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Abstract

Traffic congestion in city centers and its associated environment impact are among the

major challenges pose to mobility researcher nowadays. This thesis aims to contribute for

urban mobility improvement, in terms of road capacity and vehicle emissions. The current

work is included in the Intelligent Transportation Systems (ITS) research area, namely

traffic simulation of autonomous vehicles and CO2 emissions assessment at a microscopic

level. The thesis focus on the development of methodologies for the traffic management in

intersections aided by precise multi-sensor positioning. This research explores a simulation

framework for the development of Intelligent Traffic Management (ITM) algorithms in

road intersections, namely roundabout and crossroads. The research work provides an

assessment of novel intersection traffic management algorithms for automated vehicles

on fuel consumption and greenhouse gas emissions of CO2 relative to traditional traffic

signal and roundabout intersection control. An accurate vehicle’s pose estimation and

control is of extreme importance for the inner working of the ITM algorithms, therefore

its development is also performed and analyzed. The research work is divided in three

major topics: simulation framework, ITM algorithms and vehicle pose estimation.

In the framework of this research the ISR - Traffic Simulator (ISR-TRAFSIM) was

developed as the simulation environment. It is an open-source Matlab-based simulator

and it has the potential for being used in diverse studies such has: automatic traffic

control, vehicle emissions analysis, vehicle path-following control and sensor fusion for

vehicle awareness (available at: http://www2.isr.uc.pt/~conde/isr-trafsim/).

Several ITM algorithms were developed, aiming to minimize accidents, traffic conges-

tion and consequently the environmental costs of road traffic. The developed intelligent

traffic management ITM algorithms, which are based on a spatio-temporal reservation

scheme, ensure that vehicles proceed through the intersection without colliding with

other vehicles while at the same time reducing the intersection delay and environmental

impacts. This research demonstrates that there is the potential of emission reduction and

optimized traffic flow through the use of these ITM algorithms.

To implement the traffic management in cooperative driving scenarios, the estimated

pose and speed of vehicles must be both accurate and robust. When vehicles localization

systems involve standalone Global Navigation Satellite System (GNSS) receivers, the

resulting accuracy can be affected by satellite-specific errors of several meters. This work

studied how road-features like lane marking detected by on-board cameras can be exploited

http://www2.isr.uc.pt/~conde/isr-trafsim/
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to reduce absolute position errors of cooperative vehicles sharing information in real-time

in a network. The algorithms considered in this work are based on a error bounded set

membership strategy, these methodologies were used to compute GNSS guaranteed risk

integrity zone. A robust set-inversion based algorithm was also developed, to solve the

problem of Non Line Of Sight (NLOS) multipath and its error propagation when using

collaborative algorithms.
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Resumo

O congestionamento do tráfego no centro das cidades e impacto ambiental associado estão

entre os principais desafios colocados hoje em dia aos investigadores na área da mobili-

dade. Este trabalho tem como objetivo contribuir para a melhoria da mobilidade urbana,

em termos do aumento da capacidade das infraestruturas rodoviárias e da redução das

emissões dos véıculos. O presente trabalho está inclúıdo no domı́nio dos ”Sistemas de

Transportes Inteligentes”, nomeadamente na simulação de tráfego de véıculos autónomos

e análise das emissões de CO2 ao ńıvel microscópico. O trabalho incidirá sobre o desen-

volvimento de metodologias para a gestão de tráfego em interseções, auxiliadas por um

sistema de localização multi-sensorial. Um ambiente de simulação integrado é analisado no

contexto do desenvolvimento de algoritmos ”Inteligentes de Gestão de Tráfego” (Intelli-

gent Traffic Management-ITM) aplicados em interseções, nomeadamente em rotundas e e

cruzamentos. Os resultados deste trabalho, disponibilizam dados relevantes sobre consumo

de combust́ıvel e sobre as emissões de gases de efeito estufa CO2, habilitando a avaliação

dos algoritmos inteligentes de gestão de tráfego em interseções para véıculos autónomos,

relativamente às técnicas tradicionais de regulação de trânsito em rotundas e cruzamentos.

A estimação precisa da localização de um véıculo e o controlo do mesmo, é de extrema

importância para o desenvolvimento e operação de algoritmos ITM, portanto, sendo o

seu desenvolvimento também realizado e analisado. O trabalho desenvolvido encontra-se

dividido em três grandes temas: ambiente de simulação integrado, algoritmos ITM e es-

timação da localização de véıculos

.

No âmbito deste trabalho foi desenvolvido um ambiente de simulação denominado

ISR-TRAFSIM. Este simulador é baseado em Matlab, o seu código fonte encontra-se

dispońıvel, e tem o potencial para ser usado em estudos diversos na área dos transportes

inteligentes, nomeadamente: controlo automático de tráfego rodoviário, análise de emissões

de véıculos automóveis, controlo de seguimento de trajetória de véıculos autónomos e de

fusão de sensorial para efeitos de localização precisa e percepção de situações anómalas

ou perigosas (dispońıvel em: http://www2.isr.uc.pt/~conde/isr-trafsim/).

Vários algoritmos ITM foram desenvolvidos, visando minimizar o número de acidentes,

o congestionamento do tráfego e consequentemente reduzir os custos ambientais do

tráfego rodoviário. Os algoritmos ITM desenvolvidos, são baseados em metodologias

de reserva espaço-temporal. Estas metodologias asseguram que os véıculos se deslocam

através do cruzamento sem colidir com outros véıculos, ao mesmo tempo que conseguem

reduzir o tempo de espera no cruzamento assim como os seus impactos ambientais. Este

http://www2.isr.uc.pt/~conde/isr-trafsim/
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trabalho demonstra que existe o potencial para a redução de emissões e aumento do fluxo

de tráfego através da utilização de algoritmos ITM.

Para implementar a gestão de tráfego em cenários de condução cooperativa, a estimativa

da localização e velocidade dos véıculos deve ser precisa e robusta. Em sistemas localização

de véıculos baseados apenas em receptores GNSS, a precisão resultante pode ser afetada

por erros de vários metros. Neste trabalho avaliou-se a potencial melhoria na localização

de véıculos equipados câmaras de detecção da linha de marcação lateral da estrada, em

cenários cooperativos para reduzir os erros de posição absoluta de véıculos através da

partilha em rede de informação em tempo real. As técnicas utilizadas nos algoritmos de

localização são baseadas em métodos intervalares, usados para determinar conjuntos de

pertença com erro delimitado, estas metodologias foram usadas para determinar localização

baseada em GNSS, com garantia da solução se encontrar dentro de um conjunto com um

determinado risco. Para resolver o problema das ”pseudoranges” com multi-percurso do

tipo NLOS e propagação do erro quando se utiliza algoritmos colaborativos, desenvolveram-

se algoritmos robustos, baseados na detecção de medidas aberrantes de satélites, e no

relaxamento das restrições usadas na computação do conjunto de pertença.
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In this chapter, we introduce the main problems to be addressed, and the major goals

to be achieved. The key contributions of the dissertation are also outlined.

1.1 Motivation

In a society where time is valuable and that the automobile remains the primary means

adopted for transportation, it is necessary to develop systems capable of smoothly flowing

traffic, aiming to reduce the time spent by drivers on their travels thus minimizing the

environmental cost of traffic caused by the growing number of circulating vehicles in

urban areas. If possible the systems developed should contribute to increasing road safety

thereby minimizing the social and economic impact of accidents. The frequency, volume

and speed of transportation vehicles have been increasing at a high rate. Alongside this

growth, significant improvements have also undergone in capacity, quality and effectiveness

of infrastructure such as roads, crossroad and roundabouts intersections. However, these

improvements are not sufficient to prevent traffic congestion and accidents. Drivers behavior

can generate adverse situations such as the occurrence of traffic jams and accidents due

to conflict of interests between the drivers involved. During the high traffic hours the

infrastructures are used well above capacity if traditional traffic management techniques

are used. In England, the costs due to traffic jams were estimated in the order of 34 000

million Euros [1]. A topic that is being one of the biggest concerns globally is related

to environmental impact of vehicular transportation. The whole transportation system

in Japan is responsible for 21% of total Japanese CO2 emissions and 90% out of these

emissions are generated by motor vehicles [2]. Roundabouts and signalized intersections
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are two of the most commonly used infrastructure for regulating intersections, thus being

given attention by the new ITS technologies. Much work has been done in the field of

autonomous Crossroad Intersections (CI). Dresner and Stone developed a simulator for

autonomous CI management using agents [3]. Mateo and Sacsha used a market base

strategy for the ITM system of multiple CI [4]. Roundabout Intersections (RI) are a very

effective way of increasing traffic safety and specially at reducing fatalities [5], in Korea

the reduction of fatalities by replacing 192 crossroads with roundabouts accounted for a

50% decrease in fatalities and 51% in major injuries (injuries requiring more than three

weeks of hospitalization). Although the evident safety increase and the fact that there is a

quite significant number of RI nowadays, not much work has been done to autonomously

regulate traffic in RI. The early RI emerged as a very effective solution to regulate road

traffic in road intersections. Because of its good performance, modern RI are widely used,

especially in situations where there are a high number of roads joining at the intersection.

Besides the obvious economic benefits, a more efficient RI traffic management leads to

environmental benefits, by reducing the circulation time of vehicles, and improve drivers

and passenger life quality. The inefficiency of RI in dealing with very high traffic, led to

a group of solutions with main focus on regulating traffic in RI using traffic lights [6]-[7]

and the optimization of the signaling control. Other approaches have also been tried by

exploring new RI designs [8]. Different approaches and tools are needed to assist ITM

algorithms on solving the aforementioned problems, namely, employing Vehicle to Vehicle

+ Vehicle to Infrastructure (V2X) communication technology and accurate positioning

systems. The implementation and testing of new ITM solutions in real environments are

very expensive, therefore it is necessary to evaluate the performance of new ITM solutions

in simulated environments. There are numerous simulators used to study the performance

of traffic in intersections, however, most of these have a closed architecture, preventing

the application and development of new techniques for traffic management. Due to the

absence of an integrated simulation system, for testing novel and efficient traffic control

techniques, taking advantage of the potential of intersections as well as of autonomous

vehicles, a new simulation framework is needed.

In a foreseeable future, autonomous vehicles will be introduced into the commercial

market, and it is expected to be closely integrated with ITS. Meanwhile vehicle manufac-

turers and research units are integrating Advanced Driver Assistance Systems (ADAS).

ADAS are systems designed to assist the driver along the driving process, including adap-

tive cruise control, lane departure warning, traffic sign recognition or automatic parking.

One key requirement of ITS, to work seamlessly, is accurate vehicle localization (absolute

and relative positioning). The ability to provide traffic information such as traffic patterns

or collision warnings, relies mainly on the capacity of the network to identify the abso-
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lute and relative position of each vehicle. Vehicle localization is also a vital part in the

autonomous navigation, it is mandatory to accurately compute the position of the vehicle

for map matching, velocity profiling and path planning.

Accurate and continuous position calculation is essential for an autonomous vehicle to

perform acceptably. Even for human driven vehicles, significant attention is being given in

intelligent traffic management algorithms, whereby the positioning accuracy has crucial

impact on the performance of the algorithm. The methods of vehicle localization based

on motion integration, also referred as relative positioning methods, lead to localization

errors which will accumulate gradually and unbounded. Absolute localization systems are

based on multiple data source with precisely known positions. Both relative positioning

methods and absolute positioning methods have advantages and shortcomings. Relative

methods have high precision in short term and high frequency sampling but are subject

to cumulative errors. Absolute methods based on GNSS are subject to multi-path errors,

limited number of satellites in the field of view, especially in urban or forest areas, where,

tall buildings or trees block or reflect GNSS signals, or can be totally unavailable, e.g.

tunnels. GNSS positioning is also susceptible to lack of integrity of the computed solutions.

The development of achievable and inexpensive solutions with improved position estimate

accuracy, for on-road vehicles, guaranteeing the integrity of the computed solution, is one

of the requirements for a ITS scenario. A single sensor cannot provide all information

required for ITM algorithms, as these algorithms require not only accurate positioning

but also a guarantee of the integrity of the computed solution. Therefore the fusion of

multiple sensory information plays a key role in ITM algorithms for both autonomous and

human driven vehicles.

1.2 Goals and key contributions

The research is aimed on the development and evaluation of intelligent traffic management

algorithms in a realistic scenario. To accomplish this goal, a vehicular traffic simulator

for intersections was developed where several support systems to new technologies of

intelligent transport systems were integrated, enabling the measurement and thorough

analysis of the intelligent traffic management algorithms in a simulated environment.

The integrated tools support complex positioning systems and enable the simulation

of a simple Communication System (CS) for V2X. Another goal was to integrate on the

simulator a fuel consumption and emissions model as well as a module supporting non-

Ackermann steering vehicles, namely four-wheel steering system present in many modern

vehicles. The simulator must also have a graphical interface so that a user can configure

different scenarios in a simple way.
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Another objective of this research is the development of intelligent and novel traffic

management algorithms, using mechanisms of pre-reservation of spatio-temporal matrices

supported by V2X. The ITM algorithms were tested and evaluated using the integrated

vehicular traffic simulator.

Vehicle control and localization play a decisive role in autonomous vehicular traffic

management, therefore its control for Ackermann and non-Ackermann steering vehicles,

as well as, localization using multi-vehicle sensory systems was also an objective.

This research lead to the following achievements and contributions depicted in Fig-

ure 1.1:

• [A-E]- A microscopic traffic simulator framework for the simulation of traffic in

intersections based on discrete events was developed. The simulator integrates the

kinematics of recent 4WS vehicles and enables the simulation of V2X and a broad

set of sensors models, including GNSS, Magnets Sensing System (MSS), LIDAR,

odometers, steering actuators, etc. This simulator allows the testing of ITM algo-

rithms, Path Following Controller (PFC), sensor fusion, etc. The simulator enables

a non-skilled programmer to develop and integrate new modules and its source code

is already disclosure to the academic community.

• [H-K]- Proposal of algorithms to enable fully automated vehicles equipped with

V2X CS to cross intelligent roundabout and crossroad intersections:

– a method to decelerate the vehicle and reserve the upcoming layer cells after the

last layer occupied cells of a spatio-temporal matrix, Waiting Method Intelligent

Traffic Management (WMITM);

– a method to decelerate the vehicle and reserve the earliest layer free cells

of a spatio-temporal matrix, Early Method Intelligent Traffic Management

(EMITM);

– a method to accelerate the vehicle and reserve the layer free cells of a spatio-

temporal matrix prior than it would be expected if the vehicle followed a regular

speed profile, Forward Method for Intelligent Traffic Management (FMITM);

• [G,K]- Proposal of algorithm to enable an intelligent intersection to accommodate

vehicles, not equipped or with faulty V2V and V2I communications, Legacy Early

Method for Intelligent Traffic Management (LEMITM).

• [G-Q]- In reservation-based algorithms for ITM at intersections it was used the

estimated poses instead of the error-free poses. Each vehicle send its estimated pose

(using positioning systems, namely a simulated GNSS) to the intersection traffic

management system. This procedure reflects real-world information exchange more

accurately and is thought to have have not been studied before.
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Figure 1.1: Achievements/Contributions.

• [F-K]- Proposal of a detailed fuel consumption and emissions model, from low level to

high level, to evaluate the environmental benefits of the reservation-based intelligent
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intersection control algorithms. The low level emissions model, is detailed to the

level of piston displacement, encompasses accurate models of engines and vehicle

dynamics.

• [F-K]- The use of the well-to-wheel analysis, to compute the total CO2 emissions, is

thought to be firstly introduced in the context of the reservation-based algorithm in

this research. Most of the existing emissions models used in fuel consumption studies

do not consider the fuel production, processing and delivery emissions stages.

• [B,G-K]- Integration of an hierarchical four-layered structure for the wireless CS.

The use of the proposed CS, provides a more realistic communication environment,

compared to the use of a fixed percentage of packet loss rate used in reservation-

based algorithm previous studies. This extension accounts for several factors that

were not considered in previous research efforts on reservation-based algorithms.

• [B,L]- Proposal of a cooperative localization system supported by V2V/V2I in semi-

structured outdoor environments for position estimation, where a fusion of redundant

encoders data and absolute positioning data provided by landmarks is achieved by

means of an Extended Kalman Filter (EKF). Landmarks can either be a front laser

detected vehicle or a detected magnetic marker. A front laser detected vehicle, is

considered as a landmark, if at a given time, it either detected a magnetic marker or

it has been able to compute a Real Time Kinematic-GPS (RTK-GPS) positioning

solution.

• [O-R]- Use of absolute positioning data, acquired through a lane boundary sys-

tem, in a set-membership algorithm, for vehicle position estimation, Lane Boundary

Augmented Set-membership GNSS Positioning (LB-ASGP), and cooperative vehi-

cle position estimation, LB-CASGP. The use of absolute positioning data, namely

lane boundary detection system, for the position estimation, in a set-membership

algorithm, rather than classical iterative least square, is thought to have not been

studied elsewhere.

• [M-R]- Proposal of a guaranteed risk integrity zone computation algorithm for

robust vehicle positioning, constrained by geo-referenced lane boundary measure-

ments and GNSS pseudoranges to remove the constellation satellites with NLOS

multipath pseudoranges affecting each vehicle individually, using Lane Boundary

Relaxed Set-membership Satellite NLOS Multipath Fault Detection and Exclu-

sion (LB-RSSMFDE). The use of geo-referenced lane boundary measurements and

GNSS pseudoranges, to remove the constellation, is thought to be firstly introduced

in the context of bounded-error models. The removal of NLOS multipath pseudor-

anges contaminated satellites, at the level of each individual vehicle, creates a new
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class of positioning algorithms in the context of this research, this class is denomi-

nated robust : Robust Lane Boundary Augmented Iterative least squares GNSS Po-

sitioning (LB-RAIGP), Robust Lane Boundary Augmented Set-membership GNSS

Positioning (LB-RASGP), Robust Lane Boundary Collaborative Augmented Iter-

ative least squares GNSS Positioning (LB-RCAIGP) and Robust Lane Boundary

Collaborative Augmented Set-membership GNSS Positioning (LB-RCASGP).

This work has produced the following publications.

Papers in international scientific Journals with referees:

2016 (Submitted) L.C.Bento, P.Bonnifait and U.Nunes, ”Cooperative GNSS Position-

ing aided by Road-Features Measurements”, Transportation Research Part C: Emerging

Technologies, Elsevier.

2016 (Submitted) L.C.Bento, P.Bonnifait and U.Nunes, ”Set-Membership Position Es-

timation with GNSS Pseudorange Error Mitigation using Lane-Boundary Measurements”,

IEEE Transactions on Intelligent Transportation Systems.

2014 (Submitted) L.C.Bento, R.Parafita, H.Rakha and U.Nunes, ”A Study of the

Environmental Impacts of Intelligent Automated Vehicle Control at Intersections via V2V

and V2I Communications”,Journal of Intelligent Transportation Systems: Technology,

Planning, and Operations, Taylor & Francis.

2007 U.Nunes, L.C.Bento, ”Data Fusion and Path-Following Controllers Comparison

for Autonomous Vehicles”, Nonlinear Dynamics, International Journal of Nonlinear

Dynamics and Chaos in Engineering Systems, Springer Netherlands.

Papers in conference proceedings with referees:

2015 L.C.Bento, R.Chelim, U.Nunes, ”Collaborative Vehicle Self-Localization Using

Multi-GNSS Receivers and V2V/V2I Communications” 18th IEEE ITSC - Intelligent

Transportation Systems Conference, Canary Islands, Spain.

2013 L.C.Bento, R.Parafita, U.Nunes, ”Intelligent Traffic Management at Intersections:

Legacy Mode for Vehicles not Equipped with V2V and V2I Communications” 16th IEEE

ITSC - Intelligent Transportation Systems Conference, Hague, Netherlands.

2012 L.C.Bento, R.Parafita, U.Nunes, ”Inter-Vehicle Sensor Fusion for Accurate

Vehicle Localization Supported by V2V and V2I Communications”, 15th IEEE ITSC -
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Intelligent Transportation Systems Conference, Anchorage, USA.

2012 L.C.Bento, R.Parafita, U.Nunes, ”Intelligent traffic management at intersections

supported by V2V and V2I communications”, 15th IEEE ITSC - Intelligent Transporta-

tion Systems Conference, Anchorage, USA.

1.3 Thesis outline

The remainder of this thesis is organized as follows (see Figure 1.1):

Chapter 2 It is presented the ITS background for basic understanding of our work. It is

not an exhaustive description of this scientific topic, but a rather focused presentation

of main problems of ITM and contributions made to it in recent years. Moreover, a

short state-of-the-art allows the reader to frame the contributions of this thesis.

Chapter 3 The theoretical background and methods used through out the thesis are

presented in this chapter, namely it is discussed the components of the GNSS error,

GNSS single epoch receiver positioning, lane boundary sensor modelling, set-inversion

based on interval analysis and the measurement bounds setting. It gives the necessary

background to understand the proposed methodologies in remaining chapters.

Chapter 4-7 These are the core chapters, where the Simulator Framework, the Intelli-

gent Traffic Management Algorithms and the Inter-vehicle Sensor Fusion and Pose

Estimator algorithms are formulated and presented. A subset of the simulation and

experimental results used to test, compare and validate the algorithms are here

presented. The performance evaluation of each solution is summarized on the final

remarks of these chapters.

Chapter 8 In this chapter we review the main results, draws some conclusions and suggest

some future directions.

Appendices A and B Briefly reviews some background concepts regarding fuzzy-logic

background and chained form controllers respectively.
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ITS background and state of the art

Contents
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2.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

In this chapter, it will be presented the ITS background for basic understanding of the

research conducted. It is not an exhaustive description of this scientific topic, but a rather

focused presentation of main problems of ITM and contributions made to it in recent

years. Moreover, this short state-of-the-art allows the reader to frame the contributions of

this thesis.

2.1 ITS Simulation

Although real world experiments provides realistic results, the physical implementation is

a time consuming procedure and expensive as it may require a lot of hardware and human

resources. Alternatively, simulation is affordable and provides good results and in a cost

effective way enable to evaluate the performance of proposed protocols/schemes. Hence

simulation tools have been preferred over outdoor experiments because their simple, easy

and cheap. Many tools exist for this purpose but most of them have the problem with the

proper interaction among them. In this section we evaluate the available simulation models,

distributed among three categories: vehicular road traffic simulators; vehicle emission

models and multi-purpose integrated simulators.

Vehicular road traffic simulators include models described by the framework, which in-

cludes topological maps like lanes, roads, streets, obstacles in mobility and communication

model, vehicle velocities, the attraction and repulsion points, based on traffic densities

relating to how the simulation time could vary, vehicular distribution on roads and in-

telligent driving pattern [9]. The vehicle emission models are concerned with computing
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fuel consumption and emission at a macroscopic level by tracking average link speeds or

on a microscopic level by tracking individual vehicles instantaneously. The multi-purpose

integrated simulators include V2X communications and their integration with simulators

with the capacity to simulate sensors and its noise characteristics as well as the actuators

and its performance.

2.1.1 Vehicular Road Traffic Simulators

Intelligent vehicular traffic management solutions may target vast deployments that com-

prise tens, hundreds or even thousands of vehicles. Large-scale experimental test beds are

too expensive and complex to scale to more than a few vehicles, therefore simulation is

the means of choice for their performance evaluation [10].

Traffic simulators are divided into three broad categories according to the level of

representation of vehicles [10, 11, 12]:

Macroscopic simulators capture traffic dynamics of large networks, i.e. model traffic

as a continuous flow. In this category of simulators, vehicles are not considered

individually, its movements are inspired by fluid theoretical models, leading to com-

putationally faster simulators. The models describe the collective vehicle dynamics

in terms of the spatial vehicle density, the average flow, and average speed. They

are mainly used in situations where it is necessary to simulate a large number of

vehicles over a long period of time;

Mesoscopic simulators model individual vehicles at an aggregate level, i.e model the

individual vehicles but not their interactions. In this type of simulators, traffic flow

is described in less detail than in microscopic simulators and in greater detail than

in macroscopic. The behavior of vehicles and drivers are not described individually,

rather on small groups of vehicles of a specific user-class classified by their position,

velocity, and desired velocity at an instant of time;

Microscopic simulation environment provide a detailed representation of the traffic, and

thus capture the behavior of vehicles and drivers in great detail, i.e. each vehicle

is considered individually. This class of simulators considers lane changes, drivers

and vehicles types, as well as the interactions between them and the environment,

meaning that the physics of individual vehicles as they interact with the driver

models and the infrastructure are characterized in this model. Modeling individual

vehicles at a microscopic level requires a significant computational capability, making

this type of simulators more suitable for local traffic study.

In Table 2.1, we provide an overview of the most relevant microscopic traffic simulators

[10, 11, 13, 14, 15, 12].
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Table 2.1: Studies on relevant microscopic traffic simulators

Simulator OS/License
type

Interface with other tools Vehicle representation Traffic representation User interface/OS Special remarks

AIMSUN
(Advanced
Interactive
Micro-
scopic
Simulator
for Urban
and Non-
Urban
Networks)

Windows /
Unix, pro-
prietary,
time trial
or limited
functional-
ity demo
version
available

an API feature, enable
users to modify the default
simulation routine and test
their own models

the user may define as
many vehicle types as de-
sired and provide the ve-
hicle parameters required.
Classes of vehicles can be
defined to group vehicle
types

it can be configured as in-
put flows (flows on the in-
coming links at the bound-
ary of the network) and
turning percentages (the
percentage of vehicles turn-
ing left, right or going
straight for each intersec-
tion) or it can be pro-
vided in the form of origin-
destination matrices

graphical interface en-
able user to edit in-
put networks, manage
experiments and view
results

a significant advantage of AIMSUN is that the gap-
acceptance behavior of drivers is modified based on
their delay time. Most other models do not represent
such phenomena. It has reasonable level of fidelity

CORSIM
(CORridor
micro-
scopic
SIMula-
tion)

Windows,
propri-
etary, time
trial or
limited
functional-
ity demo
version
available

an API feature, enable
users to modify the default
simulation routine and test
their own models

FREESIM allows nine dif-
ferent vehicle types while
for NETSIM it can reach
up to 16. Vehicle type char-
acteristics include vehicle
length, maximum accelera-
tion and deceleration

the specification of the trip
table, to perform traffic as-
signment is accomplished
via origin-destination ma-
trices. Sources and/or des-
tinations (sinks) of traffic
that are internal to the net-
work can also be specified

input and output is
via ASCII text files,
however there are
tools to graphically
create these input
files and display
results

the lack of appropriate modeling of vehicle movements
in the intersection box is an disadvantage of CORSIM.
Although the current model includes micronode mod-
eling of intersection box movements, the calculation of
conflicts and output statistics is based on approxima-
tion principles, which are not considered a viable model
for intersection vehicle movements

PARAMICS
(PARAllel
MICro-
scopic
Simula-
tion)

Windows,
propri-
etary, time
trial or
limited
functional-
ity demo
version
available

an API feature, enable
users to modify the default
simulation routine and test
their own models

there are seven predefined
vehicle classes but the user
may add more as required

origin-destination matrices
to derive traffic volumes

user friendly graphi-
cal interface for net-
work building and vi-
sualization of results

it can model roundabouts by default and enables users
to model unconventional circles. The aspects that make
it attractive are: the capability of microscopically mod-
eling the vehicle-following/lane-changing behavior of
individual vehicles and the employment of an algorithm
that defines a general purpose method to steer a vehi-
cle over a realistic path between its current position
to any target position, taking angles of orientation and
steering limits into account. It has reasonable level of
fidelity

SUMO
(Simulator
of Urban
MObility)

Windows
/ Unix,
free, open
source

It allows the access to a
running road traffic simu-
lation to retrieve values of
simulated objects and to
manipulate their behavior
on-line via TraCI (Traffic
Control Interface). A TCP-
based client/server archi-
tecture is established where
SUMO acts as a server and
the controller is the client

default values for accel-
eration, maximum speed
and desired speed distri-
butions are given but can
be changed by the user
to reflect local traffic con-
ditions. Various car types,
truck types, trams, buses
and pedestrians can be de-
fined

while data needed to de-
scribe the departure times
and a route origin and
destination are given, the
routes themselves must be
computed, for that purpose
SUMO suite includes an
application for converting
origin-destination matrices
to single vehicle trips

it reads the input
information, pro-
cesses the simulation,
gathers results and
produces outputs
via ASCII text files,
however it also has
an optional graphi-
cal interface called
SUMO-GUI

SUMO uses two significantly influencing parameters for
queue and travel time, i.e. it uses parameters of the
driver imperfection and also the driver reaction time

VISSIM
(Verkehr
In Städten
- SIMu-
lations-
modell)
german
for Traffic
in cities -
simulation
model

Windows,
propri-
etary, time
trial or
limited
functional-
ity demo
version
available

an API feature, enable
users to modify the default
simulation routine and test
their own models

default values for accel-
eration, maximum speed
and desired speed distri-
butions are given but can
be changed by the user to
reflect local traffic condi-
tions. Various vehicle types,
truck types, trams, buses
and pedestrians can also be
defined

origin-destination matrices,
a route choice model is also
included

graphical interface
enable to edit data
such as network
definition of roads
and tracks, vehicle
and behavioral driver
specifications, car
volumes and paths,
transit routes and
schedule

the priority rules feature of VISSIM appears to al-
low complex modeling of junction behavior, including
friendly merging, (i.e. situations where following vehi-
cles will slow for merging vehicles to create a gap), as it
occurs in the real world. Another advantage of VISSIM
is the representation of on-street parking behavior and
double parking. It has good level of fidelity
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Microscopic traffic simulators produce individual synthetic vehicular traces, and there-

fore have emerged as the most viable solution to faithfully represent the unique dynamics of

vehicle movement patterns. The fidelity of the synthetic traces generation process has dras-

tically improved over the last few years, as a result, it is today widely acknowledged that,

intelligent vehicular traffic management system at intersections may only be accurately

reproduced on microscopic-level simulation.

The majority of the most representative simulators are proprietary and therefore the

internal systems modeled are unavailable to the developer. Nevertheless all presented

simulators enable the development of external modules to modify the default simulation

routine and test custom models. The external module development for the proprietary

simulators is a difficult task and in some cases the documentation is scarce, while for the

open source simulator SUMO the development of new features requires good programming

skills and deep knowledge of the inner working of the simulator. The main advantage

of microscopic traffic flow models is that the behavior of the drivers and vehicles are

described in detail. Therefore, they can provide relatively more information regarding

the characteristics of the traffic flow than other types of models. The main limitation

of microscopic models is that they require a large memory size and they are very slow

when used for large traffic networks making these models are mostly useful for local traffic

studies. Moreover, microscopic models require large number of parameters, which are most

often difficult to calibrate [12].

The autonomous vehicle paradigm has been around in researchers’ minds for some years

now, as it envisions to radically change the concept of mobility and traffic management.

With the technology rapid growth, researchers are now more focused on the software

challenges that such a complex system requires, as hardware itself is becoming more

affordable [16]. Major automobile manufacturers predict the availability of autonomous

vehicles in the near future. In [17] Juliussen anticipates that nearly all of the vehicles in

use are likely to be self-driving cars or self-driving commercial vehicles sometime after

2050.

