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ABSTRACT 

 Cardiovascular diseases are one of the most important causes of death 

all over the world. In particular, atherosclerosis is a dangerous vascular 

condition difficult to diagnose at early stages and there is an urgent need for 

better techniques to diagnose patients at risk of stroke based on the 

measurements of the intima media thickness (IMT). 

 The objective of this work was to develop a new segmentation system 

for detecting the IMT of the common carotid artery (CCA). All the images are 

pre-processed in order to remove speckle noise and the region of interest (ROI) 

is automatically selected, using thresholding and connected-component 

analysis. The system is based in the first-order Gaussian derivative as edge 

detector on pre-processed images and this edge detector allows to enhance the 

lumen-intima and media-adventitia interfaces, whose distance between 

corresponds to the IMT. 

 The IMT values obtained were compared with measurements made by 

an expert and, in average, the difference between measurements was not 

significant but it has an associated standard deviation that can preclude medical 

applications. 

 

 Key-words: Ultrasounds, Carotid Artery, Atherosclerosis, Segmentation, 

Intima, Media, Adventitia; 
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RESUMO 

 As doenças cardiovasculares são uma das mais importantes causas de 

morte em todo o mundo. Em particular, a aterosclerose é uma doença difícil de 

diagnosticar em fases iniciais e há uma necessidade urgente de novas técnicas 

para diagnosticar pacientes em risco baseadas na medição espessura do 

complexo intima-media. 

 Este trabalho procura desenvolver um novo sistema de segmentação 

para a detecção da espessura do complexo intima-media em artérias carótida. 

Todas as images foram pré-processadas de forma a remover o efeito do ruído 

espectral, e a região de interesse é automaticamente selecionada usando 

thresholding e connected-component analysis. O sistema baseia-se na 

derivada de primeira ordem da função Gaussiana como detector das estruturas 

desejadas – interfaces lumen-intima e media-adventitia, cuja distância entre 

eles corresponde à espessura do complexo intima-media. 

 Os valores obtido foram comparados com medições realizadas por um 

especialista. Em média, a diferença entre medições não se mostrou significante 

mas o seu desvio-padrão associado pode impedir a aplicação em situação 

médica. 

 

 Palavras-chave: Ultrasons, Artéria Carótida, Aterosclerose, 

Segmentação, Intima, Media, Adventitia; 
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1 INTRODUCTION 

1.1 MOTIVATION AND THESIS OBJECTIVE 

 Cardiovascular diseases are one of the most important causes of death 

all over the world. In particular, atherosclerosis is a dangerous vascular 

condition difficult to diagnose at early stages. A progressive buildup of 

atheromatous plaques on the walls of blood vessels due to deposits of fatty 

materials is the main process associated with atherosclerosis development that 

can thereafter eventually cause stenosis (abnormal narrowing) of the blood 

vessel, embolisms, and lead to death. 

 The carotid artery is one of the locations of particular concern for the 

atherosclerosis diagnosis once it carries blood to the head. The carotid 

bifurcation region, where the common carotid artery (CCA) branches off into two 

arteries, is a particularly vulnerable spot for plaque formation. At advanced 

stages of atherosclerosis in this region, a portion of plaque can break and be 

carried with the bloodstream to the brain, blocking the blood supply to the brain 

tissue and, which can injure it due to ischemia. 

 Computer-aided diagnosis is a successful and relevant field of 

biomedical engineering with great development in recent decades. A multitude 

of tedious, time-consuming and otherwise unmanageable medical tasks can be 

made feasible by combining medical expert knowledge with signal processing 

and pattern analysis tools. In particular, a wide variety of medical image 

processing techniques have been devised in order to solve problems of 

registration of images from different sources, their transformation into a more 
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informative form, or delineation of regions of interest (ROI) using automatic 

segmentation. This often enables improved diagnosis of various medical 

conditions or makes it more cost-effective and less invasive. 

 Once it is a pathology highly associated with the zone where blood flux 

is disturbed, several ways to detect and understand the process of the 

formation of the atheromatous plaque has been studied. One larger field of 

study in this thematic is focused on B-mode carotid imaging, because it is one 

of the most affordable, harmless and most widely used image systems in the 

world. 

 The diagnostic of the disease can be performed by the characterization 

of the atheromatous plaque and its degree of obstruction. In the carotid artery, 

the characterization is done by the measurement of the intima-media complex. 

Nowadays, ultrasounds are used as the main diagnosis method that can be 

followed by an angiography to confirm the diagnostic and decide about a 

possible surgery. 

 The aim of this thesis is to propose a method of automatic 

segmentation of the carotid artery wall, and the measurement of the intima-

media thickness (IMT), in order to provide a diagnosis accordingly to the result. 

1.2 THESIS OVERVIEW 

 The structure of the remaining part of this thesis is as follows. First, 

theoretical concepts about cardiovascular diseases and medical imaging 

techniques are introduced and explained in detail in chapter 2. Then, in 

chapter 3, several algorithms applied in order to measure the IMT are 

presented and discussed, with the aim of evaluating the approach with better 

results and performance, accordingly to its measurement error and automation 

degree. 

 The chapter 4 explains the developed algorithm in this work, explaining 

all the steps applied in the automatic segmentation with the respective changes 

in the image characteristics. The results of the segmentation are organized and 

displayed in a graphical user interface, which is also described in this chapter. 

 In chapter 5, the results of applying the proposed automatic 

segmentation over the dataset used in this work are presented along with the 
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statistical interpretation of them. This statistical results allow evaluating the 

algorithm performance by comparing the IMT measures with a ground-truth 

provided by an expert. 

 The chapter 6 summarizes the thesis and presents the achieved 

conclusions. The future perspectives related with this subject are also covered 

in this last chapter. 
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2 THEORETICAL CONCEPTS 

2.1 CARDIOVASCULAR DISEASES 

 The industrialization, brought by the revolution that occurred in the XVIII 

and XIX centuries, changed the death causes all over the world but mainly in 

the most advanced societies. The nutritional deficiency problems and the 

infectious diseases have been decreasing, while chronic diseases such as 

cardiovascular diseases (CVD), cancer and diabetes began to take priority as a 

health problem [1]. 

 CVD are currently a major cause of morbidity and mortality worldwide. 

The World Health Organization estimates that 17.5 million people died from 

cardiovascular diseases in 2012, which represents 31% of all deaths across the 

globe [2], [3]. 

 The main risk factors for CVD are tobacco, physical inactivity, diet, 

obesity, high blood cholesterol, high blood pressure and alcohol consumption 

[4], [5]. Also the family history and age should be taken into account being, in 

particular, patients with diabetes mellitus one of the most important risk group 

[6]. 

2.1.1 ATHEROSCLEROSIS 

 Atherosclerosis is one of the most prominent cardiovascular diseases 

and it is characterized by inflammation of blood vessels due to the accumulation 

of mainly lipids in the artery walls, which is the origin of the atheromatous 
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plaque [7]. The disease progression stages and their characteristics are 

presented in the following paragraphs. 

 Large arteries are bounded by a monolayer of endothelial cells that 

form tight junctions, insulating the vessel wall from the blood. Underneath there 

is a region called the intima, which consists mainly of proteoglycans and 

collagens. This is followed by layers of smooth muscle cells and then an outer 

region – the adventitia – comprising fibrous elements (image A of the figure 2.1) 

[7], [8]. 

 The initial stage of atherosclerosis is characterized by the accumulation 

of low density lipids in the intima region. This accumulation causes immune 

system to respond by secreting monocytes that give rise to macrophages 

(image B of the figure 2.1). These macrophages act on low density proteins, 

creating cholesterol-engorged “foam cells”, a hallmark of early atherogenesis 

(image C of the figure 2.1) [8]. 

 A necrotic core of cholesterol and cellular debris is created as some of 

these foam cells die. This is accompanied by a migration and proliferation of 

smooth muscle cells, which form a fibrous cap that overlies the core. Depending 

on the thickness of the fibrous cap, it is possible to be formed a stabilized 

plaque, with a thick fibrous cap (image D of the figure 2.1), or a vulnerable 

plaque, with a thin fibrous cap (image E of the figure 2.1) [8]. 

 The most common cause of myocardial infarction is the rupture of an 

atherosclerotic lesion, leading to the formation of a thrombus that can block the 

blood flow (image F of the figure 2.1). This kind of stroke accounts for 

approximately 75% of all strokes [9]. The vessel stenosis is also possible if the 

atheroma is able to continue its growth without reaching its rupture, decreasing 

the lumen area and partially or totally (ischemia) blocking the blood flow [3], [7]. 
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Figure 2.1 – Stages of the coronary artery disease [10]. 

 Spontaneous regression can occur on early stages of the disease, but 

intermediate and advanced ones appear to be continuously progressive [5]. 

Thus, the treatment is not always a straightforward decision since the potential 

benefit of the surgery must be weighed against the risks of the surgery. The 

degree of stenosis is measured as the difference between the largest and the 

smallest area of the artery in relation to the largest one and it can play an 

important role in this decision. For a degree of stenosis smaller than 30%, 

medical therapy is preferred, while between 30% and 70% it has not been 

determined the best therapy yet. Higher degrees of stenosis demand a surgery. 

A 

C 

B 

D 

E 

F 
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The IMT is also an important indicator of early stages of the disease and it will 

be studied in depth later [11]. 

 Different options are available to treat atherosclerosis. They include 

lifestyle changes, medication, and surgery. Lifestyle changes imply in following 

a healthy diet to reduce the high blood pressure or high blood cholesterol and to 

maintain a healthy weight, and increasing the physical activity, quitting smoking, 

and managing stress. Medication includes drugs to lower the cholesterol level 

or blood pressure and medicines to prevent formation of blood clots. In case of 

severe atherosclerosis, surgical procedures are carotid endarterectomy (CEA) 

or carotid artery stenting. In a CEA procedure, an incision is made on the neck, 

then the carotid artery is opened and the atherosclerotic plaque buildup inside 

is surgically removed, restoring normal blood flow to the brain. Carotid artery 

stenting is a minimally invasive procedure carried out through catheter 

techniques. Using catheters, a small balloon is inflated in the narrowed area of 

the carotid artery opening it for improved blood flow. A stent is then inserted into 

the newly-opened area to help keeping the artery from narrowing or closing 

again [12]. 

2.1.2 CAROTID ARTERY 

 The head and neck receive the majority of its blood supply through the 

carotid arteries. Thus, due to its importance, the occurrence of atherosclerosis 

in these arteries may have severe consequences. 

 The right CCA arises from the brachiocephalic trunk while the left one 

branches directly from the arch of aorta. The carotid arteries then split into 

external and internal carotid arteries at the level of the superior margin of the 

thyroid cartilage (figure 2.2). This bifurcation is one of most susceptible places 

for atheromatous plaques to grow, once the blood flow rates have rapid 

variations and there is a significant shear stress. The external carotid arteries 

supply the areas outside the skull, while the internal carotid arteries lead the 

blood to the brain, eyes and forehead [3], [11]. 

 The brain uses about 15% of total blood stream and consumes 20% of 

the whole oxygen and glucose of the organism, due to huge energy demand. Its 

metabolism requires a high amount of oxygen and a gap of just 10 seconds on 
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oxygen supply causes loss of conscience. Besides, if the absence of oxygen 

goes beyond 4 minutes, such can result in severe and permanent brain injuries 

[7]. 

