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Poets say science takes away from the beauty of the stars - mere globs of gas atoms. I, too, 

can see the stars on a desert night, and feel them. But do I see less or more? 

Richard Feynman 
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Abstract 

  
 The development of antibacterial surfaces represents a great challenge in 

different industrial applications, namely, medical devices, food packaging industry, textiles 

or aquatic flow systems. Most of living bacteria are found to grow in biofilms which 

strongly adhere to different types of surfaces, where they find a strategic survival 

mechanism. This phenomena leads to the failure of different types of materials used in 

the above mentioned applications, which represent a huge economic loss and also an 

public health concern when it comes to fields such as medical devices or food packages. 

In this sense over the past years the development of antibacterial surfaces has been 

pointed as a new strategy for the development of more efficient materials to be applied 

in different industrial sectors. 

 This thesis deals with the development and characterization of multifunctional 

amorphous carbon coatings doped with Ag nanoparticles (Ag/a-C) for potential 

application in antibacterial surfaces. Ag is nowadays pointed as the most effective 

bactericidal agent, which is already the leading material in nanotechnology market. In 

other hand, the strategy of surface modification with amorphous carbon (a-C) coatings 

has become very popular due to its unique tribological properties, which allow to 

combine high hardness and low friction coefficient, chemical inertness and 

biocompatibility, just to name some of its properties, which has prompted its use in 

different applications, namely, medical devices, razorblades, mechanical components with 

enhanced tribological performance. In this sense, the incorporation of Ag nanoparticles 

within a-C coatings can be regarded as a promising approach for achieving 

multifunctional properties in different applications, such as medical devices.  

 In the present thesis Ag doped a-C nanocomposite coatings are deposited by 

two alternative deposition methods based on physical routes: (i) dual magnetron 

sputtering and (ii) combination of magnetron sputtering for a-C layer deposition and 

plasma gas condensation for Ag nanoparticles in-situ incorporation in the host matrix. 

The above mentioned deposition methods are compared with respect to the uniformity 

in the deposition of large surface areas, which allowed to select the most suitable 

deposition method (magnetron sputtering).  
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 The Ag/a-C nanocomposite coatings are characterized with respect to their 

structure, thermodynamic stability at room temperature conditions and functional 

properties (antibacterial activity and tribological behavior). The core thesis work is 

focused in Ag/a-C nanocomposite coatings containing 20 at.% of Ag, with different 

thicknesses/morphologies and different multilayer structures.   

 The results suggest that Ag/a-C coatings are unstable even at atmospheric 

conditions, being found that Ag grows within the coatings column boundaries forming 

Ag nanowhiskers, which cover the coatings surface few weeks after deposition. The 

process of Ag nanowhiskering is found to be promoted by the humidity, being found that 

particles grew through a coalescence process.  

 The functional properties suggest that Ag/a-C coatings are promising in terms of 

antibacterial activity, which is correlated with the Ag ionization. The tribological tests 

reveal that in dry sliding condition Ag promotes a degradation in a-C coatings tribological 

properties; however, in biological medium simulating the synovial fluids, found in joint 

prosthesis, the tribological behavior is similar to the a-C layer. 

  

Keywords: Ag/a-C nanocomposites, Ag nanoparticles, Coatings Structure, Coatings 

Stability, Antibacterial Surfaces 
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Resumo 

 

 O desenvolvimento de superfícies antibacterianas representa um desafio atual 

em diferentes aplicações industriais, nomeadamente, dispositivos médicos, embalagens 

alimentares, têxteis e sistemas de tratamento de água. A maioria das bactérias existe em 

biofilmes que aderem fortemente a diferentes tipos de superfícies uma vez que esta 

adesão representa um mecanismo estratégico de sobrevivência. O fenómeno da adesão 

e colonização microbiana resulta na falha de diferentes dispositivos e componentes 

utilizados nas aplicações acima mencionadas, tendo como consequência perdas 

económicas elevadas e representando também um problema de saúde pública quando 

se tratam de aplicações como dispositivos médicos ou embalagens alimentares. Neste 

sentido, ao longo das últimas décadas o desenvolvimento de superfícies antibacterianas 

tem sido considerada uma estratégia emergente no desenvolvimento de materiais mais 

eficientes a serem aplicados em diferentes sectores.  

 O objetivo da presente tese consiste no desenvolvimento e caracterização de 

revestimentos nanocompósitos multifuncionais baseados em revestimentos de carbono 

amorfo dopado com nanopartículas de prata (Ag/a-C) para potencial aplicação em 

superfícies antibacterianas. A Ag é atualmente considerada como o agente bactericida 

mais promissor e eficiente, sendo que as nanopartículas de prata representam o material 

mais comercializado na área da nanotecnologia. A estratégia de modificação superficial 

com revestimentos baseados em carbono amorfo (a-C) tem-se tornado popular do 

ponto de vista industrial essencialmente, devido entre outras propriedades, à sua 

resistência ao desgaste tribológico excecional, que permite combinar uma elevada 

dureza com um baixo coeficiente de atrito, elevada estabilidade química, resistência à 

corrosão e biocompatibilidade em diferentes aplicações biomédicas. Na atualidade os 

revestimentos de a-C são utilizados em diferentes aplicações industriais nomeadamente 

dispositivos médicos, lâminas de barbear e diferentes componentes mecânicos sujeitos 

a elevado desgaste tribológico. Neste sentido, a combinação das propriedades 

intrínsecas destes materiais pode ser considerada uma abordagem promissora para o 

desenvolvimento de revestimentos multifuncionais, os quais podem ser aplicados em 

diferentes produtos, nomeadamente, dispositivos médicos. 
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 Na presente tese os revestimentos nanocompósitos de Ag/a-C são depositados 

por dois métodos distintos: (i) pulverização catódica em magnetrão e (ii) combinação da 

pulverização catódica em magnetrão para deposição da camada de a-C e condensação 

em atmosfera inerte para a incorporação simultânea de nanopartículas de Ag na matrix 

de carbono. Os métodos acima mencionados são comparados em relação à 

uniformidade dos revestimentos depositados, permitindo efetuar a escolha do método 

de deposição mais eficaz (pulverização catódica em magnetrão). 

 Os revestimentos nanocompósitos de Ag/a-C são caraterizados relativamente à 

sua estrutura, estabilidade termodinâmica em condições ambientais e propriedades 

funcionais (comportamento tribológico e atividade antibacteriana). O trabalho central 

da tese é focado na caraterização de revestimentos Ag/a-C contendo 20% at. de Ag, 

com diferentes espessuras e diferentes estruturas em multicamada. 

 Os resultados sugerem que os revestimentos Ag/a-C são instáveis mesmo em 

condições ambientais, sendo observado que a Ag forma nanofibras entre as fronteiras 

das  colunas, as quais recobrem a superfície do revestimento poucas semanas após a 

produção. O processo de formação de nanofibras é promovido pela humidade, sendo 

que, as partículas crescem através de um processo de coalescência. 

 As propriedades funcionais sugerem que os revestimentos Ag/a-C são 

promissores do ponto de vista de actividade antibacteriana, a qual está relacionada com 

a sua ionização. Os testes tribológicos revelam que em ambiente não lubrificado a 

presença da Ag promove a degradação dos revestimentos a-C, contudo, em meios 

biológicos que simulam o líquido sinovial, presente nas articulações da anca, o 

comportamento tribológico é semelhante aos revestimentos a-C.  

 

Palavras-Chave: Nanocompósitos de Ag/a-C, Nanopartículas de Ag, Estrutura dos 

revestimentos, Estabilidade dos revestimentos, Superfícies antibacterianas 
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Introduction 
 

Microbial adhesion and consequent biofilm formation has been pointed as a major 

concern in different industrial applications. Microbial biofilms are defined as “microcosm 

attaching irreversibly to abiotic or biotic surfaces and promulgated as congregates of 

single or multiple populations” (Tamilvanan). Biofilm formation represents a strategic 

growth mechanism, which allows the microbes to survive even in hostile environments. 

The growth of these microorganisms in different surfaces such as medical devices, food 

packages and water treatment systems represents a public health concern, since the 

interaction of bacteria with these surfaces results in hospital acquired infections (HAI), 

foodborne and waterborne diseases, which still represent an important cause of 

mortality. In addition, biofilms also cause severe problems in industrial settings, such as 

pipes in heating systems or marine structures, since the presence of bacteria in these 

surfaces enhances the corrosion rate and consequently the degradation of these 

structures. 

In the present scenario, surface modification and incorporation of nanoparticles 

(NP´s) in different materials have gained great popularity for the development of 

antibacterial surfaces, where different nanoparticles emerged as potential bactericidal 

agents, namely, silver, zinc oxide and titanium dioxide. Silver, has been used as 

antibacterial agent since 1000 B.C. and by this time it was used to store drinking water. 

Later and until 1940 when penicillin was introduced this metal was used for the 

treatment of burns and chronic wounds. More recently, the emergence of antibiotic 

resistant bacteria has prompted the interest in silver based products, which efficiency 

has largely increased due to the possibility of their production and control at nanoscale 

level, with the help of nanotechnology; hence, it has been possible to increase the 

materials reactivity and, consequently, to enhance their functional properties. In fact, 

nanotechnology is presently pointed as a rapidly growing field, with the number of 

consumer products increasing from 54 in 2005 up to 1628 in 2013. Among them, 383 
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products are antibacterial Ag based materials, which, presently, find numerous 

applications, in textiles, food packages, air purifying systems, dietary supplements, just to 

name a few. 

Regarding the development of antibacterial surfaces containing silver, different 

concepts have been studied, namely, (i) direct incorporation of Ag nanoparticles in the 

surface of textiles and polymers and, (ii) deposition of different coatings incorporating 

silver. In the case of silver containing ceramic coatings produced by magnetron 

sputtering, different systems have been studied namely transition metal nitrides 

(TaN,TiN,CrN,ZrN), oxides (TiO2, ZnO), carbonitrides (TiCN,) as well as carbon based 

coatings (a-C, commonly known as diamond like carbon (DLC)), which allow to combine 

the wear and corrosion resistance inherent to the base coating with the Ag antibacterial 

effect. This deposition process allows depositing a ceramic coating in which Ag 

precipitates as nanoparticles, due to its low solubility in these ceramic matrixes. Despite 

the promising results achieved with some nanocomposite coatings, namely Ag/a-C, the 

antibacterial efficiency of these materials is far from being understood and, thus, 

controlled. In fact, it has been reported that in some matrixes, namely TiCN, no 

antibacterial activity was achieved, while, in other systems, the fast and uncontrolled 

release of silver during the first hours of antibacterial tests undermines the long term 

antibacterial activity of these coatings. 

Ag based nanocomposite coatings have been studied not only due to their 

potential antibacterial activity, but also due to the possibility to combine hard ceramic 

coatings (e.g. CrN, YSZ) with a soft lubricant Ag phase. These materials have been largely 

studied in last decades for high temperature tribological applications. In addition, the 

incorporation of noble metal nanoparticles, such as gold and silver in dielectric matrixes 

allows to tailor the optical properties, which has prompted the interest in several 

applications, namely, decorative coatings and gas sensors. However, the use of silver 

based nanocomposite coatings is limited, owing to the low stability of these metal 

nanoparticles in different matrixes. In many cases, silver has been often replaced by gold, 

due to the higher stability of Au nanoparticles, which despite its much higher cost is 

pointed as a cost effective solution for industrial applications. Silver surface segregation 

and surface nanoparticles growth has been reported by several authors, in different 

magnetron sputtered coatings (mainly on transition metal oxides and nitrides) although 
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the exact mechanism and driving force for these Ag segregation is far from being 

understood and, thus, controlled. 

 

1. Motivation and work objectives 

 

The main goal of the thesis is the development of multifunctional surfaces, 

through the surface modification of metallic substrates with magnetron sputtered 

amorphous carbon coatings containing silver (Ag/a-C). As previously mentioned, Ag is 

presently pointed as the most promising and efficient bactericidal agent. The 

combination of Ag nanoparticles with amorphous carbon coatings, many times 

designated as DLC – diamond-like carbon, allows the development of multifunctional 

nanocomposite coatings, able to combine high wear and corrosion resistance inherent 

to a-C coatings, with silver´s antibacterial activity. Moreover, a-C coatings are 

biocompatible, being presently used in different industrial applications, such as, joint 

prosthesis, uretheral stents, cardiovascular stents, medical instruments, razor blades and 

also in different mechanical components. CarboSoftTM (Optimed) and MedthinTM 

(Ionbond) represent some of the commercially available carbon coatings used in different 

biomedical devices.  

Ag/a-C nanocomposites are deposited by two different approaches: (i) 

magnetron sputtering (MS) and combination of magnetron sputtering and plasma gas 

condensation (MS+PGC). MS deposition method is widely used for Ag-nanocomposites 

deposition; conversely the hybrid MS+PGC method is an innovative approach for Ag/a-

C coatings deposition, being this deposition system implemented in the research group 

(SEG-CEMUC) in the scope of the present work. The main advantage of this technology 

is to allow a more precise control in nanoparticles size distribution and chemical 

composition.      

As previously mentioned one of the major concerns related with Ag based 

nanocomposites is the low stability of Ag nanoparticles, which makes difficult to control 

the particle size distribution due to the occurrence of particle agglomeration and, 

consequently, the long term functional properties are comprised. In fact, the properties 

of nanocomposite coatings are determined by the size and distribution of Ag 

nanoparticles; thus, the evaluation of their morphology and stability is a key issue in the 
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control of the coatings functionality. The phenomena of silver surface segregation and 

agglomeration have been previously reported, although the mechanisms and driving 

force for this process are still poorly understood, despite the large number of 

publications regarding Ag based nanocomposites. Thus, one of the main focus of the 

thesis is the evaluation of the stability of Ag/a-C nanocomposites over time as well as 

the understanding of the mechanism for Ag surface segregation in amorphous carbon 

matrix. The influence of coatings ageing, with consequent Ag surface segregation and 

agglomeration, on the functional properties is also studied as well as the possible 

solutions which enable to avoid or reduce the Ag surface segregation and agglomeration 

process in carbon coatings. 

 

2. Work methodology and thesis organization 

  

The present thesis is organized in six chapters, which contents are summarized 

in the scheme of figure 1. 

 

Figure 1 - Schematic representation of work structure and chapters contents 

Ch.I- State of the Art

Ag/a-C and Ag based
nanocomposites:

Structure, Stability, Tribological
and Biological Properties

Ch.II –Experimental  
Details

Deposition method

Characterization techniques

Ch.III –Ag/a-C 
Nanocomposite Coatings

Ag/a-C coatings deposited by
MS and MS+PGC

Ch.IV – Coatings Structure
and Morphology

Ag nanoparticles size
distribution

Ag/a-C morphology

Ch.V – Coatings Stability

Ag segregation mechanism

Driving force for Ag segregation

Ch.VI – Functional
Properties

Antibacterial Activity

Tribological Properties

Work

Methodology
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The first chapter (Chapter I- State of Art) aims to give the general background 

about Ag/a-C and Ag based nanocomposites, where the results related with coatings 

structure, stability, tribological and biological properties are reviewed. 

Chapter II, Experimental Details, contains all the information about the 

methodology adopted for coatings preparation and characterization. The theoretical 

description of the deposition processes and characterization techniques necessary for 

the results interpretation is also given.  

 In Chapter III, Ag/a-C nanocomposites deposited either by magnetron sputtering 

(MS) and hybrid deposition method (magnetron sputtering (MS) and plasma gas 

condensation (PGC)), are analyzed in order to get some insights about the system 

structural features and tribological properties. It should be pointed out that the hybrid 

deposition method studied in the present work represents an innovative technological 

approach for the deposition of a-C/Ag nanocomposite coatings, being the PGC 

deposition system implementation one of the main goals of the present work. The above 

mentioned deposition methods are compared in relation to the Ag size distribution and 

coatings uniformity, which allowed to select the most adequate deposition method used 

in the subsequent work. At this stage the first conclusions about the coatings instability 

in atmospheric conditions are observed, which allowed to set the guideline for the 

development of the thesis core work.  

 Chapter IV is dedicated to the evaluation of the coatings structural and 

morphological features; the main focus is given to the evaluation of Ag nanoparticle size 

distribution along the coatings thickness as well as to the determination of the developed 

structural morphology. 

 In Chapter V the coatings stability is analyzed; some conclusions in relation to 

Ag segregation mechanisms and driving forces for the process occurrence are drawn. 

 Chapter VI is focused on the evaluation of the coatings functional properties: 

the antibacterial activity and the tribological behavior. 
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Chapter I 
State of the Art 

 

 In this Chapter an overview of Ag/a-C and Ag nanocomposite coatings deposited 

mainly by magnetron sputtering within ceramic matrixes (transition metal nitrides, 

carbonitrides and oxides) is provided. The most relevant works are summarized in what 

regards the most important topics of the present thesis: coatings structure and 

morphology, stability, mechanical and tribological properties as well as their antibacterial 

activity. 
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1. Ag/a-C nanocomposite coatings 
 

Carbon based coatings represent one of the most valuable engineering materials 

found in present days. These coatings were first discovered in 1950s by Schmellenmeier, 

however, the research in carbon coatings only gained a momentum in 1990s. Since then, 

the number of publications and patents on carbon coatings has largely increased and, 

presently, they can be found in different industrial applications ranging from 

microelectronics, optics, transportation to biomedical field1.  

Carbon is one of the most common elements in earth and it can be found in 

nature in different allotropic forms, such as graphite or diamond. The carbon coatings 

physical and chemical properties are determined by their structure, a topic which is 

nicely reviewed by Robertson2. The large variety of physical properties is mainly related 

with the different hybridization states present in carbon coatings (sp1, sp2 and sp3), where 

the presence of sp3 bonds, characteristic from diamond, leads to high hardness, chemical 

and electrochemical inertness, while the presence of sp2 bonds, characteristic from 

graphite, allow to obtain low friction coefficient and high electrical conductivity, just to 

mention a few characteristics. The different forms of DLC coatings are displayed in a 

ternary phase diagram, developed by Jacob and Moller3, where the amounts of sp3and 

sp2 bonds and hydrogen determine the type of achieved structure (see figure 2). 

 

Figure 2 - Phase diagram of DLC coatings1 
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Since their discovery and industrial implementation, carbon based coatings have 

been largely studied in order to improve the specific required properties, which vary 

according to the desired application. The incorporation of different metallic and non-

metallic elements allows to tailor the carbon coatings functional properties, e.g. 

hardness, residual stress, electrical resistivity, surface energy, just to mention few1. 

Among different alloying elements, silver has become very popular owing to its 

interesting electrical/optical properties, tribological behavior and antibacterial activity. 

The number of publications along time, as well as the type of evaluated properties, are 

summarized in the graphs of figure 3 (a) and (b), respectively. This results were based 

on the revision of the papers related with Ag/a-C system performed by the author, in 

the ScienceDirect database, thus, it should be pointed out that some papers might be 

missing in this analysis. 

 

Figure 3 – (a) number of publications along time for Ag/a-C coatings and (b) number of publications per 

evaluated properties 4-21 

 

As can been found in the graph of figure 3 (a) the interest in Ag containing 

amorphous carbon coatings has raised during the 90´s, and, by this time, Biederman et 

al.4,5,6 have studied the Ag/C:H  system deposited by a hybrid magnetron sputtering and 

plasma enhanced chemical vapor deposition method in order to evaluate its structure, 

optical and electrical properties. Afterwards, in 2003, Narayan et al7 evaluated the 

applicability of pulsed laser deposited nanostructured Ag/a-C composites for biomedical 

applications, through the study of their morphology, structure, hardness and 
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antibacterial susceptibility. The authors compared an uncoated silicon substrate with an 

Ag/a-C coating in a disk diffusion test with a total duration of 24 hours and found that 

Staphylococcus aureus did not grow over the Ag nanocomposite surface, thus suggesting 

that the Ag containing coatings presented antibacterial activity. Moreover, different 

research groups have been studying the mechanical, tribological, electrical and biological 

properties of these nanocomposite coatings in order to evaluate their applicability in 

different fields, such as in medical devices, sliding machinery components, protective 

layers or advanced sensors. An overview of these studies is given in this section, which 

focus mainly on the coatings structure, the tribological behavior and the biological 

activity. 

 

1.1 Structure and Morphology 

  

 The growth mode and binding state of an element in carbon coating is mainly 

determined by its affinity with carbon. Thus, in case of carbide forming elements, the 

metallic component will form chemical bonds with carbon, which results in the 

dispersion of carbides in the carbon structure. In the case of noble metals, with low 

affinity to carbon, typically the metallic atoms will grow as a second phase, forming 

clusters or nanoparticles1. The phase diagrams allow to predict which type of structure 

will be formed as a function of the chemical composition. Since the envisaged coating 

structure in the present work is an amorphous carbon matrix with Ag nanoparticles, the 

first step is to guarantee that the amount of Ag incorporated is above the solubility limit 

of Ag in carbon. According to the calculated phase diagram of graphite – silver shown in 

figure 4, the solubility of Ag in carbon is zero, which means that in theory whatever is 

the chemical composition, Ag should segregate as a second phase in the carbon matrix. 

 The structure and morphology of Ag/ a-C coatings has been described in every 

paper regarding this system. However, in this review only the summary of the work 

performed in the papers where a more detailed structural analysis is performed is given. 

It should be pointed out that the main structural and morphological results are related 

with the phase composition, the size and distribution of Ag nanoparticles and the 

influence of Ag incorporation in the amorphous coatings structure, mainly in the 

variation of sp2/sp3 ratio. 
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Figure 4 - Ag-C calculated phase diagram8 

 

Choi et al9 prepared hydrogenated amorphous carbon coatings deposited with 

Ag by a hybrid ion beam deposition method, combining decomposition of benzene and 

dc magnetron sputtering of silver. The structure of the coatings containing between 0 

at.% and 9.7 at.% of Ag was analyzed. High resolution transmission electron microscopy 

(HRTEM) revealed that up to Ag concentration of 0.1 at.%, an uniform amorphous 

structure was observed, being concluded that all Ag atoms were fully dissolved in the 

amorphous carbon matrix. At higher Ag concentrations, silver started to segregate as a 

second phase, forming initially very small Ag nanocrystals with 2 nm diameter (1.7 at.%) 

and, for higher silver concentrations (9.7 at.% Ag), a crystalline fcc-Ag was detected, with 

silver particle size from 4 to 6 nm. Raman spectroscopy allowed to find that for 0.1 at.% 

Ag no changes in carbon structure were observed, while, for a further increase in the 

amount of Ag, an increase in the D/G peaks intensity ratio and narrowing of G peaks 

were observed, which are related to an increase in the amount and size of graphite like 

features in the amorphous carbon matrix. 

Matenoglou et al10 deposited non-hydrogenated amorphous carbon/silver 

nanocomposites by pulsed laser deposition. A detailed structural characterization of the 

Ag/a-C coatings deposited with different Ag/C atomic ratios was performed and the 

discussion was focused on the influence of the negative bias voltages applied to the 

substrate holder. The sp2/sp3 bonds fraction, determined by Auger electron 

spectroscopy (AES), was dependent on the Ag content, having been observed its 

increase with the presence of Ag. The grain size of Ag nanoparticles was determined by 

X-ray diffraction (XRD) analysis (by applying the Scherrer method) and the in-depth 

grain size distribution across the coatings thickness was investigated by varying the X-
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rays incidence angle, below (at 0.3º) and above (at 0.6º) the coatings critical angle, which 

was reported to be at 0.4-0.5º. The XRD analysis revealed the presence of crystalline 

Ag phase and no differences in grain sizes across the coatings thickness, indicating a 

homogeneous size distribution. The Ag grain size was reported to increase as a function 

of Ag content. 

Zang et al11 deposited hydrogenated and non-hydrogenated amorphous carbon 

coatings containing 0 at. % and 5.5 at. % of Ag by plasma immersion ion implantation 

method. X-ray photoelectron spectroscopy (XPS) showed that Ag was present in 

metallic state. Regarding the carbon bonding state, sp2 and sp3 bonds were detected and 

quantified as a function of Ag incorporation. In non-hydrogenated coatings the amount 

of sp2 bonds increased with silver incorporation while for non-hydrogenated coatings no 

changes were observed. This result is consistent with the observations found through 

Raman spectroscopy analysis in another report from same authors12, although, not 

consistent with the quantification of sp2 bonds achieved with X-ray absorption near edge 

spectroscopy (XANES) which suggested that the incorporation of silver had no effect 

on the carbon structure. 

In summary the main conclusions achieved in relation to the coatings structure and 

morphology are:  

 Ag segregates as a second phase in an amorphous carbon matrix forming 

crystalline nanoparticles which size depends on the specific deposition method, 

deposition parameters and also on its amount; the size of silver nanoparticles 

increases with the amount of Ag, 

 The incorporation of Ag reduces the amount of sp3 bonds in non-hydrogenated 

amorphous carbon coatings; this result is attributed to the presence of a ductile 

phase, which reduces the internal stress, characteristic of sp3 bonding. 

 

1.2 Stability 

 

 Biederman et al4 found that the electrical and optical properties of Ag/C:H thin 

films varied with time, which was attributed to the changes in the Ag particles size 

distribution. The coatings were analyzed by TEM, in relation to both Ag particle size 

distribution and nearest neighbor distance, immediately, 2 and 10 days after deposition. 
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The authors found that both particles size and interparticle distance increased more 

significantly with time during the first two days, than thereafter with the nearest neighbor 

distribution starting at 4 nm and increasing up to 5 nm after 2 days, while after 10 days 

the distance shifted back to 4 nm. 

Onoprienko et al13 analyzed the microstructrural evolution of carbon thin films 

with 11 at. % of Ag during annealing at 600ºC in vacuum by TEM. The as-deposited 

coating could be characterized by a bi-modal size distribution, with a few Ag-NP, 30 nm 

in diameter, combined with a larger density of smaller particles. Upon increasing the 

annealing time the particles average diameter increased along with an overall decrease 

in the areal density, which was attributed to the particle coalescence induced by 

temperature. The authors found that the rate of particle increase was higher than that 

predicted by the theory behind coalescence induced by diffusion. 

In summary the main conclusions achieved in relation to the coatings stability are: 

 Ag/a-C:H coatings change their functional properties (optical and electrical) 

within few days (2 to 10 days) due to the changes in Ag size distribution and 

interparticle distance; 

 Ag particles coalesce in a-C matrix coatings submitted to annealing at a rate faster 

than predicted by coalescence and diffusion theories.  

 

1.3 Mechanical and tribological properties 

 

 Choi et al9 studied the residual stress state and hardness with Ag incorporation 

for the coatings already presented above in the 1.1 section. The incorporation of small 

amounts of Ag (1.7 at.%) gave rise to a great reduction in the coatings residual 

compressive stresses from 2.9 GPa down to 1.6 GPa, while for higher Ag contents the 

decrease was much smoother (down to 1.3 GPa at 9.7 at.% of Ag). The coatings hardness 

also decreased from 22.6 GPa down to 16.9 GPa when 9.7 at.% of Ag was incorporated. 

This results showed that Ag/a-C coatings might be promising from the mechanical point 

of view since they enable to reduce the coatings residual stress without degrading 

significantly their hardness values. 
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 Wang et al14 deposited Ag/a-C coatings by dual magnetron sputtering with Ag 

contents ranging from 0 at.% up to 24.7 at.% having determined a reduction of the 

compressive residual stresses from 3174 MPa down to 1310 MPa. This reduction had a 

significant positive impact on either the adhesion critical loads measured by scratch 

testing or on the cracks density induced by Rockwell C indent. Similar behavior with Ag 

incorporation was also reported by Narayan et al7, who also found a reduction in the 

coatings hardness. 

 Wu et al15 deposited Ag/a-C:H coatings by magnetron sputtering, with Ag 

contents ranging from 0 to 11 at.%. Similar trends to those reported by Choi et al9 were 

found for the residual stress and hardness. The tribological properties of the coatings 

were evaluated in a ball-on disk tribometer in vacuum conditions against a steel 

counterpart. The Ag incorporation did not significantly changed the friction coefficient 

(CoF), although, for the sliding lifetime an inverse trend was shown depending on the 

Ag content: in relation to the Ag-free coating, it was improved for low Ag content (3.55 

at.%) while for the highest Ag concentration (11 at.%) the coating lifetime was degraded. 

The degradation of tribological properties with the addition of high amounts of silver 

was attributed to the lower hardness resulting from either the increased graphitization 

or the presence of the softer Ag phase. Regarding the coating with 3.55 at.% Ag, the 

improved tribological behavior was attributed to the compromise between a still hard 

coating with the presence of a protective layer formed by low shear Ag clusters on the 

surface, which can be maintained over the time due to the diffusion of Ag from the bulk 

to the worn area, as observed by SEM analysis. In fact, the authors observed the presence 

of more Ag inside the wear track in relation to the unworn coating. Another interesting 

feature was the increase in CoF at the end of the tribological test, attributed to the 

progressive reduction of Ag concentration on the worn surface combined with the 

increase of the wear debris amount. 

 Dhandapani et al16 studied Ag/a-C coatings deposited by rf magnetron sputtering 

onto SS316L substrates with increasing Ag contents up to 8.37 at.%. The tribological 

tests were performed in a reciprocating tribo-tester against alumina counterpart in dry 

sliding conditions. Ag-containing coatings showed a lower CoF in relation to pure a-C 

coating; however, the lowest CoF values were achieved with the coatings with lower Ag 

contents (2.9 and 4.4 at.% of Ag). The coatings with the highest Ag contents (5.4 and 8.3 

at.%) showed a non-steady trend with the CoF increasing from about 0.3 up to 0.5 after 



Chapter I – State of the Art 

 

16 

 

about 200 sliding cycles. Conversely, the coatings with no Ag and with lower Ag content 

showed stable and approximately constant CoF during the whole test. The wear rates 

were well correlated with the CoF values, i.e. the coatings with lower friction also 

showed lower wear rate. The increased wear rate in the coatings with higher Ag content 

was attributed to their lower hardness. The authors also claimed that the lower wear 

resistance could be related to an increase of the adhesion between the coating surface 

and the alumina counterpart. 

In summary the main conclusions regarding the mechanical and tribological properties 

are: 

 The incorporation of Ag even in small amounts promotes a reduction in residual 

stress of the coatings with a consequent improvement in the mechanical stability 

of the coating over the substrate; 

 The presence of Ag reduces the coatings hardness, due to the intrinsic low 

hardness of Ag combined with the reduction in the amount of sp3 bonds of the 

carbon matrix; 

 The presence of small amounts of Ag (below 5 at. %) improves the coatings 

tribological behavior by reducing the CoF and the wear rate. At higher Ag 

concentrations an opposite effect is observed. 

 

1.4 Biological properties 

 

 To the authors knowledge the first author to evaluate and report the potential 

antibacterial activity of Ag doped amorphous carbon coatings was Narayan et al7. Later 

on, two other studies were reported, which are now being reviewed in this chapter. 

 Morrison et al16 deposited Ag/a-C, Pt/a-C and Ag,Pt/a-C coatings by pulsed laser 

deposition. TEM analysis showed that Ag and Ag,Pt formed nanoparticles with an average 

size from 3 to 5 nm, which were distributed in the amorphous carbon matrix. The 

antimicrobial activity against Staphylococcus warneri revealed that Ag/a-C and Ag,Pt/a-C 

reduced the biofilm formation at a rate of 50% and 90% , respectively, in relation to the 

uncoated substrate (silicon). The improved antibacterial activity of Ag,Pt doped coatings 

in relation to Ag doped coatings was attributed to the formation of a galvanic couple 

between Ag and Pt, which tends to enhance the silver ionization rate and consequently 
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its antibacterial activity. This topic will be reviewed in one of the following sections 

where the mechanism of Ag antimicrobial activity is analyzed. 

 K.Baba et al18 prepared hydrogenated Ag containing a-C films by a combination 

of magnetron sputtering (for Ag deposition) and plasma source ion implantation (for the 

carbon deposition), with Ag contents between 0 and 27 at.% of Ag. The antibacterial 

tests were performed with Staphylococcus aureus bacteria and the activity was measured 

at different interval times. All Ag-containing coatings showed an antibacterial effect of 

about 80 %, and no linear relationship between the Ag content and the antibacterial 

activity was observed. The authors attributed this non-linear trend to the differences 

found in the coatings structure and morphology with Ag incorporation, which tends to 

promote an increase in the coatings roughness, in sp2 bonds and in Ag particle size, which 

of them with its specific role in the antibacterial activity. 

 Despite the evaluation of antibacterial activity, the biocompatibility and protein 

adsorption in Ag-containing carbon coatings has also been subject of two different 

reports. Endrino et al12 evaluated the cell survival and proliferation using mouse MC3T3 

osteoblastic cells. The authors tested the cell survival rate of these cells in both a-C and 

a-C:H coatings with 0 and 5.5 at.% Ag, and they found that both types of amorphous 

carbon coatings can be considered biocompatible in vitro, despite the more favorable 

results achieved with a-C ones. The Ag incorporation did not lead to any statistical 

difference in relation to the Ag-free coating. Choi et al19 evaluated the adsorption ratio 

of albumin and fibrogen in plasma to investigate the heamo-compatibility of Ag/a-C 

coatings deposited by a hybrid deposition method. The authors reported that by 

increasing the amount of Ag in a-C coatings, the protein adsorption rates increased, 

which makes them suitable for biomedical devices where very good heamo-compatibility 

is required, such as in cardiovascular stents. 