It is common among microscopic simulators to enable vehicle and driver customization

but there is no support for the performance evaluation of path-following controllers and non-

Ackermann steered vehicles, such as the four wheel steering vehicles (4WS), are not possible

to be modeled. 4WS vehicles account for more than forty commercially available models

from major automobile industry manufacturers. Another major drawback of microscopic

simulators in the context of autonomous vehicles, is the lack high quality sensor simulation

and physics engine. Therefore traffic simulation of autonomous vehicles requires further

module extensions, this class of traffic simulators is referred has nanoscopic [18]. An

integrated framework that aims coupling robotics and a microscopic traffic simulator
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is presented in [12]. This work developed an integrated framework, using SUMO and

USARSim (Unified System for Automation and Robot Simulation), enabling autonomous

vehicles to be deployed in a rather realistic traffic flow at the same time it simulates all its

sensors and actuators. Although the software developed was multi-platform, no software

was released to the academic community neither the tools used (Unreal scripting language

and C++) enable a non-skilled programmer to develop and integrate new modules.

2.1.2 Vehicle Emission Models

Global warming is a very serious problem, which is worsening with the growth of traf-

fic congestion, due to the increasing number of vehicles on roads. As traffic congestion

increases, more fuel is consumed and consequently CO2 emissions are increased. Given

the current economic crisis, the rising price of fuel and the social pressure for ecological

awareness, the reduction of fuel consumption and CO2 emissions is paramount. According

to Nagurney [19], 15% of the world CO2 emissions come from road vehicles, this figures

can be further compromising for developed countries. The average fuel consumption of ve-

hicles is provided by manufacturers, this information is mainly derived from measurements

based on engine test benches or from a standard test cycle using a chassis dynamometer,

rather than on real-life driving cycles, therefore the information provided does not make

it possible to derive CO2 emissions [20].

A number of research efforts have attempted to develop vehicle fuel consumption and

emission models. Due to their simplicity, macroscopic fuel consumption and emission

models have been proposed [21]. These models utilize the aggregated characteristics,

such as the average speed and total length of a trip to estimate the emission rate. A

major drawback of these models is the fact that they compute fuel consumption and

emissions based on average link speeds. Using the single average speed is not sufficient

to characterize the precise driving behavior of a vehicle, and therefore, not accurate to

estimate the emission level of a vehicle, i.e. various vehicle operations, such as variable

instantaneous vehicle speed, vehicle acceleration and gear change pattern may lead to

the same average speed with different fuel consumption. Average speed cannot capture

detailed spatial information, and thus do not allow accurate emission estimations of vehicles

at small segments of a road network making the use this type of model unsuitable for

intersections. These models are suitable to be used in scenarios where emission prediction

at a coarse granularity is expected, namely in large-scale transportation analyses where

the average speed is adequate to characterize traffic conditions [22].

To overcome the limitations of macroscopic fuel consumption and emission models in

small segments of a road network, research methods using instantaneous speed and acceler-
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ation variables were proposed, these methods are referred as microscopic fuel consumption

and emission models (also referred as instantaneous fuel consumption and emission mod-

els). Microscopic models can be classified into three general categories: emission map based

models, data driven statistical based models and physical based model.

Emission map based models use so-called engine maps to obtain fuel consumption.

The fuel consumption is obtained through a search on a table mapping the perfor-

mance of the engine, where each cell of the table stores instantaneous fuel consump-

tion given the velocity and acceleration. Although emission maps are simple and

easy to use, they can be sparse and too sensitive to the driving cycles;

Data driven statistical based models are also referred as regression-based models.

Mathematical functions of instantaneous vehicle speed and acceleration are used

to estimate fuel consumption. These mathematical functions are built based on

information from vehicle speed/acceleration and emission datasets. These models

lack clear physical interpretations;

Physical based model also referred as load-based model, estimate fuel consumption

using detailed physical parameters of vehicles. The vehicle physical dynamics is

simulated as well as the corresponding dynamic power flow and energy losses within

the powertrain. Physical models can be classified into forward-facing and backward-

facing based on the way in which the dynamic calculations are performed. A forward-

facing model features a driver model that provides torque demand to meet the

desired speed, while the backward-facing model the vehicle speed is known and

the required power throughout the system is computed. Physical based models are

usually complicated and require high computational effort as they consider a wide

range of parameters related to the fuel consumption, such as vehicle speed and

acceleration, road grade, gear ratio, engine max power, engine power demand, etc

[22].

Physical based models are the most comprehensive microscopic models for fuel con-

sumption estimation. Table 2.1 describes briefly several physical based microscopic fuel

consumption and emissions models.

A global view of fuel consumption models reveals that the majority are proprietary

and therefore the internal systems modeled are unavailable to the developer, focusing on

the short list of fuel consumption models presented, only one is free and open source. The

external module development is not available for the proprietary models, while for the

open source simulator QSS-TB the development of new features is not natively available,

but since it is implemented in Matlab and open source, it makes it possible for non-skilled

programmers to develop and integrate new modules. Most of the common consumption
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Table 2.2: Studies on physical based microscopic fuel consumption and emissions models

Model OS/License
type

Interface
with
other
tools

User
inter-
face

Special remarks

EMIT
(EMIs-
sions
from
Traffic)

Windows,
propri-
etary

not
avail-
able

integrated
visual-
ization
and
manip-
ulation
utility
called
the
EMIT
Map-
per

EMIT was developed as a hybrid model to overcome the disadvantages
of both data driven statistical based models and physical based models.
EMIT combines physical factors from the physical based model in order to
increase the accuracy of fuel consumption estimation, but it only requires
simple parameters, leading to the estimation of the fuel consumption to be
able to run fast. EMIT only requires vehicle speed and acceleration with a
sampling time of one second for the computation of the fuel consumption.
EMIT provides reasonable results compared to actual measurements, over
a wide range of operating conditions. A major limitation of EMIT is that
the model does not take into account road grade that may significantly
influence the fuel consumption estimation neither is able to interface with
other tools [22]

CMEM
(Com-
prehen-
sive
Modal
Emis-
sion
Model)

Windows
/ Unix,
propri-
etary

Paramics
plugin
pro-
vides
an in-
terface
be-
tween
CMEM
and
Param-
ics

Java
Based
GUI

The CMEM model is based on a parameterized physical approach that
breaks down the entire emission process into components that correspond
to the physical events associated with vehicle operation and fuel emissions
production. To produce accurate estimations, it requires detailed vehicle
specific parameters for the estimations such as the engine friction coefficient,
and the vehicle engine speed. This type of model is deterministic, since it is
based on causal parameters rather than statistical variables which are not
necessarily linked to physical phenomena. Results obtained are very good,
with no significant bias. CMEM can be seen as a state-of-the-art microscopic
emission model because of its ease of application [20, 22, 23]

QSS-
TB
(Qua-
siStatic
Simu-
lation
Tool-
box)

Windows
/ Unix,
free,
open
source

not
avail-
able

Matlab
/
Simulink
envi-
ron-
ment

The QSS-TB is implemented using a reversed causality quasistatic approach.
Where quasistatic means that the dynamic evolution is broken into a se-
quence of stationary states at discrete-time instants and reversed causality
means that, using the driving cycle speeds, the accelerations are computed
and the necessary forces are determined, based on the vehicle features and
mechanical transmission. The QSS-TB makes it possible for powertrain sys-
tems to be designed quickly in a flexible manner and to calculate easily
the fuel consumption of such systems. The QSS TB library integrates vari-
ous elements, such as driving cycles, vehicle dynamics, internal combustion
engine, electrical motor and mechanical transmission. Batteries, superca-
pacitor and fuel cell are also included enabling the modeling of the hybrid
electric vehicles. There are two major drawbacks. The first one is related to
the input variables, as it does not deal with real measurable quantities in a
vehicle, making it not suited to control systems development. The second
comes from the assumption that speed vs. time trace is followed, making
it not suited to predict best-effort performance under component limited
conditions. The major advantages of QSS-TB are the low computational
requirements and the fact that it is capable of great accuracy as well as its
validation being documented in the literature [24, 25, 26]

models are only suited for ICE (internal combustion engine), from the short list of fuel

consumption models analyzed only the QSS-TB is able to model hybrid or full electric

vehicles.

An in-vehicle energy management control strategy was developed by Kang [27], the

method uses microscopic data from networked vehicles, for the optimization of vehicle

fuel and energy consumption to minimize total trip costs. The Paramics simulator was

used to generate traffic traces and the QSS-TB was used for the batteries and fuel con-

sumption models. In this study the simulators were decoupled, no communications were

simulated and therefore it was not possible to run a real-time simulation and to evaluate
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the performance under a realistic scenario.

The studied models focus on vehicle’s tank-to-wheel power flow, i.e. it depends mainly

on the powertrain and on the on-board energy carrier, neglecting the well-to-tank power

conversion. Traditional ICE vehicles rely on combustion of fossil propellant. The fossil

must be extracted from natural reserve, refined and transported to the end user. All these

steps introduce additional losses that depend on the fuel used and on the fossil extracting

process [28], and they should be addressed as part of the emissions model.

2.1.3 Multi-purpose Integrated Simulators

Most simulators lack important features for the simulation of autonomous vehicles in

traffic modeling context, mainly because Vehicular Road Traffic Simulators are not detailed

enough to simulate autonomous vehicles, these simulators are over-simplified, while Robotic

Simulators cannot simulate large scale traffic and V2X communications [29].

Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) will see volume deployment

around 2020 and has enough value to be used as part of autonomous vehicles. V2X provide

additional and useful information and this will improve the capability to avoid accidents

at low cost, i.e. approximately $200 in volume production [10].

The proposed solutions for vehicular communications include the communication

through a telecommunication infrastructure or directly between vehicles. The solutions

are then divided into conventional communications that can use infrastructures General

Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS),

Long-Term Evolution (LTE), etc.) and in infrastructureless communications and Vehicular

Ad hoc NETwork (VANET) [10]. Mehlfuhrer et al. developed a MATLAB-based link and

system level simulation environments for UMTS and LTE [30]. Ray et al. developed a

MATLAB-based link and system level simulation environments for IEEE 208.11 abg [31].

The source code of both simulators is available under an academic non-commercial use

license allowing researchers full access to standard-compliant simulation environments.

Due to the open source availability, the simulators enable reproducible research in wireless

communications and comparison of novel algorithms.

The simulation of VANET typically employs two concepts, the vehicles mobility sim-

ulation and wireless network simulation, seldom this two concepts are merged together,

vide Figure 2.1. VANET simulation requires that a traffic and network simulator can be

jointly used with feedback between them to render the simulation results as accurate as

real life. Hassan et al. [9, 32] discussed the shortcomings of current VANET simulators,

namely:

• Separate Traffic and Network simulator: VanetMobiSim and NS-2; Problem: Traces
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VanetMobiSim

CanuMobiSim

SUMO/MOVE

TraNsNCTuns
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Traffic Simulator

Network Simulator

Integrated Simulator

Figure 2.1: Application strength relations between simulator types.

are generated once and thus no feedback is allowed;

• Integrating Traffic and Network simulator: TraNs; Problem: Loose coupling, the

feedback process is slow;

• Federating Traffic and Network simulator: MOVE and NS-2 / QualNet; Problem:

Still lack interaction.

Recommendations on how to perform useful VANET simulations were also presented

in [9, 32]: to integrate the two simulators in time and space, a bidirectional communication

should take place, with the autonomous vehicles providing kinematic variables to the

traffic simulator; the traffic simulator then calculates its surroundings and return its data

back to the autonomous vehicle simulator; all of this transactions should occur in the same

time step.

Figure 2.1 presents the overall performance of several simulators with respect to its

suitability as a traffic simulator, as network simulator or as an integrated VANET simulator.

The NCTUns simulator revealed to be most suitable. NCTUns is a high-fidelity and

extensible network simulator and emulator capable of simulating various protocols used in

both wired and wireless Internet Protocol (IP) networks. NCTUns has been deprecated

because it is was superseded by EstiNet, which is proprietary.

Pereira [33] developed an integrated architecture for autonomous vehicles simulation.

The main objective was the integration of two types of simulators, namely a robotics

USARSim and a traffic simulator SUMO [33]. However part of the proposed solutions for

the architecture was proven to be unfeasible giving the semi-closed nature of the Unreal

Engine working as a basis for USARSim.

Even after so much effort of the academic community in the development of simulation

environments, we are still far away from having an multi-purpose simulator for traffic

simulation of autonomous vehicles. The more features simulators have the more realistic
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they are, and consequently more resources they need to perform simulations. A trade-off on

the realism of the simulation as to be chosen, i.e. an oversimplified simulation is unuseful

as well as a simulation time beyond a reasonable period of time [29].

2.2 Environment Impact Reduction through Traffic

Management

The number of automobiles has been increased on the road in the past few years, this

increase is essential for the economic development, but it is also harmful to the environ-

ment and to human health. Recent developments in green transportation have heightened

the importance of research techniques in this area, the research on the reduction of CO2

emissions from road transportation has grown notably [20]. In this context traffic manage-

ment assumes a pivotal importance. Traffic management is the planning, monitoring and

control or influencing of traffic [34]. Traffic management is a broad definition that assumes

different meanings function of the context it is applied. From a macro perspective, traffic

management represents an integrated management of both roadways infrastructures and

vehicles at a higher hierarchical level, e.g. inter-city and intra-city road networks aggre-

gated traffic management. From a micro or nano perspective, traffic management may

represent traffic control at a single intersection. The studies addressing strategies for fuel

efficiency and CO2 emissions reduction can be divided into four main categories:

1. traffic reduction and transportation hardware improvements;

2. traffic routing (Table 2.3);

3. vehicle speed control and traffic signal management (Table 2.4);

4. reservation-based ITM (Table 2.5).

Table 2.3 to 2.5 list some prominent recent studies including the tools that were used,

namely the emission models and the scenario type.

The Emission Models represent the instantaneous vehicle emission models applied in

each study. These models can be divided into:

• Emission map based models (e.g. HBEFA)

• Data driven statistical based models (e.g. VT-Micro and EM-2)

• Physical based model (e.g. CMEM, EMIT, SIDRA TRIP, and VT-CPFM)

• Real experiments (e.g. EM-1 and EM-3) - fuel consumption is directly com-

puted/estimated based on field measurements. A CAN bus data logger was used

in EM-1 to record the fuel consumption [35], while in EM-3 the mass air flow and

vehicle speed were recorded using an on-board diagnostic 2 (OBD2) port [36].
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The scenario type represents the environment used in each study to model traffic

dynamics. These scenario types can be divided into:

• Microscopic simulation (e.g. SUMO, VEINS, PARAMICS, INTEGRATION, VGSim,

DIVERT, ST-5, ST-6, ST-9, ST-10, TransModeler, AIMSUN and VISSIM)

• Mesoscopic simulation (e.g. DYNEMO, DYNASMART, DYNAMIT DYNUS-T, and

MATSim)

• Macroscopic simulation (e.g. EMME/3 and ST-4)

• Node/link tour simulation (e.g. ST-1, ST-2 and ST-3 ) - model a scenario with a

collection of possible routes from a departure place to a number of cross-through

geographically scattered places subject to side constraints.

• Real experiments (e.g. ST-7 and ST-8) - where data acquired for the analyzed

scenario is taken from real experiments.

Additionally the scenario type may include V2X communication simulators, namely

OMNET, NS-2/3, NetSim and NCTUNS, but they are often missed in most of the studies.

Vehicle emissions reduction through traffic reduction and transportation

hardware improvements

Suthaputchakun et al. [37] present a survey of the fuel efficiency and CO2 emissions

reduction based on vehicular communications as well as the envisaged technical challenges

in this research area. Traffic reduction, can be achieved through improved city planning,

with major places within walking distance; public transportation improvement and through

the promotion of car pooling and car sharing. These strategies can indirectly reduce

fuel consumption and CO2 emissions [37]. Transportation hardware improvements can

also achieve fuel consumption and CO2 emission reductions through improvements in

infrastructure design (e.g. road paving materials and slope elimination) and vehicles (e.g.

engine electronics, periodical vehicle checks).

Studies on vehicle emission reduction by traffic re-routing

Table 2.3 presents a summary of the emission reductions reported in the literature as

it relates to traffic re-routing.

The majority of the studies focus on optimizing an objective function composed by

the travel time and/or fuel consumption and emission levels. A computational market

distributed allocation of an urban road network is introduced in [42]. In this out of the

box algorithm, driver agents trade the use of the capacity inside the intersections with

intersection manager agents.
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Table 2.3: Studies on vehicle emission reduction by traffic re-routing

Algorithm Emis-
sion
Model

Scenario Type Results/Contributions

pollution-routing
problem; integer
linear program-
ming

based
on
CMEM

ST-1 objective function that accounts for the labour costs, greenhouse
emissions, fuel consumption, travel times and their costs [38]

disjoint candidate
path; Dijkstra; A∗

N/A ST-2 reliable paths; real-time search [39]

re-routing traffic to
parallel lanes

EMIT VEINS (OMNET
+ SUMO)

optimization of two conflicting metrics: fuel consumption and
emissions versus the travel time [40]

Energy/Emissions
Operational Pa-
rameter Set using
multivariate re-
gression analysis,
for path selection

CMEM ST-3 use of the three following independent variables in the route
selection: vehicle characteristics, e.g., vehicle type, model year,
and loaded weight; roadway characteristics, e.g., roadway type,
vertical grade, and type of intersection at link ends (stop-sign,
signalized, or none); traffic characteristics, e.g., speed, density,
or congestion level; other explanatory variables, e.g., driver char-
acteristics and the environment [41]

competitive com-
putational market
for the distributed
allocation of an ur-
ban road network

N/A based on
DYNEMO

market dynamics affect the driver agent decision making, con-
tributing to benefits by means of lower average travel times and
less congestion [42]

Estimation of fuel
consumption and
emissions using
GNSS data

VT-
Micro

Field data collec-
tion using GNSS
data

the faster highway route choice is not always the best route
from an environmental and energy consumption perspective;
macroscopic emission estimation tools can produce erroneous
conclusions by ignoring transient vehicle behavior along a route;
air quality can be improved significantly by minimizing high-
emitting driving behavior [43]

Agent-based eco-
routing algorithm

VT-
Micro

INTEGRATION
Software on simple
and large-scale
networks

Developed a modeling framework to model eco-routing strate-
gies and tested them on two large-scale networks. Fuel savings
ranging between 3.3 and 9.3 percent were observed compared to
typical travel time minimization routing strategies. The study
showed that the configuration of the network had a significant
impact on the results [44, 45]

Studies on vehicle emissions reduction through the vehicle speed control

and traffic signal management

The algorithms controlling vehicle speed and traffic signal timings to achieve emissions

reductions present in the current literature are summarized in Table 2.4.

Vehicular fuel consumption and CO2 emissions are proportional to the frequency of

accelerations and decelerations. The majority of the presented studies attempt to reduce

vehicle accelerations, decelerations and avoid stops, by controlling the vehicle speed. Some

studies explicitly optimize the vehicle fuel consumption and CO2 emission levels (e.g.

[56]). The proposed methods for the control of the vehicle speed can be divided into two

categories: direct and indirect methods. The direct speed control method can alter the

vehicle speed or provide an eco-friendly speed advice to the driver [35]. The indirect speed

control can make use of infrastructure variable speed limits or variable traffic light system

(TLS) timings in order to comply with a low level of jerk along the path and reduce

engine idling [36, 46]. A more complex system is presented in [53], the proposed algorithm

aggregates the control of several traffic signal systems (TLSs) timings, achieving significant
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Table 2.4: Studies on vehicle emissions reduction through the vehicle speed control and traffic
signal management

Algorithm Emis-
sion
Model

Scenario Type Results/Contributions

speed limit N/A ST-4 acknowledge that a speed limit law may play the same
role as a toll charge scheme and perform better than some
negative (rebate) toll schemes under certain conditions for
network flow management [46]

vehicle-following controllers
comparison

CMEM ST-5 acknowledge that the performance of a vehicle-following
controller is mainly determined by the spacing policy em-
ployed rather than by its form [47]

Intelligent Speed Adaptation
(ISA)

CMEM PARAMICS acknowledge that ISA has the potential to mitigate conges-
tion by smoothing traffic flow during congested conditions,
which also leads to lower fuel consumption and pollutant
emissions [48]

Variable-speed limit sign
(VSLS)

N/A PARAMICS assessment of expected benefits of a practical VSLS con-
trol strategy in terms of VSLS response activity and upon
modifications to the control algorithm; modeling of rela-
tive safety benefit modeling of measures of crash potential
parameters [49]

vehicle speed adaptation
function of TLS

VT-
Micro

INTEGRATION TLS communication range; ROI/emissions assessment on
speed adaptation [50]

imperialist competitive algo-
rithm (ICA) on TLS

N/A ST-6 control the number of cars in the under-construction roads
[51]

bus loading and traffic condi-
tions modeled in time groups;
driver peer competition

EM-1 ST-7 incentive system has been developed for the case company
Tampere City Transport [35]

carbon-footprint/fuel
consumption-aware vari-
able (FC-VSL) (variable
speed limit control with
optimal fuel consumption)

SIDRA
Trip

VGSim optimal vehicular fuel consumption under live traffic con-
ditions [52]

Virtual Traffic Light (VTL) EMIT DIVERT; NS-3 CO2 reduction impact using VTL [53]
passenger-based adap-
tive traffic signal control
(PATSC) mechanism; Green
Signal Time Extension and
Termination (GSTET)

SIDRA
Trip

NCTUNS assessment of the benefit value w.r.t. the number of pas-
sengers [54]

nonlinearly constrained opti-
mization problem for a speed
profile minus maximum 5
km/h

EM-2 N/A real-time feedback system, including visual instructions,
to enable drivers to alter their driving styles in response
to actual driving conditions to improve fuel efficiency [55]

deceleration patterns when
approaching traffic signals
that force or may force the
vehicle to stop

EM-3 ST-8 not requiring the installation of infrastructure on the road
[36]

Dynamic programming using
an A* minimum path algo-
rithm

VT-
CPFM

Agent-based sim-
ulation

optimized vehicle trajectories at signalized intersection ap-
proaches using traffic signal phasing and timing (SPaT)
information [56]

Heuristic non-linear opti-
mization

VT-
CPFM

iCACC tool optimizing vehicle trajectories while proceeding through
an intersection [57, 58]

CO2 reductions.

Studies on vehicle emissions reduction through the use of reservation-based

ITM

A summary of studies on vehicle emission reduction through the use of reservation-

based ITM is presented in Table 2.5.
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Table 2.5: Studies on vehicle emissions reduction through the use of reservation-based ITM

Algorithm Emis-
sion
Model

Scenario Type Results/Contributions

reservation-based approach
based on a detailed commu-
nication protocol

N/A ST-9 reservation-based approach significantly outperforms cur-
rent intersection control technology-traffic lights and stop
signs [59]

Priority-based Policy, With-
Lane-based Policy, First
come, first serve

HBEFA ST-10 reduced significantly the fuel consumption and vehicle
emissions compared to traditional signal control systems
[60]

dynamic hierarchical reserva-
tion protocol

CMEM VISSIM assigning different priorities to incoming reservation re-
quests; evaluation of the benefits from a mobility and an
environmental point of view [61]

Heuristic non-linear opti-
mization

VT-
CPFM

iCACC tool optimization of vehicle trajectories to prevent vehicle col-
lisions and minimize the total intersection delay [57]

The reservation-based ITM was first proposed by Dresner et al. [3]. The vehicles’ pose

were considered to be known, no emission model was considered and the V2I wireless

communications were simulated through a basic protocol-less communication system. Jin

et al. [60] developed a single lane crossroad intersection time-space occupancy reservation

scheme. A Priority-based Policy, With-Lane-based Policy, First-come-first-serve (FCFS)

algorithm was applied. The vehicles’ pose were considered to be known and the V2I

wireless communications were simulated through a basic protocol-less communication

system. The proposed strategy reduced the vehicle fuel consumption and emission levels

significantly compared to traditional signal control systems. Zohdy and Rakha developed

a centralized intersection controller that optimizes the vehicle trajectories to minimize

the total intersection delay, the algorithm was extended to operate on roundabouts where

any failure in communication would have a traditional roundabout intersection control

[58], the assumption of an existent communication system was made and it was also

assumed that the vehicles’ pose was known a priori. A speed profile for each vehicle

crossing an intersection was proposed by Huang et al. [61] and applied in their integrated

microscopic traffic simulator. An integrated framework was used to develop a dynamic

hierarchical reservation-based ITM and to conduct studies of the environmental impacts

of its application. The ITM algorithm assigns different priorities to incoming reservation

requests. Results revealed significant mobility benefits, in terms of increased capacity to

handle traffic and reductions in fuel consumption, emission levels and travel time. The

communication layer used a basic protocol-less communications system to simulate V2I

wireless communications and the vehicles’ pose were considered to be known.

2.3 Vehicle Localization

This study presented in this section should not be viewed as a thorough study of positioning

techniques that have been recently proposed in the research literature, nevertheless it has
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a value of a survey for multi-sensor GNSS aided positioning, as it makes a description and

comparison of several algorithms.

Augmenting GNSS localization with other sensory information to improve the posi-

tioning accuracy, is common in the context of intelligent vehicles [62]. In [63], N.M. Drawil

developed a V2V communication assisted localization. This localization technique takes

advantage of the fact that GNSS receivers operating in close proximity and observing the

same constellation of satellites have strongly correlated errors. These errors are largely

canceled when a relative positioning system is taken into consideration. Both W. Li, et al.

[64] and M. Woo, et al. [65] used V2V, GNSS and the distance among vehicles given by a

vision and/or ranging sensor to compute a relative vehicle positioning, this method added

more robustness to relative positioning. Although relative vehicle positioning is sufficient

for platooning it is not enough to implement autonomous driving. GNSS accuracy can be

enhanced by using carrier phase measurements (RTK-GPS). G. Challitasing, et al. [66]

used V2V communications, RTK-GPS and a vehicle to vehicle ranging system (vision-

based ranging system) for absolute positioning. Although this configuration is more robust,

the RTK-GPS system employed is expensive and therefore not available for massive vehicle

distribution, additionally the robustness is supported by relative measurements.

An approach taken for outdoor absolute positioning was the use of magnetic sensors

and magnets (landmarks) buried along a path [62]. The California Partners for Advanced

Transit and Highways (PATH) used on-board sensing system acquiring both the vehicle’s

state and road reference system based on magnets [67]. However in order to achieve good

results the distance between magnets is required to be low, increasing the infrastructure

costs. Both [68] and [69] used lane marking to improve the pose estimation. A localization

method where the fusion of a mono-camera, a low-cost GNSS and a map data for intelligent

vehicle is presented in [68]. This method uses lateral spatial information provided by

a vision-based lane detection module and longitudinal and lateral spatial information

provided by a vision-based traffic sign detection module for high-accuracy localization. The

proposed method is economically feasible, does not need any change on the infrastructure

environment. The proposed method achieved centimeter-level localization accuracy. In

[69] a lane marking aided vehicle localization is presented. This paper proposes a solution

that uses a lane detection system to retrieve accurate lateral and orientation vehicle

information with respect to road lane markings, and then combine this information with

GNSS estimates and deadreckoning sensors in order to provide localization information

with high availability. A GNSS shaping filter combining random constant and first order

auto-regressive models was implemented. Results show that the filter modeling, is able to

fuse continuously GNSS fixes even if they are affected by large errors.

In [70] and [71], vehicles determine their positions in a collaborative way, by fusing their
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own sensor data with data shared by other users via a common communication network.

These papers present collaborative navigation algorithms to increase the accuracy of

vehicle positioning via the sensor information sharing through a V2V network. In [70] the

algorithm generates GNSS differential corrections from a set of GNSS equipped vehicles

by fusing GNSS measurements with a camera-based lane-boundary sensor. The results

show that it is possible to generate an error-free differential correction that estimates

the projection into the ground plane of the satellite-specific GNSS biases (ionosphere,

troposphere, satellite clock) experienced by all collaborators in a local area. The benefits

of the proposed method are more noticeable when the user density is high. In [71] an

algorithm for differential GNSS corrections with no stationary reference receiver is proposed.

The algorithm generates differential corrections using data from moving vehicles, thus

eliminating the need for an infrastructure of stationary receivers. This algorithm generates

individual differential corrections for each satellite, shared among vehicles with different

satellites in view. Results show that the measurements sharing, significantly improve

positioning accuracy in the crosstrack and in the along-track direction.

The knowledge of localization uncertainties is of prime importance when the navigation

of intelligent vehicles has to deal with safety issues. To quantify the localization confidence

V. Drevelle and P. Bonnifait [72] [73] developed several algorithms based on interval analysis

and constraint propagation. The developed algorithms can handle several hypotheses in

cases of ambiguous solutions simply by computing disconnected solution sets and are

able to compute location zones in which the user is guaranteed to be located. A set-

membership based satellite positioning aided by height data from a digital elevation

model (DEM) for high integrity was developed in [72]. The integrity zone is computed

recursively using a set-inversion method in a bounded-error context through set-bisection.

Results show that the additional altitude information enabled more precise positioning

while tolerating GNSS outliers, especially with a small number of visible satellites. In [73]

V. Drevelle and P. Bonnifait further evolved their previous algorithm into two stages. On

a first stage, tightly coupled position domains are computed by constraint propagation

on GNSS measurements and precise 3D maps of the drivable space. A second stage

provides localization integrity and information availability by the use of a position and

proprioceptive data history. Results show that the algorithm is able to handle erroneous

positions with a chosen integrity risk and in experiments carried out in urban canyons,

despite bad satellite visibility, full positioning availability is obtained, and errors are less

than 5.1 m during 95% of the trials. The measurements sharing, to improve positioning

accuracy in the crosstrack and in the along-track direction, while maintaining localization

integrity is still an open research area to be explored.
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2.4 Final Remarks

A review on ITS simulation was presented, focusing on three subcategories: vehicular road

traffic simulators; vehicle emission models and multi-purpose integrated simulators. The

study of vehicular road traffic simulators revealed a wide range of simulators available,

nevertheless all simulators lacked characteristics required for the mentioned thesis work

goals, namely being proprietary and lack of detailed sensors simulation. The vehicle emis-

sion models studied were accurate but most of them did not allow to add new custom

modules. The simulation of sensors and its noise characteristics as well as the actuators

and its performance, were available in robotic simulators, but these simulators lacked the

V2X communications.

The review of the state of the art regarding intelligent environment impact reduction

through traffic management focused on four topics:

• vehicle emissions reduction through traffic reduction and transportation hardware

improvements;

• vehicle emission reduction by traffic re-routing;

• vehicle emissions reduction through the vehicle speed control and traffic signal man-

agement;

• vehicle emissions reduction through the use of reservation-based intelligent traffic

management.

The findings of this study revealed that by means of the reservation-based algorithms

the emissions could be considerably reduced at a relative low cost. Another conclusion,

was that to implement the traffic management in cooperative driving scenarios, the pose

and speed of vehicles must be accurately determined.

Therefore a short study of the state of the art on vehicle localization, was performed,

and revealed that a single sensor cannot provide all information required for this type of

application, as these systems require not only accurate positioning but also the computation

of the integrity risk, guaranteeing a safety margin between vehicles, therefore the fusion

of multiple sensory information plays a key role in cooperative driving.
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The relevant material and methods pertaining to the thesis are presented in this

chapter.

3.1 Sensor Modelling

The recent technology developments bring to the ITS new and more powerful tools and

the latest advances in sensors miniaturization makes possible the integration of complex

technological systems in a vehicle discreetly. Sensor modeling is both important for simu-

lation as for experimental test, in this section the relevant simulated sensors are in detail

described and characterized.

3.1.1 Global Navigation Satellite System (GNSS) positioning

Global Navigation Satellite System began as a military project in the United States on

the 70’s. The Global Positioning System (GPS) is fully functional since 1978 and available

for civilian use since 1985. Today, several nations own this technology, namely Russia

with GLObal NAvigation Satellite System (GLONASS), China with BeiDou Satellite

Navigation System (BeiDou), while the European Galileo is expected to be fully functional

in 2020. The focus will be the GPS system without significant loss of generality to other

systems.

