15 20 25 30 35 40

5

10

15

20

2

in
te

n
s

it
y

 /
 a

.u
. 

1

2

3

4

5

in
te

n
s

ity
 / a

.u
.

a 

b 

c 

2θ 

 in
te

n
si

ty
 /

 a
.u

.  in
ten

sity
 / a

.u
. 

 in
te

n
si

ty
 /

 a
.u

. 
 in

te
n

si
ty

 /
 a

.u
. 

 in
ten

sity
 / a

.u
. 

 in
ten

sity
 / a

.u
. 



52 

 

where a diffraction pattern with a unique peak centered around 20.1° (101) can be 

observed for both CMC and HPMC. On the other hand, the CNCs extracted from the 

cellulose derivatives also show a single peak but centered around 22.5° (002) which, as 

previously discussed, can be attributed to a crystal structure of cellulose I type. Despite 

the fact that in XRD, intensity depends on several instrumental/sample conditions, such 

as sample mass/size and sample placement, so that intensity usually cannot be used to 

extract direct information through comparisons with other samples, we note that the 

diffraction intensities for CNCs from cellulose derivatives are considerably lower when 

compared with the native celluloses. This might mean that although the original 

material has a preferential cellulose II organization (due to the chemical synthesis), a 

small fraction of cellulose I is still present (but masked by the dominating cellulose II 

organization) and could be isolated in the CNCs. The degree of crystallinity was 

estimated following the method suggest by Segal et al. [123] and included in table 3.1. 

In qualitative agreement with the FTIR analysis, one can observe that the native 

cellulose derivatives are highly crystalline (the estimated CrI is in all cases above 50%) 

and the extracted CNCs, with exception of the HPMC case, show a higher CrI value 

than the original cellulose derivatives. 

 

Synopsis 

 

A successful extraction and characterization of CNCs from the cellulose derivatives 

CMC and HPMC is reported. Surprisingly, the cellulose derivatives were found to be 

significantly crystalline indicating an unusual extraction of CNCs. The average size of 

the CNCs extracted from HPMC and CMC was found to be smaller (and with lower 

zeta potential) than the ones extracted from microcrystalline cellulose (MCC). The 

estimated crystallinity indices show that the extracted material is more crystalline than 

the native one. However, while the MCC and CNCs share the same crystalline 

organization (cellulose I polymorph), the cellulose derivatives (starting materials) were 

found to be of cellulose II type. The extracted CNCs from the cellulose derivatives 

show a crystalline organization of cellulose I type, which probably indicates that the 

starting material has a small fraction of cellulose I (masked in the diffraction spectra by 

the main cellulose II diffraction pattern), which is the one isolated after dissolution in 

the acidic media and purification. In literature is described the obtainment of aggregated 

crystalline domains by X-ray diffraction in aqueous solution, for NaCMC derivative, 
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with degree of substitution (D.S.) below 1.06. No crystallinity was found for D.S. 1.06 

[153]. These aggregates are assumed to be cellulose type II, contrary to the result 

obtained in the present work, keeping in mind that once dissolved, cellulose does not 

reorganize in a cellulose type I polymorph. Our data suggests that there are specific 

parts of cellulose chains that remain insoluble during all the modification process. The 

huge challenge of getting molecularly dispersed solutions will be discussed in the next 

sections. 

 

 

3.2 - Polarization transfer solid-state NMR: A new method for 

studying cellulose dissolution  

 

 

Several cellulose end-products such as fibers and films, typically involve pre-

dissolution steps in solvents with toxic components such as carbon disulfide or copper 

ions. Therefore dissolution of cellulose in aqueous media is, for economical and 

environmental reasons, strongly preferred. Current aqueous dissolution media include 

NaOH based systems [166], with or without other additives such urea or thiourea [49, 

50], or tetraalkylammonium salts [167].  

Not only the mechanisms governing cellulose dissolution are still in debate but also the 

characterization of the dissolved state is still lacking. The development of facile and 

accurate techniques capable to provide a clear understanding on the level of dissolution 

and molecular organization of cellulose is obviously desired. 

Solid, dissolved, and regenerated cellulose are usually separately investigated with a 

wide range of experimental techniques: infrared spectroscopy [137], fiber and powder 

X-ray diffraction [168, 169], transmission and scanning electron microscopy [109, 170], 

and neutron fiber diffraction [171] among others. Among the wide spectrum of 

techniques applied to cellulose research, mainly cryo-TEM and small angle X-ray 

scattering (SAXS) are recently introduced to study cellulose in solution [77]. Although 

all the techniques give useful information about particular aspects of the starting 

material or the final product, molecular-level information about both the dissolved and 

the solid polymer in the dissolution medium is still lacking. 
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High-resolution nuclear magnetic resonance (NMR) [172] and solid-state NMR [173] 

have been applied to both dissolved [174, 175] and solid [142, 176] cellulose. Recently 

Topgaard et al. suggested an experimental approach based on a new developed NMR 

methodology [177] that combines features of both high resolution and solid-state NMR, 

thus enabling studies of all the constituent phases in complex materials with solid, 

liquid, and liquid crystalline domains. The method has been applied to hydrated 

surfactants [177, 178], lipid biomembranes [179], lipid-amyloid fibril aggregates [180], 

and intact stratum corneum [181], all of which contain amphiphilic molecules in a wide 

range of physical states. In this section the potential of PT ssNMR for detailed 

characterization of both the liquid and the solid phases in cellulose dissolution media is 

discussed.  

The CP and INEPT techniques are traditionally used to boost the signals for solids and 

liquids, respectively, in comparison to the 
13

C direct polarization (DP). The 
13

C signal is 

acquired under magic-angle spinning (MAS) and high power 
1
H decoupling [182], 

giving spectra with reasonably high resolution for both liquids and solids.  

 

Materials and methods 

 

The materials and methods used are described in chapter 2. 

 

Results 

 

The preliminary experimental PT ssNMR results obtained for cellulose are displayed in 

figure 3.8 and the 
13

C chemical shifts of the peaks assigned to cellulose are compiled in 

table 3.2. The blue and red colors, attributed to CP and INEPT spectra, respectively, are 

shown to give an intuitive visual impression of which peaks originate from segments 

with slow (CP) or fast (INEPT) molecular dynamics (see figure 3.7). As a reference, the 

DP spectra are shown in gray. The dry cellulose gives intense CP peaks while the 

INEPT signal is absent, which is consistent with cellulose being in a solid state. 

 

 

 

 

 



55 

 

 

 

 

 

 

Figure 3.7: Theoretical CP (blue) and INEPT (red) signal enhancement vs. the CH-bond 

orientational order parameter SCH and reorientational correlation time τC. The enhancement 

factor was calculated for a tertiary carbon atom as described in Nowacka et al. [178] using the 

experimental parameters of the current study, which were selected to, with least possible 

ambiguity, discriminate between isotropic liquids (only INEPT), anisotropic liquids (both 

INEPT and CP), and solids (only CP) according to the labeled areas in panel. White indicates 

lack of signal for both CP and INEPT [144]. 
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Figure 3.8: PT ssNMR data for microcrystalline cellulose in the initial dry state (top), as well as 

10 wt.% cellulose dissolved in aqueous TBAH (middle) and in NaOH aqueous (bottom). CP 

and INEPT spectra are shown in blue and red, respectively. The assignments of the solid (blue) 

and dissolved (red) cellulose peaks refer to the carbon atom numbering in the structural formula. 

The blue and red dashed lines represent literature data for cellulose I in wood pulp fibers [142] 

and dissolved cellulose [174], respectively. The labels TBAH point out the truncated peaks from 

the TBA
+
 ions, while the arrows indicate TBA

+
 breakdown products. The data was acquired at 

25 ºC and 125 MHz 
13

C Larmor frequency with 5 kHz MAS and 88 kHz TPPM 
1
H decoupling. 

The spectra are zoomed-in on the 50-130 ppm spectral region relevant for cellulose, and, 

independently for each sample, magnified to facilitate observation of the cellulose resonance 

lines [183]. 
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The obtained spectrum for microcrystalline cellulose (starting material) is in good 

agreement with the one reported in literature for cellulose I [184, 185]. The chemical 

shift values obtained for dry cellulose (see table 3.2) are very similar to those reported 

by Kamide et al. [105.40 (C1), 89.10 (C4), 75.30/72.70 (C2,3,5) and 65.50 (C6)] [142] for 

wood pulp. The side peaks at ca. 85.0 ppm and 62.0 ppm can be assigned to the 

amorphous residual fraction present in the dry microcrystalline cellulose [186]. 

 

Table 3.2: Chemical shifts of partially dissolved cellulose
a
 [183]. 

Sample Fraction Carbon atom Polymorph 

  C1 C4 C2,3,5 C6  
Dry Solid 105.10 88.80 74.60, 72.10 65.00 Cellulose I 

TBAH Solid 105.10 88.70 74.40, 71.50 65.10 Cellulose I 

aqueous Dissolved 104.70 79.80 76.40, 74.50 61.70  

NaOH 

aqueous 

Solid 107.10 85.60 75.80, 74.60 61.50 Na-Cell Q 

Dissolved 104.30 79.60 76.00, 74.50 61.30  
 

a
Shifts are given in ppm with α-glycine at 176.03 ppm as external standard. The precision is limited to 

±0.2 ppm by the acquisition time. 

 

The sample containing cellulose dissolved in aqueous TBAH gives both CP and INEPT 

signals, showing that solid as well as liquid/dissolved material are present in the sample. 

The chemical shifts obtained for the solid fraction (CP signal) of the sample in aqueous 

TBAH and the initial dry cellulose are very similar, indicating that the residual 

undissolved material has an organization characteristic of cellulose I. The INEPT 

spectrum comprises a wide number of peaks, mainly from the inequivalent carbons of 

the tetrabutylammonium ion. Only one of these peaks is located inside the spectral 

window showed in figure 3.8. The remaining peaks can be assigned to dissolved 

cellulose, as well to degradation products of TBA
+
, formed by Hofmann elimination, 

namely the tributylamine and 1-butene [187]. 

The peaks derived from degradation products of TBA
+
 are indicated by the red arrows. 