 

Figure 2.2 – Carotid arteries anatomy. The carotid arteries split into external and internal carotid 
arteries at the level of the superior margin of the thyroid cartilage. (adapted from the original 

belonging to Texas Heart Institute, www.texasheart.org) 

2.2 MEDICAL IMAGING TECHNIQUES 

 Medical imaging refers to the process of creating a visual 

representation of the interior of a body, permitting its analysis in order to aid the 

medical intervention. Those images try to reveal internal structures hidden by 

the skin and bones, making possible to identify abnormalities. In particular, 

medical imaging techniques provide the means to directly examine the carotid 

artery, allowing the diagnosis about the atheromatous plaque presence. Some 

of the most used techniques are presented below, as well as their advantages 

and handicaps. 

2.2.1 ANGIOGRAPHY 

 Angiography is an imaging technique which allows the visualization of 

blood vessels by injection of a contrast agent into the bloodstream. This makes 
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the blood more discernible in the image, highlighting any narrowing or 

occlusions in the vessel images [3]. 

 Traditionally, the most used angiography modality is x-ray imaging, in 

which a contrast agent that absorbs x-rays is injected into the bloodstream and 

the image acquisition is carried out afterwards. This technique provides a two-

dimensional image, however a three-dimensional one can be acquired by taking 

a series of x-rays at regular spacing or angles, which is called Computed 

Tomography Angiography. 

 Angiography is widely available and cost-effective but the contrast 

material can produce a severe allergic reaction. Moreover, patients with 

advanced diabetes or kidney problems should avoid this treatment. Even 

knowing that it reaches a 70-99% accuracy on the diagnosis of severe stenosis 

of carotid, the associated risk demands an alternative.  A viable and safer 

alternative is the ultrasound imaging, in which the developed work is based on 

and presented below [9]. 

2.2.2 ULTRASOUND IMAGING 

ULTRASOUND PRINCIPLES 

 An ultrasound wave is an oscillatory variation in pressure, which 

frequency is above the range of human hearing. As any wave, it possesses 

certain parameters such as wavelength and energy but, unlike electromagnetic 

waves, it needs a medium to travel through. Compressions and rarefactions are 

produced while the wave travels depending on the medium properties, like 

density and elasticity [13]. 

As it travels through a complex object, some energy is lost gradually due to 

absorption, where the heat energy dissipation is the most important process. 

Whenever the acoustic properties of media changes, some energy of the 

ultrasound wave is reflected back, forming the basis of an ultrasound image 

[13]. 

 The interface created by two different media has an associated 

acoustical impedance that is proportional to the difference of the sound 

velocities on the medium. This impedance gives rise to the reflection of a 

portion of the energy, resulting in specular reflection, while the remainder will 
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travel further. The ultrasound wave can also interact with very small objects that 

can create a diffuse scattering of the incident wave, which, unlike the specular 

reflection, has no predominant orientation, resulting in an incoherent 

interference component in the resulting image. The differences between these 

two types of reflections can be seen in figure 2.3 [13]. 

 

Figure 2.3 - Types of wave reflections. Reflection can be categorized as either specular or 
diffuse. Specular reflectors are large, smooth surfaces, where the wave is reflected back in a 

singular direction. Conversely, a diffuse reflector cause the reflections to return in various 
directions in relation to the transmitted beam. 

 The reflection coefficient relates the acoustical impedances of two 

media and is given by the following expression: 

  
     

     
, (2.1) 

where Z1 and Z2 represent acoustic impedance of two different media. The 

expression suggests that the larger the difference between Z1 and Z2, the 

higher the percentage of energy will be reflected [13]. Once that reflection 

reduces the ultrasound wave energy, a strong reflection will result in bright 

boundaries in the ultrasound image, but any deeper tissue interfaces will be 

exposed to a wave with less energy. This phenomenon, in concern to 

ultrasounds, is known as acoustic shadowing and degrades the quality of the 

image [13]. 

 Another problem about ultrasound waves is related to the incident angle 

on the interface boundary. If that angle is different of 90°, it is possible to apply 

the Snell’s law and the angle, as well as the energy of the reflected and 

refracted waves, will be proportional to the incident angle, as shown in the 

figure 2.4. This dependence has an important impact on the nature of the 

images produced by the ultrasonic devices: they are orientation-dependent [13]. 
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When tissue boundaries are oriented in an axial or nearly axial direction, the 

result images will have weak and discontinuous interfaces [13]. 

 

Figure 2.4 – Dependence of reflection strength on incident angle of the ultrasound wave. The 
nearer the incident wave is to 90º, the stronger will be the reflection. A: only 25% of the initial 

wave energy is reflected. B: 75% of the initial wave is reflected. 

SIGNAL GENERATION AND DETECTION 

 Piezoelectric effect ceramics suffer deformation when an electrical 

voltage is applied to them, generating mechanical waves. Conversely, when 

submitted to a pressure they generate a voltage. These ceramics are the active 

elements of the ultrasonic transducers [13]. 

 The ultrasound image production is based on the time needed to send 

and receive a wave. The result is a one-dimensional depth profile, known as A-

mode scanning, formed by only the waves reflected in the incident direction 

[13]. 

 While A-mode scanning generates a one-dimensional depth profile, a 

two-dimensional image can be obtained by collecting several A-scans, rotating 

or linearly translating the transducer, and grouping all profiles. That is called B-

mode scanning and can be implemented with one transducer or with a 

transducer array instead. This array can be linear or curved and allows creating 

a two-dimensional image with a single scan [13]. 

 The frequency of waves determines the image resolution. The higher it 

is, the higher the resolution will also be. However, resolution is inversely 

proportional to the depth to explore [3]. 
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POST-PROCESSING 

 The signal received by the transducer must be further processed to be 

displayed on a screen or stored in a digital form for later analysis. These 

procedures are normally applied in the ultrasound system’s hardware 

immediately upon the signal acquisition [3]. 

 The first step is to demodulate the signal obtained. The result is the 

envelope image, which is appropriate to display, after the post-processing [14]. 

 Since the waves lose energy as they propagate deeper results in an 

image with very strong structures, corresponding to tissues closer to the 

transducer, and severely weakened structures for tissues at higher depths, it is 

strictly necessary to compensate this phenomenon. With this objective it is 

applied a time-gain compensation, consisting on an amplification of the 

reflected wave. The amplification coefficient increases with time since 

transmission, and thus with the distance of the imaged tissue. This 

compensation should be adjusted depending on the tissue being imaged [14]. 

 Tissue interfaces closer to the transducer will produce high amplitude 

reflections, while deeper or weaker boundaries will result in much smaller 

amplitudes. In addition, specularly reflected echoes have much higher 

amplitude when compared to the ones from scattering, causing the strongest 

reflections to largely dominate the image. The solution to this problem is to 

compress the dynamic range, which is done by the following type of function: 

 ( )      (    )  (2.2) 

where the user-adjustable parameter D controls compression and constants A 

and B depend on the signal’s digital resolution [14]. The figure 2.5 represents 

the ultrasound image acquisition workflow: 
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Figure 2.5 - An overview of an ultrasound system. The ultrasound beam reflection is received 
and then the signal is demodulated. The signal absolute value is taken and time-gain 

conversion and scan conversion are performed. Dynamic range conversion is part of the latter 
procedure [15]. 

SPECKLE PATTERN 

 Some phenomena like acoustic shadowing can affect the quality of the 

acquired ultrasound image. In this section it is described the speckle pattern, 

which demands an additional post-processing step to improve the quality of the 

ultrasound image. 

 The reflected echoes may be grouped into two types. Specular 

reflections are related to strong, relatively smooth and long interfaces between 

two tissues of different echogenicity. Scattered reflections created by more 

irregular boundaries and by objects that are small compared to the wavelength 

of the wave result in a speckle interference pattern which can be treated from 

the viewpoint of the stochastic signal analysis [16]. 

 Inside a homogeneous section of the imaged tissue, there may be 

multiple small-scale objects and the accumulation of these different scatterings 

influences the resulting speckle pattern. This contamination of the ultrasound 

envelope image is often defined using the following noise model [16]: 

 ( )   ( ) ( )   ( ) (2.3) 

 The spatial coordinate is defined by x, I  is the observed envelope 

image, u is the original image, v and e are, respectively, the multiplicative and 
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additive components of speckle pattern. This is not the only possible model and 

it has limitations, although it had been widely used [16]. 

 The logarithmic compression applied to the echo signal envelope in 

order to fit it in the display range affects the speckle noise statistics in such a 

way that the local mean becomes proportional to the local variance rather than 

the standard deviation. More specifically, logarithmic compression affects the 

high intensity tail of the Rayleigh and Rician probability density function more 

than the low-intensity part. As a result, the speckle noise becomes very close to 

white Gaussian noise corresponding to the uncompressed Rayleigh signal [17]. 

ULTRASOUND IMAGING APPLIED TO CCA 

 The development of non-invasive methods for imaging atherosclerosis 

has resulted in a paradigm shift in our understanding and management of 

vascular disease by enabling its identification at a preclinical stage [18]. 

 Ultrasound imaging is cost-effective and safe but it may suffer from 

sound-reflecting properties of tissue, creating acoustic shadowing, speckle 

noise and discontinuous tissue boundaries. It is used in vascular medicine for 

two main purposes: to guide invasive medical procedures and to visualize the 

degree of stenosis for diagnosis of atherosclerosis. The location of the carotid 

artery makes it suitable for ultrasound imaging, as it runs parallel and near to 

the surface of the neck. The possibility to repeat the process as often as 

required, without danger, is a very important characteristic of the ultrasound 

image acquisition as well [2], [3]. 

 The first time ultrasound imaging was applied on carotid arteries was in 

1986 by Italian researchers. They reported the results of an in vitro study of 18 

human aorta and common carotid arteries, which compared direct 

measurements of arterial wall thickness and microscopic examination with B-

mode real-time imaging of those same specimens. They described a 

characteristic B-mode image of the arterial wall composed of two parallel 

echogenic lines separated by a hypoechoic space. The distance between the 

two lines did not differ significantly from the IMT measured on pathologic 

examination, leading the researchers to suggest that B-mode imaging could 

present a useful approach to the measurement of the IMT in vivo [2]. A 
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longitudinal view of the CCA is presented in the figure 2.6 as well as the double 

line pattern relative to intima-media complex. 

 It is relevant to note that, most likely due to the different order in which 

the interfaces of the intima-lumen and media-adventitia are exposed to the 

incident ultrasound beam, the B-mode images of the near (more superficial) and 

far (deeper) walls are different. All experiments are, usually, performed only on 

far walls because they could provide better results [19]. 

 

Figure 2.6 - Double line pattern characteristic of the ultrasound carotid images. A: Lumen-intima 
interface; B: Media-adventitia interface. 

INTIMA-MEDIA THICKNESS 

 The first morphological irregularities of arterial walls can be visualized 

by B-mode ultrasonography. Accordingly, ultrasound has been used in a 

number of studies to monitor the IMT of the carotid arteries, a measurement 

which has been shown to be associated with cardiovascular risk factors and 

with the incidence of cardiovascular disease [19]. 

 In ultrasound images, the carotid artery wall is depicted as three 

separate layers: intima, media and adventitia. The measurements of carotid IMT 

are made on these images and they are used to assess the extent of 

atherosclerosis and work as a biomarker for the future risk of cardiovascular 

disease and stroke [20]. 