In summary the main conclusions regarding the biological behavior of Ag/a-C 

nanocomposite coatings are: 

 The nanocomposite coatings show good antibacterial activity against 

Staphylococcus warneri and Staphylococcus aureus bacteria. The antibacterial activity 

does not increase linearly with Ag content, being dependent on other structural 

and morphological features: amount of sp2 bonds, roughness and Ag particle size, 
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 The incorporation of Ag (with Ag content up to 5 at.%) does not comprise the 

cell survival and proliferation (using mouse MC3T3 osteoblastic cells) of plasma 

immersion ion implanted a-C and a-C:H coatings,  

 The incorporation of Ag in a-C coatings enhances the protein adsorption 

(albumin and fibrogen). 

 

2. Ag based nanocomposite coatings 
 

 In this section an overview of Ag based nanocomposite coatings is given. It should 

be pointed out that the number of papers in this subject is very large (in the order of 

thousands of papers). The huge number of studies in Ag-NP and Ag-NP based coatings 

reflects the large interest in this metal, which has become very popular over the past 

decades, mainly due to its antibacterial activity, tribological properties, optical and 

electrical behavior. Thus, not all the papers are covered in this review. The main focus 

is given to those related with the objectives to be accomplished under the scope of this 

thesis. The overview is divided in three main sections: (i) structure and morphology of 

Ag based nanocomposite coatings, (ii) stability of Ag in nanocomposite coatings, and 

their tribological properties and (iii) biological activity. The cited papers are mainly 

related with the ceramic matrixes (transition metal nitrides, oxides, carbides and 

carbonitrides) incorporating Ag deposited mainly by magnetron sputtering, which 

represent the most common matrix coatings in magnetron sputtered Ag based 

nanocomposite coatings. 

 

2.1 Structure and morphology 

 

 Similarly to what is observed in amorphous carbon coatings, the inclusion of Ag 

in different matrixes (namely TiN22, CrN23,TiO2
24,SiC25,HfC25,ZrCN26,TiCN27) leads to 

the growth of crystalline fcc-Ag clusters or nanoparticles, which is attributed to the low 

solubility of Ag in these different compounds. The increase in Ag content promotes an 

increase in the size of Ag nanoparticles27 although other deposition parameters also play 

an important role in the size distribution of Ag nanoparticles. Despite the evolution of 
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Ag particle size, other interesting results have been reported regarding the Ag size 

distribution across the coatings thickness, which are also reviewed in this chapter.  

Los Arcos et al22 deposited Ag/TiN nanocomposite coatings by reactive 

magnetron sputtering. The evolution of Ag nanoparticles size distribution was studied 

by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as 

a function of the coatings thickness, the Ag content, the deposition temperature and the 

bias voltage applied to the substrate holder. The growth of Ag nanoparticles was better 

fitted with bimodal log-normal distributions, with the second mode particles (with bigger 

sizes and lower density) shifted towards bigger sizes as the coatings thickness or the Ag 

content increased. Two modes of distribution were shown to exist: embedded 

‘‘trapped’’ clusters, and surface clusters, the latter being formed by diffusion of silver to 

the surface of the film where a process of coalescence with other surface clusters can 

occur. Surprisingly, by increasing the deposition temperature (from room temperature 

to 325ºC) the size of Ag clusters decreased, even though their density increased. The 

amount of silver determined by XPS was approximately double in all heated samples, 

which was attributed to a redistribution of the surface silver clusters, which cover a 

larger part of the surface. Moreover, the total amount of silver able to diffuse to the 

surface during the deposition process also increased. 

 Chakravadhanula et al24 investigated the in-depth size distribution of Ag and Au 

clusters incorporated on amorphous TiO2 coatings through electron tomography. Ag 

and Au clusters grew with a biomodal size distribution, where bigger nanoparticles (with 

a diameter of 7 nm in case of Ag) were located at the coatings surface while smaller 

nanoparticles (2 nm) were embedded in the matrix. A two-step model was proposed to 

explain this distribution: in a first step, occurring during vacuum phase co-deposition, 

the formation of the smaller particles took place; the second step occurred after 

deposition leading to the formation of the bigger particles on the surface. According to 

this model, single silver atoms or very small clusters can diffuse in the matrix or on the 

surface, as long as the surface is not covered by the atoms of the matrix material. During 

the formation of the small nanoparticles, surface diffusion processes are probably 

dominant, but their growth is restricted since they are covered relatively rapidly by the 

matrix material. In the second step, when the deposition is stopped, silver atoms, and 

possibly very small clusters, diffused from the bulk (near surface region) to the surface 

to form larger nanoparticles which, then, grew by fast surface diffusion processes. These 
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larger particles were coarsened via Ostwald ripening and surface segregation processes. 

The model is summarized in figure 5 together with the TEM cross sectional micrograph 

of an Ag/TiO2 coating. 

 

Figure 5 - (a) Model showing the two step model involved in the formation of Ag-TiO2 nanocomposite 

coating developed by Chakravadhanula et al26 and (b) TEM cross-sectional micrograph of the 

nanocomposite morphology 

 

The authors claimed that the driving force for this process should be the large 

stresses associated with the growth of these coatings, combined with a fast kinetics for 

Ostwald ripening in the coatings surface. This bimodal size distribution and formation of 

a depletion zone below the coatings surface was also reported by Krzanowski et al25 in 

SiC/Ag nanocomposites, although, the SEM cross-sections showed a much higher 

thickness of the depletion zone when compared to Chakravadhanula et al24 study. In this 

case its thickness was about 50% of the total thickness, which was approximately 1 µm. 

The authors claimed that the development of this structure was related to the large 

positive heat of mixing between Ag and the carbide, and to the higher surface activity of 

Ag, which meant that placing silver on the surface reduces the free energy. The 

mechanism of Ag surface segregation was not perfectly understood by the authors, 

although they claimed that it was more likely that the observed film structures evolved 

during deposition, since the time required to cool from the deposition temperature of 

200 °C down to below 100 °C is small compared to the time of deposition. 

Escobar Galindo et al28 evaluated the Ag in-depth distribution in Ag/TiCN 

nanocomposite coatings by three complementary techniques, (Rutherford 

backscattering spectrometry (RBS), glow discharge optical emission spectroscopy 
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(GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS), and found 

an ultrathin (1 – 10 nm) Ag-rich layer on the coating surface followed by a silver 

depletion zone (20 –30 nm), being the thickness of both layers thicker for higher Ag 

contents and deposition temperatures. Conversely, Calderon et al26 reported an 

homogeneous Ag in-depth distribution across Ag/ZrCN coatings with similar Ag 

contents, analyses performed also by RBS and GDOES.  

Xiong et al30 evaluated the Ag surface segregation in reactively sputtered Ag/TiOx 

nanocomposite coatings, and found that Ag segregates to the surface even when a 60 

nm thick TiOx barrier layer was deposited on the top surface in the end of the coating 

process. The Ag surface segregation could only be stopped when the TiOx barrier layer 

was dense enough, i.e. in their cases when it was deposited at high deposition rates and 

low deposition pressures. 

In summary the main conclusions achieved in relation to the coatings structure and 

morphology are:  

 Ag segregates as a second phase in an transition metal nitride, oxide, carbide and 

carbonitride matrixes forming crystalline nanoparticles which size depends on 

the specific deposition method, deposition parameters and also on its amount; 

the size of silver nanoparticles increases with the amount of Ag, similarly to what 

is observed in a-C coatings, 

 Ag shows a bimodal size distribution in TiO2, SiC, HfC and TiCN coatings 

deposited under specific deposition conditions, being found an Ag rich surface 

layer on the coatings outer surface followed by a depletion zone where the 

amount of Ag is lower in relation to the bulk as well as the particle size. 

 

2.2 Stability 

 

 The most significant studies about Ag stability in nanocomposite coatings are 

provided in papers related with tribological properties at high temperature. In this 

section the most relevant works regarding the evaluation of Ag stability in different 

coatings are discussed, being the main emphasis given to the work developed by  

Voevodin and co-workers (from Air Force Research Laboratory) and  Mulligan and co-
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workers (from U.S. Army Armament Research Development & Engineering Center), 

who performed intensive studies on this subject. 

 Voevodin and his co-workers have been working on different Ag containing 

nanocomposite coatings over the past years, for the development of adaptive 

nanocomposite coatings, also known as “chameleon coatings”, for aerospace 

applications. The main objective is to achieve materials that automatically adjust the 

surface composition and the structure to minimize friction as the environment changes, 

through the inclusion of elements that self-assemble into lubricious phases when 

exposed to a particular range of external conditions 31-33. Among the different papers 

published by the group two of them are focused on the Ag diffusion, which are now 

summarized in this section 32,33. 

 Hu et al32 deposited yttria-stabilized zirconia (YSZ) nanocomposite coatings 

alloyed with silver and molybdenum, using a hybrid process of filtered vacuum arc, 

magnetron sputtering and pulsed laser deposition. The objective was to study the 

tribological behavior at high temperatures, in particular the friction behavior. SEM cross 

sectional and top-view observation of the coatings after annealing at high temperatures 

were performed and XRD was applied for structural analysis. The experimental results 

are presented in the left side of figure 6 while a schematic representation of the silver 

diffusion mechanism is provided in the (right side). The annealed coating was composed 

by two distinct layers: an Ag depleted YSZ-Mo layer plus an Ag layer which covered the 

entire coatings surface, forming dense Ag grains with 1-2 µm, as shown on the SEM top-

view micrograph. The Pt layer was deposited for protection during FIB cutting. The XRD 

analysis suggested an increase in both fcc-Ag and tetragonal ZrO2 grain size after 

annealing at 300ºC; however, neither the grain size nor the Ag particle size distribution 

were determined. The model proposed for the Ag diffusion (figure 6 right), explains how 

Ag segregates to the surface and forms the continuous Ag layer on the top. This behavior 

is far from that observed on macrocomposite coatings of the same type, such as NASA 

PS200 and PS300, which were produced by plasma spraying. In this case, the coatings 

are stable at these temperatures and no Ag segregation was observed. The differences 

between nanocomposite and macrocomposite coatings, containing similar volume of the 

silver phase, are attributed to two factors: (i) the larger surface area of smaller particles 

which provides a larger decrease in the grain boundary surface energy and (ii) shorter 

distance between the embedded silver nanograins. 
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Figure 6 - SEM cross-sectional and top-view micrographs of YSZ-Ag-Mo (10 at.% Mo and 24 at.% Ag) after 

heating at 500ºC and XRD diffractogram of the as-deposited and annealed coating (left) and schematic 

representation of the Ag diffusion after heating 32 

 

Since the coatings are completely dense and free of voids, there are space 

restrictions for Ag grain growth in the coatings bulk; thus, it is more likely that Ag diffuses 

to the coatings top-surface, where no space requirements restrict the silver coalescence. 

Still, the authors did neither observe nor commented what type of diffusion mechanism 

could be involved in the Ag diffusion to the surface, or in the Ag surface growth. The Ag 

incorporation was proved to improve the coatings tribological behavior, as observed for 

the CoF reduction, although a short lifetime was evaluated. The problem was that all 

silver diffused to the surface in approximately 45 minutes, at 500ºC. In order to improve 

the coatings lifetime, the authors deposited a TiN diffusion barrier layer33, with an array 

of pinholes.  

The idea was to control the Ag surface segregation and, thus, to enhance the 

coatings lifetime over ten times. Ag could diffuse only through the pinholes present in 

TiN diffusion barrier layer, as depicted in figure 7. The cross-sectional SEM micrographs 

combined to EDS mapping allowed to observe the Ag diffusion to the surface and to 

determine the dimension of Ag depletion region, which was about 6 µm long. The 

authors used this value (as x) to determine the Ag diffusivity (D) in YSZ matrix at 500ºC, 

assuming a parabolic diffusion, x=√Dt.   
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Figure 7 - (left) Schematic representation (a) and SEM top-view micrograph of pinholes in TiN mask (b), 

schematic representation of Ag diffusion through TiN mask (c) and SEM top view micrograph of 

YSZAgMo/TiN coating after heating at 500ºC, (rigth) SEM micrograph showing the area selected for FIB 

cutting (a) coatings cross-sectional SEM micrograph after heating at 500ºC (b) and EDS mapping of 

coating cross-section (c) 33 

 

The same methodology was adopted in order to determine the diffusivity at 425ºC and 

575ºC, which allowed to built the Arhenius plot and thus, to determine the diffusion 

prefactor (D0) and activation energy (Ea), which were reported to be 4.0x10-4 cm2/s and 

1 eV/atom, respectively. 

Mulligan and co-workers have been studying Ag/CrN nanocomposite coatings 

deposited by reactive magnetron sputtering over the past decade with the aim of 

developing hard and wear resistant coatings with solid lubricant phase, Ag, for lubrication 

at high temperature (300ºC-1000ºC)34-40. In the first report found in literature 34, Ag/CrN 

coatings with different Ag contents (0, 3, 12 and 22 at.% Ag) were deposited and the 

effect of Ag content, annealing time (ta = 5-60 minutes) and temperature ( Ta = 600ºC 

and 700ºC) on the Ag-lubricant transport to the surface was studied. Ag segregated as 

a second phase in the crystalline CrN matrix being located at the column boundaries, 

which width was similar to the Ag grain size, evaluated through XRD analysis. The Ag 

lubricant transport to the coatings surface was analyzed through SEM top-view analysis, 

allowing to determine the areal density of Ag and the evolution of Ag particle size. The 

rate of Ag transport to the surface as well as the Ag agglomeration increased with either 

the Ag content incorporated in the coating or ta and Ta. The Ag transport occurred 

mainly through the open column boundaries, which width increases with the Ag grain 

size. For this reason the amount of Ag on surface was 4 times higher when Ag content 

was doubled in the coatings, due to the increase in the volume of free surfaces between 



Chapter I – State of the Art 

 

25 

 

CrN columns. In a subsequent paper, the authors developed diffusion barrier layers in 

order to prevent the fast Ag depletion and, thus, improve the coatings lifetime. In this 

study, Ag/CrN coatings containing 22 at.% Ag were covered by two  CrN barrier layers, 

both with a thickness of 200 nm, but with different morphologies36. During annealing at 

625ºC for 20 minutes the porous CrN layer allowed the Ag to diffuse to the coatings 

surface, while the dense barrier layer completely avoided Ag diffusion to the surface. 

This allowed to prove that the presence of open spaces in the crystalline CrN matrix is 

a necessary condition for Ag diffusion, allowing to conclude that the diffusion rate in free 

surfaces is faster in relation to grain boundary diffusion or lattice diffusion. The effect of 

the coatings growth temperature, Ts, (300ºC, 400ºC and 500ºC) on Ag diffusion at 

different annealing temperatures, Ta, (425ºC, 525ºC and 625ºC) was also studied. The 

transport of Ag to the surface increased with Ta but decreased with Ts at a given Ta, e.g. 

for a coating deposited at 500ºC the microstructure is stable up to 500ºC; thus, a 

negligible effect in the Ag distribution after annealing was observed whenever Ta<Ts, as 

can be found in the SEM micrographs from figure 8 (left). When Ta>Ts, Ag diffuses to 

the surface at a rate that increases with Ta
37. More recently, the authors published a 

paper entitled “Ag transport in  CrN-Ag nanocomposite coatings”39, where the same 

samples were analyzed by SEM (top-view and cross-sectional) and AES, in order to 

evaluate the depth profile distribution of silver, being some of the reported results 

presented in figure 8 (right). The SEM cross-sectional micrographs of the coating 

deposited at Ts=500ºC indicated that in the as-deposited coatings Ag grew in a lamellar 

shape with an average width (parallel to surface) and height (in growth direction) of 50 

nm and 25 nm, respectively. The cross-sectional micrographs were recorded in 

secondary electron + backscattered electron modes, thus, Ag appears brighter in the 

CrN matrix. The SEM micrograph after annealing at Ta=625ºC, revealed the presence of 

lamellar voids (appear darker in the micrograph), resulting from the Ag that diffused to 

the surface for originating the large Ag agglomerates. The statistical analysis of the 

coatings micrographs allowed to conclude that the smaller grains disappeared during 

annealing, while the bigger grains remained unaffected, being the average width of the 

voids 20 nm.  
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Figure 8 - (left) SEM micrographs of Ag-CrN coatings deposited and annealed at different temperatures (Ts 

and Ta) (right) AES depth profile of Ag-CrN coating deposited at 300ºC and annealed at different 

temperatures and SEM cross-sectional micrograph of Ag-CrN coating deposited at 500ºC and annealed at 

625ºC37,39 

 

The AES depth profiles of the coating deposited at Ts=300ºC and annealed at 

Ta=425,525 and 652 ºC, suggested that the as-deposited coatings showed a constant Ag 

concentration of about 22 at. % across the coatings thickness. The annealed coatings 

also showed a constant in-depth Ag distribution; however, the amount of Ag is gradually 

reduced as the Ta increases, which means that Ag was diffusing from the entire coating 

thickness. It should be pointed out that before AES analysis the surface was polished in 

order to remove the segregated Ag, thus, the reduction in Ag content represents the 

amount of Ag that segregated to the coatings surface. 

The driving force for this segregation was attributed to the larger chemical 

potential of smaller Ag clusters in relation to the larger Ag surface grains and coarsening 

through the Ostwald ripening mechanism37,39. 
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In summary the main conclusions achieved in relation to the coatings stability are: 

 Ag segregates to YSZ and MeN coatings surface when submitted to an annealing 

treatment at several hundred degrees; 

 The deposition of a barrier layer based on MeN prevents the Ag surface 

segregation, which can be tailored by varying the barrier layer 

morphology/porosity. This indicates that Ag diffuses to the coatings surface 

through the column boundaries. 

 

2.3 Biological properties/Antibacterial activity 

 

 Several mechanisms have been pointed to explain the antimicrobial activity of Ag 

nanoparticles, namely: (i) release of Ag+ which reacts with thiol groups of proteins and 

interfere with DNA replication, (ii) generation of free radicals which damage the 

bacterial membrane and (iii) direct physical contact between the nanoparticles and 

bacterial cells which causes structural damage to their wall.  Among the different 

proposed mechanisms, the Ag ions are pointed to be the most effective route for 

bacteria destruction41-43. Thus, in order to achieve the desired bactericidal effect it is 

necessary to guarantee that Ag based products are somehow transformed into Ag+. 

Several fundamental studies regarding the bactericidal action of Ag nanoparticles against 

a wide range of microrganisms have been performed over the past years. The effect of 

nanoparticles size43-46 and chemical properties44 on the antibacterial effect have been 

evaluated. Most of the studies claim that smaller particles show an enhanced antibacterial 

activity and the presence of surface oxide layer enhances the bactericidal action.    

 The deposition of Ag thin films and incorporation of Ag nanoparticles in different 

matrix coatings has been followed by several research groups in order to produce 

multifunctional nanocomposite coatings as, for example, the incorporation of Ag 

nanoparticles in photocatalytic TiO2 matrixes or the combination of hard/wear and 

corrosion resistant coatings, based on transition metal nitrides and carbonitrides, for 

prosthetic and dental implants. Some of the most relevant studies on this field are here 

reviewed. 

 Sant et al47 deposited Ag based coatings by magnetron sputtering in order to 

evaluate the effect of different deposition parameters (input power, gas pressure and gas 
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composition) on the Ag dissolution rate and the antibacterial activity against 

Staphylococcus aureus and Pseudomona aeruginosa. The Ag coatings biological response 

was well correlated with the Ag ions dissolution rate, which was strongly dependent on 

several (micro)structural features, such as  the nanocrystals size or the, presence of 

defects and oxygen species; smaller nanocrystals and defective crystals enhance the Ag 

ions dissolution rate. Pure silver was stable and not soluble in water. To promote its 

dissolution a driving force should be provided, which can be based in the presence of 

heterogeneities at microstructural level. Therefore the presence of minor impurities, 

local structural defects or differences in grain size distribution, could drive the 

dissolution process.   

 Unosson et al48 deposited a gradient Ag-Ti oxide thin film by reactive magnetron 

sputtering and evaluated the effect of Ag content on the antibacterial activity against S. 

aureus. For high Ag content (62 wt.%) the viable count of S.aureus decreased by 99.6%, 

while at lower Ag contents (35 wt.%) only a reduction of 17% in relation to the control 

was observed after 2 hours of exposure. The variation of the antibacterial activity was 

well correlated with the Ag+ ion release, which was much higher in Ag rich coatings, 

although it is not proportional to the variations in Ag content. Other factors, such as a 

higher porosity or a more hydrophilic character of Ag rich layers, which enhances the 

interaction with water molecules, are also claimed to be determinant on the Ag ion 

release. 

 Kelly et al49 studied the antibacterial activity of CrN/Ag, ZrN/Ag, TiN/Ag and 

TiN/Cu systems with different Ag and Cu contents (about 5 at.%, 10 at.% and 20 at.%) 

against  P. aeruginosa and S. aureus.  The coatings structure was composed of MeN and 

Ag(Cu) crystalline phases. The incorporation of Ag resulted in the development of 

compact coatings, shown by SEM cross-sectional observations. A significant reduction in 

the number of viable cells with increasing Ag and Cu content is reported in relation to 

pure nitride coatings. Whilst no zones of inhibition were observed for S. aureus, on any 

of the surfaces, the diameter of the ‘kill’ zones generally increased with increasing silver 

content for P. aeruginosa. Moreover, despite the very similar morphology of the different 

nanocomposite coatings, CrN showed the best antibacterial efficiency while, for TiN 

matrix, the antibacterial activity was not observed. The influence of matrix coating on 

the antibacterial activity was not truly discussed in the paper. 
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 Carvalho et al50 evaluated the effect of surface features on Staphylococcus 

epidermidis adhesion to Ag/TiCN surfaces. The coatings were deposited by reactive 

magnetron sputtering (in Ar+C2H2+N2 atmosphere) with varying Ag/Ti ratios (0, 0.37 

and 0.62) and nearly constant N and C contents (about 30 at.% and 20 at.%, respectively). 

The coatings were composed of crystalline TiCN and Ag phases. With the increase in 

Ag content, TiCN grain size decreased, from 32 nm down to 5 nm, while Ag grain size 

increased from 19 nm up to 29 nm and a higher amount of amorphous phases based on 

a-C and a-CN were observed. Regarding the coatings morphological features, TiCN 

coatings were columnar, showing a very high porosity and a surface roughness of about 

39 nm. The incorporation of Ag resulted in the development of more compact coatings 

with a lower average roughness (9 nm and 7 nm, for Ag/Ti of 0.37 and 0.62, respectively). 

The number of viable cells (S.epidermidis) revealed that the coatings did not show any 

antibacterial effect; SEM micrographs suggested that Ag containing coatings favor the 

bacterial adhesion and biofilm formation. The adhesion and proliferation of hydrophilic 

S.epidermidis strains were attributed to the surface properties, namely, to the more 

hydrophobic character of Ag based coatings in relation to TiCN. Moreover, the high 

densities of apolar areas in Ag containing coatings also promote the S.epidermidis 

adhesion.  The lack of antibacterial effect was attributed to the possible absence of Ag 

ionization although the amount of Ag ions released to the medium were not determined 

in the study. 

 Ferreri et al51 analyzed the antibacterial activity of  sodium hypochlorite activated 

Ag/ZrCN based coatings deposited by reactive magnetron sputtering, containing 0 and 

11 at.% of Ag. The zone inhibition (ZoI) tests revealed that ZrCN and Ag/ZrCN did not 

show antibacterial activity against S.epidermidis. Nevertheless, when Ag/ZrCN coatings 

were activated with NaClO (by immersion in 5% w/v solution before ZOI tests) a halo 

inhibition zone was observed, suggesting that antibacterial activity has occurred. SEM, 

XPS and GDOES analysis revealed that the activation process lead to an increase in the 

amount of Ag in the coatings surface after activation, resulting from the out-diffusion of 

Ag to from a few nanometers below the surface. A mechanism was proposed for 

explaining the Ag activation, which ends up in the formation of Ag ions, which are 

responsible for the antibacterial effect. 
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In summary the main conclusions achieved in relation to the coatings antibacterial activity 

is: 

 Several Ag based nanocomposite coatings show good antibacterial activity against 

different type of bacteria. The antibacterial activity is dependent on coatings 

structure, morphology and nature of matrix coating. The presence of smaller Ag-

NP, smaller nanocrystals size or the, presence of defects and oxygen species 

enhance the antibacterial performance, 

  The antibacterial activity seems to be dependent also on the matrix nature 

nevertheless its exact influence is still poorly understood. 

 

3. Soft metal whiskering 
 

 Despite being out of the scope of this thesis the phenomenon known as metal 

whiskering will be reviewed since this topic has been largely studied over the past 

decades. Several mechanisms regarding the formation of whiskers in coatings surface 

have been proposed, which will be important for the work presented in Chapter V-

Section 2.  

Metallic whiskers are a single crystalline filamentary eruption from a metal 

surface, which is generally observed in thin films, although it can also occur in bulk 

materials52. Metallic whiskering was first reported in the 1940´s and, presently, this 

phenomenon is still under extensive study since it is one cause of failure of different 

electronic devices (namely heart pacemakers, commercial electronic devices, military 

aircraft, aerospace electronics) due to short circuits and arcing. Metal whiskering has 

been observed in different metals such as Ag, Au,Sn,Zn,Cd, Cu,W, although the most 

studied whiskers arise from electroplated Sn and its alloys, which are the most common 

for electronic components. The mechanisms behind the whiskering effect have been 

largely studied since its discovery, and, presently, numerous solutions have been 

proposed, especially for Sn whisker formation. It should be pointed out that there is still 

no consensus in the scientific community in what regards the mechanisms underlying 

this phenomena in spite of the studies performed over the last 50 years. The main 

problem seems to be the very high number of factors having influence in the process. 

Nevertheless, at least for Sn, most authors agree that the driving force for whiskering is 
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related with the relaxation of compressive stress, which may arise from different 

sources: (i) internal stresses developed during coatings deposition; (ii) formation of 

intermetallic compounds due to the reaction with the substrate material (namely 

formation of Cu-Sn phases); (iii) oxidation reactions, enhanced by humidity, which among 

different factors can promote the formation of tin oxides. Despite some controversial 

discussions in scientific community, this mechanisms has been extended to explain other 

metals whiskering51,52,53.  

In the particular case of Ag, the NASA whisker group has reported the 

occurrence of this phenomena in primary current conductors of circuit breakers in 

switchgear at pulp recycling mill54. The studies related with Ag whiskers claim that the 

major factor behind Ag whiskering is related with environmental conditions, mainly to 

the presence of hydrogen sulfide (H2S). Ag whiskering is, thus, attributed to the strong 

tendency of silver to corrode in H2S environments with the consequent formation of 

Ag2S. As soon as a thick enough layer of silver sulfide has been formed, metal filaments 

start to grow virtually everywhere but, more intensely, in the zones of higher 

temperature occurring while electrical units are energized55,56. Just in two months after 

previous cleaning, the whisker grew up to several inches (6-8 cm) long and up to 0.04 in 

(1 mm) thick (see figure 9). This phenomena was observed in Ag plated copper, being 

found that most of the whiskers are made of silver with 1-3 % of copper. 

 

Figure 9 - (a) Ag whiskers in circuit breakers after failure (b) SEM micrograph of Ag whiskers55 
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Chapter II 
Experimental Details 

 

This chapter is dedicated to the description of the experimental methodologies 

used in the thesis. The coatings are deposited following two different methodologies: 

magnetron sputtering and hybrid deposition method combining magnetron sputtering 

for amorphous carbon deposition and plasma gas condensation for Ag nanoparticles 

deposition. A summary of the theoretical background and fundamental concepts 

regarding both methodologies is given. The deposition system used in the work is 

described as well as the deposition conditions used for the preparation of the coatings 

analyzed in the preliminary work, presented in Chapter III. In the second part of this 

chapter the theoretical background and the experimental conditions used for the 

coatings characterization along the thesis are provided. 
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1. Coatings deposition 
 

1.1 Magnetron sputtering 

 

Sputtering represents one of the most popular physical vapor deposition (PVD) 

methods for thin films production, along with thermal evaporation, electron beam 

evaporation and laser ablation. PVD methods basically consist in the creation of vapor 

species from a target material with their subsequent condensation onto a substrate. In 

the sputtering process the atoms are ejected from the target through the collision of 

energetic ions, where the momentum transfer between the ions and the target material 

drives the process1. 

 In a basic sputtering process a plasma is created by applying an electrical field to 

a neutral gas in a low vacuum environment. The electrical field causes the acceleration 

of charged particles, electrons and ions, the first ones ensuring the ionization of the 

neutral atoms of the discharge gas and the collision of the ions with the target material 

being responsible for the removal of target atoms and secondary electrons, which allow 

to sustain the plasma1,2,3. The necessary voltage for the creation of the plasma is known 

as the breakdown voltage (Vb), being found that at lower voltage values, ions do not 

acquire enough kinetic energy to create a charged particle (secondary electron). This 

voltage has been described by the Paschen law, where the dependence of Vb on the 

product “pressure times electrode spacing” is described4. 

Magnetron sputtering was developed in order to overcome some limitations 

inherent to dc diode discharge, thus allowing to increase the deposition rate, to reduce 

the target heating and to allow the plasma to be maintained at low operating pressures 

and voltages. This method basically consists in the use of magnets that create magnetic 

fields which are able to constrain the electrons motion in the target vicinity, increasing 

the electron-atoms collision probability and also the ion-target interaction1,2. 

The efficiency of a sputtering process is described by the sputtering yield, which 

measures the amount of atoms ejected per incident particle. The sputtering yield, 

derived by Sigmund´s theory, is given by: 
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𝑆 =
3𝜑𝛼

4𝜋2

4𝑀1𝑀2

(𝑀1 + 𝑀2)2

𝐸1

𝐸2
 𝑓𝑜𝑟 (𝐸1 < 1 𝑘𝑒𝑉) 

 

(2.1) 

where M1  refers to the mass of the discharge gas ion and M2  the mass of the target 

atom, Eb  is the surface binding energy, 𝜑 is a factor that is a measure of the efficiency of 

the momentum transfer in collisions. The E1 is the energy of bombarding ion, which in 

the sputtering process is typically in the range from 50 eV to 1 keV 3,5. 

The working gas typically used in the sputtering process is argon (Ar), due to 

either its inert nature, which means that it will not react with the deposited material, or 

the mass compatibility with most of the materials typically used in sputtering process, 

which allows to enhance the sputtering yield owing to the more efficient energy transfer 

1,2,3. 

 

1.2  Plasma gas condensation 

  

 Plasma gas condensation method, also designated as gas aggregation technique 

or inert gas condensation, represents a bottom-up approach for nanoparticles or 

clusters production. The technique is based on the formation of nanoparticles in the gas 

phase, which resembles the cloud or fog formation in nature, a process based on the 

condensation of atoms or molecules from supersaturated vapor in a noble gas 

atmosphere. The experimental setup consists in a vapor source inside a vacuum 

chamber, where the inert gas is introduced. The vapor source can be based on different 

approaches, which are used also in the PVD processes in thin film deposition. In this 

thesis, the vapor source is based on magnetron sputtering of a target material in a high 

pressure inert gas atmosphere (in this work Ar). One of the major advantages of this 

method is the possibility to tailor the particle size distribution and its easy combination 

with other different thin film production methods, allowing the deposition of 

nanocomposite coatings. This process is very similar to conventional magnetron 

sputtering; in the latter, the thin film grows from the sputtered atoms arriving to the 

substrate through the vapor phase while, in the plasma gas condensation, the 

nanoparticles are condensed in the cluster source, arriving to the substrate already in 
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solid state. The main difference between the two methods is the discharge pressure, 

which should be much higher in the latter case in order to allow the supersaturation to 

occur. It should be pointed out that the designation of plasma gas condensation is a 

particular case of inert gas condensation, where the term plasma is related with the 

clusters source method6,7. 

The clusters formation and growth occurs in three different stages: 

i. Nucleation; 

ii. Monomeric growth; 

iii. Aggregation or coagulation. 

The nucleation process is described by the classical nucleation theory, where 

homogeneous nucleation is considered in the formation of clusters in gas phase while 

heterogeneous nucleation occurs in the walls of the container. The first step involved in 

the clusters formation is a three body collision which is a necessary condition for dimer 

formation. The atom-atom recombination was postulated by Boltzmann in 1898, which 

is based on energy and momentum conservation. The process implies the formation of 

a metastable excited Ag2* orbiting complex which is stabilized by a third atom (Ar) which 

carries away the excess internal energy of the dimer. After the formation of a stable 

nuclei the cluster continues to grow through the addition of single monomers. At a later 

stage of growth the number of monomers are almost vanished and, thus, the clusters 

continue to grow by coagulation or aggregation mechanisms, which involve two modes 

of growth: (i) collision of small clusters, with formation of quasi-spherical particles or (ii) 

growth via collision of large clusters, which results in fractal-like aggregates6,7,8,9. The 

different stages of clusters growth are schematically represented in figure 10, proposed 

by Mikhail Dutka6. 

The cluster diffusion and collisions between clusters in the initial stages are 

described by the kinetic theory of gases, which is valid when the mean free path of the 

clusters is large in relation to their own dimensions2,8. The mean free path is determined 

by the equation: 

𝜆𝑚 =
𝑅𝑇

√2𝑁𝜎𝐴𝑟𝑝
 

(2.2) 
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Figure 10 - Evolution of nanoclusters size distribution along the aggregation chamber (reference 6).  