Comparing the areas of the DP peaks from dissolved cellulose, TBA
+
, and tributylamine 

it is possible to estimate the fraction of TBA
+
 breakdown (ca. 4.9%), while the molar 

ratio between the tributylamine and the glucose units of the dissolved cellulose is 

approximately 1:9. The chemical shifts assigned to dissolved cellulose in the TBAH 

aqueous solution are very similar to the literature data for ultra-centrifuged samples of 

cellulose dissolved in 10 wt.% NaOH in D2O: 104.7 (C1), 79.9 (C4), 76.4/75.0 (C2,3,5), 

and 61.9 (C6) ppm [174]. According to the theoretical calculations [144], the presence 

of INEPT peaks for cellulose implies that the C-H bonds reorient on a timescale faster 
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than 100 ns, which in turns is a strong indication that the “liquid fraction” of the 

cellulose solution is molecularly dissolved. 

The NaOH aqueous solution also gives both CP and INEPT signals. While the INEPT 

peaks are similar to the ones assigned to dissolved cellulose in the aqueous TBAH 

sample, the CP peaks are noticeably different. Their comparison with the chemical 

shifts found in literature, [e.g. 106.9/104.2 (C1), 85.5/83.0 (C4) and 61.3 (C6)] suggests 

that cellulose is organized in the so called “Na-cellulose Q”, which is a highly swelled 

form of cellulose first identified by Sobue et al. [188]. This swelled state of cellulose is 

also characterized by a low order, which can be deduced from the chemical shifts of C4, 

(85.52 ppm), and C6 (61.65 ppm) [186]. Considering the suggested importance of 

hydrophobic interactions in cellulose systems [189], the effects of such unintentional 

hydrophobic or amphiphilic co-solutes (TBAH is an example) must be taken into 

account in any attempt of rationalizing the observed cellulose solubility. 

Even if neither CP nor INEPT yields truly quantitative information, the comparison 

between their areas gives, at least, a rough estimative of the ratio solid/dissolved. Thus, 

the growth of one peak at the expense of the other is an indication that the ratio is 

changing. Additionally, the comparison between the DP, CP, and INEPT intensities 

gives qualitative information on the molecular dynamics [178]. Changes in properties 

such as molecular conformation and interactions with surrounding molecules and ions 

in the solution can be followed through the observation of the chemical shifts. Another 

potential of the method is the possibility to detect the presence of minor amounts of 

dissolved impurities, in the DP and INEPT spectra. In the case of aqueous TBAH, the 

impurities result from the chemical degradation of the major components, and are thus 

difficult to avoid. 

 

Synopsis 

 

These preliminary results show that both the solid and the dissolved cellulose 

components can be detected with PT ssNMR. This method reveals to be an excellent 

tool to study, in one single step, the arrangement of the solid fraction (undissolved 

material) as well as the dissolved fraction and the possible interaction of different 

additives with cellulose chains. These results are very useful for future studies on the 

mechanisms of cellulose dissolution. 
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Based on these promising results, additional studies were performed (using alkali based 

and acid based solvent systems). The obtained results for PT ssNMR were 

complemented with light and electronic microscopy and presented in sections 3.3 and 

3.4.  

 

 

3.3 - Cellulose dissolution in alkali medium 
 

 

Since cellulose is not meltable, typically it has to be dissolved first in a suitable 

solvent before further processing. However, most of the common solvents usually fail in 

this respect. Through the years, several suitable solvents for cellulose dissolution have 

been developed and the list provides a wide variety of quite unusual options: from 

simple or multi-component mixtures, aqueous and organic media, to inorganic and 

organic salts, with peculiar experimental conditions (e.g. high and low temperatures, 

high and low pH), etc. [17, 20].  

In this section we pay attention to solvent systems with a high hydroxide concentration. 

Cellulose dissolution at extreme pHs can be related to the fact that cellulose molecules 

acquire net charges either by protonation (low pH) or deprotonation (high pH). This 

observation is based on the general finding that polyelectrolytes are more soluble in 

water than nonionic polymers, due to the dissociation of counterions and the 

concomitant large gain in counterion entropy. Whereas the fact that a high concentration 

of hydroxide ions facilitates dissolution is rather trivial, the role and nature of the cation 

needs further considerations. Here we are interested in the question whether there are 

differences between hydroxides with different cations, particularly between inorganic 

and organic cations. Thus, by means of scanning electron microscopy (SEM), polarized 

light microscopy (PLM), polarization transfer solid state NMR (PT ssNMR) and 

dynamic light scattering (DLS) the effect of distinct solvents, i.e. cold NaOH solutions 

and aqueous solution of tetrabutylammonium hydroxide on the degree of dissolution of 

cellulose samples was studied. Additionally, the effect of different additives on the cold 

NaOH system was evaluated. 
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Materials and methods 

 

The materials and methods used are described in chapter 2. 

 

Results 

 

The dissolution of cellulose in water is not feasible; when mixed with this solvent a 

cloudy dispersion is formed, which phase separates after a certain time as figure 3.9a) 

illustrates. 

 

Figure 3.9: Cellulose dissolution: water (a) and 8 wt.% NaOH/H2O solvent (b). 

Macroscopically, the 1 wt.% cellulose dissolved in the 40 wt.% TBAH/H2O system looks the 

same as the sample dissolved in the cold alkali system [190]. 

 

In figure 3.9b) 1 wt.% cellulose is dissolved in a 8 wt.% (2.00 M) NaOH aqueous 

solution. The same successful dissolution is found for a 40 wt.% (1.54 M) aqueous 

solution of TBAH. 

A simple naked-eye inspection reveals a clear and transparent one-phase solution in 

both cases; the polarized light microscopy pictures in figure 3.10 reveal that the initial 

cellulose fibers, rich in birefringent domains, are significantly reduced in both solvents. 

In the cold alkali, it is still possible to see a few cellulose disks and fragments while in 

the TBAH solution the PLM micrograph shows no signs of undissolved material. 

For several practical applications, such as the formation of films and fiber spinning, 

these solutions are quite acceptable. However, even if from a macroscopic and 
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microscopic point of view, cellulose seems reasonably dissolved, there are already a few 

indications that the state of the solutions must be different for the two solvents used. 

 

 

Figure 3.10: Polarized light micrographs of native (a and c) and dissolved cellulose in the cold 

8 wt.% NaOH/H2O solvent (b) and in 40 wt.% TBAH/H2O solvent (d). The birefringent 

domains of the native fibers are clearly observed. The scale bars represent 100 µm [190]. 

 

 

In figure 3.11, one can see SEM images of the above mentioned cellulose solutions after 

being deposited onto a clean glass lamella. 
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Figure 3.11: SEM images of the cellulose solutions after being deposited onto a glass lamella 

followed by solvent evaporation. “Needle-like” crystallites are observed in the 8 wt.% 

NaOH/H2O solvent (a) while a “continuous wrinkled-film type” morphology is observed in the 

40 wt.% TBAH/H2O system (b). The scale bar represents 5 µm (adapted from [190]). 

 

The texture and morphology are markedly different between the two solvent media; 

while needle-like crystallites (with lengths ranging from several hundred nanometers up 

to a few micro-meters) are observed in the cold alkali solvent, a “continuous wrinkled-

film type” texture is observed in the TBAH based solvent. In the latter case, no sharp 

crystals are observed but rather more flexible and soft cellulose surfaces. It is important 

to note that the energy dispersive spectroscopy (EDS) spectra indicates that the needle-

like crystals are indeed cellulose and not NaOH crystallites or other dry inorganic 

compounds (figure 3.12). From such analysis it is possible to calculate the ratio between 

Na and C in two distinct areas (bulk solution, Z1, and needle-like crystals, Z2) and 

clearly there is an increase in the C/Na ratio when going from the bulk region (without 

crystals) to a crystals area. Moreover, the presence of sodium carbonate crystals also 

can be discarded since the O/C ratio decreases considerably when going from the bulk 

solution area to a needle-like crystal area. 

 

 

Z1 

Z2 
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Figure 3.12: Energy dispersive spectra of bulk solution, Z1, and needle-like crystals, Z2, of a 

dried sample of cellulose in 8 wt.% NaOH/H2O solution. 

 

Interestingly, the DLS measurements indicate the presence of particles with an average 

size between 10 and 20 nm in the TBAH system while the mean particle size estimated 

from the NaOH based solutions is, at least, one order of magnitude higher (ca. 200 nm). 

We note that very rarely cellulose is found to be dissolved on a molecular level [77]. 

For instance, in the cadmium complexing Cd-tris (2-aminoethyl) amine solution, the 

size of cellulose particles is estimated to be ca. 20 nm [42, 149]. In diluted solutions of 

cellulose in N-methylmorpholine-N-oxide (NMMO) a mean size of 200 nm has been 

reported [191-193] and even in some ionic liquids, such as the 1-ethyl-3-

methylimidazolium acetate (EMIMAc) [194-197] there is evidence for aggregates with 

rather large radius of gyration, ca. 150 nm, considerably higher than that of a single 

cellulose macromolecule [198]. In the NaOH-urea system, a mean size of ca. 60–160 

nm [199] has been observed for the self-assembled solvent-cellulose clusters which is in 

good agreement with our DLS measurements. It is clear that in the cold alkali, 

dissolution is not complete since rather larger particles are detected in DLS 

measurements and individual crystals can be found dispersed in the glass lamella (figure 

3.11). On the other hand, dissolution in the TBAH based solvent is considerably more 

efficient, since the estimated particle size is significantly smaller suggesting us that in 

this solvent we get, if not truly molecular solutions, at least, small molecular aggregates 

which explain the apparent softness and flexibility of the deposited cellulose solutions 

(figure 3.11).  

The obtained PT ssNMR data obtained for cellulose dissolved in NaOH and TBAH 

aqueous, shown in figure 3.8, are in good agreement with the results of PLM, SEM and 

DLS here reported. The MCC sample dissolved in the aqueous TBAH gives both CP 
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and INEPT signals. However, the weak CP signal indicates a good level of dissolution; 

the estimated fraction of undissolved cellulose is below 1 wt.%. Similar results were 

obtained for tetrabutylphosphonium hydroxide in aqueous solution. The obtained 

chemical shifts for solid and dissolved fraction, as well the polymorph attribution are 

discussed in section 3.2.  

The MCC sample dissolved in an aqueous NaOH solution gives both CP and INEPT 

signals. The discussion about the polymorph of solid fraction and the INEPT spectrum, 

based on the chemical shifts obtained, is provided in section 3.2. Additionally, the 

NaOH sample presents a well defined CP spectrum (good signal to noise ratio), which is 

indicative of a significant amount of undissolved material, in opposition to the CP 

spectrum obtained for the TBAH sample, where the signal to noise ratio is poor.  