The GPS consists of three parts, or segments: the space segment, the control segment

and the user segment. The space segment consists of 32 satellites with solar power, orbiting

in six orbital planes at about 20000Km altitude. Each plane is inclined 55 degrees to the
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equatorial plane. This arrangement ensures visibility of at least four satellites at any

land point with appropriate weather conditions. The control segment consists of several

monitoring stations around the world and a central station, located in Colorado Springs.

They monitor the satellites, estimate their position (ephemerides), calibrate the atomic

clocks and make an update to the navigation information transmitted by the satellites.

The user segment comprises all receivers used to make signal acquisition from the satellites.

The GNSS positioning methods (namely GPS) is based on the estimation of the

distance between the receiver (rover) and the satellites (called pseudorange) through the

signal propagation time. The signal propagation time is obtained by correlation of the

received signal with a copy generated by the receiver. Knowing the distance from satellites

to rover and the position of these satellites (ephemerides) one can determine the position

of the receiver by trilateration.

The satellites transmit two main signals, the L1 carrier and L2 carrier. In order to

distinguish the different signals from the two satellites carriers are modulated by Pseudo-

Random Noise (PRN) sequences different for each satellite.

This modulation is divided in two binary sequences the coarse/acquisition (C/A)

code with a chipping rate of 1.023 MHz, and precision (P) code with a chipping rate of

10.23 MHz. The (C/A) code is part of a code family usually designated has golden codes,

characterized by having a low correlation among family members, making it particularly

useful to distinguish signals from different satellites. The L1 carrier phase at 1575.42 MHz,

is modulated by both C/A and P codes. L2 carrier phase at 1227.60 MHz is modulated

by P code. In addition to the golden codes, each carrier also transports the navigation

message (D), containing information regarding ephemerides (satellite position), system

status and GNSS satellite clock drift.

At the user segment, the receivers can be classified into two categories, those who

receive and decode the two carriers (L1 and L2), are extremely accurate but quite expensive

(thousands to tens of thousands of euros) and are mainly used in a professional context

or research. The ones that only decode the L1 carrier have a lower cost tens of euros to a

few hundred euros. The two carriers receivers can have an centimetric accuracy, while the

ones capable of receiving only one carrier have a lower accuracy, ranging from a meters to

tens of meters.

The satellite-receiver distance, from the satellite s to the receiver r, can be measured

using L1 carrier modulated by C/A binary sequence. This distance, designated by pseu-

dorange, can be obtained by using either the C/A code or the carrier phase.

Automotive positioning systems need high accuracy. Two distinct ways to achieve

the higher accuracy in real time using multi-antenna are, Differential GPS (DGPS) and

RTK-GPS. In DGPS, a fixed base station antenna, sends differential corrections and the
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rover receiver correct its position based on the received corrections. In RTK-GPS,a fixed

base station antenna, send their pseudoranges observations and the rover receiver performs

pseudoranges differentiation process using both their own observations and base station

antenna observations.

The GPSoft [74] software was used to emulate the GNSS system, namely the USA GPS

constellation [75]. The GPSoft Toolbox emulates not only satellites and receivers but also

the propagation channels. Error sources such as thermal noise, multipath, atmospheric

delays and Selective Availability are modeled as an integral part of the pseudorange and

integrated Doppler emulation. Furthermore, the errors are emulated such that the proper

temporal and spatial correlation effects are observed in the measurements. This allows for

realistic modeling of both code DGPS and carrier-phase RTK-GPS in addition to usual

stand-alone positioning algorithms. GPSoft also enables emulation of Galileo, GEOs, GPS

and GPS Modernization (C/A-code on L1, L2 and L5) as well as dual-frequency P-code

measurements. The user can emulate signals on additional carrier frequencies defined by

the user. The satellite constellation emulator supports GPS and Glonass as well as user-

defined constellations. In addition, YUMA-format broadcast almanacs can be used. The

emulation of C/A and P-code pseudorange and integrated Doppler with user definable

civil and military carrier frequencies is available including characteristics such as thermal

noise, ionospheric delay, tropospheric delay and diffuse multipath [74, 76].

Coordinate systems

In navigation, guidance, and control, there are several coordinate systems used in order

to ease both position computations as well as graphical interpretation. In this section it

is introduced the three major used coordinate systems for GNSS land vehicles position

estimation, the Earth Centered Inertial (ECI), the Earth Centered Earth Fixed (ECEF)

and the East North Up (ENU).

The vehicle coordinate system has its origin in the rear axle, the x axis (Roll) points

towards the front of the vehicle, the y axis (Pitch) points to the left of the vehicle while

the z axis (Yaw) point upwards. The ECI is the most used in land navigation, usually the

Inertial Measurement Unit (IMU), return speed and angular accelerations observations

using this coordinate system. The origin of this coordinate system is at the center of the

earth, the x axis is permanently fixed in a direction relative to the celestial sphere, the z

axis is aligned with the earth rotation axis and the y axis complete the system, according

to the right-hand rule.

The ECEF coordinate system is geocentric, z axis points North, the axis x coincides

with the intersection point of the prime meridian and the equator (latitude, longitude)

point (0,0) and the axis y complete the system, according to the right-hand rule.

Closely related to the ECEF system is the geodetic coordinate system defined by World
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Geodetic System (WGS) in 1984 (WGS84). The position is defined in terms of measured

latitude and longitude angles to a reference ellipsoid. The ellipsoid which rotates around

its minor axis is an approximation of the Earth’s geoid. Although ECEF or ECI global

coordinate systems provide correct positional description of any body in the terrestrial

sphere, local systems such as ENU are more intuitive and practical. The ENU system is

formed by a plane tangent to the Earth’s surface at a specific position with the axis x

pointing East and the the y axis pointing North.

GNSS error sources

There are several sources of error that may influence the performance of the position

estimation system, either intrinsic or caused by the surrounding environment. One of

the intrinsic sources of error, is the position of satellites on the sky dome, i.e. its spatial

geometry. The estimation of the distance receiver-satellite is imprecise, the effect of this

imprecision is magnified if the satellites are spatially close rather than spread on the sky

dome which affects the trilateration process. This effect is quantified and denominated

by Geometric Dilution of Precision (GDOP). GDOP quantifies the influence of satellite

geometry on the quality of the receiver position estimation. Each satellite broadcast

Ephemeris, the Ephemeris contain information about the position of satellites in space.

The uncertainties on the exact position of each satellite, is also a common source of

errors. Another intrinsic error is the clock errors of satellites, although very accurate small

variations (drift) means a large positioning error.

The pseudorange measurements are affected by different physical phenomena that

cause a delay in the propagation time of the signal. The signal propagation speed is

influenced by the propagation medium, as the medium is not empty, signals travel at lower

speeds than the speed of light, and suffers bias hard to model. The receiver independent

error sources are: the ionospheric Isr and tropospheric T sr biases along the signal path; the

satellite orbit estimation (or ephemeris) error Es and the satellite clock offset dts. Both

the level of ionisation of the ionosphere (which varies spatially and temporally) and the

density of the gas molecules and moisture in the air in the troposphere, cause delays in

the signal propagation. The receiver dependent error sources that affect the pseudorange

measurement are: the pseudorange measurement noise and the receiver clock offset dtr. I
s
r

is generated as the signal passes through the upper layer of the atmosphere. The gases

therein are ionized by solar radiation, resulting in a increase of the propagation time of the

signal. The error introduced can be up to 50 m for low elevation satellites. T sr is generated

as the signal passes through the lower layer of the atmosphere. This delay is mainly caused

water vapor, and it ranges from 2.5 m at the zenith to 15 m for low satellite elevations.

All other error sources, such as relativistic errors, multipath and thermal noise are lumped

in νsr .
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Attenuation and/or reflections caused by trees, buildings and terrain irregularities

(steep slopes near the receiver, mountains etc.) are also sources of errors, the reception of

reflections is termed as multipath. The effect of multipath can cause large errors, because

the receiver may be receiving a signal with a travel time higher. This effect, together with

the poor quality of signal reception, are the main problems that arise, when estimating

the position in urban areas, due to a high density of tall buildings.

Pseudorange code positioning: Iterative least squares GNSS Positioning

algorithm (IGP)

The pseudorange measurement based on the C/A code has typical errors on the meter

scale and it is obtained by the following: a PRN sequence modulated on the carrier, is

sent by all satellites, each with its own pattern; when the receiver receives the signal, it is

correlated with an internally generated replica and computes the time delay between the

received signal and the replica.

The signal travel time from satellite to rover (∆T sr (t)), observed at the time t is given

by [77]:

∆T sr (t) = tr(r) − ts(s) (3.1)

where tr(r) is the rover signal reception epoch, measured using the rover clock and ts(s)

is the satellite epoch of the transmitted signal, measured using the satellite clock. The

clocks are not perfectly synchronized with GNSS time reference tGPS, therefore one take

into account the transmission and reception epochs taking into account the each clock

offset :

tr(r) = tr + dtr(t) (3.2)

ts(s) = ts + dts(t) (3.3)

where dts and dtr are given by:

dts = t(s) − tGPS (3.4)

dtr = t(r) − tGPS (3.5)

Taking into account the offsets, the signal travel time equation (3.1) is given by:

∆T sr (t) = tr − ts + dtr(t)− dts(t) = τ sr (t) + dtr(t)− dts(t) (3.6)

where τ sr (t) is the real propagation time between satellite and rover. By multiplying
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∆T sr (t) with the speed of propagation of light in the vacuum (c) gives the satellite to rover

code observation equation [77], i.e. pseudorange:

P s
r (t) = c∆T sr (t) = cτ sr (t) + c(dtr(t)− dts(t)) (3.7)

Taking into account the GNSS error sources the code observation equation is given by:

P s
r (t) = ρsr(t) + c(dtr(t)− dts(t)) + T sr (t) + Isr (t) + Es(t) + νsr(t) (3.8)

Without loss of generality and for the sake of readability the time t is removed in the

following equations. The geometric range ρsr from receiver r to satellite s is given by:

ρsr =
√

(xs − xr)2 + (ys − yr)2 + (zs − zr)2 = ‖xs − xr‖ (3.9)

where x = (x, y, z). Converting the receiver clock offset to distance units (cor):

cor = c · dtr (3.10)

The satellite-specific GNSS errors sses; such as satellite clock offset, ephemeris, iono-

sphere and troposphere errors; are common to all receivers in a local area. These errors

are spatially correlated errors for a particular satellite and therefore can be grouped:

sses = c · (−ts) + Isr + T sr + Es (3.11)

and lumping sses and νsr errors:

vsr = sses + νsr (3.12)

from (3.9), (3.10) and (3.12) one gets:

P s
r = ‖xs − xr‖+ cor + vsr (3.13)

By iteratively applying the following steps one can compute the receiver position: first

use a priori estimate of state, then predict the pseudoranges you would get with that state.

Based on the difference between the actual and predicted pseudorange measurements,

update the a priori state. Linearizing the pseudorange observations P s
r , using the first

order Taylor expansion, one get the following:
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P sr (xr, yr, zr, cor) ∼= P sr (xr0, yr0, zr0, cor0) + (xr − xr0) δP
s
r

δxr
+ (yr − yr0) δP

s
r

δyr
+ (zr − zr0) δP

s
r

δzr

+(cor − cor0) δP
s
r

δcor

⇔
P sr (xr, yr, zr, cor)− P sr (xr0, yr0, zr0, cor0) = δP sr

δxr
∆xr + δP sr

δyr
∆yr + δP sr

δzr
∆zr + δP sr

δcor
∆cor

(3.14)

and converting into an iterative notation:

∆P s
r = P s

r (k + 1)− P s
r (k) = δP sr

δxr
∆xr + δP sr

δyr
∆yr + δP sr

δzr
∆zr + δP sr

δcor
∆cor + vsr (3.15)

where k denotes the iterations processed in the current epoch until the solution converges.

Rewriting (3.15) in the matrix form:


∆P 1

r
...

∆Pm
r

 =


δP 1
r

δxr

δP 1
r

δyr

δP 1
r

δzr

δP 1
r

δcor
...

...
...

...
δPmr
δxr

δPmr
δyr

δPmr
δzr

δPmr
δcor




∆xr

∆yr

∆zr

∆cor

+


v1
r
...

vmr

 (3.16)

from (3.16) one can write the equation for a single satellite f , the pseudorange residual

is given by:

∆P f
r = −efr ·∆xr + ∆cor + vfr (3.17)

where efr is the pointing vector from the user r to satellite f .

∆efr =
[

(xs−xr)
‖xs−xr‖

(ys−yr)
‖xs−xr‖

(zs−zr)
‖xs−xr‖

]
(3.18)

If the receivers are assumed to be in close proximity, the pointing vector is the same for

all users and efr can be substituted by ef . Equation (3.18) can be written in the following

form:

∆Pr = H

[
∆xr

∆cor

]
+ vsr (3.19)

where H is the observation matrix :
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H =


−e1 1

...
...

−em 1

 (3.20)

and ∆Pr it is given by:

∆Pr =
[
∆P 1

r . . . ∆Pm
r

]T
(3.21)

Using a single epoch, the receiver positioning can only be achieved if we have at least

four observations (i.e. receiving signals from at least four satellites), due to the presence

of 4 unknowns (xr, yr, zr and cor). Solving equation (3.19) using common least squares,

one obtains:

[
∆x̂r

∆ĉor

]
= (HTH)−1HT∆Pr (3.22)

Thus by using satellite positions and measured pseudoranges one can compute an

estimate for both the receiver position x̂r and the receiver clock offset ĉor, via Iterative

Least Squares GNSS positioning (IGP) method [75].

The iterative least squares solution [x̂r, ĉor]
T can now be used to estimate the mea-

surements P̂r:

P̂r = H

[
x̂r

ĉor

]
(3.23)

Using the measurements and their estimate it is possible to compute residuals vector

Wres:

Wres = Pr − P̂r (3.24)

Pseudorange phase positioning

Pseudorange phase positioning is similar to the code positioning but in this case the

carrier offset is used to compute the pseudorange. The phase observations compare the

received signal with a replica generated in the receiver and the carrier offset is computed.

The observation equation is defined in (3.25) where Φs
r(t) is the measured phase shift
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(offset), Φr(t) is the replica generated in the receiver and Φr(
s
r)(t) is the phase signal sent

by the satellite s received by receiver r at time t [77].

Φs
r(t) = Φr(t)− Φr(

s
r)(t) (3.25)

Assuming that there is no phase change over the signal route from sattelite to rover,

then 3.25 can be rewritten:

Φr(
s
r)(t) = Φs(t− τ sr ) (3.26)

where τ sr is the signal propagation time. Equation 3.26 can be written as an expansion

in Taylor series of the first order:

Φs(t− τ sr ) = Φs(t)− dΦs

dt
τ sr = Φs(t)− fτ sr +N s

r (t) (3.27)

where f = dΦ
dt

is the frequency of a stable oscillator, and N s
r (t) is the integer carrier

phase cycle ambiguity between satellite s and receiver r, which cannot be directly observed.

Using equations 3.26 and 3.27 equation 3.25 can be rewritten as follows:

Φs
r(t) = Φr(t)− Φs(t) + fτ sr −N s

r (t) (3.28)

Similar to the code observations, both rover and satellite clocks have offsets, and are

not perfectly in phase with the phase of an ideal oscillator synchronized with the GNSS

time reference ΦGPS:

Φr(t) = ΦGPS(t) + fdtr(t) (3.29)

Φs(t) = ΦGPS(t) + fdts(t) (3.30)

Taking into account the phase clock offsets, equation 3.28 is rewritten as follows:

Φs
r(t) = fτ sr + f(dtr(t)− dts(t))−N s

r (t) (3.31)

Taking into account the GNSS error sources the phase observation, and given that

f = c
λ
, the equation of the carrier phase pseudoranges is given by:

λΦs
r(t) = ρsr(t) + c(dtr(t)− dts(t))− Isr (t) + T sr (t) + Es

r(t)− λN s
r (t) + ηsr(t) (3.32)

where ηsr is the phase measurement noise. Compared to the solution of the code pseudor-
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anges, the carrier phase pseudoranges, given by equation 3.32, adds one unknown variable

per satellite N s
r (t). This initial phase ambiguity has to be estimated for each satellite, and

therefore it is necessary to increase the number of observation epochs to solve the system

and to obtain the coordinates of the rover r.

The carrier phase pseudoranges errors are centimetric, which are significantly lower than

the code pseudoranges, therefore carrier phase pseudoranges positioning should produce

better estimation position results. On the other hand, it needs better quality receivers

(antennas, oscillators, etc.), additionally the solution to the carrier phase pseudoranges,

given by equation (3.32), requires highly complex and heavy computing algorithms to solve

the integer ambiguities N s
r , meaning that low-cost devices only provide code observations

as the positioning method.

Single differencing positioning

As mentioned previously, pseudoranges observations are affected by a variety of errors,

some of them can be reduced or totally removed by applying the relative positioning

between two receivers.

Single differentiation is the simplest method of differentiation, it involves only two

receivers observing simultaneously the same satellite. This method can be applied for both

code and carrier phase pseudoranges [77].

Considering two receivers ri and m, where i is the number of rovers (without loss of

generality i is considered to be i = 1) and m a reference station antenna, observing the

same satellite s at the time t, then the single differentiation equation for code observations

is given by equation (3.33):

P s
r (t) = P s

ri
(t)− P s

m(t)

= ρsrim(t) + c(dtri(t)− dtm(t)) + Isrim(t) + T srim(t) + νrim(t)
(3.33)

The single differentiation equation for phase observations is similar and given by (3.34):

λΦs
ri

(t) = λΦs
ri

(t)− λΦs
m(t)

= ρsrim(t) + c(dtri(t)− dtm(t)) + Isrim(t) + T srim(t)

+ λN s
rim

(t) + ηsrim(t)

(3.34)

The satellite clock bias (dts(t)) is eliminated by using single differentiation, nevertheless

both receiver clock biases (dtri(t) and dtm(t)) are still present.

The components of the troposphere and ionosphere errors are common to both both

code and carrier phase single differentiation observations:
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Isrim(t) = Isri(t)− I
s
m(t) (3.35)

T srim(t) = T sri(t)− T
s
m(t) (3.36)

If the receivers are spatially close, so that the atmospheric conditions in the two

receivers are the same, then the contribution of Isrim(t) and T srim(t) to the observation

tend to be very small, or even zero. This is another advantage of single differentiation,

errors of ionospheric and troposphere propagation are mitigated when the two receivers

are spatially close, meaning that both ionospheric and tropospheric atmospheric noises

are negligible.

Double differencing positioning

When using single differenced observation equations for two receivers ri (i = 1) (rover)

and m (master), if it is possible to observe an additional satellite p besides the satellite

s, then a double differentiation method can be applied to the observations, i.e. when

two receivers ri (i = 1) and m observe two satellites s and p at the same time t, the

observation equation can be differentiated again [77]. This procedure so called double

differencing can be applied for both single differenced pseudorange code (3.37) and single

differenced pseudorange carrier phase (3.38) :

P ps
rim

(t) = P p
rim

(t)− P s
rim

(t)

= ρpsrim(t) + Ipsrim(t) + T psrim(t) + νpsrim(t)
(3.37)

λΦps
rim

(t) = λΦp
rim

(t)− λΦs
rim

(t)

= ρpsrim(t) + Ipsrim(t) + T psrim(t)

+ λNp
rim
s(t) + ηpsrim(t)

(3.38)

Assuming that the observations are from the same epoch and that clock drifts between

epoch is small, the double differentiation eliminates receiver clock errors.

According to equations (3.37) and (3.38) the double differentiation process, eliminates

all clocks related errors (receivers and satellites), being sensible to measurement noise

and propagation errors modeled by Ipsrim(t) and T psrim(t). As in single differentiation, the

unmodeled atmospheric errors of both ionosphere and troposphere, are greatly reduced.

By reducing or eliminating a large part of of the typical GNSS, the double differentiation

technique delivers a very accurate positioning solution.
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3.1.2 Magnetic Sensing System setup and model (MSS)

The MSS is composed by Hall sensors that are triggered when they cross over magnetic

markers, which are placed in the ground defining center points of the path to be followed

by the vehicles, and by Hall effect sensors mounted on the vehicle, sensing the magnetic

field of the magnetic markers.

The MSS was used in both simulations and in real experiments.

Regarding the real setup, the Hall effect sensors are placed in line adjacently creating

a sensor ruler, as shown in Figure 3.1(a). Each ruler is composed by sub-modules, each

one with a microcontroller that acquires data from a set of Hall effect sensors. All the

information from the microcontroller sub-modules is conveyed to a local microcontroller

that computes the lateral deviation relatively to the center of the magnetic marker. All the

connections among the microcontrollers as well as the communication to the vehicle host

computer is done using Controller Area Network Bus (CAN-BUS). Each all effect sensor

is sampled at rate of 1.3 KHz. Figure 3.1(b) illustrates the response of a set of Hall effect

sensors having no magnetic marker in the sensed field. As can be observed there is an

offset, which is different for each sensor. Figure 3.1(c) shows the sensed vertical magnetic

component with the sensor, in different locations, relatively to the cylindric marker; the

sensor was positioned along the vertical axis of the center point and moved towards out

the center. In Figure 3.1(c) it is shown four scans at different heights.

The environment of an autonomous car has several sources of magnetic noise namely:

earth magnetic field, vehicle power transmission lines, and electrical fields inherent to the

vehicle. These sources influences the magnetic measurements. This undesirable effect is

reduced by estimating and eliminating the offsets that characterize each sensor.

For the detection of the marker (i.e. its position) it is used the knowledge of the

sensor response model (see Figure 3.2(a) and Figure 3.2(b)). When a marker detection is

validated, after data processing and test procedures, this information is sent via CAN-BUS

to the computer in charge of the control of the vehicle.

Position measurement using magnetic markers has been proven to be one promising

technology for ground vehicle autonomous guidance and control. No physical contact is

needed to produce measures, the magnetic markers reliability is independent of weather

conditions, and maintenance requirements are low since the system uses passive rather

than active markers.

This motivated the development of a position reference system based on magnetic markers.

However there are some disadvantages too, magnetic sensors also measure the magnetic

fields from the earth, the vehicle, and possibly from other sources, which combined define

an undesirable magnetic field.
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Figure 3.1: Magnetic Sensing System (MSS): (a) Diagram of the position measurement system
using magnet markers. (b)[Real] Hall effect sensors responses (x-axis - sample number, y-axis -
sensed data in [mT]); (c) [Real] Vertical component of Magnetic Field at different heights (x-axis
- distance relatively to the cylindric marker in [cm], y-axis - sensed data in [mT]).

Getting a representative model of the magnetic marker behavior, is important for the

design of a reliable processing algorithm. The researchers from PATH have chosen to

model the magnetic marker as a magnetic dipole [78]. This is a very simple representation

and easily understandable. The PATH researchers had proved that exist a strong correla-

tion between the model predictions and the empirical tests. With a good model we can

distinguish noise disturbance from the magnetic field radiated from the magnetic marker.

In real environments the detection of the magnets doesn’t return the exact center of

the magnet, but rather a coordinate close to its z-axis center, so in order to have measures

similar to the real experiments a representative model of the magnetic field radiated by

the magnetic marker was simulated.

Under the assumption that a magnetic marker can be modeled like a magnetic dipole,

the magnetic field, B(x, y, z), at an arbitrary point P (x, y, z), can be given by1:

B =
µ0M

4πr5
(3xzî+ 3yzĵ + (2z2 − x2 − y2)k̂) (3.39)

with: r =
√
x2 + y2 + z2

where M is the magnetic moment of the magnetic marker, and the coordinate system is

chosen with x-axis (̂i) being the longitudinal axis that corresponds to the the direction of

vehicle travel, y-axis (ĵ) being the transversal axle that corresponds to the lateral deviation,

and z-axis (k̂) that corresponds to the height relative to the marker center (as illustrated

in Figure 3.1(b)).

Figure 3.2(a) shows real data of a field emanated from a cylindrical magnet and sensed

1In cgs units. Conversion factor: T = 104G
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(a) (b)

(c) (d)

Figure 3.2: Magnetic marker model: [Real] (a) Vertical component of the magnetic field emanated
by a cylindrical magnet sensed by a Hall effect transducer at the height of 10cm ; [Simulated]
(b) Vertical (c) Longitudinal and (d) Lateral component of the magnetic field (x-axis and y-axis
in [cm] and z-axis in [mT], with sensor at height of 6.75cm).

by a Hall effect transducer aligned with the z-axis at the height of 10cm (detection range

up to 25cm). From the analysis of the vertical field component illustrated in Figure 3.2(b),

computed using equation (3.39) it is possible to observe that the vertical field reaches

the maximum when the sensor is exactly above of the magnetic marker center, this is the

strongest component of the magnetic field. There is a strong correlation between the model

predictions (equation 3.39) and the empirical tests as it can be observed when compared

Figure 3.2(a) and Figure 3.2(b).

The longitudinal and lateral components makes a steep transition near the marker as

it changes its sign, this could be meaningful in interpreting the point at which a sensor

passes through the marker (see Figure 3.2(c) and Figure 3.2(d)).
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3.1.3 Laser Range-bearing

A laser range-bearing, also known as LIDAR, is a device used to scan the distances of

surrounding objects. The most common techniques employed by this type of devices

are the ’time of fly’ (where the distance is obtained by measuring the time of travel

of a light pulse) or the ’phase-shift’ (technique applied to a laser beam with sinusoidal

modulated optical power to determine the distance). The matlab high-level programming

environment caused serious restrictions (large processing times) on the LIDAR simulation,

making impracticable to simulate large maps with centimetric resolution. Therefore the

LIDAR module was implemented in C++ language embedded in matlab environment.

To simulate the LIDAR, the entire map as divided in cells, with configurable granularity.

For increased performance, the entire LIDAR simulation operation is performed at once

for all simulated vehicles. The simulation of the each laser beam is based on a computer

graphics algorithm denominated Bresenham’s line algorithm (see algorithm 1) [79]. This

algorithm is used to color pixels in order to draw a line independently of pixel granularity,

and represent a good solution to follow a line segment in a map divided in cells.

Figure 3.3: Operation of LIDAR
module with neighbour vehicle de-
tected.

Require: x0, y0, x1, y1

Calculate difference in X-axis and Y-axis

Decide main axis and secondary axis

Set increment/decrement for both axis

while The point (x1, y1) is not reached do

Calculate axis difference

if Nearest pixel is on next secondary increment then

Increment secondary axis

end if

Increment main axis

Analyze pixel defined for (x, y)

end while

Algorithm 1: Bresenham’s line algorithm generaliza-
tion to all quadrants to analyze cells that color a line
segment defined for (x0, y0) (x1, y1)

When the algorithm finds a occupied cell (see Figure 3.3) a collision is detected and

the distance between LIDAR origin and the collision place is calculated and stored. If no

collision is detected the distance assigned to the beam is the maximum range of LIDAR.

The group of distances measured by the LIDAR forms the output of the module. An

important feature of this module, beyond configurable map granularity, is the possibility

to adjust some LIDAR features such as: Maximum range, scan angle, angular resolution
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and scan rate.

3.2 Kinematics and Odometry Vehicle Modelling of

Double Steered Vehicles

The configuration of a car-like vehicle can be described without ambiguity by (x, y, θ) (see

Figure 3.4):

• x and y are the coordinates of the rear axle center with respect to the WΣ coordinates

• θ is the vehicle heading with respect to the WΣ coordinates

The vehicle kinematic equations are derived according to pure rolling, non-slipping

and rigid body assumptions. Therefore a linear velocity vector and instantaneous rotation

center exists at the reference frame located at the midpoint of the rear axle RΣ and the

velocity is directed along the vehicle axle. Kinematics models have the property of keeping

the steering and velocity of the vehicle completely decoupled, making the kinematics based

control design easier.

Table 3.1: Vehicle Model Geometric Parameters

L car length (distance between axles) e half-track (half car width)

ΨR steering angle from the front right wheel ΨL steering angle from the front left wheel

Ψ steering angle of the virtual front wheel F = (xF ; yF )coordinate system of the front axle center

VF instantaneous speed at the front axle centerDF radius curvature from virtual front wheel

DFL radius curvature from front left wheel DFR radius curvature from front right wheel

χR steering angle from the rear right wheel χL steering angle from the rear left wheel

χ steering angle of the virtual rear wheel R = (xR; yR)coordinate system of the rear axle center

VR instantaneous speed at the rear axle center DR radius curvature from virtual rear wheel

DRL radius curvature from rear left wheel DRR radius curvature from rear right wheel

ICCV
orthogonal projection of the ICC onto ICC instantaneous curvature center

the longitudinal axis of the vehicle ρ Length between ICC and ICCV

The simulated vehicles include Two Wheel Steering (2WS) and Four Wheel Steering

(4WS), the later has the ability to steer both the rear and the front pair of wheels [80].

In this section it is presented double steered model , the front steered model is described

in the Appendix B. The classical model was used, which considers an imaginary wheel

at the midpoint of the wheels axles, so that it is oriented in the direction of the steering

command. The vehicle geometrical configuration parameters are illustrated in Figure 3.4

and summarized in Table 3.1.



3.2. Kinematics and Odometry Vehicle Modelling of Double Steered Vehicles 43

3.2.1 Kinematics model

To deduce the kinematics equation of the double steered model, let us consider a point

ICCV which is defined as the orthogonal projection of the instantaneous curvature center

(ICC) onto the longitudinal axis of the vehicle, see Figure 3.4 [81].

The distance between ICC and ICCV can also be written in the following form,

(ICC)(ICCV ) =
(R)(ICCV )

tan(χ)
=

(ICCV )(F )

tan(Ψ)
(3.40)

form (3.40) one can derive

(R)(ICCV ) = (ICCV )(F ) · tan(χ)

tan(Ψ)
(3.41)

where

(R)(ICCV ) + (ICCV )(F ) = L (3.42)

now one can obtain (R)(ICCV ) and (ICCV )(F ) function of Ψ, χ and L, (R)(ICCV ) = L

1+
tan(Ψ)
tan(χ)

= L · cos(Ψ)·sin(χ)
sin(Ψ+χ)

(ICCV )(F ) = L

1+
tan(χ)
tan(Ψ)

= L · cos(χ)·sin(Ψ)
sin(Ψ+χ)

(3.43)

where the curvature radius DR and DF are given by the following equation,{
DR = (R)(ICCV )

| sin(χ)| = L · cos(Ψ)
| sin(Ψ+χ)|

DF = (ICCV )(F )
| sin(Ψ)| = L · cos(χ)

| sin(Ψ+χ)|

(3.44)

The instantaneous rotation speed can be written as follows,

θ̇ =
VR
DR

=
VF
DF

(3.45)

From equations (3.44) and (3.45), one can derive the following equation,

VR = VF ·
DR

DF

= VF ·
cos(Ψ)

cos(χ)
(3.46)

therefore the equations of movement for the rear axle and front axle are given by

equations (3.47) and (3.48) respectively.
ẋR = VR · cos(θ + χ)

ẏR = VR · sin(θ + χ)

θ̇ = VR · sin(Ψ+χ)
L·cos(Ψ)

(3.47)


ẋF = VF · cos(θ + Ψ)

ẏF = VF · sin(θ + Ψ)

θ̇ = VF · sin(Ψ+χ)
L·cos(χ)

(3.48)
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one can also express the equations of movement of the rear axle function of the front

instantaneous velocity VF and the front axle function of the rear instantaneous velocity

VR; equations (3.49) and (3.50) respectively.