 

Where the pressure is considered to be similar to the Ar pressure since the density of 

Ar is much higher than the clusters density. The R is the Boltzmann constant, T the 

temperature, N the Avogadro´s number, σAr the collision cross-section and p the 

pressure. Accordingly, the mean residence time (𝜏) can be calculated as: 

𝜏 =
𝑝𝑉𝑁

𝑅𝑇𝜙
 

(2.3) 

At this stage, while the clusters grow they are heated by the binding energy delivered by 

the aggregating atoms, which in the case of a monomer growth represents the release 

of latent heat of condensation associated with the addition of new monomers. This 

energy is dissipated through collisions with inert gas and also through atomic 

rearrangements leading to the spherical shape of the small clusters. As the clusters 

become larger the energy delivered in the growth process is not enough for the 

complete coalescence or the sintering of the clusters. If the time of thermal sintering is 

larger than the mean time between successive collisions, the aggregates will grow as 

fractal shaped. The fractal structures show different collision rates even when the mass 

is equivalent to a spherical particle with the same number of atoms and, thus, their 

growth is not anymore described by the kinetic theory of gases, but instead by the 

Brownian model6,8. As can be depicted in figure 10 proposed by Mikhail Dutka6 the 
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diffusion coefficient changes through the different stages of the clusters growth, being 

found that it is reduced as the particle size increases. 

The main variables in this type of deposition systems are: 

i. Gas flow rate, which will determine the clusters mean residence time, 

ii. Pressure in the aggregation chamber, which will determine the collisions 

probability; 

iii. Type of buffer gas; 

iv. Current or power density applied to the target, which will determine the amount 

of sputtered metal atoms. 

The increase in the gas flow rate will promote a decrease in the clusters mean residence 

time, thus reducing the clusters growth, while an increase in the aggregation chamber 

pressure will increase the collision probability, thus enhancing the growth rate10,11,12. It 

should be pointed out that these two variables are correlated; in general, the pressure 

in aggregation sources is increased by increasing the gas flow rate, which promote 

opposite effects in the clusters growth. Regarding the type of buffer gas, it will also 

influence the clusters final size, being found that, in general, He promotes the growth of 

smaller clusters owing to its higher drift velocity, which reduces the clusters residence 

time10,11,12. The current density will determine the amount of metal atoms ejected and, 

thus, the clusters size generally increases by increasing this parameter11. 

 

1.3 Deposition system 

 

Two different deposition methods are involved for the production of either the 

Ag nanoparticles and/or the Ag/a-C nanocomposite coatings: plasma gas condensation 

(PGC) and magnetron sputtering (MS). Both methods are coupled in the same deposition 

system which is briefly described in this section. 

The depositions are performed in a homemade equipment which is mainly 

composed by the deposition chamber, the vacuum pumps, the gas flow control and the 

electrical systems, everything connected to a control unit. A clusters source is 

connected to the main deposition chamber, allowing the co-deposition of sputtered 

coatings and nanoparticles. The deposition system is presented in figure 11. 
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Figure 11 – (a) deposition system and (b) power sources 

 

The deposition chamber is cylindrical with a diameter of about 40 cm and a height 

of 44 cm. The system can accommodate two parallel cathodes, supporting targets with 

dimensions of 20 cm x 10 cm, working in close field unbalanced magnetron mode. The 

substrate holder is placed in the center of the deposition chamber and can operate either 

in static or rotation mode, being the rotation speed possible to be adjusted. The 

substrate holder can also be electrically biased. 

The vacuum system is composed by two vacuum pumps, which allow to achieve 

base pressures in the order of 5x10-4 Pa: a rotary vacuum pump (Pfeiffer DUO 20M, 

pumping speed 20 m3/h) and a diffusion pump (BOC Edwards – Diffstak 160/700, 

pumping speed 760 l/s). The working gas - argon (Ar) - is introduced in the chamber 

through an Aera FC-7700 Series MFCS flowmeter. It should be pointed out that the 

deposition chamber is connected to three additional flowmeters, which allow to 

incorporate different gases in the deposition chamber, namely N2, O2 and CH4. The 

system base pressure is monitored through a wide range pressure gauge (BOC Edwards 

– WRG-S, measurement range: from atmosphere to 10-9 mbar), while the deposition 

pressure is monitored by a Pirani pressure gauge (APG100-XLC measurement range: 

from atmosphere to 10-4 mbar). The pressure in the nanoclusters source is monitored 

through a BOC Edwards – WRG-S sensor. 

The electrical system is mainly composed by 2 power supplies: (i) a pulsed DC 

power source (Advanced Energy Pinneacle Plus working with a maximum power of 5 

(a) (b)
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kW) and a (ii) DC power supply (Advanced Energy Pinneacle Plus (2 x 6 kW)). The 

power supplies, as well as the different opening/closing of the valves and the gas feeds 

are computer controlled. 

The deposition chamber also contains a shutter which allows to place SS316L 

shields in-between the targets and the substrate holder, which is used during the targets 

and substrates cleaning procedure. During the deposition, the shields are removed from 

the space between the targets and the substrate holder, thus allowing the coatings 

deposition. 

The cluster source is a homemade system acquired from Charles University in 

Prague, Faculty of Mathematics and Physics. The cluster source (figure 12) is mounted 

aside to the main deposition chamber (figure 11) and it is separated from the main 

chamber by an exit orifice with a diameter of 2 mm. Neither differential pumping 

between the main chamber and the cluster source nor a mass filter are used. 

 

Figure 12 - (a) Clusters source, (b) inside view of the clusters source and (c) conical nozzle 

 

The cluster source walls are cooled by water as well as the magnetron head. As 

can be seen in figure 12 (b) and (c) the cluster source has two parts: a cylindrical chamber 

and a conical nozzle, which dimensions (diameter, Ø and height, h) are presented in 

Table 1. The exit orifice has a diameter of 2 mm and a cylindrical shape in the last 2 mm, 

in order to inhibit the effects of aerodynamic focusing. 

(a)

(b) (c)
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Table 1 - Clusters source main dimension (Ø, diameter and h, height) 

Component Dimension (mm) 

Exit Orifice (Ø) 2 

Interior of Cluster Source (Ø) 62 

Cylindrical Part (h) 55 

Conical Part (h) 31 

Target (Ø) 50 

Distance target exit orifice 86 

 

The working gas (Ar) is introduced in the deposition system through the clusters source; thus, 

the pressure inside the clusters source and the main deposition chamber cannot be controlled 

independently. 

 

1.4 Preliminary depositions 

 

Deposition of Ag/a-C nanocomposite coatings by magnetron sputtering 

 

 In a first approach, Ag/a-C nanocomposite coatings are deposited using one pure 

carbon target (99.99%) inserted with varying number of Ag pellets, in order to vary the 

amount of Ag in the carbon coatings, and a Ti target (99.99%) for depositing an adhesion 

enhancement interlayer. All the target materials were acquired in Testbourne Ltd. The 

coatings are deposited by dc magnetron sputtering in Ar atmosphere with substrates 

rotating at 17 cm from the target at a constant speed of 18 rpm. The base pressure in 

the deposition chamber is approximately 5 × 10− 4 Pa and rose up to values of 

approximately 5 × 10− 1 Pa for the deposition.  During deposition, the substrate holder 

is connected to the pulsed dc power supply and a bias voltage of -50 V is applied, being 

the reverse time and frequency 0.5 µs and 250 kHz, respectively. The coatings deposition 

parameters, Ag/C relative erosion area and power density applied to C target (JC), are 

summarized in Table 2. The coatings were labeled as a-C (Ag-free amorphous carbon 

coating) and as Agx, where x represents the Ag content in the coating. The deposition 

time is adjusted in order to achieve similar thicknesses in all coatings. 
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Table 2 - Deposition conditions used in the Ag/a-C nanocomposite coatings deposition in the preliminary 

work 

Coating Erosion Area Ratio 

(Ag/C) 

JC (W/cm2) 

a-C 0  

 

7.5 

Ag1 0.01 

Ag4 0.03 

Ag6 0.06 

Ag13 0.11 

 

In order to remove the contamination from the targets, a sputter cleaning 

procedure is performed before each deposition and, simultaneously, the substrates are 

also sputter etched. During this stage the shutter shield is placed between the target and 

the substrate holder in order to avoid cross contamination. The power density applied 

to C and Ti targets is 1.75 W/cm2 and 0.25 W/cm2, respectively. The substrate holder 

is connected to a pulsed dc power supply being the voltage fixed at 500 V; the reverse 

time and frequency were 1.6 µs and 250 kHz, resulting in a reverse phase of 40 %. The 

total etching time is 45 minutes. In order to further improve the coatings adhesion to 

the substrate, an adhesion interlayer consisting of a Ti/TiN/TiCN multilayer with a total 

thickness of 450 nm was previously deposited. The Ti target is first sputtered with a 

target power density of 10 W/cm2 in pure Ar atmosphere, during 5 minutes; then, 

nitrogen is introduced (17 sccm) during 15 minutes, to deposit the TiN layer and, lastly, 

the power of the graphite target was gradually increased from 0 up to 7.5 W/cm2, during 

5 minutes. 

The substrates used in this stage are: tool steel (used for tribological tests), 

stainless steel (determination of the residual stress and XRD analysis) and silicon 

(nanoindentation tests). Previously to the deposition process, the steel substrates are 

polished and all substrates were ultrasonically cleaned in acetone, ethanol and distilled 

water, for 10 minutes in each medium.   

 

Deposition of Ag nanoparticles 

 

In this stage different samples are deposited in order to evaluate: (i) the influence 

of deposition parameters on the Ag nanoparticles size distribution, (ii) the evolution of 
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Ag-NP´s size distribution with the amount of deposited Ag nanoparticles, (iii) the 

chemical composition and structure of Ag films and (iv) the uniformity of Ag 

nanoparticles distribution in Ag/a-C nanocomposite coatings deposited by hybrid 

process (MS+PGC). 

Two series of samples are prepared in order to evaluate the effect of (i) current 

density applied to Ag (JAg) target and (ii) Ar flow, on the clusters size distribution. In the 

first series the Ar flow is varied in the range [10 – 40] sccm (with a step of 10 sccm), 

while the current density is fixed at 7.6 mA/cm2. The variation in the Ar flow results in 

different pressures inside the cluster source and also in the main deposition chamber. In 

the second series the JAg was varied in the range [7.6 -22.9] mA/cm2, while the Ar flow 

was fixed at 40 sccm. The deposition times are adjusted for each deposition parameter 

in order to deposit individual NP, being the deposition time in the order of just a few 

seconds in all depositions. The substrate holder is placed at 25 cm away from the cluster 

source exit, where transmission electron microscopy (TEM) grids with carbon foils are 

placed aligned with the cluster source exit. No substrate heating or bias polarization is 

applied neither previous to the clusters deposition nor during the deposition process, in 

order to avoid the substrate damage. The depositions are performed with the substrate 

holder in static mode. It should be pointed out that each series are deposited in the 

same deposition run. Each carbon grid is placed in one face of the substrate holder and, 

after the deposition of each sample, the substrate holder is rotated in order to locate a 

new substrate in front of the clusters source, prepared for another set of conditions. 

Previously to the deposition of a new sample the plasma is stabilized during 

approximately 3 minutes. The deposition parameters are summarized in Table 3. 

In order to evaluate the NP growth mechanism along time, Ag-NP´s are 

deposited with an Ar flow of 30 sccm and JAg of 7.6 mA/cm2 with three different 

deposition times (0.5 s 1 min, 3 min) in static mode.  As previously, each carbon grid is 

placed in one face of the substrate holder and after the deposition of each sample the 

substrate holder is rotated in order to locate the new substrate in front of the clusters 

source. In order to perform EDS and XRD analysis, a thicker coating is deposited in a 

silicon substrate with a deposition time of 8 min., JAg = 7.6mA/cm2 and argon flow of 40 

sccm. 
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Table 3 - Deposition parameters used for the deposition of Ag nanoparticles by the plasma gas condensation 

method 

 Ar Flow 

(sccm) 

JAg 

(mA/cm2) 

Pressure in 

Deposition Chamber 

(Pa) 

Pressure in 

Cluster Source  

(Pa) 

 

1st Series 

10  

7.6 

5.9x10-2 187 

20 1.9x10-1 320 

30 3.0x10-1 459 

40 4.4.x10-1 595 

 

2nd Series 

 

40 

7.6  

4.4x10-1 

 

595 11.7 

17.8 

22.9 

 

Deposition of Ag/a-C nanocomposite by hybrid method (PGC+MS) 

 

Ag/a-C nanocomposite coatings are deposited by a combination of magnetron 

sputtering for the carbon deposition and plasma gas condensation for the Ag 

nanoparticle deposition. A pure carbon target is placed in the main deposition chamber, 

while a silver target is placed in the cluster source. The substrate holder is placed at 10 

cm from the carbon target and 25 cm from the cluster source exit, being the rotation 

speed 18 rpm. The base pressure in the main deposition chamber is approximately 5 × 

10− 4 Pa and rose up to values of approximately 5 × 10− 1 Pa in the main chamber and 

595 Pa in the clusters source, during the deposition process.  During deposition, the 

substrate holder is connected to the pulsed dc power supply and a bias voltage of -50 V 

is applied, being the reverse time and frequency 0.5 µs and 250 kHz, respectively. The 

deposition time is set to 165 min, which allows the deposition of a coating with about 1 

µm. 

 The sputter etching process and sample preparation is similar to the procedure 

used for Ag/a-C coatings deposited by magnetron sputtering.  

 Two silicon substrates are placed in the substrate holder at a distance of about 

3 cm (in vertical direction), being one of them placed in front of the cluster source 

nozzle. The coatings are analyzed through SEM/EDS analysis in order to determine the 

deposition uniformity along vertical direction. 
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2. Coatings characterization 

 

2.1 Chemical composition 

 

Electron-Probe X-ray Microanalysis (EPMA) 

 

 Electron probe X-ray microanalysis (EPMA) is an elemental analysis 

characterization technique widely used in thin films characterization. An electron beam 

is focused on the sample and, then, the characteristic X-rays emitted by the sample are 

analyzed by an energy dispersive spectrometer (EDS) and wavelength dispersive 

spectrometer (WDS); the later one allows to obtain a more accurate quantitative 

analysis. 

 The chemical composition of Ag/a-C nanocomposite coatings is accessed by 

EPMA in a Cameca SX-50 apparatus operating at 10 keV. The chemical elements are 

analyzed in the wavelength dispersive spectrometry (WDS) mode. Five punctual 

measurements are performed in each sample. The measured intensities are compared 

with standard ones and the elemental concentrations were calculated after applying a 

ZAF (Z=atomic number correction, A=Absorption correction and F= Fluorescence 

correction) correction to the experimental results. 

The depth of analysis (R) is easily determined by using Kanay-Okayama equation 

given by: 

)(

0276.0
89.0

67.1

Z

AE
R   

(2.4) 

where A is the atomic weight (for carbon 12 g/mol), E the beam energy in keV, Z the 

atomic number (6 for C) and ρ the density (about 1.8-2.2 g/cm3 for amorphous carbon). 

The depth of penetration for a beam with energy of 10 keV is between 1.4 µm to 1.6 

µm for pure carbon coatings. Obviously, the incorporation of a heavier element (Ag) 

will decrease the depth of analysis.  Due to the high depth of penetration, the chemical 

analysis is only performed in coatings with a thickness of about 1 µm13. 
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X-Ray Photoelectron Spectroscopy (XPS) 

 

 X-ray photoelectron spectroscopy is a chemical characterization technique that 

allows to obtain information about surface chemical composition and, also, about the 

atomic bonding state. In this technique the sample is analyzed with X-rays. From the 

conceptual point of view, the technique is based on the photoelectric effect. The kinetic 

energy of photoelectrons (KE) emitted by the sample are analyzed and aftermost their 

binding energy (EB) can be calculated according to the following equation: 

𝐾𝐸 = 𝐸𝑋−𝑟𝑎𝑦 − 𝐸𝐵 − 𝜓 

(2.5) 

where  EX-ray  and ψ represents the energy of incident radiation and spectrometer work 

function, respectively. 

Only the electrons created in a depth called escape depth, given by λacosθn, are 

able to escape from the sample and contribute to the XPS spectrum. The depth of 

analysis depends on the attenuation length (λa), which shows values ranging from 0.5 to 

2.5 nm, and also on the angle of emission with respect to the surface normal, θn. These 

values allow to explore the extreme surface sensitivity of this technique. Since the core 

electron binding energies are sensitive to the atom´s chemical state, information about 

materials bonding state can also be obtained13,14,15. 

The XPS analysis is performed in a hemispherical analyzer (SPECS EA-10 

Plus).The pass energy was 15 eV giving a constant resolution of 0.9 eV. The C line at 

284.8 eV is used in order to calibrate the binding energies. A twin anode (Mg and Al) X-

ray source is operated at a constant power of 300 W using AlKα radiation. The samples 

are sputter-cleaned in situ using a broad 3 keV Ar+ beam for 10 min. 

 

Glow Discharge Optical Emission Spectroscopy (GDOES) 

  

 In glow discharge optical emission spectroscopy (GDOES) the sample atoms are 

sputtered by Ar ions and aftermost the atoms are excited by the plasma and de-excited 

by emitting photons with characteristic wavelength, which allows to identify and quantify 

the materials chemical composition. This technique is relatively new and it has been 
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widely used as depth-profiling technique due to its good depth resolution and fast 

analysis (in order of few seconds) when compared with other depth-profile techniques 

such as XPS. The depth resolution is about 2 nm in the surface and degrades gradually 

due to the surface roughening and layers partial mixing promoted by the sputtering 

process15,16.  

GDOES is performed in a Horiba Jobin Yvon RF GD Profiler equipped with a 4-

mm diameter copper anode, operating at radiofrequency discharge pressure of 650 Pa 

(in argon atmosphere) and a power of 40 W. 

 

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) 

 

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) is a 

technique used in the chemical analysis of liquid samples or solids dissolved in liquids. 

The main advantage of this technique is the low detection limit (in range of ppb to ppm) 

and possibility to perform a fast analysis of numerous elements. The technique is based 

on the analysis of the characteristic wavelength emitted by the atoms and ions present 

in the plasma, which allows the element identification. The quantification is performed 

by comparing the emission intensities of the samples and standards. In the plasma the 

sample is vaporized and the chemical bonds are broken resulting in free atoms and ions. 

Most of the elements exist as singly charged ions in the plasma and, thus, the spectral 

lines from ions are more intense13.  

 Silver ion release is analyzed using an ICP-OES spectrometer PERKIN ELMER 

OPTIMA 8000. SS316L coated samples with 4 cm2 are immersed into a 50 ml vessel, 

containing 50 ml of 0.9% NaCl at room temperature. 2 ml of the solution are taken out 

after 0, 2, 6, 12, 24, 168 and 720 hours of immersion and reserved for ICP-OES in dark, 

to avoid silver precipitation. Two calibration curves are prepared using a silver standard 

solution for ICP (silver, plasma standard solution, specpure, Ag 1000 ppm), diluted in 

HNO3 at 5% v/v in order to mimic the standard solution matrix or NaCl 0.9 % w/v to 

replicate the experimental conditions used for the samples. Both calibration curves 

showed indistinguishable results. At least 3 samples are evaluated and the standard 

deviation are presented. 
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2.2 Morphological characterization 

 

Transmission Electron Microscopy (TEM) 

 

 Transmission electron microscopy (TEM) is an electron microscopy technique 

that allows to obtain information about morphology and structure of different types of 

materials (e.g. ceramics, polymers, metals, biological samples, etc). The first TEM was 

built in 1931 by Knoll and Ruska and ever since this technique has been subjected to 

great developments prompted by the high spatial and analytical resolution, which has 

revolutionized our understanding about matter own to the possibility to observe it at 

an atomic level17.  

 In TEM an electron beam passes through a thin specimen and an image is formed 

from the interaction of electrons and the specimen. The image is then magnified and 

focused onto an imaging device. The electrons interact with the specimen in different 

ways as they pass through it: they can be scattered or remain unaffected. The non-

uniform distribution of the electron beam that merges from the specimen surface 

contains all the information about the specimen, and the different types of interaction 

can be used to obtain different type of information. The TEM images are generally 

classified according to the type of contrast: (i) mass-thickness contrast, (ii) diffraction 

contrast and (iii) phase contrast. In the present thesis two types of images were 

recorded: (i) bright field (BF) imaging using diffraction contrast and (ii) high resolution 

(HRTEM) imaging based on phase contrast. The diffraction contrast is controlled by the 

crystalline structure of the material and specimen orientation according to the Bragg´s 

law being the interaction between the specimen and the electron beam classified as 

coherent elastic scattering, which is related with the particle like behavior of the 

electrons. Generally the diffraction contrast images can be bright field (BF) or dark-field 

(DF) image; in BF mode the direct beam is selected to form the image while in DF the 

diffracted one is selected with the objective aperture. In phase contrast imaging the 

information is built through the changes on the electrons phase, which are related with 

their wave like characteristics. In this imaging mode a recombination of various beams is 

used and the resulting interference pattern is observed17. 
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  The coatings are analyzed in three different equipment’s: TEM (Tecnai G2) 

(University of Coimbra), JEOL 2010F (Texas Materials Institute) and TEM TECNAI G2 

F30 X-TWIN (Microelectronics Research Center, the University of Texas at Austin).  

 

Specimen preparation  

 

 In the present thesis two types of samples were observed in TEM: (i) Ag-NP´s 

coated TEM grids with carbon foil and (ii) Ag/a-C nanocomposite coatings with a 

thickness of 750 nm. In the case (i) no previous specimen preparation is required while 

in case (ii) the polymer coated Ag/a-C coatings were prepared by ultra-microtomy. In 

this technique the samples are cut into very thin slices, with a thickness of about 60 nm. 

Previous to the cutting the sample is immersed in an epoxy and cured during 24 hours 

in an owen at 70ºC. In ultramicrotome the specimen is moved past a knife blade, which 

is made of diamond. The knife is immersed in a water container where the samples will 

be collected into a TEM grid.  

 

Scanning Electron Microscopy (SEM) 

 

 Scanning electron microscopy (SEM) is an electron microscopy technique which 

allows to obtain information about the surface morphology, topography and chemical 

composition. The technique is based on scanning the samples surface with a focused 

electron beam. Numerous types of interactions occur when the electrons interact with 

the sample, being the most relevant ones in SEM the elastic interactions with atomic 

electrons, which lead to the emission of secondary electrons (SE), and the elastic 

collision with atomic nucleus, which lead to the emission of backscattered electrons 

(BSE). The SE electrons result from the energy transfer between the electron beam and 

the specimen electrons, thus, the energy of emitted SE electron is much lower than the 

beam energy. In fact, these energy losses limit the depth from which the electrons are 

emitted to the detector, thus, the information obtained with SE is related with the first 

ten of nanometers in the samples surface. These electrons are usually used to achieve 

topographical information. The BSE electrons result from elastic collision with samples 

nuclei, thus, these electrons generally possess an energy comparable to the beam energy. 
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The BSE´s allow to obtain morphological analysis and also to obtain information about 

the phase composition, since the atoms with higher mass will scatter the electrons more 

strongly, thus, the regions of higher atomic mass will appear brighter in the micrographs. 

The BSE electrons generate information from a high depth, which depends mainly on 

the primary beam energy. 

 The coatings are analyzed in three different equipment’s: NanoSEM -  FEI Nova 

200 (FEG/SEM) equipped with a EDAX - Pegasus X4M (EDS/EBSD) detector (SEMAT-

Universidade do Minho);  Hitachi S-5500 (UT Austin) and ZEISS MERLIN 

Compact/VPCompact, Field emission scanning electron microscope (FDSEM) (IPN). 

 

Atomic Force Microscopy (AFM) 

 

Atomic force microscopy is used to evaluate the surface topography by using a 

sharp solid force probe, which measures the surface height. This analysis allows to 

determine the surface roughness and topography at nanoscale level.  

AFM is performed in a Bruker Innova apparatus equipped with a silicon probe 

working in tapping mode. Five measurements are performed in the sample surface in 

order to evaluate the average roughness (Ra). 

 

2.3 Structural characterization 

 

X-Ray Diffraction (XRD) 

 

 Among different characterization techniques used for the evaluation of thin films 

structure, X-ray diffraction is one of the most powerful ones and, thus, is the most 

largely used. This technique is nondestructive and does not require previous specimen 

preparation, allowing to identify the crystalline phases present in the coatings as well as 

the texture evolution. Moreover, the line broadening in XRD patterns allows to 

determine the crystallite size and, in specific conditions, to access information about any 

distortion of the crystal structure, such as microstrains, dislocations, twin planes and 

stacking faults.  In conventional symmetric θ/2θ configuration, the path travelled by X-

rays in the sample is too short for typical Bragg angles to deliver X-ray reflections with 
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acceptable peak to noise ratio, moreover, the penetration depths of  X-rays are generally 

in micrometer range, which means that most of the information obtained in the 

diffractogram stems from the substrate. In order to overcome these drawbacks new X-

ray diffraction techniques have been developed where the primary beam enters the 

sample at very small incidence angles, thus allowing to increase the signal coming from 

the thin film surface. Among them, grazing incidence X-ray diffraction (GIXRD) is widely 

used for thin film analysis, since it allows to overcome the drawbacks of conventional 

θ/2θ configuration; moreover, this technique allows to obtain depth resolved 

information through the variation of incidence angle18. 

 In GIXRD a parallel monochromatic X-ray beam impinges on the surface at a 

fixed incidence angle (α), with a value close to the critical angle for total external 

reflection, αc, while the detector is rotated on a goniometer circle. The incident wave 

vector (Ko), exit wave vector (Kf) and surface normal lie all in the same plane, thus, the 

technique belongs to coplanar configuration. The scattering angle (2θ) is the angle 

between exit beam and elongation of the incident beam (see figure 13). 

 

Figure 13 - Schematic representation of GIXRD analysis 

  

 For the energies usually utilized in X-ray diffraction, the index of refraction n of 

most materials is smaller than unity and it can be described as: 

´1  in   

(2.6) 
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where δ and δ´ represent the real and imaginary part of the dielectric susceptibility, 

which are given by: 

2

2





A

ZNre
  

(2.7) 

and 






4
´  

(2.8) 

where N is Avogadro´s number,  re is the classical electron radius, Z is the average 

atomic number, A is the average atomic mass, ρ is the mass density, µ is the linear 

absorption coefficient and λ the X-ray wavelength. The critical angle for total external 

reflection is given by Snell´s law and its value can be determined according to equation 

2.9, if no absorption effects are considered. 

 

𝛼𝑐 = √2𝛿  

(2.9) 

The X-rays penetration depth generally shows three different zones, which are 

determined by the critical angle: at α<αc total external reflection occurs and the X-rays 

propagate in the surface, being the penetration depth nearly constant, above α>αc the 

penetration depth increases sharply until absorption limited regime is achieved, above 

which the penetration depth increases at a slower rate for increasing incidence angle 

values. 

The XRD line profile is a convolution of the instrumental and physical factors 

(crystallite size and microstrain); thus, in order to calculate those the experimental 

profiles must be corrected. The experimental profile can be fitted with a convolution of 

the instrumental and specimen functions. Different functions have been used for 

representing both the instrumental and physical parameters, namely Gaussian, Cauchy, 

Split Pearson and pseudo-Voigt. After correcting the instrumental broadening, the 

physical parameters can be extracted. In 1918 Scherrer19 derived a formula for 



Chapter II– Experimental Details 

 

58 

 

determining the crystallite size through Bragg reflection width, which is presently widely 

used, and given by: 





cosB

K
Dg   

(2.10) 

Where K is the Scherrer constant, which value is close to unity, λ the wavelength of the 

X-ray radiation, β is the FWHM entered in radians and θ is the Bragg angle of (hkl) 

reflection. The strain broadening caused by the displacement of the atoms from their 

reference lattice positions can be determined according to Williamson and Hall model 

or Warren and Averbach method, however, the use of these methods requires the 

analysis of line broadening from different reflections. In case of nanocrystalline thin films, 

generally the higher order reflections are too weak to be measured and, thus, the strain 

broadening is difficult to determine18. 

 The XRD analysis is performed in a Philips X'Pert diffractometer, operating 

with CoKα radiation in grazing incidence mode with an angle of 2º. The GIXRD analysis 

is performed in ANalytical X´Pert PRO MPD diffractometer operating with CuKα, and 

the incidence angle is varied in the range from 0 to 0.8º, in order to evaluate the Ag size 

distribution across the coatings depth. 

 

2.4 Mechanical and tribological characterization 

 

Residual Stress 

 

 The total stress developed in a coating results from the sum of the thermal stress, 

which arises from the difference in the thermal expansion coefficient of the coating and 

the substrate, and the intrinsic stress, which results from the thin film growth process. 

In the particular case of amorphous carbon coatings, intrinsic stress is related with ion 

peening (energetic particle bombardment during film growth).  Generally, the deposition 

of ceramic-type materials onto metallic substrates under energetic conditions leads to 

the development of compressive residual stresses which, in sputtered coatings, are very 

often in the order of some GPa. The presence of compressive residual stress causes the 

substrate bending (convex outward)20. 
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 The coatings residual stress can be determined from experimental measurements 

of the substrate deflection before and after coating and posterior application of the 

Stoney equation. The equation is given by: 

𝜎 =
𝐸𝑠

1 − 𝜐𝑠

𝑡𝑠
2

6𝑡𝑐
 

1

𝑟𝑐
−

1

𝑟𝑢𝑐
  

 

(2.11) 

Es, υs are the substrate elastic modulus and Poisson coefficient, ts, tc are the substrate 

and coating´s thickness, and rc, ruc the radius of curvature of coated and uncoated 

substrate, respectively. The substrates curvature radius can be determined by simulating 

the substrate profile before and after deposition using a second order polynomial 

function: 

𝑦 𝑥 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

(2.12) 

Where y(x) is the substrate deflection along z direction. The radius of curvature is given 

by: 

𝑟 = −
1

2𝑐
 

(2.13) 

The substrates curvature radii are measured before and after deposition by measuring 

the substrate (stainless steel, diameter of 25 mm and thickness of 0.5 mm) profile in a 

high precision laser displacement meter (Perthometer S2 Perthometer) along two 

different directions1,20,21. 

 

Hardness 

 

 The coatings hardness is determined through depth indentation technique 

(nanoindentation). The technique is based on pressing a hard tip into the coating with a 

controlled load, which allows to determine the coatings hardness based on the 
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penetration depth. The coatings hardness is determined by the ratio of maximum applied 

load (Pmax) divided by the displacement area22. 

 The coting hardness are determined in a MicroMaterialsNano Test apparatus, 

which operates with a Berkovich indentor. In order to obtain a statistical analysis, 32 

measurements are performed in each coating, in two different areas. The applied load is 

set to 5 mN in order to avoid the substrate influence.   

 

Tribological performance 

 

 The coatings tribological properties (wear rate and friction coefficient) are 

determined in a pin-on-disk tribometer. A sample is positioned in a planar support which 

rotates around a single axis being the counterpart (usually with spherical geometry) 

mounted on a lever in contact with the sample´s surface. A controlled normal load is 

applied over the counterpart. The friction coefficient (µ) is determined by measuring the 

lever horizontal force, which is given by the ratio of frictional force (Fa) and normal load 

(F). 

 The coatings friction coefficient and wear rate depend on the contact pressure 

(Hertz stress) which depends on several parameters, such as, the applied normal load, 

the counterpart material and the pin geometry. In the particular case of two elastic 

spheres pressed in contact with a force F, the resultant circular contact area has a radius 

given by: 

 

𝑎 =  
3𝐹𝑅

4𝐸∗
 

1/3

 

(2.14) 

being the reduced radius of curvature (R) similar to the counterpart radius since the 

sample is a plane surface with infinite radius. The term E* is the reduced contact  

modulus given by: 
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(2.15) 

The maximum (p0) and mean (pm )  Hertzian contact pressures are given by: 

𝑝𝑜=

3

2
𝑝𝑚 =

3𝑃

2𝜋𝑎2
 

(2.16) 

The coatings or counterpart wear rate can be determined according to the following 

equation: 

𝑘 =
𝑉

𝑠. 𝐹  
 
𝑚𝑚3

𝑁. 𝑚
  

(2.17) 

Where V is the worn volume, s the total sliding distance and F the normal load. The 

worn volume is calculated through the measurement of four different cross-sections in 

the worn area by three dimensional optical profilometry, which allows to determine the 

average cross-sectional area. After, this value is multiplied by the length of the wear 

track. The total sliding distance is given by the perimeter of the wear track multiplied by 

the number of cycles in test22,23,24. 

 The tribological tests shown in Chapter III are performed in Czech Technical 

University in Prague, in a CSM tribometer, while the tests performed in Chapter VI are 

performed in CEMUC in a home made tribometer. The main testing parameters used in 

both Chapters are summarized in Table 4. In order to obtain a statistical analysis, three 

tests were performed per sample. Circular samples with a diameter of 10 cm were used 

in the pi-on-disk tests. 

 In order to perform the tribological tests in simulated body fluids, an 

aluminum container is used, which was covered with a resin in order to avoid the release 

of aluminum corrosion products to the biological fluids. 
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Table 4 - Test conditions used in pin-on-disk 

 Chapter III Chapter VI 

Equipment CSM Tribometer Home made 

Counterpart Zirconia Alumina 

Ball Diameter (mm) 6;10 10 

Applied Load (N) 10;18 1 

Pm (MPa) 690;1180 450 

Linear speed (cm/s) 10 10 

Number of Laps 20000 10000 

Test Conditions Dry at 25ºC Dry at 37ºC 

HBSS* at 37ºC 

HBSS+BSA** at 37ºC 

*Hank´s Balanced Solution 

**Bovine Serum Albumin 

  

2.5 Open Circuit Potential (OCP) 

 

 The electrochemical reactions involve the presence of an anodic reaction 

(electron producing reaction) and a cathodic reaction (electron consuming reaction). 