 

 

 

Effect of additives on dissolution in cold alkali systems 

 

The cold alkali based solvent systems are a group of very interesting cellulose solvents 

because of the typical associated low cost and low environmental impact issues. 

However, the dissolution of cellulose in these systems is quite limited. Several studies 

have been carried out in order to improve the dissolution and capacity of cold alkali 

systems and also to allow the use of high molecular weight cellulose pulps [200, 201]. 

Additives such as urea, thiourea, zinc oxide, surfactants and polyethylene glycol (PEG) 

demonstrate a good potential to improve the dissolved amount of cellulose in cold alkali 

based systems [48, 186, 199-201]. Nevertheless, the majority of these alkali-water based 

systems only allow the dissolution of cellulose with a relatively low degree of 

polymerization (typically, less than 300). In figure 3.13 PLM micrographs of cellulose 

solutions in 8 wt.% NaOH are presented, in the absence of additives and in the presence 

of 12 wt.% of urea and thiourea (1.97 M and 1.57 M respectively). The effect of these 

additives is remarkable, decreasing the birefringent domains of the native cellulose in 

solution when compared with the standard aqueous NaOH system without additives. 

Thiourea demonstrates to be a more efficient additive leading to a completely clear 

solution, without the presence of undissolved material, in accordance with the work of 

Zhang et al. [200].   
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These results, that clearly indicate an improvement in the solvent quality, can be 

discussed in terms of amphiphilicity. Urea and thiourea are clearly less polar than water 

and these species are possibly capable to reduce the hydrophobic interactions between 

cellulose chains. The reduction in hydrophobic interactions among cellulose chains 

seems to be reached through the interaction of molecules of intermediate polarity with 

the hydrophobic part of cellulose. This is also supported by a recent molecular 

dynamics simulation where it has been found that urea interacts directly with cellulose 

through hydrophobic interactions [202]. 

 

Figure 3.13: Polarized light micrographs of native (top left), dissolved cellulose in the cold 8 

wt.% NaOH/H2O solvent (top right), in 8 wt.%NaOH/12 wt.%urea/H2O solvent (bottom left) 

and in 8 wt.%NaOH/12 wt.%thiourea/H2O solvent (bottom left). Cellulose concentration is 5 

wt.%. The scale bars represent 100 µm. 

 

In electronic scanning microscopy it is possible to see relevant differences on the 

morphology of the samples. In figure 3.14 (top) micrographs of cellulose samples 

prepared in cold alkali aqueous solution, with the addition of 12 wt.% of thiourea, are 

presented. A continuous and “melted” film is obtained, contrasting with the undissolved 
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crystals obtained in the case of NaOH aqueous solution (see figure 3.11a). The lack of 

crystallites and the film-like morphology reveals an improvement of the dissolution 

power of cold alkali system when thiourea is added. Similar results were obtained with 

urea (figure 3.14 (bottom)). 

 

Figure 3.14: SEM images of the cellulose solutions in 8 wt.% NaOH/12 wt.% thiourea/H2O 

(top) and in 8 wt.% NaOH/12 wt.% urea/H2O (bottom), after being deposited onto a glass 

lamella followed by solvent evaporation. The scale bar represents 30 µm and 10 µm 

respectively.  

 

In figure 3.15 the CP and the INEPT spectra for MCC dissolved in NaOH/thiourea 

aqueous solution are depicted and in table 3.3 the polymorph type of the solid fraction 

and main chemical shifts are summarized for several NaOH systems doped with 

different additives. 
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Figure 3.15: CP (blue line) and INEPT (red line) spectra for 10 wt.% microcrystalline cellulose 

dissolved in aqueous 8 wt.% NaOH/12 wt.% thiourea. The data was acquired at 25 ºC and 125 

MHz 
13

C Larmor frequency with 5 kHz MAS and 88 kHz TPPM 
1
H decoupling. The spectra are 

zoomed-in on the 50-130 ppm spectral region relevant for cellulose, and, independently for each 

sample, magnified to facilitate observation of the cellulose resonance lines [183]. 

 

As observed for the NaOH aqueous solvent, clear CP and INEPT signals are also 

detected for the cellulose dissolved in the NaOH/thiourea system thus indicating that 

dissolution is not complete. However, the ratio between the CP and INEPT peaks is 

different. For the NaOH system the CP peaks are slightly more intense than the INEPT 

peaks while this relation is inverted for NaOH/thiourea system. This suggests that the 

additive improves the dissolution efficiency as manifested by the enhancement in the 

INEPT signal. The chemical shifts obtained for the solid fraction of cellulose (CP 

signal) in the NaOH/thiourea system, [106.80 (C1), 88.03 (C4), 78.42/77.08 (C2, 3, 5) and 

63.85 (C6) ppm], can be assigned to a cellulose II, an anti-parallel arrangement of the 

cellulose molecules in the crystal, which is in good agreement with literature [186].  

It is worth noting that the INEPT spectrum of cellulose dissolved in the NaOH/thiourea 

solvent presents a downfield shifting of ca. 2.0 ppm. This might be a result from a 

defective calibration or due to strong thiourea-cellulose interactions, which not only 

facilitates dissolution but also influences the carbon chemical shifts of cellulose [80]; 

presently, additional studies are in progress in order to clarify the origin of the chemical 

shift changes. Recent studies tend to support this observation regarding a preferential 

additive-cellulose interaction. For instance, Bergenstråhle-Wohlert et al. combining MD 

 

 

 
130 

13 
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simulations and solid state NMR on cellulose in water and in aqueous urea solutions 

found that the local concentration of urea is significantly enhanced at the 

cellulose/solution interface [203]. In another related study, Xiong et al., while working 

in the NaOH/urea system, state that the addition of urea in the NaOH solvent can reduce 

the hydrophobic effect of cellulose since urea plays its role through interacting with the 

hydrophobic part of cellulose [202]. 

Other additives have been used and in table 3.3 the main chemical shifts for solid and 

dissolved fractions of cellulose in 8 wt.% NaOH based systems are summarized 

together with the type of crystalline arrangement of the undissolved cellulose (i.e. solid 

fraction). 

 
 

Table 3.3: 
13

C chemical shifts of the dissolved and solid fractions of MCC in NaOH doped with 

different additives [183]. 

Sample Fraction Chemical shift Polymorph 

C1 C4 C2,3,5 C6 

NaOH Solid 106.97,104.18,101.69 85.52 74.60 61.65 Na-Cell. Q
* 

Dissolved 104.15 79.50 75.96, 74.44 61.21  

NaOH/ZnO Solid 109.29, 107.11 88.03 78.45, 77.18 64.18 Cellulose II 

Dissolved 106.59 81.94 78.53, 77.09 63.75  

NaOH/Urea Solid 105.70, 104.49 86.68 77.73 61.93 Amorphous 

Dissolved 106.58 81.92 77.87 63.50  

NaOH/Thio. Solid 106.80 88.03 78.42, 77.08 63.85 Cellulose II 

Dissolved 106.69 82.01 78.52, 76.96 63.86  

NaOH/APG Solid 108.91 88.02 77.10 63.72 Na-Cell. II 

Dissolved 107.04 82.00 78.78, 76.21 64.19  

*
 Na-Cellulose Q is a highly swelled form of cellulose identified by Sobue et al. [188]. 

 

Comparing the NMR spectra it is possible to conclude that the addition of selected 

additives to the NaOH solvent results in an enhancement of the dissolution of cellulose. 

Additionally, we have also found that intermediate polarity additives delay or even 

prevent gelation induced by time or temperature. In figure 3.16 the flow curves obtained 

for samples of cellulose in cold alkali, fresh and after 7 days, in the absence of additives 

and in the presence of thiourea are represented. A significant decrease in viscosity is 

obtained in the presence of thiourea, which indicates a good dissolution state of 

cellulose. Additionally, the sample does not show signs of gelation (increase in 

viscosity) even after 7 days of being stored. On the other hand, the system without 

additives shows an increase in the zero-shear viscosity which may indicate a progressive 

gelation. It is remarkable to notice that the zero-shear viscosity of the system without 

additives is almost two orders of magnitude higher than the system with additives.    
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Figure 3.16: Flow curves of 5 wt.% microcrystalline cellulose in 8 wt.% NaOH/H2O and 8 

wt.% NaOH/12 wt.% thiourea/H2O, fresh and after 7 days. Gelation is prevented by the addition 

of thiourea. Temperature was kept at 25 ºC. 

 

 

As discussed above, cold alkali solvent systems are suitable for the dissolution of 

cellulose with relatively low molecular weight (degree of polymerization < 300). 

Additives, such as thiourea or urea, can improve the dissolved amount and dissolution 

rate (for low degree of polymerization celluloses). In figure 3.17, PLM micrographs of 

high molecular weight cellulose pulp (Domsjö pulp) dissolved in alkali aqueous systems 

are presented. 
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Figure 3.17: PLM micrographs of 1 wt.% of cellulose pulp dissolved in 8 wt.% NaOH/H2O 

(top left), 8 wt.% NaOH/12 wt.% urea/H2O (top right), 8 wt.% NaOH/12 wt.% thiourea/H2O 

(bottom left) and 40 wt.% TBAH/H2O (bottom right). The scale bars represent 100 µm.  

 

As expected, the NaOH based solvent is not able to dissolve cellulose with high degree 

of polymerization. Undissolved and unswelled native fibers dispersed in solution are 

observed in both NaOH aqueous systems (with and without additives). The addition of 

thiourea to the cold alkali system improves the swelling of the fibers (the “ballooning 

effect” is observed) and promotes partial dissolution of the fibers. A distinct result is 

obtained when using tetrabutylammonium hydroxide. In this case, cellulose pulp can be 

dissolved, leading to clear solutions. These results also point out the positive effect on 

dissolution promoted by a more amphiphilic cation (TBA
+
). The mechanism suggested 

involves the weakening of the hydrophobic interactions of cellulose via the more 

hydrophobic moieties of the cation which facilitates the dissolution of cellulose. 
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Tuning the solvent quality: role of salt and urea  

 

Compared with nonionic polymers, charged polymers can be easily dissolved in water, 

due to the entropy gain of the counterions, therefore, charging up a polymer is always 

expected to be helpful for solubility [82]. For a nonionic polymer such as cellulose, this 

can be done either by the association of an ionic charged specie (such as an ion or a 

surfactant) or via deprotonation or protonation of the hydroxyls groups [12, 204]. 

