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Abstract 

Glaucoma is an optic neuropathy characterized by irreversible optic nerve 

degeneration, progressive visual field defects, and cupping of glaucomatous optic disc. 

This condition is a leading cause of blindness worldwide affecting ~67 million people with 

6.8 million bilaterally blind. Primary Open-Angle Glaucoma (POAG) is the most common 

form of Glaucoma accounting for 70% of all cases in Caucasians. This type of Glaucoma 

comprises three subtypes: POAG with adult age of onset, Juvenile Open-Angle Glaucoma 

(JOAG; onset <35 years old) and Normal Tension Glaucoma (NTG; normal intraocular 

pressure). 

  MYOC gene was the first gene identified as POAG causative and ever since 

approximately 99 sequence variations were considered Glaucoma causing disease 

mutations. 

The purpose of this study was to identify sequence variations in MYOC gene that 

may be responsible for the phenotype in a group of Portuguese POAG patients. 

In order to fulfil the objective of this work, 104 POAG patients were analyzed by a 

PCR-sequencing method. Additionally, 54 controls subjects were studied by a SNaPshot 

approach, followed by statistical analysis with GraphPad Prism v.6. Statistically significant 

differences were assumed when p < 0.05. Finally, in silico analyses were performed to 

investigate the evolutionary conservation, functional effects and transcription factor search 

in the most relevant variants identified. 

The sequencing results of the 3 coding exons and proximal splicing junctions of 

MYOC gene in 104 POAG patients allowed identifying 27 variants. From these, two 

variants are likely Glaucoma causing disease mutations and were identified in two NTG 

patients. A statistically significant association was found among females suggesting a 

possible protective effect (OR=3.29). Further studies are required to clarify the possible 

involvement of the identified variants in POAG etiology.



 

 

 

 

 

 

1. Introduction 
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Glaucoma is a group of optic neuropathies essentially characterized by a 

progressive degeneration of retinal ganglion cells (RGCs) and their axons, leading to 

excavation in the optic nerve head and, consequently, a specific, progressive and 

irreversible visual field defects (Fuse 2010). At the beginning, the slightly peripheral vision 

loss will not interfere with the daily routine and remains undetected (Janssen et al. 2013). 

Thus, until reach an advanced stage of the disease that usually consists on central vision 

loss, the majority of the patients are unaware that they have the disease and, 

consequently, remain undiagnosed and untreated (Fan & Wiggs 2010). These are the 

reason why some authors call Glaucoma as the “silent blinder” (Coleman 2000). 

This ocular pathology is a leading cause of irreversible blindness worldwide 

affecting approximately 67 million people with 6.8 million bilaterally blind (Pasutto et al. 

2012). It is estimated that this number will increase to 79.6 million in 2020 (Quigley & 

Broman 2006) and that it will become an even greater public health concern due to the 

impact that the symptoms have in the quality of life of the patients (Fingert et al. 2002). 

Glaucoma may be classified according to the origin of the disease, the age-of-

onset and the anatomy of the anterior chamber angle (Faucher et al. 2002; Fan et al. 

2006; Ray & Mookherjee 2009). 

The primary glaucomas share some clinical features including specific abnormal 

appearance of the optic nerve head, specific loss of the visual field and chronic painless 

progression (Sarfarazi, 1997). Primary Open-Angle Glaucoma (POAG), Glaucoma with 

primary etiology and open anterior chamber angle, is the most frequent type of Glaucoma 

and it may be subdivided in 3 subtypes. According to the age of onset, patients with an 

age of onset usually ranging between 3 and 35 years old (yo) are designated as Juvenil 

Open-Angle Glaucoma (JOAG), while patients with adulthood onset (usually more than 35 

yo) are classified as Primary Open-Angle Glaucoma (POAG). The intraocular pressure 

(IOP) also contribute for the classification of POAG patients distiguishing the high 

pressure Glaucoma (POAG and JOAG), with an IOP equal or higher than 21mmHg, from 

the low IOP (less than 21mmHg), known as Normal Tension Glaucoma (NTG) (Angius 
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1998; Faucher et al. 2002; Fan et al. 2006; Fuse 2010; Gemenetzi et al. 2012) (Fig. 1). 

Moreover, JOAG patients usually have a more severe phenotype with considerably higher 

IOP (Fingert et al. 2002). 

 

 

 

POAG accounts for 70% of all the Glaucoma cases in the Caucasian population 

(Bayat et al. 2008), and adult POAG accounts for approximately 2% of the same 

population in industrialized countries (Faucher et al. 2002). The variable prevalence 

among population is remarkable since in Asian surrounds 1-4% whereas in African 

countries may increase to 2-8%, suggesting a significant genetic contribution to the 

disease (Janssen et al. 2013). Alward and collaborators also mentioned the highest 

prevalence in African and African-descendents populations when compared with the 

Caucasian populations (Alward et al. 1998). The prevalence of NTG patients accounts for 

20-50% of the POAG cases (Weisschuh et al. 2005). 

Glaucoma 
POAG 

(Primary Open Angle Glaucoma) 

POAG 

Adult 

 (>35 yo) 
IOP>21mmHG 

JOAG  
(Juvenil Open Angle 

Glaucoma) 

Juvenile  

(>3  yo ≤ 35 yo) 
IOP>21mmHG 

NTG  
(Normal Tension 

Glaucoma) 

Adult 
 (>35 yo) 

IOP≤21mmHg 

Figure 1. POAG classification 
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The elevated IOP has been considered a major risk factor for Glaucoma but it is 

necessary to take in mind that the onset and progression of Glaucoma is independent of 

IOP (Sarfarazi 1997). Ageing (rising 4% from 40 to 80 years old) (Ennis et al. 2010), race 

(African-Americans have a 4-fold increased risk of developing POAG) (Kanagavalli et al. 

2004), myopia (Janssen et al. 2013), systemic hypertension (Fuse 2010; Gemenetzi et al. 

2012), demographic factors (Menaa et al. 2011), diabetes mellitus (Fuse 2010; Gemenetzi 

et al. 2012) and family history (first-degree relatives of affected individuals have 3-9 fold 

more likely to develop the disease) (Whigham et al. 2011), are other recognized risk 

factors. 

Over the years has been demonstrated that POAG has a genetic etiology (Fingert, 

2011). Several studies have been performed and POAG families carrying mutations with a 

Mendelian autosomal dominant fashion have been detected (Stone et al. 1997; Sarfarazi, 

1997; Angius, 1998). Nevertheless, it is likely that multiple genes and/or environmental 

factors contribute to the complex inheritance of POAG (Fan & Wiggs 2010). 

The importance of discovering disease causing genes has increased over the 

years. This information could be a very usefull knowledge about the pathogenesis of 

heritable eye diseases at the most basic level (Fingert, 2011). 

To date, 22 loci have been found to be linked with POAG (Table I), but only 5 

genes were already identified including: Myocilin (MYOC, GLC1A), Optineurin (OPTIN, 

GLC1E), Ankyrin Repeat and SOCS Box Containing 10 (ASB10, GLC1F), WD-Repeat 

Domains 36 (WDR36, GLC1G) and Neurotrophin-4 (NTF4, GLC1O) (Gray et al. 2013). 
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MYOC was the first gene identified and associated with POAG. Previously to this 

gene identification, Sheffield and colleagues mapped the GLC1A locus (GLC stands for 

Glaucoma, “1” designates Primary Open-Angle and A stands for the first linkage to the 

phenotype) comprising an interval on the long arm of chromosome 1 (1q21-q31) that was 

associated with JOAG (Stone et al. 1997). Later, this region was limited to 1q23—q25 

region (Angius et al 1998). The defective gene at this locus was finally identified as TIGR 

(Trabecular meshwork-Inducibe Glucocorticoid Response) (Stone et al. 1997). Meanwhile, 

Japanese researchers mapped this gene by FISH within chromosome 1q23-1q24 region 

and due to its homologous regions with myosin, TIGR was named MYOC (Kubota et al. 

1997). 

