
DEPARTAMENTO DE CIÊNCIAS DA VIDA

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Brain Landmarks and Paleoneurology: 

Comparing Physical and Laser Scan 

Endocasts in Living Hominoids

Ana Sofia Pereira Pedro

2013

A
n
a
 
P
e
d
ro

B
ra

in
L

a
n

d
m

a
rk

s
 a

n
d

 P
a

le
o

n
e

u
ro

lo
g

y
: 
C

o
m

p
a

ri
n

g
 P

h
y
s
ic

a
l 
a

n
d

 L
a

s
e

r 
S

c
a

n
 E

n
d

o
c
a

s
ts

 i
n

 L
iv

in
g

 H
o

m
in

o
id

s

2013



DEPARTAMENTO DE CIÊNCIAS DA VIDA

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Brain Landmarks and Paleoneurology: 

Comparing Physical and Laser Scan 

Endocasts in Living Hominoids

Ana Sofia Pereira Pedro

2013

Dissertation presented to Universidade de
Coimbra in fulfillment of the requirements
needed to obtain the Master degree in
Evolução e Biologia Humanas, accomplished
under the scientific supervision of Doctor
Emiliano Bruner (CENIEH) and Doctor
Eugénia Cunha (Universidade de Coimbra) .



i 
 

ACKNOWLEDGEMENTS 

  

I wish to take this opportunity to convey my appreciation for all the people that 

made it possible for me to accomplish this work.  

 First I would like to express my gratitude to my supervisors, Doctor Eugénia 

Cunha and Doctor Emiliano Bruner for guiding me and advising me throughout this 

study. I am thankful to Professor Eugénia for helping me to choose the theme of this 

thesis, and for her support and availability. I thank Emiliano for introducing me to the 

fields of Paleoneurology and geometric morphometrics, and for guiding me along the 

progression of this work. I am grateful for his interest and enthusiasm which had a 

positive impact on the way I carried my work, and which lead me to really appreciate 

these fields of study.  

 I acknowledge the Centro Nacional de Investigación sobre la Evolución Humana 

(CENIEH) for receiving me into their facilities and lending the material in which this 

thesis is based.  

 It is with great joy that I thank all the people from the CENIEH and Burgos that 

made my stay easier. I appreciate the time Manny spent showing me how to use the 

various software required for working with geometric morphometrics and for editing 

images. I also thank Mario for his availability in helping me and keeping me into 

knowledge about events and activities. I am grateful to Mario, Isi, Lucia, Marina, David, 

Cristina, Joseba, Ana, Carlos, and many others, for the warm welcoming, the 

friendship, the nice “desayunos” and the awesome Friday nights. I wish to note that I 

am glad I have met all of you guys.  

 It is also with great happiness that I show my appreciation for the 

understanding and support of my boyfriend, Bruno. This influenced my moments of 

loneliness and homesickness for that I had someone I could always lean on.  

 To my sister Sara, I am grateful for the conversations and shared worries about 

the challenges and expectations for the future, and nice hints about the writing.  



 I am thankful to those who visited me in Burgos, for bringing me a little piece of 

home. 

 Finally I wish to put into words my deep gratitude to my parents, who allowed 

me to travel to Burgos for my studies and sustained me the whole time, and without 

whom I wouldn’t be able to complete this work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

 

Paleoneurology studies brain evolution through the analysis of endocasts (endocranial 

moulds), that display features of the endocranial tissues, including the brain. Currently, 

the study of shape relies on the statistical tools provided by geometric morphometrics, 

which is based on landmark data. Landmarks are anatomical points defined by 

Cartesian coordinates in 2 or 3 dimensions, which are correspondent between species. 

The consistency of a study depends upon the repeatability and precision of the 

landmarks included. The application of landmark data analysis on endocasts is further 

influenced by the difficulties in identifying cortical brain regions to localize cortical 

landmarks. These difficulties can increase when dealing with digital casts. This study 

compares physical and digital endocasts from living hominoids to evaluate the 

uncertainty associated with the localization of major cortical references, and how this 

can be influenced by the different data source. Nineteen 3D brain landmarks 

coordinates were collected ten times from physical endocasts and ten times from their 

laser scanned surface replicas, from seven species (Homo sapiens, Pan troglodytes, Pan 

paniscus, Gorilla gorilla, Pongo pygmaeus, Hylobates moloch and Symphalangus 

syndactylus). Error analyses were computed to assess the reliability of each reference 

point depending upon the cortical area and the type of endocranial reconstruction 

(physical or digital). Results suggest that cortical brain landmarks on endocasts show a 

good reliability and can be used for taxonomic analysis. Although with different 

patterns of variation, both physical and digital data give similar results. The less 

reliable landmarks are those located on the parietal bosses. 

 

Keywords: paleoneurology; error assessment; surface scan; geometric morphometrics 
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RESUMO 

 

A Paleoneurologia estuda a evolução cerebral através da análise de moldes do 

endocrânio (“endocasts”), os quais exibem estruturas dos tecidos endocranianos, 

incluindo o cérebro. Actualmente, o estudo da forma baseia-se em ferramentas 

estatísticas fornecidas pela morfometria geométrica, baseada em pontos de referência 

(“landmarks”). Estes são pontos anatómicos definidos por coordenadas Cartesianas em 

2 ou 3 dimensões, e correspondentes entre espécies. A coerência de um estudo 

depende da possibilidade de repetição e da precisão destes pontos. A aplicação de 

uma análise de morfometria geométrica em moldes endocranianos é influenciada pela 

dificuldade em identificar as regiões cerebrais para localizar pontos de referência do 

córtex. Estas dificuldades podem aumentar quando se usam moldes digitais. Este 

estudo compara moldes físicos e digitais de primatas antropomorfos modernos para 

avaliar a incerteza associada à localização das principais referências corticais, e como 

esta pode ser influenciada pelo tipo de molde usado. As coordenadas tridimensionais 

de dezanove pontos de referência foram recolhidas dez vezes dos moldes físicos e dez 

vezes das suas réplicas digitais. Sete espécies foram analisadas (Homo sapiens, Pan 

troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus, Hylobates moloch and 

Symphalangus syndactylus). Realizaram-se análises de erro para verificar a precisão de 

cada ponto, dependendo da região cortical e do tipo de reconstrução endocraniana 

(física ou digital). Os resultados sugerem que os pontos de referência corticais em 

moldes endocranianos são relativamente fiáveis, podendo ser utilizados em análises 

taxonómicas. Embora com diferentes padrões de variação, tanto os moldes físicos 

como os digitais dão resultados semelhantes. Os pontos menos fiáveis foram os 

localizados nas bossas parietais. 

 

Palavras-Chave: paleoneurologia; análise de erro; scan de superfície; morfometria 

geométrica 
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1. INTRODUCTION 

 

1.1. STUDIES ON BRAIN EVOLUTION 

 

 Humans have always been fascinated about themselves. We have spoken and 

written language, art (like music, painting, poetry, and cinema), we outpace any other 

great apes on tool use, logical thought and emotional feelings. And we are the only 

species interested in explaining our abilities. To do so, “we must look to the brain” 

(Rilling, 2006: 65) to unveil the characteristics that make us different and the 

mechanisms of evolution that led to our emergence.  

 

1.1.1. Human Brain Anatomy 
 

The central nervous system (CNS) is divided into two main anatomical parts: the 

brain, which is contained within the cranial cavity and the spinal cord, linking the brain 

and the rest of the body. The brain is formed by three regions that can be identified 

during the embryo development: the prosencephalon (forebrain), the mesencephalon 

(midbrain), and the rhombencephalon (hindbrain) (figure 1.1a) (Seeley et al., 2008). 

The prosencephalon is later divided into telencephalon, which becomes the cerebrum, 

and diencephalon; and the rhombencephalon divides into metencephalon, becoming 

pond and cerebellum, and myelencephalon, which becomes the medulla. The medulla, 

pons and midbrain constitute the brainstem, which makes the connection between the 

spinal cord, the cerebellum and the remaining brain (Seeley et al., 2008). The 

diencephalon, containing the thalamus and hypothalamus, is located between the 

brainstem and the telencephalon. The telencephalon or cerebrum constitutes the 

largest portion of the brain weight (Seeley et al., 2008). It is divided into left and right 
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hemispheres by the longitudinal fissure (figure 1.1b). The external layer of the 

cerebrum is the cerebral cortex (gray matter) which is composed mostly by neuron cell 

bodies and dendrites, surrounds the white matter, composed of the axons that 

connect the neurons (Rilling, 2008).  

The cerebral cortex is such a large layer in human beings that it displays a series 

of folds, forming the gyri (ridges) and sulci (depressions) that characterizes our brain 

(Rilling, 2008). Although the general pattern of the gyri is similar among normal brains, 

some variation exists between individuals and between the two hemispheres (Seeley 

et al., 2008). The major sulci divide the brain into the four lobes, named after the skull 

bones overlying each one: frontal, parietal occipital and temporal (figure 1.1b) (Rilling, 

2008). The central sulcus extends across the lateral surface and is located about the 

midway along the length of the brain, between the precentral gyrus and the 

postcentral gyrus (Seeley et al., 2008). It mainly separates the frontal lobe from the 

parietal lobe (Rilling, 2008). The lateral sulcus or Sylvian fissure delimits the temporal 

lobe relatively to the rest of the cerebrum (Rilling, 2008; Seeley et al., 2008). The 

occipital lobe is separated from the parietal lobe by the parieto-occipital sulcus or 

perpendicular sulcus. The brain sulci are fundamental anatomical landmarks, but 

according to Ribas and colleagues (2006) their localization and visual identification is 

difficult in a surgical point of view as it commonly varies across individuals. Regarding 

this, the authors analyzed the neural relationships between important sulcal points 

and their relationship with cranial points (e.g. bregma, opisthocranion) and 

demonstrated that cranial and brain landmarks display a reciprocal spatial relationship. 

They provided evidence that such relationships are relatively constant. Their findings 

can help understand the tridimensional anatomy and relationship between brain and 

skull. 
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Figure 1.1. Divisions of the adult human brain: developmental regions (a) and the main sulci, 
gyri and lobes that define the brain. Adapted from Seeley et al. (2008). 
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1.1.2. Functional Craniology 

 

Functional craniology was introduced fifty year ago by Moss and Young (1960). 

They hypothesized that the morphogenesis of the skull is part of a functional complex 

of tissues, including the brain and meninges, orbital and oral contents. To exemplify 

this, the authors mentioned an unpublished experiment in rats: when they increased 

the rats intracranial volume by adding cerebrospinal fluid, the cerebral capsule and the 

bones increased and assumed a more globular shape. Conversely, when brain portions 

were removed, decreasing the volume, the cerebral capsule and bones decreased and 

turned more flattened. The cranial sutures, as flexible joints allow the skull to change 

in shape during growth (Di Ieva et al., 2013). By studying the effects of premature 

fusion of one or more cranial sutures (craniosynostosis) on head shape, Richtsmeier 

and colleagues (2006) proved the association between skull and brain shapes. 

According to the authors, this association suggests that the brain and skull are 

interacting with the changing pattern of sutures closure, and, in an evolutionary point 

of view, a shift in suture closure pattern may be linked to brain and skull shape 

changes. Size and shape (form) of the skull at a given moment, during ontogeny or 

evolution, is determined by the functional demands of the soft tissues underneath 

(Moss and Young, 1960). In other words, the form of the inner surface of the cranial 

bone is a reflection of the form of the brain (Richtsmeier et al., 2006). 

Based on these functional and structural relationships, the functional 

craniology studies the evolution of the human cranium as a system of complex 

relationships (Bruner, 2007). According to Bruner (2007), the vault, the face and the 

base of the skull, each influences and is influenced by the brain morphogenesis in its 

own way. Any little change in one of the components of this network (e.g. intracranial 

pressure distribution) will imply evolutionary changes in the neurocranial morphology. 