ẋR = VF · cos(Ψ)

cos(χ)
· cos(θ + χ)

ẏR = VF · cos(Ψ)
cos(χ)

· sin(θ + χ)

θ̇ = VF · sin(Ψ+χ)
L·cos(χ)

(3.49)


ẋF = VR · cos(χ)

cos(Ψ)
· cos(θ + Ψ)

ẏF = VR · cos(χ)
cos(Ψ)

· sin(θ + Ψ)

θ̇ = VR · sin(Ψ+χ)
L·cos(Ψ)

(3.50)

note that if χ = 0 we have the equation obtained in section (B). Then the kinematic

model of the vehicle, assuming wheels rolling without slipping, for a reference frame located

at point ICCV , is given in the matrix form by the following equations:


ẋ

ẏ

θ̇

Ψ̇

χ̇

 =


cos(θ + χ)

sin(θ + χ)
sin(Ψ+χ)
L cos(χ)

0

0

 v1 +


0

0

0

1

0

 v2 +


0

0

0

0

1

 v3 (3.51)

Where v1 represents the linear velocity of the vehicle, v2 is the angular velocity of the

front steering wheel, v3 is the angular velocity of the rear steering wheel, L is the distance

between the rear and front axles, χ is the rear steering angle, Ψ is the front steering angle

and θ is the vehicle orientation in the world coordinate system.

3.2.2 Odometry model

A good odometry model for the bi-steerable vehicle is defined by the following equation

[82], given that a local circular trajectory assumption was made [81]:


xk+1 = xk + ∆R · cos(θk + χk + ωR/2)

yk+1 = yk + ∆R · sin(θk + χk + ωR/2)

θk+1 = θk + ωR

(3.52)

where ∆R is the arc length and ωR the elementary rotation. Assuming that there is no

wheel slippage and using only data from the rear wheels encoders and rear steering encoder,

then

∆R = ∆RR+∆RL

2
, ωR = ∆RR−∆RL

2·e·cos(χ)
(3.53)

where e is the half distance between wheels, and ∆RR and ∆RL are calculated using the

right and left wheel encoders measurements, respectively.
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Figure 3.4: Double steered Vehicle geometrical configuration. WΣ and RΣ represent respectively
the world coordinate system and the vehicle local coordinate system with its origin at the
midpoint of the rear axle and its x-axis aligned with the longitudinal axis of the vehicle

3.2.3 Odometry disturbances

One of the most common methods used to estimate a vehicle pose (position and orientation)

is odometry, and therefore its inclusion in simulations is paramount. This method uses

encoders, coupled to vehicles wheels, to measure the wheel displacement and the measures

are integrated to determinate an estimated pose. Odometry is prone to error, therefore to

emulate disturbances more realistically, is it necessary to integrate systematic and non-

systematic errors. The displacement of a wheel i, ∆Si ∈ [∆RR,∆RL,∆FR,∆FL] is given

by:

∆Si =
2π ×Ri ×Ni

Nrev

[Meters] (3.54)

where Ri is the wheel radius, Ni the measured pulses and Nrev are the pulses per

revolution. The measured pulses are simulated by:

Ni = ∆Wi
Nrev

2π
[Pulses] (3.55)

where ∆Wi is the angular displacement of a wheel i.

Several disturbances where considered on the simulations related with odometry. To
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each simulated wheel, an independent variance Gaussian noise was added to the its radius

and to the encoders besides the quantization error, an integer Gaussian noise was added.

The simulated steering wheel encoder also suffer from quantization error and an integer

Gaussian noise was added. Gaussian noise was added to the lock to lock front wheel steering

angle variable. The odometry was also contaminated with two independent Gaussian noise

on the wheel to wheel distance 2e and on the front to rear axle distance L.

To add more realism to the simulator, it is possible to insert slippy areas on roads. In

these areas the vehicles wheels will slip, and when this occurs, the generated pulses for

the wheel that slips will be above the expected values with noise.

3.3 Interval analysis and Set inversion

Interval analysis [83] involves intervals and their multidimensional extension, interval

vectors (or boxes). A box is a subset of Rn defined as the cartesian product of n intervals

[x]. The set of real intervals is denoted IR, and the set of n-dimensional boxes is IRn Let

f : Rn → Rm be a given function, the interval function [f]: IRn → IRm is an inclusion

function for f if:

∀[x] ∈ IRn, f([x]) ⊂ [f]([x]) (3.56)

To approximate compact sets in a guaranteed way, subpavings are used. A subpaving

of a box [x] is the union of nonempty and non-overlapping subboxes of [x]. A guaranteed

approximation of a compact setX can be made by bracketing it between an inner subpaving

X and an outer subpaving X such as X ⊂ X ⊂ X (see Figure 3.5).

X

X

X
Figure 3.5: Compact set X: bracketed between an inner subpaving X and an outer subpaving
X, where X is given by X = X+ ∆X.
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3.3.1 Set inversion

Given a known interval vector Y of m measurements, the set inversion problem consists

in determining the set X such that f(X) = Y, where Y ⊂ Rm. The inverse evaluation

problem is the characterized by:

X = f−1(X) = {x ∈ Rn|∃y ∈ Y, f(x) = y} (3.57)

Given a arbitrarily large supersetX0 where the solution set is known to belong an outer

approximation X can be computed using the Set Inversion Via Interval Analysis (SIVIA)

algorithm [84] . Feasible boxes are added to the inner subpaving X of solutions, a box [x]

is feasible if [f]([x]) ⊂ Y. Unfeasible boxes are discarded, since they contain no solution, a

box [x] is unfeasible if [f]([x])∩Y = ∅. Indeterminate boxes are bisected into two subboxes

waiting to be examined, a box [x] is indeterminate if [f]([x]) intersects but is not included

in Y. Algorithm termination is ensured by adding indeterminate boxes whose width is less

than ε to the subpaving ∆X of indeterminate boxes. Since we are seeking to characterize

the positioning confidence domain, we only need to compute the outer subpaving X of

the set that fulfills positioning constraints. Thus the outer subpaving is X = X+ ∆X (see

Figure 3.5).

3.3.2 Measurement error bounds

In bounded-error models the integrity risk of the solution set not to include the ground truth

is taken when the measurement bounds are chosen [72][73]. Let r be the risk associated

with each pseudorange measurement:

r = Pr(ρsr /∈ [ρsr]), i ∈ 1 · · ·m (3.58)

The probability of having exactly i good pseudoranges out of m is given by a binomial

distribution:

Pr(Nok = i) =
m!

i!(m− i)!
· (1− r)i · (r)m−i (3.59)

where Nok is the number of pseudorange intervals that are consistent with the truth,

and q is the number of the faulty measurements tolerated. Using (3.59) the probability of

having at least m− q good measurements is obtained:

Pr(Nok ≥ m− q) =
m∑

i=m−q

m!

i!(m− i)!
· (1− r)i · (r)m−i (3.60)
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If there are no spurious pseudoranges q = 0 the SIVIA algorithm can compute an outer

approximation X of the solution set X which is guaranteed to be consistent with the true

position x. The maximum risk r that can be assumed on each pseudorange interval, for a

global risk R, is given by:

Pr(x ∈ X) ≥ Pr(Nok ≥ m− q)
Pr(x /∈ X) ≤ 1− Pr(Nok ≥ m− q)

R ≤ 1−
∑m

i=m−q
m!

i!(m−i)! · (1− r)
i · (r)m−i

(3.61)

Once the maximum risk r of each measurement interval, to not contain the actual

value is computed, the measurement error bounds can be set to meet this requirement. A

centered Gaussian distribution with a variance σ2, is used as an error measurement model

for GNSS positioning, to set the error bounds on each pseudorange measurement:{
[ρsr] = [ρsr − ασ, ρsr + ασ]

α = −Φ−1( r
2
)

(3.62)

where Φ is the cumulative distribution function of the standard normal distribution. Using

this method leads to the same amount of risk taken on each tail of the Gaussian distribution.
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4.1 Simulator architecture

By definition, a Multi-Agent System (MAS) is composed by a group of individual agents

that can interact with surrounding environment and between them [85]. The traffic motion

inside of a city can be defined as a multiagent system because the vehicles are individual

entities that interact with surround environment, and the traffic flow is a result of a large

group of interactions and behaviors based on driver’s perception, traffic laws and signaling

systems. This approach to the problem brings a new paradigm to conceptualize, design

and implement a traffic simulator, in this particular case, the MAS approach was the

adopted solution. To achieve a complete simulator with the level of detail required, aspects

like drivers field of view, drivers behavior, different type of vehicles and others must be

considered to reach more accurate realistic simulator.

The ISR-TRAFSIM is composed by a group of modules, were each module is responsible

for a self contained specific task. This modular type of architecture enables the inclusion

of future functionalities in the simulator. The ISR-TRAFSIM was developed with broad

set of modules, several complex systems are simulated, including GNSS and MSS. The

V2V and V2I was also simulated to obtain a more realistic simulation. The simulator’s

traffic flow has two operation modes, the first mode operates without ITM, where drivers,

respecting traffic laws and interacting with surrounding vehicles, follow their own will,



50 Chapter 4. Simulator Framework

VEHICLE AGENT: N

AGENT ENVIRONMENT 
SETTINGS

- Driver type;
- Vehicle type:
- Origin road;
- Destination road;

Multi Target
Detection and 

Tracking System

VEHICLE AGENT: 1

INFRASTRUCTURE AGENT
SENSORS

- GNSS;
- road pressure 
sensors;
- Intelligent computer 
vision system;

MAGNETS
- True magnets 
positions;

ROUNDABOUT 
MANAGEMENT

- Spatial-temporal cells 
map occupation;
- Velocity profile 
generation;
- Collision free path 
generation;

CROSS-ROADS
MANAGEMENT

- Spatial-temporal cells 
map occupation;
- Velocity profile 
generation;
- Collision free path 
generation;
- Turning direction 
vehicles’ intention 
detection;
- Fixed time alternate 
traffic lights control;
- Intelligent time 
alternate traffic lights 
control;

...

V2V / V2I
COMMUNICATIONS

802.11x mode 
Simulation

Simple mode 
simulation

SENSORS
- Wheel encoders;
- Magnetic Sensors
- GNSS
- Laser scanner

VEHICLE KINEMATICS
- Lock to lock steering 
wheel angle;
- Minimum turning radius;
- Wheel radius;
- Axle track
- Wheelbase

VEHICLE DYNAMICS
- Max. acceleration;
- Max. braking;
- Jerk Control; 
- Max. steering velocity;

SHARED DATABASE
- Vehicles pose;
- Vehicles path;
- Vehicles’ velocity 
profile;
- Vehicle type;
- Driver type;

Path Following 
Controller

External 
disturbances

Vehicle’s Pose 
Estimator

DRIVER
- Drivers range 
awareness;
- Collision prediction 
and detection;
- Velocity tracking 
stochastic error;
- Driver right of way 
priority detection in 
roundabout; 
- Driver right of way 
detection in 
trafficlights; 

Figure 4.1: Simulator architecture. Composed by three main modules: vehicle agents, infrastruc-
ture agent and V2V/V2I communications module.

and the second mode where each (RI and CI) individual intersection ITM or both in

a cooperative manner, generate speed profiles along predefined paths which are to be

followed by the vehicles.

The architecture of the ISR-TRAFSIM is shown in Figure 4.1. The ISR-TRAFSIM

is composed by three main subsystems, designated by Infrastucture Agent, V2I/V2V

Communications and Vehicle Agents.

Infrastructure Agent

The Infrastructure Agent is responsible for the selection of which algorithm is managing

the traffic at each intersection. If an ITM algorithm is chosen, the speed profile and

navigation directions of each vehicle are computed (see section 5.1.1) and sent by the

Infrastructure Agent to the Vehicle Agents. The vehicles’ pose, obtained using a Vehicle

Pose Estimator (VPE) module (see chapter 6), are updated on a spatio-temporal matrix,

according to the routes and speeds profile computed by the selected management algorithm.

Accurate driving cycles with acceleration and deceleration rates are important input

values for the estimation of emissions and fuel consumption, as well as for traffic man-

agement, therefore these are sent to Infrastructure Agent through the communications

module. Each intersection runs its own traffic management algorithm independently, and

therefore the performance can be evaluated separately.

Vehicle Agents

The Vehicle Agents use the infrastructure road network and origin-destination road to

determine its route. The vehicle real speed and acceleration are used by the Environment
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Impact module in every simulation cycle for the computation of the fuel consumption and

CO2 emissions. The emissions are computed using the thermal engine model described in

section 5.2. Accurate driving cycles with acceleration and deceleration rates, cruising rates

are important input values to estimate emissions and fuel consumption and for the traffic

management, therefore these are sent to Infrastucture Agent trough the simulated wireless

V2I CS. The vehicles’ pose is estimated using a VPE module (described in chapter 6),

i.e. by fusing the information gathered by several simulated sources, namely GNSS and

odometry . The simulated GNSS pseudoranges are affected by simulated sources of noise,

namely: ionospheric delay, tropospheric delay, multipath error and thermal noise. Vehicles

crossing the simulated intersections may be:

• autonomous vehicles;

• human driven vehicles;

• vehicles equipped V2X communications;

• vehicles not equipped or with faulty V2X communications.

When a new vehicle’s agent is inserted into the simulation environment, several general

characteristics defining the vehicle/driver are selected according to a predefined distribu-

tion.

Agent environment settings : The vehicle may differ in its dimensions whether it is

defined as a car or a truck. The type of vehicle driver will enable a minor or greater

acceleration variance whether it is defined has a calm or aggressive driver.

Vehicle kinematics : By default, each vehicle movement is simulated using the Ackerman

steering kinematic model (2WS), its pose is updated every sampling time. In order to

increase the stability and response of the vehicles at high speeds, automotive manufacturers

are increasingly integrating 4WS technology in their vehicles. Due to this tendency the

vehicle agent typology can be 2WS or 4WS. The kinematics variables, such as lock to lock

steering wheel angle, minimum turning radius, wheel radius, axle track and wheelbase,

are fully customized. They were adjusted for a typical hatchback European car and for a

European light truck or minivan.

Vehicle dynamics : The vehicle dynamics constraints define the maximum acceleration,

maximum deceleration and maximum steering velocity for each type of vehicle and driver.

An additional constraint on the jerk variation was inserted enabling a comfortable vehicle

ride (see section A). The vehicle’s speed is derived from the vehicle environment and from

traffic laws. When on straight lanes, if the sensors detects a car in front, the reference

speed will be taken from the Intelligent Driver Model (IDM) car-following model [86], were

the acceleration of follower vehicle, dv/dt, is given by:
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dv
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2.
√
a.b

)
(4.2)

This model specifies the acceleration of a vehicle, function of a breaking term given by

the relation of the current speed, v and the maximum speed of road vp and for the relation

between the current gap s and the preferred distance, s∗. The headway time is T = 1s,

the acceleration capacity for vehicles, a, is set to half of breaking capacity, b = 9.81m/s2,

and the distance limit is set to s0 = 2m.

When not in straight lane, a different methodology is used to generate the speed

command. For each simulated vehicle a collision time is computed to all nearby vehicles

in the field of view using the Multi-Target Detection and Tracking (MTDT) module (see

section A). The vision field can be circular, ellipsoidal or rectangular. The current velocity

of vehicles is used to compute the estimated arrival time at a potential collision point. If

there is a chance of collision, traffic rules are applied and one of the vehicles must break.

Simulated sensors : Several type of sensors are simulated, the information provided by

each sensor is updated according to its own predefined sampling rate. Simulated sensors

include:

encoders: four wheel encoders, front and rear axle steering encoder;

magnetic sensing system (MSS): composed by a set of magnetic markers detectors

[87]. The simulated sensors are triggered when they cross over a magnetic landmark.

GNSS: the GPS constellation is simulated as well as the tropospheric delay, ionospheric

delay, multipath noise, thermal noise and clock biases. The GPS simulated receiver

provides both the code and carrier pseudoranges for all visible satellites

Laser Range Finder (LRF): this sensor, also referred as LIDAR, provides all range-

bearing data to the MTDT and the average range-bearing of a preceding detected

vehicle;

inductive loop: road drive-through inductive loop sensors in each outgoing lane capable

of detecting the vehicles leaving the intersection

intelligent vision system: this system detect the approaching vehicles and check the

status of the turning light signals of each vehicle

Noise and other disturbances may be applied to the sensors’ readings.

Driver awareness : The driver’s perception of the surrounding environment is updated

and the decision of accelerate or brake is taken according the traffic rules and the
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neighboring vehicles inferred intention behavior. When in a human drive mode, each

driver is only aware of surrounding vehicles if they are inside a ”drivers range awareness”,

this range can be configured to a square area, circle area or a ellipsoidal area. The

ellipsoidal area resembles more accurately the human awareness behavior but it is less

computing efficient. Using the perceived velocity of the vehicle inside the awareness range,

a collision prediction and detection is performed. If a future collision ahead is detected

then the driver takes an action, braking while outside intersections or giving right of

way if entering intersections. One must notice that while on human driver mode the

information used by the agent is similar to the one a human driver in real life would have.

V2V/V2I Communications

ITM algorithms require a secure channel for information exchange between vehicles

and infrastructure. The current CS technology, namely wireless, already provides reliability

in communications. In the ISR-TRAFSIM a communication system is simulated with two

operation modes: simulated-Fast and simulated-Real.

In the simulated-Fast mode the CS delivers messages instantly and the only constraint

taken into account is to verify whether each agent is within, or not, the range of other

agents’ antennas.

Based on the work of Saikat Ray [88] we have developed a two-dimensional wireless

network discrete event simulator, to approximate the simulated CS to a real CS system.

The V2V and V2I communications module provide a secure channel for information

exchange among vehicles and infrastructure. Both intersections types have V2I modules,

enabling each ITM to communicate with the vehicles on the communication range. Com-

munication between RI and CI is also available, enabling information handshaking of a

vehicle crossing both zones.

This operation mode has a variety of configurable parameters, the most important are:

i Standards: IEEE 802.11 b\g\a;

ii Propagation model: Friis, two-ray ground and log shadow:

iii Maximum number of RREQ retries.

We assume that all transmissions experience the same path loss versus distance profile,

that every node transmits with the same power in the same channel, that the propagation

delay is negligible and that each node has the same antenna gain and receiver sensitivity. In

this simulated-Real mode it may happen that two communicating nodes can communicate

with a third station, but cannot directly communicate with each other due to physical or

spatial limitations, this is the so-called hidden node problem, meaning that wireless nodes

often cannot hear each other. Since hidden nodes cause packet collisions, their presence can
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severely affect the performance of the V2X communications . CS is implemented using four

layers: application layer (APP), network layer (NET), medium access control layer (MAC)

and physical layer (PHY). A receiver decodes a packet if and only if the packet does

not overlap with any other packet transmitted by a node within its range. Every agent

senses a busy channel immediately after the transmission begins, if a collision is detected

the agent’s CS will backoff for a random amount of time. A successful communication

between a node 1 and a node 2, involves a packet going trough the following layers

APP1 ⇒ NET1 ⇒ MAC1 ⇒ PHY 1 ⇒ PHY 2 ⇒ MAC2 ⇒ NET2 ⇒ APP2. These

simulation settings enable the user to quantify the impact of packet delay, masked nodes,

channel fading, and mobility on packet collisions on a large IEEE 802.11 ad-hoc wireless

communications.

4.2 Simulator setups

Simulator environment

The ISR-TRAFSIM road network layout includes two common solutions to regulate

intersections traffic, roundabout and crossroads as depicted in Figure 4.2 (a). The simulator

has a friendly GUI, where users can parameterize most relevant settings without having

programming skills, and making it possible to change settings and perform simulations

with different settings (see Figure 4.2 (b)).

(a) (b)

Figure 4.2: Simulator main interfaces: (a) scenario interface populated by car like vehicles, (b)
configuration interface.

The traffic is right-handed, i.e. vehicles on the RI travel anticlockwise, and no overtaking

maneuvers are considered in this study. The RI traffic inflow/outflow arrives from four

directions. Each direction is composed of two roads of inflow/outflow and each road has

two lanes; the same setup is also applied to the CI. Both RI and CI can be controlled by

traffic lights. Inside the CI box junction, vehicles are not allowed to stop, i.e. a vehicle
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must not enter the box junction if there is no space for the entire vehicle to exit in the

other side of the CI. No overtaking maneuvers are allowed and the speed limit in entire

scenario is set to 40Km/h, except while driving in the RI and CI, where the speed limit

is 30 Km/h. The lanes width is 3m on the straight roads and 5m on the RI lanes.
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Figure 4.3: Simulator scenarios: (a) roundabout, (b) crossroads, (c) roundabout and crossroads
interconnected

Three road networks environment scenarios can be tested independently, a single RI a

single CI and a scenario with both a RI and CI interconnected (see Figure 4.3)

Data management

Data is divided according to its type: global simulator and local simulator data. The

global data describe the scenario conditions such as antenna localizations, semaphores

switching times, simulation options, radio propagation models, etc. Local data is stored in

a linked list where each node corresponds to a specific set of driver and its vehicle. Each

agent stores its data, that can be read and modified during simulation. Due to the high

number of vehicles which may be present in the simulator environment, local simulator

data is not allocated for all vehicles at once, i.e. the local simulator data is managed in

order to add an entity node when a vehicle enters the simulation scenario or to delete an

entity each time a vehicle leaves the simulated environment (see Figure 4.4).

The methodology used for the storage of data makes use of a small number of structures

(Ec, Es, EGPs, Eins, Emm, Elrf) which store parameters for the simulator settings and

each parameter available for vehicles. The structure storing the data for each vehicle (Ec)

is formed by sub-structures, where each sub-structure stores data from a single vehicle,

forming a single linked list available for read and write (see Figure 4.4(b-c)).

This data management enabled the development of analysis tools to publish graphics

and performance values automatically, allowing a quick analysis of the results.

Traffic flow

The simulation starts with an empty vehicle scenario. For each lane, the vehicles agents

are created according to the defined Traffic Flow Profile. In general, rush hours are the
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Figure 4.4: Simulator data flow: (a) multi-agent system and data storage design, (b) overall
agents data flow, (c) individual agents specific data flow.