MYOC is abundantly expressed in ocular tissues such as ciliary body, iris, 

trabecular meshwork (TM) and trabecular beams, connective tissue and abundantly 

detected in the aqueous humor. Also the heart, skeletal muscle, stomach, thyroid, 

Table I. POAG Chromosomal loci 

Locus Location Gene Type of glaucoma 

GLC1A 1q23-q24 MYOC JOAG 

GLC1B 2cen-q13 
 

POAG 

GLC1C 3q21-q24 
 

POAG 

GLC1D 8q23 
 

POAG 

GLC1E 10p14 OPTN POAG/NTG 

GLC1F 7q35-q36 ASB10 POAG 

GLC1G 5q22.2 WDR36 POAG 

GLC1H 2p16,3-p15 
 

POAG 

GLC1I 15q11-q13 
 

POAG 

GLC1J 9q22 
 

JOAG 

GLC1K 20p12 
 

JOAG 

GLC1L 3p22-p21 
 

POAG 

GLC1M 5q 
 

JOAG 

GLC1N 15q22-q24 
 

JOAG 

GLC1O 19q13.3 NTF4 POAG/JOAG/NTG 

GLC1P 12q14 
 

NTG 

GLC1Q 4q35.1-q35.2 
 

POAG 



Filipa Ferreira, 2014  6 

trachea, bone marrow, thymus, prostate, small intestine and colon show MYOC 

expression (Kanagavalli et al. 2004; Gobeil et al. 2006; Lopez-Martinez et al. 2007; 

Menaa et al. 2011). 

The human MYOC gene is composed by three exons of 604, 126, and 782 base 

pairs (bp) which encodes a 55 to 57 kDa acidic glicoprotein with a total of 504 amino acids 

(Tamm, 2002; Fan et al. 2006). The region of the gene that encodes the promoter 

contains several DNA sequences that are essential for its expression at the basal 

transcriptional level (Fingert et al. 2002). Also a upstream regulatory factor (USF) that 

binds to E-box its critical for basal transcription of MYOC in TM cells and astrocytes 

(Kirstein et al. 2000). Besides that, multiple steroid response elements were also identified 

and studied in this region. This data could explain the fact of myocilin has an elevated 

expression in TM cells induced by glucocorticoids (Nguyen, 1998). 

Myocilin protein is formed by three known domains as demostrated in Fig. 2. The N-

terminal region of the gene contains a signal peptide that targets myocilin to secretion via 

secretory pathway, and an α-helical coiled coil domain (also known as myosin-like 

domain), which contains therein a leucine zipper motif, possibly involved in myocilin-

myocilin interactions. There are some evidences that myocilin may form dimers/oligomers 

through the leucine zipper motif (Fingert et al. 2002; Kanagavalli et al. 2004; Qiu et al. 

2014). Lastly, this protein is largely composed by an olfactomedin-like domain (OLF) at 

the C-terminal region which is structurally organized in β-sheets (Kanagavalli et al. 2004). 

A functional analysis of myocilin domains demonstrated that changes in coiled-coil/leucine 

zipper regions prevented the adhesion of the mutated myocilin to the Extracellular Matrix 

(ECM) or/and to the cell surface, and that OLF integrity is critical for myocilin folding and 

failure in this process cause myocilin sequestration (Adam et al. 1997; Gobeil et al. 2006). 
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Despite MYOC has been the first gene associated with POAG its functions are still 

unclear. However, some data suggest two possible mechanisms of myocilin function in 

the pathophysiology of Glaucoma, the insufficient levels of secreted myocilion and/or an 

impaired function of Human Trabecular Meshwork (HTM) cells resulting from the 

congestioned secretory pathway (Jacobson et al. 2001). These facts lead to an increased 

resistance of aqueous humor (AH) outflow, while the maintenance of MYOC mutant forms 

within the HTM cells cause citotoxicity and programmed cell death ( Jacobson et al. 2001; 

Sohn et al. 2002; Fingert, 2011). 

Several studies have been performed to identify mutations in MYOC gene that 

may be considered responsible for the POAG phenotype. It is estimated that 2-4% of the 

identified mutations in this gene are responsible for POAG and up to 22-36% were found 

in JOAG cases. Furthermore, MYOC gene mutations have been found in Caucasian, 

Asian and African-American populations of POAG patients (Takamoto & Araie 2014). 

Moreover, MYOC gene mutations were found in German and Spanish NTG patients 

(Weisschuh et al. 2005; Lopez-Martinez et al. 2007). Additionally, the prevalence of NTG 

was previously reported as higher in the Japanese population than in other populations, 

which may indicate the existence of specific MYOC mutations in the Japanese patients 

with NTG phenotype (Mabuchi et al. 2001; Takamoto & Araie 2014). 

33 74 184 246 501 

  Signal 
peptid Olfactomedin-like domain   Leucine 

zipper  

117 166 

Myosin-like domain 

Figure 2. Schematic representation of human myocilin protein. Colored areas 

mark the position of the signal peptide, the leucine zipper-like motif and the 

myosin-like domain (N-terminal region), as well as the olfactomedin (OLF)-like 

domain (C-terminal region). Adapted from (Tamm, 2002) and (Menaa et al. 2011). 
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Some missense variants within the MYOC gene exon 3 were deeply studied and 

revealed a change in the protein function. It is already known that TM cells participate in 

trabecular extracelular matrix turnover, and that this tissue is responsible for AH outflow 

regulation (Ueda et al. 2000; Sohn et al. 2002). MYOC mutations have been implicated on 

the increased resistance of HTM outflow which, consequently, increases IOP. 

Myocilin is a glicoprotein localized in multiple sites intra and extracellularly of TM 

cells (Ueda et al. 2000). Several studies have been performed in trabecular tissue and 

cultured cells demonstrating that myocilin is an extracellularly secreted protein, but a 

substancial part is present in the endoplasmic reticulum (ER) (Sohn et al. 2009). 

Otherwise, mutant forms of MYOC, such as Pro370Leu (responsible for the most severe 

phenotype, as much as it is known) and the most common Gln368X, are not secreted, 

keeping up retained in the cells and affecting the ER (Adam et al. 1997; Fingert et al. 

1999; Qiu et al. 2014). The authors concluded that the truncated protein also form 

oligomers with wyld-type form of myocilin supressing its secretion (Jacobson et al. 2001). 

Some promoter variants such as -8C>T, -126T>G, -78T>G and -77G>A were 

found in POAG patients (Saura et al. 2005) These variations of sequence could change 

the association of the transcription factors with MYOC consensus sequence, changing the 

transcription rate and, consequently, altering the regulation and the expression of the 

gene. 

 

 
1.1. Purpose 
 

The aim of the present study was to identify sequence variations in MYOC gene 

that could be responsible for the phenotype in a group of Portuguese POAG patients. 

Additionally, determine the most relevant mutation in such population using bioinformatic 

tools and statistical analysis was also a goal. 
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2.Methodology 
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2.1 Human subjects 
 

Clinical characterization of the 104 POAG patients’ was performed at the 

Ophthalmology Department of the Centro Hospitalar e Universitário de Coimbra, E.P.E. by 

Dr. Moura Pereira and Dr. Pedro Faria. This study was approved by the Faculty of 

Medicine, University of Coimbra Ethics Committee, following the Tenets of the Declaration 

of Helsinki and a written consent for genetic testing was obtained from adult probands or 

parents of minor patients. 

All patients underwent a detailed ophthalmologic examination to ensure the 

diagnosis of POAG including: 1) exclusion of secondary causes, 2) open drainage angle 

on gonioscopy (Shaffer’s grading III-IV), 3) presence of typical glaucomatous optic disc 

damage (excavation) and 4) visual field defects detected by automated perimetry (with 

Humphrey’s perimeter). The IOP was also evaluated since ocular hypertension is a major 

risk factor for Glaucoma and allows distinguishing POAG subtypes. Accordingly, patients 

with POAG or JOAG subtypes have IOP above 21mmHg while NTG patients present with 

IOP less than 21mmHg. Likewise, the age of onset contributed to distinguish adult POAG 

patients from the JOAG that presented an onset comprised between 3 and 35 yo. 

The patients group consisted of 52 males and 52 females with an average age of 

73   10 years, ranging from 36 to 88 yo (Table II). The control samples were obtained 

from the Laboratório de Hematologia do Centro Hospitalar e Universitário de Coimbra 

E.P.E. from the general population. The control subjects included 28 males and 26 

females with an average age of 48   17 years, ranging from 21 to 80 yo (Table II). 
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2.2 DNA Extraction and quantification 
 

The POAG patients and controls peripheral blood was collected in EDTA Tubes 

SARSETED and the DNA was extracted using a standard phenol–chloroform method 

followed by ethanol precipitation (Ausubel et al. 2003). 