Therefore, the knowledge of the relationships between the brain and cranial bones 

during morphogenesis is of great importance for the study of human evolution.  
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1.1.3. Paleoneurology and Endocasts 

 

As the brains do not fossilize, the study of brain evolution is only possible 

through the analysis of the fossil endocranial traits (Bruner, 2003). This is the field of 

Paleoneurology, which examines endocranial casts (endocasts) in order to unveil the 

external morphology of the brain (Falk, 1987 in Bruner, 2003). Used as molds of the 

brain, the endocasts provide information about its general shape, volume, maybe the 

convolutions, and imprints of associated structures like blood vessels, cranial nerves 

and sutures (Holloway et al., 2004; Falk, 2012) (figure 1.2). The relationship between 

the cerebral districts can be assessed as well (Bruner, 2003), giving some clues about 

the evolution of this organ on extant and extinct hominids.  

The endocasts can occur naturally, in a particular taphonomic event, when fine 

sediments enter the skull through the foramina, filling its inside, and then are 

compacted and solidified, forming a rock that molds the endocranial surface 

(Holloway, 1975). When there are no natural endocasts, these can be prepared by 

applying liquid rubber latex to the endocranial surface through the foramen magnum, 

building successive layers until reaching a given reasonable thickness (Holloway, 1975). 

This latex rubber is cured by heat and then collapsed from the skull and the 

dimensions are stabilized with plaster. More recently, endocasts are also being made 

using three dimensional imaging techniques (e.g. Schoenemann, 2006).  

 



6 
 

 

Figure 1.2. Brain and endocast of a chimpanzee (left) and a human (right). Above the brain 
structures are identified: central, precentral and postcentral sulci (C, prC, poC); fronto-orbital 
sulcus (FO); inferior frontal sulcus (IF); lunate sulcus (LS); Sylvian fissure (SF); superior temporal 
sulcus (ST); Pars triangularis, (T). Below the brain structures are delimited on the endocranial 
surface. (in from Zollikofer and Ponce de Léon, 2013). 

 

However, being natural or constructed physically or digitally, one must draw 

attention to the fact that endocasts are only models of the endocranial structures and 

not the original ones, and then any inference about the brain morphology must be 

cautious (Bruner, 2003). In fact, there are some difficulties regarding the endocasts 

analysis: the identification of the anatomical references, the definition of boundaries, 

the dependence on the orientation of the cast, the possibility to touch it, the limitation 

of the statistical analysis by the small sample and the experience of the observer 

(Bruner, 2003). Despite these limitations, Paleoneurology is the only direct line of 

evidence and the main tool to study human brain evolution in fossil species (Holloway 

et al., 2004; Bruner, 2003). 
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1.1.4. Brain Evolution and Development  

 

 During human evolution, as the cranial capacity increases (encephalization), the 

morphology of the brain had to change in accordance (allometry) (Bruner et al., 2003; 

Bruner, 2004). 

Comparison to living hominoids 

Humans have the biggest brains among primates, with volumes ranging from 

around 1100 to 1700cm3 (Falk, 2007). Great apes display cranial capacities of 275-

752cm3, well separated from that of lesser apes (gibbons and siamangs), whose brain 

volume values, overlapping with those of monkeys, are about 100 cm3 (Falk, 2007) 

(figure 1.3). Encephalization, a larger increase in brain size than in body size during 

evolution of a lineage, is markedly variable among primates (Boddy et al., 2012), and 

its patterns diverge across mammalian groups (Schultz and Dunbar, 2010). Absolute 

brain size was shown to be the best predictor of cognitive abilities (Deaner et al., 

2007). Among primates, brain size is linked to social learning abilities (Reader and 

Laland, 2002) and it is linearly correlated with its number of neurons (Gabi et al., 

2010). In terms of number of cells, the human brain is a scaled up primate brain 

(Herculano-Houzel, 2012) but they are qualitatively different in terms of morphology 

(Rilling, 2006).  

The different evolutionary processes in the phylogenetic divergence between 

humans and the other apes resulted in distinct morphological patterns. According to 

Aldridge (2011), the main morphological changes in brains of human comparing to 

non-human apes are the anteroposterior and mediolateral expansion of the frontal 

regions, expansion of temporal lobes and anterior parietal regions, and reduction of 

occipital poles, both cortically and subcortically. Furthermore, each ape differs from 

human patterns in a specific way. Regarding the endocranial shape, Bienvenu and 

colleagues (2011) confirmed globularity and basicranial flexion to be typical of humans. 

This characteristic had been determined before by Lieberman and coworkers (2002). 

The non-human African apes are characterized by more elongated endocranial shapes 

with the gorillas displaying the longer, narrower and less flexed cranium; and 
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orangutans have short braincases with wider space between frontal poles (Bienvenu et 

al., 2011). 

 

 

Figure 1.3. Cladograms showing the lateral views of extant hominoids brains and the 

evolutionary divergence between them. Adapted from Semendeferi et al. (2011). 

 

Hominid brain evolution 

Among the fossil hominids, brain size has been increasing throughout evolution 

(figure 1.4). Endocranial volumes of Australopithecines range from 387 to 560 cm3, 

with those of Homo erectus sensu lato being relatively larger, (727 - 1390 cm3), and the 

Homo neanderthalensis displaying higher volumes (1200 - 1740 cm3) [based on 

Appendix 1 from Holloway et al., (2004)]. Australopithecines brain sizes overlap with 

those of great apes and the Neanderthals volumes overlap with those of modern 

humans, with the H. erectus/ergaster values lying in between. 

Australopithecus have brain shapes lying between those of chimpanzee (more 

elongated) and modern humans (more globular) (Neubauer et al., 2012), with a 

reduction of primary visual cortex and a relative increase of the posterior parietal 

cortex (Holloway et al., 2004). From Australopithecines to Homo erectus brains 

became wider relatively to length and undergone a reorganization of the frontal lobe 
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(Bruner and Holloway, 2010). Further changes in shape with increasing encephalization 

occur within the genus Homo. According to Bruner (2004), in comparison to Homo 

erectus/ergaster, Neanderthals and modern humans have brains that are vertically 

enlarged. Frontal areas, flat and narrow in archaic Homo, developed in width on 

Broca’s cap, relatively to the maximum width (parieto-temporal); in height, with 

elevation of the vault; and in length, as the lateral sulcus shifted to a more posterior 

position (Bruner, 2004). Parietal areas became wider and higher as well, but 

shortened, while the occipital areas developed vertically but reduced in length and 

width (Bruner et al., 2003; Bruner, 2004). Between Homo erectus s. l. and 

Neanderthals the endocranial differences in shape are basically related to the 

increasing in size, whilst modern humans, although having similar allometric pattern, 

display a separate evolutionary trajectory related to the parietal development (Bruner 

et al., 2003). Although the parietal areas enlarged on both Neanderthals and modern 

humans (Bruner, 2008), the former have short and flattened parietal lobes and in the 

latter the enlargement of the structure is more uniform, with differences more 

pronounced in the upper parietal areas (Bruner, 2004, 2010). Consequently, there is an 

approaching between the temporo-cerebellar and frontal areas, leading to the more 

globular morphology of the modern human brains (Bruner et al., 2003; Bruner, 2004). 

Thus, according to Bruner et al., (2003), modern humans and Neanderthals reached 

similar brain sizes following independent evolutionary trajectories, resulting in 

different morphologies. The authors hypothesized the parietal development of Homo 

sapiens can be a bypass to overcome the biomechanical stress caused by 

encephalization, namely the “ontogenic stress” (Di Ieva et al., 2013) causing the cranial 

hyperostotic characters displayed by Neanderthals.  

Brain changes during development 

The adult brain morphology is a result of the changes in shape and size during 

ontogeny. Based on endocranial morphology, Neubauer and colleagues (2009) studied 

the human brain ontogenic shape and size changes. In relation to shape changes, the 

human endocranial morphogenesis can be divided into three distinct phases: the 

perinatal, from birth to 1 year of age; the childhood, until 9 years; and the adolescent 

phase, until adulthood (Neubauer et al., 2009). Each phase is characterized by different 
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trajectories of shape change: on the perinatal phase there is a parietal bossing and an 

overall midline basicanial flexion, which shifts to a basicranial angulation during the 

childhood phase, and on the adolescent phase the shape alterations are more 

localized, on the orbital and frontal areas (Neubauer et al., 2009). According to the 

authors these bends in shape change trajectory don’t correspond to the transition 

from high to low growth rates, i.e. to size changes. This and the fact that the brain 

shape continues to change after the adult size has been achieved, reinforce the idea 

that the shape changes aren’t only influenced by size increase (Neubauer et al., 2009). 

 

Figure 1.4. Endocranial shape changes during development after birth 
in human and chimpanzee. The trajectories indicate the shape changes 
from neonates to adults, with the mean shapes of witch shown as 
wireframes (Neubauer and Hublin, 2012). 

  

Comparing to humans, the chimpanzees have similar patterns of endocranial 

development but different trajectories. Neubauer and colleagues (2010) performed 

developmental simulations, applying the other species trajectory to neonates and to 

specimens with incomplete deciduous dentition (age group 2), and found out that 

when using the neonates, the simulated adult morphology would resemble the real 
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adult, but not when using the age group 2. They report that some shape differences 

between the two species are already established at birth and humans have a different 

perinatal phase of shape changes before they enter the common pattern with the 

chimpanzee, the “globularization phase”. But not only chimpanzees lack the 

globularization phase, Neanderthals do as well (Gunz et al., 2010). 

The uniquely human pattern of brain morphology is the basis of the uniquely 

human cognitive characteristics (Bruner, 2004; Neubauer and Hublin, 2012) and may 

explain the brain disorders observed only in humans (Aldridge, 2010; Neubauer and 

Hublin, 2012; Bruner and Jacobs, 2013) 

 

1.2. ANTHOPOLOGY AND MORPHOMETRICS 

 

1.2.1. Digital Anthropology 

 

The current advances in neurosciences are the background for modern 

paleoneurological studies (Bruner, 2007), providing techniques that can help to 

understand the biological organization behind the brain form (Rilling, 2008). According 

to Zollikofer and colleagues (1998:41), computer-assisted paleoanthropology 

“complements classical methods of physical anthropology with a set of novel tools in 

three major areas: visualization of hidden anatomical features, morphometric and 

biomechanical analysis of skeletal structures, and computer-assisted reconstruction of 

fragmentary fossils.” Computed tomography (CT) is an imaging technique consisting on 

a source of X-rays and a correspondent detectors array that rotate around an object 

(Bruner and Manzi, 2006).It produces attenuation data from different angles that can 

be integrated to generate digital cross-sectional images which are shown on a 

computer monitor, in a scale of grey, with the lowest density structures represented in 

black and the highest density ones in white (Spoor et al., 2000). As the CT images 

obtained are composed by pixels (picture elements), each pixel representing the 

specimen density at one location, it is possible to isolate specific anatomical regions, 

for instance extracting the labyrinthine cavities from the temporal bone (Zollikofer et 
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al., 1998). The size of the pixel relatively to the field of view (FOV) and mainly the 

geometry of the X-ray beam will determine the resolution of the resulting image, 

which is usually in the range of 0.3 - 0.5 mm (Spoor et al., 2000). For smaller structures, 

like dental enamel, micro-CT scans can be used, scanning at resolutions below 0.1 mm 

(Zollikofer et al., 1998). 

Rilling (2008) mentions other imaging methods that are used complementary to 

CT with different purposes, as they access the hidden structures. He divides these 

methods into structural, including magnetic resonance imaging (MRI) and diffusion 

tensor imaging (DTI), and functional, registering brain activity, like positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI).  