In our point of view, the mechanism of dissolution in strong alkaline environment is 

based on the (weak partial) deprotonation of the hydroxyl groups, with the translational 

entropic gain associated, due to the release of the counterions (figure 3.18). It is our 

conviction that even if a low deprotonation level is obtained, this might be enough to 

produce significant changes in solubility.  However, this does not represent the more 

consensual visions of the dissolution mechanism in cold alkali. One of the common 

opinions is that the alkali forms hydrates with water capable to break the inter- and 

intramolecular hydrogen bonds between cellulose molecules [205].  

 

Figure 3.18: Conversion of neutral cellulose into a polyelectrolyte by pH change: schematic 

representation of the ionization of the hydroxyls of cellulose in strong alkali medium  

(extremely high pH) [206].  

 

A strong indication of cellulose ionization is that the addition of a simple salt, such as 

KBr (also verified for KCl [206], LiCl and NaCl [207]), changes the cellulose dope (in 

aqueous TBAH solution) from a homogenous and transparent solution to an opaque 

solution, which eventually phase separates after a certain amount of salt (figure 3.19).  

 

 

High pH
+

+

+++

+
High pH 
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Figure 3.19: Turbidity increase of samples of cellulose dissolved in strong alkali (40 % TBAH 

solution in water) with progressive addition of KBr. As the salt concentration increases the 

quality of the solution decreases (increase in turbidity) (adapted from [207]). 

 

The situation can be reversed by the addition of a reagent capable of capturing K
+
 ions. 

When a selected crown ether (18-crown-6 (18C6)), known as an excellent ligand for K
+
, 

is added to the solution the transparency of the solution increases and even a better 

dissolution power is observed than that without 18C6. Surprisingly, the solution 

containing 18C6 (3.0 M) was found to be clearer than that containing no KBr (figure 

3.20). 

 

Figure 3.20: Effect of the addition of 18C6 to a solution of cellulose in TBAH aqueous 

containing 100 mM of KBr (adapted from [207]). 

 

This is a good indication that cellulose is, at least, partially ionized in solution due to the 

extremely high pH and, upon salt addition, charges are progressively screened and the 

polymer becomes less hydrophilic until eventually the hydrophobic interactions are 

dominant over the electrostatic repulsion. Similar results were obtained with the 

addition of KCl to a solution containing cellulose in TBAH, followed by addition of the 

y phase separates after a certain amount of salt   

 

 
[KBr] / mM 0.0 20.0 40.0 60.0 80.0 100.0 

 

 

 

no KBr 
KBr (100 mM) 

[18C6] / M 0.0 0.0 0.5 1.0 2.0 3.0 
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crown ether. It should be noted that this is not a simple salting out effect since the 

precipitation/gelation of the system is always observed regardless of the use of 

kosmotropic or chaotropic salts. 

On the other hand the addition of urea to a cellulose solution (in TBAH/H2O) does not 

change the quality of the solution [206], figure 3.21. The addition of 3.33 M (20.0 

wt.%) of urea does not lead to a phase separation, but rather improves cellulose 

dissolution and the rheological properties. As mentioned above, urea can weaken the 

hydrophobic interactions among cellulose chains, in a similar way as it does during 

protein unfolding, increasing cellulose solubility and preventing the hydrophobic 

regions of cellulose to come together to form a gelled network [208]. 

 

Figure 3.21: Photos (left) and transmittance (right) of cellulose dissolved in strong alkali 

(TBAH aqueous solution) with progressive addition of urea. The addition of urea does not 

produce significant changes in transmittance [206]. 

 

Synopsis 

 

It is remarkable that while the samples of MCC dissolved in NaOH exhibit needle-like 

crystallites (observed in SEM), the cellulose samples dissolved in the TBAH/H2O 

demonstrate a considerable reduction in crystallinity, showing a flexible continuous 

wrinkled-film type morphology. This is illustrative of the different levels of dissolution; 

while for TBAH the lack of crystallinity and high flexibility of the materials indicate 

that dissolution progresses down to the molecular level (in agreement with the PT 

ssNMR results), in the case of the NaOH, dissolution is not complete and stable 

cellulose aggregates (crystallites) can be observed in solution. The light scattering data 

indicates the presence of rather small cellulose particles in the TBAH system (ca. 10-20 

nm), while considerably larger cellulose particles (above 200 nm) are found for the 

NaOH system. In any case, both cellulose dopes are macroscopically transparent. In the 
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same direction, PT ssNMR studies indicate a better dissolution performance when 

amphiphilic cations are used; the CP signal is weak in the case of TBAH and TBPH 

aqueous solutions, while in case of NaOH based systems the CP signal is well defined. 

Moreover, the chain arrangement of undissolved material is dependent on the solvent 

used. Cellulose I is observed when amphiphilic cations are used and a highly swelled 

form of cellulose, the so called “Na-Cellulose Q”, or cellulose II is obtained when 

NaOH aqueous based systems are used.  

In the present study we found fundamental differences between a small inorganic cation 

of high charge density and a large organic cation with amphiphilic character. The use of 

an amphiphilic cation leads to cellulose dissolution down to the molecular level whereas 

this is not the case for the sodium ion. That dissolution into molecular solutions is 

strongly assisted by an amphiphilic ion provides good support for the view that 

cellulose molecules have both polar and non polar regions and have a strong tendency 

to associate by hydrophobic interactions. There are several other illustrations in the 

same direction, such as the effect of urea [89], well-known to eliminate hydrophobic 

interactions, thiourea, surfactants and acids with organic anions on cellulose dissolution 

[45], some of them also explored in this work. 

Dissolution and dope stability are found to be clearly influenced by the presence of 

amphiphilic species. Moreover, we have seen that combining cellulose ionization (either 

achieved by extreme pH or adsorption of ionic species) with the weakening of the 

hydrophobic effect (for example by adding urea or thiourea) makes dissolution more 

efficient. In the TBAH system, we have seen that this effect can be controlled and even 

reversed, thus decreasing the solvent capabilities, by the addition of salt (i.e. reducing 

the counterion entropy effect). 

 

 

3.4 - Cellulose dissolution in acidic medium  
 

  

The effort to develop new efficient, environmentally and human friendly 

solvents for cellulose is a hot topic in the cellulose field. Cellulose is insoluble in most 

common solvents, but can be dissolved in some specific solvent systems, such as strong 

alkaline (previously discussed) or strong acid media. The reduced accessibility of the 
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solvent molecules to the interior of cellulose fibrils, promoted by the cohesion of the 

cellulose chains, reduces its efficiency. This cohesion is due to the extended hydrogen 

bond network and hydrophobic interactions (via van der Waals forces) [12, 202].  

Acidic solvents are very effective systems to dissolve cellulose. This high performance 

is usually attributed to the fast diffusion of the hydrogen ion from acid compounds; this 

fast diffusion is related to the very small size of the ion that can easily diffuse into the 

heterogeneous cellulose matrix [209]. However, the cases are rare, where dissolution is 

not accompanied by chemical hydrolysis of cellulose. Such cellulose degradation might 

be useful in some cases, such as fundamental chemical analysis or 2
nd

 generation biofuel 

production but it is definitely not desired or beneficial for other applications, such as 

fiber spinning [210]. Therefore, the solution state of dissolved cellulose is an important 

parameter to consider not only to develop new efficient solvents, but also to understand 

and prevent undesired side effects. 

The general mechanism for cellulose dissolution in acidic systems is suggested to be 

related to protonation of the hydroxyl groups. This charging up effect has been 

extensively explored and observed to be very useful in the polymer field, in particular 

with cellulose derivatives [211]. 

In this section we focus on the dissolution of cellulose in highly concentrated acid 

solutions. Cellulose dissolution in acids can basically be related to the fact that cellulose 

molecules acquire net charges, by protonation at extremely low pH. As done for the 

alkaline media, the effect of different anions and solvent polarity (using glycerol) will 

be addressed using techniques such as scanning electron microscopy (SEM), polarized 

light microscopy (PLM), PT ssNMR and rheology. 

 

Materials and methods 

 

The materials and methods used are described in chapter 2. 

 

Results  

 

Although acid based systems are a very interesting class of cellulose solvents, the 

dissolution is often accompanied by the degradation of the biopolymer. In literature 

several examples can be found where the border between dissolution and degradation is 
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quite subtle [212, 213]. Ioelovich et al. report on the dissolution of cellulose in 

concentrated sulfuric acid solution. The authors found that cellulose regenerated from 

65 wt.% sulfuric acid shows a degree of polymerization of 70-80 while the starting 

material presented a degree of polymerization of 170 [110]. Increasing the sulfuric acid 

concentration above 65 wt.% led to a diminution in the yield of the regenerated 

cellulose. After treatment of the initial MCC sample with 70 wt.% sulfuric acid, the 

dissolved cellulose cannot be regenerated from the acidic solution by dilution with 

water due to fast acidic depolymerization and the formation of water-soluble oligomers. 

It should be noted that the procedure to isolate nanocrystalline cellulose uses similar 

acid concentrations. 

A similar system, using glycerol instead of water, was tested in the present work. The 

addition of glycerol intends to facilitate dissolution by reducing the polarity of the 

medium and decreases the kinetics of degradation. Figure 3.22 shows the polarized light 

micrographs of microcrystalline cellulose dissolved in different acidic media.  

 

Figure 3.22: Polarized light micrographs of 10 wt.% microcrystalline cellulose dispersed in 

water (top left) and dissolved in H2SO4/glycerol (2:1) solution (top right), in 85 wt.% H3PO4 

aqueous solution (bottom left) and in 65 wt.% zinc chloride aqueous solution (bottom right). 

The scale bars represent 100 µm. Black dots are air bubbles.  

  

  

  

a) 



77 

 

 

The samples appear to be quite well dissolved when observed in PLM. The absence of 

visible undissolved material is achieved in all cases, which means that if cellulose 

aggregates are still present, they have a very small size (sub micron). The presence of 

trapped air bubbles is due to the high viscosity of the samples. In fact, the high viscosity 

of cellulose dopes in acidic systems is one of the main concerns for a process 

implementation on industrial scale. 

The observation in electron microscopy of a sample containing cellulose in aqueous 

zinc chloride solution, figure 3.23 shows a “melted” morphology, which indicates that 

the super-molecular structure of the cellulose is “destroyed” and no signals of 

crystallites are observed in the dissolved sample. 