Longitudinal view of the Common Carotid Artery

A 

B 
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 The IMT is defined as the distance from the lumen-intima interface, 

represented as A in figure 2.6, to the media-adventitia interface, represented as 

the B in figure 2.6 [21]. The intima-media (IM) complex can easily be 

distinguished from the surrounding tissue in ultrasound images and the distinct 

borders allow for manual as well as automatic measurement of the IMT [20]. 

With increasing age, this pattern has been shown to thicken, in a uniform way. 

However, this thickening is accelerated and enhanced in the presence of risk 

factors [19]. 

 The Mannheim Carotid Intima-Media Thickness Consensus (2004-

2006) tries to solve the important issue of standardization of carotid IMT 

measurements and seeks to clarify problems related to the classification of 

early atherosclerotic lesions. The consensus recommends the following 

definitions [19]: 

1) IMT is a double-line pattern visualized by echotomography on both walls of 

the common carotid arteries in a longitudinal image. It is formed by two 

parallel lines, which consist of the leading edges of two anatomical 

boundaries: the lumen-intima and media-adventitia interfaces [19]; 

2) Plaque is a focal structure encroaching into the arterial lumen of at least 0.5 

mm or 50% of the surrounding IMT value, or demonstrates a thickness >1.5 

mm as measured from the media-adventitia interface to the intima-lumen 

interface [19]; 

 These definitions will allow the classification of the vast majority of 

carotid lesions observed with ultrasounds. The consensus recommends that 

IMT should be measured preferably on the far wall, and it also defends that it is 

plausible that the mean IMT values are less susceptible to outliers and are the 

best indicators in most cases [19]. 

 The measurement of the intima and media combined layers, as 

determined by high-resolution B-mode ultrasonography, is now widely 

recognized as a useful tool for early identification for systemic atherosclerosis. 

IMT evaluation can identify individuals at risk for future cardiovascular events, 

and also evaluate the effectiveness of different therapy modalities for controlling 

morbidities that lead to the development of atherosclerotic-based diseases by 

identifying regression in IMT values after such interventions [22]. 
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2.3 OTHER ULTRASOUND METHODOLOGIES 

 Beside the ultrasound B-mode imaging, other types of ultrasound 

imaging are used on this purpose, like Intravascular Ultrasound (IVUS) and 

Doppler Ultrasound [3]. 

 IVUS images the carotid artery from the inside through an incision. A 

catheter is inserted into the artery with an ultrasound probe as its tip. It is a 

highly accurate alternative to angiography and has been used to evaluate the 

efficacy of drug therapies in treating atherosclerosis. However, the primary 

drawback of this surgical technique is its invasiveness, as well as the high cost 

[23]. 

 Doppler ultrasound uses the Doppler Effect, which is related to the 

change in frequency of a wave for an observer moving relative to its source, to 

measure the blood flow velocity in the artery. These measurements can be 

used to estimate the actual velocity or to color-code it and overlay with the 

ultrasound image itself. The frequency spectrum obtained from the returning 

signal can also be analyzed to provide information about the blood flow 

dynamics [3]. 
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3 CAROTID SEGMENTATION 

ALGORITHMS 

3.1 EDGE TRACKING AND GRADIENT-BASED TECHNIQUES 

 The first attempt to perform carotid wall segmentation was based on 

edge-detection [24], [25]. The CCA ultrasound image appearance drove this 

first approach: as depicted in figure 3.1, the CCA can be defined as a dark 

region (the lumen) surrounded by two similar patterns (the near and far walls), 

consisting each one on two bright lines (intima-media and media-adventitia 

interfaces). Since the adventitia layer is usually very bright, due to its dense and 

fibrous composition, it is relatively easy to locate the lumen-intima interface 

such as the media-adventitia interface (image C in the figure 3.1). The distance 

between these two borders corresponds to the IMT estimation. It is applied a 

despeckle filter that highlights the peaks and makes the lumen a homogeneous 

region with low intensity pixels (image C in the figure 3.1) [3], [26]. This was the 

basis used by Touboul et al. on the IMT measurement approach, applied in 

several multi-centric clinical and epidemiological studies. 
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Figure 3.1 - Edge-tracking technique. A: B-mode image of the CCA; B: Despeckled and low 
passed image; C: Intensity profile of the column correspondent to the dashed line in B and D; D: 

Detected wall points. ADN: Near wall adventitia. ADF: Far wall adventitia. L: Lumen [26]. 

 In 2001, Liguori et al. proposed a technique based on edge detection 

that used the vertical intensity profiles of a B-mode image and the respective 

gradient. The intensity profile refers to the pixel intensity in each column of the 

image and the ideal gradient of this profile is shown in figure 3.2 and it 

considers the artery as horizontally placed in the B-mode image. It also 

assumes that all the pixels of the artery lumen are black and that the carotid 

wall layers originate with gradient transitions. The first set of transitions (A in 

figure 3.2) is relative to the near wall, while the second (B in figure 3.2) is 

relative to the far wall [27]. 
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Figure 3.2 - Left: theoretical representation of the expected gradient for a longitudinal ultrasound 
image of the CCA. A: Near wall of the CCA. B: Far wall of the CCA; Right: Real gradient 

obtained [27]. 

 However, due to noise, the intensity gradient measured is different from 

the theoretical one (see right side of figure 3.2). In order to solve this problem, 

Liguori et al. applied a statistical thresholding to reduce the noise before 

computing the image gradient. The authors defined the pixels corresponding to 

blood or other non-reflective substances as, at least, 60% of the total image 

pixels, while the remaining 40% relate to the brighter pixels, corresponding to 

the artery walls [27]. This segmentation approach was evaluated in 30 images 

and it had an uncertainty of 20µm on the IMT measurement, which is negligible 

for medical application. Nevertheless, this technique lacks full automation, once 

it requires the selection of the image portion where it will act. 

 In 2005, Stein et al. reported the results of a comparison between the 

IMT measurements made with and without the aid of a computed system. By 

using an expert and one novice operator for performing several IMT 

measurements, it was clear that the computer-aided IMT measurements were 

faster, more reproducible, accurate and independent on the operator skill [28]. 

 The most performing and innovative gradient-based approach was 

proposed by Faita et al. on its recent work [29]. They tried solving the 

superimposed noise problem, which precludes a proper location of the LI and 

MA transitions, by applying a first-order absolute moment edge operator 

(FOAM) and a pattern recognition approach. Let f(x,y) be the gray map of an 

image, and let Θ be a circular domain with area AΘ whose center is the point 

with coordinates x,y; The FOAM operator was defined as [29]: 
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(3.1) 

 When equation 3.1 is computed at a discontinuity point of an image, it 

gives rise to a local maximum. The figure 3.3 shows the shift on the intensity 

profile due to FOAM operator application [29]. 

 

Figure 3.3 - A: typical profile of the gray levels of a column of the ROI (near the far wall of the 
carotid artery). B: The same profile after the filtering process with the FOAM operator [29]. 

 The search algorithm then performs the segmentation by finding the LI 

interface, which corresponds to the first maximum of each intensity profile, 

starting from the center of the lumen. Then, the next maximum, which has an 

intensity higher or equal to the first one, is assigned as part of the MA interface. 

Finally, a least square regression line is computed to fit the points of each 

interface, and the points that are farther from the line are discarded [29]. 

 The methodology was evaluated with 50 images and the overall 

performance was very high, with an IMT measurement error of 10 µm. It can be 

used in real-time, hence it is suited for clinical application. However, some 

problems were detected in processing curved vessels and full automation was 

not implemented, since it needs manual selection of a region-of-interest [29]. 

3.2 DYNAMIC PROGRAMMING TECHNIQUES 

 In order to reduce the variability introduced by the ultrasound system 

operators, dynamic programming techniques were introduced in early 1990s 

[30]–[34]. 

 The first dynamic programming approach was introduced by 

Wendelhag et al. [34], which combines multiple measurements of echo 

intensity, intensity gradient and boundary continuity to create a cost-function. 

The boundary detection algorithm inspects all points in the image, considering 
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all possible lines that may form the interfaces, and favors the ones that 

minimize the cost-function. Therefore, points being located at the interfaces 

between different artery layers were expected to be associated with a low-cost, 

whereas points located far from the interfaces were associated with a high-cost 

[30]–[34]. 

 As mentioned before, the cost function included three main terms: echo 

intensity, intensity gradient and boundary continuity. It can be described as 

 ( )      ( )      ( )      (     )  (3.2) 

where w is the weight factor, i is the pixel position, c1 is the echo intensity, c2 is 

the intensity gradient and c3 is the boundary continuity. The cost function is 

computed at every pixel i and those consecutive pixel positions, resulting in the 

lowest total cost, will form the detected interface. This means that higher 

intensity, stronger gradient and better continuity correspond to lower value of 

the cost function. 

 This new automated system was tested in 50 images and it produced 

results less dependent on the experience of the reader, decreasing variability 

and greatly increasing the speed of measurements. The IMT measurement 

error by this technique was better than 40 ± 36µm. The major advantage of this 

methodology was complete automation but its computational cost was 

remarkable, since it needs to process all image pixels [30]–[34]. 

 In 2000, Liang et al. improved the above mentioned algorithm by 

estimating the global position of the artery in the image on a coarse scale, thus 

decreasing the amount of pixels to analyse. A precise position of the wall layers 

was then estimated in a fine scale, ensuring accurate performance. This 

technique improved the computational burden while maintaining the 

segmentation performance [32]. 

3.3 SNAKED-BASED SEGMENTATION 

 The snakes, or active contours, are deformable models that act like a 

set of vertices connected by line segments. These vertices can evolve under 

the action of different forces [26]. 

 A two-dimensional snake can be defined as a parametric contour 

represented by  ( )  , ( )  ( )-, where (   ) denotes the spatial coordinates 
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of an image and   represents the parametric domain. The snake adapts itself by 

a dynamic process that minimizes a global energy function defined as follows 

[35]. 

      ( )      ( )      ( ) (3.3) 

where     ( ) is the internal energy of the snake and     ( ) is the external 

driving energy. For a general application, the internal energy depends on some 

constraints that are imposed to the snake and can be formulated as [35]: 

    ( )  ∫* ( )|  ( )|   ( )|   ( )| +  

 

 

 

(3.4) 

where  ( )  and  ( )  are the snake elasticity and rigidity coefficients, 

respectively. The internal energy prevents the snake from twisting or bending in 

an excessive way, better preserving the morphology of the features of the 

image [35]. 

 The external driving energy typically depends on relevant features of 

the image, like borders or lines. In most of the snake-based algorithms, this 

energy is modeled by using the local image gradients. Thus, the best snake 

points are found by moving them towards the features of the image while 

remaining constrained by the internal forces and the snake reaches its 

equilibrium condition when the energies in the equation 3.3 are balanced [26]. 

 This segmentation technique requires a fine-tuning of their parameters 

in order to be able to reach the equilibrium condition. It is affected on its 

performance and sensitivity by the following issues [26]: 

1) Need for optimization of the parameters; 

2) Dependence on the initialization of the snake points; 

3) Dependence on the number of points constituting the snake; 

 In 2002, Gutierrez et al. [36] proposed an automated technique for 

carotid IMT measurement based on the model above mentioned. In this 

approach, active contour vertices could move being subjected to the two 

energies explained and also to the damping energy. The internal energy was 

related to the contour curvature, while the external energy was the local 

magnitude of the image gradient. The damping energy was proportional to the 

velocity of each contour vertex and in opposite direction. Using different 

weighting factors to each energy, the three energies were linearly combined. 
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Comparison between this approach results for 180 images and the respective 

human measurements found an error of 90.0 ± 60.0 µm. The main contribution 

of this approach was the inclusion of the damping energy, which helped to 

smooth and stabilize the contour evolution. However, the high error value of the 

IMT measurement limits its application. 