 The outer shell of an object can be accessed using surface scanning, a new 

method overviewed by Friess (2012). This method is based on non-ionizing radiation, 

i.e. visible light. The differences between the surface scanner models are related to the 

light source (laser or structured light), FOV, resolution, and the measurement principle 

(e.g. time-of-flight (TOF) and triangulation based scanners). According to the author 

the surface scanning process comprises the oversampling of the specimen through 

multiple views, then processing the acquired images by aligning the views, eliminating 

redundant points and fusing into a cloud object. The post processing includes noise 

reduction filtering, which can be performed repeatedly during the scanning process, 

and gap filling, an optional step that is more efficient performed as last step. The 

author lists some advantages of the surface scanning: the non-destructive and non-

invasive character of the measurements, the shorter post-processing steps, the high 

resolution, the possibility of capturing texture of the specimen’s surface, the 

affordability and high degree of mobility, and the utility to morphometric studies. The 

choice of the device depends on the performance of the scanners, which is based 

various parameters: the FOV determines the size of the specimen; the resolution, 

which is the number of the pixels per millimeter of the FOV; the accuracy and precision 

which determines the error; the acquisition speed, avoiding noise from movement of 

living specimens; portability, which can affect accuracy and precision; and cost, 

depending on the quality of the optics and software. 
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The digital methods bring many advantages to the study of fossils and human 

evolution. They are noninvasive techniques which allow obtaining detailed 

information, in 2 or 3 dimensions, about the exterior and interior structures of the 

specimen in analysis (Zollikofer et al., 1998). Plus, the digital 3D structure of the fossils 

can be virtually reconstructed and manipulated by the users, what prevents the 

invasive handling of the real fossil. Gunz and colleagues (2009) established some 

principles to virtually correct deformed fossils or reconstruct missing parts. As the 

deformed or incomplete pieces are difficult to articulate and can be aligned in more 

than one way, the reconstruction must be based on morphological and anatomical 

expertise. They described two methods for fossil reconstructions by combining digital 

data with geometric morphometrics tools (figure 1.5). The deformed and missing 

structures can be assessed based on deviation from symmetry, which can be restored, 

if the midline is intact and only one side is distorted or the deformation is uniform, by 

mirror the image. When these conditions are not verified the assessment of the 

missing points can be predicted using information from other complete fossils. The 

reference fossils used largely influences the resulting reconstruction, and, in the 

absence of a group of specimens to which the deformed fossil belongs the choice of 

the reference specimen must be cautious and depends on the purpose of the 

reconstruction.  

 

Figure 1.5. Reconstruction of the Taung endocast by (a) mirroring the image and by (b) 
using a reference cranium (a modern human child) (Gunz et al., 2009). 
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Various authors (Zollikofer et al., 1998; Bruner and Manzi, 2006) defend the 

creation of a digital data base of virtual fossils, which would constitute an international 

network providing means for fossil study, preservation and reconstruction. According 

to Zollikofer et al. (1998) the virtual fossils can be converted again into physical copies 

through stereolithography, which is a noninvasive technique, better alternative to 

latex or silicon molds, as there is no loss of quality resulting from repeated copying 

cycles.  

 

1.2.2. Geometric Morphometrics and Landmarking 

 

 The analysis of shape has long been an essential part of studies in biology, 

anthropology and paleoanthropology (Slice, 2007). The early morphometrics where 

based on measurements of distances directly on the specimen (Rohlf, 1990) but these 

traditional methods consist essentially of measurements of size, expressing no 

information about their geometric structure, and cannot be compared anatomically 

between species (Zelditch et al., 2004). The advances in computational tools brought a 

more sophisticated and objective methodology to analyze shape variation, the 

Geometric morphometrics (GM) (Adams et al., 2004). Geometric morphometrics 

concerns the study of shape variation and covariation through multivariate statistical 

analysis of the anatomical landmarks defined by Cartesian coordinates (Bookstein, 

1991). These methods present new advantages, like the preservation of the geometric 

information of the landmarks (Slice, 2007) and the possibility to graphically visualize 

and easily understand the shape differences (Klingenberg, 2013). 

According to Bookstein (1997), the landmark data is the basis of GM analysis. 

Landmarks are discrete anatomical points which position is recorded by Cartesian 

coordinates in 2- or 3- dimensions, (Slice, 2007). They should be homologous 

anatomical loci (i.e. recognized as the same point on different species) (O’Higgins, 

2000) that can be located repeatedly and reliably, providing an adequate coverage of 

the morphology of the specimen (Zelditch et al., 2004). The anatomical landmarks are 

not equally identified on a specimen. Bookstein (1991) devided the landmarks into 
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three types, based on the difficulty to define them: the Type I landmarks are at the 

intersection of three structures, for instance, the frontal and the two parietal bones 

meet point is Bregma; the Type II, like Basion, are defined by the geometry of the 

surrounding anatomy, the curvature of the foramen magnum; Type III are extreme 

points, like Glabella, which position is defined by distant anatomical structures. The 

homology is strongest in Type I landmarks. But there are regions of important 

morphological information that are poor in landmarks, as the neurocranium, so a 

series of ordered points are positioned along curves or surfaces to quantify the 

homologous regions: the semilandmarks (Bookstein, 1991). As their initial spacing is 

arbitrary, the semilandmarks are allowed to slide, maximizing its correspondence 

across a sample (Gunz et al., 2009; Baab et al., 2012).  

The landmark coordinates are recorded relatively to the (x, y, z) axes, so their 

values reflect the geometric information of the specimen with respect to those axes 

(Slice, 2007). In geometric morphometrics, shape is the remaining geometric 

information after removing variation in scale, location and orientation of an object 

(Kendall, 1977 in Zelditch et al., 2004). Thus, the shape of an object is defined by 

configurations of landmarks that consist of sets of point coordinates. To compare the 

landmark configurations, the shape information must be extracted from the 

coordinates, which is performed by the general Procrustes analysis (GPA) (Zelditch et 

al., 2004). The Procrustes superimposition minimizes the differences between 

landmark configurations by translation, scaling and rotation (figure 1.6a). First, the 

original landmarks configurations are scaled to the same Centroid Size, which is 

calculated as the square root of the sum of the squared distances of the landmarks to 

the centre of the form (centroid) (figure 1.6b) (Slide, 2007). Then the configurations 

are moved to the same location by superimposing their centroids. Finally they are 

rotated about the centroid to get into an optimal orientation in which the square 

distance between the corresponding landmarks is minimal (Klingenberg, 2010). GPA 

calculates the average shape that is used as reference to optimal alignment, which 

minimizes the average distances of shapes from the reference (Zelditch et al., 2004). 

When the data include semilandmarks, two GPA are performed, with the sliding step 

between them (Baab et al., 2012).  
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Figure 1.6. Procrustes superimposition: (a) illustrates the various steps to remove shape 
information from the landmark data (Klingenberg, 2010) and (b) represents the 
computation of the Centroid size, in which the centroid is the grey dot, connected by the 
lines to the landmarks (white dots) (Zelditch et al., 2004).  

 

After the Procrustes superimposition, the distance between the corresponding 

landmarks is the variation in shape, which can be characterized in shape spaces 

(Klingenberg, 2010). The Procrustes distance is a measure of differences in shape in a 

multidimensional shape space, where similar shapes, represented by points, are closer 

together, and dissimilar ones are far apart (Rohlf, 1998). According to Zelditch et al. 

(2004) there are three shape spaces: the Kendall´s shape space, which is the space of 

all possible superimpositions of two specimens; the GPA space, resulting from 

superimposition of more than two specimens; and tangent space, the Euclidean space, 

tangent to the GPA space. The tangent space is the space in which the statistical 
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methods can be applied, and the projection of the coordinates into this space is 

equivalent to the mapping of the earth into a 2D surface (Baab et al., 2012). 

 As the shape variables inherit the complex patterns of variation and covariation 

of the morphological and functional features of the organisms, the information must 

be simplified, which is accomplished by the Principal Components Analysis (PCA) 

(Zelditch et al., 2004). This method produces new sets of variables by identifying the 

orthogonal linear combinations of the original variables that better reproduce the 

sample variability (Slice, 2007). These new sets of variables, the Principal Components 

(PCs), are reduced in numbers and simplify the description of variation among 

individuals in a sample, as the individuals are scored and ordered along the PCs, and 

the patterns of variation can be visualized on a plot (Zelditch et al., 2004). Other 

methods to simplify the visualization of changes in shape are available. In fact, the 

visualization tools are considered among the scholars to be one of the great 

advantages in GM analysis. Klingenberg (2013) makes a resume of the various types of 

tools that allow the visualization of shape changes. The landmarks displacement or 

transformation can be seen by using three methods (figure 1.7). The “lollipop” 

diagrams show the shift in landmarks position through lines that part from the initial 

shape, indicated by the dots. The wireframe graphs connect the landmarks with lines, 

and the starting and target shapes are superimposed for comparison. The latter are 

easier to read as they contain information that can help relating the changes in 

landmarks locations to the underlying anatomical structures (Klingenberg, 2013). The 

Thin-plate Splines (TPS) is a tool that allows the representation of shape differences by 

deforming one shape into the other in a transformation grid (Bookstein, 1991). But the 

resulting shape changes visualized by either method cannot be interpreted literally as 

they are determined by the set of landmarks in analysis (Slice, 2007; Klingenberg, 

2013).  
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Figure 1.7. Visualization tools in geometric morphometrics for the set of landmarks in a fly 
wing (a). The methods of landmark displacement are represented in (b) lollipop diagram and in 
(c) wireframe graph, and the transformation grid is shown in (d) (from Klingenberg, 2013). 

 

The GM methods had been applied to a great number of disciplines in biology 

and anthropology, like systematics, ontogeny, modularity, genetics (Baab et al., 2012), 

developmental biology (Klingenberg, 2010), and, as seen before, fossil reconstruction 

(Gunz et al., 2009). 

 

Issues and Bias of the landmark data 

 

Despite all of the advantages these new computed and mathematical 

techniques bring to the study of human evolution, they do not come free of error. As 

the GM methodologies are based on the landmark data, the set of landmarks used will 

influence the results (Free et al., 2001; Gunz et al., 2009). According to Free and 

colleagues (2001: 811) “if the number of landmarks does not adequately cover the 

structure of interest then only a partial description of the shape changes is possible.” 

The landmarks identification is also an issue, as there are different types of landmarks 
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with different identification precision in the same study (Cramon-Taubadel et al., 

2007). Furthermore, the lack of a common coordinate system between the various 

landmark configurations within a study can cause complex repercussions when trying 

to interpret the shape differences between them (Richtsmeier et al., 2002). 

Pinocchio effect 

Procrustes superimposition reduces the variation between corresponding 

landmarks by minimizing their distances. This can be extrapolated to the error 

associated in locating each landmark: GPA minimizes the overall error by reducing the 

error of imprecise landmarks and increasing it around the precise ones (Cramon-

Taubadel et al., 2007). The term “Pinocchio effect” is used to refer to this situation 

when there is localized variation on a small region of the landmark configuration, 

metaphorically resembling the tip of Pinocchio’s nose variation relatively to the head 

(Klingenberg, 2013). But when analyzing differences between landmark configurations 

one might ask if it is the “tip of the nose” that moves forward or the rest of the head 

landmarks that move backwards, i.e. which landmarks are responsible for shape 

changes (Klingenberg, 2013). Both descriptions fail to recognize that the shape change 

is located between the landmarks, and thus the attribution of shape changes to 

particular landmarks should be avoided.  