 

Figure 3.23: Scanning electronic micrographs of microcrystalline cellulose; dispersed in water 

(left) and dissolved in 65 wt.% zinc chloride aqueous (right). 

 

In order to have a better understanding of the dissolved state of cellulose in the acidic 

solvents, NMR techniques were again applied. As discussed in section 3.2, PT ssNMR 

is able to give us information not only about the cellulose in solid state, but also about 

the dissolved cellulose, in a single experiment.  

In figure 3.24 the PT ssNMR spectra of microcrystalline cellulose dissolved in aqueous 

phosphoric acid, recorded at 25 ºC and 60 ºC, as well the spectra of the starting material, 

are depicted.  
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Figure 3.24: PT ssNMR data for microcrystalline cellulose in the initial dry state at 25 ºC (top), 

as well as 10 wt.% cellulose dissolved in aqueous H3PO4 (middle and bottom); recorded at 25 

ºC (middle) and recorded at 60 ºC (bottom). CP and INEPT spectra are shown in blue and red, 

respectively. The assignments of the solid (blue) and dissolved (red) cellulose peaks refer to the 

carbon atom numbering in the structural formula. The blue and red dashed lines represent 

chemical shifts for cellulose I (starting material) and dissolved cellulose, respectively, in order 

to a better visualization of the data. The data was acquired at 125 MHz 
13

C Larmor frequency 

with 5 kHz magic angle spinning (MAS), 88 kHz two pulse phase modulation (TPPM) 

decoupling 
1
H decoupling. The spectra are zoomed-in on the 50-130 ppm spectral region 

relevant for cellulose, and, independently for each sample, magnified to facilitate observation of 

the cellulose resonance lines [214]. 
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In table 3.4 the chemical shifts for microcrystalline cellulose dissolved in aqueous 

H3PO4 (two temperatures) as well as the attribution of the polymorph type for the solid 

fraction present in each sample are reviewed. 

 

Table 3.4: 
13

C chemical shifts of microcrystalline cellulose dissolved in acidic aqueous 

solutions [214]. 

Sample Fraction Chemical shift Polymorph 

C1 C4 C2,3,5 C6 

Dry Solid 104.77 88.65 74.60, 71.82 65.05 Cellulose I 

H3PO4 at 

25ºC 

Solid 104.74 81.02 76.65 63.71 Amorphous 

Dissolved ---- ---- ---- ----  

H3PO4 at 

60ºC 

Solid 106.41 86.64 77.48, 76.23, 74.72 65.19 Cellulose I 

Dissolved 105.06 81.53 77.28, 72.99 64.46  

 

The dry cellulose (starting material) gives intense CP peaks while INEPT is absent, 

which is consistent with cellulose being in the solid state. As discussed in sections 3.2 

and 3.3, the observed CP chemical shifts are typical for cellulose I [188]. The sample 

containing cellulose in aqueous phosphoric acid gives a good CP signal and a poor 

INEPT signal; at a first glance this would suggest that we are mainly in the presence of 

a solid material with a small dissolved fraction. This would contradict the results 

obtained by light microscopy and previously reported for this solvent system [209]. 

However, it is important to note that the solutions formed are very viscous (see figure 

3.25), which can lead to an increase in the reorientation time of the C-H bonds in the 

cellulose chains; if this reorientation time is increased above 100 ns (see figure 3.7) the 

INEPT signal is expected to be lost and “converted” into the CP signal. An indication 

that possibly the CP signal is coming from dissolved cellulose is that the chemical shifts 

obtained in the CP spectrum are typical for dissolved, low order and amorphous 

cellulose. 
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Figure 3.25: Flow curves of 10 wt.% microcrystalline cellulose in aqueous H3PO4 (♦) and in 

aqueous ZnCl2 (▲), at 25 ºC (filled symbols) and at 60 ºC (empty symbols). 

 

The acquisition of the spectra was also performed at 60 ºC (figure 3.24, bottom). As one 

can observe, the CP signal dramatically decreases and the INEPT signal increases; this 

inversion in the signals intensities is most likely due to the considerable decrease in 

viscosity induced by the temperature raise. The chemical shifts obtained in the INEPT 

spectra [105.06 (C1), 81.53 (C4), 77.28/72.99 (C2,3,5), and 64.46 (C6) ppm] are in good 

agreement with the ones reported for dissolved cellulose [174]. Two new peaks 

appearing at 98.68 ppm and 95.05 ppm can possibly be attributed to degradation 

products of cellulose in the acidic medium [215], most likely small oligomers from 

polymer degradation. 

The weak CP signal at 60 ºC reveals a good dissolution efficiency of the aqueous H3PO4 

solvent (less than 1% of undissolved starting material is estimated to remain in the 

sample). Furthermore, the chemical shifts for the solid fraction of cellulose in solution 

indicate that we are in the presence of the cellulose I polymorph. 

Another interesting system that shows good ability for cellulose dissolution is the 

aqueous ZnCl2. This strongly concentrated salt system displays Lewis acid character. In 

figure 3.26 (top) the CP and the INEPT spectra for microcrystalline cellulose dissolved 

in an aqueous 65 % ZnCl2 solution are represented. 
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Figure 3.26:  (top): CP (blue line) and INEPT (red line) spectra for 10 wt.% microcrystalline 

cellulose dissolved in aqueous ZnCl2 (65%). (bottom): CP spectra of cellulose in H3PO4 

aqueous (black line) and in ZnCl2 aqueous (grey line). The data was acquired at 25 ºC and 125 

MHz 
13

C Larmor frequency with 5 kHz MAS and 88 kHz TPPM 
1
H decoupling. The spectra are 

zoomed-in on the 50-130 ppm spectral region relevant for cellulose, and, independently for each 

sample, magnified to facilitate observation of the cellulose resonance lines [214]. 

 

As observed for the H3PO4 aqueous system, the cellulose dope in ZnCl2 gives also a 

good CP signal and a poor INEPT signal. Due to the high viscosity of the dopes formed 

in ZnCl2 we believe that the C-H reorientation time is higher than predicted this being 

the main contribution to the CP signal. The reported 
13

C spectrum for cellulose in an 

aqueous ZnCl2 solution at 65 ºC, is coherent with the suggested hypothesis [51] since a 

good signal for dissolved cellulose is obtained at high temperature.  

Comparing the CP spectra of cellulose in H3PO4 and in ZnCl2 it is possible to observe 

minor differences in the chemical shifts of C1 and C4. In figure 3.26 (bottom), two new 

peaks at 106.42 ppm and 84.67 ppm are detected. These differences are suggested to 

result from the formation of a complex zinc-cellulose [51, 216]. For the cellulose dope 

produced from the ZnCl2 based system, no degradation products are detected. Another 
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example of an acidic solvent already reported for cellulose is the H2SO4/glycerol (2:1) 

mixture [217]. The addition of glycerol is intended to stabilize the cellulose solution, 

reducing the harsh degradation that is usually observed in common acidic solvents. In 

figure 3.27 the CP and INEPT spectra for microcrystalline cellulose dissolved in the 

sulfuric acid/glycerol mixture are presented. 

 

 

Figure 3.27: CP (blue line) and INEPT (red line) spectra for 10 wt.% microcrystalline cellulose 

dissolved in H2SO4/glycerol (2:1) solution. The data was acquired at 25 ºC and 125 MHz 
13

C 

Larmor frequency with 5 kHz MAS and 88 kHz TPPM 
1
H decoupling. The spectra are zoomed-

in on the 50-130 ppm spectral region relevant for cellulose and, independently for each sample, 

magnified to facilitate observation of the cellulose resonance lines [214]. 

 

The CP signal is inexistent, which suggests that the dissolution is complete. However, 

the obtained INEPT spectrum is significantly different from the spectra obtained for 

cellulose in other solvents or even in the dry state. The chemical shifts obtained [75.01 

(C2), 73.37 (C4), 72.15 (C3,5) and 66.06 (C6) ppm] suggest the presence of D-gluconic 

acid in solution [218]. The signal for the C1 carbon is lost due to the absence of C-H 

bond in the D-gluconic acid. The appearance of this compound in the dope is due to 

cellulose degradation [219]. Moreover, the presence of two additional peaks at 82.72 

ppm and 80.80 ppm possibly indicates that besides D-gluconic acid, the major 

degradation product, other compounds from cellulose degradation are present in 

solution. 
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The strong cellulose degradation in the H2SO4/glycerol system (and also found in other 

acidic systems) reduces the applications of these systems in situations where high 

degrees of polymerization are required, such as fiber spinning. However, this solvent 

might be very useful for other applications such as biofuel production [219].   

  

Synopsis 

 

Although quite efficient, acidic systems usually lead to unwanted cellulose degradation, 

which can be an important drawback for certain applications. Here we have shown by 

PLM the absence of large aggregates of undissolved material which is supported by PT 

ssNMR (weak CP signal). However, PT ssNMR also demonstrates to be very sensitive 

to the viscosity of the system; highly viscous solutions can lead to a long reorientation 

time (C-H bond), which results in an enhancement in the CP signal even if the sample is 

well dissolved (similar results were also obtained when true gelation of the solutions 

occurs, such as the DMSO/H2O/TBAH or TBAF/DMSO/H2O systems [220]). This 

might be regarded as a weakness of the technique, which can wrongly induce the less 

accurate determination of the solid/liquid fractions. Nevertheless, it seems clear that 

even for gelled systems important information can be obtained by PT ssNMR, 

especially when combined with other techniques. PT ssNMR is also useful to detect 

degradation products; for example, D-gluconic acid is found in the H2SO4/glycerol 

system. 

 

 

3.5 - Stability of cellulose dopes: Role of cyclodextrins and surfactants. 

 

 Usually, cellulose dopes are unstable with the self-association of cellulose 

chains resulting in gelation of the system. Molecular association of cellulose is many 

times explained based on an extended reformation of intra- and intermolecular hydrogen 

bonds [174, 221-223]. However, as argued cellulose is an amphiphilic molecule and 

thus the stability of the cellulose solutions is also governed by hydrophobic interactions. 

During the regeneration process, the hydrophobic interactions are expected to be  

responsible for the stacking of the cellulose chains and formation of molecular sheets, 

the hydrogen bonds being responsible for the association of these sheets into thin planar 

a) 
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crystals [74]. Recently, Isobe et al. reported the first experimental evidence of such 

molecular aggregation [100]. The gelation phenomenon of cellulose solutions most 

likely is also driven by hydrophobic interactions. In the previous section 3.3, the 

enhancement of dissolution performance of NaOH based systems, promoted by the 

addition of selected cosolutes such as urea or thiourea, was discussed. In this section the 

stability of the dopes is evaluated. 