Each of these reactions are characterized by a specific Gibbs free energy which allow to 

predict the tendency for the metal to be oxidized or reduced. Let us assume a simple 

reduction reaction described by the following equation: 

𝑂 + 𝑛è  𝑅 

(2.18) 

Where O is the oxidized specie, R the reduced one and n the number of exchanged 

electrons, è.  The relationship between the concentrations of reduced species [R], 

oxidized species [O] and Gibbs free energy ∆G is given by: 

∆𝐺 = ∆𝐺° + 𝑅𝑇𝑙𝑛
 𝑅 

 𝑂 
 

(2.19) 
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The Gibbs free energy is not a measurable property, however, one can experimentally 

measure the electrical potential and relate it with the Gibbs free energy through the 

Faraday´s Law: 

∆𝐺 =  −𝑛𝐹𝑐 𝐸 

(2.20) 

Where E is the electrical potential measured in volts and Fc the charge transported by 

one mol of electrons (96.494 C/mol). The E value is known as open circuit potential 

(OCP), which is measured when no external current or voltage passes through the 

electrochemical cell. The mathematical expression describing the correlation between 

potential and concentration for a cell reaction is known as the Nernst equation given 

by: 

𝐸 = 𝐸° +
𝑅𝑇

𝑛𝐹
𝑙𝑛

 𝑂 

 𝑅 
 

(2.21) 

It should be pointed out that in case of spontaneous reaction ∆G<0 and thus the E>0, 

which means that all materials with positive OCP tend to be spontaneously reduced (act 

as electron acceptors). The measurement of OCP value allows to predict and compare 

different materials in relation to their tendency to be corroded. This analysis is the faster 

and easiest to interpret among different electrochemical measurements giving a good 

insight about the electrochemical behavior of different materials25.  

 The analyses are performed with a saturated calomel (SCE) as reference electrode 

in 0.9 %NaCl solution. 

 

2.6 Antibacterial performance 

  

 The antibacterial tests were performed in CEB, Center for Biological Engineering, 

LIBRO – Laboratório de Biofilmes Rosário Oliveira, University of Minho, by Dr. Isabel 

Carvalho.  
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 The coatings antibacterial activity is tested against Staphylococcus epidermidis (S. 

epidermidis, IE186 strain, a clinical isolate belonging to the CEB Biofilm Group collection). 

Zone of inhibition (ZoI) tests, adapted from Kirby-Bauer test26, are carried out to 

determine the diffusion of silver from the coatings surface. The halo size is used as a 

qualitative measure of the sample activity. S. epidermidis is stored at − 80 ⁰C in Tryptic 

Soy Broth (TSB, Merck) containing 15% (vol/vol) glycerol. Cells were firstly grown for 

approximately 36 h in plates of Tryptic Soy Agar (TSA, Merck), and, then, incubated for 

18 h in TSB, at 37 ⁰C, under a constant agitation of 120 rpm. Afterwards, the resultant 

cell suspension was adjusted to an optical density (OD) of 1.0 at 640 nm and properly 

diluted in TSB to 1 x 107 CFU.ml− 1. The incubation of the bacteria in the agar is 

performed with the addition of 1 ml  of cells suspension to 14 ml of cooled (< 50 °C) 

Tryptic Soy Agar (TSA, Merck) and placed into sterile plastic petri dishes.  After medium 

solidification, the coated coupon (previously sterilized by exposure of ± 1 h to UV light) 

are placed separately on the top of an agar plate, with the coated side in contact with 

the agar, and incubated for 24 h, at 37 ºC. After the incubation period, the halo (zone 

of transparent medium, which means that there is no bacteria growth) formed around 

the sample was measured and photographed to record the results (images captured with 

Image Lab™ software). All experiments are carried out in duplicate per samples and 

repeated at least in two independent assays. 
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Chapter III 
Ag/a-C Nanocomposite 

Coatings  
 

In this chapter the first results related with Ag/a-C nanocomposite coatings 

deposited by magnetron sputtering are presented particularly concerning their 

characterization with respect to their chemical composition, structure and tribological 

properties. At this stage the main objective is to analyze and understand the main 

fundamental properties of the Ag/a-C system. Subsequently the Ag/a-C nanocomposites 

deposited by magnetron sputtering are compared with the nanocomposites deposited 

by hybrid method (MS of a-C and PGC of Ag nanoparticles). Since the PGC was 

implemented in the scope of this thesis, fundamental studies regarding the influence of 

deposition parameters (Ar flow and current density applied to Ag target) on the Ag-NP 

size, as well as the way how Ag nanoparticles grow on the substrate along time, are 

performed. The comparison is based on the uniformity in Ag particles size distribution 

in the matrix and in Ag uniformity along different locations in the substrate holder. The 

main conclusions drawn in this chapter allowed to select the work methodology adopted 

for the thesis core work.  

The work developed in this Chapter resulted in 2 papers: 

 N.K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, A. Cavaleiro, 

Influence of Ag content on mechanical and tribological behavior of DLC coatings, 

Surface and Coatings Technology 232 (2013) 440-446. I.F.: 1.998. 

 N.K. Manninen, N.M. Figueiredo, S. Carvalho, A. Cavaleiro, Production and 

Characterization of Ag Nanoclusters Produced by Plasma Gas Condensation, Plasma 

Processes and  Polymers  11 (2014) 629–638. I.F.: 2.964. 
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1. Ag/a-C nanocomposite coatings deposited by 

magnetron sputtering 

 

1.1 Chemical composition and deposition rate 

 

 The coatings thickness and chemical composition are determined through 2D 

profilometry and EPMA, respectively. It should be pointed out that the presented 

thickness values are the sum of Ti/TiN/TiCN interlayer (450 nm) and Ag/a-C layer 

thicknesses. The coatings deposition rate is calculated taking into account the coatings 

thickness and the deposition time. The results are depicted in Table 5. 

Table 5 - Ag/a-C coatings chemical composition, thickness and deposition rate 

Coating Erosion Area Ratio 

Ag/C 

Ag Content 

(at.%) 

Thickness 

(µm) 

Deposition 

Rate (µm/h) 

a-C 0 0 1.7 0.50 

Ag1 0.01 1.3 1.5 0.51 

Ag3 0.03 3.7 1.6 0.60 

Ag6 0.06 6.1 1.4 0.61 

Ag13 0.11 13.1 1.4 0.80 

 

The EPMA analysis revealed that the amount of Ag increased from 0 (for 

reference a-C coating) up to 13.1 at.%, for the coating deposited with the highest Ag/C 

relative erosion area (0.11). Moreover, the amount of oxygen, resulting from target 

contamination and residual atmosphere, is below 2 at.%. The coatings thickness is kept 

approximately constant, with values in the order of 1.4 µm to 1.7 µm. The coatings 

deposition rate increases with the amount of Ag incorporated in the coating: reference 

a-C coatings shows a deposition rate of 0.5 µm/h, which increases up to 0.8 µm/h for 

the Ag/a-C coating with the highest amount of silver. This increase was somehow 

expectable taking into account the higher sputtering yield of silver in relation to carbon 

(3.12 and 0.12, respectively, when bombarded with Ar at 500 eV)1. The Ag pellets are 

distributed in the carbon target in order to minimize the differences along the vertical 

direction in the substrate holder. In fact, during deposition the substrate holder is in 

rotation, thus the coatings should be uniform along the rotation direction; however, in 

the vertical direction, differences could be expected depending on the distribution of Ag 

pellets. In order to evaluate the coatings uniformity along the vertical direction three 
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silicon substrates are placed in the center and extremities of the substrate holder and 

the coatings thickness is evaluated being found that no differences in thickness were 

found. Thus, it is assumed that the deposition method allows to obtain uniform coatings. 

 

1.2 Coatings structure 

 

 The coatings crystalline structure is evaluated through XRD analysis and the 

results are depicted in figure 14. 

 

 

 

 

 

 

 

Figure 14 - XRD diffractograms of Ag/a-C coatings (preliminary results) 

 

 The main feature in XRD patterns are the peaks related with TiN (ICDD 01-

087-0632) which represent the thicker component of Ti/TiN/TiCN interlayer. No other 

peaks are visible for a-C coating, which was expectable since carbon coatings form 

amorphous phases. The diffractogram of Ag/a-C nanocomposite coatings with Ag 

content below 6 at.% are similar to the reference a-C coating, while for the coating with 

13.1 at.% Ag the presence of a broad peak located close to 45º is detected, which is 

related to the Ag phase (ICDD 181730). The grain size is determined through Scherrer 

method2, which revealed the formation of nanocrystalline Ag with a grain size of about 

2-3 nm. The absence of Ag peaks for lower Ag contents cannot exclude the presence of 

smaller Ag grains with sizes below 2 nm, which are not detectable by XRD analysis. As 

previously discussed in Chapter I, similar coatings also revealed the formation of 

nanocomposite coatings with nanocrystalline Ag phases dispersed in an amorphous 
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carbon matrix, which size increases with the amount of silver incorporated in the 

amorphous carbon matrix3-5. 

 

1.3 Coatings stability 

 

 The samples kept in atmospheric conditions (at about 25ºC and relative humidity 

of about 40%); changed their color with time. A photograph of one as-deposited Ag/a-

C nanocomposite is presented in figure 15 (a), which is compared with the same coating 

6 months after deposition (see figure 15 (b)).  The aged sample shows clearly a brighter 

color where the presence of a top dusty layer is observed. This feature only occurred 

in coatings with high Ag contents (6.1 at.% and 13.1 at.%). The Ag13 coating´s surface is 

analyzed by SEM/EDS-the SEM micrograph of the surface is presented in figure 15 (c). 

The coating's surface is covered by small particles combined with randomly oriented 

scratches originated by the sample handling. The EDS analysis performed inside and 

outside the scratched region (Z1 and Z2, respectively) suggests that the surface particles 

are Ag. In fact, an increase in silver content from 22 at.% to 30 at.% is found along with 

a decrease in the carbon content from 78 at.% down to 70 at.%. This changes suggest 

that Ag is segregating to coating´s surface, a phenomena already reported by several 

authors as reviewed in the state of the art, however, this process occurred at higher 

temperatures in the order of several hundred degrees centigrades6-15. In the case of the 

a-C matrix it seems that the surface segregation occurs even at room temperature. 

 

Figure 15 - (a) as-deposited Ag/a-C coating,(b)Ag/a-C coating 6 months after deposition and (c) SEM 

micrograph of Ag13coating 6 months after deposition 

 

 

 

 

(a) (b)

Z1: 22 at .% Ag

Z2: 30 t .% Ag
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1.4 Mechanical and tribological characterization 

 

The coatings mechanical properties such as hardness and residual stress are 

determined and the results are plotted in figure 16. 

 

 

 

 

 

 

 

Figure 16 - Coatings hardness and residual stress state 

 

The hardness and residual stress of a-C and Ag/a-C coatings with Ag contents 

below 13.1 at.% are almost identical showing values in the order of 12-13 GPa and 2-2-

2.4 GPa, respectively; Ag13 coating showed a significantly lower  hardness (9.3 GPa) and 

residual stress (1.4 GPa). The reduction in the coatings residual stress and hardness was 

previously reported by other authors for similar coatings, as reviewed in the state of the 

art3,16,17. These variations are well correlated with the coatings structure, where no 

evidence of crystalline Ag grains is detected for Ag contents below 13.1 at.%;, thus, the 

size of Ag clusters (if present) is too small to significantly affect the coatings mechanical 

properties. For higher Ag contents, a reduction in the coatings internal stress is clearly 

stated, related with either the decrease in the amount of sp3 bonds and/or the relaxation 

induced by the presence of the metallic silver, as it was already reported to occur in Ag 

doped a-C coatings3,4,5. This reduction together with the presence of the soft Ag clusters 

promote a significant decrease in the coatings hardness. 

The tribological tests are performed in dry sliding condition in a pin-on-disk tests 

against zirconia counterparts. Two different ball diameters and applied loads were 

tested, which results in different Hertzian contact pressures (Pm): 690 MPa and 1180 
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MPa. The friction curves are plotted in figure 17 (a) (for Pm=690 MPa) and (b) (for 

Pm=1189 MPa), together with the coatings wear rates in figure 17 (c). 

 

 

 

Figure 17 - CoF at (a) 690 MPa and (b)1180 MPa 

and (c) wear rates, of a-C and Ag/a-C coatings at 

690 MPa and 1189 MPa 

 

 

 

 

 

At lower Pm (690 MPa) the CoF values of a-C, Ag1 and Ag6 coatings are similar, 

in the range from 0.10 to 0.14, while the Ag13 coating starts at similar CoF values, but, 

after about 5000 laps, the friction coefficient increases up to about 0.2. At higher Pm 

(1180 MPa) a different trend is observed: (i) a-C and low Ag content coatings start with 

similar CoF values (about 0.10), which remain constant for Ag/a-C coatings along the 

20000 laps, while for the a-C coating the friction coefficient decreases after about 5000 

laps down to about 0.05 and (ii) the Ag13 coating shows again a higher CoF value in 

relation to the other tested coatings; however, after about 15000 laps the value increases 

continuously, which results in the total wear of the coating (see figure 17 (c)).  The 

variation on coatings CoF values are well correlated with the coatings wear rate, being 
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observed that lower friction values result in lower wear rates, being the lowest wear 

rate obtained with a-C coating at higher Pm. This was somehow expectable since it is 

well established that the CoF and the wear rate of a-C coatings are lower at higher 

contact pressures and sliding velocities, which is attributed to the formation of a more 

compact transfer layer when testing conditions are more severe18. In fact, the lubricant 

properties of amorphous carbon coatings are attributed to the formation of carbon-

carbon tribological pairs, where the presence of graphitic bonds promote the low 

friction18.  In general, the friction and wear behavior of Ag/a-C coatings with low Ag 

content follow the same trend, although these values are slightly higher in silver 

containing coatings. The highest CoF and wear rate values are achieved for the Ag13 

coating, which clearly indicates that the incorporation of high amounts of Ag degrades 

the tribological properties of amorphous carbon coatings. The degradation is more 

evident at higher Pm values, for which the a-C coating showed the lowest wear rates 

(below 0.05x106 mm3/Nm) contrasting with Ag13 coating that completely failed. As 

reviewed in the state of the art, the degradation of the tribological properties of a-C 

coatings with the incorporation of high amounts of Ag (in the order of 5 at.% up to 11 

at.%) had already been reported by Wu et al19 and Dhandapani et al20, as reviewed in the 

Chapter I. In relation to the incorporation of low amounts of Ag, both authors found 

improvements in a-C coatings tribiological behavior, which was not observed in our 

work. 

In order to get more information about the frictional mechanisms which 

determine the tribological behavior of the Ag-containing coatings, the wear tracks of 

Ag6 and Ag13 coatings and the counterparts, when the sliding test was performed  at 

690 MPa, are detailed analyzed by SEM (figure 18). The micrographs of the transfer layer 

on the counterparts sliding against the Ag6 and Ag13 (figures 18 (a) and (b), respectively) 

coatings suggests relatively large areas rich in silver, which should appear much brighter 

than carbon in BSE mode, due to the higher atomic mass of Ag in relation to carbon. 

The wear track of Ag6 coating shown in figure 18 (c) is covered by Ag aggregates 

combined with smaller Ag clusters. The accumulation of Ag in the delamination zone is 

evident as well as the formation of Ag particles on the wear track borders, possibly due 

to their detachment from the delamination zone during the sliding process. It should be 

pointed out that the delamination zone is restricted to a local failure; however the clear 

observation of Ag accumulation in the wear track is clearly visible. 
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Figure 18 - Zirconia counterparts sliding against (a) 

Ag6 coating and (b) Ag13 coating and wear tracks 

shortly after pin-on-disk test for coating (c) Ag6 and 

(d) Ag13 and (e) wear track of Ag6 coating four 

months after pin-on-disk test 

 

  

 

 SEM analysis of the worn surfaces performed again, four months after the 

pin-on-disk test, reveal that the amount of Ag on the coating surface is enhanced 

(compare figures 18 (c) and e)). In fact, the wear track of Ag6 coating is totally covered 

by Ag, whereas other parts of the coating surface show only a small number of randomly 

distributed Ag particles (figure 18 (e)). The micrograph in the inset of figure 18 (c) is 

taken in the same zone in BSE mode, allowing stating that the bright aggregates found in 

the surface are related to Ag. Randomly oriented scratches on the surface are 

consequence of sample handling, which removed loosely adhered Ag particles. A similar 

behavior is found for coating Ag13, (see figure 18 (d)), where the accumulation of Ag in 

the delamination zone (not representative of the wear behavior for Pm = 690 MPa) is 

(a) (b)

(c) (d)

(e)
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observed, combined with silver aggregates at the wear track borders. According to the 

results obtained from SEM analysis, the formation of Ag rich transfer layer is observed 

as well as the accumulation of Ag in the wear track, which resulted in high CoF values 

when compared to the reference a-C coating. When incorporated into the matrix of 

hard coatings, such as TiCN21, SiC and HfC22, silver acts as a solid lubricant; however, 

hard nitride or carbide based coatings typically show much higher friction (typically 0.7–

1) than the amorphous carbon coatings. In the latter case the friction is much lower 

(approx. 0.1) due to the formation of a graphite tribolayer. When the carbon-based 

tribolayer is replaced by silver, the friction inevitably increases. According to the results, 

it is presumed that Ag aggregates on the coating surface with time, due to the diffusion 

of silver atoms present either on the surface or at the first nanometers below the 

surface, as proposed in the scheme of figure 19. The variation on the worn surface with 

time indicates that Ag accumulates inside the wear track which, again should be 

associated to the diffusion of Ag from the layers below the surface (figure 19). From the 

SEM micrographs depicted in figure 18 (e), the amount of silver inside the wear track is 

higher in relation to the as deposited coating. However, since the coatings' surface was 

cleaned before the pin-on-disk test the segregated particles were removed, which 

explains the lower amount of silver outside the wear track. 

 

Figure 19 - Schematic representation of (a) as-deposited Ag/a-C coating, (b) Ag segregation with time, (c) 

Ag/a-C coatings structure after the wear test and (d) Ag surface segregation inside the wear track with time 

 

 

 

 

 

 

 

Ag nanoparticle Ag aggregate
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2. Deposition of Ag nanoparticles by plasma gas 

condensation 

 

 Ag nanoparticles are deposited through the plasma gas condensation method. It 

should be pointed out that the nanoclusters source was implemented in the scope of 

this thesis; thus, the group had no previous experience with this technology, which 

means that the first objective of this thesis is to determine the most basic aspects related 

with this production technology. In this sense, several questions were risen: 

i. What is the influence of the most relevant deposition variables on Ag particles 

size distribution? 

ii. How does the Ag nanoparticles morphology and size vary with the increase of 

deposition time? 

iii. Which are the oxygen contamination levels of the Ag nanoparticles produced by 

this method? 

iv. How does Ag/a-C nanocomposite coatings grow when plasma gas condensation 

method is combined with magnetron sputtering of a-C coatings? 

 

2.1 Influence of deposition parameters on Ag nanoparticles size distribution 

 

 In a first stage, the effect of two deposition parameters (Ar flow/pressure in the 

clusters source and current density applied to the Ag target, JAg) on the Ag clusters size 

distribution is analyzed. The TEM images are analyzed with the ImageJ software. The 

aggregates were left out of counting and only the dispersed NP with a circularity of 0.8–

1 and sizes above 10 nm are considered. The mean nanoparticle size and standard 

deviation are also determined from the distribution of the measured diameters. NP 

diameter distribution is obtained by three micrographs for each sample. The TEM 

micrographs and histograms of Ag size distribution in the samples of first series are 

shown in figure 20. The variation of NP mean size with Ar flow is shown in figure 21 (a) 

while the variation of cluster source pressure and mean free path is shown in figure 21 

(b). 
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Figure 20 - TEM micrographs of Ag nanoclusters deposited with  JAg = 7.6 mA/cm2 and Ar flow of (a) 10 

sccm, (b) 20 sccm, (c) 30 sccm and (d) 40 sccm 

 

According to the results presented in figures 20 and 21 (a), the clusters size 

increases from 22 nm up to 39 nm when the Ar flow is increased from 10 to 20 sccm, 

while for higher Ar flows (20–40 sccm) the increase in clusters size is less pronounced. 

Similar sizes of Ag clusters were reported by Polonskyi et al.23. The role of argon in the 

clusters source is to sputter the metal target, which leads to ejection of metal atoms to 

the gas phase, as well as to participate in the condensation process. The clusters 
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nucleation and growth is mainly controlled by the collision probability, which is 

determined by the pressure inside the aggregation chamber and, also, by the clusters 

residence time24. When the argon gas flow is increased, Ar will remove the clusters 

faster, thus reducing their residence time in the aggregation chamber. Consequently, the 

interaction between Ar, clusters and metal atoms is reduced, which promotes a decrease 

in the clusters size25.  Conversely, increasing the pressure will decrease the mean free 

path; thus, increasing the collision probability between Ar, metal atoms or clusters will 

result in an increase in the cluster size26. As previously mentioned, increasing the argon 

flow leads to an increase in the pressure inside the cluster source, as can be depicted in 

the inset of figure 21(b). Therefore, the variation of Ar flow and, consequently, both the 

cluster residence time and the mean free path of the gaseous species, leads to a 

competition between these two effects. According to figure 21(b), the variations in the 

cluster size are well correlated with the decrease in the mean free path. Thus, it might 

be concluded that the mean free path exerts a more pronounced effect on the cluster 

size than the residence time. 

 

 

 

 

 

 

 

Figure 21  – (a) Variation of cluster mean diameter and standard deviation with Ar flow and (b) Variation of 

mean residence time and mean free path with Ar flow (the variation of pressure in cluster source with Ar 

flow is depicted in the inset) 

The TEM micrographs and histograms of Ag size distribution in the samples of 

second series are shown in figure 22. The variation of NP mean size with applied current 

density (JAg) is shown in figure 23. 
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Figure 22 - TEM micrographs of Ag nanoclusters deposited with Ar flow of 40 sccm and JAg of  (a) 7.6 

mA/cm2, (b) 12.9 mA/cm2, (c) 17.9 mA/cm2 and (d) 22.9 mA/cm2 

 

 According to the results depicted in figures 22 and 23, the increase of JAg between 

7.6 mA/cm2 and 17.8 mA/cm2 leads to small variations in the clusters mean size, which 

varies from 47 nm down to 43 nm, while for higher JAg (22.9 mA/cm2) the clusters mean 

size decreases down to 25 nm. 
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Figure 23 - Variation of the cluster mean diameter and its standard deviation as a function of the current 

density applied to the Ag target (JAg) 

 

 Smirnov et al.27 found that the average size of Ag clusters was independent of the 

discharge power; however, other works reported an increase in the cluster mean size 

with the increase of the current density/power density24,27. A similar trend to the one 

found in this work was previously reported by Drabik et al.28 for titanium clusters. The 

increase of the discharge power reinforced the metal vapor density and, thus, the cluster 

growth should be favored. Nevertheless, the variation in the cluster size should be 

attributed not only to the clusters growth but also to the nucleation rate. The latter 

factor should play the major role in our case, helping explaining the inverse trend shown 

in figure 23. The increase in the metal vapor density may lead to an increase in the 

density of the nucleation sites, promoting the formation of a higher amount of clusters, 

with lower cluster mean diameter counterbalancing the effect of the high density on the 

clusters growth. 
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of 30 sccm, due to the easier control of the deposition time. The TEM micrographs 

obtained for deposition times of 30 s, 1 min, and 3 min, are shown in figure 24 (a–c), 

respectively. The numbers of individual NP and Ag aggregates/islands, the ratio between 

these two numbers and the surface coverage (%) are presented in Table 6 as a function 

of the deposition time. 

 

Figure 24 - TEM micrographs of Ag clusters deposited at an Ar flow of 30 sccm and JAg 7.6 mA/cm2 

with a deposition time of (a) 30 s; (b) 1 min. and (c) 3 min. 

 

Table 6 - Evolution of the numbers of Ag-NP and Ag aggregates, the ratio between these two numbers and 

the surface coverage for different deposition times 

Deposition 

Time 

(min.) 

Number of 

NP´s 

Number of 

Aggregates 

Number NP´s/Number 

of Aggregates 

Surface 

Coverage 

(%) 

0.5 90 32 2.8 11 

1 161 135 1.2 14 

3 171 146 1.15 26 

  

 In figure 24 (a), only individual NP´s or small NP aggregates, containing about 

two individual nanoparticles, can be observed. Increasing the deposition time leads to an 

increase in the amount of both the individual NP´s and the aggregates (Table 6). 

However, the ratio between individual NP´s and aggregates decreases from 2.8 to 1.2 

(see Table 6), meaning that some individual NP are aggregated and/or incorporated in 

existing aggregates, leading to the increase of their size, as can be depicted in figure 24 

(b).  The much higher global volume / area ratio of the NP´s in these conditions explains 

the small increase in the surface coverage (Table 6), in spite of the high increase in the 

total amount of NP´s. A further increase in the deposition time from 1 to 3 min leads 

to a constant number of individual NP´s and aggregates, despite the visible increase on 

500 nm

(a) (b)

500 nm
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the surface coverage (%). Figure 24 (c) indicates the presence of individual nanoparticles, 

aggregates, and islands with irregular shapes. Therefore, it may be concluded that, at the 

first stages of the NP´s growth leads firstly to the formation of aggregates up to reach a 

density value which will remain constant with time. Then, the formation of bigger and 

bigger islands takes place with time. The mean size of the individual NP´s (with a 

circularity between 0.8 and 1), determined for each deposition time, is between 45 and 

50 nm, which excludes the hypothesis of total coalescence. Previous studies29,30 indicate 

that the growth mechanism in the substrate are controlled by (i) minimization of the 

system energy for low NP arrival rates, which favors the coalescence process and (ii) 

kinetic effects for high clusters arrival rates, which may favor the formation of aggregates. 

If the impinging NP interacts with an island or NP before the complete coalescence, it 

will freeze the coalescence process leading to the formation of islands. As reviewed in 

the theoretical background of the plasma gas condensation, the growth of islands with 

fractal like structures can also occur inside the clusters source, a phenomenon that was 

reported by M. Dutka31. In this work the results clearly indicate that the clusters growth 

inside the clusters source occurs only in stage 1 and 2 represented in figure 24, which 

leads to the formation of spherical and quasi-spherical NP. 

 

2.3 Ag coatings structure and chemical composition 

 

 The coatings deposition time was further increased in order to produce Ag 

thin films from Ag nanoparticles. These are characterized with respect to their 

morphology, chemical composition and structure, through SEM, EDS and XRD analysis, 

respectively. The results for the Ag thin film deposited with a JAg of 7.6 mA/cm2 and Ar 

flow of 40 sccm are presented in figure 25. It should be pointed out that similar results 

are obtained for thin films deposited with the other tested deposition conditions. 
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Figure 25 – (a) SEM top-view micrograph, (b) EDS spectra and (c) XRD diffractogram  of the Ag coating 

deposited with  JAg=7.6 mA/cm2 and Ar flow of 40 sccm 

 

SEM micrograph shows that a porous nanostructured thin film is obtained, with 

the typical morphology of clusters deposition in the soft landing mode. This kind of 

structures have high potential for several applications where high surface/volume ratio, 

and thus high reactivity, are required, such as for catalysis or antimicrobial surfaces. 

However, these films present very poor cohesive and adhesive strengths, being easily 

wiped out even during sample handling26,29. The EDS analysis reveals no presence of 

oxygen in the films, which indicates that the deposition system allows the deposition of 

Ag-NP with low levels of oxygen contamination, even without any direct pumping of the 

cluster source. The XRD diffractogram confirms the crystalline nature of the Ag-NP in 

agreement with the indexed  fcc-Ag phase (ICDD card no 181730). 
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2.4 Ag/a-C nanocomposite coating deposited by hybrid deposition method (PGC+MS) 

 

 As previously mentioned, one of the major advantages of the plasma gas 

condensation method is the possibility to pre-form the clusters and combine their 

deposition with other thin film deposition process, such as the magnetron sputtering. 

Therefore, Ag/a-C nanocomposite coatings were deposited through the combination of 

Ag nanoparticles produced by plasma gas condensation with the a-C coatings matrix 

deposited by magnetron sputtering. The following fundamental issues learnt from the 

deposition of the Ag clusters in free surfaces, were taken into account for preparing the 

nanocomposite deposition: 

i. The size distribution of the Ag nanoparticles is very broad; 

ii. The variation of the deposition parameters leads to small variations in the 

clusters size distribution, being the mean size of the Ag nanoparticles close to 40 

nm, for a large range of values of those parameters; 

iii. If enough time is given in the deposition, the Ag nanoparticles can grow in the 

substrate leading to the formation of fractal like agglomerates. 

Then, the deposition parameters were selected in order to achieve: 

i. Individual Ag clusters: the main scope is to deposit a-C layers at a rate that 

enables to cover the individual Ag particles avoiding the particle agglomeration; 

ii. Deposit the Ag nanoclusters and a-C coatings continuously. It should be pointed 

out that a-C layers and Ag nanoparticles could also be deposited in individual 

steps, resembling a multilayer deposition. However, since the deposition system 

does not allow the automatic control of multilayers deposition, such a deposition 

procedure could not be applied due to reproducibility problems, specially taking 

into account that, at high current densities, the Ag clusters cover the entire 

surface in few seconds, being difficult to avoid the formation of Ag agglomerates. 

Another limitation of the deposition system is the gas line configuration. As previously 

mentioned in the experimental details, Ar is introduced through the clusters source into 

the main chamber of the deposition system, determining the pressures in both the 

clusters and deposition chambers. Therefore, the Ar flow should be selected in order 

to create the desired pressures which allow the proper Ag clusters production and the 

a-C thin films deposition. In this sense the Ar flow and the power density applied to the 
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carbon target are selected to be as similar as possible to those used in the deposition of 

the first a-C samples discussed in section 1. This was achieved with an Ar flow of 40 

sccm. Regarding the Ag nanoclusters production, the lowest current density is used in 

order to avoid particles agglomeration in the substrate. Another important aspect in the 

coatings deposition is the uniformity expected for the samples in the covered space. 

Since the substrate holder is in rotation mode (18 rpm), the samples are uniform along 

the horizontal direction; however, due to the small size of the nozzle, the uniformity 

along the vertical direction has to be checked. In this sense, two silicon substrates are 

placed in two positions in the vertical direction in order to check the samples uniformity, 

one directly in front of the nozzle exit and the other 3 cm apart in the vertical direction 

(SEM top-view micrographs in figures 26 (a) and (b), respectively).   

 

Figure 26 - SEM top-view micrographs of Ag/a-C nanocomposite coatings deposited by hybrid process with 

silicon substrates placed (a) 3 cm apart from the nozzle orifice in the vertical direction and (b) in front of 

the nozzle exit 

 

 The SEM micrographs clearly demonstrate the huge difference in the amount 

of Ag nanoparticles in both coatings, which means that the deposition method is not 

efficient for the production of large scale substrates. Moreover, the highest amount of 

Ag possible to be incorporated in the coating, even when placed in front of the exit 

orifice, is about 4 at.%. 

In order to make the system more reliable for nanocomposite coatings production, 

several improvements are required: 

i. Incorporation of two independent flowmeters, one for the main deposition 

chamber and the other for the nanoclusters source; 

(a) (b)

2 µm 2 µm
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ii. Development of an automatic control for the coatings deposition, which allow 

to produce the coatings in multilayer configuration; 

iii. Development of new nozzles which enable to increase the coatings uniformity in 

larger areas; 

iv. Incorporation of a mass filter which enable to obtain the desired particle size 

with a much narrower distribution. 

 

Due to the limitations inherent to the hybrid deposition method, in particular: (i) the 

large distribution of NP size, (ii) the low amount of Ag possible to incorporate in the 

coatings and (iii) the low coated area with uniform characteristics and properties, to 

achieve the initial objectives proposed in the aim of this thesis, the conventional 

magnetron sputtering method was mainly used for the production of the final 

nanocomposite coatings. 

 

3. Selection of work methodology 
 

 The main goal of this thesis is the production Ag/a-C nanocomposite coatings for 

potential application as antibacterial surfaces. The preliminary work described above and 

performed with coatings deposited by the two methods, magnetron sputtering and 

hybrid process, allowed to draw some issues important for the further development of 

this study, as follows some fundamental conclusions in relation to the nature of this 

coatings and also in relation to the deposition methods: 

i. Ag/a-C nanocomposite coatings are not stable at room temperature conditions. 

The work presented in section 1 is sum up with the scheme for Ag surface 

segregation presented in figure 19.  However, a more detailed study in relation 

to the coatings stability is necessary in order to understand and control the 

process of surface segregation of silver. In fact, from the application point of view 

this is an essential point, since the knowledge of the coatings stability is 

fundamental for the development of new functional products requiring that 

either Ag is kept stable or is continuously controlled segregating with time.  
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ii. Conventional magnetron sputtering is a more suitable technique for Ag/a-C 

nanocomposite coatings production since it enables to get a better control of 

the Ag nanoparticles size distribution at microscopic and macroscopic scales and 

allows coating large areas, fundamental issue for producing samples in enough 

amount for electrochemical, biological and tribological characterization.  

A schematic representation of the coatings developed in the thesis core work are shown 

in figure 27.  

 

Figure 27 - Schematic representation of the coatings analyzed in the main thesis work 

  

The designation Ag/a-C refers to nanocomposite layer while a-C refers to pure 

amorphous carbon coatings without silver. All coatings were deposited by magnetron 

sputtering with exception of coating C3 which was produced by combining PGC for 

clusters deposition and MS for a-C layer deposition. All Ag/a-C nanocomposite layers 

were deposited under similar conditions. The coatings thickness was selected by varying 

the deposition time; thickness values are given in the scheme of figure 27. In addition a 

750 nm thick Ag/a-C layer is deposited over a polymer foil for TEM cross-sectional 

analysis. The work methodology adopted for the thesis core work is shown in Table 7. 