This bias inherent to Procrustes superimposition can only be avoided if the 

specimen remains static and is not moved between sessions of landmark coordinates 

collection, which are made in a constant frame of reference, i.e. the same coordinate 

system (Cramon-Taubadel et al., 2007), as the main problem is in orientation 

(Rictsmeier et al., 2002). According to Rictsmeier and colleagues (2002), other 

landmark methods exist that don’t include the superimposition of shapes, as they are 

based on linear distances connecting pairs of landmarks. One of these methods is the 

Euclidean distance matrix analysis (EDMA) which measures all possible lengths 

between landmarks generating a matrix that compares the lengths between 

corresponding landmarks on different specimens. Within this method the shape does 

not change with location or orientation but it lacks the advantageous visualization 

graphs available from GM analysis. 
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1.3. AIMS OF THE STUDY 

 

 The present study is focused on the issues concerning the study of endocasts 

and the difficulty in locating landmarks, which can induce measurement error. The 

difficulties regarding the analysis of endocasts are related to the anatomical regions 

that can be identified. As molds of the endocranium, endocasts display features of 

brain, cranial and other intracranial tissues, which can difficult the identification of 

anatomical brain regions and boundaries (Bruner, 2003). Moreover, the identification 

of brain structures is complicated when the preservation and detail of these structures 

is poor. The anatomical expertise of the observer is obviously of great importance in 

identifying regions of interest on the endocasts. Another source of variation is 

introduced by the object where the landmarks are being collected, i.e. physical or 

digital specimens (Schoenemann et al., 2007; Friess, 2012). When working with digital 

endocasts further complications are added, as the perception of the anatomical 

element depends on the perspective of the view. The impossibility of handle the object 

and the dependence on the orientation of the image makes it more difficult to place 

landmarks on surface scan endocasts (Bruner, 2003). The incorrect identification of the 

anatomical structures further complicates the location of landmarks on those regions 

(Free et al., 2001). The different types of landmarks have different precision and 

reliability in being placed. The equipment precision and accuracy (Friess, 2012) and the 

observer error (Cramon-Taubadel et al., 2007) have to be considered as well.  

 Therefore, this work investigates the reliability of cortical landmarks on both 

physical and laser scanned endocasts of extant hominoids. The main scopes are to 

evaluate the uncertainty associated with the location of major cortical references on 

endocasts and to assess the differences in using different kind of data (physical and 

laser scan endocasts). Considering that the present study uses methods for analysis of 

morphology, the shape differences among the extant hominoids are also explored. 
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2. MATERIALS AND METHODS 

 

2.1. SAMPLE 

 

The sample is composed of eight endocasts from extant hominoids, available at 

the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) All 

endocasts were made from adult specimens belonging to seven species of apes. Table I 

shows the specificities of each cast. The physical casts had been obtained from Bone 

Clones Inc., a company for osteological reproductions, and each has a code 

(www.boneclones.com) (see Table I). The digital casts used are the 3D images resulting 

from the laser scanning (NextEngine Inc; resolution: 0.13 mm) of the physical ones, 

previously constructed by José Manuel de la Cuétara.  

 

Table I- Endocast specimens. The code is the one attributed by Bone Clones Inc. The ID is the 
one used throughout the present work to refer the endocasts, in the presented sequence. 

Code Endocast Species ID 

KO-227 Male Bonobo Pan paniscus BON 

KO-292-E Male Chimp Pan troglodytes CHIM 

KO-231 Female Chimp Pan troglodytes CHIF 

KO-228 Male Gibbon Hylobates moloch GIB 

KO-229 Male Gorilla Gorilla gorilla GOR 

KO-092-E Male Human Homo sapiens HUM 

KO-232 Male Orangutan Pongo pygmaeus ORG 

KO-230 Male Siamang Symphalangus syndactylus SIA 
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2.2. PROCEDURE 

 

2.2.1. Selection of landmarks 
 

A set of nineteen cortical landmarks were collected from each physical and digital 

endocast. Eight of the landmarks are bilateral and located symmetrically on left and 

right sides of the endocasts, making a total of 16 landmarks. The other 3 landmarks are 

located on the sagittal plane (table II; figure 1). As all the landmarks are located based 

on maximum curvatures and they are not defined by any anatomical well delimited 

lines, they can all be considered type III landmarks. 

 

Table II - Description of the cortical landmarks used in the analysis.  

 

Landmark Acronym Description 

Bilateral 

Frontal Poles FP 
Anteriormost point, following 
maximum length 

Occipital Poles OP 
Posteriormost point, following 
maximum length 

Temporal Poles TP Tip point 

Cerebellar Poles CP Lowermost point 

Broca's Cap BC Maximum curvature point 

Lateral Sulcus LS Posterior Limit 

Supramarginal Gyrus SG Maximum curvature point 

Angular Gyrus AG Maximum curvature point 

Sagittal 

Central Sulcus CS 
Intersection with Interhemispheric 
fissure 

Perpendicular Sulcus PS Parieto-occipital boundary 

Internal Occipital 
Protuberance 

IOP 
Intehemispheric and cerebro-cerebellar 
separation 
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Figure 2.1. Location of the cortical landmarks, on the human endocast, lateral 
view. See table II for the meaning of the acronyms. 

 

2.2.2. Sampling 

 

 Each specimen was sampled ten times (10 times the physical replica and 10 

times the digital replica). The sampling sessions took place during two weeks (10 days), 

and the 19 landmark coordinates were collected two times a day. Physical endocasts 

were sampled by the morning and the digital ones at the afternoon. 

The specimens were sampled in a random order. This way systematic errors 

caused by improvement of measuring skills through time, or fatigue induced quality 

deterioration (Hammer and Harper, 2006), as well as memory placement of the 

landmarks (Valeri et al., 1998) can be minimized.  

Physical endocasts 

For the physical casts, the landmark coordinates (x, y, z) were collected with a 

Microscribe G2X digitizer (Immersion Corporation: resolution: 0.23 mm). At each 

sampling session the specimens were fixed in place, using plasticine to prevent 
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movement, and sampled one at a time. Although the effort to position the endocasts 

with the same approximate orientation, the constant replace of specimens during the 

sampling session impedes a consistent orientation of a single endocast. Microscribe 

was connected to a computer and the landmarks 3D coordinates were written directly 

to text files.  

Digital endocasts 

The landmark coordinates collection from the digital scans was performed 

using Landmark Editor (Wiley et al. 2005). This software allows the visualization of a 3D 

image of each endocast that can be rotated to any view, as well as the placement of 

landmarks on any of these views. On each sampling session the landmarks 

configuration was placed on every scan endocast, one at a time. The 3D coordinates of 

each specimen were written to text files and saved individually.  

At the end of the sampling all the data from each session, twenty groups of the 

19 landmark coordinates (10 physical and 10 digital), were added to a single text file 

for each endocasts. Then, the data from each endocasts was added to a single text file 

by the order showed on Table I. This file with 160 groups of landmark coordinates was 

the one used in the analysis.  

 

2.3. ANALYSIS 

 

2.3.1. Analysis of Error and Variation 

 

The variation at each landmark (discrepancy) was computed by calculating the 

standard deviation for each landmark coordinate (x, y, z), and then the mean of these 

values for each landmark point (the mean standard deviation, MSD). A first analysis 

was computed on the raw values of the digital replicas to assess the absolute error. A 

second analysis was computed on the whole sample to compare the physical and 

digital data after being Procrustes superimposed together. The statistical analysis was 

performed on PAST (Hammer et al., 2001). 
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 Absolute Error 

To assess the precision in locating landmarks within an endocasts its orientation 

must be consistent for all the sessions because the location of a given landmark 

changes with the exact orientation of the endocast (Valeri et al., 1998). That way one 

cannot use the data from the physical endocasts as the distance between the same 

landmark on data from two different sampling sessions of a given endocast is 

influenced its orientation. By using Landmark Editor, there is no problem related to the 

specimens being moved between sessions, because they share the coordinate system 

defined by the image (Richtsmeier et al., 1995). Thus, the absolute error was measured 

using the raw landmark coordinates from the digital endocasts, which are associated 

with a fixed coordinate space. 

After calculating the MSD, charts of absolute error were constructed to observe 

the values for each landmark and specimens. Then, the frequency of error values was 

calculated on PAST, as well as a matrix of error distribution to help the visualization. 

Finally, to better understand the distribution of absolute error on each endocasts, 

maps of error distribution were created. These maps were constructed as follows: first, 

TPS.dig was used to mark the landmarks in 2 dimensions on each endocasts’ 2D 

images; then, the coordinates (x,y) and the mean error from each landmark (averaged 

sides for bilateral landmarks) of a given endocasts were placed on PAST and a gridding 

function with multiquadratic algorithm was interpolated to develop a map of error 

distribution.  

 

Discrepancy of Physical vs Digital data 

A Procrustes Superimposition was performed on the physical and digital raw 

coordinates. Then Principal Component Analysis (PCA), and Cluster analysis by 

Unweighted Pair Group Method with Arithmetic average (UPGMA) were carried out on 

the Procrustes residuals. An additional UPGMA was performed on the PC variables 

which display a percentage of variation in shape space larger than 5% (PC1 to PC4). 

Using the same four PCs, the physical and digital overall variation in shape space was 

investigated the following way: first, the standard deviation (SD) of the PC variables 

from each replica was calculated for each endocast, then the SD values from the 4 PCs 
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were summed for each endocast (physical and digital separately) and the variation 

within the resulting physical and digital values for each endocast were compared. This 

analysis was performed with PAST. 

 The overall pattern of variation was calculated per landmark and plotted to 

contrast physical and digital discrepancy patterns. For better observe the variation 

differences, matrixes of error distribution and maps of error for each endocast were 

obtained, as described above, for physical and digital data separately. To infer whether 

the variation is greater on physical or on digital samples, a ratio was calculated by 

dividing, for each landmark, the physical error values by the digital error values. 

 Plots of error per specimen for each landmark were obtained in order to 

compare the variation of physical and digital data with more detail. Dispersion graphs 

contrasting physical and digital landmark error values were computed for each 

specimen to test for correlation. Furthermore, to provide a better visualization of the 

landmarks divergence between physical and digital, the mean shapes from either 

physical and digital data were obtained with MorphoJ (Klingenberg, 2011) applying a 

discriminant function on the Procrustes residuals. 

 

2.3.1. Shape Comparison 

 

 The comparison of shape between different organisms is the primary goal of 

geometric morphometrics. Thus, a shape comparison of the endocasts among the 

sample was accomplished, in order to complement this work. A PCA and a pairwise 

comparison were performed using the mean shapes from each endocast (physical + 

digital average). 
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3. RESULTS 

 

3.1. ERROR AND VARIATION 

3.1.1. Absolute Error 

 

The mean absolute error within the digital sample is 0.86 ± 0.51 mm. The 

univariate statistics are resumed on table III. Values range from 0.15 to 3.44 mm, with 

the median being 0.74 mm and the values for the 25 and 75 percentiles being 0.53 mm 

and 1.06 mm, respectively. The majority of landmarks show discrepancies below 1.2 

mm, as can be seen on figure 3.1a.  

 

Table III – Univariate statistics for the digital sample without superimposition. 

N Mean Std. Dev Median Min Max 
Percentile 

25 75 

152 0.86 0.51 0.74 0.15 3.44 0.53 1.06 

 

Figure 3.1b illustrates the distribution of absolute error per landmark and per 

specimen. The mean values for each are listed on tables IV and V. The landmarks with 

greater values are the lateral sulcus, the supramarginal gyrus and the angular gyrus, all 

located on the parietal region. The human left angular gyrus is an outlier, with the 

maximum error value (3.44 mm), and the sequent maximum error being on the human 

left supramarginal gyrus (2.67 mm). In fact, the human’s endocast (HUM) displays the 

greatest amount of error, in general (figure 3.1b) and in average (table V). The 

endocast displaying lesser error is the gibbon (GIB). 
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Table IV – Mean absolute error for each landmark. Left (L) and 

right (R) values are shown separately.  

Landmark 
Absolute error 

(mean ± s.d. mm) 

FPL 0.68 ± 0.61 
FPR 0.69 ± 0.58 
OPL 0.60 ± 0.29 
OPR 0.66 ± 0.34 
TPL 0.59 ± 0.28 
TPR 0.61 ± 0.23 
CPL 0.75 ± 0.26 

CPR 0.84 ± 0.30 
BCL 0.64 ± 0.20 
BCR 0.68 ± 0.24 
LSL 0.97 ± 0.43 
LSR 1.36 ± 0.68 
SGL 1.40 ± 0.63 
SGR 1.06 ± 0.42 
AGL 1.40 ± 0.88 
AGR 1.30 ± 0.45 
CS 0.75 ± 0.32 
PS 0.72 ± 0.27 

IOP 0.56 ± 0.21 

 

Table V – Mean absolute error for each endocast. 