Table 4.1: Vehicle origin-destination probability distribution.

````````````Origin
Destination

R1 ... R2 ... Rm

R1 P11 ... P1j ... P1m

∑m
k=1(P1k) = 1

... ... ... ... ... ... ...
Ri Pi1 ... Pij ... Pim

∑m
k=1(Pik) = 1

... ... ... ... ... ... ...
Rn Pn1 ... Pnj ... Pnm

∑m
k=1(Pnk) = 1∑n

l=1(Pl1) ≤ n ...
∑n
l=1(Plj) ≤ n ...

∑n
l=1(Plm) ≤ n

most critical time to intersection, because of the high influx of vehicles in a short period

of time, but during the rest of the day a road intersection may have low influx, therefore

it experiments different levels of traffic density. Traffic flow (or traffic volume) and traffic

density (or traffic concentration) represent different concepts. The traffic flow is described

by the following equation [89]:

Flow =
nF,vehicles

T
[V ehicles/hour] (4.3)

where nF,vehicles represent the number of vehicles crossing a section of road in a deter-

mined amount of time, T. Traffic density is defined as:

Density =
nD,vehicles

X
[V ehicles/meter] (4.4)

where nD,vehicles represent the number of vehicles that are present in a section of road

of length, X. To adjust the traffic density in the simulated area, the flow of each road is

configurable, this adds more versatility to the simulator, because any time of day can be

simulated in the developed scenario. Each vehicle origin-destination lane setup, follows a
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R35
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Figure 4.5: Road segments selection for a vehicle entering
on lane 1 and exiting on lane 19.

H
HHH

HHIn
Out

... R19 ...

...
...

...
...

R1 ... R35 ...
...
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R35 ... R19 ...

...
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...
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Table 4.2: Routing table for
a vehicle entering on lane 1
and exiting on lane 19.

semi-random model, as presented in Table 4.1, where Pij represents the probability of a

vehicle from an origin lane i to have its destination on lane j. It is possible for a road to

have to have more outflux than influx, but its outflux probability must be lower than n,

e.g. assuming the influx probability distribution from all n lanes to the outflux lane j to

be 1, then
∑n

l=1(Plj) = n.

Path generation

It is necessary to generate the entire trajectory to be followed by a vehicle agent every

time a vehicle agent is created. Based on the origin and the desired destination, a path is

computed by a trajectory planner, this path consists on a list of path coordinates points

and its associated curvature, obtained using cubic spline sampling.

The simulator is designed to allow the construction of diverse scenarios, therefore no

predefined path is computed in advance. Hence each road segment is defined by its length;

starting and end point; orientation and to which road segments it is connected. From

the vehicle origin and the desired destination, the road segments necessary to traverse in

order to complete the intended journey, are selected using a routing table. In Figure 4.5

and Table 4.2 it is presented the road segment selection and a routing table for a vehicle

entering on lane 1 and exiting on lane 19. The first column represent the road entrance

segments and the first line represent the desired exiting road segment.

For a vehicle that enters in segment R1 and wants to go to segment R19, the first

path segment is therefore R1, followed by the intersection value of row R1 and column

R19, i.e. R35. The next segment is selected at the intersection of the row of this newly

selected segment R35 and column R19, i.e. R19. The road segment selection ends when the

next segment is the exiting one, as in this last selection. Therefore the full road segment

selection is R1 → R35 → R19.
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Figure 4.6: Smooth path generation procedure: 1st insert reference points from the selected
road segments; 2rd spline using reference points; 3rd remove reference points with high curvature
nearby; 4th spline using filtered points; 5th iterate 3rd and 4th steps until the path has a a smooth
and feasible curvature for the type of vehicle.

The procedure to generate path coordinates points and its associated curvature, using

the list of road segments, starts by generating reference points of the all road segments.

Each road segment is used to generate a set of reference points with all intermediary points

are concatenated to generate an unrefined trajectory. The last stage of path generation

is to smooth the trajectory generated by removing points with low curvature radius. The

path generation stages is depited Figure 4.6.

4.3 Path Following Controller

The vehicle when moving from one starting point to an end point can execute a point-

to-point stabilization, a path following or trajectory tracking. Point-to-point stabilization

requires that the vehicle moves from point A to point B with no restrictions on its

movement between these two points. When with path following, the vehicle must move

along a geometric path. For trajectory tracking, the vehicle must move along a geometric

path at a given speed. The controller here presented is of the path following type.

In order to follow the trajectory, the actual vehicle’s pose, the next desired position

and the reference velocity are feeded as inputs to the Lateral Controller (LC). The errors

between the desired pose and the actual pose (see Figure 4.7) are used as inputs to the LC

module (see Figure 4.8) that converts them to desired commands. The time-to-collision

computed in the MTDT module (see section A) is also provided to the LC.

Collision avoidance is achieved by controlling the vehicle’s reference velocity by reducing

or even stopping the vehicle in situations of eminent danger. The main goal of the path-

following controller is to ensure that the vehicle follows the predefined reference path with

appropriate orientation.

This section addresses the path following problem using fuzzy-logic.
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Figure 4.7: Illustrative construction of lateral and heading errors (in real situation the discrete
path points Pi are much closer between each other, when compared with the vehicle dimensions).
Pi denote the points that define the reference trajectory; dcpe and drae are the lateral errors at
CP and rear axle, respectively; dtge is the perpendicular distance between the rear axle midpoint
and the current tangent to the path; θ, θcpe and θd are the orientation of the vehicle, heading
error and desired heading, respectively. WΣ and RΣ represent respectively the world coordinate
system and the vehicle local coordinate system with its origin at the midpoint of the rear axle
and its x-axis aligned with the longitudinal axis of the vehicle

Fuzzy-Logic path following Controller (FLC) for a 4WS Kine-
matic Vehicle

It was chosen to develop a fuzzy-logic based controller, so that non-skilled programmers

could tweak or test new controlling setups. The fuzzy-logic based PFC was firstly evaluated

on a simple kinematic model (i.e. a differential drive vehicle), and further development

is built upon the first iteration on a rather complex kinematic model, (i.e. a single and

double steered car-like vehicle). A detailed description can be found in Appendix A.

The fuzzy-logic based PFC is made up of two main modules: Velocity Planner (VP)

and LC. The LC as the following set of inputs:

uFL = [θcpe , d
cp
e ,∆θ

cp
e ,∆d

cp
e , timp, dile, c(s), v] (4.5)

where v denotes the linear reference velocity, c(s) is the curvature along the path, dile

is the inlinelateral error (see description of the Rear Steering Switch module), timp is the

time-to-collision computed in the MTDT and the differential errors ∆dcpe and ∆θcpe , at the
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Control Point (CP), are given by

∆dcpe = dcpe (k)− dcpe (k − 1) (4.6)

and

∆θcpe = θcpe (k)− θcpe (k − 1) (4.7)

The main goal of the path-following controller is to ensure that the vehicle follows the

predefined reference path with appropriate orientation. For the fuzzy-logic controller this

can be understood as a task of minimizing the vehicle lateral and heading errors (dcpe , θ
cp
e )

with respect to the reference path, at a given CP located at a distance La denoted by

lookahead distance, as illustrated in Figure 4.7.

Figure 4.8 presents the controller architecture. The architecture is divided in high and

low level controller. The high level controller LC computes the control commands for the

low level controller, some of the high level modules are also presented has they provide

inputs to the LC. The LC is based on fuzzy-logic, it is composed by four independent

modules: front steering controller, rear steering switch, velocity command generator and

lookahead distance computation (see Figure 4.8). The low level controller is responsible

for the traction control and besides regular vehicles it also enables the control of electrical

Four Wheel Drive (4WD) and 4WS vehicles.

The controller provide a control vector ([ϕc, vc, ϕsw]) to the traction control level,where

ϕc (in degrees) is the steering angle, vc[ms
−1] is the velocity command, and ϕsw is the rear

steering switch that controls the two possible driving modes: Dual Driving Mode (DDM)

and Park Driving Mode (PDM). In DDM the rear axle steers in opposite direction of the

front axle, while in PDM the rear and front axle steers in the same direction, both modes

are 4WS. If the vehicle is 2WS then the ϕsw as no effect on the low level traction controller.
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In order to properly avoid collisions with obstacles the time-to-impact timp (also referred

here as time-to-collision), provided by the MTDT, is integrated in the velocity command

generator. All modules are fuzzy-logic based. Figure 4.8 shows the LC identifying the

fuzzy-logic inference flow from the input variables to the output variables. The fuzzy

controller is characterized in Appendix A.

Front steering module: The front steering module (composed by controller 1 and

2) computes the steering command ϕc. The purpose is to minimize both the orientation

error θcpe , and the lateral error dcpe . A steering increment fuzzy variable (ϕinc) is computed

in order to achieve a faster recovery from an undesirable pose. ϕinc is the output of a fuzzy

module which has as inputs c(s) and ∆θcpe . This module ensures a geometrical convergence

towards the path to be followed.

Rear steering switch module: The Rear Steering Switch module decides whether

the rear axle should steer to opposite direction of the front axle DDM or in the same

direction PDM. The inputs of this module are ∆dcpe , and the inline lateral error dile given

by

dile = |d
cp
e

dcge
|+ |θcpe | (4.8)

If ∆dcpe is decreasing and dile is small, this module steers the rear wheels in the same

direction as the front wheels; the result is a decreasing of the vehicle’s yaw motion. The

yaw motion is necessary for executing a manoeuvre but is not desired from the point of

view of the vehicle’s stability control [90]. This module was only implemented and tested

in simulations.

Velocity command generator module: The inputs of this module are ∆dcpe , dcpe ,

∆θcpe , θcpe and the timp. This module computes a weight factor assigning a level of significance

to the reference velocity, i.e. if the errors have a high magnitude or the time-to-collision

has a low magnitude then the velocity must be decreased, otherwise the reference velocity

is applied. This module is of extreme importance since collision avoidance is decided here,

i.e. if the timp is small, then the vehicle velocity is reduced or the vehicle is even stopped;

if timp is high the vehicle velocity (weight factor) is not affected.

Lookahead distance computation module: This module computes the lookahead

distance, La, which is a function of the vehicle velocity, v. If the velocity increases, the

damping factor of the closed loop system gets worse and is improved by increasing the

lookahead distance. The lookahead distance provides a prediction behaviour to the con-

troller, since it enables the control point to be far ahead of the Center of Gravity (CG) of

the vehicle, see Figure 4.7.
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Velocity planner

The VP module calculates the linear reference velocity, as well as determines the local

reference trajectory points. One main objective taken into account was to make the trip

as comfortable as possible, i.e. to give the system the capability of fully controlling the

smoothness of the acceleration profile either lateral or longitudinal.

A Canadian study [91] used a highway testing ground to test speed and lateral acceler-

ation on both wet and dry pavement on horizontal curves. They found that ”comfortable

lateral acceleration” and ”speed environment” limited the driver’s speed, while pavement

surface conditions (dry or wet) and the driver’s gender did not. Drivers adjusted their com-

fortable speed according to their comfortable lateral acceleration tolerance, approximately

between 0.35g and 0.40g. Another study [92] revealed the comfortable longitudinal accel-

eration, i.e. steady deceleration under expected-stop conditions; drivers generally exert an

average steady braking force of −0.35g. This amount of braking force seems comfortable

for most drivers.

Multi-Target Detection and Tracking (MTDT)

The information regarding the dynamics of the surrounding obstacles, is pivotal to the

estimation of the trajectories and behaviour of surrounding objects. The MTDT estimates

the position and velocity of existing objects in the environment, thanks to a number of

consecutive scans provided by a LIDAR, based on which the impact-time is computed.

The MTDT comprises the following modules: scan segmentation, object classification,

multi-object tracking and time-to-collision computation.

Segmentation: The goal here is to identify the limits of possible existing objects de-

tected by the LIDAR (see Figure A.9) and if so, to filter and provide additional information

about the object in analysis.

Object Tracking: It identifies the segment-object pair by performing object tracking

using a Kalman filter.

Impact-Time Computation: The Impact-Time Computation module uses the re-

sults of all the Segmentation and the Object Tracking to estimate the impact-time and

position, for each one of all detected objects.

This system estimates the positions and velocities of existing objects in a selected area

in the field of view of the LIDAR, based on which the times-to-collision are estimated.
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4.4 Results

4.4.1 Traffic Management Simulator Assessment

This section presents a verification of ISR-TRAFSIM w.r.t. the traffic management. This

verification will be performed using a validated Simulator, VISSIM [93].

(a) (b)

Figure 4.9: VISSIM test scenario: (a) roudabout, (b) crossroads.

In order to verificate ISR-TRAFSIM traffic management results, it was used traditional

traffic management techniques, namely right of way inside roundabouts and fixed traffic

light time switching for the crossroads. Each ISR-TRAFSIM intersection result was tested

individually against VISSIM results. VISSIM simulator does not have an open architecture,

and therefore there are some limitations when creating simulations environments, hence

simulations comparisons with ISR-TRAFSIM may be inaccurate. Nevertheless the student

version of VISSIM Simulator was used due to the fact that it is a state of the art simulator,

it is already validated [94], it is freely available and it as a widespread use. In order

to make the ISR-TRAFSIM results verification as accurate as possible, the intersection

scenario, both the roundabout and the crossroads, was constructed with the same size

measurements, (see Figure 4.9), and the parameters of both simulators was set as similar

as possible. As stated earlier VISSIM simulator is not an open architecture, and therefore

some of the inner workings are unknown to the user and some customization details are

unavailable to the user. One of the limitation is the vehicles dimensions specification, i.e.

it is not possible to define a specific value, since it is only allowed the definition of the

vehicle type. For each vehicle type there is a preset of values for vehicle dimensions, which

are chosen randomly. The definition of vehicles per lane influx and outflux can not be
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made on a per-vehicle basis. It is not possible to configure an acceleration profile for the

vehicles, which is another limitation. Influx streams ranging from 100 vehicles per hour

to 3600 vehicles per hour for each of the 8 input lanes, were simulated on ISR-TRAFSIM

and VISSIM simulators for both RI and CI. Each influx test as a simulated time of 10

minutes. Test results are presented in Figures 4.10 and 4.11.

The ISR-TRAFSIM roundabout verification scenario, was set to run the Intelligent

Traffic Management Deactivated (ITMD) algorithm (see section 5.1.2) and the VISSIM

simulator was set accordingly. In this test vehicles entering the roundabout have to give

right of way to vehicles already travelling inside the roundabout. Figure 4.10 presents

the output flow and average time spent by vehicles traversing the intersection, for both

simulators when using the roundabout scenario. The outflux average error is 12.49%,

ranging between 0.75% for a 200 veh/h influx to 26.25% for a 500 veh/h influx, as the

influx grows the error tends to zero. Similarly, average time a vehicle takes to traverse

the intersection as an average error of 6.79 seconds, settling its value around 7.5 seconds

after 800 veh/h influx. After a careful analysis of the previous data we can conclude

that both simulators have similar results when simulating a roundabout scenario. These

results suggest, that a intersection management performance improvement achieved using

ITM algorithms, tested using ISR-TRAFSIM simulator on a roundabout scenario, is also

expected an improvement in the real world scenarios.
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Figure 4.10: VISSIM test results for 8 lanes influx roundabout intersection: (a) Vehicle outflux
function of influx, (b) Agents time traversing intersection function of influx.

The ISR-TRAFSIM crossroads verification scenario, was set to run the Standard Traffic

Light System (STLS) algorithm (see section 5.1.2) and the VISSIM simulator was set to

approximate these specifications. In this test vehicles can only enter the crossroad box while
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on green light. Figure 4.11 presents the output flow and average time spent by vehicles

traversing the intersection, for both simulators when using the roundabout scenario.
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Figure 4.11: VISSIM test results for 8 lanes influx crossroads intersection: (a) Vehicle outflux
function of influx, (b) Average time traversing intersection function of influx.

The outflux average error is 24.28%, it is a high value but as the influx grows the

error tends zero. The average time a vehicle takes to traverse the intersection as an

average error of 46.53 seconds, alhough it is a high error it is stable error value. Part of

the errors obtained can be attributed to the fact that the VISSIM simulator is not an

open architecture, and therefore not allowing to define the acceleration profile, not being

able to define precisely the vehicle dimensions as well as not being able to define a origin-

destination routing table that could be fitted to the settings of ISR-TRAFSIM. It is not

possible to set the parameters of ISR-TRAFSIM parameters to match the VISSIM as their

models are not available. Contrary to the roundabout intersection the tests conducted for

the crossroads intersection have fairly significant error in the comparison between the two

simulators. Therefore, unlike the roundabout scenario, any performance improvement, of

ITM algorithms applied to crossroads, when in ISR-TRAFSIM do not suggest that the

same will succeed in real life.

4.4.2 Fuzzy-logic controller (FLC)

The results presented in this section were obtained using the “double steered mode”, the

effectiveness of the controller revealed to be similar for the “front steered mode”, the main

difference was that the in “double steered” the minimum curvature radius was inferior and

therefore the “reference path” could had more narrow curves.
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(a) (b) (c)

Figure 4.12: Test track result of the lateral controller: (a) control point at CG; (b) control point
at a constant value lookahead distance La > L/2; (c) control point at a lookahead distance
function of the vehicle velocity La. The dots above the solid line denote the “reference path”
(x-axis and y-axis in meters).

The control point can be defined at the center of gravity of the vehicle, but it is also

possible to define it in front of the vehicle, with help of a virtual point (section 4.4.2).

The control point is then defined at a lookahead distance La in front of the vehicle

as defined in Figure 4.7. For La = L/2 the CP is located at the CG of the vehicle. The

simulations here reported concerns with a bi-steerable vehicle without inducing any type

of odometry errors.

Figure 4.12(a) shows a simulation result, where a response with a damping behaviour

can be observed. Despite having a good performance, it has some drawbacks. When the

vehicle approaches the curve it has a low lateral error dcpe and a high orientation error θe

and when it leaves the curve it has a high lateral error dcpe and a low orientation error θe,

which means a slower recovery from narrow curves.

Lateral controller with the CP at a lookahead distance La

The control point is chosen at a distance La > L/2 in front of the vehicle. La is a

function of the vehicle velocity (section A), which must be kept within certain limits. If

La is too small the vehicle might reach the target point between two computations, or

oscillations might appear. If La is too high the vehicle might cut corners.

Figure 4.12(c) shows the behaviour for a velocity dependent La and Figure 4.12(b) for

the case of a constant La. In the simulation of Figure 4.12(b) the constant value selected

for La was too high and the vehicle when following the trajectory cut the curves by its

interior side.

Path following controllers comparison

Although the Fuzzy-Logic based path following Controller (FLC) fulfills the require-
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ment of being easy to be tweaked and adjusted by a non-skilled programmer, its ability

to fulfill the requirements of cybercars scenarios is yet to be analyzed. This motivated

a comparative study of the FLC with a canonical controller used in cybercars scenarios.

A Chained Form based path following Controller (CFC) (described in Appendix B) was

chosen as a canonical controller. Part of the following results are focused on the perfor-

mance of the two path-following controllers, which are implemented using two different

approaches, the first using fuzzy-logic and the second using chained systems theory. The

control effort and the errors magnitude along the path are evaluated in a comparative

way. The CFC parameters of equation (B.32) were used as in [95]: k1 = λ3, k2 = 3λ2, and

k3 = 3λ with λ = 5. The value of λ was obtained iteratively starting from an initial guess

λ = 8.

From Figures 4.13 to 4.16 one can observe the effectiveness of both controllers in guiding
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Figure 4.13: θtge and θcpe : heading error using
the chained form controller (dashed line) and
heading error using the fuzzy-logic controller
(solid line) in degrees.
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Figure 4.14: dtge and dcpe respectively lateral
error using the chained form controller (dashed
line) and lateral error using the fuzzy-logic
controller (solid line) in meters.

the car along a predefined path shown in Figure 4.16. From the analysis of Figure 4.13

and Figure 4.14 it is possible to observe that the fuzzy controller is generally better in

coping with the angle error (Figure4.13) and the lateral error (Figure 4.14 ), in both errors

the chained form has an higher overshoot than the fuzzy controller. It is also clear that

the chained form controller attempts to reduce the errors with a faster response, but the

reduction is only partially achieved, afterwards the errors rise again. The previous errors

dynamics reveals a two lobes shape when analyzed over time, which does not occur with the

fuzzy controller. Although the fuzzy-logic has a better performance in convergence with

a pre-defined path it has also some drawbacks, the steering command is not as smoother

(Figure 4.15) than the steering command of the chained form controller, and the control

effort is higher for the fuzzy-logic. Figure 4.16 shows the path followed by both controllers:
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Figure 4.15: φc: steering command using the
chained form controller (dashed line) and steer-
ing command using the fuzzy-logic controller
(solid line).
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Figure 4.16: Path following simulation results,
assuming no odometry errors (neither mea-
surement noise nor cumulative errors).

the solid line is the predefined path, the dashed dotted line is the path followed by the

vehicle when using the fuzzy controller and the dashed line is the path followed when using

the chained form controller. The fuzzy controller behaves better on the curves than the

chained form controller but it is worst when the path is a straight line. The chained form

here analyzed does not embodies the same prediction behaviour when using the lookahead

distance La; has the fuzzy controller, which may be one of the reasons of its inefficiency

in curve.

Extensive simulations and error analysis concerning path following assuming that there

are no odometry errors introduced, are presented in [96];

Path Following Controller sensitivity to error corrections

Using VPE (see chapter 6) to correct the pose error corrections, it was possible to

analyze the controllers sensitivity to vehicle pose corrections. The following simulation

results assume the control point at the CG for both Fuzzy and Chained form controllers,

the errors introduced are described in chapter 6.

From Figure 4.19(a-h) one can observe that the CFC errors profile and commands

profile is similar for both 7ms1 and 8ms−1. The same observation can be made for the

FLC. The histograms presented denote the values distribution when the reference speed

is 8ms−1. Among the controllers the angle error profile (i.e. theta error profile) is similar

but the angle error Root Mean Square (RMS) is higher in the CFC than in the FLC, see

Figure 4.19(i). For the lateral error profile the error analysis revealed a better performance

for the FLC, and 0 centered distribution of this error type , see Figure 4.19(j).

The steering command was not smooth in both controllers (Figure 4.19(k)) the his-

tograms reflected this with a sparse distribution, the right steering turn (−20[Degrees]
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Figure 4.17: Path following simulation results with odometric errors introduced corrected by
the VPE: (a) 7ms-1 (b) 8ms-1:

turn) was more prevalent since the predefined path is oval, i.e. all curves are to the right

side. The main difference among the controllers was the velocity command Figure 4.19(l),

i.e. for the same reference speed the velocity command was higher for the FLC, this mean

that the predefined path loop took more time for the CFC. The path followed by both

controller is presented in Figure 4.17(a-b). The performance of the controller is similar, and

the recalibration is accomplish with success. The angle and lateral errors feeded as inputs

are not continuous in time, they show significant values change, as result of a recalibration,

for which both controllers were able to cope with, see Figure 4.19(a-h). The recalibration

procedure occur every time a magnet is detected, this doesn’t mean that every time the

vehicle passes over a magnet a recalibration occur. The speed may be very high and the

magnet is crossed over in between two time samples, therefore no recalibration is made. If

the sampling time was chosen to be very small then all magnets cross over were detected,

but that would be an unrealistic scenario.

Figure 4.18(b), shows the performance of the CFC when systematic errors are intro-

duced to real arc length ∆R, as in equation 6.60. The arc length ∆R is multiplied by Kse

factor, and since Kse > 1 (i.e. Kse = 1.03) the real velocity is higher than the virtual ve-

locity that the vehicle controller is having as input, therefore the vehicle might have a real

zero lateral and angle error and a virtual zero lateral and angle error but the real position

is far ahead from the virtual position, this type of error is presented in Figure 4.18(a-b),

this type of error is computed as an euclidean distance from real position to the virtual

position.

In Figure 4.18(a) it is depicted the euclidean distance error for both controllers, it

is also possible the observe where the recalibration procedure has been occurred. Every
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Figure 4.18: Path following simulation results, assuming an OVAL path type at 7ms-1 of Ref.
Speed with odometric errors introduced corrected by the VPE: (a)Euclidean distance position
error profile for both CF C. and FUZZY C. (b) Euclidean distance error for the CF C. between
a the 461 and 481 sampling points.

recalibration corresponds to a significative reduction in the euclidean error, i.e. around

the sampling points number 100, 225, 350 and 370. This magnitude of error is acceptable

since the controllers developed are of path following type, rather than of path tracking

type. It is important to notice that the position in which the controller actuates is the

virtual (Virtual Path) since it has no means of knowing about the accumulated errors.

The recalibration procedure and consecutively the euclidean distance error reduction

are better visualized in Figure 4.18(b), in this scenario besides having a considerable lateral

error, the vehicle is also ahead from the virtual position. When a recalibration occurs; at

the 472 sampling point; the error in position is corrected and the real position is almost

coincident with the virtual position. Before the recalibration; at the 472 sampling point;

the euclidean error is very high and after the recalibration the euclidean error is almost

null.

Figure 4.20(a-f) represent the euclidean (a)(b), lateral (c)(d) and angle errors (e)(f)

respectively. There are ten magnets used for recalibration, five in each straight line, each

one marked as a gray strip. The z − axis of Figure 4.20(a-f) represent the error plus the

time passed to reach that position. On these figures one can observe has time goes by the

errors are accumulated and every time it detects a magnet the virtual position is updated

to the real position (Real Path) due to the good estimate about the real position made

by the VPE. Although the pose corrections are significant both controllers have a good

behaviour handling these sudden path changes.
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Figure 4.19: Path following simulation error and command results, assuming an OVAL
path type at 7ms-1 and 8ms-1 of Ref. Speed with odometric errors introduced corrected
by the VPE: (a)(e)(i) Theta error (b)(f)(j) Lateral error (c)(g)(k) Steering Command (d)(h)(l)
Linear Velocity Command: with odometric errors introduced corrected by the VPE
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Path following simulation error results, assuming an OVAL path type at 7ms-1
and 8ms-1 of Ref. Speed with odometric errors introduced corrected by the VPE: (a) Path
following at 7ms-1 (b) Path following at 8ms-1: with odometric errors introduced corrected by
the VPE
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Extensive simulations regarding controllers performance and error analysis when the

the vehicle is subjected to odometry errors, are presented in [96];

4.5 Final Remarks

A highly parameterizable simulator ISR-TRAFSIM in the category of microscopic simu-

lators and operating on discrete events, was developed. With this parameterizations, we

are able to simulate complex vehicle/traffic situations; and thus one can evaluate the

impacts of different ITM algorithms. As with the previously mentioned simulators it has

its strengths and its weaknesses. The main advantages are the easiness to develop and

integrate new modules; implemented in Matlab enabling a non-skilled programmer to

customize code. The simulator has already implemented highly complex sensors and it

has a strong feature-rich GUI. The main disadvantages are the poor computing efficiency

and simple V2I/V2V communication model.

Extensive simulations and error analysis concerning path following performance of

a easy to tune and adapt fuzzy-logic based controller, were conducted. The fuzzy-logic

based controller was compared with a canonical chained form controller and the results are

presented in this chapter and in [96]. The simulations comprise scenarios where odometry

errors are introduced and situations where the vehicles’pose is corrected by the VPE.

The simulation results provide sufficient information to conclude that the controllers have

generally the same behaviour and similar performances, but the CFC is more exigent

regarding its development and tuning cost.
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This chapter describes the implemented intelligent traffic management algorithms

applied to automatic regulation of traffic at intersections, and the emissions and fuel

consumption computation module. An assessment of the algorithms simulations results

and their performance metrics is also presented in this chapter.

5.1 Intelligent Traffic Management

5.1.1 Spatio-temporal matrix

Using the vehicle’s VPE estimated position, the intersection management system computes

the distance from the vehicle to the intersection. When the vehicle enters in a predeter-

mined control radius, the infrastructure agent runs the selected ITM algorithm. For each

vehicle request, the selected ITM algorithm, generates a collision-free path to be followed

by the vehicle, while traversing the intersection. The collision-free path is decomposed in a

2D path and an associated speed profile. The 2D path and speed profile are used in a three-

dimensional matrix reservation procedure. The three-dimensional matrix is composed by

a set of layers, one layer per each time instant, where δt is the sampling period. Each layer

is divided in cells, where each cell represents a two-dimensional space in the scenario map.

Each cell can be in one of the following status: occupied or free. The three-dimensional

matrix integrates space and time and therefore it is henceforth designated spatio-temporal

matrix. The space used by a vehicle when following the collision-free path, is allocated

by the active ITM in the spatio-temporal matrix, see Figure 5.1. The cells areas reserved
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in the spatio-temporal matrix are wider than the vehicle dimensions; this safety margin

ASM (ASM = [wide; long][m]) is used to avoid accidents in case a vehicle does not follow

exactly the generated speed profile. Adjusting this safety margin also takes into account

the type of vehicle: autonomous or driven by human. The parameter ASM also accounts

for the error-prone positions, i.e. it must be increased for less accurate vehicle pose esti-

mations. The generated speed profile and navigation directions is used by the PFC [97]

or by a human driver assisted by this information delivered through an Human Computer

Interaction (HCI).

T = t
T = t + Δt

T = t + 2Δt
T = t + 3Δt

Figure 5.1: Three-dimensional time-space matrix. Each layer represents a time instant and each
cell on each layer represents a physical space on the scenario.

5.1.2 Traditional intersection management techniques

Roundabouts and crossroads are usually operated using traditional techniques for traf-

fic management. Intelligent traffic management algorithms are evaluated againts these

traditional techniques:

Intelligent Traffic Management Deactivated (ITMD) While on ITMD, vehicles

