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 A salinização de ribeiros é um processo natural definido por um aumento de iões inorgânicos 

na água. Este processo pode, no entanto, apresentar sérias consequências quando atividades 

antropogénicas interferem com a origem desses iões ou a taxa a que os mesmos são depositados. 

Neste caso, o processo é denominado por salinização secundária, o qual representa uma ameaça ao 

nível das comunidades, com possíveis consequências a ocorrerem desde o mais baixo nível ecológico.  

Em zonas temperadas, os ribeiros de baixa ordem são caracteristicamente heterotróficos, 

obtendo a sua energia por parte da área ripícola, maioritariamente folhas. No processo de 

decomposição foliar, a atividade dos decompositores (particularmente hifomicetes aquáticos) é de 

crucial importância, uma vez que iniciam o processo que fornece matéria orgânica a todo o sistema 

aquático. 

Para concluir acerca dos efeitos biológicos da salinização secundária em hifomicetes aquáticos 

e sua atividade decompositora, 14 espécies comuns foram expostas a concentrações sucessivamente 

maiores de NaCl (0 – 20 g/L). Para cada uma das espécies foi medida a taxa de crescimento e 

referente EC50, e a taxa de esporulação; para diferentes comunidades, compostas pelas espécies 

cuja atividade reprodutiva foi tolerante a determinada concentração de NaCl, mediu-se a capacidade 

decompositora de folhas de carvalho, taxas de respirometria e esporulação total e concentração de 

ácidos nucleicos. 

O crescimento das espécies de hifomicetes aquáticos foi significativamente reduzido a 

concentrações > 4 g/L, sendo que os valores de EC50 variaram de 7,8 g/L to 40,86 g/L. Observaram-

se apenas cinco espécies com capacidade de esporulação a 2 g/L NaCl, uma a 4 e 8 g/L, e nenhuma 

a concentrações superiores. As comunidades compostas por estas espécies sobreviventes 

demonstraram uma significante redução na sua capacidade decompositora e na produção de conídios 

apenas a partir da concentração de 4 g/L, o que demonstra a presença de alguma redundância 

funcional a mais baixos níveis de stress. No entanto, as taxas de respirometria, que medem a atividade 

biológica, sofreram uma imediata redução na mais baixa concentração de NaCl, enquanto o rácio 

RNA:DNA aumentou com o aumento da salinidade. Estes resultados permitem-nos concluir que 

mesmo a baixos níveis de salinidade a atividade das comunidades fúngicas é afetada, e que com o 

aumento da salinidade a energia disponível é investida maioritariamente no crescimento celular; no 
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entanto, sem capacidade reprodutora, a colonização das folhas é largamente inibida, com sérias 

consequências para o sistema aquático.  
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Stream salinization is a process that occurs whenever there is an increase in inorganic ions on 

aquatic systems. This natural occurring process can, however, present serious consequences when 

anthropogenic activities interfere with the nature of those ions or the rate at which those are disposed. 

In this case, the process is called secondary salinization and represent a community-level threat, with 

possible consequences starting at the lowest ecological level.  

Temperate headwaters are characteristically heterotrophic, obtaining its energy from riparian 

inputs, mainly leaves. In the leaf-decomposing process, the activity of decomposers (primarily aquatic 

hyphomycetes) is of crucial importance, since they start the process that provides organic matter to the 

entire watershed. 

To infer about the biological effects of secondary salinization on aquatic hyphomycetes and its 

decomposing activity, 14 common species were exposed to increasing NaCl concentrations (0 – 20 

g/L). Growth rates and respective EC50, as well as sporulation rates of single species were measured. 

At each NaCl concentrations, the different salt-tolerant communities were evaluated in its oak-leaves 

decomposing capacity, respiration and total sporulation rates, and nucleic acids concentration. 

Growth rate of aquatic hyphomycetes species was significantly reduced at > 4 g/L NaCl; EC50 

values varied from 7.80 g/L to 40.86 g/L. Only five species were able to sporulate at 2 g/L; one at 4 and 

8 g/L, and none at higher concentrations. Communities composed of those surviving species showed 

reduced decomposing capacity and conidia production only beyond 4 g/L, which shows evidence of 

some functional redundancy at lower stress levels. However, respiration rates – the measure of 

biological activity – were immediately reduced at the lowest NaCl treatment, while RNA:DNA increased 

with the increase of NaCl. These results allow us to conclude that, even at low levels of salinity, the 

fungal communities’ activity is affected, and that the increase in NaCl causes the available energy to 

be invested in cell growth; however, without reproductive capacity, the leaf colonization is largely 

inhibited, with serious consequences for the aquatic system.  
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 In December 2003, it was proclaimed by the United Nations General Assembly that the period 

2005-2015 would be the International Decade for Action ‘Water for Life’, growing awareness for the 

importance of water in all aspects of humans’ life. It started on March 22, 2005, with the primary goal 

of promoting efforts for a sustainable management of water resources; it is known that, with the 

continuing population growth, there will be an increase in water demands, as well as more waste and 

pollution affecting this resource. 

 Humans have always revolved around water; the first settlements were determined by the 

location of water sources, and the development of the biggest cities has always taken place near the 

ocean or big rivers. Nowadays, we depend on water for domestic, industrial and agricultural purposes, 

as well as a source of energy, a way of transportation and for leisure activities. It is interesting to notice 

that, as before, even today our biggest quest is to find water; if not in our own planet, then somewhere 

else in the universe. 

 In every aspect of our life, water plays a crucial role, and this omnipresence can lead us to think 

that it will always be there for our use; after all, more than 70% of Earth’s surface is covered by water. 