Endocast 
Absolute error 

(mean ± s.d. mm) 

BON 0.92 ± 0.34 
CHIM 0.81 ± 0.39 
CHIF 0.98 ± 0.47 
GIB 0.49 ± 0.27 
GOR 0.94 ± 0.39 

HUM 1.40 ± 0.75 
ORG 0.79 ± 0.36 
SIA 0.52 ± 0.25 

 

The distribution of error on each endocast can be visualized on figure 3.2. An 

overall pattern with greater error around the parietal area and lesser error around the 

poles (frontal, occipital, temporal, cerebellar) and the sagittal landmarks can be easily 

noticed. However there are some exceptions. Central sulcus on the male chimp (CHIM) 
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and human (HUM) endocasts display larger amount of error, in relation to the other 

casts’ pattern. HUM and the orangutan (ORG) also display larger error on the frontal 

poles, and the gorilla (GOR) on the occipital. 

Figure 3.3 shows the absolute error values for each landmark. Frontal poles 

exhibit error lesser than 1 mm, except those of HUM and ORG, both on left and right 

sides. The occipital poles with error larger than 1 mm are those of GOR and the right 

poles of BON and CHIF. Considering the temporal poles, only those of HUM exceed 

(left) or are closer (right) to 1 mm. Cerebellar poles of CHIM, HUM and ORG (right) 

exceed that value as well. Broca’s cap and the sagittal landmarks also display error 

values lesser than or equal to 1 mm, with only the HUM central sulcus error being 

larger (1.31 mm). The internal occipital protuberance is the landmark displaying the 

smallest error mean (table IV). The greater amount of error, as stated above, is located 

on the parietal area (lateral sulcus, supramarginal and angular gyri). From these 

landmarks, the left lateral sulcus is the one with the lesser error mean (table IV). 

Supramarginal and angular gyri both display the greater mean values but only on the 

left side (table IV), mainly because of the human endocast. HUM and CHIF display error 

larger than 1 mm on all those three landmarks, both left and right. But the error is also 

larger among the other specimens. Only GIB, ORG and SIA display smaller values of 

error on the parietal area. These endocasts display the smaller absolute error means 

(table V).  

Some discrepancy on the bilateral landmarks between the left and right can be 

noted on figure 3.3. The landmarks displaying most discrepancy are the ones with 

larger absolute error (LS, SG and AG). Regarding the lateral sulcus, the major 

discrepancy is on CHIF (difference of 0.92 mm) and GOR (1.68 mm), with larger error 

on the right side. Regarding the supramarginal gyrus, the larger disparity is on BON 

(1.04 mm) and HUM (1.14 mm), with larger error on the left side. The angular gyrus of 

HUM is the landmark displaying the greater difference (2.10 mm) with larger error on 

the left side. 
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Figure 3.1. Histogram showing the frequency of the absolute error values (a) and matrix of 
distribution of those values throughout the sample (b). See appendix A for the values. 
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Figure 3.2. Error maps exhibiting the distribution of absolute error for each specimen 
(averaged sides). Error increases from blue to red. Note that the scales are specific to each 
endocast. 
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Figure 3.3. Absolute error values fluctuation per specimen for each landmark. Values can be 

consulted on appendix A. 
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3.1.2. Physical vs Digital 

 

Variation in Shape Space 

The PCA plot taking the whole sample (physical + digital) into account is shown 

on figure 3.4. The first two PCs represent 55.6% of the variance. PC1 explains 39.8% of 

the variance and PC2 explains 15.8% of the variance. The different specimens are 

clearly separated, and the replicas group together. However, for some specimens, 

there is a minor separation between the physical and digital replicas. For example on 

CHIF the division is clear. This separation can also be detected from the UPGMA 

phenograms (figure 3.5 a, b), on which one can see that some specimens part from 

two main branches. On both phenogram there is a CHIF replica that is set apart from 

the others, specially on the UPGMA performed with the PC1 to PC4 variables (figure 

3.5b), where this outlier is closer to SIA. Apart for this singularity both phenograms are 

very similar.  

UPGMA phenograms display mainly the variation that occurs along PC1. HUM is 

well separated from the rest of the specimens. BON and ORG are closer to each other 

than to the rest of the sample. CHIF appears closer to BON on the PCA, but on the 

phenogram it is closer to SIA, which is mainly caused by the outlier digital replica, as 

figure 3.5b shows. CHIM seems to be at the same distance from CHIF and SIA. GIB is 

closer to GOR than it is to SIA. As this distribution of the specimens on shape space is 

related to shape, it is deeper analysed on section 3.2 (Shape Comparison).  

Analyzing the variation within the first four PCs for each separate replica, digital 

replicas display larger values than the physical ones (figure 3.6). But the difference is 

not significant according to a Mann-Whitney test (p = 0.08). 
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Figure 3.4. Variation in shape space after Procrustes superimposition (pooled physical 
and digital samples). The plot shows the distribution of each replica. 
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Figure 3.5. UPGMA phenograms using (a) the Procrustes coordinates (cophenetic correlation 
coefficient = 0.88) and (b) the first four principal components (which display a percentage of 
variation larger than 5%, see appendix B) (coph. corr. coeff. = 0.88). 
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Figure 3.6. Distribution of the summed discrepancy in the physical and digital superimposed 
data for the first four principal components (variation > 5%). 

 

Physical and Digital Discrepancy 

 Considering the bilateral landmarks averaged, the pattern of error of physical 

and digital samples is similar on the majority of landmarks (figure 3.7a). However, 

when the bilateral landmarks are considered separately (figure 3.7b) the patterns 

diverge. The landmarks that differ more are the frontal poles and the parietal 

landmarks.  
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Figure 3.7. Comparison of landmark variation patterns within the physical and the digital 
samples, considering the bilateral landmarks averaged or (a) separately (b).  
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Although some landmarks show larger variation values in the physical sample, 

and others have larger variation on the digital, in general, there are more landmarks 

displaying greater variation on the digital sample (figure 3.8). Also, the overall variation 

mean of the digital sample (0.85 ± 0.31) is larger than that of the physical (0.79 ± 0.31).  

The variation mean values for each landmark and specimen are listed on tables 

VI and VII, respectively. The distribution of variation values per landmark and per 

specimen are shown on figure 3.9, for both physical and digital samples.  

 

 

Figure 3.8. Histogram showing the ratio between the physical and digital discrepancy 
values after superimposition (the same distribution should give a result of 1). 

 

 Both on physical and digital samples, the landmarks displaying greater variation 

means are those located on the parietal (LS, SG and AG). The lateral sulci (left and 

right) and the left supramarginal gyrus display larger mean error on the digital sample, 



39 
 

and the right SG and the angular gyri (left and right) display larger mean error on the 

physical sample (table VI). The same can be observed on the other landmarks: some 

having larger mean variation on the physical sample and some on the digital. 

Differences between left and right mean error values can also be noticed.  

 

Table VI – Mean variation for each landmark. Left (L) and right (R) values are shown separately.  

Landmark 
Variation (mean ± s.d.) 

Physical Digital 
FPL 0.49 ± 0.13 0.64 ± 0.22 
FPR 0.47 ± 0.09 0.67 ± 0.21 
OPL 0.70 ± 0.21 0.70 ± 0.21 
OPR 0.73 ± 0.26 0.77 ± 0.28 
TPL 0.66 ± 0.11 0.65 ± 0.18 
TPR 0.61 ± 0.10 0.67 ± 0.11 
CPL 0.83 ± 0.13 0.72 ± 0.11 
CPR 0.77 ± 0.11 0.83 ± 0.14 
BCL 0.65 ± 0.20 0.70 ± 0.12 
BCR 0.58 ± 0.14 0.73 ± 0.19 
LSL 0.80 ± 0.33 0.94 ± 0.34 
LSR 0.88 ± 0.44 1.22 ± 0.45 

SGL 0.96 ± 0.29 1.20 ± 0.28 
SGR 1.04 ± 0.35 0.94 ± 0.27 
AGL 1.63 ± 0.81 1.17 ± 0.38 
AGR 1.34 ± 0.54 1.19 ± 0.34 
CS 0.67 ± 0.29 0.82 ± 0.19 

PS 0.59 ± 0.18 0.80 ± 0.17 
IOP 0.57 ± 0.16 0.68 ± 0.13 

 

Table VII – Mean variation for each endocast. 

Endocast 
Variation (mean ± s.d.) 

Physical Digital 
BON 0.81 ± 0.28 0.88 ± 0.26 

CHIM 0.83 ± 0.60 0.76 ± 0.27 

CHIF 0.75 ± 0.48 1.01 ± 0.28 

GIB 0.92 ± 0.40 0.78 ± 0.33 

GOR 0.77 ± 0.35 0.87 ± 0.32 

HUM 0.57 ± 0.25 0.91 ± 0.34 

ORG 0.87 ± 0.35 0.79 ± 0.26 

SIA 0.78 ± 0.32 0.76 ± 0.27 
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Figure 3.9. Distribution of physical and digital error after Procrustes superimposition, 
according to a chromatic scale in order to visualize the major patterns. The scales are similar, 

for comparison. See appendix C for the original values. 
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 The largest error values on the physical sample belong to the left angular gyrus 

of CHIM (3.01) and CHIF (2.48). On the digital sample the largest error values are those 

of HUM left angular gyrus (1.95) and the right lateral sulcus of GOR (1.88). 

 Taking the endocasts into account, the ones displaying larger mean variation on 

the physical sample are CHIM, GIB, ORG and SIA, with GIB exhibiting the largest value. 

The other four specimens (BON, CHIF, GOR and HUM) have greater mean error values 

on the digital sample, with the largest value belonging to CHIF. The specimens having 

greater difference between physical and digital mean values are HUM and CHIF. 

 The maps on figure 3.10 illustrate the landmark error distribution within each 

endocast, confronting physical and digital patterns. Differences between physical and 

digital versions of the same specimen are easily visualized on the color pattern. In 

general, the patterns are somewhat variable, but all maps (except the physical HUM) 

exhibit larger error on the parietal region. The most similar patterns are those of SIA 

and the most different are those of HUM and CHIM. 

 BON displays larger error on the angular gyrus on the physical sample and on 

the supramarginal gyrus on the digital. On CHIM, the error value of the angular gyrus is 

much larger on the physical than on the digital, and the digital display greater error on 

the supramarginal gyrus. CHIF has greater error on the angular gyrus both on physical 

and digital samples, but the digital one displays also greater error on the lateral sulcus. 

On the physical sample, GIB exhibits larger error on LS, SG and AG, but, in comparison, 

on the digital sample the specimen shows larger values on LS and lesser values on AG. 

Both physical and digital versions of GOR map display greater error on the occipital 

poles and on the parietal region, with the divergence resulting from a larger error on 

AG for the physical sample and on LS for the digital sample. On HUM, whereas the 

physical version displays greater error mainly on the central sulcus and little on the 

rest of the landmarks, the digital version also exhibits larger error on frontal poles and 

on the parietal landmarks. On ORG, the angular gyrus is the landmark displaying larger 

error on both physical and digital samples, with the addition of supramarginal gyrus on 

the physical. SIA exhibits greater error mainly on SG and AG on both versions. 
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Figure 3.10. Maps of distribution of the error of physical and digital samples after Procrustes 
superimposition for each specimen (averaged sides). Error increases from blue to red. Note 
that the scales are specific to each endocast. 
 