The extracted DNA was quantified by spectrophotometry at optical density of 260nm 

using the NanoDrop™ 1000 (Thermo Fisher Scientific, Inc.) and the GeneQuant™ II 

(Pharmacia Biotech). 

 

 
2.3 Polymerase chain reaction 
 

Individual exons and adjacent regions of MYOC gene were amplified by Polymerase 

Chain Reaction (PCR) technique using the Primers designed with Primer3 software 

(http://bioinfo.ut.ee/primer3-0.4.0/primer3/) (Table III) and the reference MYOC gene 

sequence obtained from NCBI database (http://www.ncbi.nlm.nih.gov/gene/). The PCR 

technique was performed on a Veriti® Thermal Cycler (Applied Biosystems). The PCR 

reactions were performed using 50-200ng of genomic DNA mixed with the following 

reagents: 1X Taq Buffer 10X (with (NH4)2SO4) (Fermentas) 0.2µM of Forward and Reverse 

Table II. Subjects characteristics 

 n Age Gender 

Patients 104 

Average = 73 
SD = 10 
Min  = 36 
Max = 88 

52 M 
52 F 

Controls 54 

Average = 48 
SD = 17 
Min  = 21 
Max = 80 

28M 
26F 
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Primers (Sigma-Aldrich), 1.5mM MgCl2 (Fermentas), 0.2mM dNTPs (5PRIME), 1U Taq 

Polymerase (Fermentas) and RNAse/DNase free Water (AccuGENE) to a final volume of 

10µl. The reaction mixture were subjected to a specific PCR program with an initial 

denaturation step of 5 minute (min) at 95ºC followed by 35 cycles, each with denaturation at 

95°C for 30 seconds (sec), annealing at 59-63°C for 30 sec, and extension for 1 min at 72°C, 

with a final elongation step of 10 min at 72°C. 

 

 

 

 

2.4 Electrophoresis 
 

PCR products underwent an electrophoresis on an agarose gel containing 1% 

agarose SeaKem LE (Lonza) and 1% ethidium bromide (Acros/Fisher Bioreagents) in 1x Tris 

Borate EDTA (TBE) solution (National diagnotics). The products with a Loading Buffer 

(BIORAD) migrated under an electric current of 200 volts for 15 minutes. A NZY DNA Ladder 

VI (NZYTech) was also used to estimate the size of the fragments and respective 

quantification by comparison with the Molecular Weight Marker. The fragments were 

visualized through UV light in the ChemiDoc™ XRS System and respective System with 

Image Lab™ Software (BIORAD). 

Table III. Primers used for amplification of MYOC gene exons 

 Primer sequence (5' - 3') 

Exon 1 F: GGTGCATAAATTGGGATGTTC 

R: GAATTAAGGAAAGCACAGCGA 

Exon 2 F: AACCAGCCCTTCTAGTGGAAT 
R: CTATCACCCACACTTGGGAG 

Exon 3 F:TGTCAATAACATGAAACACAGATTGAT 
R: GGAATTGTAGTCTGAGGGCGT 
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2.5 Purification of PCR products 
 

The amplified PCR products were purified using 1µl of ExoSAP-IT® (USB)/4µl of 

amplified PCR product, incubated at 37ºC for 1 hour (h) followed by 15 min at 75ºC on a 

Veriti® Thermal Cycler (Applied Biosystems). 

 

 
2.6 Sequencing reaction 

 

Sequencing reactions were performed with 10ng of PCR products, 1X BigDye® 

Terminator 5X Sequencing Buffer (Applied Biosystems), 0.16µM of Forward or Reverse 

Primer (Sigma-Aldrich), BigDye® Terminator v3.1 according to manufacturer 

recommendations (Applied Biosystems) and RNAse/DNAse free Water for a final volume of 

10µl. The Primers used were the same as for PCR products amplification (Table III). 

Sequencing reaction was run on a Veriti® Thermal Cycler (Applied Biosystems) using the 

following conditions: an initial denaturation step of 2 min at 96ºC followed by 25 cycles each 

of a denaturation at 96ºC for 5 sec, annealing at 59-63ºC for 10 sec, followed by one last 

step of elongation at 60ºC for 4 min. 

 

 
2.7 Purification of Sequencing reaction products 
 

A total of 8µl of RNAse/DNAse free Water and 32µl of 95% ethanol (Merck) were 

independently added to each Sequencing reaction product followed by capping and inversion 

of the plate for mixing the reagents. After 15 min of rest at room temperature (RT), the 

solution was subjected to a centrifugation at 2500 × g for 30 min). The supernatants were 

discarded in a paper towel and the samples were washed with 75µl 70% ethanol (Merck). 

The plate was capped and inverted a few times, followed by centrifugation at 2000 x g during 
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10 min. The supernatants were discarded as previously and the inverted plate on a paper 

towel was centrifuged at 700 × g for 1 min. Purified Sequencing reaction products were 

resuspended with 10 µl of HiDi™ (Applied Biosystems) and denatured at 96ºC for 5 min on a 

Veriti® Thermal Cycler (Applied Biosystems) previously to be analyzed by Capillary 

electrophoresis. 

 

 
2.8 Capillary electrophoresis 

 

Automated capillary DNA sequencing was performed on a Genetic Analyzer 3130 

(Applied Biosystems) equipment. DNA sequencing data obtained was analyzed using 

Sequencing Analysis Software v.5.4® (Applied Biosystems) and SeqScape v2.5® (Applied 

Biosystems), that allowed the identification of MYOC gene variants by comparison with gene 

reference sequence (http://www.ncbi.nlm.nih.gov/sites/entrez). 

 

 
2.9 SNaPshot analysis 

 

SNaPshot reactions were performed with 1µl of previously purified PCR product 

added to SNaPshot Ready Multiplex Reaction Mix (Applied Biosystems) according to 

manufacturer recommendations, 0.4 µM of each Primer (Table IV) and RNAse/DNAse free 

Water up to a final reaction volume of 5μL. Extension reactions were achieved on a Veriti® 

Thermal Cycler (Applied Biosystems) for 25 cycles under the following conditions: 96ºC for 

10 sec, 50°C for 5 sec and 60°C for 30 sec. After the SNaPshot reactions the products were 

treated with 1µl of Shrimp Alkaline Phosphatase ® (SAP) (USB) at 37ºC for 60 min followed 

by 15 min at 75ºC. Subsequently, 1µl of purified SNaPshot reaction product was mixed with 

0.125µl of GeneScan™-120 LIZ™ (Applied Biosystems) size standard and 8.875µl of HiDi™ 

(Applied Biosystems), and denaturated for 5 min at 95ºC. Afterwards, the denatured 
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SNaPshot reaction products were subjected to a capillary electrophoresis on a Genetic 

Analyzer 3130 (Applied Biosystems) and the results were analyzed with the GeneMapper 

v.4.1 Software (Applied Biosystems). 

 

 
2.10 Statistical analysis 
 

The SNaPshot results of the polymorphic sequence variations were analyzed with 

GraphPad Prism v.6. The standard    test with contingency tables was used to test for 

deviation from the Hardy-Weinberg Equilibrium and to compare the genotypic and allelic 

frequencies in affected and control groups. Statistically significant differences were assumed 

when p < 0.05. 

 

 
2.11 In silico analysis 
 

The evolutionary conservation study, both in nucleotides and in amino acids 

sequences, included primate species that have several similarities with humans (Homo 

sapiens), such as Chimpanzee (Pan troglodytes), Gorilla (Gorilla gorilla), Macaque (Macaca 

mulatta) and Orangutan (Pongo abelli), and non-primates species such as Mouse (Mus 

musculus), Rat (Rattus norvegicus) and Zebrafish (Danio rerio). The www.ensembl.org was 

the genome database used for all necessary species sequences. 

The prediction of functional effects of the sequence variations on proteins was 

performed using the PolyPhen-2® software (genetics.bwh.harvard.edu/pph2/) and the 

PROVEAN® software (provean.jcvi.org/seq_submit.php). 