However, from this, only 0.8% constitutes fresh water (Geist, 2011) and these habitats’ biodiversity has 

been declining at a faster rate than the most affected terrestrial ecosystems (Décamps, 2011). Despite 

being a tiny fraction of the total amount of water in our planet, freshwater habitats support at least 100 

000 species (Dudgeon et al., 2006), and confine as much as 35% of all vertebrate species (Christian 

et al., 2011). Running waters are unique systems: they undergo an intimate, dependent relation with 

surrounding terrestrial ecosystems, with a dominant linear form and unidirectional flow. All these 

characteristics contribute to define their unique biota (Malmqvist & Rundle, 2002).  

 Freshwater systems experience multiple threats, from overexploitation, water pollution, flow 

modification, destruction or degradation of habitat, and invasion by exotic species (Dudgeon et al., 

2006); although seas and oceans are also affected by all of these factors, their volume has the capacity 

to dilute contaminants and mitigate negative impacts (Dudgeon et al., 2006), to a higher extent. 

Concerning water pollution, alterations of the water chemistry – from acidification to nutrient addition, 

metal contamination and salinization – are global threats that can have a severe impact on these 

systems (Malmqvist & Rundle, 2002). From the entire watershed, headwater streams can be seen as 

the beginning of the continuum, which will feed all downstream areas, until reaching the sea; any threat 

we cause upon those systems will have consequences for the entire aquatic ecosystem. 
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Headwater streams 

 Headwater streams are located at the head of the watershed; they are very abundant, 

comprising up to 80% of the length of the drainage area (Richardson & Danehy, 2007). Headwaters 

are characterized by strong interactions with the surrounding terrestrial ecosystem (Lowe & Likens, 

2005), acting as sources of sediment, water, nutrients and organic matter (Gomi et al., 2002; Wipfli et 

al., 2007; Clarke et al., 2008) to downstream areas. This shows their crucial role for the entire river 

network: they sustain the structure, function and productivity of the aquatic ecosystem (Wipfli et al., 

2007). Also, they provide an array of habitats for many organisms (Meyer et al., 2007), they support 

genetically isolated species (Gomi et al., 2002; Wipfli et al., 2007) and provide refuge for many species 

(Meyer & Wallace, 2000; Lowe & Likens, 2005); they also serve as a spawning habitat, or a rearing 

habitat for the young (Meyer et al., 2007). Headwaters represent, therefore, important source areas for 

biodiversity (Gomi et al., 2002; Meyer et al., 2007; Wipfli et al., 2007). 

 One of the main features of temperate headwater streams is their high edge to area ratio. This 

results in a high degree of shading, due to the deep closed forest canopy; with low light, primary 

production is reduced, meaning that these systems are heterotrophic, highly dependent on 

allochthonous inputs of energy (Abelho, 2001; Graça, 2001). These inputs occur in form of wood, 

seeds, flowers or terrestrial invertebrates, but mainly of leaf litter, which can account for up to 98% of 

total allochthonous energy (Abelho, 2001); this organic matter will be incorporated into secondary 

production through the leaf decomposition process. Leaf litter decomposition is a key-ecosystem 

process (Gessner et al., 2007) dependent on the activity of three main players: the leaves, the 

decomposers and the detritus-feeding invertebrates (Graça, 2001; Gomi et al., 2002). All three are 

interdependent, and their activity will also result in the release of organic matter that will supply nutrients 

and energy to other functional feeding groups (Cummins, 1974).  

 

Leaf litter decomposition 

 Leaves are the primary source of energy of low order streams (Abelho, 2001; Bärlocher, 2005); 

the decomposition of leaf litter occurs in three phases that may overlap in time (Gessner et al., 1999; 

Abelho, 2001). 

 The first step – leaching – corresponds to the release of soluble compounds as amino acids, 

simple sugars and phenolics to the water. This phase frequently leads to a mass loss higher than 30% 
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(Gessner et al., 1999). This abiotic phase depends on factors such as water temperature, turbulence 

and, primarily, species identity and traits (Abelho, 2001, Lecerf & Chauvet, 2008). 

 The second phase of leaf decomposition, conditioning, corresponds to the colonization of leaf 

tissue by microorganisms, namely bacteria and aquatic hyphomycetes (Abelho, 2001). These fungi are 

dominant in well aerated and turbulent freshwater systems, where they play an essential role in leaf 

litter decomposition; they possess the enzymes needed to degrade the main components of leaves, as 

cellulose, hemicelluloses, pectin and lignin (Gessner et al., 1999; Graça, 2001; Krauss et al., 2011). 

That degradation, along with the mechanical action of the hyphae (Gessner et al., 2007) results in a 

physically softened leaf. The addition of fungal biomass to the leaf also increases its nutritional value 

and palatability to the invertebrates (Canhoto & Graça, 2008). It may require weeks to months to reach 

the point where the leaf is fully conditioned, i.e., with the highest fungal biomass and activity peak 

(Canhoto & Graça, 2008). The conditioning process is also determined by species identity and affected 

by physical and chemical characteristics of the water, as nitrogen and phosphorus concentration 

(Sridhar & Bärlocher, 1997), dissolved oxygen (Medeiros et al., 2009) or nutrients availability and 

increased temperature (Ferreira & Chauvet, 2011) 

 The third step of the litter decomposition is referred as fragmentation. It occurs due to two 

processes: physical fragmentation, as a result of abrasion from flowing water or sediments, and biotic 

fragmentation. In this case, the loss of leaves’ integrity is promoted by the feeding activity of 

invertebrates – scrapers and, most importantly, shredders (Cummins, 1974). It has been shown that 

invertebrates have the ability to recognize and prefer conditioned leaves over non-conditioned ones, 

and that ingestion of this conditioned material can lead to advantages in growth, survival and fecundity 

(Bärlocher & Kendrick, 1975; Graça, 2001; Canhoto & Graça, 2008, Christian et al., 2011). Through 

their activity, detritivores promote the release of fine particulate organic matter (Gessner et al., 1999; 

Graça, 2001), which will then be used by other organisms (Richardson & Danehy, 2007), such as 

collectors (Canhoto & Graça, 2008). 