 

Materials and methods 

 

The materials and methods used are described in chapter 2. 

 

Results 

 

As discussed above the effect of amphiphilic solvents on the efficiency of dissolution of 

cellulose samples is remarkable. In alkali based systems, a “simple” change of an 

inorganic cation, Na
+
, by an amphiphilic cation (organic TBA

+
) results in a significant 

enhancement in performance. Higher concentrations of cellulose with larger degrees of 

polymerization can be dissolved in solvents with the amphiphilic TBA
+
. The 

introduction of molecules with intermediate polarity on the NaOH based solvents also 

improves not only the dissolution capacity of the solvents but also their stability.  As 

presented in figure 3.16 the shear viscosity of an alkali based solution doped with 

thiourea, is reduced after 7 days of storage. The same sample without the additive 

shows an increase in shear viscosity, possibly demonstrating a small aggregation of the 

cellulose chains.  

 

Stability of cellulose solutions: influence of cyclodextrins  

 

The cellulose dopes produced in aqueous TBAH or TBPH solutions are stable (no 

gelation is observed) during a long period of time (figure 3.28). Such stability is 

typically not observed with systems containing inorganic cations. For instance cellulose 

solutions produced via the viscose process typically gel after one week, limiting the 

time window for processing. 
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Figure 3.28: Flow curves of 5 wt.% microcrystalline cellulose in aqueous TBAH (1.54 M), as a 

function of time. Temperature was kept constant at 25 ºC. 

 

In section 3.3 the changes in the quality of cellulose solutions (aqueous TBAH) as a 

function of salt addition have been discussed. The solubility is observed to decrease by 

salt addition. However this behavior can be reversed by the addition of a specific ligand 

to the cation used. The solvent quality is also very much influenced by the concentration 

of amphiphilic cations available in solution. For instance, in an aqueous solution the 

reduction of the concentration of TBAH from 1.54 M (40 wt.%) to 1.35 M (35 wt.%) 

leads to a dramatic decrease in solvent quality. Similar results can be obtained by the 

addition of a compound capable to encapsulate less hydrophilic species, such as 

cyclodextrins. In figure 3.29 the transmittance results obtained with the addition of β-

CD to a solution of cellulose in aqueous TBAH are presented. 
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Figure 3.29: Photos and transmittance of cellulose dissolved in strong alkali (TBAH/H2O 

solution) with progressive addition of β-cyclodextrin. The addition of β-cyclodextrin phase 

separates the solution (adapted from [206]). 

 

As can be observed, the addition of CD turns a good solvent into a bad solvent, with a 

clear increase in turbidity of solution and later gelation. A possible mechanism to 

explain this reduction in solubility is the association of the tetrabutylammonium cation 

(TBA
+
) with cyclodextrin, decreasing its availability in solution. As a consequence, the 

solvent quality becomes poorer and the transmittance considerably decreases until 

eventually a macroscopically phase separation occurs.  

To further confirm this hypothesis, the association between CD and the TBA
+
 cation 

was studied by 
1
H NMR. The stoichiometry of association and binding constants were 

determined by the continuous variation, CVM, (or Job’s plots) and titration methods. 

Figure 3.30 shows representative 
1
H NMR spectra of TBAH (a), -CD (b) and a mixed 

-CD:TBAH (c) solution, at a pH of 12.08. The obtained 
1
H NMR spectra for -CD and 

TBAH are similar to those previously reported [224-226]. Briefly, the 
1
H NMR 

spectrum of β-CD in D2O (figure 3.30a) presents (from upfield to downfield) a triplet 

(assigned to the H4 protons) at δH4 = 3.534 ppm and a doublet of doublets assigned to 

H2 protons at δH2 = 3.596 ppm. These protons are located outside the cavity of CD, near 

the narrow and wide sides, respectively. The H5 and H6 (including the anomeric H6’) 

protons overlap at the chemical shift around 3.83 ppm. The H3 protons, located inside 

the cavity, at the wide side, show a triplet at δH3 = 3.920 ppm. The doublet located at δ 

= 5.025 ppm is assigned to H1 protons, which are located outside of CD cavity and in 

between H4 and H2 protons. These chemical shifts show a slight downfield displacement 

when compared with those ones obtained for non-buffered CD solutions [227]. 
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The 
1
H NMR spectrum of TBAH (figure 3.30b) shows a triplet assigned to the methyl 

group (H) at 0.955 ppm, and the 
1
H NMR assigned to methylene groups shows 

resonances at 1.370, 1.660 and 3.206 ppm for H, H and H, respectively. 

The 
1
H NMR spectrum of a -CD:TBAH mixed solution, with a molar ratio 

r=[TBAH]/[-CD]=1.01, and with [-CD]=0.506 mM, is given in figure 3.30c. It can 

be seen that resonances of CD and TBAH do not overlap; besides, and as can be seen 

below, upfield shifts (=(mixture)-(free)) for tetrabutylammonium protons are 

observed, whereas for the case of -CD 
1
H the presence of TBA

+
 leads to downfield 

shifts.  

 

Figure 3.30: 1
H NMR spectra of solutions of a) TBAH, 1.02 mM; b) β-CD, 1.01 mM; and c) 

TBAH and β-CD, xCD = 0.5 [228]. 

 

To evaluate the possible interaction between TBA
+
 and -CD, the stoichiometry and the 

corresponding binding constants were determined using the continuous variation, CVM, 

(or Job’s plots) and titration methods, respectively [229]. The CVM is based on the 
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analysis of 
1
H NMR spectra for a series of β-CD:TBAH mixtures, in which the total 

concentration of the two species is kept constant (ca.1.0 mM). The stoichiometries are 

determined by plotting Δδ.[β-CD] or Δδ.[TBAH] against xi (where i = TBAH or CD) 

and finding the xi values corresponding to the maximum (or minimum) of these 

distributions [230]. In figure 3.31 the Job’s plots are represented. As can be observed, 

the CD protons, in particular the inner cavity proton H3, suffer a downfield shift in the 

presence of TBAH. This may indicate the incorporation of the alkyl chains of TBA
+
 in 

the CD cavity and the formation of inclusion complexes as previously suggested. 

Additionally, the downfield shift is probably a consequence of such supramolecular 

interaction where the ammonium group of the TBA
+
 becomes closer to the CD inner 

cavity protons affecting their chemical environment. It is noted, however, that no 

significant differences between the different protons of either CD or TBAH, in terms of 

chemical shift displacements, are observed. On the other hand, an upfield shift is 

present in all protons of tetrabutylammonium, probably indicating that the presence of 

CD is inducing an anisotropic magnetic field on those protons. 

 

 

 

 

 

 

 

 

 

Figure 3.31: Job’s plots for TBAH and -CD protons for mixed TBAH:-CD solutions.
1
H 

TBAH: (■) H, (●) H, (▲) H, () H. 
1
H -CD: (□) H4, (o) H3, (∆) H1, (◊) H5. The sum of the 

concentrations of TBAH and β-CD is kept constant at 1.0 mM [228]. 

 

An interesting point that comes out from the analysis of figure 3.31 is that the molar 

fraction of CD at which a maximum occurs (i.e. x around 0.5) does not perfectly match 

with the molar fraction of CD at which the minimum is observed (i.e. x ca. 0.6).  

In order to have an accurate determination of the inflexion points, a Gauss peak function 

analysis has been performed and the data are reviewed in table 3.5. 
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Table 3.5: Molar fractions and corresponding stoichiometry of association between TBAH (m) 

and β-CD (n) obtained from the CVM [228]. 

 H4 H3 H1 H5 

xCD 0.499 (0.007) 0.463 (0.004) 0.454 (0.004) 0.463 (0.004) 

m:n 1.03 (0.01) 1.16 (0.01) 1.20 (0.01) 1.16 (0.01) 

1 H H H H 

xTBAH 0.616 (0.006) 0.590 (0.006) 0.607 (0.008) 0.537 (0.006) 

m:n 1.61 (0.02) 1.44 (0.01) 1.55 (0.02) 1.16 (0.01) 

 

Some inconsistency is observed when comparing the stoichiometries of association, as 

seen by CD or TBAH protons. This may be due to supramolecular interactions not 

involving exclusively the formation of inclusion complexes. Alternatively, it may be 

hypothesized that the ammonium group is also playing an important role by interacting 

electrostatically with hydroxyl groups located in the outside of CD cavity. It should be 

emphasized that not only hydrophobic interactions lead to an association between CD 

and a guest molecules; for instance, it has been reported that non-associated inorganic 

salts can be involved in the formation of “host-guest” complexes although with 

moderate association constants [231, 232]. 

Taking into account the stoichiometry of association found by the CVM, the 

equilibrium formation of the complex can be written as: 

 
   

f f

CD G
K

CD G


                                       (3.1) 

where [CD]f and [G]f represent the concentration of free (non-complexed) species, β-CD 

and TBAH, respectively, and [CD-G] is the concentration of the 1:1 complex. 

Considering the corresponding mass balance equations, equation 3.1 can be re-written 

as:   

      1
T T

f
K

f CD f G


 
                       (3.2) 

where f is the fraction of TBAH complexed with the β-CD, and [CD]T and [G]T 

correspond to total concentrations of -CD and TBAH, respectively. 

Assuming fast exchange conditions, the observed chemical shift for a guest species is 

expressed as: 

 exp 1 G CD Gf f                                      (3.3) 
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where δG and δCD-G, represent the chemical shift of a given nucleus when free and 

complexed, respectively. 

The chemical shift displacement of a given nucleus of the TBAH, can be expressed as: 

 
 exp

CD G

T

CD G
G


 

                                  (3.4) 

where [G]T and [CD-G] are the initial concentration of TBAH and of complex, 

respectively; for the 1:1 complex, after some algebraic manipulation and simplification 

results in 

 
            

0.5
2

exp

1 1
4

2

CD G

T T T T T T

T

G CD G CD G CD
G K K


 

     
                

 (3.5) 

where [CD]T is the initial concentration of the -CD. 

The experimental data (see figure 3.32) can be perfectly fitted by equation 3.5, using a 

non-linear least-squares algorithm, to obtain the fitting parameters K and ΔδCD-G (table 

3.6). 