 In the same year, Cheng et al. [37] proposed another snake-based 

approach. The methodology attempted to solve the poor segmentation 

performance in the region comprised between the intima and the adventitia 

layers, since both layers have bright features. The figure 3.4 sketches a sample 

of this erratic behavior, where the noise attracted the snake towards intima, 

instead of adventitia. To overcome this limitation, the external energy was 

redefined as follow: 

    ( )   ∫   (|    |     )
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(3.5) 

where   is the original ultrasound image,    represents the Macleod operator 

and    is the gravity constant. The matrix D is defined as: 

   [
    
   
   

]  

where A is a positive weighting factor. This matrix prevents possible trapping of 

the snake as described before, since its central column is a vertical gradient 

that has a negative weight upwards and a positive weight downwards. 
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Figure 3.4 - Possible snake erratic behavior in segmenting the LI and MA layers. (a): original 
image of the far wall. (b): Segmentation of Cheng’s snake; (c): erratic behavior of a traditional 

snake; (d): ground truth obtained by manual segmentations [37]. 

 The authors validated their technique [37] versus human tracings, by 

computing the mean squared error between them. The performance results 

were better than the Gutierrez et al. approach but it still had a reasonable error. 

 In 2007, Loizou et al. [38] addressed the problem of image pre-

processing standardization in order to overcome some snake limitations. They 

observed that most of the CCA segmentation techniques were lacking speckle 

noise reduction and proposed a preliminary image intensity normalization 

followed by despeckling. Considering the typical ultrasound image discretized 

on integers from 0 to 255, the authors proposed to scale image intensities so 

that the median of the blood was between 0 and 5 and the median of the 

adventitia layer was between 180 and 190. After this pre-processing step, the 

optimal snake parameters were  ( )      and  ( )     , while the external 

force was weighted by a parameter  ( )     The technique was tested in 100 

images and the IMT measurement error was 50.0 ± 25.0 µm and a manual 

interaction was still required to place the initial seed points of the snake in the 

artery lumen. 
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3.4 LOCAL STATISTICS AND SNAKES 

 One of the main objectives on the IMT measurement algorithms is to 

obtain a full automated approach. In 2007, Delsanto et al. [39], [40] proposed a 

combined technique of local statistics and snake-based segmentation, in order 

to obtain the automation required. This technique was divided into two distinct 

parts: 

1) A module aiming at locating the carotid artery in the image frame, 

where local statistics were the basis; 

2) A segmentation and IMT measurement module using a snake-based 

algorithm. 

 The carotid artery location was achieved by clustering the image into a 

bidimensional histogram with each pixel being presented as the mean and the 

standard deviation values of the image in a 10x10 neighborhood. Since the 

pixels in the lumen regions are ideally black having a very low mean and 

standard deviation, it would be possible to automatically detect the lumen 

points. The figure 3.5 shows the histogram with the black points corresponding 

to lumen points, which supports this technique fundamentals. 

 

Figure 3.5 - Average value and standard deviation of the pixel neighborhood intensity 
(normalized values). The pixels belonging to the carotid lumen are depicted in black and it is 

evident how that pixels are located in the first classes [39]. 

 Based on the intensity profile of each column, the near and far 

adventitia layers were found. Finally, a snake-based algorithm was applied with 

the following formulation: 
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with the optimal snake parameters  ( )  and  ( )  equal to 0.1 and 0.01, 

respectively. This approach was tested in 63 images and it obtained an IMT 

measurement error equal to 63.0 ± 49.1 µm, comparing with human tracing. 

This strategy was completely user-independent but authors declared that noise 

could preclude the CCA localization in about 10% of cases. 

 In 2008, the same research group proposed a further improvement of 

the technique [41]. The CCA location was identical to previous version, and 

once detected, a fuzzy K-means classifier was inserted in the segmentation 

module in order to cluster the pixels inside the ROI. Three possible clusters 

were considered: (a) lumen; (b) intima and media layers and (c) adventitia layer. 

The border between (a) and (b) was considered as the initial guess of the LI 

boundary while the border between (b) and (c) was considered as the MA 

interface. Then, using the same snakes formulation, the contours were refined 

and its performance was evaluated in 45 images – the IMT measurement error 

was reduced to 35.0 ± 32.0 µm and only 8% of the images could not be 

automatically processed. 

 In 2009, Molinari et al. [42] proved that the referred segmentation [39], 

[41] performance was independent on the scanner used and the last version of 

this implementation showed an IMT measurement error of 10.0 ± 10.0 µm, 

when tested in 200 ultrasound images. The figure 3.6 reports a sample of 

completely user-independent segmentation of the near and far wall carotid wall 

obtained using this approach. 
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Figure 3.6 - Completely user-independent segmentation of the near and far carotid wall by a 
technique proposed by Molinari et al. [41] 

3.5 NAKAGAMI MODELING 

 Destrempes et al. [43] proposed a segmentation approach based on the 

Nakagami mixture modeling and stochastic optimization. They proposed the 

intensity modelling of a small ROI image to segment the carotid, assuming that 

if a ROI window contained the carotid wall, then the intensity was characterized 

by a specific pattern and the presence of speckle noise. 

 They considered several small ROIs and analyzed the signal, as 

sketched in the figure 3.7. The vertical profiles were analyzed considering three 

assumptions: 

1) The lumen corresponded locally to the distribution with lower mean; 

2) The intima-media complex corresponded locally to the mixture; 

3) The adventitia corresponded locally to the distribution with higher mean. 

 The right panel of the figure 3.7 shows the assignment of the four 

different profiles to the 3 regions. In a first step, they computed the maximum a 

posteriori estimator of the proposed model, using the expectation maximization 

algorithm. The optimal segmentation was achieved using a variant of the 

exploration/selection algorithm, and the convergence was assured 

asymptotically and independent from the initial solution. 
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 This technique proved to have very high performance rates in CCA 

segmentation. However, the assumption 3) limits its application in processing a 

generic pathology image, since that in presence of calcified plaque, the 

adventitia might not present the local distribution with higher mean value. 

  

Figure 3.7 - Right panel: representation of the ROIs selected in dynamic processing strategies. 
Each ROI contains the lumen, the intima-media structure and the adventitia layer. Left panel: 

assignment of the four boundaries [43]. 

3.6 HOUGH TRANSFORM 

 Between 2004 and 2009, Golemanti et al. [44] developed a 

segmentation algorithm based on the Hough transform. They assumed that the 

CCA layers are straight in longitudinal projections and circular in transverse 

projections, thus being suitable to use the mentioned transform, which is 

normally used to detect lines and circles. The dominant lines in longitudinal 

images represent the LI and MA boundaries and the distance between them 

was taken as the IMT measurement. 

 This technique is divided in two phases: 1) Carotid artery wall 

representation and 2) Intima-media thickness representation. The workflow of 

both phases is presented in the figure 3.8. 
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Figure 3.8 - Flow chart of the procedure for (left) the identification of the arterial wall (in 
longitudinal and transverse sections) and the (right) estimation of the IMT [45]. 

 This approach was shown to be helpful in images with small wall 

plaques but it was highly dependent on a straight and horizontal vessel in the 

image to achieve a good performance. Validation was done against human 

tracings and the sensitivity was 96% and 82% in longitudinal and transverse 

projections, respectively, while specificity was 96% in both the projections. 

3.7 INTEGRATED APPROACH 

 In 2009, Molinari et al. [42] developed an architecture for vessel wall 

segmentation, which consisted of two phases: 

1) A module for the automatic location of the CCA in the image; 

2) A segmentation procedure that automatically traces the LI and the MA 

contours of the far wall once CCA was located. 

 In phase 1, the local intensity maxima of each column are processed to 

detect both CCA walls. These points are called seed points and a procedure is 
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then applied to remove short or false line segments and to join close and 

aligned segments. Once CCA has been detected, the phase 2 of the algorithm 

begins and the image is scanned: the intensity profile of each column was 

processes by using a fuzzy K-means classifier that assigned the pixels to three 

clusters: 1: lumen; 2: intima and media layers and 3: adventitia layer. 

 This algorithm has the advantage of being completely user-independent 

but the IMT measurement error (tested in 200 images) was higher than most of 

previously cited techniques (54.0 ± 35.0 µm). 

 

Figure 3.9 - Representation of the integrated approach by Molinari et al. A: original image of the 
CCA. B: Seed points detected; C: Line segments obtained by connecting the seed points and 

discarding fragmented and misplaced lines. D: Final segmentation results [42]. 
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4 MATERIALS AND METHODS 

 This chapter includes the description on acquisition of data and its 

organization, the methodology of the segmentation algorithm from the pre-

processing to the segmentation approach itself, and then, the Graphical User 

Interface implemented in order to use the proposed methodology. 

4.1 ACQUISITION OF DATA 

 In order to create and evaluate the algorithm suggested in the present 

chapter, ultrasound images of the CCA were acquired by an expert. All the 

images were recorded using a GE Logiq e Portable Ultrasound System [46] 

which allows to measure the IMT after the image acquisition, in order to provide 

a ground-truth for the IMT. 

 To obtain a good contrast between the vessel wall and the lumen, the 

ultrasound beam should be aimed perpendicular to the vessel. Figure 4.1 

shows two typical images of the CCA: image A has a visible intima-layer both 

along the near and far wall, while in the image B the intima-layer is only visible 

for a small section along the far vessel wall, and there is also more noise in the 

lumen area. In order to provide a clear explanation of the algorithm 

implemented, the image A is used as the main example throughout this chapter 

and the effect of every algorithm step will be displayed over the referred image.

 The images acquired are stored with the RGB color model. 
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Figure 4.1 – Typical images of the CCA. The image A presents a well-defined far wall along all 
the image, while the image B presents a good definition of the far wall only in the center of the 

image. 

4.2 METHODOLOGY 

 In this section, the segmentation algorithm implemented is explained 

and each phase of the methodology is detailed with images displaying the 

results of every step applied. The purpose of the implemented segmentation is 

to classify the analyzed carotid artery as healthy or unhealthy, depending on the 

thickness of its wall, in order to report the risk of atherosclerosis or to control its 

growth. 

 A typical image processing and classification problem involves a pre-

processing step, segmentation techniques, features extraction and a final 

classification. The figure 4.1 summarizes the workflow of the segmentation. 

 

Figure 4.2 – Workflow of the segmentation. 

Pre-processing 

•Cropping 
•Conversion to grayscale 
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Segmentation 

•Edge detector 
•Detection of the 
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interface 
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4.2.1 PRE-PROCESSING 

 The echography image is first subjected to a pre-processing step before 

its characterization. This is a very important step in order to get a “clean” 

version of the original echography image and it is a huge progress towards an 

efficient segmentation and a good performance.  

CROPPING 

 The DICOM [47] echography image serves as the input of the algorithm 

and the first pre-processing step is the cropping. The cropping was 

implemented in order to remove the black borders surrounding the image. This 

process is sketched in the algorithm 1 and it searches through the columns near 

each border (left, right, top and bottom) until it finds the first pixel with intensity 0 

(phase 1). Then, it continues searching until it finds a pixel with intensity 

different from 0 and the location of the found pixel is used to crop the image in 

the respective border (phase 2). A variable is used to control what is the current 

phase. The coordinates of the 4 resultant pixels (left, right, top and bottom) are 

used to define the region of the image to maintain, cropping all the remaining. 