 

Secondary salinization as a main stressor of freshwaters 

 Salinity is a chemical component of all aquatic systems, defined as the total concentration of 

dissolved inorganic ions, namely Na+, Ca2+, Mg2+, K+, SO4
2-, CO3

2- and HCO3
-, in the water (Cañedo-

Argüelles et al., 2013). The process of increasing the levels of those ions on land or aquatic systems, 
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above normal levels – undisturbed freshwaters are characterized by a salinity value of <0.5 g/L 

(Teixeira et al., 2007) – is called salinization; primary when it occurs by natural processes, secondary 

when it is due to anthropogenic action. 

 Primary salinization is the result of long-term natural processes, as the deposition, in the soil or 

groundwater, of salts via sea spray or rain (Mayer et al., 2005), or the weathering of materials that 

release soluble salts (Cañedo-Argüelles et al., 2013). 

 Whenever there is salt deposition from other origins, or the rate at which those salts accumulate 

is changed due to anthropogenic activities, we are facing secondary salinization. Some anthropogenic 

sources for salts entering freshwaters are mining activity (Williams, 1999; Kefford et al., 2011; Cañedo-

Argüelles et al., 2013) and industry (Kefford et al., 2012; Cañedo-Argüelles et al., 2013), as well as the 

use of salts as de-icing agents for roads in the winter. Those salts are then washed away by rainwater, 

and transported to adjacent streams (Silva et al., 2000; Cañedo-Argüelles et al., 2013).  

 The rate at which salts accumulate can be increased due to land clearing, for agricultural or other 

purposes (Silva et al., 2000; Kefford et al., 2011; Cañedo-Argüelles et al., 2013). The removal of trees 

will increase the amount of rainwater that reaches the soil; also, it will decrease the amount of 

groundwater that is absorbed. This will lead to the rising of groundwater tables, until intersecting the 

ground surface and discharging salts into streams and rivers (Mayer et al., 2005). Also for agricultural 

purposes, irrigation could lead to the rising of groundwater tables; linked to crop production, that absorb 

only a small fraction of the salt, it will lead to more saline water intersecting our rivers (Cañedo-Argüelles 

et al., 2013). Water with salinity values over 1 g/L is considered useless for agricultural purposes, and 

values slightly higher are no longer suitable for drinking and industrial supplies (Williams, 1999). 

Economic impacts of salinization are also important; for instance, in Western Australia, by 2050, up to 

$400 million are predicted to be lost per year in agricultural production due to salinity (Mayer et al., 

2005), which is accounted for as one of the most limiting environmental factors for agricultural 

production (Pitman & Läuchli, 2002). 

 

Impact of salinization in the aquatic biota 

Freshwater salinization is considered one of the most important stressors of freshwaters, being 

known to have direct and indirect impacts on the biota and to impair ecological processes (Williams, 

1999; Silva et al., 2000; Kefford et al., 2011), with lethal and sublethal effects from values as low as 1 
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g/L for aquatic plants and invertebrates (Kaushal et al., 2005). Salinization is even more threatening 

considering that its effects are not limited to the aquatic zone as riparian areas are also affected (James 

et al., 2003).  

To the riparian vegetation, an excess of ions or water deficiency, due to higher salinity values, 

result in toxic effects: reduced growth rates, changes in calcium to sodium ratio and potassium uptake, 

breaking of enzymes and proteins pathways, among other effects such as inhibition of seed germination 

and lesions on leaves (Hart et al., 1991); ultimately, the disappearance of riparian trees (Williams, 

1999). Such effects could occur beyond salinities of 2 g/L. In headwater streams, the decrease of 

riparian vegetation would eventually lead to more light entering the stream, changing the system from 

heterotrophic to autotrophic (Cañedo-Argüelles et al., 2013). In the water, the addition of salt may have 

important physic-chemical effects direct and indirectly important to the biota, such as increases in 

sedimentation and decreases in the dissolved oxygen concentration (James et al., 2003), increases in 

the total phosphorous but decreases NOx (Kefford, 1998) and effects in nitrification rates (Garcia, 2015). 

High salinity values cause osmotic stress to organisms (Hart et al., 1991). If salt concentration 

becomes too high, cells end up dehydrating and collapsing, leading to death (Cook, 2012). Therefore, 

the salinity tolerance of a species is determined by their ability to maintain the optimal internal osmotic 

concentration despite external changes (Hart et al., 1991). Freshwater organisms can sustain 

osmoregulatory processes; however, this always means metabolic costs, at the expense of other 

processes such as growth or reproduction (Hassel et al., 2006).  

 The most sensitive species of invertebrates (e.g. Crustacea, Insecta and Mollusca), show 

adverse effects at salinities of 1 g/L; but 9 g/L seems like a reasonable threshold value, beyond which 

toxic effects occur to most of the species (Hart et al., 1991). Concerning invertebrates’ communities, 

Piscart et al. (2005) referred a loss of species specialization, changes in reproductive traits (mainly a 

shift to ovoviviparity) and functional feeding groups proportion (the frequency of scrapers decreased, 

being replaced by filter-feeding and deposit-feeding) in sites with higher levels of salinity (i.e. 

approximately 1.37 g/L). 

Concerning bacteria, it has been suggested that with increases in salinity, freshwater species 

might be replaced by their marine forms, without changes in community balance and functioning of the 

ecosystem (Hart et al., 1991). Also, some studies indicate that bacteria can easily and quickly adapt to 

low levels of increasing salinity (Hart et al., 1991 and references therein). However, salinity interacts 
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with other physical and chemical factors, and we cannot know for sure how bacterial communities would 

respond to changes in such context. For fungi, very few studies have been developed, but results 

suggest that salinization leads to some inhibition in growth rates and, more strongly, in the reproductive 

effort (Byrne & Jones, 1975; Müller-Haeckel & Marvanová, 1979). Related to the effect of stream 

salinization on the process of leaf breakdown, studies are also scarce, but some authors have reported 

a reduced breakdown rate at higher salinity levels (Sangiorgio et al., 2007; Cañedo-Argüelles et al., 

2014), probably by reducing the diversity of invertebrate assemblages (Fritz et al., 2010; Schäfer et al., 

2012) or due to higher levels of sedimentation (Blasius & Merritt, 2002). 