 

Figure 3.32: Experimental chemical shifts (exp) of TBAH (1.20 mM) protons as a function of 

β-CD concentration, at 25 ºC [228]. 
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Table 3.6: Fitting parameters of equation 3.5 to experimental data (see figure 3.32) [228]. 

 CD [CD]/mM max/ppm K R2 

H  1.20 −0.124 (0.003) 1547 (155) 0.99734 

H  1.20 −0.122 (0.002) 1582 (132) 0.99818 

H  1.20 −0.124 (0.003) 1573 (166) 0.99704 

H  1.20 −0.123 (0.003) 1616 (189) 0.99639 

R
2
 is the correlation coefficient of the fitting of equation 3.5 to experimental data shown in figure 3.32. 

 

The analysis of the data shows that equation 3.5 fits well to the experimental data. 

The 
1
H NMR spectroscopy relies on direct measurements of the free and bound ligand 

in a solution containing a known amount of the CD and guest (in this case TBAH); 

consequently, it is possible to determine microscopic association constants [233] once 

the affinity of the different protons from the guest to the CD environment (or vice-

versa) is different. In the present case, the estimated association constants for all protons 

are rather similar within the corresponding standard deviation (see table 3.6). 

Nevertheless, it is worth noticing that the K values decrease in the order K(H) > K(H) 

> K(H) > K(H). This is in agreement with the previous discussion where it has been 

pointed out that, apart from the hydrophobic interactions, the ammonium group is also 

expected to play a relevant role in the supramolecular interaction. 

 

Stability of cellulose solutions: role of surfactants  

 
 

In figure 3.33, the viscoelastic properties are plotted as a function of temperature for a 

system of microcrystalline cellulose (MCC) dissolved in an NaOH aqueous based 

solvent with (figure 3.33b) and without (figure 3.33a) an amphiphilic cosolute (betaine 

derivative surfactant).  
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Figure 3.33: Elastic molulus, G’ (  , and viscous modulus, G’’ (  ), versus temperature for 3.5 

wt.% microcrystalline cellulose sample dissolved in the 10 wt.% NaOH/H2O solvent system: 

(a), without betaine derivative and (b) with betaine derivative. Constant heating rate of 1 

ºC/min. The temperature of gelation (G’ = G’’) is increased ca. 10 ºC in the presence of the 

amphiphilic additive. The vertical dashed grey line indicates the transition region (adapted from 

[206]). 

 

Gelation occurs with the temperature increase for both NaOH based systems; however 

the gelation temperature, Tg, is shifted to higher temperatures, ca. 10 ºC, with the 

addition of an amphiphilic compound (estimated from the crossover of the storage 

modulus (G’) and loss modulus (G’’)). The vertical dashed lines demark the transition 

region from a liquid-like behavior (G’’>G’) to a solid-like behavior (G’>G’’).  

 Identical effects are observed for acidic systems; in figure 3.34 is shown the effect of 

the addition of a surfactant in the gelation temperature of MCC dissolved in a highly 

concentrated zinc chloride aqueous solution at high temperature. 

 

Figure 3.34: Elastic molulus, G’, and viscous modulus, G’’, versus temperature for 3.5 wt.% 

microcrystalline cellulose sample dissolved in 60 wt.% ZnCl2/H2O solvent system: (a), without 

betaine derivative and (b) with betaine derivative. Constant cooling rate of 1 ºC/min. The 
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temperature of gelation, Tg, decreased more than 30 ºC in the presence of the amphiphilic 

additive. The vertical dashed grey line indicates the transition region (adapted from [206]). 

 

For this system, gelation is observed at ca. 65 ºC in the absence of the amphiphilic 

compound. However, when the amphiphilic additive is present (figure 3.34b), the 

cellulose dope kept the liquid behavior (G’’ > G’) for a larger temperature range, 

shifting the gelation to temperatures below ca. 35 ºC. Even with the obvious differences 

among the different solvent systems presented and different dissolution procedures, it 

seems clear that the addition of certain amphiphilic additives leads to similar effects (i.e. 

an increase in the thermal stability of the cellulose dopes, allowing the solutions to 

preserve their liquid behavior). Gelation is believed to be due to self-aggregation of the 

cellulose chains in the solution, with time and/or induced by temperature changes. The 

increasing number of hydrophobic junction zones between the cellulose chains in the 

solution can be prevented by the presence of the amphiphilic specie. The obtained 

results suggest that the amphiphilic cosolute can reduce the hydrophobic interactions, 

preventing or delaying cellulose aggregation, resulting in an increased thermal and 

temporal stability. 

 

Synopsis 

 

Dope stability is found to be visibly influenced by the presence of amphiphilic or 

intermediate polarity species. The results suggest that certain cosolutes can prevent to 

some extent the hydrophobic association, here suggested to be the driving force for 

gelation of the solutions. As a consequence, the cellulose dopes increase their thermal 

and storage stability. For the aqueous TBAH system, a high performance solvent, the 

presence of an amphiphilic cation seems to be the key factor for the observed high 

dissolution power. 

It has been demonstrated that the solvent capabilities can be controlled by adding β-

cyclodextrin, which is suggested to decrease the amount of TBA
+
 cations available in 

solution, thus considerably affecting the solubility of cellulose leading to gelation and 

turbidity of the solutions. 

The formation of a host-guest complex is supported by the NMR experiments. The data 

does suggest the formation of 1:1 β-CD:TBA
+
 complexes with association constants of 



94 

 

1580 M
-1

. The worsening of the solvent with CD addition is also striking from the 

turbidimetry measurements. 

 

3.6 - Regenerated materials: Solvent effect 

 

 

 It is expected that the way cellulose is dissolved and how it organizes in solution 

has a strong influence on the properties of the regenerated material [198].  

A couple of examples can be mentioned. For instance, while in the viscose process 

(NaOH based solvent), cellulose chains apparently build up a loose network with gel 

particles, in the lyocell process (N-Methylmorpholine N-oxide (NMMO) based solvent) 

an entanglement network with highly swollen aggregates is observed [149]. Another 

study of the solution state of cellulose in NMMO shows the presence of a bimodal 

distribution of aggregates with up to 1000 chains [191, 234]. In all these cases, it is 

obvious that the regenerated material (in the form of films, fibers or other) behaves 

completely different, from a structural level up to mechanical properties, depending on 

the process used. The differences in mechanical properties of regenerated materials, 

such as Lyocell and viscose fibers, is mainly due to the differences in the applied 

regeneration process (i.e. air gap vs. wet spinning) and the associated differences in the 

draw ratios. However, parameters such as the polymer concentration and the dissolved 

state are also believed to markedly influence the properties of the regenerated materials 

and therefore this is an important motivation for a deeper characterization of the 

cellulose solutions. In this section we focus on acidic and alkaline aqueous solutions. 

Here, by means of scanning electron microscopy (SEM) and X-ray powder diffraction 

(XRD) we report on the effect of distinct solvents, i.e. cold NaOH solutions versus 

aqueous solution of tetrabutylammonium hydroxide and also the effect of the addition 

of amphiphilic reagents on alkali based systems, but also acidic systems, on the degree 

of dissolution and the state of the regenerated cellulose. Additionally, the crystallinity 

index, estimated from XRD, is also reported for regenerated materials after dissolution 

in the different media. 
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Materials and methods 

 

The materials and methods used are described in chapter 2. 

 

Results 

 

The regeneration step in cellulose processing, in order to produce fibers or films, occurs 

when dissolved cellulose in solution contacts with a coagulation solution, leading to a 

desolvation of the cellulose molecules and aggregation of the chains, in an arrangement 

which is influenced by the solution state of cellulose. Molecular aggregation during 

regeneration of cellulose typically is attributed to rearrangement of the hydrogen bonds 

(i.e. reformation of the intra- and intermolecular hydrogen bonds) [235]. A more recent 

view calls the attention to the role of hydrophobic interactions during the regeneration 

process; this analysis suggests that when the medium surrounding the cellulose 

molecules becomes energetically unfavorable for molecular dispersion, regeneration 

starts and the initial process would consist of the stacking of the hydrophobic 

glucopyranoside rings (driven by hydrophobic interactions), which then would line up 

by hydrogen bonding to form crystallites [100]. In what follows, the effect of the 

solvent system and the efficiency of dissolution on the properties of the regenerated 

materials are discussed. 

 

Alkaline solvents 

 
 

In figure 3.35 are presented SEM images of regenerated cellulose after dissolved in 

different alkali based solvent systems.  
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Figure 3.35: SEM images of the cellulosic materials regenerated in acidic medium. Cellulose 

has been previously dissolved in a NaOH aqueous solution (top left), NaOH/urea aqueous 

solution (top right), NaOH/thiourea aqueous solution (bottom left) and in TBAH aqueous 

solution (bottom right). 

 

Needle-like crystallites are present in the material regenerated from sodium alkali 

solvent; the chains have a tendency to aggregate mainly side-by-side during 

precipitation, building up a complex crystalline structure. Also the incomplete 

dissolution observed for this system (discussed in section 3.3) should contribute to the 

crystalline structures formed. In acidic coagulation media, the H
+
 assumes a key role in 

cellulose regeneration by neutralizing the alkaline content and, therefore, one can 

speculate that as cellulose becomes less charged, this leads to a hydrophobic 

aggregation of the cellulose chains. It is important to note that in SEM images of 

cellulose dissolved in aqueous NaOH (figure 3.11) crystallites are observed in solution; 

it is expected that these crystallites can also aggregate and thus a very crystalline 

material is obtained in the end. On the other hand, the solvents containing additives of 
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intermediate polarity, such as urea or thiourea, lead to “softer” morphologies after 

regeneration (no needle-like crystals are observed). Additionally, porous materials are 

also observed. 

The SEM images of the regenerated materials dissolved in the TBAH-based solvent 

show also a much softer structure when compared with the resultant from the NaOH 

based solvent. The “continuous wrinkled-film type” morphology is still observed in 

some areas but, in most cases, the surface is flattened and seems to be constituted by 

aggregated sheets of cellulose molecules. This cellulose sheet-by-sheet stacking fits the 

proposed mechanism based on hydrophobic association. This rearrangement of 

cellulose chains that produces soft surface morphologies is obviously facilitated if the 

structure of the cellulose in solution is closer to a molecular dispersion state than to an 

aggregated state; the expected flexibility of the former is opposed to the rigidity of the 

latter. In other words, the flexibility of the film deduced by the flattening of the 

cellulose surface upon regeneration indicates a material with low crystallinity, i.e. 

highly crystalline samples would hardly adopt such flexible conformations and 

morphologies. As alluded to, such rigidity is expected to be correlated with the degree 

of crystallinity and this can be inferred from X-ray diffraction.  