 

 Next the difference between the discrepancy values of physical and digital 

samples is analyzed specimen by specimen. The results for each endocast are shown 

on figures 3.11 to 3.18.  
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Bonobo 

 According to figure 3.11a, BON displays larger difference between physical and 

digital on the right lateral sulcus, left supramarginal gyrus, right angular gyrus and the 

central sulcus. The right AG is the landmark displaying greater error on the physical 

sample (error = 1.64). On the digital sample the error values is slightly smaller (1.40). 

On the left side, the AG exhibits smaller values of error, being also larger on physical 

(1.03) than on digital (0.96). The left SG has the larger error value among the digital 

sample (1.59), considerably larger than that of the physical sample (0.65). However, 

the right SG, error is somewhat greater on the physical (0.93) than on the digital (0.81) 

sample. Lateral sulcus displays larger error values on the left side, with larger side 

differences on the physical sample. Plus, LS exhibits larger error on physical on the left 

side and on digital on the right side. The same pattern can be seen on the occipital 

pole. All the sagittal landmarks show larger error on the digital sample, with the 

central sulcus displaying the greater difference.  

 The error values from physical and digital are poorly correlated (R2=0.23; figure 

2.11b), with the left SG as an outlier. Wireframes demonstrate that the greater 

discrepancies between the two methods are on the AG, specially the right one, left 

Broca’s cap, right LS and on CS. 

 

Chimpanzee Male 

 From all CHIM’s landmarks the angular gyrus is the one displaying greater error 

on the physical sample, and greater difference between physical and digital samples, 

both on the left (3.01) and on the right (1.89) sides (figure 3.12a). By contrast, on the 

digital sample the error values are smaller, and so is the difference between left (0.88) 

and right (0.78). The other landmarks exhibiting larger differences between physical 

and digital error values, LS, SG and CS, display greater values on the digital sample. 

Broca’s cap, shows larger error values on physical (0.79) with greater difference from 

the digital (0.54), on the left side, and larger error on the digital (0.60) sample, with 

smaller difference from the physical (0.52) on the right side. 

 By figure 3.12b, there is no correlation between physical and digital error 

values (R2= 0.04), what can be due to the AG which is an extreme outlier. This 
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landmark is the one with more discrepancy between the physical and digital mean 

shapes, especially on the left side (figure 3.12c). 

 

 

Figure 3.11. Differences between physical and digital variation on bonobo. Charts compare (a) 
and correlate (b) error values per landmark. Wireframes illustrate the pairwise comparison 
between physical and digital mean shapes, showing the superior (above, left side up) and 
lateral (below) views.  
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Figure 3.12. Differences between physical and digital variation on the male chimpanzee. Charts 
compare (a) and correlate (b) error values per landmark. Wireframes illustrate the pairwise 
comparison between physical and digital mean shapes, showing the superior (above, left side 
up) and lateral (below) views.  

 

Chimpanzee Female 

 The majority of landmarks on CHIF exhibit considerable discrepancy between 

physical and digital error values (figure 3.13a), with almost all displaying larger error on 

the digital sample. Lateral sulcus displays the largest error value of the digital sample, 

on the right side (1.76). Although the difference from the left LS (1.04) is considerable, 
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both show great discrepancy from the physical sample, on which LS display the same 

error value on both sides (0.52). The left AG is the only landmark displaying larger error 

on the physical sample (2.48) comparing to the digital (1.45). On the right side AG 

displays equal error values (1.52) for both samples.  

 The correlation between physical and digital error values is very small (R2=0.31; 

figure 3.13b). Greater differences in locating landmarks on physical or on digital 

landmarks are on LS, right AG, PS and IOP (figure 3.13c). 

 

Figure 3.13. Differences between physical and digital variation on the female chimpanzee. 
Charts compare (a) and correlate (b) error values per landmark. Wireframes illustrate the 
pairwise comparison between physical and digital mean shapes, showing the superior (above, 
left side up) and lateral (below) views.  
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Gibbon 

 GIB exhibits larger error values on the physical sample on the majority of 

landmarks (figure 3.14a). Greater discrepancies between physical and digital error 

values are located on the parietal landmarks. AG displays larger error on the left (1.67) 

than on the right (1.46) on the physical sample, but larger error on the right (1.16) than 

on the left (0.78) on the digital. LS and SG also display great divergence between left 

and right: both landmarks have larger error values on the left side, on the digital 

sample, and on the right side on the physical sample.  

 The value for correlation, although also small, is somewhat larger than those of 

the previous specimens, (R2=0.48; figure 3.14b). Greater divergence between physical 

and digital mean shapes is found on SG, mainly the right one, according to the pairwise 

comparison (figure 3.14c). The wireframes also show some asymmetry on the 

specimen, which is better seen on SG, AG and LS. 

 

Gorilla 

 On GOR, greater discrepancies between physical and digital error values are 

found on the frontal poles, right lateral sulcus and perpendicular sulcus, with larger 

values on the digital sample, and on the left angular gyrus, with larger values on the 

physical sample (figure 3.15a). LS and AG also exhibit large discrepancies between left 

and right values. The largest difference between sides is displayed by LS, with larger 

error on the right side, both on physical (1.40) and digital (1.88) samples. On the digital 

sample, this landmark exhibits both the largest (on the right) and the smallest (on the 

left: 0.44) error values. A similar pattern is exhibited by the AG, which displays the 

largest error value for the physical sample, on the left side (1.69), with considerable 

difference from the right side (0.77). On the digital sample the difference between 

sides is smaller (1.08 left; 0.90 right). 

 A little correlation exists between error values of physical and digital samples 

(R2=0.51; figure 3.15b). The wireframe comparison shows that the major discrepancy 

between physical and digital methods is in locating SG, AG, TP and BC on the left side, 

and LS on the right (figure 3.15c).  
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Figure 3.14. Differences between physical and digital variation on gibbon. Charts compare (a) 
and correlate (b) error values per landmark. Wireframes illustrate the pairwise comparison 
between physical and digital mean shapes, showing the superior (above, left side up) and 
lateral (below) views. 

 

Human 

 According to figure 3.16a, HUM exhibits larger error values, on the digital 

sample, on all landmarks except the central sulcus, which displays the greatest error 

value of the physical sample (1.24). AG exhibits the largest error of the digital sample 

on the left side (1.95), and the greater discrepancies both between physical and digital 



49 
 

and left and right values. Other landmarks displaying great discrepancy between 

physical and digital are FP, BC, LS, left SG, PS and IOP.  

The error values show almost no correlation (R2=0.12; figure 3.16b), but despite 

the considerable differences between physical and digital error values, the mean 

shapes from each sample are very similar, exhibiting only little difference on FP and CS 

(figure 3.16c). 

 

 

Figure 3.15. Differences between physical and digital variation on gorilla. Charts compare (a) 
and correlate (b) error values per landmark. Wireframes illustrate the pairwise comparison 
between physical and digital mean shapes, showing the superior (above, left side up) and 
lateral (below) views. 
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Figure 3.16. Differences between physical and digital variation on human. Charts compare (a) 
and correlate (b) error values per landmark. Wireframes illustrate the pairwise comparison 
between physical and digital mean shapes, showing the superior (above, left side up) and 
lateral (below) views. 

 

Orangutan 

 On ORG, greater discrepancies between physical and digital values are 

exhibited by the right LS, SG and left AG, with larger error on the physical sample, and 

on right AG and PS, with larger error on the digital sample (figure 3.17a). SG displays 

larger error on the physical sample both on left (1.39) and right (1.55) sides, comparing 

to the digital (0.64 left; 0.57 right). AG displays the largest error value of the physical 
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sample on the left side (1.65), and, on the right side, it displays the largest error value 

of the digital sample (1.72). The error on the right for the physical sample (1.37) and 

on the left on the digital sample (1.01) is large as well. Regarding the perpendicular 

sulcus, the error on the digital sample (0.97) doubles the error on the physical (0.47). 

 Physical and digital error values are not correlated (R2=0.07; figure 3.17b). The 

landmarks which location displays greater discrepancy between physical and digital 

samples are LS, SG and AG (figure 3.17c). 

 

Siamang 

 SIA’s landmarks displaying greater discrepancies between physical and digital 

error values are the angular gyrus and the internal occipital protuberance (figure 

3.18a). AG and SG also exhibit discrepancies between sides. AG exhibits the larger 

error of the physical sample on the right side (1.80), and a considerable smaller value 

on the left side (0.91). On the digital sample, AG error values display smaller difference 

between left (1.30) and right (1.19). SG, on the contrary, display larger error on the 

left, both on physical (1.29) and digital (1.35) samples, and a smaller error on the right, 

with little difference between physical (0.88) and digital (0.82). On IOP the error value 

is larger on digital (0.84) than on physical (0.55). LS displays the same discrepancies 

pattern as AG, but with the error being larger on physical on the left and on digital in 

the right. 

 The error values from physical and digital samples exhibit the largest 

correlation of all endocasts (R2=0.59; figure 3.18b). The pairwise comparison shows 

that physical and digital mean shapes are very similar, with a visible asymmetry 

between sides (figure 3.18c). 
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Figure 3.17. Differences between physical and digital variation on orangutan. Charts compare 
(a) and correlate (b) error values per landmark. Wireframes illustrate the pairwise comparison 
between physical and digital mean shapes, showing the superior (above, left side up) and 
lateral (below) views. 
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Figure 3.18. Differences between physical and digital variation on siamang. Charts compare (a) 
and correlate (b) error values per landmark. Wireframes illustrate the pairwise comparison 
between physical and digital mean shapes, showing the superior (above, left side up) and 
lateral (below) views. 
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3.2. SHAPE COMPARISON 

 

 PCA on figure 3.19 shows the specimens distribution in PC1-2 shape space 

according to their mean shapes. Along the first principal component shape changes 

mainly on the parietal area, with specimens that display lower scores having rounder 

endocasts with higher parietal area (LS, SG) and CS (taller brains), slightly lower frontal 

poles and Broca’s cap and more anterior cerebellar poles. The second principal 

component separates shorter from longer brains. Specimens with lower scores display 

shapes with a higher and more posterior frontal poles, which are further apart from 

temporal poles and Broca’s cap. In specimens having higher scores on PC2, CS and SG 

are on a more posterior position and LS is more anterior.  

 PC1 clearly separates HUM (lower scores) from the other apes (higher scores). 

The mean shapes of non human apes are also separated along PC1, from ORG with the 

lower score to SIA with the higher. CHIM and GIB have the closest scores on this PC, 

but note that, except for HUM, all the other specimens’ scores overlap, when 

considering all the replicas (see figure 3.4). Along PC2, ORG displays the lower score 

and GIB the higher. In this PC BON and CHIF display scores that are closer to each other 

and to zero. GIB and GOR also display scores closer to each other. 

 When comparing the mean shapes of all male endocasts (figure 3.20) it is clear 

that HUM is the most markedly different. This difference is associated with PC1, with 

HUM having a rounder, taller and wider endocast. ORG also displays a rounder 

endocast, but shorter and narrower than that of HUM. BON seems to display the most 

average shape, as it is closer to zero on both principal components. Comparing to BON, 

CHIM has a thinner brain with higher frontal and occipital poles and lower 

supramarginal and angular gyri. CHIM and SIA seem very similar on the lateral view, 

with SIA having a lower parietal area. But the superior view shows that SIA’s endocast 

is wider with more posterior Broca’s cap. GIB and GOR wireframes exhibit the most 

similar shapes. Both have narrow and long brains with a high position of SG and AG. 

GIB is only a little wider than GOR, but still it is narrower and a little longer than SIA.  
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Figure 3.19. Distribution of each endocast mean shapes along PC1 (45.8% of variance) versus 
PC2 (17.7% of variance) shape space. Wireframes represent the shape extremes (red – 
negative scores; green – positive scores; black – central shape). 
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Figure 3.20. Comparison of mean shapes through pairwise Procrustes superimposition of 
wireframes for each endocast. Black wireframes correspond to specimens on the columns and 
green wireframes to those on the rows. Upper triangle: superior view, left side up; lower 
triangle: lateral view. 