The evaluation of transcription factors binding site was performed using TFSEARCH® 

(Searching Transcription Factor Binding Sites (ver 1.3)) online software 

(www.cbrc.jp/research/db/TFSEARCH.html). 
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Table IV. Primers designed for the SNaPshot analysis 

Genetic variations 
Primers 

(length/direction) 

c.-224T>C 30F: CTTTTTAAAAAGAAACTCCAAACAGACTTC 

c.-126T>C 35R: AGAGAGGTTTATATATACTGGGGAGCCAGCCCTTC 

c.-190G>T 40R: GTGAGGCTGGGTGGGGCTGTGCACAGGGGGGTTGCCTTCA 

c.1193A>G 
(Lys398Arg) 

45F: TGGATGAAGCAGGCCTCTGGGTCATTTACAGCACCGATGAGGCCA 

c.-83G>A 50R: CTCTGCTGTGCTGAGAGGTGCCTGGATGGGTGGCCTTGCTGGCTCATGCC 

c.1334C>T 
(Ala445Val) 

55R: CAGGGTCTTGCTGATACCTGTGCCTGTGTCATAAGCAAAGTTGACGGTAGCATCT 

c.227G>A 
(Arg76Lys) 

60R: TCCAGGGAGCTGAGTCGAGCTTTGGTGGCCTCCAGGTCTAAGCGTTGGGTGCTGCTGTCT 

c.877G>T 
(Thr293Lys 

65R: CCTTAGAAGGGTAGCCCTGCATAAACTGGCTGATGAGGTCATACTCAAAAACCTGGCGGACATCC 

The nomenclature used in Table IV for sequence variations is according to den Dunnen and Antonarakis, 2000. 
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3. Results 
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3.1 Sequencing analysis of MYOC gene 
 

After PCR-sequencing analysis of 104 POAG Portuguese patients it was possible 

to identify at least one genetic variant in MYOC gene exons or their adjacent regions. In 

total, 27 different sequence variations were found, including 11 coding and 16 non-coding 

variants (Table V). From the coding variants 4 were missense alterations [c.227G>A 

(Arg76Lys), c.878C>A (Thr193Lys), c.1193A>G (Lys198Arg) and c.1334C>T (Ala445Val)] 

and 7 were synonymous variants [c.39T>G (Pro13Pro), c.141C>T (Cys47Cys), c.477A>G 

(Leu159Leu), c.855G>T (Thr285Thr), c.975G>A (Thr325Thr) and c.1041T>C 

(Tyr347Tyr)]. Four sequence variations were found in the promoter region (c.-224T>C, c.-

190G>T, c.-126T>C and c.-83G>A). It is noticeable that the promoter variant c.-83G>A 

and the exon 1 alteration c.227G>A were always found simultaneously in the same 

patients, even sharing the same genotype. Finally, the adjacent regions of MYOC gene 

also revealed several non-coding variants. Intron 1 presented six variants 

(c.604+177G>A, c.605-604G>A, c.605-374G>C, c.605-332G>A, c.605-302C>G and 

c.605-280G>T), while intron 2 had six alterations (c.731-205 A>C, c.731-192 G>A, c.731-

73 C>T, c.730+35A>G, c.730+138G>A and c.730+176delCT) (Figure 3). 
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Amino acid coding variants are in bold. Abbreviations: wt - wild type; Het - heterozygotes; 

Mut - mutant 

The nomenclature used in Table V for sequence variations is according to den Dunnen 

and Antonarakis, 2000 

  

 Table V. Sequence variations identified in MYOC gene 

SNP 
Nucleotide 

position 
Amino acid 

change 

n = 104 

wt Het Mut 

rs235920 c.-224T>C - 55 TT 44 TC 5 CC 

rs76745622 c.-190G>T - 103 GG 1GT - 

rs34928744 c.-126T>C - 100 TT 4 TC - 

rs2075648 c. -83G>A - 86 GG 17 GA 1AA 

rs12082573 c.39T>G Pro13Pro 101 TT 3 TG - 

- c.141C>T Cys47Cys 103 CC 1 CT - 

rs2234926 c.227G>A Arg76Lys 86 GG 17 GA 1 AA 

rs61730977 c.477A>G Leu159Leu 102 AA 2 AG - 

rs604864 c.605-604G>A - 103 GG 1 GA - 

rs603930 c.605-374G>C - 97 GG 7 GA - 

rs41263718 c.605-332G>A - 84 GG 20 GA 1AA 

rs41263716 c.605-302C>G - 96 CC 8 CG - 

rs603490 c.605-280G>T - 26 GG 55 GT 23 TT 

rs113416006 c.604+177G>A - 102 GG 2 GA - 

rs57824969 c.612G>T Thr204Thr 103 GG 1 GT  

rs2032555 c.730+35A>G - 50 AA 46 AG 8 AA 

- c.730+138G>A - 103 GG 1 GA - 

rs144871239 c.730+176delCT - 103 1del CT - 

rs12076134 c.731-205A>C - 74 AA 30 AC - 

- c.731-192G>A - 103 GG 1GA - 

rs79255460 c.731-73C>T - 102 CC 2CT - 

rs146606638 c.855G>T Thr285Thr 103 GG 1GT - 

rs139122673 c.878C>A Thr293Lys 103 CC 1 CA - 

rs61730976 c.975G>A Thr325Thr 101 GG 3 GA - 

rs61730974 c.1041T>C Tyr347Tyr 98 TT 6 TC - 

rs56314834 c.1193A>G Lys398Arg 103 AA 1 AG - 

rs140967767 c.1334C>T Ala445Val 103 CC 1 CT - 
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Figure 3. Schematic representation of MYOC gene with all the identified genetic variations in the Portuguese population. The 

non-synonymous sequence variations are represented in red while the synonymous are represented in green. In blue are represented the 

variants located in the promoter region. In black are represented the variants located in intron 1 and 2. The two black arrows point to the 

variations that are more likely to be responsible for the phenotype. Abbreviations: E1 - Exon 1; E2 - Exon 2; E3 - Exon 3; UTR – 

Untranslated region. The nomenclature used in Figure 3 for sequence variations is according to den Dunnen & Antonarakis 2000. 
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3.2 Missense variants analysis 

 

Initially, all four missense sequence variations could be considered as candidates 

to Glaucoma causing disease mutations. However, after database search, it was possible 

to determine that the c.227G>A (Arg76Lys) and the c.1193A>G (Lys398Arg) variants 

were previously described as neutral polymorphism, since their presence was also found 

in individuals without the Glaucoma phenotype, while the c.878C>A (Thr293Lys) and the 

c.1334C>T (Ala445Val) variants were described as Glaucoma causing disease mutations 

(http://www.myocilin.com/variants.php). These last two sequence variations are located in 

MYOC gene exon 3 and result from an alteration at the second nucleotide of both codon 

293 (c.878C>A), changing a threonine by a lysine (Thr293Lys), and codon 445 

(c.1334C>T), changing an alanine by a valine (Ala445Val) (Fig. 4). These missense 

variants were identified in two male patients with an average age of diagnosis of 76 years 

old and presenting the NTG subtype (Table VI). 

 

 

The nomenclature used in Table VI for sequence variations is according to den Dunnen 

and Antonarakis, 2000

Table VI. Clinical features of Glaucoma patients with MYOC variants 

Glaucoma causing disease 

alteration 

Subtype of 

Glaucoma 

Age of 

diagnosis 
Gender 

c.878 C>A 

T293K 
NTG 75 M 

c.1334C>T 

A445V 
NTG 77 M 
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A C>A 

ACG>AAG

Thr293Lys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Electropherograms of the region surrounding the two variants candidates 

to Glaucoma causing disease mutations. A. Heterozygous transversion of a C to an A 

at nucleotide 878, changing the codon ACG to AAG and causing a Threonine to Lysine 

amino acid substitution at position 293. B. Heterozygous transition of a C to a T at 

nucleotide 1334, changing the codon GCA to GTA and causing an Alanine to Valine 

amino acid substitution at position 445. The nomenclature used in Figure 4 for sequence 

variations is according to den Dunnen and Antonarakis, 2000 

 

C>T B 

GCA>GTA

Ala445Val 
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3.3 SNaPshot analysis 

 