respecting traffic laws and interacting with surrounding vehicles, follow their own will and

desired speed profile. There is no predefined speed profile and the speed is determined at

each time interval using a longitudinal inter-vehicle gap speed model and a transversal
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time to collision algorithm. Consequently, vehicles are ”manually” controlled, i.e. vehicles

are driven as an unassisted human driver would drive. In this mode vehicles crossing the

intersection do not require a V2X CS for proper operation.

Standard Traffic Light System (STLS) In STLS mode of operation it was consid-

ered a fixed-time control strategy, with a phase serving each direction at a time. Regardless

of changes in traffic volumes, the STLS uses the same preset in every cycle. A full cycle

length for one direction is composed of Tdir = Tgreen + Tyellow + Tred, during Tdir all other

directions are in red light status. A full intersection cycle is composed by Tinter = 4 · Tdir.
During Tred all intersection traffic lights are red, enabling vehicles to clear the intersection

safely. The STLS system does not require a V2X CS, neither the vehicles crossing the

intersection, the vehicles respecting traffic laws and interacting with surrounding vehicles,

follow their own desired will and speed.

Fixed-time signals assign the green light, yellow light and red light to the each travel

direction of an intersection for a predefined amount of time:

West⇒East South⇒North East⇒West North⇒South
TGreen Red Red Red
TY ellow Red Red Red
TRed Red Red Red
Red TGreen Red Red
Red TY ellow Red Red
Red TRed Red Red
...

...
...

...

Table 5.1: Fixed time intervals.

In this research work the standard traffic light system was developed for crossroad

intersections (CI-STLS).

5.1.3 Car Intention Intelligent Traffic Management (CIITM)

Using the infrastructure sensors to detect incoming and outgoing traffic, the Car Intention

Intelligent Traffic Management (CIITM) manages the intersection using a space allocation

algorithm. In addition to the traffic lights, the intersection is assumed to be equipped with

an intelligent vision system and road drive-through inductive loop sensors. The intelligent

vision system, assumed to be present on the infrastructure, must detect the approaching

vehicles and check the status of the turning light signals of each vehicle. A set of drive-

through inductive loop sensors in each outgoing lane are capable of detecting the vehicles

leaving the intersection.

The management process occurs in three stages. On the first stage the CIITM detects

an approaching vehicle and the status of the turning signal, if the turning signal is off the
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Algorithm 2 CIITM

Require: spatio-temporal matrix, vehicle origin, vehicle destination, inward sensors, outward
sensors

Use inward sensors to determine destination and compute trajectory path
if destination and trajectory path free then

Reserve cell(x,y) in the spatial matrix
while vehicle not crossed traffic light do

Set green light
end while
Set red light

else
Added to DATABASE QUEUE of cars

end if
if outward sensors detection then

Release cell(x,y) in the spatial matrix
end if

C

B

A

Figure 5.2: CIITM procedure at the CI. Vehicle A has left turning signal ”on”, vehicle B wants
to go straight forward as well as vehicle C.

system assumes that the vehicle wants to go straight forward, instead of turning left or

right. On next stage the system verifies if the desired outgoing lane is free, if the free space

exists, the system makes a space reservation and switches the corresponding traffic light

to green, authorizing the vehicle to cross. If the desired outgoing lane is not available the

light remains red. On the last stage the passage of vehicle at the output lane is detected

and the allocated space is released. In Figure 5.2 the space reservation is shown, where

the turning signal for vehicle A is detected to be on (right light signal) and the space

required to cross the CI is unallocated, i.e. the cells are free, therefore the traffic light
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becomes green. However, for the vehicle B (arriving at a later time) no turning signal is

detected (the system assumes that the driver wants go straight ahead) and part of the

space required to cross the CI is already allocated, with no free path found the traffic

light remains in red state. This disallowance to enter the CI box junction, occurs because

vehicle B needs to reserve space already reserved for vehicle A. The vehicle B should pass

when the vehicle A left the junction area, but to maximize the CI area used, the CIITM

system can allow the passage of a vehicle that arrives latter than vehicle B if the desired

space is not in conflict with the space already reserved. This situation occur with vehicle

C, because it has no turning signal is detected and the system assumes that the driver

wants go straight forward, since its desired path does not conflict with previous allocated

space, it receives permission to pass before vehicle B can pass. The passage will only be

granted to vehicle B after vehicles A and C have gone through the drive-through inductive

loops sensors and release the allocated space.

The three stages can be resumed as follows:

1. detection of intended turning behaviour;

2. verification of the status (free/occupied) of the path and outgoing lane, assigning

green or red traffic light to the corresponding lane accordingly;

3. detection of the vehicle passage at the output lane and release of the allocated space

for usage of following vehicles.

This algorithm does not require a V2X CS, relying solely on infrastructure sensors

to detect incoming, outgoing traffic and intended turning behaviour. In this research

work the car intention intelligent traffic management system was developed for crossroad

intersections (CI-CIITM).

The pseudo-code of the CIITM is presented in Algorithm 2.

5.1.4 Waiting Method Intelligent Traffic Management

(WMITM)

The WMITM reservation process starts with a trajectory generation based on the infor-

mation sent by the vehicle with the position and destination lane, after receiving this

information a trajectory is generated. This algorithm relies on a V2X CS to receive the

vehicle’s current estimated pose and destination lane and send the speed profile and the

navigational directions.

The first step after trajectory generation, is to determine the occupied cells by the

vehicle in layer T = t (Figure 5.1). The cells area, reserved in each layer, is wider than

the vehicle dimensions, this is a safety measure, used to avoid accidents in case the driver
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LEMITM

Figure 5.3: Cell selection using waiting algorithm. The WMITM algorithm determines that a
vehicle must wait until the space required is no longer used.

Algorithm 3 WMITM

Require: spatio-temporal matrix, vehicle V2I/V2V communication, vehicle origin, vehicle destination

Use origin and destination to generate trajectory path
if destination free then

Set obstacles list to empty

while unsuccessful reservation do
Use trajectory and obstacles list to generate the speed profile
Use speed profile and spatio-temporal matrix to detect collisions

if collisions then
Find layer(i) and cell(x,y) of the spatio-temporal matrix with collision

Set aux ← last layer
while no solution do

if layer(aux) is occupied then
Save aux-1 and update obstacles list
solution found

end if
Decrease aux

end while
Compute speed profile delaying the arrival time to cell(x,y) until layer(i)

else
Update spatio-temporal matrix
successful reservation

end if
end while
Send speed profile to vehicle V2I/V2V address

else
Send waiting signal to vehicle V2I/V2V address

end if

does not follow exactly the generated speed profile. On the next step, the position of

vehicle in the layer labeled with T = t + ∆t will be determined using its speed, car

dynamic restrictions and estimated trajectory. If the vehicle is trying to reserve a space

in a layer already reserved, the algorithm instruct the current vehicle to slow down before

it reaches the occupied zone. The previous speed profile setpoints will also be modified so
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that during braking, the deceleration does not exceed the comfortable acceleration defined

in section A, making the ride comfortable and giving time to reduce the speed or stop

slowly. Therefore this algorithm imposes that the vehicle wait until the space it is no longer

reserved on any upcomming layer. Although this method will always achieve a solution,

it has a poor efficiency, since it does not use free spaces of the desired path, e.g. if the

algorithm attempts to occupy a cell at T = 3s and the cell was occupied between the

following time intervals T = [3; 4]
⋃

[5; 6], the speed profile generated will slow down the

vehicle (or even stop it) until the moment just after T = 6s, as shown in Figure 5.3. This

method is described in the pseudo-code Algorithm 3. In this research work the waiting

method intelligent traffic management was developed for both roundabout (RI-WMITM)

and crossroad intersections (CI-WMITM).

5.1.5 Early Method Intelligent Traffic Management (EMITM)

If a vehicle is inside a predetermined intersection control radius, the EMITM algorithm

generates a collision-free path. The collision-free path is decomposed into a speed profile

along with navigational directions. The speed profile and navigational directions are sent

only once, therefore the success of this algorithm relies on the important premise that the

vehicle follows the recommendations precisely. This method is based on a spatio-temporal

matrix reservation scheme. The reservation process starts with a path generation based

on the vehicle’s current estimated pose and destination lane. Using the preferred velocity

defined by the agent environmental settings and the determined path a speed profile is

computed. The generated path and speed profile is used in the reservation procedure

applied to the spatio-temporal matrix. If a reservation conflict should exist then the speed

profile is recomputed so that the vehicle waits until the first free space is found. This

collision avoidance reservation process is repeated until an origin-to-destination collision-

free path is obtained. Once the collision-free path is obtained the final speed profile along

with navigational directions are sent to the respective vehicle.

This algorithm relies on a V2X CS to receive the vehicle’s current estimated pose

and destination lane and to send the speed profile and the navigational directions. The

EMITM pseudo-code is presented in Algorithm 4. The EMITM algorithm has roughly the

same operation as a previously developed algorithm (WMITM) [98]. The main difference

is that in conflicting situations the EMITM will try to reserve the first free space, while

the WMITM will try to reserve the immediate free space after the last reserved space, e.g.

if the algorithm attempts to reserve a cell at T = 3s and the cell was occupied between

the following time intervals T = [3; 4]
⋃

[5; 6], the speed profile generated by EMITM will

determine that the vehicle has to slow down until the moment just after T = 4s while
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LEMITMFigure 5.4: Cell selection using early algorithm. The EMITM algorithm reserves the space as
soon as it is available.

Algorithm 4 EMITM

Require: spatio-temporal matrix, vehicle V2I/V2V communication, vehicle origin, vehicle destination

Use origin and destination to generate trajectory path
if destination free then

Set obstacles list to empty

while unsuccessful reservation do
Use trajectory and obstacles list to generate the speed profile
Use speed profile and spatio-temporal matrix to detect collisions

if collisions then
Find layer(i) and cell(x,y) of the spatio-temporal matrix with collision

for i ← layer to last layer do
if cell in layer(i) is free then

Update obstacles list
Exit for loop

end if
end for
Compute speed profile delaying the arrival time to cell(x,y) until layer(i)

else
Update spatio-temporal matrix
successful reservation

end if
end while
Send speed profile to vehicle V2I/V2V address

else
Send waiting signal to vehicle V2I/V2V address

end if

the WMITM will determine to slow the vehicle down until the moment just after T = 6s,

see Figure 5.4. This is the major difference between both algorithms. In this research

work the early method intelligent traffic management was developed for both roundabouts

(RI-WMITM) and crossroad intersections (CI-WMITM).
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Figure 5.5: Cell selection using f orward algorithm. The FMITM algorithm determines that a
vehicle must wait until the space required is no longer used.

5.1.6 Forward Method for Intelligent Traffic Management

(FMITM)

The WMITM and EMITM traffic management systems, when generating a vehicle speed

profile, if a potential collision with a vehicle is detected, they will try to avoid the collision

by decelerating until it is possible to reserve a free path in the spatio-temporal matrix.

The FMITM accelerates the vehicle in order to pass at the collision point ahead of the

colliding vehicle. In the search for a solution to the desired trajectory the FMITM enable

vehicles to travel over the legal speed limit that is set for the roads and intersections. The

over the legal speed is constrained to a maximum speed VMOLS. The ride over the legal

speed can only be used when resolving the collision events, being restored the preset speed

after the collision avoidance. The range of communication had to the extended, due to

the higher speed that vehicles can achieve in order to resolve collisions, therefore vehicles

are being tracked and properly managed earlier than previous ITM algorithms.

If the algorithm attempts to occupy a cell at T = 3s and the cell was occupied between

the following time intervals T = [3; 4]
⋃

[5; 6], the speed profile generated will accelerate

the vehicle until it is able to pass on a moment just before T = 3s. As shown in Figure 5.5

the vehicle with the dotted pattern will accelerate and occupy cells at T=[1, 2]. This

method is described in the pseudo-code Algorithm 5. This algorithm relies on a V2X CS

to receive the vehicle’s current estimated pose and destination lane and to send the speed

profile and the navigational directions. Although this method may achieve a higher traffic

efficiency, not always achieves a solution, since it is not possible to infinitely accelerate a

vehicle to find free spaces of the desired path. When it is not possible to find a solution

with this algorithm, the computation of the path falls back to the EMITM algorithm, to

set the appropriate speed profile.
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Algorithm 5 FMITM

Require: spatio-temporal matrix, vehicle V2I/V2V communication, vehicle origin, vehicle destination,
vehicle MaxTemporarySpeed

Use origin and destination to generate trajectory path
if destination free then

Set obstacles list to empty

while unsuccessful reservation do
Use trajectory and obstacles list to generate the speed profile
Use speed profile and spatio-temporal matrix to detect collisions

if collisions then
Find acceleration to arrive earlier at cell(x,y) of the spatio-temporal matrix with

collision

Compute speed profile anticipate the arrival time to cell(x,y)
else

Update spatio-temporal matrix
successful reservation

end if
end while
Send speed profile to vehicle V2I/V2V address

else
Send waiting signal to vehicle V2I/V2V address

end if

5.1.7 Legacy Early Method for Intelligent Traffic Management

(LEMITM)

In a previous sections, we have presented spatio-temporal reservation scheme of traffic

at intersections for vehicles equipped with V2V and V2I CS. Here, a legacy algorithm is

proposed, which enables a low percentage of vehicles, not equipped or with faulty V2V

and V2I CS, to traverse the intelligent intersection using the spatio-temporal reservation

scheme.

Using the infrastructure sensors to detect incoming and outgoing traffic, the LEMITM

algorithm manages the intersection using a spatio-temporal reservation scheme. When

using the LEMITM algorithm, vehicles do not have to follow an imposed speed profile,

this fact enables the use of the infrastructure by vehicles not equipped or with faulty

V2V and V2I CS. If the vehicle is not equipped with a communication system, it is not

possible to know in advance to which destination and at what speed the vehicle will

travel. Therefore the LEMITM algorithm will attempt to reserve the cells of all possible

trajectories, during a time interval sufficient for any type of vehicle (car or truck) at

different speeds, to traverse the intersection completely, see Figs. 5.6 and 5.7. A speed

safety margin VSM (VSM = [min speed;max speed][km/h]) was set to cope with vehicle

speed variations. The management process occurs in four steps. The first step is to detect

a vehicle at an entrance lane. On the second step, all possible trajectories are reserved on



5.1. Intelligent Traffic Management 85

Figure 5.6: Cell reservation using LEMITM algorithm. The LEMITM algorithm reserves the
space for all possible trajectories.

layer: t,          t+1,             t+2,             …                 t+N;  cells: two‐dimensional space

Figure 5.7: Spatio-temporal matrix sequence using LEMITM algorithm.

the spatio-temporal matrix, for a time sufficient for the vehicle to cross the intersection

completely. After successfully completed the reservation, the green traffic light of the

corresponding lane is turned on until the vehicle enters the intersection. The next step is

to set on the red traffic light of the corresponding lane. The reserved space is sequentially

freed as time passes, after permission was given to enter the intersection. The release of

the previously reserved space will enable upcoming reservations. The pseudo-code of the

LEMITM is presented in Algorithm 6. In order to use this algorithm the intersection must

be signalized.
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Algorithm 6 LEMITM

Input:
stm(l, x, y): spatio-temporal matrix
vehel: vehicle entrance lane
apd(k): all possible destinations
VSM = [min speed;max speed]: speed safety margin
Output:
apdcr: all possible destinations cells reservation
ttsGlctl: time to set GREEN light of the corresponding traffic light
Internal variables:
aot: algorithm offset time
ReSt(k): reservation status (1 successful, 0 unsuccessful)
CoSt: collision status (1 collision, 0 no collision) tSp: test speed

aot = 0
while ∃i ∈ [1, k] : ¬ReSt(i) == 1 do

:restart search
for i ← apd(1) to apd(k) do

for tSp ← VSM (min) to VSM (max) do
CoSt=test collision(tSp,stm(l, x, y))
if CoSt == 1 then

Find layer(j) and cell(x, y) of the stm(l, x, y) with CoSt == 1
for j ← layer(1) to layer(l) do

if cell(x, y) in layer(j) is free then
aot = j
∀i ∈ [1, k] : ReSt(i) == 0
Exit for loop goto :restart search

end if
end for

else
ReSt(i) = 1

end if
end for

end for
end while
Reserve cells in the stm(l, x, y)
ttsGlctl = j

5.2 Environment Impact: emissions and fuel con-

sumption computation

ISR-TRAFSIM includes a newly developed module that computes CO2 emissions as well

as the fuel consumption of the vehicles traversing the intersections, based on an engine

thermal model and the vehicle longitudinal dynamics.

The engine power output and speed from physical interrelationships are computed as

follows: the force required to accelerate the vehicle through a time step is calculated directly

from the required linear speed which is translated into a rotational speed. To compute the

fuel needed to meet speed requirements, the required force is translated into the torque
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Algorithm 7 Emissions and Fuel Consumption

Require: Vehicle Mechanical specifications, Engine Specifications, Fuel Characteristics, vehicle Speed

↪→Use vehicle Speed and Vehicle Mechanical Specifications to compute the Required Traction Force

Ftrac = mveh · g · CR + 1/2 · ρair ·Af · CD · v̄2
veh +mveh · v̇veh +mveh · g · sin(α) [N ]

if Ftrac > 0 then
↪→Use vehicle Speed and Gear Ratio to obtain Rotational Speed: ωeng = v̄veh

rwheel
· γ [rad/s]

↪→Use the Required Traction Force, the Rotational Speed and the vehicle Speed to obtain Re-
quired Torque: Teng = Ftrac

ωeng/v̄veh
[Nm]

↪→Use the Required Traction Force and the engine displacement to obtain brake mean effective
pressure: ρme =

Teng·N ·π
Vd

[bar]

Applying the engine friction model compute the engine friction losses: ρme0f = k1 · (k2 +k3 ·S2 ·
ω2
eng)Πmax ·

√
k4

B [bar]

↪→Use friction losses and global engine losses to obtain global engine losses: ρme0 = ρme0g +
ρme0f [bar]
↪→Use the brake mean effective pressure, the global engine losses and the indicated engine effi-
ciency to obtain fuel mean effective pressure: ρmf = ρme+ρme0

ε [bar]
switch (Fuel Type)
case Gasoline:
Hfuel
l = HC8H18

l [MJ/kg]
ρfuel = ρC8H18

[kg/l]
NCO2
molecules = 8

Mfuel = MC8H18

WTTfuel = WTTCO2

C8H18

case Ethanol:
Hfuel
l = HC2H5

l [MJ/kg]
ρfuel = ρC2H5

[kg/l]
NCO2
molecules = 2

Mfuel = MC2H5

WTTfuel = WTTCO2

C2H5

end switch
↪→Use the fuel mean effective pressure, the engine displacement and the fuel lower heating

value to obtain fuel mass per engine cycle: mf =
ρmf ·Vd
Hfuell

[kg]

↪→Use vehicle fuel mass per engine cycle and Rotational Speed to obtain fuel mass flow: ṁf =
mf · ωengN ·π [kg/s]
↪→Use vehicle fuel mass flow, the time interval, the fuel density and travelled dis-

tance to obtain fuel consumption: FC100km =

ṁf ·∆t
ρfuel·100

∆s
1000

[l/100km]

↪→Use vehicle fuel consumption, the fuel density, the number of CO2 molecules produced on
the combustion process, the CO2 molar mass and fuel molar mass to obtain TTW fuel CO2

emissions: TTWCO2

fuel = FC100km · ρfuel ·NCO2
molecules ·

MCO2
Mfuel

100 · 1000 [gCO2/km]
↪→Use vehicle TTW fuel CO2 emissions, the fuel consumption, the fuel density, the fuel
lower heating value and the TTWCO2

fuel to obtain WTW CO2 emissions: WTWCO2

fuel = TTWCO2

fuel +

FC100km · ρfuel ·Hfuel
l · WTTfuel

100 [gCO2/km]
else

Set FC100km = 0 , TTWCO2

fuel = 0 and WTWCO2

fuel = 0
end if

that must be provided, when a rotational force is applied to a shaft. This approach is

called quasistatic or backward-facing where, assuming that the vehicle follows a required
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speed, we compute how each component must perform [99]. Component by component,

this calculation approach flows backward through the drivetrain, against the tractive

power flow direction, until the required fuel use to meet the speed profile is computed.

The backward-facing approach can compute the emissions and fuel consumption of any

speed profile, and has the advantage of low computing requirements. The implemented

backward-facing approach is presented in Algorithm 7.

5.2.1 Vehicle Mechanical Model

The model of the vehicle is based on the mechanical forces acting on the vehicle. In order

to compute the vehicle fuel consumption the required power must be computed taking

into account its physical dependencies [100]. Considering a vehicle as a mass-point, its

equilibrium equation can be written using equation 5.1:

Ftrac = Froll + Faero + Finertia + Fgrade (5.1)

where Ftrac is the resulting tractive force at the wheels to move the vehicle forward, Froll

is the rolling resistance, Faero is the force due to aerodynamic drag, Finertia is the inertial

force and Fgrade is the force due to road slope. Rolling resistance is associated with the

friction due to tire deformation as they rotate. The equation for rolling resistance is given

by:

Froll = mveh · g · CR (5.2)

where mveh is the total vehicle mass, g is the gravity acceleration, and Cr is the coefficient

of rolling resistance. The friction generated by the vehicle with the atmosphere as it is

traveling through, is referred to as the aerodynamic drag. The drag force is given by:

Faero = 1/2 · ρair ·Af · CD · v̄2
veh (5.3)

where ρair is the air density, Af is the vehicle frontal area, CD is the vehicle aerodynamic

drag coefficient and vveh is the vehicle velocity. The drag force has to be calculated with

the mean velocity in every time step interval, i.e. v̄veh. The inertial force is the load due

to the acceleration of the vehicle’s mass and it is given by:

Finertial = mveh · v̇veh (5.4)

The grade force is the component of the vehicle weight opposing the motion of the vehicle

and it is given by:

Fgrade = mveh · g · sin(α) (5.5)

where α is the angle of the road from horizontal. In this work the road is assumed to be

flat, therefore α is always zero.
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5.2.2 Thermal Engine Model

The traction force Ftrac has to match the total resistance force for every time step in the

discrete speed profile [101]. Once obtained the Ftrac, the first step to compute the necessary

engine torque is to calculate the engine rotational speed ωeng using the wheel radius rwheel

and the gear ratio:

ωeng =
v̄veh
rwheel

· γ (5.6)

where the gear ratio γ is function of v̄veh. In order to comply with the determined vehicle

speed, the engine must apply the following torque Teng to the crankshaft:

Teng =
Ftrac

ωeng/v̄veh
(5.7)

The Willans approximation [100] for the engine’s torque and efficiency characteristics was

used:

ρme = ε · ρmf − ρme0 (5.8)

where ρme is the brake mean effective pressure, ε is the indicated engine efficiency, ρmf is

the fuel mean effective pressure and ρme0 represents all mechanical friction and pumping

losses. The Willans approximation was chosen because it provides a low computation

model while it models very well real engine behavior. The brake mean effective pressure

ρme, is the pressure that has to act on the piston during one full expansion stroke to

produce the same amount of work as the real engine does in two engine revolutions:

ρme =
Teng ·N · π

Vd
(5.9)

where Vd is the engine’s displacement and N = 4 for a four-stroke engine. The fuel mean

effective pressure ρmf , is the brake mean effective pressure, that an engine with an efficiency

of 100% would produce, by burning the fuel mass mf per engine cycle, with a fuel lower

heating value of Hl (HC8H18
l is the lower heating of the gasoline and HC2H5

l is the lower

heating of the ethanol):

ρmf =
mf ·Hl

Vd
(5.10)

The ρme0 represents the engines losses due to friction ρme0f and gas exchange ρme0g:

ρme0 = ρme0g + ρme0f (5.11)

The ρme0f follows a friction model described in [101]:

ρme0f = k1 · (k2 + k3 · S2 · ω2
eng)Πmax ·

√
k4

B
(5.12)

where S is the stroke, B is the bore and ki ∧ i ∈ {1, 2, 3, 4} are constants of the friction

model defined in [101]. The maximum boost ratio, Πmax, is 1 for naturally aspirated

engines.
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5.2.3 Fuel Consumption and Emissions Computation

From (5.8-5.12), one can compute the fuel mass flow:

ṁf = mf ·
ωeng
N · π

(5.13)

The total fuel consumed is the summation of the fuel consumption at each time interval

∆t, as long as the required Ftrac is positive. Two types of fuel consumption were analyzed

in this work: gasoline and ethanol. The chemical equation for the combustion [102] of

gasoline is:

C8H18 + 12.5O2 −→ 8CO2 + 9H2O (5.14)

and for ethanol is:

C2H5OH + 3O2 −→ 2CO2 + 3H2O (5.15)

The burning process of the gasoline and ethanol results in emissions of 8 and 2 molecules

of CO2, respectively. Given the number of CO2 molecules produced by the combustion

and the molar mass of the gasoline (MC8H18), ethanol (MC2H5) and CO2 (MCO2), one can

compute the tank to wheel (TTW) CO2 grams emission for gasoline [103]:

TTWCO2
C8H18

=
∑

(ṁf ·∆t) · ρC8H18 · 8 ·
MCO2
MC8H18

(5.16)

and for ethanol:

TTWCO2
C2H5

=
∑

(ṁf ·∆t) · ρC2H5 · 2 ·
MCO2
MC2H5

(5.17)

where ρC8H18 and ρC2H5 are respectively the gasoline and ethanol densities. Using the

well-to-tank CO2 emissions (WTTCO2) and equations (5.16) and (5.17) one can compute

the well-to-wheel CO2 emissions for gasoline [104, 105]:

WTWCO2
C8H18

= TTWCO2
C8H18

+∑
(ṁf ·∆t) · ρC8H18 ·H

C8H18
l ·WTTCO2

C8H18

(5.18)

and for ethanol:

WTWCO2
C2H5

= TTWCO2
C2H5

+∑
(ṁf ·∆t) · ρC2H5 ·H

C2H5
l ·WTTCO2

C2H5

(5.19)

The developed algorithm for total fuel consumed and CO2 emissions is presented in Algo-

rithm 7.
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5.3 Results

The developed traffic simulator is highly customizable making it suitable not only for the

analysis of ITM algorithms, fuel consumption and CO2 emissions but as well for other

ITS studies (e.g. path following controllers evaluation, sensor fusion, etc).

The simulated road layout under study is composed by a roundabout and a crossroad

intersection. The traffic is right-handed, i.e. vehicles on the RI travel anticlockwise, and no

overtaking maneuvers are considered in this study. The RI traffic inflow/outflow arrives

from four directions. Each direction is composed of two roads of inflow/outflow and each

road has two lanes; the same setup is also applied to the CI. The CI can be controlled by

traffic lights, and inside the CI box junction, vehicles are not allowed to stop, i.e. a vehicle

must not enter the box junction if there is no space for the entire vehicle to exit in the

other side of the CI. The simulated vehicles run on gasoline or ethanol and are equipped

with a four-stroke otto cycle engine. The modelled engine is equipped with the following

two systems: Deceleration Fuel Cut Off (DFCO) and STart-StoP (ST-SP). The DFCO

detects if the car is coasting and then cuts fuel to the engine and allows the wheels to

keep the engine running, which means that the car doesn’t consume any fuel, when the

power at the wheels is smaller or equal to zero. The ST-SP system automatically shuts

down the engine when the vehicle stops and restarts it when power is required, this system

reduces the engine idling time, and thereby reduces the fuel consumption and emissions.

The results presented here refer to a 10 min time interval. The Influx, represents the

vehicle agents to be created according to the Traffic Flow Profile (TFP), e.g. in TFP7

a total of V ATFP = 1600 vehicle agents should be created during 10min on a scenario

composed of a RI + CI (12 lanes input):

TFP7 = 800[v/h/lane] 7−→ V ATFP = 800[v/h/lane] · 10[min]·60[s]
3600[s] · 12[lanes] = 1600[vehicles] (5.20)

TFP ranging from 100 to 3600 vehicles/hour/lane were used in simulations (see Ta-

ble 5.2):

TFP#
(veh/h/lane)

TFP1 TFP2 TFP3 TFP4 TFP5 TFP6 TFP7 TFP8 TFP9 TFP10 TFP11 TFP12 TFP13 TFP14
100 200 300 400 500 600 800 1000 1200 1600 2000 2400 3000 3600

RI or CI (8 input lanes)
V ATFP 134 267 400 534 667 800 1067 1334 1600 2134 2667 3200 4000 4800

RI + CI (12 input lanes)
V ATFP 200 400 600 800 1000 1200 1600 2000 2400 3200 4000 4800 6000 7200

Table 5.2: Number of vehicle agents (V ATFP ) that should be created during 10min for
each of the TFP and each of the tested scenarios.

Regarding the communication system, the IEEE 802.11a protocol was chosen along

with the friis radio propagation model. We assume that all transmissions experience the
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Table 5.3: Communication system parame-
ters.

IEEE 802.11a

RXTX Turnaround= 2 (µ s) MAC header = 34 (Byte)
SlotTime = 9(µ s) Max. payload = 2312 (Byte)
CCA = 4(µ s) RTS = 20 (Byte)
SIFS = 16 (µ s) CTS = ACK = 14 (Byte)
DIFS = 24 (µ s) CWmin = 15
RX SINR threshold = 10 (dB) CWmax = 1023
TX power = 0.2 (W) RREQ = RREP = 22 (Byte)
Receiver antenna gain = 1 RREQ timeout = 0.2 (s)
Transmiter antenna gain = 1 RREQ max retries = 3
Frequency = 5(GHz) Time To Live (TTL) = 7

Table 5.4: Vehicle mechanical specifica-
tions.

Parameter Value

Vehicle mass mveh 1500 [kg]
Frontal area Af 2.0 [m2]
Air drag coeffi. CD 0.3 [−]
Air density ρair 1.2 [kg/m3]
Rolling frict. coeffi. CR 0.01 [−]
Maximum boost ratio Πmax 1 [m]

Gear ratios γ
(13.8;

[−]7.7; 5.3;
3.9; 3)

Table 5.5: Otto cycle engine specifications.

Parameter Value
Displacement Vd 1.5 · 10−3 [m3]
Bore B 79.5 · 10−3 [m]
Stroke S 80.5 · 10−3 [m]

Friction model

k1 1.44 · 105 [Pa]
k2 0.46 [−]
k3 9.1 · 10−4 [s2/m2]
k4 0.075 [m]

Gas exchange losses ρme0g 1 [Pa]
Engine efficiency ε 0.4 [−]
Deceleration fuel cut off DFCO ON [−]
Start-Stop system ST-SP ON [−]

Table 5.6: Fuel Characteristics.

Gasoline
Parameter Value

Density ρC8H18
0.75 [kg/l]

Lower eating value HC8H18
l 44.4 [MJ/kg]

Molar mass MC8H18 114.22 [g/mol]

Well to tank WTTCO2
C8H18

12.5 [gCO2/MJ ]

Ethanol
Parameter Value

Density ρC2H5
0.79 [kg/l]

Lower heating value HC2H5
l 28.86 [MJ/kg]

Molar mass MC2H5
46.07 [g/mol]

Well to tank WTTCO2
C2H5

48.5 [gCO2/MJ ]

Carbon dioxide
Parameter Value

Molar mass MCO2 44.01 [g/mol]

same path loss versus distance profile, that every node transmits with the same power

in the same channel, that the propagation delay is negligible and that each node has the

same antenna gain and receiver sensitivity. The CS parameters used in simulation are

presented in Table 5.3. The initial CS simulation settings had to be changed, and the TTL

(see Table 5.3) had to be reduced otherwise to much requests would overflow the network.

While on STLS mode the fixed time traffic lights are set to: Tgreen = 15[s], Tyellow = 5[s]

and Tred = 2[s]. The extra reserved area for safety purposes was set to Asafety = [1.5; 3][m].

Asafety can be increased or decreased, function of the vehicle positioning accuracy (see

chapter 6) and of the autonomous path following controller efficiency (see section 4.4.2)

or if the vehicle is driven by an human, i.e. it is less likely a constraint infringement by a

autonomous vehicle controller [97] than by a human driver following a speed profile and

navigational directions provided by an HCI.

Various simulation runs were conducted in order to quantify the potential benefits in

fuel economy of the proposed ITM algorithms. The vehicle model is based on a mid-sized

vehicle with mechanical specifications presented in Table 5.4 [100]. The fuel consumption

and CO2 emission results were obtained by simulating a naturally aspirated 1.5L otto
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Figure 5.8: 3D spatio-temporal matrix reservation scheme for the EMITM applied to: (a) all
scenario both RI and CI, each running its own management system; (b) the roundabout; (c) the
crossroad; (d) applied to all scenario both RI and CI, including the link between intersections.

cycle engine equipped with a 5-speed manual transmission. In this work the gear-shift

model efficiency and the engine simulation at cold-start were not taken into account. The

engine specifications and fuel characteristics are respectively presented in Tables 5.5 and

5.6

In Figure 5.8(a-d) the spatio-temporal matrix reservation for a multiple vehicle cells
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resource competition is presented. Figure 5.8(b) and (c) show respectively the result of

the application of the EMITM for the RI and CI while Figure 5.8(a) shows the result of

both RI + CI, each intersection using their own independent EMITM. Figure 5.8(d) is

presented as pictorial view of the EMITM if it was applied to all scenario, including the

link between intersections, i.e. RI + RI2CI + CI.

The following performance metrics were used to assess ITM performance:

• Created : is the number of vehicle agents created during the 10min test;

• Waiting : is the number of vehicle agents waiting to be created at the end of 10min;

• Outflux[%] : is the % of the total V ATFP vehicles that fully traverse the intersec-

tion;

• T.Stop.[%] : is the average % of time stopped of all vehicles during the traverse of

the intersection;

• T.Mov.[%] : is the average % of time non-stopped of all vehicles during the traverse

of the intersection;

• Av.Vel.[km/h] : is the average velocity of all vehicles during the traverse of the

intersection;

• Av.Vel.Mov.[km/h] : is the average velocity of all vehicles during the traverse of

the intersection excluding the time when vehicles are stopped;

• Vel. < [km/h] : average % of time vehicles spent travelling under 10, 20 and

30[km/h];

• (GAS)Av.Consump.[l/100km] and (ETH)Av.Consump.[l/100km] : and are

the gasoline and ethanol average consumption [l/100km] of all vehicles respectively;

• (GAS)Av.CO2[gCO2/Km] and (ETH)Av.CO2[gCO2/Km] : are the average

grams of [CO2/Km] emissions from tank-to-wheel for gasoline and ethanol fueled

vehicles respectively;

• (GAS)Av.WTW[gCO2eq/Km] and (ETH)Av.WTW[gCO2eq/Km] : are the

average grams of [CO2eq/Km] emissions from well-to-wheel for gasoline and ethanol

fueled vehicles respectively