 

 

 

 

 

 

SubstrateSubstrateSubstrateSubstrate

C1
Ag nanoparticle

Ag/a-C 250 nm

C2

Ag/a-C 250 nm +

a-C layer 75 nm
Ag/a-C 1000 nm

C4

a-C 1000 nm

C5C3

Ag nanoparticles+a-C

layer 30 nm

Substrate
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Table 7 - Work methodology adopted for the thesis work 

Question Origin of 

Question 

Coatings 

Characterization 

Sample(s) Chap. 

How is Ag distributed in a-C matrix 

across the thickness? 

 

 

State of the 

Art 

   

 

IV 

Ag distribution SEM+TEM C1 and C2 

Ag grain size distribution GIXRD C1 and C4 

How does the thickness influence the 

morphology? 

  

Ag/a-C cross-sectional morphology SEM C1 and C4 

How coatings thickness / morphology 

influence the segregation? 

 

State of the 

Art 

  

 

C1 and C4 

 

 

V 

Ag morphology with time SEM 

From which depth Ag segregates? Previous 

Work 

 

Ag in-depth distribution GDOES 

Does Ag move through a-C matrix? 

Which is the diffusion mechanism? 

State of the 

Art 

In-situ TEM C3 V 

How does the atmospheric conditions  

influence the Ag stability? 

Previous 

work  

+ 

State of the 

Art 

 

 

SEM 

 

 

C4 

 

 

V 

What is the driving force for Ag 

segregation? 

State of the 

Art 

Substrate deflection 

SEM/EDS 

XPS 

GIXRD 

C4 V 

Are the coatings antibacterial? How 

does Ag particle size affects the 

antibacterial activity? 

 

How is the Ag ionization rate with 

time? 

 

State of the 

Art 

 

ICP 

Halo Inhibition Test 

 

C4 and 

autoclaved 

C4, C5 

 

 

VI 

How does the lubrication with 

biological fluids influences the 

tribological behavior? 

Previous 

Work 

+ 

State Art 

Pin-on-Disk C4,C5 VI 
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3.1 Deposition method and parameters used in the thesis core work 

 

 As previously mentioned magnetron sputtering is the selected deposition method 

for the coatings production.  The approach followed for the incorporation of Ag in the 

nanocomposite coatings is based on the use of a composite target consisting in Ag pellets 

inserted in the carbon target. This method has as major disadvantage: the poor 

reproducibility, associated with the differential erosion of the target material and the 

pellets, which leads to differences in the chemical composition with time. This problem 

is even more pronounced in Ag/a-C coatings, due to the huge difference in the sputtering 

yields of C and Ag. Thus, in order to allow a more precise control on the deposition 

process, the dual magnetron sputtering configuration is selected. In this method, two 

independent targets are used: one Ag target (purity of 99.99%, acquired from 

Testbourne) and one C target, both with similar dimensions. The first concern is to 

guarantee the deposition of nanocomposite coatings, i.e. to be sure that Ag is inserted 

forming nanoparticles instead of a continuous layer giving rise to a multilayer coating. 

Due to the huge difference in the C and Ag sputtering yields, maximum and minimum 

possible power densities are applied to the targets, respectively, to avoid that situation. 

The maximum power density possible to apply to the carbon target is 7 W/cm2, which 

represents a total power of 1400 W, although the Advanced Energy Pinneacle Plus 

power supply allows 6 kW. However, as the maximum voltage in the source is limited 

to 800 V, only 1400 W can be applied since the target voltage is already at 780 V. 

Regarding the power density applied to Ag target, it is set at 0.09 W/cm2, which 

represents the minimum power density at which plasma is formed. This value represents 

the breakdown voltage, where the transition to self-sustained discharge occurs. 

The coatings were deposited in Ar atmosphere with substrates rotating at 8 cm 

from the target at a constant speed of 18 rpm. The base pressure in the deposition 

chamber was approximately 9 × 10− 4 Pa; the pressure rose up to values of approximately 

5 × 10− 1 Pa during the deposition, after introduction of the discharge gas. The substrate 

holder is connected to a pulsed dc power supply and a bias voltage of -50 V is applied 

during the deposition, being the reverse time and frequency 0.5 µs and 250 kHz, 

respectively. The deposition parameters, namely, JAg, JC, deposition time and deposition 

method used for the deposition of Layer I and Layer II are summarized in Table 8. 
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Table 8 - Deposition conditions used in Ag/a-C nanocomposite coatings deposition in main work 

Coating Layer I Layer II 

 JAg 

(W/cm2) 

JC 

(W/cm2) 

Time 

(min.) 

Method JC 

(W/cm2) 

Time 

(min.) 

Method 

C1 0.09 

0.09 

7 

7 

25 

25 

 

MS 

- - - 

C2 7 9 MS 

C3 2.6 - 10 PGC 7 4 MS 

C4 0.09 7 120 MS - - - 

C5 - 7 165 MS - - - 

 

 Previously to coatings deposition a sputter cleaning procedure is performed to 

both the targets and the substrates. The power densities applied to the C and Ag targets 

are 1.75 W/cm2 and 0.25 W/cm2, respectively. The substrate holder is connected to a 

pulsed dc power supply being the voltage fixed at 500 V; the reverse time and frequency 

are 1.6 µs and 250 kHz, resulting in a reverse phase of 40 %. The total etching time is 

45 minutes. 

 The substrates used in this stage are: silicon, SS316L, TEM grids with carbon foil. 

Previously to the deposition process, the steel substrates are polished and all substrates 

are ultrasonically cleaned in acetone, ethanol and distilled water, for 10 minutes in each 

solvent, except TEM grids where no previous sputter etching nor washing procedures 

are performed. 

 In a first stage, C4 coating is deposited in order to determine the deposition rate 

and the chemical composition. EPMA indicates that the coating contains approximately 

20 at.% Ag and 80 at.% C; the amount of oxygen is below 2 at.%. The thickness measured 

by SEM cross-sectional observation is 1 µm, which means that the deposition rate is 

close to 8 nm/min. This value allowed to adjust the deposition time in order to achieve 

the desired thicknesses. It should be pointed out that the deposition rate is determined 

for every coating, being possible to confirm that similar values are always achieved. 

However, for the chemical composition, only the thickest coating is analyzed since the 

depth of analysis by EPMA is higher than the thickness of the thinner coatings. Since the 

power densities applied to the targets are not changed, it is assumed that all of them 

have similar chemical compositions. A very thin Ag/a-C nanocomposite thin film is 

deposited in a TEM grid with carbon foil, which allowed to confirm the formation of a 

nanocomposite structure. 
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4. Conclusion 
 

 The work developed in the first stage of the PhD work allowed to set the 

guidelines for the work developed in the thesis core. In the first stage, the main goal is 

to study the structural, mechanical and tribological behaviors of Ag/a-C nanocomposite 

coatings deposited by magnetron sputtering. During this stage it is concluded that the 

coatings are not stable even in atmospheric condition (RT and relative humidity of 40%), 

which leads to the degradation of the tribological properties, when high amounts of 

silver are incorporated. In this sense, the main focus of this thesis is the analysis of Ag/a-

C nanocomposites stability and its consequence on the coatings functional properties.  

 The deposition of Ag/a-C coatings is performed by two different approaches: 

magnetron sputtering and hybrid deposition method combining Ag nanoparticles 

formation by plasma gas condensation and a-C deposition by magnetron sputtering. The 

two methods are compared in relation to their ability to produce narrow Ag 

nanoparticle size distribution and large areas of coating with uniform properties. The 

results reveal that the Ag nanoparticle size distribution in PGC method is broader and 

its ability to give rise to uniform deposition in substrates, with dimensions suitable for 

the evaluation of the functional properties, is low. Therefore, to accomplish the major 

objective of the thesis, i.e. to get a better understanding about the Ag/a-C performance, 

dual magnetron sputtering method is selected.  
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Chapter IV 
Structure and Morphology 

  

 Besides the specific properties of Ag and the matrix material, the performance of 

the nanocomposite thin films critically depends on the Ag nanoparticles size distribution 

and morphology as well as on the interfaces between the nanoparticles and the matrix. 

Accordingly, a careful characterization of the nanocomposite films morphology and 

nanostructure is the first step towards the understanding of the film properties evolution 

and the subsequent optimization for its performance. In this chapter, TEM, SEM and 

GIXRD techniques are used for accessing the size of Ag nanoparticles, their size 

distribution across the coatings thickness since, as previously reviewed in the State of 

the Art, it is reported to be non-uniform. According to the literature review, the most 

important aspect related to the Ag segregation is the morphology of the coating matrix; 

thus, the first step to control the nanocomposite stability is the control of the coatings 

structure and morphology. In order to deposit coatings with similar Ag filling factors and 

size distributions, the deposition parameters should be precisely selected.  

 In this chapter an overview of the basic concepts related with the coatings 

morphology is given, which allowed to set the basis for selecting the deposition 

conditions that allow to change the coatings morphology, while maintaining the Ag 

nanoparticle size and the filling factor constant. Afterwards, the Ag particle and grain 

size along the coatings depth is evaluated. 

 The work developed in this chapter resulted in 1 paper: N.K. Manninen, J.C. 

Oliveira, S. Carvalho, A. Cavaleiro, Characterization of surface Ag nanoparticles in 

nanocomposite a-C:Ag coatings by GIXRD at sub critical angles of incidence, Submitted 

to Applied Physics A. 
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1. Morphology of thin films: Basic concepts 
 

 Along time different structure zone models (SZM) have been proposed for thin 

films deposited by PVD, which correlate the most relevant deposition parameters with 

the coatings morphology. In general the thin films growth involves several processes: (i) 

shadowing, (ii) surface diffusion and (iii) bulk diffusion1. The most popular SZM for 

sputtered thin films was developed by Thornton2 and it accounts four different zones 

(1,T,2,3), represented in figure 28, which reflect the dependence of the coatings 

morphology on the inert gas pressure and the ratio between the substrate 

temperature(Ts) and the melting point of the growing film (Tm). 

 

Figure 28 - The Thornton Structure Zone Model1 

 

The Zone 1 growth mode is governed by shadowing effects, which arise from 

geometric constraints imposed by the roughness of the growing film and the line of sight 

impingement of the arriving atoms. The Zone 2 is governed by surface diffusion while 

zone T is an intermediate growth mode between Zone 1 and 2. In Zone 3, compact 

coatings are formed due to the high bulk diffusion. Other SZM have been developed, 

which have accounted with new variables introduced in the sputtering process. For 

example, the SZM proposed by Messier3 considers the effect of the bias voltage applied 

to the substrate holder. In summary, the thin films growth mode depends mainly on the 

particles mobility, which is determined either by the substrate temperature or by the 
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energy delivered to the growing thin film, through energetic particle bombardment (bias 

voltage). The shadowing effect promoted by elevated pressures tends to randomize the 

direction of deposited atoms, through collisions with inert gas1,2,3,4, also having impact in 

the final morphology.  

The occurrence of columnar growth has been reported to occur either in 

crystalline and amorphous coatings1. In the crystalline coatings the columnar 

microstructure is described by the survival of crystallites which nucleate with the 

direction of the faster growth perpendicular to the substrate5. Bales et al6 have 

developed a model for the growth of amorphous thin films which takes into account the 

surface diffusion and the geometrical shadowing effects. They reported that the 

columnar structure is mainly attributed to the survival of the fittest columns The origin 

of the columns is not simply a geometrical shadowing effect but also depends from the 

random walk nature of the diffusion process, which tends to move the particles to the 

top of the protruding columns rather than to the space between them. A comparative 

model between two similar growing surfaces, with different values of diffusion 

coefficient, showed that the column width as well as the height at which grooves start 

to appear depends on the diffusion coefficient (see scheme on figure 29). 

 

Figure 29 - Growth of amorphous films modeled by Bales et al6, with different diffusion coefficients, (a) 

showing a higher D in relation to (b) 

 One of the main objectives of this thesis is the deposition of nanocomposite 

coatings with similar Ag particle size and contents, although with different morphologies, 

in order to understand the influence of the morphology on the coatings stability, which 

will be the scope of the next Chapter. The most common approach to change the 

coatings morphology is to vary the substrate temperature, the inert gas pressure or the 

bias voltage, although any variation can also change the Ag mobility with the consequent 

well known effect on the Ag particle sizes. In this sense, the variation of the coatings 

thickness was adopted as the method to vary the coatings morphology without changing 

the Ag particle size and content. 
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2. Ag distribution across the coatings thickness 
 

2.1 Ag morphology 

 

 The Ag/a-C coating morphology is firstly determined by TEM analysis. This study 

also allows to confirm the formation of a nanocomposite structure and to analyze the 

size distribution of the Ag nanoparticles. In order to avoid time consuming sample 

preparation, a thin film with about 40 nm in thickness is directly deposited in a TEM grid 

covered with a carbon film, which allowed to perform directly TEM in-plane view 

imaging. A high magnification TEM micrograph is shown in figure 30. 

 

Figure 30 - TEM plane view micrograph of a 40 nm thick Ag/a-C coating 

 

The Ag/a-C thin film has a nanocomposite structure with Ag nanoparticles 

embedded in an amorphous carbon matrix. A bimodal size distribution can be observed. 

In fact, the coating is composed by a high density of small Ag clusters with a size of about 

2-3 nm, homogeneously distributed in the C- matrix, combined with a lower number 

but much bigger Ag nanoparticles with sizes of about 15 to 20 nm, which density is lower 

in relation to the density of the small clusters. From the TEM images, it is unclear how 

both particles groups are distributed in depth, across the coatings thickness. 

SEM analysis is performed in the C1 and C2 coatings (samples nomenclature is 

provided in figure 27) to evaluate the clusters size distribution in the coatings. Therefore, 

cross-sectional and top view images are recorded either in secondary electrons (SE) and 

backscattered electrons (BSE) modes (in inset). The additional a-C layer on the top of 

20 nm

(a)

Ø = 20 nm

Ø = 3 nm
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the Ag/a-C coating contributes for a better understanding of the Ag clusters growth on 

the coatings surface. The SEM cross sectional (Si substrates) and top view (SS316L 

substrates) micrographs of both coatings are presented in figure 31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 - Cross-sectional (a,b) and top view in SE and BSE in inset (c,d): (a,c) C1 and (b,d) C2 

 

Regarding the cross sectional SEM micrographs of C1 and C2 coatings depicted 

in figure 31 (a) and (b), respectively,  no evidence of Ag clusters is found, which suggests 

that the size of Ag clusters in the bulk is below the detection limit of SEM analysis. 

Conversely, the top view micrographs of the coating C1 (see figure 31 (c)) suggest the 

presence of silver nanoparticles. The SEM images recorded in SE mode allow to confirm 

that the nanoparticles are sitting in the coating´s surface, while the BSE images (inset of 

figure 31 (c)) allow to define these nanoparticles as Ag, due to their brighter appearance 

in relation to the darker, and consequently lighter, a-C matrix. The nanoparticles size 

distribution was evaluated by analyzing the SEM micrographs (figure 31 (c)) with ImageJ 

software; the major and minor dimensions were determined. Since the particles are not 

perfectly spherical the major and minor dimension are determined in the evaluation of 

the particles mean size. In the analysis only particles with a size above 10 nm are 

(a)

500 nm

(b)

500 nm

(c)

500 nm

(d)

500 nm
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considered, being determined that the mean size of Ag np is 19±6 nm (major dimension) 

and 14±4 nm (minor dimension). Since the top-view and the cross-sectional micrographs 

are performed with the same magnification (200,000×), it can be concluded that the 

particle sizes at the surface or in the bulk of the coatings are different. During the co-

deposition of Ag and C, Ag atoms arrive to the growing film, being able to move in the 

surface, forming islands/clusters, until the surface is covered by the growing carbon 

matrix. However, in the end of the deposition, at the coating's surface, Ag growth is not 

restricted by any additional carbon layers and, thus, big clusters have time to be formed, 

a process which is thermodynamically favored by the reduction in the surface energy. 

This theory is well supported by the results achieved with the bilayer coating consisting 

of an Ag/a-C layer with 250 nm and an additional a-C layer of 75 nm. In this case, no Ag 

clusters are detected in the SEM top-view micrograph, meaning that the a-C layer 

deposited in the end of the Ag/a-C layer hindered the Ag atoms diffusion and clusters 

growing (see figure 31 (d)). 

 

2.2 Ag grain size 

 

 Grazing incidence X-ray diffraction analysis is used for assessing the crystalline 

phases present in the coatings and also to determine the nanocrystals size across the 

coatings thickness. In order to obtain depth profile information, the grazing angle is 

varied between 0.1º and 0.7º and the results are depicted in figure 32 (a). The variation 

of X-ray intensity as a function of the grazing incidence angle is measured for two 

different values of scattering angles (2θ), 38.28º and 39.20º (figure 32 (b)). The standard 

value for the Ag (111) diffraction peak is 38.117º (ICDD 181730), thus, the value 38.28º 

allows to evaluate the evolution of Ag (111) diffraction from the entire range of Ag 

crystal sizes, while the peak at 39.20º, which only appears as a result of peak broadening 

associated with small crystallite size, allows to monitor the changes associated with small 

crystallite size. The analysis is performed on Ag/a-C nanocomposite coatings deposited 

on silicon substrate. Similar results were obtained for Ag/a-C coatings deposited with 

different thicknesses (250 nm and 1000 nm), being the results shown related with the 

C1 sample. 
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Figure 32 – (a) GIXRD patterns at different grazing angles and (b) variation of the diffraction intensity, at 

different grazing angles, for 2θ of 38.28º and 39.20º 

 

The XRD patterns at different grazing angles show different structural features 

as follows: (i) at low incidence angles (0.1º-0.2º) the presence of narrow peaks is evident, 

(ii) at intermediate incidence angles (0.25º-0.3º) the peaks become broader and 

asymmetric, suggesting the overlapping of two diffraction peaks, one narrow as in (i) and 

another very broad placed on its right side, corresponding to bimodal size distribution 

and (iii) at high incidence angles (0.4º-0.7º) the peaks become broader and more 

symmetric , suggesting that the broad diffraction contribution becomes dominant and 

the information obtained from the pattern is mainly related to the small nanocrystals. 

The XRD patterns are best fitted with pseudo-Voigt functions, which allow to 

correct the instrumental broadening and also to determine the FWHM caused by the 

crystallite size effects. The nanocrystals size for grazing incidence angles of 0.1º and 0.7º 

is determined according to Scherrer equation7, giving values of 19 nm and 2 nm, 

respectively. It should be pointed out that besides the size effect the microstrains also 

contribute to line broadening; however, the higher order reflections are too weak to be 

measured, and, thus, the contribution of strain broadening could not be considered. 

The variation of X-rays intensity at 2θ=39.20º as a function of α shows three 

different zones: (i) between 0º and about 0.2º (below the value of the critical angle of 

carbon (graphite) - 0.215º) the intensity is very low and almost constant, (ii) between 

0.2º and 0.4º it increases sharply; (iii) for higher α angles, the intensity increases at a 
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lower rate. This trend has been reported being related with the penetration depth of X-

rays at different grazing angles: at α<αc total external reflection occurs and the X-rays 

propagate in the surface, no diffraction takes place and only constant background 

intensity is detected; above α>αc the penetration depth increases sharply until the 

absorption limited regime is achieved (above 0.4º). The intensity variation is influenced 

by the penetration depth and also by the instrument configuration, for which the increase 

of incidence angle is accompanied by an increase in the density of photons per unit of 

area; thus, for higher incidence angles, the intensity is expected to increase due to the 

increase in photons density8. The graph of figure 2 (b) suggests a different behavior for 

the diffraction intensities at 2θ=38.28º and 2θ= 39.20º in total reflection regime (below 

the carbon critical angle). In fact, for 2θ= 38.28º the intensity has initially a much more 

pronounced increase in relation to the intensity at 2θ=39.20º. In the latter case only a 

very slight increase is observed attributed, as above mentioned, to the increase in the 

photons density with increasing α. This diverse behavior means that for 2θ=38.28º, 

absorption and diffraction are taking place even for incidence angles lower than the 

critical angle of carbon (0.2º). This behavior can only be explained if the diffraction 

activity is related to the Ag nanoparticles. However, the critical angle for Ag is about 

0.4º. Then, this can only be interpreted if the Ag nanoparticles are sitting on the coatings 

surface.  Assuming that Ag nanoparticles have a spherical shape, in spite of α<0.2º there 

are always incident X-rays with a wide range of angles in relation to the nanoparticles 

surface, giving rise to diffraction events. For α>0.2º information related with Ag-NP 

inserted in the coatings bulk starts to be detected. .Moreover, as previously mentioned 

the variation of 2θ =38.28º is related to all particle sizes, while the 2θ=39.20º is related 

to small crystallites. 

The variation of intensity for different grazing angles together with the analysis 

of XRD patterns at different grazing angles allow to predict the Ag nanoparticles 

distribution along the coatings cross section, supporting the morphological results above 

presented. Hence, the Ag/a-C nanocomposite coating is composed of big Ag 

nanoparticles in the surface, with a mean size of 19 nm (as determined by Scherrer’s 

formulae), which are the only visible for α<αc of carbon, and by smaller Ag nanoclusters 

with a mean size of 2 nm, which are present in the coatings bulk and, thus, only show 

their contribution for higher incidence angles (0.4º and 0.7º). The size of bigger 

nanoparticles is close to the size of the Ag-NP detected on the film surface by SEM, TEM 
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and GIXRD (about 19 nm) thus meaning that the bigger nanoparticles found in the 

surface are in fact single grains and not agglomerates. On the other hand, the size of the 

smaller nanoparticles is close to the size of the Ag-NP dispersed inside the carbon matrix 

already detected by TEM (about 2 nm). The bimodal size distribution of Ag nanoparticles 

was already observed by Chakravadhanula et al9 in TiO2 coatings studied with electron 

tomography. Conversely, the Ag nanocrystals distribution in a-C coatings determined by 

Matenoglou et al10 through GIXRD analysis, with a similar methodology to the one used 

in the present work, showed that Ag was homogeneously distributed across the coatings 

thickness.   

 

2. Coatings cross-sectional morphology 
 

 The morphology of C4 and C1 coatings deposited on silicon substrate is analyzed 

by SEM cross-sectional observation, (figures 33 (a) and (b) respectively). 

 

 

 

 

 

 

 

Figure 33 - SEM cross-sectional micrographs of coatings (a) C4 and (b) C1 

 

 Different morphologies are shown as a function of the coatings thickness: the 

thicker coating developed a columnar morphology, while the thinner one revealed a 

featureless morphology, typical of very dense coatings. Taking into account that both 

coatings are deposited with the same deposition parameters, excepting the deposition 

time, the differences in the coatings morphology can only be attributed to the coatings 

thickness. According to the model developed by Bales et al6 (see figure 29) the height at 

which the “grooves” start to appear depend on the particles diffusion coefficient, which 

are determined by the deposition parameters, such as the temperature and the energetic 

particle bombardment. In fact the development of compact morphology in the thinner 

(a)

500 nm

(b)
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coatings is somehow surprising if very low Ts/Tm is considered  for a carbon coating, 

since the deposition was performed at RT and C has an extremely high Tm, close to 4300 

ºC (see sublimation point in figure 4). The variation of the coatings morphology with 

thickness has been previously reported11,12 and it is mainly attributed to self-shadowing 

effects, which are enhanced as the film thickens. In fact, any small protuberance than can 

appear in the surface of the growing film is more exposed to the inclined flux of arriving 

atoms. If adatom diffusion is not very high, the adatoms will stay where they land, 

reinforcing the growing of the protuberance and promoting the development of a 

columnar morphology, a process which is as intense as the film is thickening. 

 

3. Conclusion 
 

 The main goal of this chapter is the evaluation of the structure and morphology 

of the coatings, with the aim of determining the Ag distribution across the coatings 

thickness. The Ag morphology and particle distribution is accessed by TEM and SEM 

analysis, while the grain size distribution is determined through GIXRD analysis 

performed at different incidence angles. The size of Ag particles/grains in the surface and 

bulk of the coatings are summarized in Table 9. 

Table 9 - Ag particle/grain size obtained by TEM, SEM and GIXRD in coatings bulk and surface 

Characterization 

Technique 

Ag particle/Grain Size 

 Bulk (nm) Surface (nm) 

TEM                              20 + 2-3 

SEM Not Detected 19±6 (major dimension) 

14±4 (minor dimension) 

GIXRD 2 19 

 

The results obtained by the different techniques are consistent, being clear that 

the coatings show a bimodal size distribution with small Ag clusters (2-3 nm) embedded 

in the matrix and bigger Ag nanoparticles (about 20 nm) sitting in the coatings surface. 

Moreover, since XRD analysis allows to evaluate the crystal size, it was possible to 

conclude that the Ag surface particles visible in SEM are single grain. The GIXRD and 
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cross-sectional micrographs indicate that the variations in the coatings thickness do not 

influence the Ag particle size. The presence of bigger Ag surface particles is suppressed 

by the deposition of an additional carbon layer on the coatings top-surface, which 

suggests that the Ag growth in the bulk is restricted by the growing carbon matrix, while, 

at the surface, Ag particles are able to coalesce. Still, it remains unclear at which stage 

the surface particle growth occurs: after deposition or during coatings exposure to the 

atmosphere? 

The SEM cross-sectional analysis of C1 and C4 coatings reveal that the coatings 

morphology changed by varying their thickness: the thinner coating is featureless while 

the thicker one shows a columnar growth. The differences are attributed to self-

shadowing effects. The variation in coatings thickness allow to obtain Ag/a-C 

nanocomposite coatings with similar Ag particle size and contents and different 

morphologies. 
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Chapter V 
Stability 

 

The preliminary work developed under the scope of this thesis allowed to 

observe that Ag/a-C nanocomposite coatings are not stable even in atmospheric 

conditions, being found that Ag tends to segregate to the coatings surface. The coatings 

thermodynamical stability is one of the most important requirements in any functional 

application, thus, the understanding of the coatings stability is a fundamental aspect that 

must be precisely controlled in order to guarantee the applicability of these 

nanocomposites. Therefore, the evaluation of the coatings stability, as one of the major 

concerns of the thesis, is the core of this Chapter. 

The first concern was to understand the mechanism of Ag mobility in the a-C 

matrix. The work developed in Chapter III allowed to draw a model which predicts the 

depth from which Ag nanoparticles move towards the coatings surface (see figure 19). 

It is proposed that only Ag nanoparticles from a few nanometers below the surface are 

responsible for the formation of the Ag rich surface layer. Nevertheless, a more detailed 

study is necessary. Firstly, we wanted to understand if Ag nanoparticles really diffuse 

from the entire coating thickness or only from the first nanometers below the surface. 

For this study, two different nanocomposite coatings with different thicknesses / 

morphology (C1 and C4) are stored in atmospheric conditions and their surface is 

monitored by SEM analysis along time, while the chemical composition depth profiles 

are accessed by GDOES analysis. Other important question is to understand if Ag moves 

in free spaces inside the coating, such as column boundaries, or if the Ag nanoparticles 

would be able to move through the carbon matrix. In order to clarify this aspect, a 

compact a-C layer was deposited over Ag nanoparticles, deposited by PGC (sample C3), 

and the sample is monitored in a TEM apparatus during an in-situ heating experiment. 
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After understanding the fundamental aspects about the Ag mobility in a-C 

coatings, the study is focused on the driving force for the occurrence of this process. 

The particles agglomeration or coalescence is driven by several external factors, namely 

the temperature and the humidity, as reviewed in this chapter´s introduction (section 

1). Since the envisaged final application for these coatings is antibacterial surfaces, e.g. 

medical devices, indwelling implants, food packages, working at room or body (about 

37ºC) temperatures,  this factor is not critical. Conversely, humidity can play an 

important role since all those devices work in environments with some degree of 

humidity. In this sense, taking into account that Ag was found to be unstable even in 

room temperature conditions, the influence of humidity in Ag particles mobility was 

accessed. The sample C4 is stored at different levels of humidity ranging from values 

below 20% up to 100%. As reviewed in the thesis State of the Art, a phenomena known 

as metal whiskering has been observed for more than 50 years although not completely 

understood until now. Several models have been proposed for explaining the whiskering 

phenomenon, being the most consensual the one based on the reduction in the stress 

state. Stresses can exist as residual, due to the processing method of the material, or 

developed due to phase transformations, as for example the oxidation. In this sense, the 

influence of humidity on the coatings oxidation was accessed by XPS and EDS analysis, 

while the changes in the residual stress are qualitatively measured by comparing the 

changes in the curvature of the coated substrates after having been submitted to ageing 

tests. In order to determine if Ag growth occurred through coalescence or 

agglomeration, GIXRD and TEM analyses of Ag fibers are performed. A schematic 

representation of the work flowchart adopted in this Chapter is shown in figure 34. 

 The selection of GDOES technique for depth profiling analysis is based on the 

previous experience acquired during the analysis of Ag-TiCN coatings by different depth-

profile techniques, namely XPS, Rutherford Backscattering (RBS) and GDOES, which 

allowed to determine the chemical composition across the coatings depth. GDOES 

showed a very good resolution in the first nanometers. The good depth resolution 

combined with a fast analysis, made GDOES the selected technique for depth profiling 

analysis. 
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Figure 34 - Work-flowchart for Chapter V 

 

The work developed in Ag-TiCN coatings depth profiling resulted in one 

published paper, prepared during this PhD work: 

 R. Escobar Galindo, N.K. Manninen, C. Palacio and S. Carvalho, Advanced surface 

characterization of silver nanocluster segregation in Ag–TiCN bioactive coatings by RBS, 

GDOES, and ARXPS, Analytical and Bioanalytical Chemistry (2013) 405:6259–

6269. I.F. 3.436. 

The work developed in this Chapter resulted in one published paper: 

 Noora Kristiina Manninen, Ramon Escobar Galindo, Sandra Carvalho, Albano 

Cavaleiro, Silver surface segregation in Ag-DLC nanocomposite coatings, Surface and 

Coatings Technology 267 (2015) 90-97. I.F. 1.998. 
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1. Nanoparticles growth mechanisms and kinetics 
 

1.1 Particles growth mechanisms 

 

 Surfaces are characterized by several physical properties namely surface energy 

(Gibbs free energy per unit area) which is a direct consequence of the presence of 

dangling bonds which results in inwardly directed force that reduces the bond distance 

of surface and sub-surface atoms in relation to the bulk atoms. The surface energy is 

defined as the energy required to get the atoms back to its original position, which is 

given by: 

𝛾 =
1

2
𝑁𝑏𝜀𝜌𝑎  

(5.1) 

where Nb are the number of broken bonds, ε the bond strength and ρa the density of 

surface atoms. As the surface energy is proportional to the density of surface atoms, it 

increases as the particle size decreases; in case of nanoparticles with sizes below 5 nm 

the percentage of surface atoms is above 50%; thus, a huge increase in the surface energy 

is observed as the nanoparticles size is decreased. The surface chemical potential is 

influenced by either the surface energy or the particle curvature, being the value for 

spherical particles given by. 

Δ𝜇 = 2𝛾
Ω

𝑅
 

(5.2) 

where ∆µ is the chemical potential of an atom in a spherical surface of radius R with 

respect to a flat surface; Ω is the atomic volume and γ the surface energy. The above 

equations allow to comprise the increase of nanoparticles surface energy and chemical 

potential with the reduction of particles size, which results in a higher instability. Several 

mechanisms allow for the reduction of surface energy, namely: the physical and chemical 

adsorption on solid surfaces; the restructuring of the crystalline structure (facets with 

low index are exposed to the outer surface in order to reduce the surface energy, 

according to Wulff construction) and the reduction of the overall surface area1,2. 
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The particles agglomeration is commonly observed in powder technology, which 

was introduced as a field of science in 1957 by Ralph Rumpf, and largely studied ever 

since3,4. This phenomena is of great importance for powder technology and 

nanotechnology, since the agglomeration or binding between solid particles assume a 

great importance during the production and usage of solid particles, strongly influencing 

the functional properties. The binding mechanisms between solid particles were firstly 

classified and divided by Rumpf and co-workers; five major groups were identified and 

divided in several sub-groups, as summarized in Table 10 and figure 35. 

Table 10 - Agglomeration mechanisms3 

Group Sub Groups 

I. Solid Bridges 1. Sintering 2. Partial melting 3.Chemical 

reaction 4. Hardening binders 5. Drying 

(recrystallization of dissolved substances 

or deposition of colloidal particles) 

II. Adhesion and Cohesion Forces 1. Viscous binders 2. Adsorption layers 

III. Surface Tension and Capillary 

Pressure 

1. Liquid bridges 2. Capillary pressure 

IV. Attraction Forces between Solids 1. Molecular forces 2. Electric forces 3. 

Magnetic forces 

V. Interlocking Forces - 

 

 

Figure 35 - Representation of binding mechanisms of agglomeration3 
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 The binding mechanism may lead to the combination of individual 

nanoparticles into larger particles (coalescence) or the formation of larger entities 

associated by chemical bonds and physical attraction forces (agglomeration), which are 

schematized in figure 36. 