The effects of salinization on stream aquatic biota are still largely unknown, particularly in what 

concerns ecosystem-level processes. Understanding the importance of worldwide threats like 

salinization on streams biodiversity and its outcomes for the ecosystem functioning (and consequent 

services provided to man) should constitute a priority for stream ecologists. 

 

Objectives 

 Although being a major contaminant of freshwaters, very little is known on the effect of increased 

salinity on freshwater systems structure and, especially, function. This lack of knowledge is especially 

true in Portugal, where, as far as we know, no work has already been done on that subject. 

 The main goal of this dissertation is to study the effect of increased water-levels of salt (NaCl), 

on microbial-mediated decomposition of oak (Quercus robur L.). We will assess the effects of 

salinization on the a) growth and reproductive output of 14 aquatic hyphomycetes species and on b) 

litter decomposition dynamics promoted by salt-tolerant fungal communities, under laboratory 

conditions.  
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Abstract 

The ecological status of woodland streams is continuously threatened by human activities. 

Salinization is of major global concern due to its effects on stream biota and/or processes it maintains; 

however, there is still very little information on its effects on the leaf breakdown process. This is a key-

ecosystem-level process in small streams, driven by decomposers, mainly fungi (aquatic 

hyphomycetes), that link litter and invertebrates. Here, we assess the effects of an ecological relevant 

gradient of salt concentrations (0 – 20 g/L NaCl) on (1) fungal growth and species reproductive output 

and (2) fungal-mediated decomposition of Quercus robur leaves by salt-tolerant assemblages. Growth 

rate was affected by NaCl, decreasing for the majority of species at >4 g/L. EC50s were species-

specific, varying from 7.80 g/L to 40.86 g/L. Sporulation rate was more sensitive: it occurred in five out 

of nine species at 2 g/L, and only one at 8 g/L. Significant decreases in mass loss and sporulation of 

the salt-tolerant assemblages occurred only from 4 g/L NaCl; respiration was depressed at 2 g/L, being 

almost 2-times higher in assemblages with no added salt. Results suggest that stream salinization may 

induce a decrease of fungal diversity with deleterious consequences on streams ecosystem function. 

 

Introduction 

Salinization of streams and rivers is a growing global threat (Williams, 2001) and it is expected 

to be exacerbated by climate change and other anthropogenic effects (Cañedo-Argüelles et al., 2013). 

Salts may enter freshwater ecosystems through natural pathways (primary salinization) or due to 

human activities (secondary salinization), such as clearing of native vegetation, agricultural irrigation, 

rising groundwater, mining activity, industrial discharge and use of salts (particularly NaCl) as deicing 

and anti-icing agents (Cañedo-Argüelles et al., 2013). Even though this is considered one of the most 

important stressors for aquatic systems (Kefford et al., 2011), very little information is available on its 

effects on the biota and related processes. 

In temperate headwaters, the breakdown of allochthonous leaf litter is a key ecosystem process, 

in which decomposers (i.e., aquatic fungi and bacteria) and invertebrates are the main drivers of energy 

flow. Aquatic hyphomycetes dominate the first stages of this process (Nikolcheva & Bärlocher, 2005), 

facilitating the feeding behavior of macroinvertebrates, which will carry on with the breakdown of organic 

matter (Canhoto & Graça, 2008). 

The studies of the effect of secondary salinization on stream biota has mainly focused on 
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invertebrates. Their ecophysiology (Blasius & Merritt, 2002; Hassel et al., 2006; Piscart et al., 2006; 

Cañedo-Argüelles et al., 2012; Szöcs et al., 2014), density (Cañedo-Argüelles et al., 2012), richness 

(Pinder et al., 2005; Piscart et al., 2006; Bäthe & Coring, 2011; Braukmann & Böhme, 2011) and trophic 

structure (Piscart et al., 2005 and 2006) have been shown to be negatively affected by salinization. 

Few studies assessed the importance of this contaminant on the microbial breakdown of organic matter 

(Blasius & Merritt, 2002; Sangiorgio et al., 2007; Fritz et al., 2010; Schäfer et al., 2012; Cañedo-

Argüelles et al., 2014); results stand for a high susceptibility of the process to this stress factor. In fact, 

previous information indicate that sporulation is negatively affected when exposed to salinity at values 

≥ 2% (Sridhar & Kavariappa, 1988), ≥ 10% or 30% (Tetracladium setigerum and Heliscus lugdunensis; 

Byrne & Jones, 1975) or >20% (Tsui & Hyde, 2004). However, a study performed by Müller-Haeckel & 

Marvanová (1979) indicate that freshwater hyphomycetes are able to survive, grow and sporulate in 

brackish or seawater.   

Herein we evaluated the sensitivity of growth and sporulation rates of 14 common fungal species 

to a salt (NaCl) gradient. Based on the single species sporulation results, we evaluated if distinct fungal 

assemblages, composed of the salt-resistant species at each salinity level, were able to maintain similar 

functional properties and processes under the different contamination levels – 0, 2, 4, 8 g/L NaCl. We 

used, as endpoints, oak leaf mass loss and associated metabolic descriptors (respiration, reproduction, 

nucleic acids concentrations). We hypothesize that the effect of salt will be species-specific, with distinct 

thresholds for growth and reproduction. Within tolerance limits for aquatic hyphomycetes, increasing 

salt concentrations will decrease fungal richness; poorer salt-tolerant assemblages will show a 

weakened performance in leaf degradation. We hypothesize a decline in all fungal parameters 

evaluated, as well as a loss of assemblage’s performance along the salinity gradient and loss of species 

diversity.   