Algorithm 1: Cropping example for top border 

control = 0; 
for each line of the image 
  if control = 0; 

Phase 1 
    if pixel intensity equals 0 
      control = 1; 
    end 
  else 

Phase 2 
    if pixel intensity differs from 0 
      crop = line number; 
    end 
  end 
end 

 Some files have additional information, namely the patient identification 

and the acquisition configurations. The used technique takes this possibility into 

account and achieves the objective also for that kind of images. The figure 4.3 

represents the 2 types of possible images (with and without the patient 

information) and the respective crop implemented. 
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Figure 4.3 – Border cropping of the images used. A: Original image with patient information and 
crop (C). B: Original image without patient information and crop (D). 

FILTERING 

 Due to the presence of speckle noise in the ultrasound image, the 

filtering is an important step before the segmentation approach. Thus the image 

is first converted into grayscale and a median filter is applied, using a 7x7 

moving window, as described by Loizou e al. [17]. 

 The filtering reduces the noise while smoothing the edges of the image. 

As presented in the figure 4.4, the different regions of the image become more 

homogeneous and easier to segment, due to the effect of the median filter. 

   

Figure 4.4 - Image filtering. A: Original image; B: Conversion to grayscale; C: Median filtering 
[7x7]. 

4.2.2 AUTOMATIC SELECTION OF THE REGION OF INTEREST 

 As mentioned in section 2.2.2., the Manheim Carotid Intima-media 

Thickness Consensus [19], has defined the IMT as the distance between the 
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two parallel echogenic lines (correspondent to the bright pixels) present in 

ultrasound images on the far wall of the carotid artery, as shown in figure 4.5.  

After the pre-processing, the biggest challenge is to define the region to 

segment. The procedure to find the region of interest (ROI) encompasses 

thresholding and extraction of two candidate regions. The correct region is then 

chosen in the last phase of the algorithm. In addition, a primary segmentation is 

accomplished in order to improve the algorithm performance and time-

dependency. 

 

Figure 4.5 - Double line pattern characteristic of the ultrasound carotid images. A: Lumen-intima 
interface; B: Media-adventitia interface. 

THRESHOLDING 

 With the purpose of solving this problem, first an algorithm was 

implemented to search the lumen, which is characterized by the darker pixels in 

the image. Since that task is not complex, a simple thresholding method was 

applied, that replaces each pixel in an image with a black or white pixel, 

according to the threshold: if the pixel intensity is lower than the threshold 

value, it is replaced as a black pixel, otherwise a white pixel is considered, like 

illustrated by the algorithm 2. 

 

 

Longitudinal view of the Common Carotid Artery

A 

B 
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Algorithm 2: Thresholding 

// f(x,y): Image 
if f(x,y) < threshold 
  f(x,y) = 0; 
else 
  f(x,y) = 1; 

 The threshold used is equal to the intensity level corresponding to the 

first pixel that comes in the histogram after the cumulated frequency has 

reached 60% [27]. This value defines the pixels corresponding to the blood 

turbulence in the lumen [27]. 

 As can be seen in the histogram of the figure 4.6, the threshold value 

(represented with the vertical line labeled “Threshold”) cover the pixels with 

lower intensity, while preserving the brighter pixels. Subsequently, the pixels 

belonging to the lower intensity group (labeled as A in figure 4.6) are set as 

black pixels and the remaining (labeled as B in figure 4.6) are set as white 

pixels, resulting a binary image. 

 

Figure 4.6 – Intensity histogram of the image used as the main example. 

 In figure 4.7, it is possible to identify a well-defined group of black pixels 

in the region of the lumen (labeled as A). However, another similar region 

appears in the bottom (labeled as B) of the image, which can affect the correct 

A 

B 
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selection of the ROI. For this reason, in the next step, two regions of interest will 

be chosen and the correct one will one be determined after the segmentation, 

according to the results obtained.  

  

Figure 4.7 - Result of the thresholding method over the image used. 

EXTRACTION OF THE CANDIDATE REGIONS 

 Once the binary image is obtained, a connected-component analysis is 

done to detect connected region in binary images and, in this case, the 

algorithm finds and defines the regions containing black pixels, since the 

objective is to recognize the lumen area in the image. The connected-

component analysis searches in all pixels of the image and, when it finds a 

black pixel, the algorithm starts a search in the pixels of the surroundings. If it 

discovers a black pixel in the surrounding, the process is repeated until the last 

matching pixel is discovered. 

 The described analysis provides a list of all the connected black pixels, 

which permits to calculate the area of the regions composed by them. As 

presented in figure 4.7, the thresholding create two main regions with black 

pixels. Thus, two candidate regions are considered and they correspond to the 

two regions with larger area (labeled in figure 4.7 as A and B), from the 

obtained with the connected-component analysis. A rectangular bounding box 

including the referred regions is defined and result is presented in the figure 4.8. 

If just one region is possible to define, that region is used as the only input for 

the rest of the methodology. 
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Figure 4.8 - Candidate regions found with the technique applied. 

PRIMARY SEGMENTATION 

 The segmentation based on the processing of the intensity profiles 

demands a huge computational cost, since the algorithm has to search all 

pixels of all the profiles. In order to reduce the computational cost, consequently 

reducing the time necessary for segmentation, and to improve the algorithm 

performance, a first approach of segmentation is done at a coarse scale. 

 As described in 4.1, the acquisition of the images should be done with 

the ultrasound beam aimed perpendicular to the vessel. If the acquisition is not 

perfectly done, some regions of the carotid artery may not be well defined, as 

shown in image B of the figure 4.1. In order to prepare the algorithm for these 

distorted areas, the bounding boxes previously obtained are divided in three 

sub-regions with the same size (as shown in figure 4.9). Thus, the ROI is 

segmented in three different parts and the low quality areas will not influence 

the segmentation results of the remaining. The division in three areas permits to 

analyze separately the left and right side of the image, as well as the central 

region, ensuring the desired result. 
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Figure 4.9 – Division of each bounding boxes in three with same size. 

 The segmentation of the CCA should be carried out preferably in the far 

wall, as recommended by the Manheim Carotid Intima-media Thickness 

Consensus [19]. Although, the automatic ROI selection previously done had as 

objective the location of the lumen instead of the far wall. It is known that the far 

wall, in an echography, can be found below the lumen. Thus, the candidate 

regions are redefined to include the required area, as depicted in figure 4.10. 

 

Figure 4.10 – Redefinition of the sub-regions in order to include the far wall of the carotid artery. 
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 Once the regions of interest definition is completed, the result are 6 

different regions to segment. A thresholding is applied to each one of the six 

images as described before in 4.2.2, in order to separate the far wall from the 

background. The binary images resultant of the thresholding are presented in 

the image A of the figure 4.11. 

 A connected-component analysis of the binary images is applied as 

previously described. However, instead of analyzing the connectivity of the 

black pixels, in this case the analysis aimed the white pixels, since they 

constitute the far wall. Then, only the larger connected area of each image was 

preserved, corresponding to the far wall of the carotid artery, as shown in the 

image B of the figure 4.11. 

 

 

Figure 4.11 - Initial segmentation. A: Result of the thresholding method applied in each sub-
region. B: Segmentation of the biggest object in the image. 

 After that processing step, the contours of the white objects present in 

each image were defined using the following algorithm: 

Algorithm 3: Primary segmentation 

// g(x,y): Region of interest 
for a = each column in the image 
  for b = each row in the image in ascendant order 
    if g(a,b) = 1 
      uppercontour = [uppercontour; a, b]; 
      break; 
    end 
  end 
  for b = each row in the image in descendent order 
    if g(a,b) = 1 
      lowercontour = [lowercontour; a, b]; 
      break; 
    end 
  end 
end 

 The line concerning the lower contour (identified in the image 4.11 as 

MA) is used as input in the next step of the algorithm, in order to facilitate and 

A B 
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enhance the segmentation, as it provides a first guess of the points. This line 

will be called “first contour” throughout the explanation of the algorithm. 

4.2.3 SEGMENTATION 

 The final segmentation consists of the improvement of the first contour 

previously obtained. With this objective, the filtered image shown in figure 4.5 is 

convolved with the first-order derivative of the Gaussian function. This step 

works as an edge detection and is followed by the search of local maxima in the 

neighborhood of the previously found segmentation. 

 In the image processing, a Gaussian blur is the result of convolving the 

image with a Gaussian function. In two-dimension, the Gaussian function is 

defined by: 

 (   )  
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(4.1) 

where   is the standard deviation of the Gaussian distribution from the center 

point. It is widely used to reduce image noise and it has also been used in 

computer vision in order to enhance image structures. 

 The derivatives of the Gaussian function are also an important tool in 

image segmentation. The first-order derivative in two-dimensions is defined by: 
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(4.2) 

 When convolved with an image, the formula 4.2 produces a surface, 

which contours are defined by a Gaussian distribution. This process permits the 

arising of the lumen-intima and adventitia-media interfaces as the center point 

of a Gaussian function, as proved in the image C of the figure 4.16. This 

transformation facilitates the segmentation of the IM complex by searching 

absolute maxima near the neighborhood of the first contour previously obtained, 

once that the maxima are well defined. 

 Thus, the image gradient is computed using the aforementioned first-

order Gaussian derivative. The convolution of this gradient with the carotid 

echography after pre-processing (denominated f(x,y)) is computed according to 

the following equation: 

 (   )   (   )    (     ) (4.3) 
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 The differences in the intensity profile produced by the filtering and the 

Gaussian derivative are displayed in figure 4.12. It is possible to confirm that the 

filtering softens the contours (image B) of the carotid, while the first-order 

derivative of the Gaussian function highlights the edges (image C). The graphs 

are correspondent to the intensity profile in the column, identified by the dashed 

line in each image. 

  

  

  

Figure 4.12 - Results of the filtering (B) and the first-order derivative of the Gaussian function 

(C) in the processed image (A) and in its intensity profiles. The intensity profiles are 

correspondent to the column represented by the dashed line in each image. NW: Near Wall; 

FW: Far Wall; L: Lumen; MA: Media-adventitia interface; LI: Lumen-intima interface. 

 In the figure 4.12, the image A is before the pre-processing and the 

respective graph displays a set of points with low intensity (labeled as L) 

NW 

NW 

FW 

L 

FW 
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between two sets with high intensity pixels (labeled as NW and FW), as 

expected. However, the lumen-intima (LI) and media-adventitia (MA) interfaces 

in the far wall (FW) are not sufficiently defined, mostly in the media-adventitia 

since there are several local maxima instead of a single maximum. This fact 

avoid the distinction between the correct peak and different peaks provoked by 

the interferences in the acquisition. 

 The image B in the figure 4.12 is after the pre-processing, which 

includes a median filtering. Comparing to graph A, the graph B presents a 

smoother profile, with preserving the edges. Although, it is still difficult to 

distinguish the intima-media complex in the far wall. Hence, the first-order 

Gaussian derivate has a crucial importance, since it is able to highlight to 

lumen-intima and media-adventitia interfaces. 

 The image C in the figure 4.12 displays the image after the convolution 

of the image B with the first-order Gaussian derivative. The intensity profile 

presented in graph C shows two well defined Gaussian distribution in the far 

wall (FW), with the center points corresponding to the interfaces of the lumen-

intima and media-adventitia, identified in graph C as LI and MA. 