 

Figure 36 - Particles growth mechanisms and summary of required conditions 

 

 The coalescence process occurs mainly through two different processes: (i) 

sintering, which generally occurs at high temperatures (about 70% of materials melting 

point) and (ii) Ostwald ripening, which occurs at a wide range of temperatures or at low 

temperatures if particles are immersed in a solvent where they can be partial or totally 

dissolved. The sintering process can be easily avoided provided that the processing and 

usage temperature is low. This process involves several mechanisms, such as: (i) solid 

state diffusion (surface diffusion at low temperatures, volume diffusion at intermediate 

temperature and cross-grain boundary diffusion at high temperature); (ii) evaporation-

condensation when the vapor pressure is appreciable and (iii) dissolution-precipitation 

when the solid is dispersed in a liquid where it is partially soluble. Sintering does not 

require the presence of particles with distinct sizes and it occurs through the particles 

approximation followed by neck formation and growth until the particles are completely 

coalesced forming a unique entity. Ostwald ripening process involves the growth of 

larger particles at the expense of smaller ones in a process where atomic diffusion from 

smaller particle to the larger one is present. Smaller particles have higher solubility and 

lower vapor pressure, thus, they tend to dissolve (in liquids) or evaporate (when 

exposed to higher temperatures) more easily than larger ones. In the case of heating or 

Sintering

Activated by temperature

(about 70% of TM)

Ostwald ripening

Activated by temperature or

dissolution-precipitation

Agglomeration

Immersion in liquids

Coalescence
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immersion in solutions there will be a net flux of atoms from the smaller particles to the 

larger ones1,2. 

 When nanoparticles are immersed in liquids they easily agglomerate forming 

weak van der Waals chemical bonds, which are only significant at small distances. The 

Brownian motion ensures that particles collide. Therefore, the combination of Brownian 

motion and van der Waals forces result in the agglomeration of nanoparticles. 

Nevertheless, it should be pointed out that when particles are immersed in liquids they 

tend to generate surface charges through different mechanism: surface ionization 

(metallic nanoparticles) or adsorption of ions (ceramic nanoparticles). The presence of 

the surface charges results in the segregation of opposite charged species (designated as 

counter ions) forming a double electric layer, generating an electric potential in the 

particles surface (where the outer layer´s (slip plane´s) potential is known as zeta 

potential) dependent on the valence state and the concentration of ions in the solvent. 

The presence of this electrical double layer generates a repulsive force, which prevents 

the particles agglomeration. Hence, the particles agglomeration in liquids is a balance 

between attractive and repulsive forces. This mechanism is very common when 

nanoparticles are immersed in solutions and the prevention of the particles 

agglomeration represents one of the main concerns related with nanoparticles 

production through chemical methods1,5. 

 Another important agglomeration mechanism is associated with the capillary 

forces which arise from the presence of liquid bonds between two particles. The 

condensation of water vapor present in the air is enough to create liquid bridges. This 

phenomenon, known as capillary condensation, has been studied by Lord Kelvin to 

explain the moisture retention in vegetables, oatmeal or biscuits. Another important 

parameter is the wettability, since more hydrophilic surfaces retain more condensed 

liquid. The capillary forces increase the cohesion between the particles at the point of 

contact promoting their agglomeration. Then, the formation of solid bridges can take 

place (mechanism I.6) if the recrystallization of the dissolved particles occurs during 

drying. It can also be observed in the case of colloidal particles drying, where the 

reduction of liquid bridges and the pressure caused by the liquid´s surface tension 

compacts the colloidal particles1,2,3,4.    

 



Chapter V – Stability 

 

119 

 

1.2 Diffusion  

 

 Adolf Fick introduced the concept of diffusion coefficient and suggested a linear 

response between the concentration gradient and the diffusion based on the idea that 

diffusion is a process that leads to the equalization of concentrations.  Fick´s Laws were 

then created. These laws were built based on empirical facts, although they continue to 

be widely used presently and, possibly, the first idea that comes up to our minds when 

the subject is diffusion is that concentration equalization is the driving force for the 

diffusion processes. Nevertheless, the thermodynamically correct driving force is the 

chemical potential gradient. In fact, not all thermodynamically stable diffusion processes 

lead to concentration equalization. For example, this phenomenon is commonly 

observed in metallic materials, where the diffusion of solute atoms occurs from sites of 

uniform composition to the interfaces, such as free surfaces, grain boundaries and 

defects, leading to the reduction of the total Gibbs free energy of the system. This 

process is named as segregation. 

 Einstein related the particles displacement to their diffusion coefficient based on 

the Brownian motion, a phenomena characterized by the random walk of particles which 

is dependent of their Boltzmann distribution of energy. Therefore, the particles are 

always subject to thermal motions of a statistical nature. The Einestein-Smoluchowski 

relation for one dimensional diffusion is given by: 

𝐷𝑥 =
𝑥2

2𝑡
 

(5.3) 

Where Dx is the diffusion coefficient along x direction, x the particles displacement and 

t the time associated with the displacement x. 

The diffusion processes are thermally activated and the temperature dependence 

of diffusion coefficients is frequently found to obey the Arrhenius formula given by: 

𝐷 = 𝐷0𝑒𝑥𝑝  −
∆𝐻

𝑘𝐵𝑇
  

(5.4) 



Chapter V – Stability 

 

120 

 

where T denotes the absolute temperature kB the Boltzmann constant, D0 the diffusivity 

pre-factor and ∆H, also represented by Q or Ea, the activation energy, being the later 

ones known as activation parameters. The physical interpretation and values of the 

activation parameters depend on the diffusion mechanism, type of diffusion and lattice 

geometry6. 

 

1.3 Ag nanoparticles growth mechanism and kinetics in free surfaces activated with 

temperature 

 

 In his PhD work, M. Asoro7 determined the mechanisms and the kinetics for 

sintering and coalescence of Ag and Pt nanoparticles deposited in free carbon surface 

through in-situ TEM analysis. The effect of the particle size, the sintering temperature 

and the presence of carbon coatings in the nanoparticles surface on those processes 

were evaluated. Two main sintering mechanisms were found to occur: (i) surface 

Ostwald ripening, at high temperatures and (ii) particle migration and coalescence. The 

initial contact between particles, which represents the initial stage of coalescence, was 

mediated by different process: (i) movement of the particles towards each other, (ii) 

migration of single atoms and small clusters on the substrate towards the neck region 

and (iii) substrate motion promoted by the differential heating caused by the electron 

beam. A sequence of in-situ TEM heating micrographs obtained by the author are shown 

on figure 37, where the sintering of two 15 nm Ag nanoparticles was monitored. 

 

Figure 37 - Sequence of in-situ TEM micrographs of two 15 nm Ag nanoparticles sintering at 200ºC7 
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 Two Ag np with 15 nm, at a distance of about 2-3 nm, were initially observed as 

well as a third Ag np located at about 5 nm. The neck formation was observed only 2 

minutes after the heating at 200ºC. The live FFT´s (not shown) suggested that the 

diffraction spots changed from frame-to-frame, which indicated that particle rotation 

was mediating the particles movement, during the sintering. However, the occurrence 

of mass transfer by diffusion of atoms or small clusters could not be detected due to 

resolution limitations. Still, during the PhD work developed by M. Asoro, the author 

performed in-situ heating in STEM where evidence of mass transfer was found to occur7. 

The Ag diffusion coefficient (D) has been determined in several experimental and 

theoretical works. The reported values show a huge discrepancy, which are attributed 

to the influence of different parameters on this constant, namely: 

i. Diffusion mechanism; 

ii. Interaction with substrate; 

iii. Presence of contamination in the nanoparticles surface; 

iv. Atmosphere composition; 

v. Nanoparticles size; 

vi. Temperature. 

As previously mentioned the nanoparticles diffusion mechanism can occur through 

Oswald ripening, which involves atoms motion from smaller to bigger particles or cluster 

migration, which involves the particles movement as a “whole”, induced by particle 

internal vibrations or substrate vibration. This mechanism depends on the interaction 

with the substrate, as previously mentioned. For instance, Jensen and co-workers have 

evaluated the growth of metallic clusters on different substrate materials, with diverse 

roughness and surface finishing states. The diffusion coefficients reached values in the 

order of 10-8 cm2/s at room temperature, when clusters sited on perfect substrates (with 

no defects or roughness) with high misfit (generally carbon). However, the same clusters 

showed a D several orders of magnitude lower (~10-15 cm2/s) when they epitaxially 

accommodated to the substrate. The presence of defects could trap the clusters, 

lowering their diffusion coefficient. The diffusion mechanisms were also different in both 

cases, in carbon layers particle migration was likely to occur, while in substrates made 

of the same metal that nanoparticles, Oswald ripening was more likely to occur8. 
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Asoro et al7,9 has demonstrated also by in-situ heating TEM experiments that the 

presence of a carbon layer on the Ag nanoparticles surface decreases their diffusivity; 

thus, the sintering environment played a very important role, since the presence of 

oxides or adsorbed species on the nanoparticles surface could retard the sintering 

process. The diffusion coefficient of 12 nm – 40 nm Ag nanoparticles between 200ºC 

and 400ºC was evaluated to be in the range from 4.2x10-16 cm2/s down to 1.1x10-20 cm2/s, 

clearly below other reported values. This effect was attributed to the presence of the 

carbon layer in the nanoparticles surface. In fact, in another experience7 the diffusion 

coefficient of the Ag nanoparticles without stabilizers on their surface, deposited in an 

Ag wire, was also evaluated, being found a decrease of two orders of magnitude in the 

case of 40 nm sized particles.   

The temperature dependence of the diffusion coefficient is frequently found to obey 

to the Arrhenius formula given in Equation 5.2. Nevertheless, it should be pointed out 

that the activation parameters strongly depend on the diffusion mechanism; for instance, 

Papanicolaou et al10 determined the activation parameters for Ag single adatoms on Ag 

(100) and Ag (111) surfaces by molecular dynamic simulations, and they found that for 

(100) surface the diffusion mechanism below 600K occurred through bridge hopping, 

with activation parameters of  D0=1.4x10-3 cm2/s and ∆H=0.43 eV, while above 600 K 

the diffusion occurred through an exchange mechanism with D0=40x10-3 cm2/s and 

∆H=0.59 eV. These values are well consistent with the experimentally determined 

activation parameters at low temperatures reported by Antczak11. The activation 

parameters and the transition temperatures were found to be quite different in (111) 

surfaces. If these values are extrapolated to room temperature conditions, then, the Ds 

values are in the order of 8.83x10-11 cm2/s, a value much higher than the surface 

diffusivities reported by Pai et al12. The authors determined experimentally the diffusion 

coefficient of electron beam deposited Ag islands on sputtered Ag (100) surfaces, by 

scanning tunneling microscopy (STM) at room temperature, and the reported Ds was 3-

6x10-18 cm2/s. A similar study was performed by Wen et al13, where they reported a 

value of D=10-17 cm2/s. 

In this sense, both activation parameters and diffusion constants must be very 

carefully used and preferentially measured for specific types of materials and atmospheric 

conditions, whenever possible 
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2. Mechanism of Ag diffusion through Ag/a-C coatings 
 

2.1 Evolution of Ag/a-C coatings morphology with time 

 

The coatings surface is monitored monthly during a period of 5 months by SEM 

top-view analysis. The SEM micrographs of C4 and C1 coatings, deposited on SS316L 

substrates, recorded 2 weeks (named as “as-deposited”) and 5 months after the 

deposition process are shown in figures 38 and 39, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 - SEM top-view micrographs of coating C4 recorded shortly after deposition in (a) SE mode, (b) 

BSE mode and 5 months after deposition in (c) SE mode and (d) BSE mode 

 

 The coating surface shown in figures 38 (a) and (b) is composed of (i) spherical 

Ag clusters, (ii) Ag aggregates and (iii) Ag nanofibers with a thickness of about 10 nm. 

The SEM micrograph of the same sample recorded after 5 months revealed that the 

coating´s surface is mainly composed of Ag fibers, although some clusters and aggregates 

could still be found below the fibers (see figure 38 (c) and (d)).  Since the information 

obtained in SE mode is related to the first nanometers below the surface, the results 

suggest that silver is segregating to the coatings surface forming Ag fibers. The brighter 

appearance of the fibers in BSE micrographs suggest that they are composed, in fact, by 

silver. It should be pointed out that the first SEM micrographs were recorded 2 weeks 

2 µm

(a)

2 µm

(b)

2 µm

(c)

2 µm

(d)



Chapter V – Stability 

 

124 

 

after coatings deposition, thus, the fibers visible in the “as-deposited” coating might be 

associated with the coatings ageing and not to the growth of Ag fibers during the 

deposition process itself. This topic will be discussed later in the section 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 - SEM top-view micrographs of coating C1 recorded shortly after deposition in (a) SE mode, (b) 

BSE mode and 5 months after deposition in (c) SE mode and (d) BSE mode 

 

 As previously shown (figure 30) the surface of C1 coating is composed by Ag 

nanoparticles with mean size of 19±6 nm (major dimension) and 14±4 nm (minor 

dimension). The analysis of SEM micrographs of the as-deposited (a), (b) and aged surface 

(c), (d) showed that this coating is more stable with time in relation to the thicker 

nanocomposite. In fact, only small variations could be observed after 5 months, as 

follows: (i) the number of Ag aggregates increased with time and (ii) a few Ag fibers are 

merging from the bulk, but in a much lower extension than in the C4 coating.  

The variation of area coverage over time for both coatings is shown in figure 40 

(a), together with the statistical analysis of Ag nanoparticles area variation for the C1 

coating. Both analyses were carried out on the SEM top-view micrographs with ImageJ 

software. 
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Figure 40 – (a) variation of area coverage with time for coatings C4 and C1 and (b) variation of Ag-NP size 

distribution in C1 coating 

 

The area coverage variation suggests that the amount of Ag in C4 coating´s 

surface increases with time (figure 40 (a)) with an increase from 26 % to 60 % for the 

first 3 months, remaining constant thereafter. Regarding the thinner Ag/a-C coating, the 

area coverage remains approximately constant with time, showing a value of about 18 

%. The mean particle size remains constant with time for the C1 coating, although the 

size distribution got wider, as can be shown in the histogram of figure 40 (b), which may 

be attributed to the coalescence of surface Ag nanoparticles. 

GDOES is performed to analyze the changes in the chemical composition depth 

profile with time of the coatings aged in atmospheric conditions during a period of 6 

months (figure 41 (a) for C4 and (b) for C1). It should be pointed out that, once again, 

the “as-deposited” coatings correspond in fact to the coatings analyzed 2 weeks after 

deposition.  

Both as deposited C4 (see figure 41 (a)) and C1 (figure 41 (b)) coatings show an 

enrichment of Ag in the top surface (first 10 nm – see the insets of figures 41 (a) and 

(b)) followed by a constant Ag content along the coatings depth, with an average value 

of 18 at.%. Since no depletion zone is observed below the silver rich surface the Ag 

enrichment cannot be attributed to silver surface segregation as previously reported by 

Escobar Galindo et al16 in AgTiCN coatings. This Ag surface layer should be related to 

the presence of Ag nanoparticles on the surface which, during the GDOES analysis, are 

preferentially sputtered / analyzed before the Ag/a-C coating. 
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Figure 41 - GDOES Ag depth profiles of as-deposited coatings and coatings aged in atmospheric conditions  

during 6 months (a) C4 and (b) C1; in inset the first nanometers from the surface are shown 

 

 Regarding the GDOES depth profile of C4 coating, the depth profile changed 

with time: (i) an Ag rich surface layer was formed and (ii) the Ag content in the bulk 

decreased from 18 at.% to 14 at.%. This decrease is uniform across the entire coating 

thickness which suggests that Ag is segregating to the surface from the entire coating 

thickness. A different behavior was observed in C1 coating, which revealed to be stable 

along time, as suggested by the depth profiles shown in figure 41 (b).  

It should be pointed out that the GDOES technique estimates the thickness 

taking into account the theoretical density of the elements15. In case of the Ag/a-C 

sputtered coatings, several factors can introduce errors in the thickness estimative, as 

follows: (i) it is well established that densities of sputtered coatings do not correspond 

to the theoretical ones; (ii) a-C coatings present a very complex structure (which 

consists of a mixture of sp1, sp2 and sp3 bonds), with the accurate density being very 

difficult to be calculated16; (iii) after Ag segregation, the top layer consists of silver with 

a high number of holes and pores (nanoparticles + whiskers), being the global density far 

from Ag density. Therefore, the thickness given in GDOES analysis can show strong 

discrepancies in relation to the real analyzed thickness. This is the reason why the 

thickness of both C4 and C1 coatings is different from the one measured by SEM. 

Moreover, the errors associated with the evaluation of thickness by GDOES also 

explains why the integrated amount of Ag is different in C4 coating in the as-deposited 

and aged states. Nevertheless, the GDOES combined with the SEM analyses allow to 
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prove either the Ag surface segregation in thicker nanocomposite coating or the fact 

that Ag is segregating from the entire coatings thickness and not only from the first 

nanometers below the surface, as proposed in the first developed model discussed in 

Chapter III (see figure 19). 

 The different behaviors observed for thick and thin coatings are attributed to the 

coatings morphology, according the SEM cross-sectional micrographs presented in 

Chapter IV, with the thicker coating showing a columnar appearance while the thinner 

one is featureless and compact. Therefore, the Ag surface segregation is related with the 

coatings and diffusion barrier layers morphology, as reviewed in the State of the Art, 

being found that Ag diffuses through open spaces, like column boundaries. However, the 

Ag surface segregation was found to occur at several hundred degrees and not at room 

temperature conditions as in the present work. 

 

2.2 Ag mobility in a-C matrix 

 

 In order to get a better understanding about the influence of a-C layer on the Ag 

nanoparticles mobility, an Ag nanoparticle layer is deposited by PGC on a TEM grid with 

a carbon foil, which is thereafter covered with a sputtered thin a-C layer with a thickness 

of about 30 nm, to evaluate its effect on the Ag mobility. The sample is analyzed by TEM 

with an in-situ heating experiment. The a-C layer morphology/topography was analyzed 

through atomic force microscopy, being the AFM 2D and 3D images depicted in figure 

42 (a) and (b), respectively. 

 

Figure 42 – a-C (30) layer topography obtained in AFM (a) 2D view and (b) 3D view 

(a) (b)
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 The AFM images indicate that the coatings present very smooth surface with an 

average roughness of 0.4 nm. The presence of some higher protrusions is also find, which 

might be related to the presence of surface contaminations in the silicon substrate. The 

presence of smooth surface indicates that the coating grows featureless with a very 

compact morphology17. This was expectable taking into account the discussion provided 

in the previous Chapter. The heating cycle for the TEM in-situ experiment is plotted in 

figure 43 and the sequence TEM micrographs recorded at different times and 

temperatures provided in figure 44. 

 

 

 

 

 

 

 

 

Figure 43 - Heating cycle used in TEM in-situ experiment 

 

Figure 44 - TEM micrographs recorded at (a) 3min at 300ºC, (b) 7 min at 400ºC, (c) 14 min at 400ºC, (d) 3 

min at 500ºC, (e) 5 min at 500ºC and  (f) 11 min at 600º (the distance between adjacent particles is 

provided) 
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In the first TEM micrograph Ag agglomerates with several hundreds of 

nanometers are observed, combined with Ag nanoparticles with 15 nm to 20 nm, 

separated by a distance of about 6 nm. A smaller Ag nanoparticle with about 15 nm is 

find close to the Ag aggregate at a distance of 3 nm. In addition numerous Ag 

nanoparticles 1-5 nm size are observed around the Ag agglomerate. The evolution of 

the micrographs clearly demonstrates that no particle coalescence is occurring. This is 

completely different from what was observed by Asoro7 in free Ag nanoparticles 

deposited in carbon layers without additional barrier layers, as previously described. As 

it was referred, Ag nanoparticles 15 nm of diameter, separated by a distance of 2-3 nm, 

started to coalesce at 200ºC only after 2 minutes, and one Ag particle located at 5 nm, 

also started to move towards the coalesced particles. Although, the initial size and 

separation of the particles studied by Asoro7 were different from those of this study, it 

can be clearly observed that the particles remain completely immobile when an a-C layer 

is added.  

The only visible change is the particles sublimation, occurring at 500ºC (see figure 

44 (d)) for the small particles surrounding the bigger ones, while these only started to 

sublimate at 600ºC. It should be pointed out that the occurrence of Oswald ripening 

cannot be discarded since the performed analysis does not have atomic resolution; 

moreover, if this mechanism is present it would lead to an increase in the bigger Ag 

particles size and the reduction of smaller particles; nevertheless, if the amount of 

diffusing atoms is low the changes should not be visible at these magnifications. In 

conclusion, the comparison of free Ag nanoparticles studied by Asoro, with those 

covered with an a-C layer, clearly demonstrates that the presence of this layer is 

inhibiting the particles coalescence.   

In-situ TEM experiments have shown that Ag nanoparticles sublimate at 

temperatures below the Ag melting temperature (about 1000ºC), depending on the 

nanoparticles size, smaller Ag nanoparticles were found to sublimate at lower 

temperatures18. This behavior has been proven to be correlated with the Kelvin equation 

which was used in combination with kinetic theory by Sambles et al19 to predict the 

process kinetics. The main goal of this study is to evaluate the influence of the 

amorphous carbon layer on Ag mobility; thus, the experiments are conducted in a simple 

radiation heating holder, which means that the measured temperatures do not 

correspond to real temperatures; moreover, the heating is not instantaneous. In this 
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sense, in order to perform more detailed and accurate kinetic measurements more 

sophisticated heating holders would be required (namely, Aduro heating stage). In 

addition the evaluation of the beam heating on the particles real temperature would be 

required. It would be interesting to evaluate the influence of a-C layers on the Ag 

nanoparticles sublimation temperature, in order to get a better understanding about the 

sublimation or melting temperatures of silver in ceramic matrixes, specially taking into 

account the large number of potential applications of Ag nanocomposites to work at 

temperatures up to 700ºC. As reviewed in the State of the Art, the reported works in 

Ag diffusion at several hundred degrees, do not consider the hypothesis of Ag melting, 

which cannot be discarded, as shown in the TEM in-situ heating experiments presented 

above. 

 

2.3 TEM cross-sectional analysis 

 

 In order to obtain a more detailed view of the coatings cross-sectional 

morphology and to get a better understanding about the possible Ag diffusion mechanism 

through a-C coatings, a TEM cross-sectional micrograph of Ag/a-C nanocomposite 

coating with a thickness of 750 nm is recorded. The coating is deposited in a polymer 

foil in order to enable its preparation through ultramicrotomy. The TEM micrographs 

recorded in Jeol 2010F at different magnifications are presented in figures 45 (a) and (b), 

in bright field mode (BF), whereas figure 45 (c) represents a HRTEM image recorded 

inside of a column. 

 

Figure 45 - TEM cross-sectional micrographs of Ag/a-C(750) coating deposited in polymer foil recorded at 

(a) BF mode representing the entire coatings cross-section, (b) BF mode representing a column boundary 

and (c) HRTEM mode representing the interior of a column boundary 
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 The TEM cross-sections confirm the morphological features predicted from the 

previous analysis performed in Chapter IV, namely: (i) the Ag size distribution along the 

coatings depth and (ii) the columnar growth mode. The observation of the coatings 

entire cross-section (see figure 45 (a), where the substrate and surface side are 

identified, as well as the epoxy used in sample preparation) allow to confirm the 

columnar morphology, with the formation of columns with a width in the order of 

several hundreds of nanometers. Regarding the Ag distribution along the coatings cross-

section, different features can be identified: (i) the surface is composed by big Ag particles 

with dimensions in the order of hundreds of nanometers, whit a non-spherical shape, 

(ii) the presence of smaller Ag particles with a spherical shape and size of about 20 nm 

are detected in the coatings bulk, mainly between the column boundaries, (iii) the Ag 

particles siting in the coating-substrate interface have higher dimensions in relation to 

the ones inserted in the bulk, (iv) the presence of smaller clusters with dimensions in 

order of 2-3 nm, which are found to be located in the a-C columns, being found that 

their density is much higher in relation to the that of the bigger particles. The coatings 

morphology suggested by previous analysis was somehow different: formation of small 

Ag nanocrystals in the coatings bulk (with dimension of 2 to 3 nm) and formation of 

bigger Ag grains on the surface (with dimensions of 20 nm). It should be pointed out 

that SEM, TEM and GIXRD analyses in Chapter IV are very consistent in relation to the 

in depth size distribution of Ag nanoparticles. The difference for the TEM cross-sectional 

micrographs is that additional trends are shown. These differences may arise from either 

the type of substrate or the coatings ageing. The main features observed by the different 

techniques are summarized in Table 11. 

 The big particle size of Ag nanoparticles observed in the surface of the coated 

polymeric foil by TEM analysis should be related, as already described before and in 

agreement with the changes occurring in the C1 sample with time, with a coalescence 

process induced by the coatings ageing, which in this case leads to the formation of non-

spherical particles. The presence of big Ag-NP in the bulk, with sizes of about 20 nm, 

should be related to the more open columnar morphology associated with the coatings 

growth onto polymeric substrates. 
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Table 11 - Ag particle size along coatings depth achieved with different techniques, substrates used and 

coatings ageing state 

Characterization 

Technique 

Thick

ness 

(nm) 

Substrate Time after 

deposition 

Surface Size 

(nm)/Shape 

Bulk Size 

(nm)/Shape 

TEM – top-view 40 TEM grid  Few Days 20 + 3 

SEM 250  

Si/ 

SS316L 

 

15 Days 

~20  

Not visible   

1000 

~20+hundred 

nm height 

nanofibers 

GIXRD 250 

and 

1000 

Si Few Days 20 3 

TEM cross-section 750 Polymer Foil 2 months Hundred nm 

(not spherical) 

20 nm in column 

boundaries 

(spherical) 

>20 nm 

 

     3 nm inside columns 

(spherical) 

     >20 nm 

In the coating-

substrate interface 

 

 The coalescence of Ag particles in free surfaces (which represent the case of 

column boundaries) has been previously reported, thus being the explanation for the 

nanoparticles growth between columns also consistent with the formation of aggregates 

in between the column boundaries, which are clearly visible close to the coatings surface. 

Regarding the growth of Ag particles at the substrate-coating interface, this might be 

related to the deposition process. As described in the experimental details, before 

deposition during the ion etching of the substrates, low powers are applied to both C 

and Ag targets (1.75 and 0,25 W/cm2, respectively). Immediately before deposition, the 

shutter is removed from the front of the targets, being initiated the process of adjusting 

the powers in each target, decreasing in the case of Ag target (down to 0.09 W/cm2) 

and increasing for the C target (up to 7 W/cm2). Therefore, there is a short time where 

the numbers of arriving Ag and C atoms to the substrate are much higher and much less, 
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respectively, in relation to the steady state of the deposition run. Then, there is enough 

time for Ag adatoms and clusters to diffuse and to coalesce, before they are covered by 

the C-matrix, giving rise to higher clusters sizes in that zone. 

 Taking into account the thickness / morphology and the ageing state of the Ag/a-

C coating deposited on the polymeric foil, it would be expected that the coatings surface 

would be already covered with Ag fibers. However, the features observed by TEM and 

SEM top – view (figure 46) do not reveal the presence of Ag fibers. The TEM cross-

sectional micrograph is presented again in order to support the discussion. 

 

Figure 46 - SEM top-view micrograph of Ag/a-C (750) coating 3 months after deposition 

 

 The SEM top-view images allow to observe the presence of a wide Ag size 

distribution, with the majority of Ag particles located at the top of columns showing 

dimensions in the order of 10-20 nm. In addition, bigger Ag particles, with non-spherical 

shape, are observed, mainly located in the column boundaries. The bigger particles show 

diameters up to 100 nm (marked with a red circle in SEM top-view micrograph), which 

should correspond to the Ag aggregates observed in the column boundaries in the TEM 

micrograph (indicated by the red arrow). The shape and morphology of Ag observed in 

the Ag/a-C (750) deposited in the polymer foil seems quite different from the Ag/a-C 

(1000)/C4 deposited on SS316L; nevertheless, some conclusions may be drawn: 

1 µm
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1 µm
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 Ag grows in between a-C column boundaries forming Ag agglomerates, which 

final shape and diameter should depend on the size of the voids between the 

column boundaries, 

 The possible reason for the differences found in coated polymer and SS316L 

samples, should be related with the morphology developed during the coating 

growth; the latter shows narrower column boundaries, which lead to the 

formation of fibers with diameters in the order of 10 nm, while in the coated 

polymer the agglomerates are clearly formed in between column boundaries, 

showing diameters of about 100 nm, but with a much lower length; in both cases 

the volume of Ag might not be quite different. 

 

One of the main objectives of this section 2 is to determine the Ag diffusion mechanism 

through the a-C coating. The possible mechanisms regarding the Ag diffusion pathway 

are schematically represented in figure 47. 

 

Figure 47 - Models for Ag diffusion through a-C layer and formation of Ag fibers  

 

 According to the results of TEM in-situ heating experiments, the presence of a 

compact carbon matrix completely inhibited any Ag particle movement. However, it 

should be noted that in this experiment bigger Ag nanoparticles were studied and it 

cannot be unequivocally stated that the a-C matrix of the nanocomposite (figure 45) is 
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as compact as the a-C layer deposited above the Ag nanoparticles. In fact, the co-

deposition of C with Ag can somehow influence the a-C matrix growth. Nevertheless, 

assuming that the a-C matrix is really compact inside each individual column, it can be 

predicted that Ag nanoparticles only can move on free surfaces/column interfaces, as: (i) 

the nanocomposite top-surface in the interface with air and (ii) the column boundaries, 

which leads us to believe that the model presented in figure 47 right side is more reliable 

to explain the fibers formation or the Ag agglomeration between the columns 

boundaries. This model assumes that the Ag-NP embedded in a-C matrix, sitting inside 

the columns are immobile and thus, do not contribute to the fibers formation. In order 

to understand if this hypothesis is reliable in terms of mass conservation, a simple model 

based on a geometrical approach was built. The detailed calculations are provided in the 

Annex I. The fundamental results obtained in the calculations are summarized in Table 

12.  

Table 12 - % of Ag particles in column boundaries and fibers length for different column diameter values 

 Polymer Foil SS316L 

% of Ag particles in 

column boundaries 

3.37 8.57 

Fiber Ø 85 150 18 24 

Fiber heigth 158 51 1709 961 

 

 This method allowed to confirm two fundamental aspects: (i) Ag-NP must be 

present inside the column boundaries due to space restrictions and (ii) in term of mass 

conservation it is possible to form Ag fibers with a heigth/length in the micrometer range 

if considering that only the Ag-NP present in column boundaries are mobile and thus 

able to form nanofibers. It should be noted that by changing the coatings morphology 

(column boundary diameter and spacing between two adjacent columns) the Ag fibers 

length is strongly influenced. In fact, in case of polymer and SS316L coated samples the 

fibers length show extremely different lengths/heights due to the differences in 

intercolumnar spacing.  This calculations allow to understand the formation of long Ag 

fibers in SS316L coated substrate and the formation of shorter agglomerates in polymer 

coated sample. 
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3. Driving force for Ag segregation 
 

3.1 Influence of relative humidity on Ag morphology 

 

C4 nanocomposite coating is deposited onto SS316L substrates. In order to 

evaluate the effect of humidity in the Ag stability, four different samples are stored in 

different relative humidity (RH) atmospheres: (i) stored in a glove box containing silica 

salts (the glove box was closed and, afterwards, the air was removed with a rotary 

vacuum pump), thus, leading to a RH below 20 %; (ii) stored in atmospheric conditions, 

RH about 40%, (iii) stored in a glove box with potassium sulphate salts, at a RH of 90% 

and (iv) immersed in mili-q water, RH of 100%. The coating´s surfaces are analyzed by 

SEM 10 days after exposure to different humidity conditions and the SEM micrographs 

are shown in figure 48 (a) to (d) at a magnification of 10 kX and (e) to (h) at magnification 

of 50 kX. 

 

Figure 48 - SEM micrographs of C4 submitted to different relative humidity conditions during 10 days (a),(e) 

RH below 20%, (b),(f) RH about 40%, (c),(g) RH of 90% and (d),(h) RH of 100% 

 

The SEM micrographs presented in figure 48 clearly demonstrate that the 

humidity has a strong influence on the agglomeration of surface particles and also on the 

formation of Ag nanofibers/nanowhiskers. The surface of C4 coating stored at RH = 

20% revealed a large amount of small Ag nanoparticles, which size and amount is clearly 

higher in the coatings stored at RH~40%. Increasing the relative humidity up to 90%, 
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promotes an increase in the NP/agglomerates size along with the formation of Ag 

nanowhiskers. The immersed coating does not show evidence of Ag NP, being found 

that the surface is composed by a small amount of agglomerates and Ag nanowhiskers.  

These results clearly show that the presence of humidity is a necessary condition 

for promoting either the growth of surface Ag particles as well as the formation of Ag 

fibers. Above, the presence of surface Ag nanoparticles was detected; nevertheless, it 

remained unclear if these particles were formed during the deposition process or due 

to surface diffusion of the Ag particles. The results presented in figure 48 clearly show 

that the Ag particles grow in surface as a consequence of the humidity present in the 

air. Thus, it would be expectable that during the deposition the size of Ag particles would 

be about 2 – 3 nm, which is the size of the Ag particles detected in the bulk. The presence 

of bigger particles in the samples stored at lower relative humidity might be a 

consequence of some residual humidity and also due to the exposure of the coating to 

atmospheric conditions during 1 day previously to its storage in vacuum conditions. 