In figure 3.36 the X-ray diffraction patterns of the native cellulose and the regenerated 

materials from the alkali based systems are presented.  

 

Figure 3.36: X-ray diffraction patterns for native MCC (full black curve), and regenerated 

materials from MCC dissolved in aqueous NaOH (dark grey curve), in aqueous NaOH/thiourea 

(light grey curve) and in aqueous TBAH (dotted curve). 
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The use of additives with amphiphilic properties such as urea, thiourea or alkyl-

polyglucoside surfactant (APG) in the NaOH system or using a solvent with 

amphiphilic cations (TBAH) considerably reduces the crystallinity of the native MCC. 

Regarding the position of the diffraction peaks, the starting MCC material presents a 

major sharp diffraction centered at ca. 22.5º (002) with a side peak at 20.5° (021) typical 

for a cellulose I crystalline organization [165]. Other characteristic reflections of the 

cellulose I type structure can be found at 14.7º (101), 16.6º (10  ) and 34.7º (040). When 

cellulose is dissolved in the NaOH aqueous solution or in the NaOH/thiourea system, 

the regenerated structure changes to a cellulose II type arrangement with two main 

diffraction peaks centred at 20.1º (10  ) and 21.9º (002). A small bump at ca. 12.3º is 

indicative of a 101 lattice plane, also characteristic of a cellulose II crystal organization 

[165]. 

On the other hand, a more amorphous material with no detectable diffraction peaks is 

obtained when cellulose is regenerated from the TBAH aqueous system. The X-ray data 

are in good agreement with the NMR and SEM data. 

The estimated crystallinity index of the materials, using the X-ray diffraction data 

(equation 2.1), shows CrI values of 85 and 82% for the native cellulose and that 

regenerated from NaOH solution, respectively; on the other hand, it was not possible to 

determine the CrI from the TBAH based solutions due to its amorphous nature [190]. It 

is important to keep in mind that although these values are not absolute, they provide 

good indications and correlate well with the SEM results. 

 

Acidic solvents 

 

Despite the chemical degradation of cellulose in most of the acidic systems studied, it is 

still possible to regenerate and precipitate cellulose using a non-solvent such as pure 

water or slightly alkaline solutions. In figure 3.37, electron micrographs of the 

regenerated cellulose from the acid solutions are presented. In some cases surfactants 

have been use to increase not only the dissolution efficiency but also to increase the 

stability of the dopes. 
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Figure 3.37: SEM images of regenerated materials in water. Cellulose has been previously 

dissolved in a) H3PO4 aqueous solution, b) in H3PO4/surfactant aqueous solution, c) in ZnCl2 

aqueous solution and d) in ZnCl2/surfactant aqueous solution. The scale bars represent 10 µm. 

 

As can be observed, all the regenerated samples present a smooth morphology, 

indicating the presence of low crystalline materials [190]. The considerable molecular 

weight decrease in the H2SO4/glycerol system makes the regeneration of any material 

unfeasible. Interestingly, the addition of surfactants to the acidic solvents results in what 

appears to be more porous materials when compared with the analogue systems without 

surfactant. The local increase of curvature in the cellulose reorganization induced by the 

surfactants may explain this behaviour but further work is being performed to 

understand the phenomenon.  

The low crystallinity of the regenerated materials as being suggested by the SEM 

images is confirmed from the X-ray measurements.  

 

 

 

 

 

 

a) b) 

c) d) 

 

 

 

 

a) b) 
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Figure 3.38: X-ray diffraction patterns for microcrystalline cellulose (black line), and 

regenerated materials from a solution of microcrystalline cellulose dissolved in H3PO4 aqueous 

(grey line), from a solution of microcrystalline cellulose dissolved in H3PO4/surfactant aqueous 

(light grey line) and from ZnCl2 aqueous (dotted line). 

 

Figure 3.38 clearly indicates a reduction in the crystallinity of the regenerated materials 

obtained from all the tested acidic solvent systems. Moreover, a change in the cellulose 

chain arrangement can be observed; while a typical cellulose I crystalline organization 

is obtained for the starting material, a cellulose II polymorph is obtained for the 

regenerated materials: for the H3PO4 and ZnCl2 aqueous systems, the Bragg reflections 

are found at 12.2º (    ), 19.9º (110) and 22.0º (200) [109, 236]. The addition of a 

surfactant to the H3PO4 aqueous system, results in a change of the packing of the 

cellulose chains in the regenerated materials with reflections at 20.0 (110) and 21.8º 

(200), but without the reflection of the plane (    ) [236]. This might indicate a more 

amorphous material in comparison to the analogous surfactant-free system. Overall, the 

X-ray data are in good agreement with the SEM and PT ssNMR results.  

 
 

Synopsis 

 

In this section we have discussed the influence of the solvent system on the properties 

of regenerated cellulosic materials. There are significant differences in morphology and 

crystallinity of the precipitated materials depending on the solvent used. It is striking 
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that while the samples dissolved in NaOH exhibit a quite high crystallinity, with needle-

like crystallites observed in SEM and higher CrI estimated from XRD, the cellulose 

samples obtained from NaOH/thiourea solution show a decrease in crystallinity while 

the materials from the TBAH solution lose considerably their crystallinity, presenting 

flexible continuous wrinkled-film type morphology; no CrI can be estimated from the 

XRD data. Similarly, materials regenerated from acidic solvents structurally tend to 

present smooth morphologies as expected for materials with low crystallinity.  

The level of dissolution has implications for the properties of the regenerated materials; 

while for TBAH the lack of crystallinity and high flexibility of the regenerated materials 

indicate that dissolution progresses close to the molecular level, in the case of the NaOH 

dissolution is not complete and stable cellulose aggregates (crystallites) are still present 

in solution. The light scattering data indicates the presence of fairly small cellulose 

particles in the TBAH system (ca. 10–20 nm) while considerably larger cellulose 

particles (above 200 nm) are found for the NaOH system. The reduction in solvent 

polarity, obtained by addition of urea or thiourea results also in less crystalline 

materials, showing an improvement in solvent quality. 

Smooth materials were obtained from solutions made in acidic solvents, which is 

indicative of the good dissolution level achieved when these solvents are used. The 

good performance of the acidic systems is clear, but the molecular weight decrease 

might be problematic for certain applications such as the fiber or film production. In 

these cases alternative strategies should be considered to prevent cellulose degradation 

such as the reduction of temperature or the addition of different additives or co-solvents. 
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CHAPTER 4 
 

 

 

 

Conclusions 
 

 

A wide range of solvents for cellulose were used during this study. In addition 

new methods were implemented to study cellulose in solution such as the polarization 

transfer solid state NMR (PT ssNMR). The technique is very useful; both solid and 

liquid fractions can be studied in one single experiment. Another interesting utility of 

this technique is the capability of detection of cellulose degradation products. 

On the other hand, the successful extraction and characterization of CNCs from the 

cellulose derivatives (CMC and HPMC), that surprisingly were found to be significantly 

crystalline (cellulose II polymorph), allows the extraction of CNCs presenting a 

different crystal organization (cellulose I polymorph). This further suggests that there 

are specific parts of cellulose chains that remain insoluble during all the modification 

process. This is indicative of the major difficulty in obtaining molecular dispersed 

cellulose solutions. 

During the studies, fundamental differences between the use of a small inorganic cation 

of high charge density and a large organic cation with amphiphilic character were 

found. Combining microscopic techniques, PT ssNMR and DLS it is possible to 

conclude that the use of an amphiphilic cation leads to cellulose dissolution down to the 

molecular level (or close to it) whereas this is not the case for the sodium ion. 

Furthermore, the addition of certain additives of intermediate polarity to NaOH based 

systems improves the dissolution efficiency. That dissolution into molecular solutions 

provides good support for the view that cellulose molecules have both polar and 

nonpolar regions and have a strong tendency to associate by hydrophobic interactions.  

Dissolution and dope stability are found to be clearly influenced by the presence of 

amphiphilic species. Moreover, we have seen that combining cellulose ionization (either 
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achieved by extreme pH or adsorption of ionic species) with the weakening of the 

hydrophobic effect (for example by adding urea or thiourea) makes dissolution more 

efficient. For the TBAH system, a high performance solvent, the presence of an 

amphiphilic cation seems to be the key factor for an improved dissolution capacity; the 

solvent capabilities can be controlled and even reversed, thus decreasing the solvent 

capabilities, by the addition of salt (i.e. reducing the counterion entropy effect). 

The dope stability of cellulose in aqueous TBAH can be reduced by adding β-

cyclodextrin (suggested to trap the amphiphilic cations of the solvent) which decreases 

the concentration of free TBA
+
 cations in solution and thus dramatically decreases the 

solubility of cellulose.  

Acidic systems demonstrate good ability to dissolve cellulose, both in aqueous based 

systems and in non-aqueous ones. Although efficient, severe degradation might occur 

which can be a serious drawback for certain applications where a high degree of 

polymerization is required. In these cases, alternative strategies should be considered to 

prevent cellulose degradation such as the reduction of temperature or the addition of 

different additives or co-solvents. 

Finally we have discussed the influence of the solvent system on the properties of the 

regenerated cellulosic materials. There are significant differences in morphology and 

crystallinity of the precipitated materials depending on the solvent used. It is striking 

that while the samples dissolved in NaOH exhibit a quite high crystallinity, with needle-

like crystallites observed in SEM and higher CrI estimated from XRD, the cellulose 

samples obtained from NaOH/thiourea solutions show a decrease in crystallinity while 

the materials from the TBAH solution lose considerably their crystallinity, presenting 

flexible continuous wrinkled-film type morphology. Similarly, materials regenerated 

from acidic solvents structurally tend to present smooth morphologies as expected for 

materials with low crystallinity, which is indicative of the good dissolution level 

achieved when these solvents are used.  

The level of dissolution is expected to have implications on the properties of the 

regenerated materials; while for TBAH the lack of crystallinity and high flexibility of 

the regenerated materials indicate that dissolution progresses close to the molecular 

level, in the case of the NaOH dissolution is not complete and stable cellulose 

aggregates (crystallites) are still present in solution.  
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