 

Materials and Methods 

 

Salinity effects on growth and sporulation rates of individual fungal species 

 Pure cultures of 14 aquatic hyphomycetes (AH) species (Table I), grown on malt extract agar 

(2% MEA = 20 g ME/L H2O), were used to obtain 3 mm diameter agar plugs, using a cork borer in 

aseptic conditions. One agar plug was placed in the middle of each petri dish, previously filled with salt 
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rich MEA, with NaCl concentrations of 0, 2, 4, 8, 12 and 20 g/L NaCl. A total of 252 petri dishes (14 

species x 6 NaCl concentrations x 3 replicates) were inoculated and maintained under laboratorial 

conditions (12h light:12h dark photoperiod; 16°C).The colony diameters were measured every two 

days, until reaching 1 cm distance from petri dish walls. Growth rate was determined as the slope of 

the linear regression between colony diameter and time, and expressed as mm/day. 

 

Table I. Aquatic hyphomycetes species used in this study and its abbreviations. 

Species Abbreviation 

Anguillospora filiformis Greath ANFI 

Articulospora tetracladia Ingold ARTE 

Clavariopsis aquatica de Wild. CLAQ 

Flagellospora curta Webster FLCU 

Flagellospora curvula Ingold FLCURV 

Fontanospora fusiramosa Marvanová, Fisher & Descals FOFU 

Heliscus lugdunensis Sacc. & Thérry HELU 

Lemonniera pseudofloscula Diko LEPS 

Lemonniera aquatica de Wild. LEAQ 

Tetrachaetum elegans Ingold TEEL 

Tetracladium marchalianum de Wild. TEMA 

Tricladium chaetocladium Ingold TRCH 

Tricladium splendens Ingold TRSP 

Varicosporium elodeae Kegel VAEL 

 

 Additionally, in order to evaluate the effect of salinity in the reproductive output of these fungal 

species, 3 agar plugs from each replicate were immersed in 100 ml Erlenmeyer flasks containing 40 

ml of nutrient solution (75.5 mg CaCl2, 10 mg MgSO4.7H2O, 0.5 g 3-morpholinopropanesulfonic acid 

(MOPS), 5.5 mg K2HPO4 and 100 mg KNO3 per liter of sterile distilled water; Dang et al. 2005) enriched 

with the correspondent NaCl concentrations. The microcosms were incubated on shakers (120 rpm) 

under a 12 h light: 12 h dark photoperiod. The nutrient solution was replaced every 24 h until peak 

sporulation was achieved. Subsamples of conidial suspensions were then filtered (Millipore SMWP, 5 

µm pore size) and stained with 0.05% cotton blue in lactic acid (60%), and the total conidia produced 

by each species was counted under a compound microscope at 250x (Graça et al. 2005). 

 Sporulation rate was expressed as the total number of conidia released per day. 
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Salinity effects on leaf decomposition  

 

Microcosms and experimental setup 

 Oak (Quercus robur Labill.) leaves were collected after abscission, air-dried at room temperature 

and evaluated for chemical parameters: phosphorus (0.027 ± 0.002%; Graça et al., 2005), total phenols 

(23.1 ± 0.32%; Graça et al. 2005), carbon and nitrogen [56.1 ± 1.8% and 0.96 ± 0.02%, respectively; 

IRMS Thermo Delta V advantage with a Flash EA (1112 series)]. 

Litter discs, cut out with a cork borer (12mm diameter) avoiding the central vein, were oven-dried 

(105 °C, 24 h); 42 sets of 20 randomly chosen discs were weighed (± 0.1 mg) and placed in individual 

100 mL Erlenmeyer flasks filled with 20ml of distilled water and then autoclaved (121°C, 15 min). Three 

of these 42 microcosms were sacrificed, to account for mass loss due to the leaching process that 

occurred during sterilization. Distilled water of remaining microcosms was discarded and replaced by 

40 ml of nutrient solution enriched with different salt concentrations. Microcosms, closed with cotton 

bungs, were maintained on an orbital shaker (100 rpm) for 24 h at 16°C to allow additional leaching. 

The medium of each microcosm was then replaced and inoculation was performed with different fungal 

assemblages, established based on the sporulating capacity previously found at each NaCl 

concentration. Microcosms with single species and no salt addition were used as controls (Table II). 

A total of 5000 conidia (Treton et al., 2004) were used to inoculate each of the 39 microcosms. 

In the case of mixed fungal assemblages conidia were equitably divided among the used fungal 

species. Conditioning was allowed for 35 days. After this period, the oak discs from each microcosm 

were used to determine mass loss, fungal respiration, sporulation and nucleic acid concentrations.  

 

Leaf mass loss 

A total of 20 leaf discs from each microcosm were oven-dried (48 h at 105 °C) and weighted (± 

0.1 mg) to obtain dry mass remaining (DMr). Dry mass loss (%DM) was estimated as the difference 

between the initial and final dry mass remaining in the microcosms after 35 days.  
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Table II. Salt concentration and fungal assemblages in microcosms. Assemblages were established based on 

the sporulation results of individual aquatic hyphomycetes (AH) species tested under a gradient of salinity (see 

above).   

# Microcosm 
NaCl concentration 

(g/L) 

Number of AH 

Species  
AH species identity 

1-3 0 1 FLCU 

4-6 0 1 ANFI 

7-9 0 1 ARTE 

10-12 0  CLAQ 

13-15 0 1 TEEL 

16-18 0 1 HELU 

19-21 0 1 TEMA 

22-24 0 1 LEPS 

25-27 0 1 TRCH 

28-30 0 9 
FLCU, ANFI, ARTE, CLAQ, TEEL, 

HELU, TEMA, LEPS, TRCH 

31-33 2 5 ANFI, ARTE, CLAQ, FLCU, TEEL 

34-36 4 1 FLCU 

37-39 8 1 FLCU 

 

Fungal respiration 

 Respiration rate was evaluated using a subset of 5 discs from each microscosm. Discs were 

immersed in 50 ml falcon tubes filled with the correspondent O2 saturated nutrient solution. Tubes were 

kept in the dark for 24 h, after which the final O2 concentration was measured. Oxygen consumption 

was obtained by the difference between the initial and the final values. Respiration rates were 

expressed as mg O2/ g DM/ h. 