 

3.2 Ag nanowhisker´s chemical composition 

 

So far it seems clear that humidity is a prerequisite for Ag whiskering and growth 

of surface Ag particles. The formation of metal whiskers has been reported for different 

metals as discussed in the State of the Art, being the exact mechanism still unclear 

despite many decades of studies devoted to the understanding of this phenomenon. In 

the particular case of Ag whiskers, their formation is attributed to the formation of silver 

sulphides20,21, which cannot explain the phenomena observed in this work, since the 

coatings are not exposed to hydrogen sulfide containing atmospheres. Other proposed 

mechanisms include the relaxation of residual stress22,23, which cannot explain the 

differences in the different relative humidity conditions. Other hypothesis is related with 

the oxidation of Ag or the matrix coating22,25, which could lead to an increase in the  

stress state due to the expansion promoted by the formation of oxides. In order to get 

analyze the possibility of the matrix or Ag oxidation, SEM/EDS analysis is performed in 

the coating after immersion in mili-q water. The results are presented in figure 49, where 

the SEM image with the analyzed areas are identified, being the chemical compositions 

at the site of an Ag nanoparticle and in the matrix depicted in the Table. 
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Figure 49 - SEM micrograph of the areas analyzed by EDS and chemical composition of the Ag 

nanoparticle and the nanocomposite area 

  

 The EDS analysis reveals that the amount of oxygen in the Ag nanoparticle (5 at.%) 

is higher in relation to the matrix nanocomposite coating (2 at.%). The increase in the 

oxygen content might be associated with the oxidation of Ag nanoparticles; nevertheless, 

the amount of oxygen is only about 1/6 of the amount of Ag. If Ag oxidation would occur 

it would be only in the first outside layers of the Ag nanoparticles.  EDS analysis usually 

shows quite poor quantitative analysis and does not allow the analysis of shallow depths. 

This explains the presence of 65 at.% of C, even in the punctual analysis over the Ag 

nanoparticle, since the analyzed depth is in the order of 1 µm for the energy used in the 

analysis (10 keV). Regarding the oxygen content in the matrix coating, it´s content is 

very low (2 at.%), which is similar to the oxygen content in the as-deposited coatings, 

thus indicating that the carbon matrix is not being oxidized. 

 In order to get a better understanding about the possibility of Ag oxidation XPS 

analysis is carried out in a reference Ag sample, and the samples submitted to the three 

different humidity levels (20%, 90%,100%). The chemical compositions are depicted in 

Table 13, while the Ag3d core level and X-ray excited Ag Auger spectra are shown in 

figure 51 (a) and (b).  

 The level of oxygen in reference Ag foil is low (below 2 at.%), which may be 

attributed to the presence of a surface oxide layer, with very low thickness. Regarding 

the Ag/a-C coatings, they show higher amounts of oxygen in relation to the reference 

foil, with atomic contents in range of 9 at.% up to 14 at.%, being found that the amount 

of oxygen slightly increases as the coatings are exposed to higher levels of humidity. The 

O/Ag atomic ratio ranges between 0.8 to 2.23 in the tested coatings, which is related to 

the increase in humidity, in case of coatings exposed to RH~20% and 90%, since both 

Spectrum Ag 

(at.%) 

C 

(at.%) 

O 

(at.%) 

Matrix 16 82 2 

Ag aggregate 30 65 5 
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show very similar Ag contents, while in case of immersed coating the increase in O/Ag 

ratio is mainly due to the decrease in Ag content from about 10% down to 7 at.%. 

Table 13 – Chemical composition obtained in XPS analysis 

 O (at.%) Ag (at.%) C (at.%) O/Ag 

Reference 1.67 98.33 0 0.017 

RH~20 % 9.22 11.33 79.45 0.8 

RH~90% 11.17 11.97 76.86 0.98 

RH~100% 14.73 6.59 78.69 2.23 

 

 As previously shown the increase in the humidity level promotes an increase in 

the Ag trend to grow in the surface and also at 90% and 100% the Ag whiskers start to 

appear, which according to the previous results found in section 2 are formed due to 

growth of Ag nanoparticles which segregate to the surface. Thus, it would be expected 

that the amount of Ag in coatings immersed in mili-q water (RH 100%) would be higher 

in relation to other samples. Nevertheless, this reduction might be associated with some 

loss of Ag nanoparticles or Ag ions to the mili-q water.  

 In order to clarify if Ag nanoparticles form silver oxides, the Ag3d and O1s core 

level binding energy as well as X-ray excited Ag Auger MNN are analyzed (see figure 

50).  

 Regarding the reference sample, the only visible peak at Ag3d core level is located 

at 368.4 eV, which is attributed to the presence of metallic silver26-28. The O1s spectra 

suggests the presence of O-Ag bonds located at about 531 eV, nevertheless, the peak 

intensity is very low, which is related with the very low amount of oxygen present in the 

sample (below 2 at.%); the low amount of oxygen explains the absence of Ag-O peaks 

in the Ag3d core level spectra, which should appear at lower binding energies in relation 

to the Ag-Ag peak (around 357.4 eV)29,30. 
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Figure 50 - XPS spectra of (a) Ag3d core-level, (b) O1s core-level and (c) X-ray excited Ag MNN Auger 

spectra of reference Ag foil and C4 nanocomposites exposed to different humidity levels 

  

 The presence of low amounts of oxygen combined with the presence of O-Ag 

bonds suggest that, possibly, the dangling bonds of Ag surface atoms are bonded with 

oxygen. The changes in Ag3d core level as well as the presence of O-Ag peaks are very 

difficult to identify due to either the small changes in the Ag3d peak position (below 1 

eV or the presence of surface contaminations, such as O-C bonds and hydroxyl groups 

located at around 532 eV in O1s spectrum). Therefore, if Ag-O bonds exist in very low 
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amounts they are easily masked in both Ag3d and O1s peaks. Waterhouse et al30 found 

that the metallic Ag peaks are located at a kinetic energy of 358.1 eV in the Auger spectra 

and the formation of Ag-O bonds leads to a shift down to 357.3 eV. The spectrum in 

figure 50 (c) shows that for the reference sample the peak is located at around 358 eV, 

then corresponding to metallic Ag. It is not possible to clearly distinguish any shoulder 

at the Ag-O position confirming the low or even absence of the oxide bond. Regarding 

the Ag/a-C coatings, both Ag3d core level and Auger spectra show similar peaks in 

relation to the reference sample, being also dominated by the metallic Ag-Ag bonds. In 

relation to the O1s, only one peak is visible, located around 532 eV and attributed to 

the surface contamination. Although, the presence of O-Ag peaks cannot be discarded, 

as explained above, even if the bonds are occurring their amount has to be very low, in 

relation to the Ag-Ag bonds, and of the same level in the metallic Ag foil used as 

reference.  

 

3.3 Residual stress evaluation in different relative humidity conditions 

 

 As above mentioned, soft metal whiskering is generally attributed to stress 

relaxation, which can be originated from two sources: (i) residual stress generated during 

the sample preparation and (ii) stresses generated from phase transformations, such as 

oxidation. In order to clarify if the coatings stress evolve with time in different 

environments, SS disks of 25 mm are stored in RH~20% and RH~90%, during 20 days 

and 50 days and the samples curvatures recorded in 2D Profilometer and compared 

with the uncoated and as-deposited sample, are shown in figure 51.  

The results in figure 51 suggest that, after the coatings deposition, the samples 

curvature becomes more convex, which means that the coating is under compressive 

residual stress state. The residual stress state is measured in the as-deposited coating, 

in 3 different samples along two directions by applying the Stoney equation; the 

measured value was -1.20 ± 0.06 GPa.  The profiles shown in figure 51 suggest that no 

changes occurred along time in any of the coatings submitted to different humidity levels. 
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Figure 51 - Changes in the curvature of SS disks coated with C4 with time in different RH conditions (a) 

20% and (b) 90% 

 

 So far, the XPS and EDS results did not revealed any Ag or carbon matrix oxidation 

and no significant variations in the stress state were observed for any humidity 

conditions. Thus, none of the mechanisms proposed for the metal whiskering can be 

adopted to explain the formation of whiskers in the Ag/a-C coatings. Moreover, even if 

any of these mechanisms could explain the formation of the Ag nanofibers, it could not 

explain the growth of Ag nanoparticles in the coatings surface. Therefore, an alternative 

mechanism undelaying either the growth of Ag nanoparticles at the surface or the 

formation of whiskers should be considered. 

 

3.4 Mechanism of Ag growth 

 

 As reviewed in section 1 of this chapter the agglomeration process can occur 

through different mechanisms, as shown in Table 10 and figure 34. However, if humidity 

should be considered a compulsory condition in this process, only two mechanisms 

could explain the agglomeration of the Ag particles: (i) solid bridges formed due to the 

precipitation of dissolved particles and (ii) capillary forces. The phenomenon of capillary 

condensation explains the formation of liquid bridges between particles, even in 

atmospheric conditions, leading to particles agglomeration. On the other hand, 

mechanism (i) forming solid bridges, leads to particles coalescence. Therefore, to select 

the mechanism underlying the Ag particle size growing, it is important to understand if 
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the particles are agglomerates or if they are formed by single crystals resulting from 

coalescence. SEM top-view analysis does not allow to determine if the surface particles 

are agglomerates or coalesced particles; nevertheless, GIXRD method described and 

applied in Chapter IV, can shed some light on which growth mechanism is taking place: 

agglomeration or coalescence. The GIXRD diffractograms taken from the samples 

stored in RH~20% and RH~100% are depicted in figure 52.   

 

 

 

 

 

 

 

 

 

 

 

Figure 52 - GIXRD analysis of C4 coating exposed to RH of ~20% and 100%, below and above the carbon 

critical angle, αc 

 

 Above the carbon critical angle (at 0.7º), both coatings show similar XRD 

patterns, where the presence of crystalline fcc-Ag phase is detected. The results confirm 

the presence of the metallic Ag as suggested by XPS analysis even in the coating 

immersed in mili-q water. Regarding the Ag grain size, the Scherrer method allowed to 

determine that both coatings are composed of Ag nanoparticles 2-3 nm size. The analysis 

performed below the carbon critical angle (0.1º) suggested different trends for both 

coatings: (i) the sample stored at low humidity conditions shows a very broad peak with 

a low intensity, while (ii) the immersed coating shows a narrower and more intense Ag 

(111) peak. The grain size of the Ag surface nanoparticles in the coating stored at 

RH~20% is similar to the grain size found in the bulk of the coatings, while in the other 

coating the grain size increased up to about 20 nm. In conclusion, the results obtained 

by GIXRD analysis suggest that the particles grow through a coalescence mechanism 
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instead of by agglomeration. In this sense, the most likely mechanism for the particles 

growth should be through a dissolution-precipitation process. 

 

4. Conclusion 
 

 The main objective of this chapter is to analyze fundamental aspects of the Ag/a-C 

nanocomposite coatings stability, namely: 

 From which depth the Ag is segregating to the coatings surface? 

 How the nanocomposites morphology influences the Ag segregation? 

 Is Ag able to move through the a-C matrix? 

 The Ag stability along time at room temperature and humidity conditions is 

accessed by SEM analysis and the depth from which Ag is diffusing towards the surface 

is evaluated by means of GDOES technique. In a first stage, two different Ag/a-C 

nanocomposite coatings with 20 at.% of Ag are monitored during a period of 6 months: 

one 250 nm and the other 1000 nm thick. As previously found in Chapter IV, the thinner 

coatings shows a compact morphology, while the thicker one is columnar. The results 

suggested that the C4 coating changes gradually with time forming Ag 

nanofibers/nanowhiskers on the coatings surface. GDOES performed 6 months after 

deposition indicate the formation of an Ag rich surface layer along with a decrease in 

the Ag content from 18 at.% down to 14 at.%, across the entire coating thickness. The 

C1 coating is quite stable with time and the only observed change is the agglomeration 

of the Ag nanoparticles at the surface. The GDOES analysis of the as-deposited and 6 

months aged coatings show similar depth profiles, thus suggesting that no Ag surface 

segregation is occurring. These results allow to conclude that the presence of a columnar 

morphology is a required condition for the occurrence of Ag diffusion and the 

consequent formation of nanowhiskers. 

 In order to clarify the effect of a compact a-C layer in the Ag mobility a TEM in-

situ heating experiment is performed in Ag nanoparticles deposited by PGC and covered 

with a very compact a-C layer, to be compared with free Ag clusters, already reported 

in literature. The presence of the compact amorphous carbon layer completely avoided 
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the particles sintering, inversely to what was reported in the literature for free Ag 

nanoparticle’s. 

  A comparison between Ag/a-C coatings deposited onto different substrates -

SS316L and polymer foil- showed the occurrence of different morphologies, with 

separation between columns of about 10-20 nm and 100 nm, respectively. Consequently, 

the shape and diameter of Ag features in the surface was different: in the first case Ag 

nanowhiskers with a diameter of about 10-20 nm and length of several hundreds of 

nanometers were formed, while in the coated polymer foil Ag agglomerates / coalesces 

with dimensions that can be bigger than 100 nm and heights of tens of nanometers. 

Simple calculations based on a geometrical approach and on the Ag content and Ag 

particle diameter allow to show that the amount of Ag in the free spaces at the column 

boundaries is enough to provide the formation of Ag nanoswhiskers with the above 

pointed dimensions. 

 Nanoparticles agglomeration or coalescence are very likely to occur due to the 

high energy of a small particle with high % of dangling bonds. Humidity can enhance this 

process, and its influence on the stability of the C4 nanocomposite. After the deposition 

process this coating is stored in four different atmospheres with relative humidity’s of: 

(i) 20%, (ii) 40%, 8iii) 90% and (iv) 100% - immersed in mili-q water. The SEM top-view 

micrographs recorded 10 days after exposure confirmed that the humidity plays the 

major role in the Ag stability. The sample stored at 20% of RH shows a small number of 

Ag nanoparticles, at least in the resolution limit of SEM analysis. Conversely, the coating 

stored at 40% RH shows a large number of Ag nanoparticles and agglomerates, while 

the coatings stored at higher RH are covered with Ag nanowhiskers and agglomerates. 

EDS analysis shows a slightly higher level of oxygen in the Ag agglomerates in relation to 

the matrix coating; nevertheless, no signs of Ag-O bonds are found by XPS analysis, 

which only reveals the presence of metallic Ag-Ag bonds. Thus, the Ag whiskering 

promoted by soft metal oxidation is not likely to occur in this case, as reported in the 

literature for other systems. The substrate curvature profiles, for evaluating the coatings 

residual stress, prove that no changes occurred with time in any of the samples exposed 

to different levels of humidity. In this sense, the hypothesis of stress relaxation to explain 

the nanowhiskering phenomena found in Ag/a-C nanocomposite coatings is not viable. 

The interpretation for the Ag whiskering was achieved by GIXRD analysis performed in 

the Ag/a-C nanocomposites stored at RH of 20% and 100%. The presence of a narrow 
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diffraction peak (related with an Ag crystalline phase) for angles of incidence below the 

carbon critical angle in the coating stored in mili-q water, while a broader peak occurs 

for the coating stored in low humidity atmosphere, allowed to confirm that the Ag 

particles grow in surface through a coalescence process and not through agglomeration. 

Therefore, considering the mechanisms proposed by Rumpf and co-workers for 

agglomeration and coalescence processes, it could be concluded that the Ag 

nanoparticles growth is mediated by a dissolution- precipitation (Oswald ripening) 

process. 
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Chapter VI 
Functional Properties 

  

The main goal of this thesis is the development of Ag/a-C nanocomposite coatings 

with potential application as antibacterial surfaces. Over the past years the surface 

modification of materials with Ag nanoparticles for different applications, such as food 

packages (which are already available in the market), medical devices including surgical 

instruments or indwelling devices, has been intensively studied by many companies and 

research groups. The aim of this Chapter is to evaluate the functional properties of the 

developed nanocomposite coatings, namely, the antibacterial activity and the tribological 

behavior in biological fluids. For this propose, three types of coatings were studied: an 

a-C layer (C5), as a reference sample, and two C4 coatings either in the as-deposited 

state or after ageing. The selection of the C4 coating, despite of its non-stable behavior, 

is based on its columnar morphology which allows either a higher contact area with the 

biological medium, condition necessary for achieving antibacterial activity, or a 

continuous Ag surface segregation which can keep this activity along the time. Since the 

antibacterial tests need to be performed simultaneously in all samples, an ageing 

treatment (at a pressure of 3 bar and temperature of 130ºC) was performed in an 

autoclave allowing the comparison of the C4 coating in the as-deposited state and after 

ageing. 

 The tribological tests are performed in dry-sliding conditions, in Hank´s Balanced 

Salt Solution (HBSS) and HBSS containing bovine serum albumin (BSA), which are the 

commonly studied media for the evaluation of the biotribological properties of materials 

used in joint prostheses. As discussed in Chapter III, the presence of Ag and, particularly, 

its accumulation in the coatings surface degrade the tribological properties of the a-C/Ag 

coatings in dry sliding conditions. Nevertheless, the presence of lubricants can change 
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the nature of the tribological pairs in contact, i.e. it can prevent the contact between 

Ag-Ag, which would avoid the degradation of the tribological properties. As one of the 

potential applications of the coatings is for joint prosthesis, the evaluation of the 

biotribological properties is, thus, mandatory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter VI – Functional Properties 

 

151 

 

1. Ag antibacterial activity and ionization 
 

 The spread of nanosilver based products in the market made that Ag 

nanoparticles are, presently, the most commercialized in the World. According to the 

Project in Emerging Technologies inventory on nanotechnology based products the 

number of nano-Ag products is presently around 383, being most of their applications 

related with health and fitness products as well as food and beverage1. Despite some 

controversial issues related with the toxicity of these metal nanoparticles, the only 

reported side effect caused by the consumption of dietary supplements containing silver 

(mainly based on Ag colloidal suspensions) is argyria, a permanent discoloration of the 

skin, nails and gums. In fact, Food and Drug Administration (FDA) has reported a 

consumer advice related with the consumption of these products where the chronic 

oral reference dose (RfD) of 5 micrograms of silver per kilogram of body weight per day 

is pointed to cause argyria, according to the tests performed by the Environmental 

Protection Agency (EPA)2,3. Thus, taking into account this reference value, the limit of 

toxicity is quite high, but still, needs to be taken into account in the development of 

devices to be placed within the human body. Over the past years many research works 

have focused on the implementation of Ag nanoparticles in indwelling devices as a 

strategy to combat the biofilm formation, which results in surgical implant infections, 

pointed as the main cause of failure of different biomedical devices4,5. Nevertheless, in 

the Project in Emerging Technologies inventory no indwelling devices containing Ag 

nanoparticles are referred1. The acceptance of Ag nanoparticles and nanoparticles in 

general is presently a very controversial issue due to the possible toxic or side effects 

caused by the nanoparticles either when placed within the human body, or in their 

release to the environment with possible side effects which are still not very well 

understood6,7. 

 Despite the large number of commercially available consumer products and the 

huge number of research studies in Ag nanoparticles, their mechanism of actuation 

against bacteria, as well as their behavior in different biological medium, are still under 

intensive study. Several mechanisms have been pointed to explain the antimicrobial 

activity of Ag nanoparticles, in particular: (i) release of Ag+, (ii) generation of free radicals 

and (iii) direct physical contact between the nanoparticles and the bacterial cells which 

causes structural damage to their wall1,8,9,10.  Among the different proposed mechanisms 
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the Ag ions are pointed to be the most effective route for the bacteria destruction8,9. 

Thus, in order to achieve the desired bactericidal effect it is necessary to guarantee that 

the Ag based products are somehow transformed into Ag+. Then, as Ag is in the metallic 

state, electrochemical reactions able to promote silver oxidation are required to 

promote silver ionization. 

The basic electrochemical processes are generally represented by a simple wet 

corrosion cell which contains four fundamental elements: 

i. Anode – works as the electron producing electrode. The simplified half reaction 

that occurs in the anode is represented by the equation 6.1 

𝑀𝑒 𝑠 → 𝑀𝑒𝑥+ 𝑎𝑞 + è 

(6.1) 

ii. Cathode - works as the electron acceptor electrode. The simplified half reaction 

occurring in the cathode is represented by the equation 6.2: 

𝑀𝑒𝑥+ 𝑎𝑞 + è → 𝑀𝑒 𝑠  

(6.2) 

iii. Electrolyte – electrical conducting solution  

iv. Electrical connection – physical contact between the anode and the cathode 

able to allow the electrons flow. 

It should be pointed out that the half reactions represented by equation 6.1. and 6.2 are 

over simplified, in fact, the metals oxidation is not a one step process, conversely it 

evolves numerous steps with formation of intermediate components (namely adsorbed 

Me(H2O), MeOH-,MeOH+), which strongly depend on the elements/ions present in the 

electrolyte11. In silver case, the release of Ag ions in simple solutions containing no other 

oxidants or reductants, besides oxygen and hydrogen, is described by the global reaction: 

)()(2)(2)(
2

1
)(2 22 lOHaqAgaqHaqOsAg    

(6.3) 

Where ∆Gº value is -91.3kJ/mol at 298 K12.  
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Liu et al.13 have evaluated the effect of oxygen and pH on the silver ion release 

from 1.9 nm sized Ag nanoparticles in different aqueous medium: (i) air saturated water, 

(ii) deoxygenated water and (iii) both solutions (i) and (ii) at different pH values ranging 

from 4 to 9. The authors found that removing the dissolved oxygen completely, the 

silver release was inhibited (indicating the essential role of Ag surface oxidation initiated 

by O2) and, also, that the Ag+ release is strongly dependent of the pH (H+ concentration), 

being the higher ionization rates achieved with lower pH values. Thus, the Ag+ release 

was found to be a cooperative oxidation process requiring both protons and dissolved 

O2. Moreover, the addition of Ag nanoparticles to the solution promoted a decrease in 

the free [Ag+], which was attributed to the adsorption of Ag ions in nanoparticles surface 

or reduction of Ag+. Therefore, the authors suggested that the colloid solution contains 

three forms of silver: Ag, Ag+ and adsorbed Ag+. An ion release mechanism in water was, 

then, proposed, where the formation of intermediate peroxides could occur. The 

oxidation of nano Ag to Ag+ is not likely to take place through a four-electron transfer 

process that reduces O2 directly to water but, rather, through simpler redox reactions 

that produce peroxide intermediates, which  were detected in the nano Ag containing 

solutions. In this process, H2O2 is a more powerful oxidant than O2. The complete 

electrochemical process was not described, although the essential pathway could be 

described by the equation 6.4: 

𝑂2 + 𝐻+

𝐴𝑔𝑂 
→  𝐴𝑔+ + 𝐻2𝑂2𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑠

𝐴𝑔𝑂
→   𝐴𝑔+ +𝐻2𝑂 

(6.4) 

where the first reaction occurs slowly, while the second one is fast due to the higher 

oxidative power of H2O2. 

As previously mentioned, the Ag oxidation mechanism is strongly dependent on 

the electrolyte properties such as the pH value and the chemical composition. Recently, 

a few reports have presented the silver nanoparticles ionization rate in different 

electrolytes14,15. Loza et al14 evaluated the nano Ag dissolution in different solutions: (i) 

water containing 10 Mm H2O2; (ii) argon saturated water, (iii) 0.9% NaCl and (iv) 

phosphate buffered saline solution (PBS), (v) 1g/L glucose and (vi) cysteine as a model 

for sulphur containing proteins. The presence of oxygen is fundamental since the 

dissolved oxygen is responsible for the metallic silver dissolution, being the Ag+ 

ionization increased with the addition of H2O2, known as a fast oxidant. Moreover, the 
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dissolved NaCl and PBS solutions showed a lower ionization rate (4 wt.% and 2 wt.%, 

respectively) in relation to the pure water, where 50 wt.% of Ag was ionized. Cysteine 

inhibits the Ag dissolution, while glucose showed a decelerating effect, still showing a 

similar final dissolved fraction. Similar studies have been performed by other authors and 

the main conclusion is that the presence of different elements and chemical compounds 

in the biological fluids tends to reduce the Ag ionization rate, through different 

mechanisms, which are summarized in figure 53. 

 

Figure 53 - Possible interactions between Ag ions and compounds present in biological media 

 

 The presence of chloride (Cl-) or phosphate is responsible for the precipitation 

of AgCl or Ag3PO4, being the lately formed only if no chlorides are present. Other 

observed trend in every paper related with the evaluation of Ag ionization with time in 

different liquids is related with the stabilization of the Ag ionization after a certain period 

of time, being the time dependent either on the biological medium or on the stabilizers 

used in the Ag nanoparticles surface or matrix coating where they are incorporated. In 

fact, from an application point of view this can somehow constrain the Ag applicability 

since the Ag stabilization will result in the loss of the antibacterial activity along the time. 

The exact mechanism underlying this stabilization is still not understood and some of 

the possible explanations include the silver nanoparticles agglomeration or the surface 

passivation during immersion14-18. 
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2. Coatings antibacterial activity 
 

2.1 Electrochemical behavior of Ag and a-C 

 

 As previously mentioned, the antibacterial activity of silver- based nanocomposite 

coatings is dependent on the Ag ionization, which is determined by the nanoparticles 

size19-21 and the electrolyte14,15. Another important factor for Ag ions release is the 

electrochemical interaction between the matrix and the Ag nanoparticles. Therefore, 

since the antibacterial activity is determined by electrochemical processes, the coating 

matrix should be carefully selected. Once the coating matrix and the Ag nanoparticles 

are physically connected, it is necessary to ensure that the matrix will not eradicate the 

Ag oxidation. Any physical contact between two distinct materials results in galvanic 

corrosion, where the most active metal acts as anode and the least active as cathode 

This process tends to accelerate the corrosion rate of the most active element. Thus, 

when choosing a coating matrix the standard galvanic series should be analyzed in order 

to ensure that the coating matrix is more noble than Ag. The galvanic series in sea water 

indicate that graphite is the most noble element, with a free corrosion potential vs SCE 

between 0.3 and 0.2, while Ag shows values between 0 and -0.5. This is in accordance 

with what has been historically known that the graphite grease deposited in aircraft fuel 

pipe couplings promote a severe corrosion of the alloys used in these components. 

Moreover, carbon in the amorphous form is also likely to cause galvanic corrosion. 

Obviously, the values above presented are just an indication of the electrochemical 

behavior of Ag/a-C coatings, since a-C is not pure graphite as discussed in the State of 

the Art; moreover, the electrochemical behavior is dependent on the electrolyte11. 

 Thus, in order to understand if a-C matrix was a reliable choice for this study, 

the open circuit potential of a-C(C5), Ag thin film and bulk Ag is determined and 

compared with the OCP value of the Ag/a-C(C4) nanocomposite coating in 0.9% NaCl 

electrolyte. The coatings are deposited onto SS316L substrate for the study of the 

functional properties. The electrolyte is not the one used in antibacterial tests, which 

would be the ideal approach; nevertheless, since the ICP analyses are performed in 

physiological solution, the OCP analyses were also performed in this electrolyte to allow 

a direct comparison of the results. The OCP results are depicted in figure 54. 
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Figure 54 - OCP of a-C, Ag/a-C and Ag (bulk and coating) in 0.9 % NaCl 

 

 The a-C coating shows an open circuit potential of about 0.14 V, while both Ag 

coating and bulk Ag show very similar OCP values around -0.03 V. The positive OCP 

value of a-C coatings suggests that it should be spontaneously reduced. Ag is a noble 

metal with a positive standard reduction potential value, thus meaning that it does not 

tend to be oxidized. However, in 0.9%NaCl solution the OCP is negative which means 

that it tends to be oxidized. The Ag/a-C nanocomposite coating shows an intermediate 

behavior between Ag and a-C, with an OCP value around -0.006 V, which is somehow 

predictable taking into account the mixed potential theory which states that for two 

conductive phases in electrical contact the resulting OCP is located between the OCP 

values of both phases. Taking into account the OCP results it can be predicted that a-C 

matrix is suitable for this application since it shows a higher reduction potential in 

relation to Ag. Moreover, the Ag is oxidized in 0.9% NaCl which means that the 

combination of both phases should lead to an enhanced Ag oxidation, which in fact is 

the envisaged effect. 

 It should be mentioned that the OCP value is determined for Ag thin film and 

bulk Ag, which should be different from the OCP value of Ag nanoparticles. 

Nevertheless, the measurement of electrical parameters (in this case voltage) in 

nanoparticles is quite difficult to achieve in experimental conditions since if they lay on 

an inert glass substrate, no current flow occurs between the tested nanoparticles and 

the electrode used for the voltage determination. On the other hand, if the nanoparticles 

are deposited over a SS316L surface the analysis would be influenced by the substrate 
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itself. Thus, Ag thin films and bulk Ag were used in order to get some insight about its 

electrochemical behavior in 0.9% NaCl. 

 

2.2 Coatings morphology 

 

 The coating studied in this Chapter is the C4 in the as-deposited state and after 

has been thermal annealed in an autoclave at a pressure of 3 bar and a temperature of 

130ºC, during a period of 5 minutes. The main objective is to evaluate the influence of 

coatings ageing on the Ag ionization rate and the antibacterial activity. These 

nanocomposite coatings are compared with a pure a-C layer (coating C5). The SEM top-

view micrographs are depicted in figure 55 in SE mode ((a) to (c)) and BSE mode ((d) to 

(f)). 

Figure 55 - (a,d) C4 as-deposited; (b,e) C4 autoclave and (c,f) C5 

 

 SEM shows that both a-C/Ag nanocomposite coating´s surfaces are covered with 

Ag nanoparticles, which size is clearly higher for the thermal treated sample. The Ag 

particle size distribution was analyzed in the SEM micrographs with ImageJ software and 

the histograms are shown in figure 56. 
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Figure 56 - Histograms of Ag particle area of C4 (a) as-deposited and (b) heat- treated in autoclave 

 

 In the as-deposited state most of Ag nanoparticles (25%) show an area of 196 

nm2 and the maximum value is close to 12000 nm2. The sample thermal treated in the 

autoclave showed a shift of the mean value to 510 nm2 and the maximum particle size 

increased up to 22000 nm2. These results clearly indicated that the autoclave treatment 

promoted the agglomeration of the surface Ag nanoparticles; nevertheless, no Ag 

whiskering is detected, which means that the ageing is still in its very initial state.  

The direct comparison between SE and BSE micrographs allows to conclude that 

all the big particles are sitting in the coatings surface. In fact, in SEM the depth of analysis 

is higher in BSE than in SE and, then, since no additional big particles are observed in the 

BSE image, all of them viewed in SE should be sitting at the coatings surface and those 

inserted in the bulk should be very small (~ 3 nm, undetectable by SEM) as suggested in 

previous chapters).  
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2.3 Ag ionization 

 

 The Ag ionization rate was determined by ICP analysis along a period of 30 days 

of immersion and the results are shown in figure 57. 

 

 

 

 

 

 

 

 

Figure 57 - ICP analysis of Ag ionization rate over a period of 30 days 

 

 As expected, no Ag ions are released in a-C coating, while both as deposited and 

autoclave treated samples show similar Ag ionization trends, which suggests that the 

variations in the surface Ag particle size does not influence the Ag ionization rate. The 

amount of Ag ions in physiological solution increases linearly in the first 24 hours up to 

about 60 to 70 ppb.cm-2; afterwards, the amount of Ag ions increases slower up to about 

80 to 110 ppb.cm-2 after an immersion period of 168 hours (7 days), remaining constant 

thereafter up to 720 hours (1 month). The mass % of Ag released is calculated and 

compared to the total Ag mass in Ag/a-C nanocomposite coatings, being the value 

depicted in the y axis (right side). The Ag ionization stabilized when 1.0% to 1.5% of the 

total Ag mass is released. The percentage of Ag particles sitting in the interface with air 

(column boundaries and coating surface) has been determined to be around 9%, 

according to the calculations provided in the annex and discussed in Chapter V. In fact, 

the interaction between the Ag nanoparticles and the liquid medium is required in order 

to achieve the Ag ionization and it can be somehow predicted that the Ag nanoparticles 

embedded in the compact a-C layer, within the columns, are much more difficult to 

ionize. The stabilization in Ag ionization should not be attributed to the lack of Ag in 

interfaces with liquid medium. Other studies with Ag nanoparticles immersed in different 
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liquid medium also show a stabilization in the Ag ionization occurring before the 

consumption of the total amount of Ag present in the liquid. In fact the % of ionized Ag 

in different liquids is always below 100% being strongly dependent on the tested liquid 

media14,15. Finally, the presence of negatively charged ions such as Cl- which tend to bind 

to Ag+ ions, forming AgCl crystals, might be one more reason for Ag ionization 

stabilization. In  order to get a better insight about the possibility of Ag agglomeration 

or AgCl formation, SEM/EDS analysis is performed in coatings immersed in 0.9% NaCl, 

during 2 h, 24h and 30 days after immersion, being the results shown in figure 58. 

 

Figure 58 - SEM top-view micrographs after immersion in 0.9%NaCl during 2 hours (a) C4 (A.D.), (d) C4 

autoclaved, 24 hours (b) C4 (A.D.), (e) C4 (autoclaved) and 168 hours (c) C4 (A.D.), (f) C4 autoclaved 

 

 After 2 hours of immersion, the surface of both, as-deposited and heat treated, 

coatings is covered with Ag agglomerates, with irregular and non-spherical shape, 

combined with small spherical Ag particles. Ag particles agglomeration increases with 

time (from 2 to 24 hours). The Ag nanoparticles agglomeration should be promoted by 

a dissolution-precipitation process, which has already been reported by Li et al.22 The 

Ag agglomeration results in the development of similar morphologies in both coatings 

even after very short immersion times, which might explain the similar ionization rates 

in both coatings. Other interesting feature is the accumulation of Ag agglomerates in the 

scratched regions, which arise during the substrate polishing. At these sites, the 

formation of column boundaries is more likely to occur, due to shadowing effects, being 

2h 24h 30 days

(a) (b) (c)

(d) (e) (f)

A.D.

Autoclave
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the Ag diffusion pathways located in these regions; thus, a higher density of agglomerates 

are observed in these areas. 

 The SEM images recorded 30 days after immersion, reveal the formation of 

crystals with sizes of a few micrometers and almost no additional Ag nanoparticles or 

agglomerates are visible. An EDS analysis is performed in one of this crystals and the 

results are depicted in figure 59, together with the SEM image. 