In order to understand if a variant is a mutation or a polymorphism it is necessary 

to determine its frequency in a group of normal individuals. Accordingly, a group of 

variants that were likely responsible for the POAG phenotype were selected and analyzed 

in a cohort of control subjects using a SNaPshot approach. Therefore, the missense 

variants in exon 1 (c.227G>A) and exon 3 (c.878C>A, c.1193A>G and c.1334C>T), and 

the promoter variants (c.-224T>C, c.-190G>T, c.-126T>C and c.-83G>A) were all selected 

and analyzed. The following electropherograms (Fig. 5) show the different genotypes (wild 

type, heterozygous and mutant) identified for each sequence variation selected. The 

complete genotyping results are shown in table VII. It is noticeable that control samples 

only presented the wild type genotype for variants c.-190G>T, c.878G>T and c.1334C>T, 

and that variants c.-224T>C, c.-83G>A and c.227G>A showed a reasonable 

heterozygosity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. continues in the next page  
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Figure 5. continues in the next page  
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Figure 5. Electropherograms of the multiplex SNaPshot analysis for the selected 

genetic variants found in POAG patients. For SNaPshot analysis, variants were 

organized accordingly to the following order: c.-224T>C, c.-126T>C, c.-190G>T, 

c.1193A>G (Lys398Arg), c.-83G>A, c.1334C>T (Ala445Val), c.227G>A (Arg76Lys), and 

c.878G>T (Thr293Lys). To each SNaPshot reaction product was added a LIZ standard 

size (orange lines in electropherograms). A. Electropherogram with heterozygous variants 

c-224T>C, c.-83C>T, c1334G>A and c.227C>T, while the remaining variants are 

homozygous; B. Electropherogram with heterozygous variants c.-224T>C and c.-190G>T, 

while the remaining variants are homozygous; C. Electropherogram with heterozygous 

variants c.-126T>C, c.1193A>G (Lys398Arg), c.227G>A (Arg76Lys), and c.878G>T 

(Thr293Lys), while the remaining variants are homozygous; D. Electropherogram with 

heterozygous variant c.1193A>G (Lys398Arg), while the remaining variants are 

homozygous. The nomenclature used in Figue 5 for sequence variations is according to 

den Dunnen and Antonarakis, 2000 
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Abbreviations: wt - wild type; Het - heterozygotes; Mut - mutant 

The nomenclature used in Table VII for sequence variations is according to den Dunnen 

and Antonarakis, 2000. 

 

 
3.4 Case-control study with MYOC variants 
 

Considering the previous SNaPshot results, a case-control study was performed 

aiming to evaluate if it is possible to establish an association between variants c.-224T>C, 

c.-126T>C, c.-83G>A and c.227G>A genotypes and/or alleles, and the disease 

phenotype. Tables VIII and IX summarize respectively, the genotypic and allelic 

frequencies, both for patients and controls, and the p value for the respective statistical 

analysis. Hardy-Weinberg equilibrium (HWE) was determined for all the variants groups of 

POAG and control samples and all the p values were not significant. None of the variants 

genotypes or alleles present a significant difference between patients and controls. Again, 

the promoter variant rs2075648 and the exon 1 alteration rs2234926 were always found 

simultaneously in the same control samples, sharing the same genotype, as previously 

seen in the POAG patients. This suggests that both variants are in linkage disequilibrium 

segregating the mutant allele always together. 

Table VII. Control subjects genotypes 

Genetic variants 
n = 54 

wt Het Mut 

c.-224T>C 31 18 5 

c.-190G>T 54 - - 

c.-126T>C 48 6 - 

c.-83G>A 38 15 1 

c.227G>A 
(Arg76Lys) 

38 15 1 

c.878G>T 
(Thr293Lys) 

54 - - 

c.1193A>G 
(Lys398Arg) 

53 1 - 

c.1334C>T 
(Ala445Val) 

54 - - 
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Abbreviation: HWE – Hardy-Weinberg Equilibrium 

The nomenclature used in Table VIII for sequence variations is according to den Dunnen 

and Antonarakis, 2000. 

 

 

The nomenclature used in Table IX for sequence variations is according to den Dunnen 

and Antonarakis, 2000. 

Table VIII. Genotypes statistical analysis 

Variants Genotypes 
Patients 
(n=104) 

Controls 
(n=54) 

p-value 
HWE p-value 

Patients/Controls 

rs235920 
c.-224T>C 

TT 
TC 
CC 

0.53 
0.42 
0.05 

0.57 
0.33 
0.09 

0.37 
 

0.76/0.74 

rs34928744 
c.-126T>C 

TT 
TC 

0.96 
0.04 

0.89 
0.11 

0.08 1/1 

rs2075648 
c.-83G>A 

GG 
GA 
AA 

0.83 
0.16 
0.01 

0.70 
0.28 
0.02 

0.20 1/1 
rs2234926 
c.227G>A 
Arg76Lys 

Table IX. Alleles statistical analysis 

Variants Alleles 
Patients 
(n=104) 

Controls 
(n=54) 

p 

rs235920 
c.-224T>C 

T 
C 

0.74 
0.26 

0,74 
0,26 

0.99 

rs34928744 
c.-126T>C 

T 
C 

0.98 
0.02 

0,94 
0,06 

0.08 

rs2075648 
c.-83G>A 

G 
A 

0.91 
0.09 

0,84 
0,16 

0.08 rs2234926 
c.227G>A 
Arg76Lys 
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Further analysis was performed taking into consideration the gender of the POAG 

patients and the controls. HWE was determined and no significant differences were found 

between patients and controls in both males and females for any of the variants. In the 

males group, the analyzed variants did not reveal any significant difference between 

patients and controls (Table X). However, in the females group, a significant difference 

was identified for the linkage disequilibrium variants rs2075648 and rs2234926 alleles, 

also presenting a borderline significant result with p value equal to 0.05 for the genotypes. 

The remaining variants did not present any significant difference (Table XI). 

 

 

The nomenclature used in Table X for sequence variations is according to den Dunnen 

and Antonarakis, 2000 

  

Table X. Males case-control study 

Variants 
Genotypes 
frequency 

 
2 HWE 

Alleles 
frequency 

 
2 

 
Patients (n=52)/ 
Controls (n=28) 

p-value 
Patients/ 
Controls 

Patients/ 
Controls 

p-value 

rs235920 
c.-224T>C 

TT 0.52/0.64 
TC 0.44/0.25 
CC 0.04/0.11 

0.16 0.64/0.46 
T 0.74/0.77 
C 0.26/0.33 

0.70 

rs3492874
4 

c.-126T>C 

TT 0.98/0.86 
TC 0.02/0.14 

0.19 1/1 
T 0.97/0.93 
C 0.03/0.07 

0.21 

rs2075648 
c.-83G>A 

GG 0.77/0.75 
GA 0.23/0.25 

0.85 0.81/1 
G 0.88/0.875 
A 0.12/0.125 

0.86 rs2234926 
c.224G>A 
Arg76Lys 
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* Marks statistically significant result. 

Abreaviatures: OR- Odds Ratio 

The nomenclature used in Table XI for sequence variations is according to den Dunnen 

and Antonarakis, 2000 

 

 
3.5 In silico analysis 

 

Computational analysis is a strong tool frequently used to predict sequence 

variations pathogenicity. In this study the in silico analysis were performed for c.878G>T 

(Thr293Lys) and c.1334C>T (Ala445Val) genetic variants described as possible 

Glaucoma causing mutations and absent in controls, variant c.-190T>C because it also 

was not found in controls, and variants c.-83G>A and c.224G>A (Arg76Lys) since a 

statistically significant association was identified between Controls and the mutant alleles 

in female subjects. 

 

 

 

 

Table XI. Females case-control study 

Variants 
Genotypes 
frequency 

 
2 HWE 

Alleles 
frequency 

 
2 

 
Patients (n=52)/ 
Controls (n=26) 

p-value 
Patients/ 
Controls 

Patients/ 
Controls 

p-value 

rs235920 
TT 0.54/0.50 
TC 0.40/0.42 
CC 0.06/0.08 

0.92 0.92/1 
T 0.74/0.71 
C 0.26/0.29 

0.70 

rs34928744 
TT 0.98/0.92 
TC 0.02/0.08 

0.21 1/1 
T 0.99/0.96 
C 0.01/0.04 

0.21 

rs2075648 
c.-83G>A GG 0.88/0.65 

GA 0.10/0.31 
AA 0.02/0.04 

0.05 0.51/1 
G 0.93/0.81 
A 0.07/0.19 

0.02
*

 

OR=3.29
 

rs2234926 
c.224G>A 
Arg76Lys 
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3.5.1 Evolutionary conservation study 
 

The evolutionary conservation study of the promoter variants (c.-190G>T and c.-

83G>A) and missense variants [c.227G>A (Arg76Lys), c.878G>T (Thr293Lys) and 

c.1334C>T (Ala445)] comparing the primate and non-primate species with the human 

nucleotide and amino acid sequences surrounding those loci was determined. 