 

Sporulation of aquatic hyphomycetes 

 Each 2 days, the conidial suspensions from the 39 microcosms were transferred into 1.5 L bottles 

and preserved with 2 ml of 37% formalin. At the end of the experiment, the conidial suspensions were 

mixed with a magnetic stirrer with 1 mL of Triton 0.5%; an aliquot was filtered (Millipore SMWP, 5 µm 

pore size) and stained with 0.05% cotton blue in lactic acid (60%). Total conidia were identified and 

counted under a compound microscope at 250x (Graça et al., 2005). Results were expressed as the 

total number of conidia/microcosm. 
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Nucleic acid concentrations 

 A subset of two leaf discs were freeze-dried overnight and weighted for DNA and RNA extraction 

(Norgen’s RNA/DNA/Protein purification kits; Norgen Biotek, Thorold, Canada). Nucleic acid (NA) 

concentrations (i.e. RNA and DNA concentrations) in the decomposed leaf discs were measured with 

a NanoDrop 2000c UV-Vis Spectrophotometer (Thermo Scientific, Delaware, USA) following 

manufacturer’s instructions and expressed as ng NA/ mg DM. 

  

Statistical analysis  

 Differences in growth and sporulation rates were analyzed using a two-way ANOVA (AH species 

and NaCl concentrations as categorical variables). Data from growth rate were previously transformed 

into ranks due to lack of homocedasticity, and was analyzed by a two-way ANOVA; since both tests 

(with no transformation and with rank transformation) gave the same result, we proceeded with the first 

one (Zar, 2009). Further analysis was done by planned comparisons tests, to investigate one factor 

within the other. Growth rate data from each species was fitted to a Gompertz, Logistic or Hormetic 

model in order to calculate EC50s (effective concentration that led to a 50% inhibition in growth rates). 

Comparisons between EC50s for each species were performed through the likelihood ratio test.  

 For the fungal assemblages’ experiments, one-way ANOVAs were used to assess differences 

in microbial respiration, sporulation and mass loss, with NaCl concentration as the categorical variable. 

A post-hoc Tukey’s test was applied whenever necessary. Differences between nucleic acid 

concentrations at different NaCl concentrations were analyzed trough a Kruskal-Wallis test (due to lack 

of homocedasticity) followed by a Tukey’s test. 

 All statistical analyses were conducted with STATISTICA 7 software (StatSoft, OK, USA). 

 

Results 

 

Salinity effects on growth and sporulation rates of individual fungal species  

Growth rate was species-specific and negatively affected by salinity (two-way ANOVA, Fspecies(1, 

13) = 421.71, P < 0.01, and FNaCl(1, 5) = 714.91, P < 0.01; Fig. 1). A significant decrease was observed in 

concentrations equal and above 4 g/L (planned comparisons, F(5) = 714.9, P < 0.01). The only exception 
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was H. lugdunensis, which showed a significant increase in its growth rate at 20 g/L (planned 

comparisons, F(5) = 3.58, P < 0.01). 

 

 

Figure 1 – Growth rate for the 14 aquatic hyphomycetes species tested, grown in MEA with increasing 

concentrations of NaCl (0, 2, 4, 8, 12 and 20 g/L). Colony diameter was measured every two days until reaching 

1 cm distance from the petri dish walls. 

 

EC50s for growth rate were species-specific and varied between 7.80 g/L NaCl for C. aquatica 

and 40.86 g/L NaCl for F. fusiramosa (Table III). As H. lugdunensis did not show any decrease in its 

growth rate with increased salinity, EC50 calculation for this species was not possible.  
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Table III. Effective concentration (EC50) values for the growth rates of the 14 aquatic 

hyphomycetes species grown in NaCl rich media (0, 2, 4, 8, 12 and 20 g/L) and respective 

95% confidence-intervals (CI). Different letters indicate significant differences between 

species. 

Species EC50 CI 

CLAQ 7.80 ª 7.24 - 8.35 

LEPS 8.61 ª 7.94 – 9.27 

FLCURV 10.23 b 9.09 – 11.36 

ANFI 10.54 b 9.84 - 11.25 

LEAQ 12.57 c 10.44 – 14.69 

TEEL 13.99 c,d 11.01 – 16.97 

TRCH 16.20 d 15.59 - 16.81 

TEMA 20.0 19.57 - 20.41 

FLCU 25.34 e,f,g 16.77 - 33.91 

VAEL 25.78 h 22.97 - 28.58 

ARTE 31.45 e,h,i,j 23.03 - 39.87 

TRSP 36.94 f,i,k 29.49 – 44.38 

FOFU 40.86 g,j,k 29.39 - 52.33 

   

HELU - - 

 

Sporulation rates were also species-specific and negatively affected by all tested NaCl 

concentrations (two-way ANOVA, F(1,8) = 168.37, P < 0.01; F(1,3) = 72.82, P < 0.01, respectively). No 

differences were found in any case between 4 and 8 g/L NaCl (Tukey’s test, P > 0.6). Only 4 out of the 

14 tested species sporulated at 2 g/L, and only one species (i.e. F. curta) sporulated at 4 and 8 g/L 

(Fig. 2). 