 

 

Figure 59 - SEM/EDS analysis of crystals formed 30 days after immersion in 0.9% NaCl 

 

 The EDS analysis allows to confirm the formation of AgCl crystals. As previously 

mentioned the formation of AgCl crystals might be one reason for the stabilization in 

the Ag ionization.   

 

2.4 Antibacterial Activity 

 

 The coatings antibacterial activity is tested against Staphylococcus epidermidis (S. 

epidermidis, IE186 strain, a clinical isolate belonging to the CEB Biofilm Group collection), 

which have been used in the evaluation of antibacterial activity of different indwelling 

devices and surgical instruments. S. epidermidis colonizes the skin and mucous 

membranes of the human body, representing an important part of its normal microflora, 

which has emerged in the last few years as the most frequently isolated pathogen in 

nosocomial sepsis associated with prosthetic device-related infection23,24. Zone of 

inhibition (ZoI) tests, adapted from Kirby-Bauer test25, are carried out to determine the 

diffusion of silver from the coatings surface. The halo size is used as a qualitative measure 

of the coatings antibacterial activity. Figure 61 shows an example of the halo tests carried 

10 µm
0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

Ag

Ag

Cl

 

 

In
te

n
si

ty
 /

 a
.u

.

Energy / keV

 EDS

C

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

Ag

Ag

Cl

 

 

In
te

n
si

ty
 /

 a
.u

.

Energy / keV

 EDS

C



Chapter VI – Functional Properties 

 

162 

 

out on three different coatings and SEM images performed on their respective coatings 

surface after halo tests (figures 60 (a,d) to (c,f) correspond to C5 , C4 (A.D.) and C4 

(autoclaved), respectively). 

 

Figure 60 – (a) C5, (b) C4 (A.D.) and (c) C4 (autoclaved) coatings after ZoI assays against S. epidermidis, 

SEM micrographs of (d) C5, (e) C4(A.D.) and (f) C4(autoclaved) coatings surface after ZoI test. 

 

 Both Ag containing coatings show a clear halo surrounding the specimens, with 

dimensions of about 2.4 ± 0.02 mm and 3.5 ± 0.04 mm for C4(A.D.) and C4(autoclaved), 

respectively, which suggest that both coatings show antibacterial activity. Conversely, no 

halo is found around the C5 coating, thus suggesting no antibacterial effect.   The SEM 

micrographs show that the a-C coating surface (figure 61 (d)) is covered with microbial 

colonies which shows the expected antibacterial inactivity of this material. Conversely 

no microorganisms are found in the surface of the Ag containing coatings; in fact only 

Ag agglomerates are visible in the surface of these coatings, which clearly reveals that 

no bacteria are adhering to the surface. The antibacterial activity of these coatings might 

be attributed to the release of Ag ions detected by the ICP analysis. 
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3. Tribological properties in biological medium 
 

3.1 Pin-on-disk testing 

 

 The tribological properties of C5 and as-deposited C4 coatings are evaluated by 

pin-on-disk testing against an alumina counterpart in (i) dry sliding, (ii) HBSS and (iii) 

HBSS+BSA environments at 37ºC. The applied load was 1 N, the ball diameter 10 mm, 

thus resulting in a contact pressure of 450 MPa. It should be pointed out that this value 

is lower than those used in Chapter III (690 MPa and 1180 MPa). However, tests with 

higher contact pressures (690 MPa), led to large areas of coatings delamination in dry 

sliding conditions, difference attributed to the lack of the adhesion Ti/TiN/TiCN 

interlayer used in Chapter III. Then, the Pm was reduced down to 450 MPa. The 

International Organization for Standardization (ISO) 14242 - Implants for surgery — Wear 

of total hip-joint prostheses Standard26 specifies the loading and displacement parameters 

for wear-testing machines and corresponding environmental conditions for test. The 

Standard defines that the number of cycles should be 5x106 and, according to the 

literature, the mean compressive stresses between the femoral and acetabular 

component during patient´s movement are around 1 to 10 MPa27. In this study the 

number of cycles is far below the number of cycles defined in the test (which would lead 

to very long tests); however, the contact pressure values are far higher than those found 

in real applications. The aim of these tests is mainly to compare a-C coatings, which are 

already accepted in the market, and Ag containing a-C coatings in body simulated 

conditions. Regarding the biological fluids, the ISO 1424 Standard26 defines the use of 

bovine serum albumin (BSA) (25%) and distilled water (75%). Nevertheless, Hank´s 

balanced salt solution (HBSS) simulates better the environment found in real conditions, 

due to the presence of ionic compounds found within the synovial fluid. The chemical 

composition of these fluids are provided in Annex II. 
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The results of CoF for C5 and C4 are shown in figure 61 (a) together with the wear 

rate for both coatings in different environments (figure 61 (b)). 

 

 

 

 

 

 

 

 

 

Figure 61 - CoF (a) and (b) wear rates of a-C and Ag/a-C coatings tested in different environments 

 

Regarding a-C coating, the CoF value in dry sliding conditions is about 0.8, a value 

slightly lower than for Pm=690 MPa (0.10) but higher than at Pm=1180 MPa (0.05) (see 

Chapter III). Regarding the Ag/a-C nanocomposite coating, both the CoF and wear rate 

values are higher in relation to a-C coating, in good agreement with what the results 

reported in Chapter III. However, when tests are performed in liquid environments, no 

significant variation in the CoF are observed between the two coatings. In both cases, 

the wear is undetectable. These results show the importance of the contact conditions 

in the tribological results. In dry conditions, as explained in Chapter III the graphitization 

and formation of a compact transfer layer in the counterbody, also based in graphitic 

bonds, justify the low CoF values obtained in dry sliding of pure a-C coating. When silver 

is incorporated, an Ag rich transfer layer is formed, which in contact with the Ag rich 

coating surface, gives rise to much higher CoF. When testing in HBSS solution the CoF 

is similar in both coatings and very close to the one of a-C in dry conditions, in good 

accordance to Escudeiro et al28 work on a-C coatings tested in dry sliding and 

physiological solution (PS) against a Ti6Al4V counterpart, where same CoF values were 

achieved in both testing conditions. The lubricant effect of the HBSS solution, which 

avoids the contact between the counterpart and the coating surface, makes the contact 

conditions in both coatings similar, thus justifying the close values of the CoF. In the 

Ag/a-C coating, HBSS will inhibit the contact between the surfaces rich in Ag making 
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decrease the friction coefficient from 0.15 down to 0.05, putting it close to the value of 

pure a-C sample. Hang et al29 reported a decrease in the CoF from 0.15 down to 0.06, 

when simulated body fluid was introduced in pin-on-disk tests of a-C coatings sliding 

against Ti6Al4V. The presence of HBSS completely prevents the coatings wear, which is 

not detectable by profilometry measurements.  

From the potential application point of view, the tests performed in HBSS+BSA 

solution are the most important. Again, similar behavior is found for both coatings, with 

CoF values around 0.15 and no detectable wear. The significant increase in the CoF in 

relation to the dry sliding of the a-C coating, making it similar to the one of Ag/a-C, 

enhances one more time the role of the contact conditions and, in particular the albumin, 

on the friction. In fact, when values are compared to HBSS tests, the difference has to 

be related with the presence of albumin. Several reports have focused on the influence 

of albumin containing solutions in the biotribological behavior of different types of 

surfaces28-33. During tribological contact, albumin adheres to the materials surfaces being 

the friction behavior determined by the albumin properties, i.e. the interaction forces 

within albumin or between the albumin and the surface of the materials in the contact. 

Hence, it can act as a lubricant agent, if the CoF in dry sliding is very high, or as a 

contributor for making harder the easy sliding, as it is the case of a-C coatings. In any 

case, it protects the surfaces from any wear. Escudeiro et al found that the CoF of Zr/a-

C30 and Ti/a-C31 coatings showed values in the order of 0.15, when sliding against 

Ti6Al4V in albumin containing medium, which are similar to the ones shown in figure 61 

and very close to those reported by Hang et al29 (CoF of 0.12) and Anil et al32 (CoF of 

about 0.10-0.12), both working a-C based coatings. In Escudeiro et al28 report, the 

uncoated Ti6Al4V showed a much higher CoF, with a value of 0.38 in albumin containing 

solutions.  As this value is higher than those achieved in the tests with the coated surface, 

it can be concluded that the friction values shown in figure 61 are being determined by 

the interaction forces between albumin and the coatings surface. 

The above results allow to predict that, despite the degradation of the 

tribological properties in dry sliding conditions with the incorporation of Ag, in synovial 

fluids the tribological behavior should be similar to the one presented by a-C coatings. 

Nevertheless, it should be pointed out that biotribology is a complex field and these 

tests should be regarded as preliminaries for the study of the potential application of 
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silver doped a-C coatings in joint prosthesis. In fact, many other issues need to be 

understood: 

 The influence of Ag incorporation on either the albumin adsorption or its effect 

on the protein configuration. In fact, the adhesion of albumin is necessary for 

improving the surface protection against wear, nevertheless, if the protein is 

denaturated during the interaction with the surface, this will promote the implant 

rejection. Thus, the understanding of the exact interaction between the protein 

and the surface is required, 

 Despite the wide acceptance of a-C based in the biomedical field, recent studies 

performed in the group (in the scope of Escudeiro´s PhD thesis) revealed that 

these coatings enhance the tribological behavior of the base material in 

unidirectional pin-on-disk test; nevertheless in multidirectional pin-on-disk tests, 

simulating more closely the real conditions in joint prosthesis, the coatings failed 

due to interfacial deterioration in corrosive environments under mechanical 

loading. Thus, further research is necessary to improve the interfacial strength 

of these coatings, 

 The Ag doped coatings showed promising antibacterial activity;, nevertheless, for 

indwelling device applications, cytotoxicity tests are required in order to get the 

best compromise between biocompatibility and antibacterial effect. 

 

4. Conclusion 
 

 The main goal of this chapter is to analyze the functional properties of the Ag/a-

C nanocomposite coating, in particular, the antibacterial activity and the tribological 

behavior in biological fluids simulating the synovial fluid present in the joint prosthesis 

environment. Before this analysis, due to its importance on the antibacterial behavior, 

the Ag ionization rate is also studied. The C4 coating is selected, despite of its non-stable 

behavior, since the presence of the columnar morphology is expected to enhance the 

interaction with the biological fluids and to promote a more pronounced antibacterial 

effect. Then, the effect of the coatings ageing on the functional properties was also 

analyzed. In total, 3 different samples were studied: a reference a-C layer and the Ag/a-
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C(1000) nanocomposite coating in the as-deposited state and aged in an autoclave at 

130ºC and pressure of 3 bar. 

 The aged coating´s surface was covered with Ag agglomerates, being the average 

particle area higher than in the as-deposited coating. Nevertheless, no Ag fibers were 

found, meaning that the ageing process is at a very initial stage. The ICP results indicated 

that both coatings showed a similar ionization rate in 0.9 % NaCl. SEM observation after 

different immersion times shows that Ag particle size was approximately the same in 

both coatings and increased with time, which is attributed to the Ag particles 

coalescence induced by a dissolution-precipitation mechanism. This might explain the 

similar ionization rates, irrespective of the initial particle size. The Ag ionization is 

stabilized after 7 days of immersion. At this stage about 1 to 1.5% of Ag in the coating is 

converted into Ag ions which. SEM/EDS analysis revealed the formation of AgCl crystals. 

In this sense, the stabilization in Ag ionization could be related with the formation of 

AgCl crystals, which means that any increase in the amount of ionized Ag would result 

in the increase on the amount of AgCl crystals, but not in the amount of free Ag ions. 

The antibacterial activity, analyzed through zone of inhibition test against S. epidermidis, 

revealed that both Ag containing coatings are antibacterial, while a-C coating is inactive. 

These results might be related with the release of Ag ions found by ICP analysis. 

 The tribological tests are performed by unidirectional pin-on-disk test in three 

different environments: (i) dry sliding , (ii) HBSS and (iii) HBSSS+BSA. In dry sliding, the 

degradation of the a-C coatings tribological properties with the incorporation of Ag is 

observed, with higher CoF and wear rates. Nevertheless, in HBSS and HBSS+BSA 

solutions the tribological properties (CoF and wear rate) of Ag containing coatings are 

similar to a-C layer, which was mainly due to the lubricating properties of both solutions 

which avoid the contact between the counterpart and the coating surfaces, thus, avoiding 

the formation of Ag-Ag tribological pairs. In this sense, it is predicted that the 

incorporation of Ag in a-C layers would not result in the loss of the tribological 

properties, provided that convenient lubricants are used. 
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Outputs and Future Research 
  

 The main goal of this thesis is the deposition of Ag/a-C nanocomposite coatings 

by two alternative routes and the detailed characterization of their structure and 

stability. The interest of this system from an application point of view is its potential 

antibacterial activity. Over the past years several reports have been focusing on the use 

of this nanocomposite coatings for different applications, supported by their interesting 

tribological, electrical, optical or biological behavior. In any of these potential applications 

the  thermodinamical stability is one of the most important and many times disregarded 

issues. In fact, among the thousands of reports in the literature on Ag nanocomposite 

coatings, only a few are dedicated to the detailed characterization of the size and 

distribution of Ag nanoparticles in the matrix and their evolution with time. In this sense, 

despite of not discarding the study of the functional properties (antibacterial activity and 

tribological behavior), the majority of the thesis was devoted to the implementation of 

an alternative physical vapor deposition method for nanocomposite coatings deposition 

and the understanding of the coatings stability.   

 The first part of the thesis consisted in the characterization of Ag/a-C 

nanocomposite coatings deposited by magnetron sputtering. By varying the number of 

Ag pellets in the graphite target, different contents of Ag ranging from 0 at.% up to 13 

at.% of Ag were achieved in the coatings. The macroscopical observation of the surface 

of the coatings, allowed to observe their instability when stored in atmospheric 

conditions. In fact, the initial dark grey color of the as-deposited state was gradually 

changed to a white appearance which, according to EDS analysis, was due to the 

enrichment of Ag in the coatings surface. This Ag rich layer was responsible for the 

degradation of the tribological behavior of the coatings, since the graphitized carbon-

carbon tribological pair, characteristic of low friction, was replaced by an Ag-Ag contact 

with the inherent increase in the friction. With the used co-sputtering method, the size 

of the Ag nanoparticles increased significantly with the amount of Ag incorporated in 

the coating. This relationship leads to limitations in the coatings design since it was not 
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possible to control independently the amount and the size of the incorporated 

nanoparticles . It should be also noted another major disadvantage of this method: the 

poor reproducibility. Due to the differences in the erosion rate of the base target and 

the pellets, non-uniform distribution of the alloying element, either over large substrate 

areas or along the deposition time, is achieved. Thus, alternative deposition methods for 

the nanocomposite Ag/a-C coatings had to be tried. Plasma gas condensation (PGC) is 

a bottom-up physical method for the production of different kinds of nanoparticles, 

implemented few decades ago by Haberland. Since then, a large number of studies in this 

deposition method have been performed, mainly focused on the physical aspects related 

with the nanoparticles growth and the influence of the deposition parameters on the 

nanoparticles size. Up to now, the co-deposition of nanoparticles by PGC in a matrix 

coating produced by magnetron sputtering has not yet been reported, although 

Biederman and co-workers have studied already this approach using chemical vapor 

deposition methods for the matrix production. Then, in this thesis, the deposition of 

Ag/a-C coatings has been explored, by combining PGC and MS for Ag nanoparticles and 

a-C matrix production, respectively. Firstly, the influence of the main deposition 

parameters (current density and Ar flow) on the Ag particles size distribution was 

studied in PGC, having been concluded that distributions were broad and cannot be 

easily controlled and varied. This issue could be solved by the implementation of a mass 

filter which would allow to select the desired particle size. Besides the problems 

associated with the huge particle size distribution, the concentration of Ag particles over 

the substrate surface is very heterogeneous; following the substrate rotation direction 

the problem can be overcome but, in the transversal direction homogeneous chemical 

composition can be achieved only in a few centimeters. Therefore, as a first conclusion, 

PGC  method can only be an alternative if much more intensive experimental work is 

performed to enlarge the covered area to make this method suitable not only for 

academic research but also for industrial applications. Therefore, with the problems 

encountered with both the above described methods, in the thesis core work, Ag/a-C 

coatings were deposited by dual magnetron sputtering, from two independent targets: 

Ag and C. The minimum and maximum power densities possible to be applied to the Ag 

and C targets, respectively, were used to allow to reach a final chemical composition of 

approximately 20 at.% of Ag and 80 at.% of C. Any other possible power combination 

would lead to an excessive Ag content, out of the desired for the study. Two  
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nanocomposite coating thicknesses, 250 nm and 1000 nm, were deposited in order to 

achieve different coatings morphology. Moreover, for specific studies, two multilayer 

coatings were produced: (i) an Ag/a-C(250) with a carbon barrier layer of 75 nm on the 

top and (ii) an Ag nanoparticles layer deposited by PGC with an a-C layer of 30 nm for 

encapsulation. Finally, an a-C(1000) coatings was also deposited as reference for the 

evaluation of the functional properties. To confirm the formation of the nanocomposite 

structure, a very thin Ag/a-C nanocomposite was deposited on a TEM grid with a carbon 

layer. A high density of Ag nanoparticles with a size of about 3 nm were observed 

inserted in an amorphous matrix, with additional bigger Ag particles with about 20 nm 

in size. The SEM analysis performed in the Ag/a-C(250) and Ag/a-C(250)+a-C(75) 

allowed to confirm the presence of 20 nm sized Ag particles only on the surface of the 

monolayer coating. The absence of Ag particles on the bilayer coating, in both surface 

and cross-section observation, suggested a bimodal distribution with 20 nm sized 

particles sitting on coatings surface, if lateral coalescence is allowed, while the bulk is 

composed of Ag nanoparticles 3 nm size. This hypothesis was confirmed by GIXRD 

analysis of the Ag/a-C layers at different incidence angles. This method allowed to 

differentiate Ag diffraction signals from the surface and the bulk, and Ag particle size 

determined by Scherrer method gave values close to those observed by TEM.  The 

cross-sectional observations of Ag/a-C(1000) and Ag/a-C(250) coatings showed 

columnar and featureless morphologies, respectively. 

 Chapter V was devoted to the understanding of the coatings stability with time 

as well as of the possible Ag diffusion mechanisms intervening in the process. The thinner 

and compact Ag/a-C(250) coating was stable with time in atmospheric conditions, while 

the thicker and columnar one formed an Ag rich surface layer, forming nanowhiskers 

with about 10 nm of diameter and hundreds of nanometers in length. GDOES depth 

profiling confirmed that the thinner coating was stable during a period of 6 months; in 

the thicker coating, the presence of an Ag rich surface layer was confirmed, with Ag 

decreasing in the bulk from 18 at.% down to 14 at.% homogeneously across the entire 

coating thickness. This results suggest that Ag is moving from the interface with the 

substrate within the nanocomposite column boundaries, agglomerating and obliging Ag 

to sort as nanowhiskers, which diameter is similar to the column boundary spacing. In 

order to get some insight about Ag mobility within the compact a-C layers, an Ag 

nanoparticles layer was covered with a 30 nm thick a-C layer and observed by TEM in 
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an in-situ heating experiment. The a-C layer completely prevented the Ag nanoparticles 

sintering, opposing to the results of a similar experiment without additional barrier layer, 

reported in the literature. These results strongly suggest that Ag is immobile when inside 

the compact a-C layers, contrasting with its easy movement along free spaces, such as 

the column boundaries or the outwards surface. The influence of the humidity in the 

coatings stability was also accessed. The coatings stored in low humidity levels are stable 

with time, while increasing the humidity levels promoted the formation of big particles 

sizes and Ag nanowhiskers on the surface. GIXRD results revealed that the particles 

grew through a coalescence process and not by agglomeration. Moreover, neither 

changes in the stress state nor the formation of oxides occurred with time, phenomena 

found in the whiskering of soft metals. In this sense, the exact mechanism of Ag 

whiskering still remains unclear. Nevertheless, the observation of the coalescence 

growth mechanism suggests a dissolution-precipitation growth mechanism. More 

detailed studies with simulation and experiments with in-situ TEM observation of the Ag 

growth in different humidity levels are required. 

 The final Chapter of the thesis aimed to analyses the coatings functional 

properties. As suggested by the thesis title, the main goal was to develop antibacterial 

surfaces, for a wide range of applications (indwelling medical devices, surgical 

instruments, food packages, among others). In order to get some insights about the 

influence of Ag nanocomposites ageing on the ionization rate and, consequently, on the 

antibacterial activity, an Ag/a-C(1000) coating was compared in the as-deposited and the 

aged states with a reference a-C coating with similar thickness. The Ag ionization rates 

measured over a period of 1 month showed a linear increase over a period of 7 days; 

thereafter the Ag ionization was stabilized. Both as-deposited and aged coatings showed 

a similar behavior, despite the higher initial Ag particle size found in the aged coating. 

The stabilization in the Ag ionization rate was related with the formation of AgCl crystals 

detected in SEM/EDS analysis. In dry sliding conditions, the presence of Ag increased the 

CoF and wear rate of the coatings; nevertheless, in Hank´s Balanced Solution (HBSS) 

and HBSS with bovine serum albumin (BSA) wear was detected neither in a-C nor in 

Ag/a-C coatings. The dominant role of albumin, determines the friction behavior and 

protects the coatings from wear.  

As a final conclusion, the results achieved showed that the Ag/a-C system seems 

to be promising for application as antibacterial coating. Nevertheless, more studies are 
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needed in order to reach the best compromise between antibacterial activity and 

biocompatibility. In addition, the long term antibacterial activity must be evaluated in 

more severe test conditions at longer times. Finally, more intensive research is required 

to optimize the tribological behavior of the coatings in real conditions, especially in what 

concerns the coatings interfacial strength.  
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Annex I 
 

This Annex aims to provide all the details about the calculations related with the 

determination of:  

 % of Ag-NP sitting in column boundaries and interfaces; 

 Determine if it is possible to form Ag fibers with the amount of Ag-NP present 

in the column interfaces; 

 Determine the influence of coating´s morphology (columns diameter and 

intercolumnar spacing) on the fibers heigth/length. 

This Annex aims to complement the results presented in Chapter V – Section 5.1.  
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1.Determination of the distance between two Ag nanoparticles 

According to EPMA analysis the chemical composition in terms of weight % is: 28.30 

wt. % C; 70.19 wt. % Ag and 1.50 wt. % O. These values are used to estimate the % of 

volume of C and Ag; the weight values are rounded to 70 wt. % Ag and 30 wt. %C, and 

the oxygen is not considered in the analysis. The volume is determined through the 

equation: 

𝜌 =
𝑚

𝑉
 

(A.1) 

The ρ values considered were 10.5 g/cm3 1 for Ag and 2.2 g/cm3 for carbon, which 

represent the theoretical density values of bulk Ag and sputtered carbon a-C, according 

to Robertson2. Accordingly, two equations can be found, which allow to predict the % 

of volume of each of the elements: 

𝑚𝐴𝑔

𝑀𝑇
= 10.5𝑔/𝑐𝑚3𝑉𝐴𝑔  

(A.2) 

𝑚𝐶

𝑀𝑇
= 2.2𝑔/𝑐𝑚3𝑉𝐶 

(A.3) 

Where mC and mAg are the carbon and silver mass and MT the total mass, 

considering 𝑚𝐴𝑔 + 𝑚𝐶. 

Accordingly, the volume % of each element will be: 

𝑉𝐴𝑔 = 33% 

𝑉𝐶 = 67% 

 

The GIXRD results reveal an Ag grain size of 2-3 nm, and according to the 

HRTEM cross-sectional observation the Ag nanoparticles size is around 2.5 nm. Despite 

some heterogeneities in Ag size distribution and also on its dispersion in the matrix as 

suggested by TEM analysis, in this calculations it is assumed that the sample is perfectly 
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homogeneous – the particles all have exactly the same size (Ø=2.5 nm) and the distance 

between two particles is always constant, with a length 𝑙. The Ag distribution is imagined 

as shown in the figure below, in an array that resembles the cubic primitive cell. 

 

Figure A I 1– Schematic representation of Ag distribution in a-C coating 

 

If we imagine this type of distribution of Ag nanoparticles in the matrix, than the 

calculation of the distance 𝑙 is very simple. Assuming that each Ag particle is a sphere of 

diameter Ø=2.5nm, the volume of one Ag nanoparticle is: 

𝑉 =
4

3 
Π𝑅3 

(A.4) 

𝑉 = 8.2 𝑛𝑚3 

 

Knowing that this value represents 33% of the total volume, then the volume of one cell 

is: 

𝑉 = 24.85 𝑛𝑚3 

 

Which means that 𝑎 = 2.9 𝑛𝑚.  Each side, 𝑎, is occupied by two spheres radius, which 

means that the distance between two successive Ag nanoparticles is: 



Annex 

 

181 

 

𝒍 = 2.9𝑛𝑚 − 2.5𝑛𝑚 = 𝟎. 𝟒𝒏𝒎 

2. Determination of the number of Ag nanoparticles in one column and at 

the surface of a column 

 The SEM top-view micrographs allowed to determine the mean dimensions of a 

column. As previously shown in Chapter V. Section 5.1, the polymer and SS316L coated 

Ag/a-C samples show different morphologies, thus, for each type of coating different 

column diameters, column spacing’s and thicknesses must be considered. The SEM 

images used in the determination of column diameters are shown in the figure A1 2. The 

mean size of major and minor dimensions were determined taking into account the 

dimensions of 5 columns (see Table A1 1), which are indicated in the SEM micrographs 

shown in figure A1 2.  

  

Figure A I 2– SEM micrographs of Ag/a-C coatings deposited on (a) polymer foil and (b) SS316L with 

indication of column´s diamet 

 

 Table A I 1– Mean dimensions of columns present in Ag/a-C coatings deposited on polymer foil and SS316L 

 Polymer Foil SS316L 

 Major Minor Major Minor 

1 300 256 190 108 

2 395 281 122 98 

3 487 419 176 175 

4 477 339 103 82 

5 256 306 196 129 

Mean 383±103 320±63 157±42 118±36 

 

1 µm

(a) (b)
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 The SEM micrographs presented in figure A1 2 indicate that the column size in 

each coated substrate shows a wide size distribution. Nevertheless, in order to get some 

insight about the mean size 5 columns with different sizes were selected. The results 

shown in the SEM micrographs and Table A1 1 indicate that the polymer coated Ag/a-C 

nanocomposite shows a higher column diameter in relation to SS316L coated 

nanocomposite.  

 

How many Ag nanoparticles exist in one single column? 

Let’s imagine the column as a cylinder shaped with a radius of 𝑅 = 175 𝑛𝑚 and 

height of ℎ = 750 𝑛𝑚 (in case of polymer foil coated Ag/a-C) where Ag nanoparticles 

are spheres with a diameter Ø=2.5 nm. In this situation the total volume of the column 

as well as the carbon and Ag nanoparticles volumes, based on the above 66% / 33% ratio, 

can be calculated. Then, from the individual volume of each nanoparticle, the total 

number of Ag nanoparticles in one single column can be determined. A similar approach 

is used for SS316L coated sample, where the 𝑅 = 68.8 𝑛𝑚 and ℎ =

1000 𝑛𝑚 dimensions are considered. Accordingly the number of Ag nanoparticles in a 

single column can be estimated following the calculations provided in Table A1 2.  

Table A I 2– Determination of number of Ag-NP in a column 

 Polymer Foil SS316L 

Column Volume (nm3) 𝑉𝑇 = 𝜋ℎ𝑅2 

7.22*107 1.49*107 

Carbon volume in 1 column 

(nm3) 

𝑉𝐶 = 0.67 ∗ 𝑉𝑇 

4.83*107 9.96*106 

Ag volume in 1 column (nm3) 𝑉𝐴𝑔 = 0.33 ∗ 𝑉𝑇 

2.38*107 4.91*106 

Volume of 1 Ag sphere (nm3) 
𝑉𝑛𝑎𝑛𝑜𝐴𝑔 =

4

3
𝜋𝑅3 

 8.18 

Number of Ag-NP in 1 

column 

2.91*106 6.00*105 
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How much of Ag-NP are sitting in column boundaries, coating´s surface and 

interface with substrate? 

Knowing the total number of Ag nanoparticles in the column we can now estimate 

if all these particles are sitting in the column interfaces (means column boundaries and 

top of a column in interface with air and bottom of a column in interface with substrate). 

Let´s imagine the column boundary surface as a rectangle (2D projection of cylinder 

outer surface) with a length similar to the perimeter of the base and the width similar 

to the column height (see figure A1 3). The surface area of this rectangle represents the 

column boundaries surface area and it is given by: 

𝐴𝐶𝐵 = 2𝜋𝑅ℎ 

The surface area of the top and bottom of one column is given by: 

𝐴𝑠 = 𝜋𝑅2 

The total surface area of one column interface is the sum of the column boundary area, 

coating´s top surface (interface with air) and bottom surface (interface with substrate) 

areas, which is given by: 

 

𝐴 = 2𝜋𝑅ℎ + 2𝜋𝑅2 

  

Considering that the particles have a Ø = 2.5 𝑛𝑚 and are separated by a distance 𝑙 =

0.4 𝑛𝑚, then the area occupied by each nanoparticle is given by: 

𝐴𝐴𝑔 = 2.9 𝑛𝑚 ∗ 2.9 𝑛𝑚 = 8.41 𝑛𝑚2 
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Figure A1 1– 2D projection of the column interfaces (the dimensions represent the polymer foil coated 

Ag/a-C) 

Assuming this simple calculations and the total number of Ag particles in one single 

column (see Table A1 2), it is possible to determine the number of Ag particles in a 

column boundary (rectangle projected in 2D) and base (coating´s top-surface and 

interface with substrate) and the total number of Ag-NP in the column interfaces (sum 

of the Ag-NP present in column boundaries and surfaces in interface with air and 

substrate); as well as  the % of particles sitting in this surfaces. The resulted are presented 

in Table A1 3. 

Table A I 3– Number and % of Ag-NP in column boundaries, base and column interfaces 

 Number of Ag % of Ag 

 Polymer Foil SS316L Polymer Foil SS316L 

Column 

Boundaries 

9.81*104 5.14*104 3.37 8.57 

1 Base 1.14*104 1.77*103 0.39 0.29 

Column 

Interfaces 

1.21*105 5.49*104 4.15 9.15 

 

 The calculations allow to confirm that Ag nanoparticles are sitting either in 

column interfaces and also inside the columns. It also clear that the % of Ag-NP present 

in interfaces is low (about 4.15% and 9.15%), and becomes lower in columns with higher 

diameters.  
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3.Determination of the volume of Ag in column boundaries and the size of 

Ag fibers for different column boundary spacing´s 

 Consider that the coating is composed of columns with a cylinder shape where 

spherical Ag nanoparticles with 𝜙 = 2.5 𝑛𝑚 are sitting inside the column boundaries 

and also in the column interfaces (see figure A1 3), which are separated at a distance of 

𝑙 = 0.4 𝑛𝑚. Now let´s us consider that only particles sitting in the columns interfaces 

(excluding the particles in top-surface) contribute to the fibers formation. The question 

is: is it expectable that the amount of Ag sitting on these surfaces can form the 

fibers or agglomerates that are observed by SEM or TEM?  

By taking into account the number of Ag-NP present in column boundaries + number of 

Ag-NP present in the interface with substrate in one single column it is possible to 

determine the volume of Ag in this interfaces (see Table A1 4). Now if we consider that 

the fibers can only grow in between the column boundaries, their diameter should be 

similar to the column boundary spacing. This parameter is quite difficult to measure, 

nevertheless, based on this idea it is easy to determine the fibers diameter from SEM 

top-view micrographs, which should be similar to the column spacing. Once again the 

SEM top-view micrographs of polymer foil and SS316L coated samples are shown and 

the diameter of different Ag fibers is indicated.  

 

Figure A I 3– SEM micrographs of (a) polymer foil and (b) SS316L coated Ag/a-C with indication of fiber´s 

diameter 

 

By knowing the volume of Ag present in column interfaces and fibers 

diameter/intercolumnar spacing it is possible to determine the fibers height for different 

intercolumnar spacing´s. It is assumed that the fibers also show a cylindrical shape. The 

values of fibers height for different fiber diameters are shown in Table A1 4. 

1 µm

(a)

Ø=150 nm

Ø=85 nm

Ø=72.5 nm

Ø= 24 nm
Ø= 18 nm
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Table A I 4– Determination of fibers height 

 Polymer Foil SS316L 

Number of Ag 1.09*105 5.32*104 

Volume of Ag 8.96*105 4.35*105 

Fiber Ø (nm) 85 150 18 24 

Height (nm) 158 51 1709 961 

 

The results presented above clearly indicate that as the column boundary spacing 

becomes larger the height of the fibers becomes lower. This also explains why in Ag/a-

C coatings deposited over a polymer substrate no fibers are visible, while in SS316L the 

formation of large fibers is enhanced in regions with low columnar spacing and higher 

column diameter, due to the presence of larger amounts of Ag-NP. 
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Annex II 

   
 

 In this Annex the chemical composition of SS316L substrates and HBSS solution 

prepared for the tribological tests are provided. 
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Table A II 1 – Chemical composition of SS316L 

Element Wt.% 

Fe 68.40 

Cr 16.40 

Ni 11.10 

Mo 2.28 

Mn 1.30 

Si 0.39 

P 0.06 

C 0.03 

 

Table A II 2- Chemical composition of Hank´s Balnced Salt Solution prepared for tribological tests 

Component g/L 

Calcium chloride 0.1855 

Magnesium sulfide 7H20 0.204 

Potassium chloride 0.4 

Monopotassium phosphate 0.06 

Sodium bicarbonate 0.35 

Sodium chloride 8.00 

Disodium phosphate 0.0475 

 

 