 

 CHIM and CHIF are compared on figure 3.21 to assess differences related to 

gender. The male endocast is narrower and a little longer, with higher frontal and 

occipital poles, more anterior Broca’s cap and lower temporal poles and angular gyrus. 

In fact, the anterior region of CHIF is overall vertically constricted, with the frontal 

poles closer to the temporal poles. Considering the parietal region, the major 

discrepancy is on the angular gyrus, which on CHIF is lower and closer to the lateral 

sulcus, and with larger distance between both angular gyri (left and right). In addition, 

CHIF’s occipital poles also display larger distance between them, as well as to the 

cerebellar poles and to the internal occipital protuberance and perpendicular sulcus.  
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Figure 3.21. Comparison of mean shapes through pairwise Procrustes superimposition of 
chimpanzee female and male wireframes.  
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4. DISCUSSION 

 

4.1. ERROR AND VARIATION 

 

Absolute error 

 

Most of the landmarks used in this analysis coincide with the landmarks used 

by Bruner (2010) in fossil endocasts, and which recognition he considered difficult and 

based on experience and subjectivity. Although the present study does not deal with 

fossils, some difficulties in localizing cortical brain structures on the endocranial casts 

were met as well. Even so, the absolute error in positioning landmarks seems to be 

relatively small. In fact, brain shape differences between genera and species can be 

easily assessed. Aldridge (2011) and Bienvenu et al. (2001) also calculated the error in 

locating landmarks. With the same procedure as the present study to calculate 

precision in locating brain landmarks, Aldridge (2011) obtained a mean error value of 

1.97mm. Bienvenu and coworkers (2011) calculated the intra-observer error by 

subtracting the coordinates of a landmark by the coordinates of the same landmark 

collected on another sampling session of the same specimen. They obtained an 

average mean distance between landmarks of 1.37mm, which they considered low. 

The mean absolute error value resultant from the present work (0.86mm) is smaller 

than those of the cited works, thus the level of error of landmark repeatability is 

acceptable.  

The largest uncertainty concerns the supramarginal gyrus, angular gyrus, and 

lateral sulcus. This is particularly true for the human endocast which, being the largest 

one has bigger and smoother areas. The lateral sulcus was also one of the landmarks 

with most error in the study by Bienvenu et al. (2011). But they found great mean 
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distances on the four endocranial poles (frontal, occipital, temporal and cerebellar) 

and internal occipital protuberance as well. In the present work these landmarks 

displays the lower mean errors. This inconsistency is because Bienvenu et al. (2011) 

used a different set of landmarks, including both brain and cranial landmarks, with 

some type I landmarks that are easier to identify.  

 

Physical versus Digital 

 

Differences between physical and digital error patterns after Procrustes 

superimposition are noteworthy. The digital sample, containing the bulk of landmarks 

with larger error values, displays greater mean error as well as larger variation within 

PC1-4 shape space. However when considering the mean error landmark by landmark 

and specimen by specimen, some display larger error within the physical sample, and 

other within the digital sample. The larger error values on landmarks of the digital 

sample comparing to the same on the physical can be explained by the smoother 

surface of the laser scan endocasts and the impossibility to handle them, which 

difficult the placement of the landmarks. On the other hand, this explanation is in 

disagreement with those landmarks and specimens which display larger error values 

within the physical sample. The interpretation of these results should be aided by the 

analysis of the features and characteristics of each endocast. 

Consider BON for example. During the record of landmarks coordinates on the 

physical endocast, the lateral sulcus was located, on the right side, on a little 

“depression” that was considered to mark the end point of the sulcus. But on the laser 

scan endocast this “depression” was larger, poorly defined, so there was more 

uncertainty in locating the landmark. On the left side, there is larger error because it 

lacked the “depression” helping to locate the end point of the lateral sulcus. Here, the 

error is larger on the physical sample than on the digital, what can be random once on 

both physical and digital the aid feature was absent. Regarding the supramarginal 

gyrus, the gyrus itself is difficult to define, and so is the position of the landmark. The 

location of the SG on the physical cast was aided by tactile features and color stains of 
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the endocast, and considering symmetry of the bilateral landmarks. On the digital cast 

the features are less defined and more difficult to see, and the color pattern is 

associated with the relief/ topography and changes with the perspective. But the error 

is only larger on digital on the left SG; on the right side the error is slightly larger on the 

physical cast. On CHIM, lateral sulcus, supramarginal gyrus and central sulcus were all 

positioned in relation to blood vessels imprints that were easily seen on the physical 

cast, thus displaying larger error on the digital. CHIF and HUM, which also display 

larger error on the digital sample, are both clearly marked with blood vessels imprints 

that helped landmarks location.  

With respect to landmarks displaying larger error in location on the physical 

endocasts, the angular gyrus of CHIM and CHIF are noteworthy. The greater 

discrepancy between physical and digital on AG of these specimens is due to an error 

of interpretation of the gyrus that resulted in the clustering of two groups of landmark 

configuration replicas on the PCA, mainly due to the different position of this 

landmark. Like the left SG of BON, other landmarks were located using color stains and 

tactile features as reference: GOR left lateral sulcus, HUM central sulcus, ORG 

supramarginal and left angular gyrus. But in these cases, it seems that instead of 

making the landmarks location easier, those features resulted in misleading. For 

example, on HUM, the presence of various blood vessels around the region of the 

central sulcus led to larger error as the landmark was probably not located in relation 

to the same specific vessel on all the sampling session of the physical endocast. Once 

these vessels were less defined on the digital cast the misleading was smaller or 

absent. Conversely, ORG, which displays poorly defined features, the difference 

between physical and digital casts in this term is not very marked. On GIB, as on ORG, 

there is little discrepancy between physical and digital error, except on the parietal 

landmarks. SIA also shows little discrepancy between physical and digital error, being 

the endocast exhibiting the larger correlation value. The difference between physical 

and digital error on these three endocasts seems to be random, related to the 

different types of visualization that lead to different strategies of landmark location. 

In addition to the referred issues affecting landmarks location, the positioning 

of landmarks in relation to the position of others (e.g. below, anterior or posterior to) 
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can also lead to some error when these relative positions are interpreted slightly 

differently. Examples of such landmarks are the SG and AG which were located in some 

extent with reference to the central sulcus, on BON; and the HUM’s left AG, which 

error may be related to error on the left SG. A particularity of SIA that also influenced 

the location of some landmarks is the damaged region including the parietal area on 

the right side. This endocast displays a lack of continuity on the right higher parietal 

and frontal regions due to a damage on the original specimen. In consequence of this 

defect, SIA shows great asymmetry on that region. The locating of the parietal 

landmarks having into account the location of the same landmarks on the opposite 

side may also be cause of different error values among these landmarks, influenced by 

interpretation. In fact, the asymmetry inherent to the endocasts may explain the 

discrepancies between left and right on corresponding bilateral landmarks. Differences 

in the pattern of features displayed that can aid landmarks location leads to 

differences in the error values on left and right corresponding bilateral landmarks of 

the same endocast. For instance, GIB’s lateral sulcus was located relatively to a vessel 

on the left side, a feature that was not visible on the right side. 

Hence, various factors contribute to the discrepancy between physical and 

digital error patterns: the difficulty in identifying or defining the brain region (e.g. 

gyrus) where to locate one point (landmark), the possibility of dissimilar interpretation 

or perception of the brain region between two session samples, the influence of the 

features present or absent on each cast, the difference between physical and digital 

relatively to the features resolution. Post this, the main aspect influencing error 

patterns is the characteristics of each endocast. When features like blood vessels, 

brain bulges or sulcus, are well visible on the physical endocasts or on one of the sides 

and poorly defined or absent on the digital or on the other side, the interpretation is 

different, i. e. without features present that can be used to aid the location of 

landmarks, the positioning of those is done using a different approach (e.g. in relation 

to other landmarks). The different approaches lead to different error patterns of error 

that are linked to specific characteristics of each endocast. An idiosyncratic pattern of 

error is also mentioned by Schoenemann et al. (2006) concerning their comparison of 

digital and physical endocast reconstruction. Furthermore, the error of the observer, 
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which is related to previous experience, and random error also influence the pattern of 

error. The fact that, of the physical casts, HUM is the one with overall smaller error can 

be because the human brain is an extensively studied organ. As an object of 

multidisciplinary studies, more information about the human brain can be found, 

particularly about its anatomy. Plus, the main cortical regions used in the present study 

were originally defined on a human brain. In comparison, studies on brains of non-

human primates are more specific and less available. This makes it more difficult to 

identify the main brain regions on the non-human endocasts, and consequently the 

location of landmarks.  

Despite the differences in the patterns of error, the physical and digital 

landmark configuration replicas of each endocast cluster together and the specimens 

are well separated, which means that these landmarks are reliable and can be used for 

inter-specific analyses. Even thought the digital sampling can bring larger variance than 

the physical, the divergence is not statistically significant and both methods lead to 

similar results. The major discrepancy was found on the parietal bosses, the 

supramarginal and angular gyrus.  

 

4.2. SHAPE COMPARISON 

 

Interspecific comparison 

 

 The analysis of shape within this work is purely complementary and no 

statistical inferences can be made as the sample is composed of only one specimen of 

each. Even so, the distribution of the specimens in the shape space is consistent with 

that obtained by Bienvenu et al. (2011). HUM is separated from the remaining 

specimens along PC1 due to the characteristically globular shape of the modern human 

brain. The globularity of the brain is caused by expansion of parietal, relative 

shortening of the occipital and frontal poles, and the rotation of the occipital and 

cerebellum forward and under the brain mass (Bruner, 2004). Among these data, the 

globularity of the human endocast is only clear in terms of vertical enlargement. HUM 
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is the taller endocast, with a more anterior central sulcus and a higher and more 

posterior end of the lateral sulcus. HUM is also the wider specimen, but it is only 

notable in comparison to CHIM and GOR (figure 3.20), as on the study of Bienvenu et 

al. (2011). An important shape change related to globularity of the neurocranium, the 

flexion of the cranial base (Lieberman et al., 2002), is not comprised by the landmarks 

used in the present analysis.  

Among the non-human apes, ORG is the specimen with the rounder shape, 

followed by BON. Displaying the higher scores, GIB, GOR, and specially SIA have more 

flatten endocasts, with lower central sulcus in relation to the frontal poles. On PC2, 

ORG displays the lower scores, being the shorter endocast, with higher frontal poles; 

and the higher scores are displayed by GOR and GIB, having longer brains, with the 

frontal poles closer to Broca´s cap. As in Bienvenu and colleagues’ (2011) study, the 

Panins are closer to the consensus.  

Aldridge (2011) also obtained clear separation between humans and the other 

apes, by using EDMA. She found significant differences on both internal and external 

parts of the brain, including the cortical surface, and frontal, parietal and temporal 

regions. Besides these differences between humans and all apes, each of the apes 

displays unique characteristics distinguishing them to humans. According to Aldridge 

(2011), chimpanzees have more anteroposterly expanded parietals and gorillas have 

more elongated non-frontal structures, relatively to humans. These results are in 

agreement with the more elongated brains of CHIM and especially GOR, found on the 

present study. Also in agreement with Aldridge’s (2011) findings is the superoinferiorly 

elongated temporal of orangutans. The finding that the gibbon’s occipital region is 

expanded mediolaterally comparing to humans (Aldridge, 2011) is corroborated by this 

study as GIB displays larger difference between the occipital poles. But Aldridge (2011) 

also found greater distance between the occipital poles on bonobos, which was not 

found here, as the distance between OP in HUM and BON are similar.  

But Aldridge (2011) only compared the apes to humans, and not to each other, 

and Bienvenu et al. (2011) did not include the lesser apes on their analysis. The 

distribution of SIA and GIB on the present study is worth mentioning. The major 
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differences between SIA and GIB are located on the frontal end parietal areas. SIA have 

lower parietal areas (SG and AG) and higher frontal poles that are further apart from 

Broca’s cap. GIB is slightly longer and narrower (figure 3.20).  