• Conf .Solv. : is the % of cell reservation conflicts, that were solved by the FMITM.
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5.3.1 Individual RI and CI performance assessment of non-

legacy and top speed limited ITM algorithms

This section presents the results of traditional, non-legacy and top speed limited ITM

algorithms, i.e. RI-ITMD, CI-STLS, CI-CIITM, WMITM and EMITM, when applied

individually to a RI (Figure 4.3(a)) or to a CI (Figure 4.3(b)). The simulation tests

where RI is running the RI-ITMD and CI is running CI-STLS will serve as reference

for the others algorithms performance evaluation. All algorithms have a maximum flux

capacity also designated by algorithm intersection saturation point, from that point on,

the Outflux reaches a nearly steady-state profile. The maximum flux capacity, varies for

each algorithm and can be easily observed in Figures 5.9 and 5.10. The same applies to

all others analyzed metrics.

From Figures 5.9-5.10 it is possible to observe that the CI intersections have better

performance in almost all measured metrics, when using spatio-temporal ITM’s, but when

traditional method are applied to regulate the intersections the RI have better performance.

The Outflux of the traditional method CI-STLS falls to less than 50% at TFP2 while

at the RI-ITMD this only happens on TFP6 (see Figures 5.9(a)). The Av.Vel. is consid-

erably lower at the CI-STLS than on the RI-ITMD, but the Av.Vel.Mov. has similar

values among methods, this fact can be better understood by analysing the T.Stop.(see

Figures 5.9(b-c)). The T.Stop. is much higher in CI-STLS, due to the time vehicles are

held on red traffic light, leading to significant difference on Av.Vel. of the two methods,

but not so relevant on Av.Vel.Mov. where the time stopped is not accounted for the

average. The time stopped has direct influence on the % of time that Vel. is below each an-

alyzed velocity threshold, namely 10, 20 or 30[km/h], meaning that CI-STLS is most of the

time below 10[km/h], 85% of the time compared to around 60% for RI-ITDM. Regarding

the fuel consumption (GAS)Av.Consump. and CO2 emissions (GAS)Av.WTW the

CI-STLS is slightly better than RI-ITMD, this contrast with all other analyzed metrics,

and the reason for this out-of-trend can be explained by the fact that it was considered

that the vehicles are equipped with the start-stop system (ST-SP), and therefore when

vehicles are stopped no consumption [l/100km] or emission is made [gCO2eq/Km]. Since

vehicle in CI-STLS controlled intersections spend considerable T.Stop. their consumption

or emission is therefore lower, otherwise if no ST-SP were considered, it would be higher

than the RI-ITMD (see Figure 5.9(d)).

The results of algorithms using spatio-temporal ITM’s are presented in Figure 5.9(e-h)

and in Figure 5.10(a-h). In almost all measured metrics, when using spatio-temporal ITM’s

the CI is either better or equal to the RI.
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Figure 5.9: RI-ITMD, CI-STLS and CI-CIITM results for all TFP’s applied to an intersection composed of a RI or a CI: (a-d) RI-ITMD
and CI-STLS; (e-h) CI-CIITM. The abscissa axis represent TFP ranging 100 to 3600 vehicles/hour/lane.
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Figure 5.10: WMITM and EMITM results for all TFP’s applied to an intersection composed of a RI or a CI: (a-d) RI-WMITM and
CI-WMITM; (e-h) RI-EMITM and CI-EMITM. The abscissa axis represent TFP ranging 100 to 3600 vehicles/hour/lane.
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Figure 5.11: Non-legacy and top speed limited ITM results for an intersection com-
posed of a RI or a CI: (a) Outflux[%]; (b) Av.V el.[km/h]; (c) T. < 10km/h[s]; (d)
(GAS)Av.WTW [gCO2eq/Km]. Each axis line (starting in the center and extending to the
periphery of the circle) represent TFP ranging 100 to 3600 vehicles/hour/lane. For better
graph readability each axis line has different quantitative scales, e.g. on subplot (a) the TFP1
(100veh/h/lane) scale, ranges from 0% to 98.51%, while for the TFP14 (3600veh/h/lane) scale
the range is from 0% to 17.19%

Figure 5.9(e-h) presents the results of the CI-CIITM, where a small improvement from
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the traditional CI traffic regulating method (CI-STLS) can be observed. Although the

use of the CI-CIITM represented an improvement to the CI-STLS it still falls behind the

performance of the traditional RI traffic regulating method (RI-ITMD). The RI-ITMD

compared to CI-CIITM as another advantage regarding the investment on infrastructure

equipment, i.e. the CI-CIITM requires a computer vision sytem and induction loops to

be equipped on installed on the infrastructure while the RI-ITMD it does not require any

special equipment.

Figure 5.10(a-d) presents the results of the WMITM when applied to the RI (RI-

WMITM) and to the CI (CI-WMITM), whereas Figure 5.10(e-h) presents the results of

the EMITM when applied to the RI (RI-EMITM) and to the CI (CI-EMITM). Both

WMITM and EMITM achieve a considerable improvement in all metrics except in fuel

consumption (GAS)Av.Consump. and CO2 emissions (GAS)Av.WTW.

The overall comparative evaluation of all traditional methods and non-legacy and top

speed limited ITM algorithms can be better accessed in Figure 5.11. Figure 5.11 presents a

subset of relevant analysis metrics, namely the Outflux (Figure 5.11(a)), the AV.Vel. (Fig-

ure 5.11(b)), Vel. < 10[km/h] (Figure 5.11(c)) and (GAS)Av.WTW (Figure 5.11(d)).

Each axis line, starting in the center and extending to the periphery of the circle, represent

a TFP, ranging 100 to 3600 vehicles/hour/lane. For better graph readability each axis line

has different quantitative scales, and the scale is dynamically adjusted so that the max

scale correspond to the max displayed value, e.g. on subplot (a) of Figure 5.11 the TFP1

(100veh/h/lane) scale, ranges from 0% to 98.51%, while for the TFP14 (3600veh/h/lane)

the scale range is from 0% to 17.19%.

The best performing algorithm on the Outflux metric is the CI-EMITM (see Fig-

ure 5.11(a)), from TFP7 (800veh/h/lane) its performance is around 1/4 better than the

second best algorithm (CI-WMITM). The second best algorithm is not from RI-EMITM

but again from a CI, i.e. the CI-WMITM, but not by a large margin. The RI-EMITM is

the third best and their results are similar to the CI-WMITM. Surprisingly the traditional

method for traffic regulating inside (RI-ITMD) is the forth best method in-front of algo-

rithms using spatio-temporal ITM’s, such as RI-WMITM and CI-CIITM. The RI-ITMD

compared to spatio-temporal ITM’s as an advantage of not requiring additional infrastruc-

ture investment. Although RI-WMITM and CI-CIITM have identical performances, the

RI-WMITM requires additional investment in both infrastructure and vehicles.

Regarding the performance in the AV.Vel. (Figure 5.11(b)) the profile analysis follows

the same pattern as in the Outflux, except that the second best algorithm is switched from

CI-WMITM to RI-EMITM. The RI-EMITM in steady state achieves a better result than

the CI-WMITM. The differences among algorithms are not so evident as in the Outflux,

except for the traditional CI traffic regulating method (CI-STLS). The failure to provide a
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reasonable performance in the AV.Vel. by the CI-STLS is well depicted in Figure 5.11(c).

The CI-STLS spends most of the time with a Vel. < 10[km/h], thus making it difficult

to analyze all other algorithms, due to the huge gap between this algorithm and all the

other. Nevertheless a careful analysis reveal the same pattern as in AV.Vel..

The CO2 emissions (GAS)Av.WTW (Figure 5.11(d)), reveal an out of trend be-

haviour, meaning that:

• the CI-EMITM is the worst performing algorithm from TFP7 (800veh/h/lane);

• the CI-WMITM is the worst performing algorithm at TFP6 (600veh/h/lane) and

the second worst from TFP7;

• the RI-EMITM is the third best performing algorithm from TFP5 (500veh/h/lane)

and the second best from TFP7;

• the RI-WMITM is the second best performing algorithm from TFP5 (500veh/h/lane)

and the best from TFP7;

• the CI-CIITM is performing worst than the CI-STLS from TFP4 (400veh/h/lane);

• the RI-ITMD is performing worst than the CI-STLS from TFP5 (500veh/h/lane);

• the CI-STLS is no longer the worst performing algorithm in all TFP’s, and it is CI

best performing CI algorithm from TFP6.

From TFP7 (800veh/h/lane) the best performing CI algorithm on the Outflux metric

(CI-EMITM) is 1/6 to 1/5 more pollutant than the best RI algorithm (RI-EMITM). It is

worth noting that, for each algorithm, before the Outflux starts to fall steeply the CO2

emissions (GAS)Av.WTW follow the same grading pattern as with the Outflux.

5.3.2 Forward Method for Intelligent Traffic Management

(FMITM)

This section presents the results of the FMITM, compared to traditional methods and to

the globally best performing algorithms in both CI and RI. When reserving the spatio-

temporal matrix using the vehicle origin-destination setup and the preferred speed, each

cell is tested to verify if it is reserved or free. If the cell is already reserved it is signalized

a conflict situation. The number of conflict situation solved (Conf .Solv.) is used as a

performance metric for parameter selection of the FMITM. The parametrization variables

are the safety margin when booking the space-time matrix (ASM) and the maximum speed

that a vehicle can reach to avoid the collision (VMOLS).
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Figure 5.12: Maximum speed allowed and safety margin performance evaluation of FMITM
for an intersection composed of a RI: (a) safety margin ASM = [1; 2.5][m]; (b) safety margin
ASM = [1; 5][m]. The tests above the scenario setup legal maximum velocity, comprise VMOLS =
{40, 45, 50, 55, 60, 65}[km/h]. For better graph readability each axis line has different quantitative
scales.

A set of tests using different values of both ASM and VMOLS were performed, in order to

access the suitable over the legal limit maximum speed VMOLS and a proper safety margin

ASM for this new maximum speed. The cells area, reserved in the spatio-temporal matrix,

are wider than the vehicle dimensions, this safety margin ASM (ASM = [wide; long][m]) is

used to avoid accidents and should be increased as VMOLS increases. The ASM was tested

using two setups: ASM = [1; 2.5][m] and ASM = [1; 5][m]. The VMOLS was tested with speed

ranging from VMOLS = 40km/h to VMOLS = 65km/h.
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Figure 5.13: Results of FMITM: (a-d) performance analysis on a intersection composed of a RI or a CI; FMITM comparison with
eMITM for all TFP’s applied to an intersection composed of a RI or a CI: (e) Outflux[%]; (f) Av.V el.[km/h]; (g) T. < 10[km/h]; (h)
(GAS)Av.WTW [gCO2eq/Km].
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Figure 5.12 presents a subset of the results of the multiple simulations, used to fine

tune ASM and VMOLS, in order to obtain the maximum performance from the FMITM

algorithm. The simulations presented were performed using a TFP3 for an RI intersection.

As expected when increasing the VMOLS the number of Conf .Solv. is greater, the Av.Vel.

is increased and the vehicles spend less time travelling with a Vel. < 10[km/h] and with

a Vel. < 20[km/h]. The increase of the VMOLS leads to a increase of CO2 emissions,

being more significant with a VMOLS = {60, 65}[km/h]. When reserving a small area

ASM = [1; 2.5][m] (Figure 5.12(a)) the number of Conf .Solv. is greater but it represents

an added collision risk. If ASM is small, the true area occupied by the vehicle is less likely

to be bounded inside the reserved ASM area, when an inaccurate vehicle pose estimation

or a less efficient path following controller event occurs.

When being more conservative and reserving a bigger area ASM = [1; 5][m] (Fig-

ure 5.12(b)), the number of Conf .Solv., w.r.t. ASM = [1; 2.5][m], is significantly lower

but it represents a lower CO2 emissions and reduced collision risk.

As a algorithm designer option, it was chosen that the VMOLS should not exceed two

times the specified legal velocity limits inside intersections and that there should not

occur a significant subjective collision risk increase w.r.t. other implemented algorithms.

Therefore the maximum speed that a vehicle can reach to avoid the collision was set to

VMOLS = 60[km/h] and the safety margin when booking the space-time matrix was set to

ASM = [1; 5][m], this choice also fulfills one requirement of not increasing significantly the

the CO2 emissions.

Figure 5.13 presents a comparative analysis between the FMITM and EMITM algo-

rithm for both RI and CI intersections. As expected, for both CI and RI, the FMITM has

a better record in most of the analyzed metrics, losing ground to the EMITM on the CO2

emissions, but only when it is reached the intersection saturation for the FMITM algo-

rithm. Regarding the performance of the CI-FMITM w.r.t. RI-FMITM, the CI-FMITM

is globally better, except when it is reached the intersection saturation for the CI-FMITM

algorithm, from that point on the AV.Vel. and the (GAS)Av.WTW have better results

using the RI-FMITM.

5.3.3 RI and CI combined performance assessment of non-

legacy and speed limited compliant ITM algorithms

The ITM algorithms were extensively simulated trough a diverse combination of simulation

tests on the scenario composed of a RI and a CI, as depicted in Figure 4.3(c). A subset

of the tests performed with the ITMD, STLS, WMITM and EMITM, are characterized

in Table 5.7 and presented in Figure 5.15. This section does not include non-legacy
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Figure 5.14: Mean speed profile vs distance travelled of vehicles entering on lane 1 and exiting
on lane 25 (the path between lane 1 and 25 passing through 15 is marked on Figure 5.16).
The marked gray area at the distance travelled [30-70] and [110-130] represent the RI and CI
respectively. Mean speed profile for both TFP1, TFP2 and TFP3 is respectively on the left,
center and right sub-plot. The ITM used for Test i, where i = 1..18, are presented on Table 5.7.

algorithm (LEMITM) and non-speed limit compliant algorithm (FMITM) due to their

specific nature. The most important results, observed in each simulation experiment of 10

min, are summarized in Figure 5.15.

Table 5.7: Simulations tests catalog for each ITM, according to the traffic inflow for each
of the 12 input lanes (RI and CI).

TFP# Case-study (RI Algorithm + CI algorithm)
RI
+
CI

ITMD
+

STLS

WMITM
+

STLS

ITMD
+

WMITM

EMITM
+

STLS

ITMD
+

CIITM

ITMD
+

EMITM

WMITM
+

CIITM

WMITM
+

WMITM

WMITM
+

EMITM

EMITM
+

WMITM

EMITM
+

CIITM

EMITM
+

EMITM
TFP1 test 1 test 4 test 7 test 10 test 13 test 16 test 19 test 22 test 25 test 28 test 31 test 34
TFP2 test 2 test 5 test 8 test 11 test 14 test 17 test 20 test 23 test 26 test 29 test 32 test 35
TFP3 test 3 test 6 test 9 test 12 test 15 test 18 test 21 test 24 test 27 test 30 test 33 test 36

The speed limit on the whole scenario was set at 11.1m/s (40km/h), except while

driving inside the RI and CI, where the speed limit was set at 8.3m/s (30km/h). These

limits are well depicted in Figure 5.14, where inside intersections (gray areas) the speed

of vehicles falls to at least 8.3m/s, while outside intersections the vehicle speed may rise

to 11.1m/s.

The Outflux results of tests 1-6 and tests 10-12, where STLS method was used at

the CI, are significantly lower than results of tests 7-9 and tests 13-27, where an ITM
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was used at the CI. The results show that the maximum number of vehicles traversing

two-intersections scenario is limited by the performance of the CI. The previous hampering

traffic effect is easily seen in Figure 5.14, where the speed profile for tests 1-6 is severely

affected, even when a low traffic density is applied.
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Figure 5.15: Non-legacy and speed limited compliant ITM results, applied to two intersections
composed of a RI + CI (12 input lanes): (a) TFP1 (100/veh(h/lane) ; (b) TFP2 (300/veh(h/lane);
(c) TFP3 (300/veh(h/lane).

The number of vehicles in waiting status increases with the increase of the traffic flow

except when an ITM is applied in any one of the intersections; this effect can be easily

seen on Figure 5.15 where the Waiting percentage is lower when using an ITM. The

increase of the number of vehicles traversing the intersections occurs not only when the

ITM systems are working together but as well if one of them is working exclusively. The

performance improvement of any of the used ITM algorithms is more noticeable when the

traffic flux per lane is higher.

The simultaneous use of the EMITM in both intersections revealed to be the best

combination, in all analyzed metrics, when compared with other combinations of ITM

algorithms. For example, this combination yields the largest number of vehicles crossing

intersections and the lowest cumulative time stops. Figure 5.14 depicts very well this

performance improvement, the speed profile is close to the speed limit for tests 34-36,

consequently the mean speed is higher. Figure 5.16(a) shows the level of occupancy of cells

concerning the simulation test 36, when both intersections are regulated by the EMITM.

Although in this test the traffic inflow per lane is 300 vehicles/lane/h, the occupation level

is mild and increases slightly only on approaching and inside of both intersections. This
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Figure 5.16: Simulation scenario layout (RI and CI): (a) cell occupancy level for simulation Test
36. Higher occupancy levels occur mainly on approaching and inside intersections; (b) average
speed of vehicles of path between lane 1 and 25 passing through lane 15, the marked area 1 and
2 represent the RI and CI respectively. This path is also used to study the vehicles speed profile
on Figure 5.14.

effect is compliant with the information presented in Figure 5.14, whereas the speed profile

is moderately reduced before entering the RI and has a low reduction before entering the

CI.

Figure 5.16(b) represents the average speed of vehicles traveling path between lane

1 and 25 passing through lane 15 crossing the RI area (marked area 1) and the CI area

(marked area 2). The vehicle entering on lane 1 slows down when arriving to the RI but it

is little affected by the CI almost maintaining its speed. A vehicle coming from a lane other

than the link between RI and CI is highly disturbed on its speed having to stop at the

entrance of the CI, this disturbance favors overall vehicles flow through both intersections.

5.3.4 Legacy Early Method Intelligent Traffic Management

(LEMITM)

Figure 5.18 presents the results of the tests for three TFP simulations and nine different

% of vehicles that are not equipped or with faulty V2V and V2I CS. Each test has the

same duration of 10 min. The reservation procedure was setup with a safety margin area

of ASM = [2; 10][m], a speed safety margin of VSM = [25; 55][km/h] and a sampling period

of δt = 0.1[s].

The LEMITM algorithm reserves the space for all possible trajectories, activating the

green light when the reservation is successful. The reserved space is sequentially freed as

time passes, after permission was given to enter the intersection, i.e. green light is on. In

Figure 5.17 it is possible to observe the reservation of all trajectories, for one vehicle at each
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Figure 5.17: Spatio-temporal cell reservation using LEMITM algorithm for one vehicle at each
intersection (see Figure 5.6). The LEMITM algorithm reserves the space for all possible trajec-
tories, setting green light when the reservation is successful. The reserved space is sequentially
freed as time passes after green light is on. Time increases from left-right top-bottom.
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Figure 5.18: LEMITM results, applied to two intersections composed of a RI + CI (12 input
lanes): (a) traffic flow profile 1 (100/veh(h/lane) ; (b) traffic flow profile 2 (300/veh(h/lane); (c)
traffic flow profile 3 (300/veh(h/lane).

intersection. Results show that the LEMITM performance is lower than EMITM. The loss

of efficiency was expected since at least a % of vehicles (vehicles without V2V and V2I CS)

reserve all cells in all possible trajectories. This scheme leads to the reservation of space
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blocks that are not used; it is the payback of allowing vehicles without communications

to go through the intersections. For the specific case in which % of vehicles that are not

equipped or with faulty V2V and V2I CS is below 20%, although the reduction in efficiency

occurs when the traffic flow increases, the LEMITM algorithm provides the best results, in

almost all analyzed metrics, in comparison to other traditional methods of traffic control.

5.4 Final Remarks

In this chapter it was presented a spatio-temporal reservation based technique to reduce

traffic congestion and to allow vehicles to traverse intelligent intersections. The spatio-

temporal reservation scheme shows a better performance than the traditional control

schemes: less time in crossing intersections with shorter stops or even no need of vehicle

stops. Globally the CI has a better performance than the RI, but it is also more prone to

accidents [5], which in the context of spatio-temporal reservation means that if vehicles do

not follow the velocity profile an hazardous event is likely to occur and the risk of fatalities

is higher.

The FMITM proved to be the best performing ITM algorithm in terms of traffic flow,

but it was also the most pollutant method. The EMITM revealed to be a good method for

ITM and it was observed a significant improvement on the RI traffic flow. Simulation results

revealed that when using the EMITM algorithm, vehicles can traverse the intersections

with short stops, or even without stoppages, and crossing time is significantly smaller in

comparison with other methods.

As expected, the LEMITM has a lower efficiency than EMITM, but with its application

is possible to reduce the time in crossing intersections, in comparison with the traditional

techniques of traffic control. The results show that the LEMITM performance worsens

with increasing percentage of vehicles that are not equipped or with faulty V2V and V2I

CS. The degrading performance is due to the fact that these vehicles reserve cells in

the spatio-temporal matrix for all possible paths, meaning that there are blocks in the

spatio-temporal matrix that are never used. When the percentage of vehicles that are not

equipped or with faulty V2V and V2I CS is low, the LEMITM performance is higher than

the traditional method except for the CO2 emissions.
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The algorithms used in the Vehicle Pose Estimator (VPE) for autonomous vehicles

navigation in semi-structured outdoor environments, are described in this chapter. The

VPE provides estimates of both the position and orientation of car-like vehicles, using

multiple sensors. The presented solution enable each vehicle to have different combination

of sensors. The proposed sensor fusion algorithms, were tested using ISR-TRAFSIM sim-

ulator. As described in Chapter 4, the ISR-TRAFSIM is an agent based simulator, each

agent incorporates a group of modules, were each module is responsible by a self-contained

specific function (see Figure 6.1).

The vehicle agent is composed by a PFC and a Sensor Fusion and Reasoning (SFR)

module. The PFC is made up of two main modules: the VP and the LC . The VP receives

a reference path and speed profile from the traffic management system and according to

the VPE estimated pose provides a reference velocity [vref ]. A fuzzy-logic based lateral

controller is compared with a canonical one and the second uses chained form theory, they

provide both steering and velocity commands [ϕc, vc].

The SFR comprises the following sensors:

i four wheel encoders’ measurements ∆RR, ∆RL, ∆FR, ∆FL and the steering wheel

encoder γ. These sensors provide redundant data when computing the pose of an

Ackermann steered vehicle;

ii MSS composed by a set of magnetic markers detectors. The simulated sensors are

triggered when they cross over a magnetic landmark. This sensing system provides

the distance dm from the x axis of the vehicle to the triggered sensor along the y

axis of the vehicle;
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Figure 6.1: Vehicle Pose Estimator and Sensor Fusion & Reasoning modules integration in the
overall Simulator architecture.

iii LIDAR this sensor provides all range-bearing data to the MTDT and the average

range-bearing pair [dl, λl] of a preceding detected vehicle used as a landmark.

iv GNSS: the GPS constellation is simulated as well as disturbances, such as the

tropospheric delay, ionospheric delay, multipath noise, thermal noise and clock biases.

- the VPE receives its own GPS simulated receiver code and carrier pseudoranges

for all visible satellites [P S
v ρ

S
v ];

- if in the range of the V2V, the third party vehicle (i=2..n) current (k) estimated

pose [x̂i=2..n;k, ŷi=2..n;k, θ̂i=2..n;k] and its GPS simulated receiver code and carrier

pseudoranges for all visible satellites [P S
v ρ

S
v ] are also provided to the VPE.

- if in the range of the V2I, the Master Antenna Fixed Station (MAFS) position

[xm, ym] and its GPS simulated receiver code and carrier pseudoranges for all

visible satellites [P S
mρ

S
m] are also provided to the VPE.

The VPE comprises two main methodologies to compute the vehicle’s pose:

• Enhanced odometry and absolute positioning data fusion in section (described in 6.1).

In a initial fusion stage, data from the four wheel encoders and the steering encoder

is fused by means of an EKF, providing robust odometric information, namely in

face of undesirable effects of wheels slippage, i.e. the redundant four wheel encoders’

measurements ∆RR, ∆RL, ∆FR, ∆FL and steering wheel encoder γ data, is used in

an EKF to produce better estimates of ∆̂R and ω̂R.

Next, a second fusion stage is processed for the integration of the odometric estimates

([∆̂R, ω̂R]) and absolute positioning data provided by landmarks. Landmarks can

either be provided by a LIDAR a front laser detected vehicle or natural feature, or

by a MSS detected magnetic marker.
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• Inter-vehicle pose estimation using laserscanner data and magnetic landmark via

V2X (described in section 6.2). An initial approach uses set membership algorithm

to compute the absolute vehicle position and an estimation of the satellite-specific

errors by using raw GNSS pseudoranges, lane boundary measurements and a 2D

georeferenced road map.

Next, using the cross-track corrections in a cooperative estimation process enables

the vehicles to improve their own estimates whatever the orientation of the roads.

Finally it is applied a removal of NLOS multipath pseudoranges contaminated satel-

lites, at the level of each individual vehicle, using a guaranteed risk integrity zone

computation algorithms, for robust vehicle positioning, constrained by geo-referenced

lane boundary measurements and GNSS pseudoranges.

6.1 Enhanced Odometry and absolute positioning

data fusion

6.1.1 Kinematic sensors Fusion with Confidence Tests (KF-CT)

The majority of systematic errors and slippage (or high slippage) problem, associated to the

odometry relying only on encoders, can be reduced by applying encoders confidence tests

followed by an EKF estimation for the arc length ∆R and the elementary rotation ωR; this

fusion method is designated by Kinematic sensors Fusion with Confidence Tests (KF-CT).

The KF-CT algorithm makes use of wheel encoders’ measurements ∆RR, ∆RL, ∆FR,

∆FL and the steering wheel encoder γ to estimate the arc length ∆̂R and the elementary

rotation ω̂R by means of a EKF and by applying encoders confidence tests.

For a 2WS vehicle, its odometry model is based only on the rear wheels encoders (see

equations B.23 and B.24). Using also the front wheels encoders, redundant data become

available, which can be used to produce better estimates of ∆R and ωR. The steering angle

of left and right front wheels can be expressed by

ϕL = arctan

(
tan(ϕ).L

L− e. tan(ϕ)

)
(6.1)

ϕR = arctan

(
tan(ϕ).L

L+ e. tan(ϕ)

)
(6.2)

where ϕ is the front steering angle of the virtual front wheel and L is the car length

(distance between rear and front axles).

From (6.1) and (6.2) and knowing that ∆R = ρ.ωR (where ρ is the curvature radius
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Figure 6.2: EKF-CT diagram block algorithm (M is the vector (ϕ,∆RR,∆RL,∆FR,∆FL)).

of the rear axle center), a set of equations can be established which relates the encoders

measurements (from each of the four wheels and steering) with the parameters ∆R and

ωR [106]: 

tan(ϕ) = L. ωR
∆R

∆RL = ∆R − e.ω
∆RR = ∆R + e.ω

∆FL. cos(ϕL) = ∆R − e.ω
∆FR. cos(ϕR) = ∆R + e.ω

(6.3)

Let x = [∆R, ωR]T and y = [tan(ϕ),∆RL,∆RR,∆FL. cos(ϕL),∆FR. cos(ϕR)]T be the

state vector and the measurement vector, respectively. Since the measures are related with

the state vector in a non-linear way, an EKF is used to estimate the state vector.

1. System Model: is modeled by the stochastic process

xk = xk−1 + γk−1, where γk−1 is a zero-mean white noise with covariance matrix

Q.

2. Measurement Model: from (6.3), the measurement model is defined by the non-linear

equation

yk = h(xk) + vk

where vk is a zero-mean white noise with covariance matrix R, known as measurement
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noise.

3. EKF Algorithm: the future state of the system x̂−k , and the future state error covari-

ance matrix, P−k , are predicted using the time update equations:

x̂−k = x̂k−1

P−k = Pk−1 + Q
(6.4)

With the measurements yk a correction stage is done. The EKF gain matrix Kk,

the state estimate x̂k, and the state error covariance matrix for the updated state

estimate, Pk, are computed, as follows:

Sk = (HkP
−
k HT

k + Rk)

Kk = P−k HT
kS−1

k

x̂k = x̂−k + Kk(yk − h(x̂−k ))

Pk = (I−KkHk)P
−
k

(6.5)

where I is a identity matrix, and the measurement matrix (H) is calculated as the

following Jacobian of the measurement h(.) function:

H =


∂h1

∂x1

∂h1

∂x2
...

...
∂h5

∂x1

∂h5

∂x2

 =


H1

...

H5

 (6.6)

where H1 =
[
− Lω

(∆R)2
L

∆R

]
, H2 = H4 = [1 − e], and H3 = H5 = [1 e].

However this odometric model doesn’t solve the problem inherent to slippages. If a big

slippage occurs, the EKF will not eliminate its effects. This problem can be attenuated

by pre-processing the redundant data before providing it to the KF-CT algorithm. We

can compute an approximate motion of the rear wheels based on the motion performed

by the front wheels and vice versa, applying the following equations:

∆R = ∆RR+∆RL

2
; ωR = ∆RR−∆RL

2e

∆F = ∆FR+∆FL

2
; ωF = ∆FR−∆FL

2e

(6.7)

∆F/R =
∆R

cos(ϕ)
; ∆R/F = cos(ϕ).∆F (6.8)

∆V RL = ∆R/F − e.ωF ; ∆V RR = ∆R/F + e.ωF

∆V FL = ∆F/R − e.ωR ; ∆V FR = ∆F/R + e.ωR

(6.9)

In (6.7) (∆R,ωR) and (∆F ,ωF ) are the parameters with respect to the midpoint of the

rear axle and front axle, respectively. In (6.8) and (6.9) ∆i/j means ∆i computed based on

measurements from j, with i, j = {F,R}. Equations (6.9) express the designated virtual



114 Chapter 6. Vehicle Pose Estimator

displacements for each wheel. Based on (6.9) we define the following confidence coefficients:

CCR = 1− |∆V RL−∆RL|+|∆V RR−∆RR|
|∆V RL+∆RL+∆V RR+∆RR|

CCF = 1− |∆V FL−∆FL|+|∆V FR−∆FR|
|∆V FL+∆FL+∆V FR+∆FR|

(6.10)

The confidence coefficients are used to decide if a virtual measure (∆V RR, ∆V RL,

∆V FR and ∆V FL) is used instead of the real measure. Figure 6.2 illustrates the algorithm

implemented where the confidence coefficients are used to decide if a virtual measure is

used instead the real measure.

6.1.2 Inter-vehicle pose estimation using laserscanner data and

magnetic landmark

The effect of wheel slippage in the vehicle pose estimation are attenuated using algorithm

KF-CT, but the cumulative errors, due to odometry relative and integrative nature, are

not removed. These errors can almost be eliminated by applying a second cascaded EKF. If

the cascaded EKF uses detected magnetic markers in the fusion method it is designated by

Kinematic sensors Fusion with Confidence Tests + MAGnetic markers landmark detection

(KF-CT+MAG).

However this procedure by itself does not solve the problem of accurate positioning

when the magnetic markers are not widely distributed. The magnitude of these errors

may unable a correct speed profile following or speed profile assignment by the traffic

management system, however this problem can be attenuated by using nearby V2V CS,

LIDAR data and a RTK-GPS (see Figure 6.4). In the proposed method, the RTK-GPS po-

sitioning, is computed from raw GPS measurements using the double differencing method

described in section 3.1.1. The RTK-GPS positioning is loosely coupled with the odome-

try/laser/magnetic sensors.

In this algorithm besides laser detected natural features and magnetic marker land-

marks, a front laser detected vehicle can also be considered as a landmark. A front laser

detected vehicle, is considered a landmark, if at a given time the front detected vehicle, it

either detected a magnetic marker or it has been able to compute a RTK-GPS positioning

solution (see Figures 6.3 and 6.4).

Without loss of generality, we assume that there are only two vehicles to simplify our

notation, vehicle 1 is the following vehicle and vehicle 2 is the preceding vehicle. The two

vehicles can have different combinations of sensors. In the scenario of Figure 6.3, both

vehicles are able to perform V2X, vehicle 1 is only equipped with MSS, encoders and

laserscanner while vehicle 2 is equipped with MSS, encoders, laserscanner and RTK-GPS

receiver. Using laserscanner data and V2V, vehicle 1 can use vehicle 2 accurate RTK-GPS
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position to improve its own position; this method is designated by Kinematic sensors

Fusion with Confidence Tests + Laser landmarks detection with Real Time Kinematic

gps accuracy (KF-CT+LASER(RTK)). From laser scans we can calculate an average

range-bearing pair (dl, φl) using the range from ray intersection, ri1 to ri4 and its angular

displacement. Vehicle 2 can therefore be considered has a landmark by vehicle 1, by using

the average range-bearing pair and associating it with every vehicle 2 RTK-GPS position

update. Even if vehicle 2 is not equipped with RTK-GPS the same principle may be

applied when vehicle 2 detects a magnet and get its pose corrected. In this second scenario

vehicle 2 informs vehicle 1 of its accurate position updated through magnet detection and

then if vehicle 2 is in the laserscanner range of vehicle 1 its (vehicle 1) pose is also updated,

this method is designated by Kinematic sensors Fusion with Confidence Tests + MAG-

netic markers landmark detection + Laser landmarks detection (KF-CT+MAG+LASER).

When the update is made using both KF-CT+LASER(RTK) and KF-CT+LASER(RTK)

it is is designated by Kinematic sensors Fusion with Confidence Tests + MAGnetic mark-

ers landmark detection + Laser landmarks detection with Real Time Kinematic gps

accuracy (KF-CT+MAG+LASER(RTK)). The range-bearing measurements associated

to each landmark are treated as measurements in the second cascaded EKF fusion filter.

Figure 6.4 presents this contribution of vehicle 2 to the vehicle 1 positioning, in the

cascaded EKF position estimation.

In this algorithm, the RTK-GPS, when available at the vehicle, is loosely coupled with

the odometry. The developed sensor fusion is supported by V2X CS, allowing the exchange

of information, between vehicles and the infrastructure agent (see Figure 6.1).

The vehicle’s pose is defined by the Cartesian coordinates (x, y) and heading (θ), which

are the state variables of a new EKF. The state variables of the KF-CT ( section 6.1.1)

are here treated as inputs to the EKF data fusion, i.e uk = (∆R, ωR) with an associated

noise covariance matrix Γk. The range-bearing measurements associated to each landmark

are treated as measurements in the fusion process.

1) System Model: the system model is defined by the kinematic nonlinear equation

(B.23), with state vector xk = [xk yk θk]
T , and input uk = [∆R,k ωR,k]

T , which can be

written in the compact form (including noises):

xk = f(xk−1,uk, γk, σk) (6.11)