Concerning the promoter variant c.-190G>T all the species share the same 

nucleotide (Fig. 6). On the opposite, for the c.-83G>A promoter variant all the non-

primates species and the Pan troglodytes present an A instead of a G (Fig. 7), while all 

the other primate species share the G, the same nucleotide as wild type humans (Fig. 

7A). 

The evolutionary conservation study of the missense variant c.227G>A (Arg76Lys) 

allowed to determine that all the species share the same nucleotide and amino acid with 

the exception of Macaca mulata that instead of an A presents a G causing an amino acid 

change from an arginine to a lysine (Fig. 8A), and Danio rerio that does not show any 

nucleotide or amino acid sequence for the region surrounding that locus (Fig. 8B). 

The evolutionary conservation study of the missense variant c.878G>T 

(Thr293Lys) allowed to determine that all the species share the same nucleotide and the 

same amino acid with the exception of Danio rerio that instead of an amino acid threonine 

presents a serine (Fig. 9). 

The evolutionary conservation study of the missense variant c.1334C>T 

(Ala445Val) determined that all the species share the same nucleotide and the same 

amino acid with the exception of Rattus norvegicus that instead of a C presents a T 

causing an amino acid change from an alanine to a valine (Fig. 10A) and Danio rerio that 

instead of an amino acid alanine presents a proline (Fig. 10B). 
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A 
 

Patient(c.-190G>T)   AATCTTGCTGGCAGCTTGAAGGCAACCCCCCTG 

Homo sapiens    AATCTTGCTGGCAGCGTGAAGGCAACCCCCCTG 

Pan troglodytes   AATCTTGCTGGCAGAGTGAAGGCAACCCCCCTG 

Gorilla gorilla   AATCTTGCTGGCAGCGTGAAGGCAACCCCCCTG 

Macaca mulatta    AATCTTGCTGGCAGTGTGAAGGCAACCCCCCTG 

Pongo abelii    AATCTTGCTGGCAGCGTGAAGGCAACCCCCCTG 

 

 

 

B 
 

Patient(c.-190G>T)   AATCTTGCTGGCAGCTTGA-AGG--CAACCCCCCTG 

Homo sapiens    AATCTTGCTGGCAGCGTGA-AGG--CAACCCCCCTG 

Mus musculus    --TCTTGCTGGCAGTGTGAG---TGTAATCCTCCTA 

Ratus norvegicus   AATCTTGCTGGCAGTGTGAG---TCCAATCCTCCTA 

Danio rerio    A------CT--CAG-GTGAGAGGTC--AT-----TA 

 

Figure 6. Evolutionary conservation study for c.-190G>T variant. A. Evolutionary conservation of c.-190G>T variant in primates. B. 

Evolutionary conservation of c.-190G>T variant in non-primates. The nomenclature used in Figure 6 for sequence variation is according to den 

Dunnen and Antonarakis, 2000. 
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A 
 

Patient (c.-83G>A)   ACCTCTCTGGAGCTCAGGCATGAGCCAGCAAGG 

Homo sapiens    ACCTCTCTGGAGCTCGGGCATGAGCCAGCAAGG 

Pan Troglodytes   ACCTCTCTGGAGCTCAGGCATGAGCCAGCAAGG 

Gorilla gorilla   GCCTCTCTGGAGCTCGGGCATGAGCCAGCAAGG 

Macaca mulatta    ACCTCTCTGGAGCTCGGGCATGAGCCAGCAAGG 

Pongo abelii    ACCTCTCTGGAGCTCGGGCACGAGCCAGCAAGG 

 

 

 

B 
 

Patient (c.-83G>A)   ACCTCTCTGGAGCTCA-GGCA---TGAGCCAG-CAA-GG 

Homo sapiens    ACCTCTCTGGAGCTCG-GGCA---TGAGCCAG-CAA-GG 

Mus musculus    ATGTCTTTGGACTTCA-GGC---TTGAGCCAG-CAG-GG 

Ratus norvegicus   ACCTCTTTGGATTTCA-GGC---TTGAGCCAG-CAG-GG 

Danio rerio    ACCT---TGGA---CAAGG-AGCTT----CAGGCAACAG 

 

Figure 7. Evolutionary conservation study for c.-83G>A variant. A. Evolutionary conservation of c.-83G>A variant in primates. B. 

Evolutionary conservation of c.-83G>A variant in non-primates. The nomenclature used in Figure 7 for sequence variation is according to den 

Dunnen and Antonarakis, 2000. 
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A 
Patient(c.227G>A)   ATCCATAACTTACAGAAAGACAGCAGCACCCAA    IHNLQKDSSTQ 

Homo sapiens    ATCCATAACTTACAGAGAGACAGCAGCACCCAA    IHNLQRDSSTQ 

Pan troglodytes   ATCCATAACCTACAGAGAGACAGCAGCACCCAA    IHNLQRDSSTQ 

Gorilla gorilla   ATCCATAACCTACAGAGAGACAGCAGCACCCAA    IHNLQRDSSTQ 

Macaca mulatta    ATCCATAACCTACAGAAAGACAGCAGCACCCAG    IHNLQKDSSTQ 

Pongo abelii    ATCCGTAACCTACAGAGAGACAGCAGCACCCAA    IRNLQRDSSTQ 

 

 

B 
Patient(c.227G>A)   ATCCATAACTTACAGAAAGACAGCAGCACCCAA    IHNLQKDSSTQ 

Homo sapiens    ATCCATAACTTACAGAGAGACAGCAGCACCCAA    IHNLQRDSSTQ 

Mus musculus    ATCCAAGACCTTCAGAGAGACAGCAGCATCCAG    IQDLQRDSSIQ 

Rattus norvegicus   ATCCAGGACCTTCAGAGAGATAGCAGCATCCAG    IQDLQRDSSIQ 

Danio rerio    ---------------------------------    ----------- 

 

Figure 8. Evolutionary conservation study for c.227G>A (Arg76Lys) variant. A. Evolutionary conservation of c.227G>A (Arg76Lys) variant 

in primates. B. Evolutionary conservation of c.227G>A (Arg76Lys) variant in non-primates. The nomenclature used in Figure 8 for sequence 

variation is according to den Dunnen and Antonarakis, 2000. 

.  
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A 

Patient (c.878C>A)   ATCGACACAGTTGGCAAGGATGTCCGCCAGGTT    IDTVGKDVRQV 

Homo sapiens    ATCGACACAGTTGGCACGGATGTCCGCCAGGTT    IDTVGTDVRQV 

Pan troglodytes   ATCGACACAGTTGGCACAGATGTCCGCCAGGTT    IDTVGTDVRQV 

Gorilla gorilla   ATCGACACAGTTGGCACAGATGTCCGCCAGGTT    IDTVGTDVRQV 

Macaca mulatta    ATTGACACAGTTGGCACAGATGTCCGCCAGGTT    IDTVGTDVRQV 

Pongo abelii    ATTGACACAGTTGGCACAGATGTCCGCCAGGTT    IDTVGTDVRQV 

 

 

B 
Patient (c.878C>A)   ATCGACACAGTTGGCAAGGATGTCCGCCAGGTT    IDTVGKDVRQV 

Homo sapiens    ATCGACACAGTTGGCACGGATGTCCGCCAGGTT    IDTVGTDVRQV 

Mus musculus    ATTGACACGGTTGGCACAGAGATCCGCCAGGTG    IDTVGTEIRQV 

Rattus norvegicus   ATTGACACGGTTGGCACAGGCATCCGCCAGGTG    IDTVGTGIRQV 

Danio rerio    ATTGATTCTGTCGGTTCTGAAGTGCGTCAACTC    IDSVGSEVRQL 

 

 

Figure 9. Evolutionary conservation study for c.878C>A (Thr293Lys) variant. A. Evolutionary conservation of c.878C>A (Thr293Lys) 

variant in primates. B. Evolutionary conservation of c.878C>A (Thr293Lys) variant in non-primates. The nomenclature used in Figure 9 for 

sequence variation is according to den Dunnen and Antonarakis, 2000. 
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A 
Patient (c.1334C>T)   AGCAGCTACACCTCAGTAGATGCTACCGTCAAC    SSYTSVDATVN 

Homo sapiens    AGCAGCTACACCTCAGCAGATGCTACCGTCAAC    SSYTSADATVN 

Pan troglodytes   AGCAGCTACTCCTCAGCAGATGCTACCGTCAAC    SSYSSADATVN 

Gorilla gorilla   AGCAGCTACTCCTCAGCAGATGCTACCATCAAC    SSYSSADATIN 

Macaca mulatta    AGCAGCTACTCCTCAGCAGATGCAACCGTCAAC    SSYSSADATVN 

Pongo abelii    AGCAGCTACTCCTCAGCAGATGCTACCATCAAC    SSYSSADATIN 

 