 For all the species that sporulated both at 0 and 2 g/L, only A. filiformis presented differences 

between those two concentrations (planned comparisons, F(1) = 39.67, P < 0.01). F. curta produced the 

highest number of spores in the control – along with H. lugdunensis (planned comparisons, F(1) = 0.81, 

P > 0.1) – and in the first NaCl concentration (2 g/L). Sporulation rates for F. curta were significantly 

reduced only at 8 g/L (planned comparisons, F(1) = 44.16, P < 0.01). 
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Figure 2 – Sporulation rate of the 14 aquatic hyphomycetes tested, grown in nutrient solution with increasing 

NaCl concentrations (0, 2, 4 and 8 g/L). Species not shown did not sporulate at any concentration; no sporulation 

occurred >8 g/L NaCl.  

 

Salinity effects on leaf decomposition  

 Both % DM loss and sporulation rates were negatively affected by salinity (one-way ANOVA, 

Fmass loss(1, 3) = 104.21, P < 0.01 and 1-way ANOVA, Fsporulation(1, 3) = 28.99, P < 0.01; Fig. 3 a) and b)). A 

clear reduction in both parameters was observed at NaCl ≥ 4 g/L (Tukey’s test, P < 0.01; Figs. 3 a) and 

b)). Respiration rates were also negatively affected by salinity (one-way ANOVA, F(1, 3) = 18.4, P < 0.01), 

being almost two times higher at 0 g/L than in the other treatments (i.e. 2 g/L; Tukey’s test, P < 0.01; 

Fig. 3c)). 

A. filiformis, L. pseudofloscula and H. lugdunensis were the main producers of spores at 0 g/L, 

making up for 83% of the total assemblages’ spore production. (Fig. 4a)). With the increase in salinity 

(i.e. at 2 g/L) they were replaced by A. tetracladia, which alone made up for 63% of total spore 

production (Fig. 4b)). 
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Figure 3 – a) % DM loss, b) sporulation rates, and c) respiration rates observed for the different aquatic 

hyphomycetes’ assemblages: 9 species in the control, 5 at 2 g/L and 1 at 4 and 8 g/L NaCl (vide Table II). 

Different letters indicate significant differences among treatments. (--) corresponds to the mean value of all 

single-species used as controls. 
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Figure 4 – Mean relative contribution of the different fungal species to the total spore production present on 

mixed assemblages, at a) 0 g/L and b) 2 g/L after 36 days incubation. Microcosms were inoculated with 5000 

conidia distributed equitably from all species.   

 

 Both DNA and RNA concentrations associated with the oak leaf disks were significantly affected 

by NaCl (Kruskal-Wallis H test, H = 27.79, P < 0.01, and H = 8.25, P < 0.05, respectively). DNA peaked 

at 2 g/L NaCl while RNA tended to increase until 4 g/L NaCl (Fig. 5). RNA:DNA ratio significantly 

increased with NaCl increase (Fig. 6) 

 

 

Figure 5 – Mean nucleic acid concentrations obtained from leaves colonized by different aquatic hyphomycetes’ 

assemblages: 9 species in the control, 5 at 2 g/L and 1 at 4 and 8 g/L NaCl. Lower case letters represent 

significant DNA differences among treatments; upper case letters relate to RNA.  
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Figure 6 – RNA:DNA ratios at distinct NaCl concentrations (9 species in the control, 5 at 2 g/L and 1 at 4 and 8 

g/L NaCl). Lower case letters represent statistically significant differences between NaCl concentrations. 

 

Discussion 

Our study indicates that, under laboratory conditions, an increase in NaCl may affect fungal 

growth and conidial production. However, according to EC50 values, and in agreement with previous 

studies (Müller-Haeckel & Marvanová, 1979), some species seem to tolerate values found in brackish 

and estuarine areas, possibly also contributing to leaf litter processing in fluvial-estuarine transitional 

areas. In spite of this tolerance, sporulation of the mycelium of individual-species was depressed at low 

salt concentrations (≥ 2 g/L). In fact, this is in agreement with previous studies where sporulation is 

usually the parameter most sensitive to salinity – in Müller-Haeckel & Marvanová (1979), sporulation 

ceased at about 40% seawater, but growth was maintained until higher salinities; Byrne & Jones (1975) 

reported sporulation of two AH species until 10 and 30% seawater, but growth was maintained until 

100%) – and even in response to other contaminants (e.g. metals; Bärlocher, 2005; Pascoal et al., 

2010). Although leaves’ colonization may occur through leaf mycelial outgrowth, the impairment of  

conidia production (and eventually germination; Byrne & Jones, 1975) by salt addition may clearly affect 

fungal diversity and, in accordance with ours and previous results (Sangiorgio et al., 2007; Cañedo-

Argüelles et al., 2014), the leaf litter decomposition process, at least at values > 2 g/L.  

In our study, tested concentrations of NaCl ranged from a freshwater (0 g/L) to a estuarine (≈ 20 

g/L) system, and were environmentally realistic: aquatic hyphomycetes seem to be less sensitive to 

NaCl than invertebrates, in which the most sensitive taxa (i.e., Ephemeroptera, Plecoptera and 

Pulmonate snails) show maximum 72-h LC50s of 10 g/L (Cañedo-Argüelles et al., 2013). The EC50s 
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obtained in this work show that such salinity values are still tolerated by most fungal species. This would 

mean that, in case of a salt discharge, even with some biodiversity loss, aquatic hyphomycetes would 

be the primary drivers of leaf decomposition, maintaining the organic matter recycling until reaching 

their salinity threshold. 

In fact, in our work, fungal species loss was not followed by lower leaf decomposition 

(communities composed of 9 species [at 0 g/L] accomplished the same decomposing capacity as those 

composed of 5 species [at 2 g/L], with similar total spore production), following the redundancy 

hypothesis (Walker, 1992). Although no comparisons can be made with other studies addressing the 

effects of reduced biodiversity due to salinity on microbial-mediated decomposition, the effect of salinity 

as a stressor seems to follow the same pattern as the one observed in field studies, where loss of 

fungal species due to pollution was not followed by decreased leaf decomposition (Raviraja et al., 1998; 

Pascoal et al., 2005) or laboratory experiments where assemblages with different levels of species 

richness (1-8) didn’t result in different values of leaf (alder/oak) mass loss (Dang et al., 2005). 