DETECTION OF THE MEDIA-ADVENTITIA INTERFACE 

 The intensity profile of each column of the image is processed using the 

first contour results obtained in 4.3 as follows: 

1) Searching for absolute intensity maxima near the neighborhood of the 

first contour points. The neighborhood is defined by the pixels whose 

distance between itself and the correspondent first contour point is 

smaller than 0.05 cm. This value is based in the Manheim Carotid Intima-

Media Thickness Consensus [19], which defines plaque as a focal 

structure encroaching the arterial lumen of at least 0.05 cm. 

2) If a maximum cannot be found in the defined conditions, the column is 

rejected and the search continues through the remaining columns. After 

processing all points of the image, a linear regression is applied to the 

maxima obtained and the resulting line defines the media-adventitia 

layer. 

The algorithm implemented in this step is presented below: 
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Algorithm 4: Detection of the media-adventitia interface 

// fc(y): first-contour position in the column y 
// MA(y): media-adventitia contour in the column y 
// K: cm to pixel conversion constant 
 
for each column i of the image 
  range = [fc(i)-0.05*K, fc(i)+0.05*K]; 
  maximum = position of the pixel with the absolute intensity maximum in the defined range; 
  if maximum is not possible to find 
    continue through remaining columns; 
  else 
    add position of the pixel to MA(i); 
  end 
end 

DETECTION OF THE LUMEN-INTIMA INTERFACE 

 Using the media-adventitia interface defined, the intensity profiles are 

subjected to a new search. In addition to the mentioned Manheim Carotid 

Intima-Media Thickness Consensus, a previous study demonstrated that the 

mean value for the IMT for people with at least 60 years old is 0.79 cm. 

According to those values, the search is carried out only in the pixels which are 

between 0.02 and 0.13 cm away from the MA interface. The value of 0.02 cm is 

smaller than the 0.05 cm used in the detection of the MA interface in order to 

minimize possible errors in the segmentation of the MA. The value of 0.13 was 

chosen to cover cases in which the atheromatous plaque has reached a critical 

thickness, as referred in the work of Belem et al [48]. The search is carried out 

as follows: 

 

1) Searching for absolute intensity maxima near the neighborhood of the 

MA interface. 

2) If a maximum cannot be found in the defined conditions, the column is 

rejected and the search continues through the remaining columns. After 

processing all points of the image, a polynomial regression is applied to 

the maxima obtained and the resulting line defines the lumen-intima 

layer. The polynomial regression was preferred in this case since the 

atherosclerotic plaque can present a non-linear contour. 

The algorithm implemented in this step is presented below: 
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Algorithm 5: Detection of the lumen-intima interface 

// MA(y): media-adventitia contour in the column y 
// LI(y): lumen-intima contour in the column y 
// K: cm to pixel conversion constant 
 
for each column i of the image 
  range = [MA(i)-0.02*K, MA(i)+0.13*K]; 
  maximum = position of the pixel with the absolute intensity maximum in the defined range; 
  if maximum is not possible to find 
    continue through remaining columns; 
  else 
    add position of the pixel to LI(i); 
  end 
end 

 The results of the detection of the two interface are illustrated in the 

figure 4.13. The images 1A, 1B and 1C refer to the segmentation of a single 

column while the images 2A, 2B and 2C refer to the complete segmentation for 

each division of the ROI. 

 

Figure 4.13 – Segmentation of the three sub-regions of the region of interest. 

 After processing all the points of the image, a polynomial regression of 

degree 3 [32], [49] is applied to the points obtained and the result is displayed in 

the figure. The polynomial regression was preferred in this case since the 

atherosclerotic plaque can present a non-linear contour. 

SEGMENTED IMAGE 

 As mentioned in 4.2.2, the division of the region of interest in 3 sub-

regions precludes the influence of distorted areas in the segmentation of well-
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defined areas. Thus, it is necessary to choose the best segmentation result 

from the different 3 obtained. 

 Since the detection of the two interfaces (lumen-intima and media-

adventitia) admit that some intensity profiles may be discarded, it is possible 

that some of the sub-regions provide a more reliable segmentation than others. 

 Knowing the aforementioned, the number of intensity profiles used in 

each segmentation is analyzed. Thus, the sub-region which performs the 

segmentation using the highest number of intensity profiles is selected as the 

best approach. On the other hand, all the segmentations using less than 20% of 

the intensity profiles of the respective sub-region are discarded and its result is 

not presented. 

 The figure 4.14 displays the result for each one of the sub-regions. The 

sub-region A does not met the minimum requirements and its segmentation is 

not presented. In contrast, the sub-regions B and C used, respectively, 70% 

and 50% of the intensity profiles. Consequently, the segmentation with better 

result was acquired in the sub-region B. 

 

   

Figure 4.14 - Full Segmentation. A, B, C: sub-regions of the ROI. 

 

 

 

4.3 GRAPHICAL USER INTERFACE (GUI) 

 In order to provide a user friendly environment to analyze an image, a 

Graphical User Interface was created using MATLAB [50] to be used with the 

A B C 
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echography images provided. The figure 4.15 shows the interface appearance 

and its features are explained below.  

 

Figure 4.15 - Graphical User Interface implemented with the objective to facilitate the 
echography images processing. 

 On the left side (see figure 4.16), the GUI is composed by a list of the 

files available in the selected folder (labeled as A) that can be changed; images 

can be displayed by clicking in the list. Once the image is selected, the ROI 

selection method (labeled as B) should be selected and the push button “Start” 

(labeled D) starts the process of segmentation. The scale of the image used to 

compute the IMT can be changed in the section labeled C, according to 

Appendix C. 

 

Figure 4.16 - The push button "Change Folder" allows to select the folder containing the images 
to process. It is set by default to the folder containing the echographies used in this work. The 
segmentation can be done following 2 different methods: Automatic and Semi-automatic (B) – 

after the option is selected, the push button “Start” starts the segmentation (D). 

A 

B 

C 
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 The results are displayed as shown in figure 4.17. The images labeled 

with numbers (1 to 6) can be seen using the panel on the right of the interface 

and the value of the mean and maximum IMT is also presented (see figure 

4.18). This value permits to classify the carotid artery as healthy or unhealthy, 

based on the value predefined for each classification. 

 

Figure 4.17 – Results display in the GUI. 1-3: Segmentation result for each sub-region; 4 – 
Original Image; 5 – Region of interest; 6 – Segmentation best result. 

 

Figure 4.18 – The panel “Results and Diagnosis” present the IMT value and the respective 
diagnosis. The panel “View” allows to choose which image to display according to the 

numbering defined. 

 The method for the selection of the region of interest is chosen in the 

Segmentation Options. If “Automatic” is selected, the algorithm is implemented 

in a fully automated way and presents the results as in figure 4.21. On other 
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hand, if “Semi-automatic” is selected, the algorithm returns two possible regions 

of interest and the user decides which one contains the far wall of the CCA, as 

exemplified in figure 4.22. 

 

Figure 4.19 - Automatic segmentation of the CCA far wall. On the right, the classification is 
presented and the values of the mean and maximum thickness are presented. 

 

Figure 4.20 - Semi-automatic segmentation of the CCA far wall. Two regions are presented and 
the user may choose the correct one, containing the far wall of the CCA. On the right, the 

classification is presented and the values of the mean and maximum thickness are presented. 

 The described GUI is used to acquire the IMT values for each image, 

which are crucial to evaluate the performance of the proposed methodology. To 

use the GUI correctly, three steps should be followed: 

1. Select image from the folder chosen; 

2. Select between the automatic or semi-automatic method; 
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3. Set the correct scale according to Appendix C; 

4. Push the “Start” button. 
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5 RESULTS AND DISCUSSION 

 This chapter presents the results achieved in this thesis. In order to test 

the performance of the segmentation algorithm, a dataset containing 100 

echography of the carotid artery was acquired by an expert, as mentioned in 

4.1. The same expert visually analyzed all the images and manually delineated 

the IMT, being these values compared with the obtained by the algorithm. 

5.1 MANUAL MEASUREMENTS 

 The images were acquired by an expert using a GE Logiq e Portable 

Ultrasound System [46] as referred in 4.1. The same expert visually analyzed all 

the images and manually delineated the IMT, using ImageJ [51]. Three IMT 

measurements were carried out for each image and the mean of the values was 

taken as the “ground-truth” for the respective image. 

 The figure 5.1 displays the manual measurement of the image 

“CCA24.dcm”. The scale presented in the right border of the image is used to 

convert the measurement value from pixels to centimeter. The measurements 

(labeled as 1, 2 and 3 in the figure) are made along the vessel wall in order to 

provide a reliable “ground-truth” based on the mean of the three values. 
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Figure 5.1 – Manual measurement of the image “CCA24.dcm” using ImageJ. 1: 0.061 cm; 2: 
0.060 cm; 3: 0.060 cm. 

5.2 AUTOMATIC MEASUREMENTS 

 The automatic segmentation of the IM complex provided the IMT for 

each one of the images in the dataset. As explained in 4.2.3 the algorithm can 

provide 3 different IMT values, for each division of the ROI. Furthermore, the 

algorithm chooses the best result from the computed ones.  

 The figure 5.2 displays the result of the automatic segmentation for the 

image “CCA24.dcm”. In this image, the sub-region A does not provide a reliable 

result and the segmentation is not presented, as referred in 4.2.3. The algorithm 

also selects the second sub-region as the best result.  

   

1 2 3 

A B C 
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Figure 5.2 – Automatic segmentation of the image “CCA24.dcm”. 

 For each segmentation result, the maximum and mean value of the IMT 

in each sub-region is computed. In order to analyze the results of the automatic 

measurements with the “ground-truth”, the automatic IMT results are grouped in 

4 different group. The groups 1 and 2 refer only to the sub-region selected as 

the best result, while the groups 3 and 4 take into account the results of every 

sub-region with reliable results. If only one sub-region presents reliable results, 

the groups 3 and 4 are equal to 1 and 2. The groups are defined as follows: 

 Group 1: Mean thickness measured in the sub-region selected as the 

best result; 

 Group 2: Maximum thickness measured in the sub-region selected as the 

best result; 

 Group 3: Average of the individual mean thickness measured in the sub-

regions with reliable results; 

 Group 4: Mean of the maximum thickness measured in the sub-regions 

with reliable results. 

 Additionally, the group 0 was also defined as the “ground-truth” 

concerning the manual measurements mentioned in 5.1. Those groups are 

used for the following statistical analysis. 

COMPUTATION TIME 

 The computation time for the segmentation of each image was recorded 

and the results are presented in Appendix B. On average, the time needed to 

segment an image was 1.17s. The testing was done on an ASUS N53Jq with a 

1.73GHz Intel Core i7 CPU processor and 6GB of memory RAM. 

IMAGE SCALE 

 In the 100 images processed, the scale used to convert pixels to 

centimeters was not the same in all images, once each image has its own 

scale. The Appendix C presents the scale values for each image and, on 

average, the scale was 0.0076 cm per pixel. 
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5.3 AMBIGUOUS RESULTS 

 A few images have some artifacts which were not taken into account by 

the algorithm formulation. 

 One of the most common disturbances in the results was due to the 

existence of thyroid nodules which are located near the CCA. These nodules 

are shown in figure 5.3. On the left side of the figure, the sub-regions of the ROI 

are depicted with the dashed line and, on the right side (labeled A and B), it is 

displayed the primary segmentation result. In addition, it is also displayed the 

full segmentation result, labeled as C. 