 

 

B 
Patient (c.1334C>T)   AGCAGCTACACCTCAGTAGATGCTACCGTCAAC    SSYTSVDATVN 

Homo sapiens    AGCAGCTACACCTCAGCAGATGCTACCGTCAAC    SSYTSADATVN 

Mus musculus    AGCAGCTACTCTTCAGCCCATGCAACCGTCAAC    SSYSSAHATVN 

Rattus norvegicus   AGCAGCTACTCTTCAGTCCATGCAACCATCAAC    SSYSSVHATIN 

Danio rerio    GCTAGTTACACCTCACCAAACACCACGGTTAAT    ASYTSPNTTVN 

 

Figure 10. Evolutionary conservation study for c.1334C>T (Ala445Val) variant. A. Evolutionary conservation of c.1334C>T (Ala445Val) 

variant in primates. B. Evolutionary conservation of c.1334C>T (Ala445Val) variant in non-primates. The nomenclature used in Figure 10 for 

sequence variation is according to den Dunnen and Antonarakis, 2000. 
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3.5.2 Pathogenicity prediction 
 

The pathogenicity prediction indicated that variants c.227G>A (Arg76Lys), c.878C>A 

(Thr293Lys) and c.1334C>T (Ala445Val) are all benign, according to Polyphen-2® with 

scores 0.018, 0.251 and 0.005, respectively (Fig. 11), and neutral, according to PROVEAN® 

with scores -0.868, -0.410 and -1.605, respectively (Fig. 11). 
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Figure 11. Pathogenicity analysis of Arg76Lys, Thr293Lys and Ala445Val genetic 

variants. Polyphen-2® analysis for variants Arg76Lys (A.1), Thr293Lys (B.1) and Ala445Val 

(C.1); PROVEAN analysis for variant Arg76Lys (A.2), Thr293Lys (B.2) and Ala445Val (C.2). 

 

 

3.5.3 Transcription factor study 
 

Since variants c.-190T>C (rs76745622) and c.-83G>A (rs2075648) are located in 

MYOC gene promoter, it seemed to be important to evaluate if any transcription factor 

binding site could be altered by the mutant allele, changing the affinity of the transcription 

factor for its promoter binding site and modifying the MYOC gene expression regulation. The 

complex AhR/Ar transcription factor is predicted to bind MYOC gene promoter at the locus 

surrounding the c.-190G>T with a score of 79.0 for allele G, but with a lower score (68.3) 

when it is present the allele T (Table XII). The GATA-1 transcription factor is predicted to 

bind MYOC gene promoter at the locus surrounding the c.-83G>A with a score of 71.8 for 

allele G, but with a lower score (62.9) when it is present the allele A (Table XIII). 

1) 

2) 

C 
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Abbreviations: TF= Transcription factor; SC=Score 

The nomenclature used in Table XII for sequence variations is according to den Dunnen 

and Antonarakis, 2000. 

 

 

Abbreviations: TF= Transcription factor; SC=Score 

The nomenclature used in Table XIII for sequence variations is according to den Dunnen 

and Antonarakis, 2000.  

Table XII. Transcription factor study for variant c.-190G>T 

Nucleotide sequence TF Sc 

 

ATTTTCTAAGAATCTTGCTGGCAGCGTGAAGGCAACCCCCCTGTGCACA 

 -------------------- AhR/Ar 79.0 

 

ATTTTCTAAGAATCTTGCTGGCAGCTTGAAGGCAACCCCCCTGTGCACA 

 -------------------- AhR/Ar 68.3 

Table XIII. Transcription factor study for variant c.-83G>A 

Nucleotide sequence TF Sc 

 

GTATATATAAACCTCTCTGGAGCTCGGGCATGAGCCAGCAAGGCCACCCA 

                ---------- GATA-1 71.8 

 

GTATATATAAACCTCTCTGGAGCTCAGGCATGAGCCAGCAAGGCCACCCA 

                        ---------- GATA-1 62.9 
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4.Discussion 
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Over the years, more than 80 mutations in MYOC gene have been identified as 

responsible for primary open angle glaucoma (Zhuo et al. 2008). The purpose of this 

study was to identify MYOC gene sequence variations that could be responsible for 

POAG phenotype in a group of Portuguese patients. 

The analysis of 104 POAG patients and 54 controls was consistent with previous 

studies that determined a worldwide frequency of 2-4% of POAG patients with MYOC 

mutations (Weisschuh et al. 2005), and that the majority of them (>90%) are clustered in 

olfactomedin-like domain, the most conserved myocilin protein domain, encoded by 

genes’ exon (Kanagavalli et al. 2003; Lopez-Martinez et al. 2007; Braghini et al. 

2013).The present study allowed to identify two Glaucoma causing disease mutations in 

two NTG patients (approximately 2% of the POAG Portuguese patients analyzed) (Table 

VI), absent in the controls group (Table VII) and both in MYOC gene exon 3 (Fig. 2), 

probably changing the myocilin protein olfactomedin-like domain (Thr293Lys and 

Ala445Val). Such mutations were previously reported in two NTG patients carrying each 

one of them (Weisschuh et al. 2005; Lopez-Martinez et al. 2007). The evolutionary 

conservation study of c.878C>A (Thr293Lys) revealed that the nucleotide sequence as 

well as the adjacent regions and correspondent amino acids are highly conserved among 

primates and non-primates (Fig. 9). This highly conserved polypeptide chain suggests that 

it is required its full preservation for maintaining the normal protein structure or function, 

meaning that changes on this region likely have a negative impact on myocilin protein and 

may contribute for POAG phenotype. Additionally, the substitution of a threonine for a 

lysine may also have some deleterious effect on protein features considering that the 

second amino acid is basic polar and have a strong positive charge while the first is polar 

uncharged (Alward et al. 1998). Concerning the secondary structure of the protein, the 

alteration of a threonine (β-former) to a lysine (β-breaker) may influence the protein to 

adopt a helical conformation instead of their normal β-sheet (Chou & Fasman 1978), 

possibly contributing for the POAG phenotype.  
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The nucleotide and the amino acid locus surrounding the c.1334C>T (Ala445Val) 

are highly conserved among primates but moderately (nucleotide) and weakly (amino 

acid) conserved among non-primates (Fig. 10) meaning that, among primates, changes in 

this locus likely cause changes on the protein structure and function that may be 

associated with the POAG etiology. However, the substitution of an alanine by a valine 

unlikely cause alterations on the protein properties since both are non-polar and 

hydrophobic amino acids (Alward et al. 1998). Additionally, considering the protein 

secondary structure, the Ala445Val mutation changes an alanine, which is a strong former 

α and an indifferent β amino acid, to a valine, which is a former α and a strong former β 

amino acid, possibly causing an increased preference for a β-sheet conformation (Chou & 

Fasman 1978), but without any clear influence on the POAG phenotype. 

The bioinformatics study with Polyphen-2® and PROVEAN software considered 

both c.878C>A (Thr293Lys) and c.1334C>T (Ala445Val) variants benign and neutral 

polymorphisms’ respectively (Fig. 11). However, these MYOC variants may alter the 

affinity of the protein for its extracellular ligands changing the extracellular functions of the 

protein (Gobeil et al. 2006). Also some authors reported that mutations in olfactomedin-

like domain cause misfolded accumulated myocilin and homodimers formation, as well as 

heterodimers with wt myocilin, avoiding its secretion from the endoplasmic reticulum (ER), 

and leading the HTM cells death (Joe et al. 2003; Gobeil et al. 2004; Liu & Vollrath 2004). 

These facts suggest that these two Glaucoma causing disease mutations could be crucial 

in a so far unknown physiological role of myocilin. Nevertheless, further investigations are 

required to evaluate the pathogenicity of these sequence variations. 