 In fact, the morphology of GIB is more similar to that of GOR. The clustering of 

gorillas and gibbons was also documented by McNulty (2004), when studying 

hominoids cranial shape affinities. The author observed more affinity between 

hylobatids and gorillas than between any other pair of apes, especially after removing 

the variance associated with size. The author hypothesized a retention of cranial 

morphology by both Gorilla and Hylobates (McNulty, 2004), but Bienvenu et al. (2011) 

stated that gibbons and African apes do not share the same allometric trajectory, and 

considered that the determination of more primitive or derived endocranial 

morphologies need further study. In McNulty’s (2004) analysis siamangs were included 

in the hylobatids, being the least similar to gorillas. The damage on the right parietal 

region of SIA may have influenced the differences between this specimen and GIB 

relatively the supramarginal and angular gyrus (PC1). Furthermor, Hylobates and 

Symphalangus differ in internal neurocranial and craniofacial angular relationships 

(Leslie, 2010). Leslie (2010) found siamangs to have more dorsally oriented orbits and 

significantly flatter skull base, relatively to gibbons. These differences in the ontogenic 

patterns of change in face orientation may be indicative of changes in brain 

organization between the two hylobatid genera. As these differences may not only be 

related to size, the inclusion of the lesser apes as a representative group into primate 

comparative studies can have significant implications (Leslie, 2010).  

 

Chimpanzee sex dimorphism 

 

 Besides the distinct patterns that distinguish each non-human ape’s from 

human’s brains, Aldridge (2011) obtained as well differing sex-related patterns, i.e. 

females and males of each species differ from humans in distinctive characteristics. 

According to Bienvenu et al. (2001), among the great apes humans and gorillas display 

the greater sexual dimorphism in terms of endocranial volume, but only gorillas show 

significant dimorphism in endocranial shape. The sample used on the present study 



66 
 

only allows sex comparison between the chimpanzee endocasts. Besides this 

comparison can be no more than preliminary and descriptive since just one specimen 

of each sex is available. 

First, it should be noticed that the female chimpanzee is closer to the bonobo 

than to the male chimpanzee on the shape space (figure 3.19). Bonobo skull has been 

considered “paedomorphic” (juvenilized) in comparison to chimpanzee skull (e.g. Shea 

1983; Mitteroecker et al., 2004; 2005; Lieberman et al., 2007), which is in agreement 

with bonobo being more similar to the female chimpanzee than to the male. 

Durrleman and colleagues (2012) confirm the developmental delay of bonobos 

relatively to chimpanzee in adulthood. Moreover, on their study bonobos endocrania 

differ from those of chimpanzee in being more globular at all stages. In the present 

analysis the rounder endocranial shape is a characteristic shared by the bonobo and 

the female chimpanzee endocasts that separates these from the male chimpanzee 

one. Thus, the present study is in agreement with all of the above. 

In addition, the major differences between the endocasts of female and male 

chimpanzees were found on the fronto-temporal area and on the parietal region 

comprised by the angular gyrus. On their study of craniofacial sexual dimorphism in 

great apes, Schaefer et al. (2004) obtained significant differences between male and 

female in size and shape. Gorillas and orangutans are those with larger magnitude of 

sexual dimorphism on both size and shape, and chimpanzees cluster with humans and 

bonobos in terms of shape dimorphism (Schaefer et al., 2004). On chimpanzee the 

dimorphism is associated with non-allometric shape differences between male and 

female, which the authors suggest to be the sexual selection, as in humans (Schaefer 

et al., 2004). The differences in brain morphology of males and females among 

primates have been related to the social role of each gender inside their group 

(Lindenfors, 2005). Gur and colleagues (1999) associated the better performance on 

language tasks by women with the differences in intracranial tissue composition. 

Similarly, the different social demands of female and male chimpanzees (Lindenfors, 

2005), may be associated to different morphology and shape of their brains.  
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5. CONCLUSIONS 

 

Brain evolution is the field of Paleouneurology, which mainly relies on the 

analysis of endocasts. The analysis of shape can be accessed through the use of 

landmark data and multivariate statistics provided by GM. As the landmarks 

configuration influences the results, the precision and repeatability in landmark 

location is of great importance. Furthermore, the application of landmarks on 

endocasts is complicated by the difficulties in identifying the anatomical regions, which 

can be increased when dealing with digital endocasts.  

The present study constitutes a preliminary analysis on a small sample of 

endocasts to evaluate intra-observer error in placing landmarks on major brain areas. 

Results suggest that cortical brain landmarks on endocasts show a good reliability for 

large scale taxonomic analysis. Although results are coherent between physical and 

digital data, in the latter case the lack of physical contact adds further difficulties in 

landmarking brain structures. The lower parietal bosses show the largest degree of 

discrepancy among the points considered in this analysis. 

Regarding the shape comparison between the specimens, even though the 

extremely small size of the sample, the results fall within those obtained previously by 

other authors, strengthening the reliability of the chosen landmarks. 
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APPENDIX A 

Absolute Error Raw Values 

 

 

Table A1. Raw values of absolute error per landmark and per specimen for the digital 

sample. 

 
Landmark  

 
BON CHIM CHIF GIB GOR HUM ORG SIA 

Frontal 
 Pole   

L  0.71 0.22 0.29 0.22 0.69 1.92 1.19 0.22 

R  0.63 0.32 0.43 0.15 0.85 1.9 1.00 0.2 

Occipital  
Pole  

L  0.54 0.53 0.83 0.38 1.14 0.67 0.44 0.23 

R  1.04 0.51 1.03 0.24 1.11 0.45 0.45 0.48 

Temporal  
Pole   

L  0.8 0.41 0.66 0.27 0.59 1.12 0.6 0.28 

R  0.92 0.54 0.55 0.33 0.64 0.99 0.56 0.38 

Cerebellar  
Pole   

L  0.69 1.12 0.7 0.57 0.56 1.21 0.57 0.57 

R  0.62 1.21 0.87 0.49 0.72 1.26 1.02 0.51 

Broca's  
Cap   

L  0.74 0.62 0.72 0.39 0.8 0.86 0.73 0.28 

R  0.82 0.75 1.01 0.24 0.71 0.79 0.69 0.41 

Lateral  
Sulcus   

L  1.17 0.84 1.18 1.11 0.48 1.77 0.71 0.52 

R  1.02 1.26 2.1 0.95 2.16 2.16 0.57 0.67 

Supramarginal  
Gyrus   

L  1.95 1.34 1.33 0.85 1.3 2.67 0.75 1.02 

R  0.91 1.77 1.19 0.73 1.08 1.53 0.55 0.71 

Angular  
Gyrus   

L  1.06 1.01 1.66 0.55 1.36 3.44 1.14 1.01 

R  1.55 0.85 1.86 0.87 1.05 1.34 1.98 0.92 

Central Sulcus  0.82 1.04 0.85 0.43 0.55 1.31 0.64 0.35 

Perpendicular Sulcus  0.88 0.58 0.82 0.36 1.11 0.43 1.01 0.58 

 Protuberance  0.59 0.52 0.58 0.23 0.93 0.74 0.42 0.49 

For bilateral landmarks: L – left; R – right. 
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APPENDIX B 

Significant PCs 

 

 
Figure B1. Scree plot. Significant PCs are PC 1-4 (variance > 5%). 

 

Table B1. Eigenvalues and percentage of variance for the significant 

principal components (PC1-4). 

PC Eigenvalue % variance 
1 211.45 39.77 
2 83.97 15.79 
3 73.65 13.85 
4 43.60 8.20 
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APPENDIX C 

Error Values after Procrustes Superimposition 

 

 

 

Table C1. Raw error values for the physical sample after Procrustes superimposition 

(physical + digital pooled). 

Landmark  BON CHIM CHIF GIB GOR HUM  ORG SIA 

Frontal Pole  
L  0.65 0.39 0.42 0.48 0.34 0.68 0.53 0.39 

R  0.61 0.37 0.43 0.43 0.39 0.52 0.58 0.46 

Occipital Pole  
L  0.66 0.57 0.82 0.65 1.08 0.37 0.83 0.65 

R  1.03 0.41 0.72 0.63 1.12 0.39 0.82 0.68 

Temporal Pole 
L  0.83 0.79 0.63 0.57 0.56 0.64 0.71 0.57 

R  0.71 0.75 0.43 0.63 0.63 0.58 0.54 0.61 

Cerebellar Pole 
L  0.75 0.85 0.68 1.09 0.80 0.72 0.86 0.93 

R  0.65 0.86 0.71 0.96 0.63 0.74 0.85 0.80 

Broca's Cap 
L  0.97 0.79 0.51 0.82 0.47 0.38 0.68 0.57 

R  0.71 0.52 0.68 0.79 0.59 0.37 0.53 0.47 

Lateral Sulcus 
L  1.27 0.51 0.52 1.18 0.64 0.39 0.85 1.02 

R  0.50 0.76 0.52 1.68 1.40 0.46 0.91 0.83 

Supramarginal 
Gyrus 

L  0.65 0.65 0.85 0.79 1.16 0.94 1.39 1.29 

R  0.93 0.67 0.94 1.62 0.77 0.96 1.55 0.88 

Angular Gyrus  
L  1.03 3.01 2.48 1.67 1.69 0.58 1.65 0.91 

R  1.64 1.89 1.52 1.46 0.62 0.40 1.37 1.80 

Central Sulcus  0.41 0.81 0.42 0.72 0.37 1.24 0.78 0.62 

Perpendicular Sulcus  0.84 0.64 0.49 0.56 0.58 0.30 0.47 0.83 

 Protuberance  0.54 0.57 0.53 0.74 0.74 0.25 0.66 0.55 
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APPENDIX C 

Error Values after Procrustes Superimposition 

 

 

 

Table C2. Raw error values for the digital sample after Procrustes superimposition 

(physical + digital pooled). 

Landmark  BON CHIM CHIF GIB GOR HUM  ORG SIA 

Frontal Pole   
L  0.70 0.41 0.61 0.39 0.66 1.04 0.81 0.49 

R  0.62 0.49 0.79 0.40 0.84 1.03 0.72 0.51 

Occipital Pole  
L  0.54 0.57 0.92 0.70 1.09 0.62 0.71 0.43 

R  1.05 0.58 1.02 0.51 1.20 0.46 0.69 0.67 

Temporal Pole   
L  0.83 0.52 0.78 0.48 0.59 0.90 0.65 0.41 

R  0.88 0.66 0.78 0.52 0.70 0.60 0.63 0.61 

Cerebellar Pole   
L  0.70 0.80 0.77 0.78 0.53 0.76 0.57 0.83 

R  0.62 0.86 1.04 0.75 0.85 0.81 1.00 0.72 

Broca's Cap   
L  0.80 0.54 0.84 0.67 0.75 0.68 0.83 0.52 

R  0.81 0.60 1.15 0.55 0.59 0.67 0.81 0.69 

Lateral Sulcus   
L  1.10 0.72 1.04 1.58 0.44 1.08 0.81 0.77 

R  0.92 1.06 1.76 1.39 1.88 1.25 0.56 0.91 

Supramarginal 
Gyrus   

L  1.59 1.18 1.10 1.18 1.15 1.43 0.64 1.35 

R  0.81 1.51 0.96 0.97 0.92 0.93 0.57 0.82 

Angular Gyrus   
L  0.96 0.88 1.45 0.78 1.08 1.95 1.01 1.30 

R  1.40 0.78 1.52 1.16 0.90 0.86 1.72 1.19 

Central Sulcus  0.92 1.06 0.91 0.85 0.52 1.00 0.75 0.58 

Perpendicular Sulcus  0.89 0.61 0.86 0.59 1.01 0.60 0.97 0.87 

 Protuberance  0.67 0.58 0.81 0.50 0.84 0.66 0.55 0.84 

 

 

 