 

Figure 5.3 – Automatic segmentation failure in an image with thyroid nodules. Image 
“CCA81.dcm”. Results obtained using MatLab [50]. 

 The image A2 on figure 5.3 shows the sub-region image after 

thresholding. It is observed that the thyroid nodule was not efficiently separated 

from the far wall of the carotid artery. For the mentioned reason, the primary 

segmentation (B2 in figure 5.3) obtained a result that affects the segmentation 

final result (C1 in figure 5.3), precluding a reliable result. Despite this failure, the 
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algorithm selected the sub-region C3 as the best result and a similar behaviour 

was observed in all images with thyroid nodules processed. 

5.4 STATISTICAL ANALYSIS 

 The statistical analysis of the 5 groups (defined in 5.2) aims to find the 

error between the “ground-truth” measurements (group 0) and the IMT values 

obtained using the automatic segmentation (groups 1, 2, 3 and 4). 

 From the 100 echography images, sixteen images were not possible to 

segment and the IMT was not measured. Eighty-four (84) images were 

successfully processed, corresponding to 84% of the image dataset. The 

automatic and manual measurements for the mentioned 84 images are 

displayed in Appendix A. The results will be studied using 3 distinct analyses 

presented below. 

5.4.1 BLAND-ALTMAN PLOT 

 A Bland-Altman plot [52] is a method of data plotting used to analyze 

the agreement between two different assays. One application of the Bland-

Altman plot is to compare two clinical measurements which provided some 

errors in their measure. It can also be used to compare a new measurement 

technique with a gold standard. Assuming two measurement values, x and y, 

the Bland-Altman plot [52] is a graph representing each pair (x,y) as follows: 

 The abscissa value is the mean of the two measurements: (x1+y1)/2; 

 The ordinate value is the difference between the two measurements: x1-

y1; 

 As aforementioned, the Bland-Altman plot can be used to compare two 

clinical measurements that can provide some errors. That is the case in this 

work, since the measurements made by the expert as well as the ones provides 

by the algorithm can suffer errors. The Bland-Altman plot also provides the 

mean error between the measurements as well as the respective standard 

deviation [52]. 

 Four different Bland-Altman plots were considered, corresponding to 

the relationships between the group 0 (“ground-truth”) and the groups 1, 2, 3 

and 4. The figure 5.4 displays the four Bland-Altman plots and the table 5.1 
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shows the mean error and respective standard deviation for each relationship. 

All the images were obtained using GraphPad Prism 6 [53]. 

  

  

Figure 5.4 – Bland-Altman comparing each of the 4 relationships defined. The mean difference 
between groups as well as the limits of agreement for a confidence of 95% are shown. Values 

in centimetres. Graphs obtained using GraphPad Prism 6 [53]. 

 

Group 0 vs. 

Group 1 

Group 0 vs. 

Group 2 

Group 0 vs. 

Group 3 

Group 0 vs. 

Group 4 

Average 0,0044 -0,0036 0,0054 -0,0025 

Standard 

Deviation 
0,0090 0,0102 0,0098 0,0101 

Table 5.1 - Average and standard deviation of each of the 4 comparisons performed. All values 
are in centimetres. Data obtained using GraphPad Prism 6 [53]. 

 The Bland-Altman plot enabled a graphical analysis of the 

measurement error between the algorithm results and the “ground-truth” 

thickness provided by a specialist. The Bland-Altman plots in figure 5.4 show 

few outliers in all groups, since almost all data is inside the range defined by the 

dashed lines. 

 As shown in table 5.1, the smallest average error (-25 µm) is provided 

by group 4. However, the standard deviation of this value is the second highest 

(101 µm), which suggests that the group 4 does not provide reliable data. 

Group 3, which corresponds to the mean thickness concerning the 3 sub-

regions, presents the worst result (54 µm) and suggests that the IMT should not 
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be measured throughout the entire far wall of the carotid artery, in order to 

avoid regions which provide erroneous results. 

 In table 5.1, groups 1 and 2 presented similar absolute error values (44 

µm and -36 µm), with the most reliable values, confirming the choice made by 

the algorithm for the sub-region who has better values. The algorithm 

formulation define the group 1 as the one with more reliable results (as 

explained in 5.2) and the average measurement error of this dataset stands at 

44 µm with a standard deviation of 90µm. Since the average value of the scale 

used was of 76µm per pixel (see Appendix C), it can be assumed that the 

algorithm has a good performance in the tested echography images, since the 

average error is approximately equal to half the value of a pixel. However, the 

standard deviation of the measurement error precludes the reliability of the 

algorithm for medical application.  

5.4.2 MANN-WHITNEY TEST 

 The Mann-Whitney test [54] is an unpaired and nonparametric statistical 

test and it was also applied to each one of the 4 relationships. This test 

provides a p-value which determines if there is a strong or weak correlation 

between the data: if the p-value is smaller than 0.05, the groups are not 

sufficiently similar. The results of the Mann-Whitney test for each different 

relationship in this work are presented in the table 5.2 and they suggest that 

groups 1 and 4 have a strong correlation with group 0. 

 

 

5.4.3 PEARSON’S CORRELATION COEFFICIENT 

 The Pearson’s Correlation coefficient [55] is an indicator of the similarity 

between groups. This coefficient ranges from -1 to 1 and a high similarity 

 
Group 0 vs.  

Group 1 
Group 0 vs.  

Group 2 
Group 0 vs.  

Group 3 
Group 0 vs.  

Group 4 

P-Value 0,0625 0,0425 0,0190 0,0898 

Table 5.2 – P-value of Mann-Whitney test for each relationship. Data obtained using GraphPad 
Prism 6 [53]. 
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between groups should results in a Pearson’s Correlation Coefficient close to 

the referred limits. Concerning the performed analysis (table 5.3), the best result 

was obtained in the correlation between group 0 and group 1, reinforcing the 

position of the group 1 as the most reliable. 

 

5.5 SUMMARY 

 The IMT is an important indicator in controlling the atherosclerosis risk 

and its measurement using ultrasounds is a reliable and non-invasive technique 

used worldwide. In order to create a standard measure protocol, an automatic 

segmentation algorithm with consistent and reliable results can be a core 

feature to make this task less human dependent, providing a fast diagnostic. 

 According to the discussed results, group 1 proved to be the group with 

more reliable results, due to its performance in the Mann-Whitney U Test and in 

the Pearson’s Correlation Coefficient. As seen in Appendix B, the time needed 

to process a single image with the algorithm was 1.17 seconds. This 

computational performance allows a fast diagnosis after the image acquisition. 

 Regarding the measurement error (44 µm), the result of the group 1 is 

not excellent but it demonstrates to have the smaller standard deviation (90 

µm), which suggest a more reliable result. In addition, the algorithm was able to 

segment 84% of 100 carotid images, automatically detecting the ROI in each 

image, one of the most difficult tasks in the medical imaging techniques and 

segmentation algorithms. The measurement error obtained is similar to the work 

of Gutierrez et al. [36] and Delsanto et al. [39] while Liguori et al. [27], Faita et 

al. [29] and Molinari et al. [42] obtained a better result, which suggests that the 

algorithm should be improved to be used in medical application. 

 

 
Group 0 vs.  

Group 1 
Group 0 vs.  

Group 2 
Group 0 vs.  

Group 3 
Group 0 vs.  

Group 4 

Pearson 
Correlation 
Coefficient 

0,828 0,781 0,793 0,783 

Table 5.3 – Pearson’s Correlation Coefficient for each relationship. Data obtained using 
GraphPad Prism 6 [53]. 
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6 CONCLUSIONS AND 

FUTURE WORK 

6.1 CONCLUSIONS 

 This work proposes an automatic detection algorithm of the 

atheromatous plaque by ultrasound images, a technique used worldwide but 

still with no reliable full automation and that requires the supervision of a 

specialist. In order to do so, the steps followed were: 

• Studying the problem, reviewing about the cardiovascular diseases, 

namely the atherosclerosis, as well as the segmentation techniques 

already implemented in order to fill this gap; 

• Gathering ultrasound images of the CCA in order to create a dataset to 

work on; 

• Developing the algorithm, taking into account the need of full 

automation and minor human interaction; 

• Evaluation the performance of the algorithm on the gathered dataset. 

 The automatic recognition of the ROI was implemented in a simple and 

fast step, using thresholding. Then, the segmentation was achieved using the 

first-order derivative of the Gaussian function as an edge detector, creating two 

well-defined intensity peaks in the vertical intensity gradient of the image. These 

two peaks correspond to the intima-media and lumen-intima interfaces, 

respectively. In addition to the information derived from each image, a-priori 

knowledge about the maximum and minimum IMT was used to select the 
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acceptable points from the obtained set. This step allowed the elimination of 

outliers, thus obtaining an improved result for each segmentation. 

 Using the described automated algorithm it was possible to identify the 

correct ROI, containing the far wall of the CCA, and measure the thickness of 

the intima-media complex in a considerable amount of images (84%) in a 

reduced time, a noteworthy result considering the complexity of the task even 

for an expert. After testing the algorithm results with Bland-Altman plots, Mann-

Whitney U Tests and Pearson Correlations, they proved reliable and with an 

average error of 44 µm, with a standard deviation of 90 µm. 

 Taking the results mentioned before into account, the performance of 

the implement algorithm is comparable to that of Gutierrez et al. [36] and 

Delsanto et al. [39]. However, the standard deviation of the error obtained (90 

µm) can preclude a medical application before some improvements in the 

algorithm are made, since an error of this magnitude can provide an erroneous 

diagnosis: the IMT difference between a healthy (~0.06 cm) and an unhealthy 

(~0.09 cm) carotid [48] is approximately three times the standard deviation. The 

used dataset contained images with very different characteristics and the goal 

was to reject the smallest amount so the algorithm could be able to segment 

images with different appearances. This lowered the quality of the global IMT 

measurement, providing an error with a substantial standard deviation, but 

demonstrating the versatility of the proposed algorithm. 

 In conclusion, computed algorithms for the processing of carotid 

ultrasound images have continuously grown in number and performance in the 

latter years. However, the full automation of the process is still a big issue in this 

type of approaches. The algorithm proposed in this thesis has an acceptable 

behavior on this task, once it is able to automatically identify the region of 

interest. Possible improvements in the approach are discussed in the next 

section. 

6.2 FUTURE WORK 

 The potential benefits coming from the use of the computer-aided 

segmentation techniques are the reduction of the examination time, the 

increased accuracy in the IMT measurement and the reduction of the 
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subjectivity. In spite of the promising results, future work is necessary before 

this approach is suitable for clinical use. The analysis is performed on a limited 

number of examples (100 images), and this it would be beneficial to determine 

the efficacy of the algorithm on more datasets. 

 Since 16% of the dataset was not able to provide results mostly due to 

speckle noise, it would be important to improve the image despeckling in order 

to enhance the structures in the wall of the carotid artery (lumen-intima and 

media-adventitia interfaces). The ROI selection proved to have reliable results 

in all images of the dataset, which suggests that, with an improvement in the 

IMT measurement can allow the medical application. 

 In conclusion, despite the many improvements which can be devised to 

the proposed algorithm, it represents a viable approach for the IMT 

measurement. The performance varies due to considerable variability in the 

scale, resolution and discernibility of the acquired data. However, the successful 

segmentation results abide strong visual and quantitative correspondence to 

the location of the far wall of the carotid artery. 
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APPENDIX A 

 This appendix displays the IMT values for each group defined in 5.2. 