Since 1997, mutations in MYOC gene have been mainly associated with JOAG, a 

subtype of Glaucoma with very high IOP (Ojha et al. 2013). However, the two Glaucoma 

causing disease mutations [c.878C>A (Thr293Lys) and c.1334C>T (Ala445Val)] so far 

identified in the Portuguese POAG population were found in two patients clinically 

classified with the NTG subtype of Glaucoma, a similar result to previous publications in 

German and Spanish populations (Weisschuh et al. 2005; Lopez-Martinez et al. 2007). 
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This fact could indicate that mutations in MYOC gene alone may not be enough to cause 

ocular hypertension, requiring other genetic, biological or environmental factors to 

promote the IOP raise. This may suggest that MYOC gene mutations are not responsible 

for Glaucoma by raising the IOP, with corresponding compression of the optic nerve at 

lamina crivosa, damaging adjacent neuronal cells and leading to RGC apoptosis, but 

instead through another unidentified mechanism IOP independent and associate to NTG 

etiology.  

Additionally, a less reported promoter variant, the c.-190G>A, was identified in this 

study merely in one POAG patient and it was not found in the control subjects (Table VII). 

This result is analogous to what was observed in an Indian population (Banerjee et al. 

2012). However, another study reported the c.-190G>A variant in one control subject 

(Lopez-Martinez et al., 2007), suggesting that it has no relevance for the disease 

establishment. Nevertheless, the evolutionary conservation study shows a high 

conservation of this nucleotide among all the studied species but a low conservation of the 

adjacent regions in the non-primate species (Fig. 6), likely meaning that this variant may 

have a significant role in the regulation of MYOC gene expression. Accordingly, specific 

transcription factors binding to that promoter locus may be compromised by this variant. 

Bioinformatic analysis allowed to determine that the TF complex aryl hydrocarbon 

receptor (AhR/AR) has high affinity to bind to the c.-190G>A locus (Table XII). This 

transcription factor is responsible for regulate several developmental and physiological 

events, which could be important provided that c.-190T>C variant belongs to a negative 

glucocorticoid response element (nGRE) (Pocar et al. 2005; Banerjee et al. 2012). 

Another interesting feature of this TF consists on its ability to regulate enzymes 

responsible for metabolizing xenobiotics, such as CYP1B1, a protein expressed by 

another Glaucoma associated gene. The affinity of this TF decrease in the presence of 

the mutant allele of this variant, which may negatively influence the transcription of the 

MYOC gene with possible consequences to the disease etiology. 
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It was also found a promoter variant (c.-83G>A) and an exon 1 alteration [c.227G>A 

(Arg76Lys)] sharing the same genotype simultaneously in patients and controls samples 

and suggesting that both variants are in linkage disequilibrium, segregating the mutant 

allele always together. This phenomena was also identified in Japanese, Chinese and 

Spanish populations (Mabuchi et al. 2001; Pang et al. 2002; Lopez-Martinez et al. 2007). 

So far, no association of these two variants in linkage disequilibrium with POAG 

phenotype has been identified. Nonetheless, in this study was observed a higher 

frequency of the mutant allele in the female controls than in the POAG female patients 

(Table XI). This data suggest some protective effect of this allele in the development of 

the disease, but further analyses are necessary to confirm or refuse this hypothesis. The 

evolutionary conservation study regarding the c.-83T>C variant shows a moderate 

conservation among primates and a high conservation among non-primates, but no 

conservation when the primates are compared with the non-primates, since almost all the 

studied primate species share a G while all the non-primate species share an A (Fig. 7). 

Considering this, it is likely that changes in this locus alone are not associated with the 

affected phenotype. In silico analysis revealed a GATA-1 transcription factor (TF) with 

affinity to bind at the locus including the c.-83T>C variant (Table XIII). The affinity of this 

TF decrease in the presence of the mutant allele of this variant (Table XIII), which may 

negatively influence the transcription of the MYOC gene with possible consequences to 

the disease etiology. 

The evolutionary conservation study for variant c.227G>A (Arg76Lys) revealed a 

moderate conservation in both primate and non-primate species (Fig. 8). Nevertheless, it 

is noticeable that Danio rerio does not present any nucleotide or amino acid sequence for 

the analyzed locus (Fig. 8B). This may indicate that this locus have an important role for 

structural and functional myocilin protein in mammalians, with possible implications for the 

disease etiology in human, and it is completely unnecessary for fishes myocilin protein. 

Considering the bioinformatics study with Polyphen-2® and PROVEAN software the 

c.227G>A (Arg76Lys) variant was classified as benign and neutral polymorphism, 
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respectively (Fig. 11). Furthermore, the substitution of an arginine by a lysine unlikely 

cause alterations on the protein properties since both amino acids are positively charged, 

basic polar and have hydrophilic features. Additionally, considering the protein secondary 

structure, the Arg76Lys variant changes an arginine, which is an indifferent α-helix and β-

sheet amino acid, to a lysine, which is an indifferent α and a β breaker amino acid (Chou 

& Fasman 1978), possibly without any consequences or, in the worse scenario if it is 

considered that the arginine is localized in a β-sheet, probably destabilizing the late 

conformation. Nevertheless, it is always possible that this alteration acts as a protective 

variant for POAG due to an unknown mechanism. 

A further missense variant [c.1193G>A (Lys398Arg)] was found in both patients 

and controls (Table V and VII). This may explain the neutral polymorphism classification 

attributed to this variant (http://www.myocilin.com/variants.php). Accordingly, both lysine 

and arginine are positively charged, basic polar amino acids with hydrophilic features. 

Additionally, considering the protein secondary structure, the Lys398Arg variant changes 

a lysine to an arginine, the same amino acids as for Arg76Lys, with a similar situation that 

lysine inhibits the β-sheet conformation and enables the α-helix, which is structurally 

maintained by arginine amino acid. Considering this it is likely that variant c.1193G>A 

(Lys398Arg) is a polymorphism without any association with POAG. 

Two other variants (c.-224T>C and c.-126T>C) were found in the MYOC gene 

promoter in both patients and controls (Table V and VII) but no statistically significant 

association was identified with the phenotype (Table VIII and IX), which leads to the 

conclusion that are polymorphisms without any influence on POAG etiology. 

The sequencing analysis also allowed to find 7 synonymous variants, three of 

them located in exon 1 [c.39T>G (Pro13Pro), c.141C>T (Cys47Cys) and c.477A>G 

(Leu159Leu)], a single one in exon 2 [c.612G>T (Thr204Thr)] and the remaining in exon 3 

[c.855G>T (Thr285Thr), c.975G>A (Thr325Thr) and c.1041T>C (Tyr347Tyr)] (Table V). 

These variants were also previously reported both in POAG patients and controls (Alward 

et al. 1998; Fingert et al. 1999; Lopez-Martinez et al. 2007) with the exception of 
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c.141C>T (Cys47Cys) that, as much as it is known, was identified for the first time in this 

work. These variants frequencies do not seem to have any significant difference from the 

online free databases for Caucasian populations (http://www.ncbi.nlm.nih.gov/snp/). 

Altogether, these data suggest that these variants are very much unlikely responsible for 

the POAG phenotype. 

Several variations of sequence were detected within intron 1 (605-604G>A, 

c.604+177G>A, c.605-374G>C, c.605-332G>A, c.605-302C>G and c.605-280G>T) and 

intron 2 (c.730+35A>G, c.730+138G>A, c.730+176delCT, c.731-205 A>C, c.731-192 G>A 

and c.731-73 C>T). From a total of 12 intronic variants, two were novel (c.730+138G>A 

and c.731-192 G>A) (Table V). As these variants are located in non-coding regions (Fig. 

2) it is unlikely that an association with the phenotype may occur. 
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5.Conclusion 
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This study allows the identification of genetic variants in MYOC gene in a cohort of 

POAG patients from the Portuguese population. 

Two variants are likely Glaucoma causing disease mutations [c.878C>A 

(Thr293Lys) and c.1334C>T (Ala445Val)] and were identified in two male patients who 

clinically present as NTG. None of the control subject has any of these variants, 

supporting the opinion that these variants are responsible for POAG in those patients. 

For the first time a statistically significant association was found among females 

and the disease. In this study, a control-case study shows that females have an increased 

protection (OR=3.29) against POAG due to variants c.-83G>A and c.227G>A (Arg76Lys). 

In this study, a previously reported sequence variation (Lopez-Martinez et al. 2007; 

Banerjee et al. 2012) located in promoter region of the gene (c.-190T>C) was present only 

in one POAG patient and none controls, indicating a possible association with the 

phenotype in the Portuguese population. 

Further studies are required to clarify the possible involvement of the identified 

variants in POAG etiology. Also, functional evaluation of the impact of these sequence 

variations on myocilin may be important to understand the role of this protein in 

Glaucoma.  
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