Significant decreases were, nevertheless, observed on the assemblages’ respiration rates at 2 g/L 

NaCl, in agreement with Connolly et al. (2014) that found a significantly decreased microbial respiration 

in Phragmites when immersed in 0.5% seawater. An obvious (but not significant) decrease in the 

number of conidia was also observed. This may suggest, based on the growth rate tests and on the 

maintenance of similar RNA:DNA values at 0 and 2 g/L, an investment of the reduced energetic 

capacity on growth or degradative capacity, eventually at the expense of reproduction. Ultimately, even 

if the aquatic hyphomycetes are able to grow in a salinized medium, without reproductive potential their 

colonizing capacity will be reduced, with important consequences on leaf processing and nutrient 

cycling in the system. 

The present work used a balanced number of spores to colonize the microcosms. After the 

conditioning period, the communities formed in no salt or 2 g/L NaCl were different and dominated by 

distinct species. In a laboratorial study, Ferreira & Chauvet (2012) reported that changes in species 

dominance of fungal assemblages (by manipulation of conidia proportions among 3 species) did not 

result in changes in decomposition rates. However, it is generally accepted that, besides a common 

pool of enzymatic potential, fungal species may present differences in their enzymatic capacities 

(Zemek et al., 1985; Duarte et al., 2006) and that degradative capacities are species-specific 

(Gonçalves et al., 2015). Whether distinct patterns of dominance in low salt media allowed to 
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compensate the richness reduction (9 vs 5 species) is not known, but conceivable. In fact, from all the 

species that showed sporulation at 2 g/L, the two most abundant ones (i.e. A. tetracladia and F. curta) 

were also the ones who showed the maximum EC50 values on salted media, along with the highest 

sporulation rates in the case of F. curta. 

F. curta was, consequently, the most tolerant species to salinity, when considering growth and 

reproductive capacity. However, when alone at higher salt concentrations (i.e. 4 and 8 g/L), this species 

was unable to guaranty a similar leaf degradation as richer communities at lower salinities. It is 

interesting to notice that a similar “inefficiency” of a single species (in comparison with poor or richer 

communities) was observed by Gonçalves et al. (2015), in a study on the importance of richness as a 

buffer against temperature oscillations. 

Also, the importance of species identity over species richness on litter decomposition has been 

frequently suggested (Duarte et al., 2006). Considering the important role that fungi play in the increase 

of leaf’s palatability for the shredders, fungal identity may play a key role in streams’ metabolism: 

invertebrates are selective feeders, preferentially consuming leaves conditioned by some fungal 

species (Bärlocher & Kendrick, 1973; Arsuffi & Suberkrop, 1986 and 1989). Likewise, species richness 

has also been referred as being essential for invertebrates’ performance: Gessner et al. (2007) referred 

that higher fungal species richness leads to an improved resource quality for invertebrates, leading to 

an enhanced decomposition.  

Typically, and contrary to what was simulated in the present work, salt pollution occurs by pulses 

(Cañedo-Argüelles et al., 2014), allowing the communities to recover from that stress until a threshold 

limit is reached. Also, streams’ salinization by NaCl are frequently promoted by the use of salts as 

deicing agents; in cold temperature conditions, an increase in NaCl could also lead to lower values of 

dissolved oxygen, which is highly limiting to fungal survival (Bärlocher, 2005), and to what we weren’t 

able to account for. Despite such limitations, our results allow us to conclude that stream salinization 

may induce a decrease in fungal diversity and affect fungal ecology, with deleterious consequences for 

the streams’ ecosystem function. 
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Even though the threat of secondary salinization on freshwater systems has been acknowledged 

for quite some time, not much is known on its effects on freshwater communities and the processes 

they operate. This is especially true for the first drivers of the decomposition process, the aquatic 

hyphomycetes – and, considering this is the key-process for small streams, which will deliver energy 

to the entire aquatic system, this lack of knowledge should be promptly resolved.  

Microcosms’ experiments, such as the present study, allow for a better understanding of the true 

effects of a specific stress on organisms. Even though they do not reflect the actual conditions of 

ecosystems, where multiple natural or anthropogenic variables interact with each other to an extent we 

cannot account for, they are the best compromise between significant results and reasonable costs 

and work involved.  

However, in this work we only tested the community’s decomposing capacity with a single plant 

species, and with a limited number of aquatic hyphomycetes species, which do not reflect the conditions 

of true streams. Also, in natural systems, the addition of salt to freshwaters leads to changes in other 

chemical parameters, as are suspended solids, total phosphorus or NOx (Kefford, 1998); all of which 

could have consequences in aquatic hyphomycetes’ ecology. There is also an important role that fungi 

play in leaf decomposition that is not accounted for in this paper – the increase of leaf’s palatability for 

the shredders.  

Therefore, to a better understanding of NaCl increase in streams communities, we suggest the 

development of field studies, accounting for salt-related changes in physical-chemical components of 

the water, as well as wide-ranging tests, accounting for cascade-effects. 

Considering all the limitations discussed throughout this thesis, the present work should be only 

viewed as a starting point; further studies should be made to infer how this negative effect works on 

organisms, and what the long-term consequences are. Despite such limitations, our study has an 

ecologic relevance due to the climate-change predictions: higher temperatures and lower annual rainfall 

values. The first will lead to evaporation and drying of stream channels (Bruder et al., 2011), increasing 

the concentration of dissolved ions (Cañedo-Argüelles et al., 2013); the latter will influence the degree 

of salinity increase (Bari & Smettem, 2006). Hence, our results suggest that changes in climate 

conditions will result in lower fungal species richness in streams, followed by a reduced decomposing 

capacity, leading to energy-deprived aquatic systems.
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