 Group 0 Group 1 Group 2 Group 3 Group 4 

CCA1 0,0600 0,0670 0,0680 0,0707 0,0840 

CCA2 0,0690 0,0610 0,0750 0,0693 0,0877 

CCA3 0,0627 0,0600 0,0700 0,0620 0,0700 

CCA4 0,0547 0,0630 0,0660 0,0617 0,0647 

CCA5 0,0523 0,0570 0,0750 0,0587 0,0677 

CCA6 0,0680 0,0580 0,0760 0,0717 0,0860 

CCA7 0,0467 0,0530 0,0570 0,0423 0,0540 

CCA8 0,0477 0,0530 0,0570 0,0423 0,0540 

CCA9 0,0393 0,0460 0,0480 0,0455 0,0505 

CCA10 0,0530 0,0430 0,0460 0,0450 0,0510 

CCA11 0,0590 0,0570 0,0610 0,0510 0,0617 

CCA12 0,0623 0,0390 0,0520 0,0390 0,0520 

CCA13 0,0517 0,0430 0,0460 0,0450 0,0510 

CCA14 0,0577 0,0480 0,0680 0,0445 0,0575 

CCA15 0,0783 0,0700 0,0770 0,0700 0,0770 

CCA16 0,0670 0,0460 0,0670 0,0460 0,0670 

CCA17 0,0720 0,0650 0,0690 0,0650 0,0690 

CCA18 0,0420 0,0560 0,0790 0,0430 0,0533 

CCA19 0,0503 0,0470 0,0500 0,0457 0,0507 

CCA20 0,0673 0,0630 0,0660 0,0697 0,0723 

CCA21 0,0583 0,0680 0,0770 0,0647 0,0703 

CCA22 0,0650 0,0670 0,0720 0,0707 0,0737 

CCA23 0,0493 0,0430 0,0540 0,0430 0,0540 

CCA24 0,0603 0,0610 0,0680 0,0560 0,0640 

CCA25 0,0647 0,0730 0,0790 0,0683 0,0760 

CCA26 0,0803 0,0790 0,0810 0,0800 0,0835 

CCA27 0,0693 0,0690 0,0710 0,0640 0,0720 

CCA28 0,0603 0,0580 0,0610 0,0587 0,0627 

CCA29 0,0553 0,0530 0,0690 0,0505 0,0630 

CCA30 0,0640 0,0720 0,0780 0,0720 0,0780 

CCA31 0,0380 0,0450 0,0580 0,0450 0,0580 

CCA32 0,0397 0,0500 0,0540 0,0445 0,0555 

CCA33 0,0463 0,0430 0,0490 0,0360 0,0443 

CCA34 0,0487 0,0470 0,0550 0,0483 0,0550 

CCA35 0,0700 0,0670 0,0720 0,0625 0,0720 
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CCA36 0,0900 0,0770 0,0850 0,0790 0,0853 

CCA37 0,1100 0,0780 0,0880 0,0725 0,0855 

CCA38 0,1100 0,0900 0,1060 0,0800 0,0930 

CCA39 0,1100 0,0790 0,0880 0,0643 0,0707 

CCA40 0,0900 0,0820 0,0920 0,0783 0,0920 

CCA41 0,0600 0,0540 0,0600 0,0540 0,0595 

CCA42 0,0700 0,0500 0,0580 0,0460 0,0530 

CCA43 0,0600 0,0410 0,0450 0,0420 0,0445 

CCA44 0,0500 0,0370 0,0390 0,0370 0,0390 

CCA45 0,0500 0,0340 0,0380 0,0340 0,0380 

CCA46 0,0600 0,0520 0,0660 0,0510 0,0590 

CCA47 0,0600 0,0560 0,0600 0,0423 0,0567 

CCA48 0,0500 0,0480 0,0510 0,0460 0,0520 

CCA49 0,0700 0,0560 0,0690 0,0600 0,0690 

CCA50 0,0800 0,0640 0,0720 0,0655 0,0740 

CCA51 0,0800 0,0690 0,0770 0,0685 0,0785 

CCA52 0,0576 0,0620 0,0650 0,0555 0,0640 

CCA53 0,0620 0,0690 0,0750 0,0647 0,0697 

CCA54 0,0707 0,0620 0,0650 0,0590 0,0640 

CCA55 0,0793 0,0770 0,0800 0,0770 0,0800 

CCA56 0,0840 0,0740 0,0800 0,0740 0,0800 

CCA57 0,0707 0,0780 0,0830 0,0807 0,0863 

CCA58 0,0583 0,0620 0,0720 0,0563 0,0693 

CCA59 0,0820 0,0900 0,0940 0,0840 0,0873 

CCA60 0,0897 0,0850 0,0910 0,0880 0,0915 

CCA61 0,0570 0,0580 0,0720 0,0590 0,0705 

CCA62 0,0667 0,0580 0,0710 0,0620 0,0710 

CCA63 0,0470 0,0420 0,0650 0,0460 0,0605 

CCA64 0,0467 0,0460 0,0550 0,0460 0,0550 

CCA65 0,0500 0,0480 0,0490 0,0480 0,0505 

CCA66 0,0510 0,0470 0,0520 0,0470 0,0520 

CCA67 0,0470 0,0470 0,0510 0,0465 0,0515 

CCA68 0,0510 0,0540 0,0590 0,0553 0,0587 

CCA69 0,0500 0,0570 0,0630 0,0625 0,0715 

CCA70 0,0490 0,0440 0,0810 0,0470 0,0660 

CCA71 0,0560 0,0500 0,0550 0,0550 0,0600 

CCA72 0,0480 0,0400 0,0420 0,0400 0,0417 

CCA73 0,0580 0,0530 0,0580 0,0530 0,0580 

CCA74 0,0560 0,0560 0,0580 0,0555 0,0580 

CCA75 0,0730 0,0590 0,0600 0,0623 0,0663 

CCA76 0,0950 0,0940 0,1000 0,0975 0,1025 

CCA77 0,0997 0,1010 0,1030 0,0957 0,1030 

CCA78 0,0710 0,0600 0,0750 0,0540 0,0640 
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CCA79 0,0507 0,0490 0,0750 0,0440 0,0625 

CCA80 0,0550 0,0490 0,0530 0,0490 0,0530 

CCA81 0,0577 0,0520 0,0580 0,0520 0,0585 

CCA82 0,0470 0,0360 0,0490 0,0350 0,0413 

CCA83 0,0583 0,0480 0,0550 0,0493 0,0543 

CCA84 0,0600 0,0510 0,0620 0,0530 0,0590 

Table 1 – Manual (group 0) and automatic measurements (groups 1, 2, 3 and 4) of 84 images of 
the carotid artery. All values presented are in cm. 
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APPENDIX B 

 This appendix displays the time-consumption to process each image of 

the dataset using the proposed algorithm. 

Image Elapsed 
time 

Image Elapsed 
time 

Image Elapsed 
time 

Image Elapsed 
time 

CCA1 1,3000 CCA22 1,2200 CCA43 1,3100 CCA63 1,0000 

CCA2 1,1900 CCA23 1,1400 CCA44 1,1700 CCA64 1,1200 

CCA3 1,6700 CCA24 1,1600 CCA45 1,2300 CCA65 1,0900 

CCA4 1,3300 CCA25 1,1500 CCA46 1,1400 CCA66 1,0900 

CCA5 1,2100 CCA26 1,1600 CCA47 1,2600 CCA67 1,3100 

CCA6 1,5500 CCA27 1,1000 CCA48 1,2200 CCA68 1,1000 

CCA7 1,4100 CCA28 1,1800 CCA49 1,1000 CCA69 1,1200 

CCA8 1,5000 CCA29 1,0000 CCA50 1,2800 CCA70 1,2200 

CCA9 1,5100 CCA30 1,1600 CCA51 1,2700 CCA71 1,0200 

CCA10 1,1300 CCA31 1,0700 CCA52 1,1700 CCA72 0,9000 

CCA11 1,1300 CCA32 1,1300 CCA53 1,1300 CCA73 1,0200 

CCA12 1,0400 CCA33 1,1000 CCA54 1,1000 CCA74 1,1400 

CCA13 1,1600 CCA34 1,1000 CCA55 1,1700 CCA75 1,1500 

CCA14 1,1100 CCA35 1,4300 CCA56 1,0900 CCA76 1,1400 

CCA15 1,0100 CCA36 1,2100 CCA57 1,0900 CCA77 1,0000 

CCA16 1,1500 CCA37 1,4800 CCA58 1,0400 CCA78 1,0200 

CCA17 1,2300 CCA38 1,6000 CCA59 1,0500 CCA79 1,1500 

CCA18 1,3200 CCA39 1,2000 CCA60 1,0500 CCA80 1,0800 

CCA19 1,3400 CCA40 1,1500 CCA61 1,1300 CCA81 1,1500 

CCA20 1,1100 CCA41 1,1200 CCA62 1,1200 CCA82 1,1100 

CCA21 1,1100 CCA42 1,1800 CCA43 1,1200 CCA83 1,2300 
Table 1 – Computation time in seconds for each image processed. 
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APPENDIX C 

 This appendix displays the scale values for each image in the dataset 

used. 

Image Scale Image Scale Image Scale Image Scale 

CCA1 0,0070 CCA22 0,0080 CCA43 0,0065 CCA63 0,0080 

CCA2 0,0070 CCA23 0,0080 CCA44 0,0051 CCA64 0,0080 

CCA3 0,0070 CCA24 0,0080 CCA45 0,0057 CCA65 0,0080 

CCA4 0,0070 CCA25 0,0080 CCA46 0,0046 CCA66 0,0080 

CCA5 0,0070 CCA26 0,0080 CCA47 0,0051 CCA67 0,0080 

CCA6 0,0070 CCA27 0,0080 CCA48 0,0057 CCA68 0,0080 

CCA7 0,0080 CCA28 0,0080 CCA49 0,0057 CCA69 0,0080 

CCA8 0,0080 CCA29 0,0080 CCA50 0,0057 CCA70 0,0080 

CCA9 0,0080 CCA30 0,0090 CCA51 0,0057 CCA71 0,0080 

CCA10 0,0080 CCA31 0,0080 CCA52 0,0057 CCA72 0,0080 

CCA11 0,0080 CCA32 0,0080 CCA53 0,0080 CCA73 0,0090 

CCA12 0,0080 CCA33 0,0080 CCA54 0,0080 CCA74 0,0090 

CCA13 0,0080 CCA34 0,0080 CCA55 0,0080 CCA75 0,0080 

CCA14 0,0080 CCA35 0,0080 CCA56 0,0080 CCA76 0,0080 

CCA15 0,0080 CCA36 0,0063 CCA57 0,0080 CCA77 0,0080 

CCA16 0,0080 CCA37 0,0063 CCA58 0,0080 CCA78 0,0080 

CCA17 0,0080 CCA38 0,0057 CCA59 0,0090 CCA79 0,0080 

CCA18 0,0080 CCA39 0,0057 CCA60 0,0090 CCA80 0,0080 

CCA19 0,0080 CCA40 0,0057 CCA61 0,0090 CCA81 0,0080 

CCA20 0,0080 CCA41 0,0057 CCA62 0,0090 CCA82 0,0080 

CCA21 0,0080 CCA42 0,0065 CCA43 0,0080 CCA83 0,0080 
Table 1 – Scale used in each image. All values are in cm/pixel. 

 

 