where γk and σk denote the system and input noises, with associated matrices Q and Γk.

2) Measurement Model (example for the front magnetic ruler and laser-based de-

tected landmarks): let (a, α) be the range-bearing pair, associated to a detected landmark,

defined in the local vehicle coordinate system (see Figure 6.3). Thus the following equations
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Figure 6.3: Measurement model variables: (a) (a, α) denotes range-bearing data associated to a
magnet detection; (b) [x1, y1, θ1] and [x2, y2, θ2] are respectively the poses of the ahead vehicle
and following vehicle; the [xfm, yfm] and [xfl, yfl] are respectively the magnet and laser detected
landmark positions; the [drm, drl] are respectively the distance from the rear axle to MSS and
to the laserscanner axis; the dbra is the distance from the rear bumper to the rear axle of the
preceding vehicle; where dm is the MSS measure which corresponds to the distance between
the marker with known position and the MSS central point, and where (dl, φ) is the average
range-bearing data in the laserscanner coordinate system. It is assumed that both MSS and the
laserscanner coordinate systems are aligned with the vehicle coordinate system.

yield:

a =
√

(yf − yk)2 + (xf − xk)2

α = arctan
yf−yk
xf−xk

− θk
(6.12)

where (xf , yf) represents the Cartesian position of the landmark. From (6.12) we can

define the nonlinear measurement model

zk = h(xk) + vk (6.13)

where h(xk) is the nonlinear vector function

h(xk) =

[ √
(yf − yk)2 + (xf − xk)2

arctan
yf−yk
xf−xk

− θk

]
(6.14)

and vk is the Gaussian sensor noise vector with covariance matrix Rk. The range-bearing

data (a, α) are the observation values entering the EKF, z = [a α]T , which are calculated

from sensor measures as follows:
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Figure 6.4: Inter-vehicle sensor fusion algorithm, where: [x̂1, ŷ1, θ̂1] and [x̂2, ŷ2, θ̂2] are respectively
the following and preceding vehicle estimated pose; [∆̂RR, ∆̂RL, ∆̂FR, ∆̂FL, γ] are the estimated
displacement wheel encoders and the steering encoder; [∆̂R, ω̂R] are respectively the estimated
the arc length and estimated elementary rotation, [a, α] is the range-bearing pair, associated to
a detected landmark, defined in the local vehicle coordinate system and where [P sr ,Φ

s
r;P

s
mΦs

m]
and [xm, ym] are respectively the pseudoranges and Master Station truth position.

a) for the magnetic marker

a =
√
d2
m + L2

1

α = arctan dm
L1

(6.15)

where dm is the magnetic ruler measure which corresponds to the distance between the

marker with known position (xm, ym) and the magnetic-sensing ruler central point, and L1

is the distance between the front magnetic ruler and the vehicle rear axis (we are assuming

that the ruler is perfectly parallel with the y-axis of vehicle coordinate system).

b) for the laser-based detected landmark

a =
√
d2
l + L2

l + 2dlLl cos(φ)

α = arctan dl sin(φ)
Ll+dlcos(φ)

(6.16)

where (dl, φ) are the range-bearing data described in the laser coordinate system. It is

assumed that the laser coordinate system is aligned with the vehicle coordinate system,

with a distance Ll, defined in the xy-plane, between them.

Another (non-standard) measurement model has been investigated and applied as

described in [107], which consists on considering in model (6.13):

z = [xf yf ]
T

h(xk) =

[
xk + a cos(θk + α)

yk + a sin(θk + α)

]
(6.17)

3) EKF algorithm : it is composed by the following prediction and correction stages:

Prediction stage

x̂−k = f(x̂k−1,uk, 0, 0)

P−k = AkPk−1A
T
k + BkΓk−1B

T
k + Q

(6.18)
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where the system (A) and input (B) matrices are calculated as the following Jacobian of

the system f(.) function:

Ak =

 1 0 −∆R,k sin(θk +
ωR,k

2
)

0 1 ∆R,k cos(θk +
ωR,k

2
)

0 0 1


Bk =

 cos(θk +
ωR,k

2
) −∆R,k

2
sin(θk +

ωR,k
2

)

sin(θk + ωk
2

)
∆R,k

2
cos(θk +

ωR,k
2

)

0 1


(6.19)

Correction stage

Once measurements (a, α) become available the following correction stage is done:

Sk = (HkP
−
k HT

k + Rk)

Kk = P−k HT
kS−1

k

x̂k = x−k + Kk(zk − h(x̂−k ))

Pk = (I−KkHk)P
−
k

(6.20)

where I is the identity matrix and Hk is the Jacobian of the measurement h(.) function:

Hk = ∇xh(xk) (6.21)

Data Association

Most techniques implement the data association process based on the innovation

sequence and its predicted covariance. The innovation sequence υk relates observations zk

to the underlying predicted states ẑk

υk = zk − h(x̂−k ) (6.22)

Let define the normalised innovation distance as

d̄k = υk
TSk

−1υk (6.23)

where Sk is the innovation covariance matrix defined in (6.20). Note that if the innovation

υk has a Gaussian distribution, then d̄ is a random variable following the χ2 distribution.

The innovation sequence is the basis of the gate validation technique which accepts the

observation that is inside a fixed region of a χ2 distribution, and rejects the observation that

make the innovation fall outside these bounds. This procedure is achieved by comparing

the scalar obtained in (6.23) with a threshold value that is determined from the χ2

distribution table. We use the nearest neighbour data association method. Among all the

possible natural features or front laser detected vehicle, the one that is nearest to the

observation is selected and used in the EKF correction stage (6.20).
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6.2 Robust, Augmented and Collaborative GNSS po-

sitioning

6.2.1 Set membership GNSS Positioning (SGP)

The Set membership GNSS Positioning (Set-membership GNSS Positioning (SGP))

method [70] consists in finding a location zone given uncertainty on satellites observations

and satellites positions. GNSS absolute positioning requires satellites observations ρsr as

well as their positions xs = (xs, ys, zs) at the time of transmission. Satellite positions are

known with uncertainty. Therefore, for set-membership positioning, each satellite position

is represented as a box [xs] = ([xs], [ys], [zs]) whose bounds are chosen to contain the true

satellite position at a given confidence level. As mentioned in Section 3.1.1, pseudorange

measurements are inaccurate, therefore in the context of set-membership positioning, pseu-

dorange measurements are modelled as intervals [ρsr] whose bounds are determined given

a chosen risk [72].

(a) (b)

Figure 6.5: Three satellite observations: (a) spherical shell for each satellite; (b) set inside the
measurement and satellite position intervals for every satellite.

Assuming no time errors among devices, GNSS absolute positioning requires at least

three satellite observations. Each observation constrains the GNSS receiver location inside

a spherical shell, whose inner and outer radii are respectively the lower and upper bounds

of the measurement interval, see Figure 6.5 (a).

The GNSS receiver is thus located within the set of locations for which a range and a

satellite position can be found inside the measurement and satellite position intervals for

every satellite, i.e. the highlighted area in Figure 6.5 (b).



120 Chapter 6. Vehicle Pose Estimator

 ERROR BOUNDED SET-MEMBERSHIP ALGORITHMSSENSORS, DATA

 and 

ERROR BOUNDING

Risk R - Error 

Bounds Setup

GNSS Receiver

Set-Membership GNSS Positioning (SGP)

ephemeris data

pseudoranges

Interval Bounded 

Boxes

 Weighted CoG

&

3D projection to XY

Integrity Failure

true

false

Figure 6.6: Dataflow and SGP algorithm architecture.

As there is a receiver clock offset, GNSS positioning is a four-dimensional problem and

at least four satellites observations are necessary to estimate the GNSS receiver position.

The GNSS receiver position zone computation consists in finding the set X of all locations

compatible with the m available measurements and the corresponding satellite positions

which are also manipulated as boxes (see Figure 6.6):

XSGP = {(xr, yr, zr, cor) ∈ R4|∀s = 1 · · ·m,∃ρsr ∈ [ρsr],

∃(xs, ys, zs) ∈ [xs], ρsr = ‖xs − xr‖+ cor}

YSGP = ([ρsr], [x
s])

(6.24)

The subpaving X has a dual nature. It may be seen as a subset of R4 and it also can be

viewed as a finite list of boxes [X] [83], where #X is the number of boxes belonging to the

subset. In order to be useful, for instance to a path following controller, a punctual 2D

position vector has to be estimated. The resulting set is not only composed of 3D boxes

as it includes the clock offset cor, making it a 4D set. Boxes in the subpaving do not have

all the same size (see Figure 3.5). Therefore, a solution to provide punctual estimation

with the 4D set is to compute for each of the 4 dimensions, the mean of the geometric

center of all boxes weighted by the volume of each box. In the single-frequency GNSS

navigation solution with raw observations, the cor is dominant over atmospheric residuals

and noise. A more accurate solution of the 3D punctual location estimate, is therefore, to

compute the 3D the mean of the geometric center of all boxes weighted by two parameters.

First, the contribution of a box to the final solution is weighted by its volume. Second, the

weight is also a function of the cor of each box. The weight of a box to the final solution

decreases as its punctual estimate of the clock offset is far from the weighted average ĉor.

Given ([X] = ([xr], [yr], [zr], [cor])), the ĉor is estimated by computing the center of

gravity of the X(4) component, for all n boxes:
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ĉor =

∑n
k=1

(
Xk(4)+Xk(4)

2
· (Xk(4)−Xk(4))

)
Xall(4)

∣∣∣∣∣
∀[Xk(4)] ∈ X ∧ k = #X

(6.25)

Xall(4) is the normalisation term.

The estimated 3D position vector x̂r = (x̂r, ŷr, ẑr) is obtained by computing the center

of gravity of the sub-paving, weighted by the value of the estimated receiver clock offset

ĉor of each sub-paving:

x̂r =

∑n
k=1

(
Xk(i)+Xk(i)

2
·
(
Xk(i)−Xk(i)

)
· Cwf (k)

)
Xall(i)

∀[Xk(i)] ∈ X ∧ k = #X ∧ i = 1, · · · , 3

(6.26)

and Xall(i) is the sum of all boxes lengths along i axis:

Xall(i) =
n∑
k=1

(Xk(i)−Xk(i))

∀[Xk(i)] ∈ X ∧ k = #X ∧ i = 1, · · · , 4

(6.27)

where Cwf is the ĉor weighting factor:

Cwf (k) =
1−

∣∣∣∣∣∣∣∣Xk(4)+Xk(4)

2

∣∣∣∣−ĉor∣∣∣∣
|max(|X(4)|,|X(4)|)−ĉor|

∑n
j=1

1−

∣∣∣∣∣
∣∣∣∣∣Xj(4)+Xj(4)

2

∣∣∣∣∣−ĉor
∣∣∣∣∣

|max(|X(4)|,|X(4)|)−ĉor|



∀[Xj(4)] ∈ X ∧ j = #X

(6.28)

The 2D position [xr, yr] estimate is determined by projecting onto a flat plane the

solution x̂r.

6.2.2 Robust Lane Boundary Augmented Iterative least squares

GNSS Positioning algorithm (LB-RAIGP)

Additional absolute measurements can be used to reduce the error in the estimation of the

receiver position x̂r and the receiver clock offset ĉor. Geographic Information Systems (GIS)
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combined with lane-boundary sensors can provide the additional absolute measurements.

Considering that the lane-boundary sensor is collocated with the GNSS receiver, the

equation relating the vehicle position to the lane boundary is given by (see Figure 6.7):

rr(s) = xr + dlb · ut,r (6.29)

where s is the distance from the reference point Rr, rr(s) is the lane-boundary function,

ut,r is transverse unit vector and dlb is the perpendicular distance from the lane-boundary

sensor to the lane boundary. Lane-boundary sensors only provide the distance to a line, i.e.

the location along the lane boundary line is undefined. If the observed road is composed

by a single straight line segment, the transverse component of the distance from the

lane-boundary sensor to the lane boundary it is unambiguous and can be expressed by:

dlb = ut,r
T · (Rr − xr) + εlbr (6.30)

where the added random noise εlbr , models the lane-boundary sensor measurement errors.

Rewriting (3.19) with the augmented measurement vector:

∆ρr,lb = Hlb

[
∆xr

∆cor

]
+ vsr (6.31)

where Hlb is given by:

Hlb =

[
H

−ut,r 0

]
(6.32)

H is the observation matrix from equation 6.38, and ∆ρr,lb is given by:
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∆ρr,lb =
[
∆ρ1

r . . . ∆ρmr ∆dlb

]T
(6.33)

By adding the component of the satellite-specific errors, which causes the receiver

position to move in a direction transverse to the lane boundary, as an additional state

(Ct,cme), the linear least squares equation (6.31) is transformed into:

∆ρr,lb = Hlbt

 ∆xr

∆cor

∆Ct,cme

+ vsr (6.34)

where Hlbt is given by:

Hlbt =

[
H tvsse

[−ut,r 0] 0

]
(6.35)

and tvsse vector represent the transverse components of the satellite-specific error for

all satellites:

tvsse = H

[
ut,r

0

]
(6.36)

The additional geometric diversity is provided by the augmented geometry matrix

Hlbt, this diversity further reduces the estimation errors. The method here denominated

by Lane Boundary Augmented Iterative least squares GNSS Positioning (LB-AIGP) is

fully described in [70].

This method is sensible to multipath, namely NLOS multipath , using a method

described in section 6.2.6, the faulty satellites are detected and removed, considering a

risk R. The observation matrix Hlbt, is therefore rewritten:

Hlbt =

[
HNLOS tvsse

[−ut,r 0] 0

]
(6.37)

where HNLOS is the observation matrix :

HNLOS = dropi





−e1 1
...

...

−ei 1
...

...

−em 1




∧ i = NLOS satellite (6.38)

where the “drop” notation is used to represent the removing of a row from a matrix.

Similarly the faulty pseudoranges are removed from the position computation of algorithm

LB-RAIGP, hence ∆ρr,lb,NLOS is given by:
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∆ρr,lb,NLOS = dropi

([
∆ρ1

r . . . ∆ρir . . . ∆ρmr ∆dlb

]T)
∧ i = NLOS satellite

(6.39)

6.2.3 Lane Boundary Augmented set membership GNSS Posi-

tioning (LB-ASGP)

Lane-boundary constraints can further improve the performance of the set-membership

GNSS location zone determination.

Algorithm 8 [x̂r,2D; Ct,cme] =
ASGP LB ([fSGP], [fLB−ASGP],YSGP ,YLB−ASGP ,X0)

L← root(X0)
faux = [fSGP; fLB-ASGP]
Yaux = [YSGP,YLB-ASGP]
for jj=1 to 2 do

f ← faux(jj)
Y ← Yaux(jj)
[X,∆X] = SIVIA(f ,Y,L)
X = X+ ∆X
L← X
for i=1 to 4 do
Xall(i)← equation (6.27)

end for
ĉor ← equation (6.25)

for k=1 to n do
Cwf (k)← equation (6.28)

end for
for i=1 to 3 do

x̂aux,r(x̂aux,r, ŷaux,r, ẑaux,r)← equation (6.26)

end for
x̂r(jj) = x̂aux,r

end for
Ct,cme = ut,r × [x̂r(2)− x̂r(1)]
x̂r,2D = [x̂r,2D, ŷr,2D] = x̂r(2)×PXY

(PXY: 3D projection to XY)

Algorithm 8 resumes the LB-ASGP proposed method where the functions f to invert

are given by:

fSGP =
{
ρsr = ‖xs − xr‖+ cor (6.40)

and

fLB-ASGP =

{
ρsr = ‖xs − xr‖+ cor

dlb = ut,r
T · (Rr − xr)

(6.41)

As observed in Figure 6.8, the Algorithm 8 solves simultaneously two set inversion

problems to compute an 2D estimate of the GNSS receiver x̂r,2D, and an estimate of
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Figure 6.8: Dataflow and LB-ASGP algorithm architecture.

the offset along the lateral direction of the road Ct,cme. From an initial searching volume

X0, it first finds the set XSGP of all locations compatible with the measurements [ρsr]

and the satellite position intervals [xs] using function fSGP. Starting with the XSGP
computed previously, using function fLB-ASGP it computes the set XLB-ASGP of all

locations compatible with: the measurements [ρsr], the satellite position intervals [xs], the

transverse vector [ut,r] and the lane boundary [dlb]. Using sets XSGP andXLB-ASGP, the

3D position estimate x̂r is obtained by computing the center of gravity of the sub-paving,

weighted by the value of the estimated receiver clock offset ĉor of each sub-paving. The

vehicle 2D position estimation x̂r,2D is achieved by projecting the 3D position estimate

x̂r onto the XY plane.

The component of the satellite-specific errors which causes the receiver position estimate

to suffer from an offset in the direction transverse to the lane boundary (Ct,cme) is also

estimated in Algorithm 8. The Ct,cme is given by equation (6.42), which is obtained by

taking into account only the road transverse component that has shifted the estimated

position obtained using the SGP algorithm to the estimated position obtained using

LB-ASGP (see Figure 6.8).

Ct,cme = ut,r × [x̂LB−ASGP − x̂SGP] (6.42)
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6.2.4 Robust Lane Boundary Collaborative Augmented Iter-

ative least squares GNSS Positioning algorithm (LB-

RCAIGP)

A solution for collaborative GNSS augmented solution using lane-boundary sensors, is

to fuse pseudoranges and lane-boundary sensor measurements from all vehicles, together

into one large least-squares estimation problem, this method designated by LB-RCAIGP.

Rewriting (3.19) with all vehicles one gets:

∆ρr,cn = Hcn ·∆Xcn + vsr (6.43)

where the measurements vector ∆ρr,cn of all vehicles sensor data is given by:

∆ρr,cn =


∆ρr1,lb

...

∆ρrn,lb

 (6.44)

and Hcn is the multi-vehicle augmented observation matrix :

Hcn =


Hlb,1 · · · 0 tvsse,1 rvsse,1

...
. . .

...
...

...

0 · · · Hlb,n tvsse,n rvsse,n

 (6.45)

rvsse vector represent the transverse components of the satellite-specific error for all satellites

and ur,r is the road-parallel unit vector:

rvsse = H

[
ur,r

0

]
(6.46)

When vehicles travel in different directions, the two ground-plane components (road-

transverse and road-parallel components) of the satellite-specific error can be estimated.

By adding these components of the common-mode GNSS errors as additional states

(transverse Ct,cme and parallel Cr,cme), the state vector Xcn of all vehicles position and the

two components of the common-mode GNSS errors, is given by:

Xcn =



∆xr,1

∆cor,1
...

∆xr,n

∆cor,n

∆Ct,cme

∆Cr,cme


(6.47)

The estimated Ct,cme and Cr,cme can also be used by vehicles not equipped with lane-
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boundary sensors to cancel the effect of satellite specific errors. The same pre-defined pair

of orthogonal unit vectors ûr,r and ût,r is used as coordinate frame on the determination

of ∆Ct,cme and ∆Cr,cme of each vehicle, i.e. direction does not change and it is used by all

vehicles’ to estimated Ct,cme and Cr,cme. The method here denominated by Lane Boundary

Collaborative Augmented Iterative least squares GNSS ositioning (LB-CAIGP) is fully

described in [70].

This method is highly sensible to multipath, namely NLOS. If a single connected vehicle

is subjected to multipath it results a in a erroneous contribution to all connected vehicles.

The erroneous contribution, results in the connected vehicles solution (LB-CAIGP) of each

vehicles worst than if the solution was achieved in a non-connected scenario (LB-AIGP).

Using the method described in section 6.2.6, the faulty satellites are detected and

removed, considering a risk R. The multi-vehicle augmented observation matrix Hcn, is

therefore rewritten:

Hcn =


Hlb,1,NLOS · · · 0 tvsse,1 rvsse,1

...
. . .

...
...

...

0 · · · Hlb,n,NLOS tvsse,n rvsse,n

 (6.48)

where Hlb,n,NLOS is satellite fault free observation matrix of each vehicle HNLOS, as defined

in section 6.2.2.

Similarly the faulty pseudoranges are removed from the position computation of algo-

rithm LB-RAIGP, hence ∆ρr,cn,NLOS is given by:

∆ρr,cn,NLOS =


∆ρr1,lb,NLOS

...

∆ρrn,lb,NLOS

 (6.49)

where ∆ρrn,lb,NLOS is satellite fault free pseudorange of each vehicle ∆ρlb,NLOS, as

defined in section 6.2.2.

6.2.5 Lane Boundary Collaborative Augmented set membership

GNSS Positioning (LB-CASGP)

Lane-boundary measurements can provide corrections to improve the position estimate of

a single receiver using LB-ASGP, but an improvement by means of a cooperative vehicle

positioning (LB-CASGP) can be achieved by sharing this corrections among vehicles.

With the assumption that the model and the measurement errors are bounded, both

GNSS pseudoranges and lane-boundary data can be fused by using a set-inversion approach

in such a way that all the results are guaranteed [108]. Given the road network information
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Figure 6.9: Dataflow and LB-CASGP algorithm architecture.

provided by a GIS database, a constraint represented by the cross-track vector can be

applied to a box [x]. To apply this constraint, the road network information is first

transformed into the coordinate system used in the GNSS, i.e. convert from rectangular

local-level-tangent ENU coordinates to WGS-84 ECEF Cartesian coordinates.

The cross-track vector is represented as a box [ut,r] whose bounds are chosen to contain

the true cross-track vector. The measurement inaccuracy of the perpendicular distance

given by the lane-boundary sensor with respect to the lane boundary is modelled as

an interval [dlb] whose bounds are determined according to the lane-boundary sensor

characteristics. Intervals are used to express the uncertainties of the information stored in

the GIS database and measurement inaccuracies of the lane-boundary sensor. The cross-

track vector is defined by [ut,r] and the lane boundary is defined by [dlb]. The search area

is expanded on the horizontal plane defined by the road segment. The set-membership

GNSS positioning location set X is then reduced after contraction which removes every

location area not compatible with the lane-boundary sensor measurements:

XLB-ASGP = {(xr, yr, zr, cor) ∈ R4|∀s = 1 · · ·m,∃ρsr ∈ [ρsr],

∃(xs, ys, zs) ∈ [xs],∃ut,r ∈ [ut,r],∃dlb ∈ [dlb],∣∣∣∣∣ ρsr = ‖xs − xr‖+ cor

dlb = ut,r
T · (Rr − xr)

}
YLB-ASGP = ([ρsr], [x

s], [ut,r], [dlb])

(6.50)
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Algorithm 9 resumes the proposed method (LB-CASGP), where the functions f to

invert are given by:

fSGP =
{
ρsr = ‖xs − xr‖+ cor (6.51)

and

fLB-ASGP =

{
ρsr = ‖xs − xr‖+ cor

dlb = ut,r
T · (Rr − xr)

(6.52)

As observed in Figure 6.9, the LB-CASGP (Algorithm 9) solves simultaneously three

problems, two set inversion problems (LB-ASGP and SGP) and the satellite specific

corrections [Ccme] = [CN,cme; CE,cme].

Lane-boundary constraints can further improve the performance of the set-membership

GNSS location zone determination, if satellite-specific errors estimations obtained using

lane-boundary are share among connected vehicles. LB-CASGP is a decentralized algo-

rithm and it uses cross-track corrections shared among networked vehicles in order two

improve the along-track vehicle position.

The component of the satellite-specific errors which causes the ith receiver posi-

tion estimate to suffer from an offset in the cross-track direction to the lane boundary

(C
i,LB-ASGP) is estimated in LB-ASGP. The C

i,LB-ASGP is obtained by taking into

account only the cross-track component that has shifted the estimated position com-

puted using the SGP algorithm to the estimated position computed using LB-ASGP.

Each vehicle equipped with a lane-boundary sensor shares its correction to the net-

worked vehicles. Given the position estimates of vehicle i given by the SGP algorithm

x̂ri,SGP = [x̂ri,SGP , ŷri,SGP , ẑri,SGP ] and by the LB-ASGP algorithm x̂
ri,LB-ASGP =

[x̂
ri,LB-ASGP, ŷri,LB-ASGP, ẑri,LB-ASGP], the cross-track component error of a single

vehicle is obtained by differencing both estimates and computing the vector along the

cross-track direction:

C
i,LB-ASGP = ut,ri ×

([
x
ri,LB-ASGP − xri,SGP

]
×PXY

)
(6.53)

where i = 1...n for n lane-boundary equipped vehicles.

The cooperative North (global Y-axis coordinates) and East (global X-axis coordinates)

correction estimation w.r.t. to global coordinates, are respectively given by CN,cme and

CE,cme. They are computed using the least square estimation of all correction estimation

vectors of each vehicle C
i,LB-ASGP.

 CN,cme

CE,cme

 = (ATA)−1AT


C1,LB-ASGP

...

Cn,LB-ASGP

 (6.54)
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Algorithm 9 [x̂r,2D,LB−CASGP;Ci,LB−ASGP] = CASGP LB
([fSGP], [fLB−ASGP],YSGP ,YLB−ASGP ,X0,Cnet,LB−ASGP)

L← root(X0)
if fLB-ASGP 6= 0 then

faux = [fSGP; fLB-ASGP]
Yaux = [YSGP ,YLB-ASGP]
alg = 2

else
faux = [fSGP]
Yaux = [YSGP ]
alg = 1

end if
for jj=1 to alg do

f ← faux(jj)
Y ← Yaux(jj)
[X,∆X] = SIVIA(f ,Y,L)
X = X+ ∆X
L← X

for i=1 to 4 do
Xall(i)← equation (6.27)

end for
ĉor ← equation (6.25)

for k=1 to n do
Cwf (k)← equation (6.28)

end for
for i=1 to 3 do

x̂aux,r(x̂aux,r, ŷaux,r, ẑaux,r)← equation (6.26)

end for
x̂r(jj) = x̂aux,r

end for
if alg = 2 then

x̂
ri,2D,LB-ASGP = [x̂r,2D, ŷr,2D] = x̂r(2)×PXY

C
i,LB-ASGP = ut,ri × ([x̂r(2)− x̂r(1)]×PXY)

else
x̂ri,2D,SGP = [x̂r,2D, ŷr,2D] = x̂r(1)×PXY

end if
[Ccme] = [CN,cme; CE,cme]← equation (6.54)

if alg = 2 then
x̂
ri,2D,LB-CASGP = x̂

ri,2D,LB-ASGP + ur,r × [CN,cme; CE,cme; 0]
else

x
ri,2D,LB-CASGP = xri,2D,SGP + [CN,cme; CE,cme; 0]

end if
(PXY: 3D projection to XY)
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where PXY is the projection matrix onto the XY plane, and A is given by:

A =


ut,r1

...

ut,rn

 (6.55)

It was chosen to compute the [Ccme] using least squares method, to avoid large amounts

of data being transferred between vehicles, i.e. avoid the broadcast of all boxes belonging

to solution set of each vehicle positioning using SGP and LB-ASGP, to further constraint

each set. This decentralized solution requires minimal data transfer as it only requires the

reception of C
i,LB-ASGP and ut,ri from all lane-boundary sensor equipped vehicles.

Vehicles equipped with lane-boundary sensor have a good cross-track accuracy and

a poor one in the along-track direction. Therefore, position estimates using LB-CASGP

algorithm for vehicles equipped lane-boundary sensor, are only corrected (w.r.t. LB-ASGP)

along the along-track component ur,r using the shared corrections:

x̂
ri,2D,LB-CASGP = x̂

ri,2D,LB-ASGP+

ur,r × [CN,cme; CE,cme; 0]
(6.56)

For vehicles not equipped whit lane-boundary sensors, the application of the shared

corrections into their own estimation process is done in both cross-track and along-track

components:

x̂
ri,2D,LB-CASGP = x̂ri,2D,SGP + [CN,cme; CE,cme; 0] (6.57)

When all vehicles are collinear no solution can be obtained since there is a singularity.

In this situation, the position estimate of LB-CASGP is given by, x
ri,2D,LB-CASGP =

x
ri,2D,LB-ASGP, i.e. the solution is given as if there was no cooperative information.

6.2.6 Lane Boundary Relaxed Set-membership Satellite

NLOS Multipath Fault Detection and Exclusion (LB-

RSSMFDE)

Any measure that does not meet the error assumptions taken initially are called aberrant.

Such aberrant measure may be due to a malfunction of the measuring device or due

to an exceptional disturbance of the model describing the process. Multipath disturbed

signals are examples of aberrant measures, they have a strong effect on position estimates.

NLOS multipath occurs when the direct signal is blocked and only a reflected signal

is received (see Figure 6.10) . The ranging measurement errors that result from NLOS

multipath reception are particularly common in cities where dense urban areas form urban

canyons that block the signals. This type of disturbance is not corrected by most multipath

mitigation techniques. Therefore, to improve positioning in urban areas it is necessary to

detect and remove satellites responsible for the multipath [109].
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In conventional external integrity methods (see chapter 4 of [75]), the level of uncertainty

increases as the residues increase (see equation 3.24). On conventional methods position

computation does not take into account the possible presence of a defect, it is assumed

that an increased residue is related to the presence of an aberrant measure, and its impact

on the solution is quantified [110].

The set-membership method has a completely different approach. More inconsistency

between measurements increases, the volume of the whole solution is reduced, becom-

ing empty in case of total inconsistency. In other words, in conventional methods more

inconsistency between measurements, the greater the level of uncertainty increases, in

set-membership method the set is reduced as the measures are not consistent.

In order to make set-membership method robust against aberrant measurements a

method called constraint relaxation is applied. Relaxation means that instead of returning

the set of solutions compatible with all measurements, it is considered the set of solutions

compatible with all m− q measurements [111], where m is the number of measurements

and q is the number acceptable aberrant measurements (see Figure 6.11).

The method SIVIA was extended by V.Drevelle [110], enabling a robust estimation

of sets in the presence of a q number of outliers among the m considered measurements

(Robust Set Inversion Via Interval Analysis (RSIVIA)).

Considering m sets X1, . . . ,Xm on Rn. It is possible to define their q-relaxed intersec-

tion, denoted
⋂{q}

Xi as the set of points x ∈ Rn belonging to at least m− q sets Xi (see

Figure 6.11). Therefore if q = 0, the resulting set corresponds to the intersection of all

sets, while if q = m− 1 then the resulting set corresponds to the union of all sets.

A robust method Guaranteed Minimum Outlier Number Estimator (GOMNE) [112]

consists in adaptively relaxing a growing number of constraints, as long as the solution set

is empty. In this work the GOMNE algorithm was adapted to detect NLOS multipath aber-

rant GNSS measurements, aided by lane boundary measurements and a 2D georeferenced

road map, this method is entitled as LB-RSSMFDE.

The LB-RSSMFDE process start by assigning Nsatremoved = 0, and computing a

solution set with all satellite measurements m minus Nsatremoved. If the previous step

results in a empty set, then it is computed a solution set excluding one (Nsatremoved = 1)

satellite measurement at a time. If no solution set is achieved after going through all

possible combinations of satellites where only one satellite measurement is excluded at

a time Nsatremoved = 1, then the number of satellites excluded at a time is increased

Nsatremoved = 2, and a search for a solution set is done by going through all possible

combinations of satellites where only two satellite measurement are excluded at a time.

The process is repeated until a non-empty solution is obtained, then the correspond-

ing excluded satellites are considered aberrant measurements (NLOS satellites), and the
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Figure 6.10: NLOS multipath scenario, where
the direct signal (solid line) is blocked and the
signal is received only via reflection (dashed
line).

q=0 q=1

Figure 6.11: q-relaxed intersection with m =
2 and q = {0, 1}.

solution set is returned. This strategy avoids returning an empty set in the presence of

aberrant measures, while not needing to overestimate the value of q.

By removing the aberrant measurements the satellite list xs
NLOS is therefore rewritten:

xs
NLOS = dropi

([
xs,1
NLOS . . . xs,i

NLOS . . . xs,m
NLOS

]T)
∧ i = NLOS satellite (6.58)

where the “drop” notation is used to represent the removing of a row from a matrix.

Similarly the faulty pseudoranges are removed from the position computation, hence

ρr,NLOS is given by:

ρr,NLOS = dropi

([
ρ1
r . . . ρir . . . ρmr

]T)
∧ i = NLOS satellite (6.59)

Using vectors, ρr,NLOS and xs
NLOS, and applying RSIVIA instead of SIVIA in the

LB-ASGP and LB-CASGP, provides a robustness characteristic to the implemented al-

gorithms and therefore these are renamed to LB-RASGP and LB-RCASGP respectively.

The LB-RASGP and LB-RCASGP algorithms were relaxed for q = 1 number of the faulty

measurements tolerated in the set computation, i.e. 1-relaxed set-membership solution

(see section 3.3.2).

The LB-RSSMFDE algorithm is used to determine the number Nsatremoved aberrant

measurements and which satellites are providing aberrant measures. Once remove the

aberrant satellite measurements, the solution is computed using a 1-relaxed set-membership
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method in order to be robust with an undetected aberrant measure. This approach similar

to the methods conventional external integrity methods (see chapter 4 of [75]), where the

detection step and fault exclusion is repeated until no more fault is detected, then external

integrity levels are calculated as assuming one undetected fault.

6.3 Results

6.3.1 Kinematic sensors Fusion with Confidence Tests (KF-CT)

The results presented in this section were used to assess the performance of KF-CT

algorithm, described in section 6.1.1. A front steered vehicle is simulated and odometry

errors were included.
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Figure 6.12: Odometry based position estimation with 10dB of signal-to-noise ratio gaussian
white noise on wheel encoders and steering wheel encoder: (a) ∆R; (b) ωR. Where: Real -
encoders measures; Noise - measures with Gaussian white noise; KF(-CT) - estimation without
using confidence tests.

Real data measurements, gathered from vehicle encoders moving along a closed path,

were used in the reported simulations (path depicted in Figure 6.13(a)). White Gaussian

noise with a signal-to-noise ratio of 10dB, were added to the wheel encoders and steering

wheel encoder measurements. The qualitative behavior of the Kinematic sensors Fusion

without Confidence Tests (KF(-CT)) (i.e. KF-CT without the confidence tests) is very

satisfactory in normal road conditions of adherence, i.e. the KF(-CT) efficiently coped

with the added noise, see Figure 6.12. This performance is well illustrated in Figure 6.13(a),

where the trajectory computed using the KF(-CT) is closely similar to the real trajectory,

while the trajectory computed from the raw noisy measurements diverges significantly.

However this odometric model does not solve completely the problem inherent to the
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Figure 6.13: KF(-CT) and KF-CT performance evaluation: (a) KF(-CT) position estimation
with 10dB of signal-to-noise ratio gaussian white noise on wheel encoders and steering wheel
encoder; (b) KF-CT used for ∆R estimation with simulated slippage injected at t = 10s and
t = 50s. Where: Real - encoders measures; Noise - measures with Gaussian white noise; KF(-CT)
- estimation without using confidence tests; KF-CT - estimation using confidence tests.
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Figure 6.14: Odometry based position estimation with simulated slippage injected at t = 10s and
t = 50s: (a) position estimation using KF-CT without confidence tests; (b) position estimation
using KF-CT; Where: Real - encoders measures; Noise - measures with Gaussian white noise;
KF(-CT) - estimation without using confidence tests; CT - position estimation using only the
confidence tests and excluding any contribution of the EKF; KF-CT - estimation using confidence
tests.

slippage. If a big slippage occurs, the KF(-CT) will not eliminate its effects, specially if

more than one wheel slips. This effect can be easily seen in Figure 6.14(a), where the

estimated position using the KF(-CT) is highly affected by both t = 10s and t = 50s

slippage.

The previous disturbance can be attenuated by pre-processing the redundant data

before provide it to the odometry module. The contribution to ∆R of the slippage injected
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at t = 10s and t = 50s, is mostly removed (see Figure 6.13(a)). As we can see from Figure

6.13(b), the EKF with this data pre-processing (i.e. KF-CT), will not follow the slippage.

The KF-CT algorithm detects a disturbed encoder measurement and replaces it by a virtual

encoder measurement, computed based on the non-disturbed encoder measurements.

As shown in Figure 6.14(b), the position estimation is greatly improved by using

the KF-CT, being almost insensitive to both Gauussian white noise and slippage events.

Even if the position estimation is using only the confidence tests (CT) and excluding any

contribution of the EKF, its performance has a major improvement w.r.t. using the raw

encoder measurements (see Figure 6.14).

6.3.2 Vehicle pose estimation using magnetic landmark

The results presented in this section show the effectiveness of vehicle pose estimation using

magnetic landmark. In the reported simulations two types of disturbances are considered:

systematic errors and Gaussian sensors measurement noise.
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Figure 6.15: KF-CT+MAG results: (a) systematic noise added to (xk+1, yk+1, θk+1), when ∆R

is multiplied by a noise factor Kse, i.e. ∆R,WithNoise = ∆R ×Kse, in meters; (b) Gaussian white
noise (Conm) added to the (xk+1, yk+1, θk+1), in meters for both x and y and in radians for θ;

These perturbations model several types of noises:

• Systematic errors - simulate incorrect size on the wheels radius (Kse);

• Gaussian white noise error - emulate odometers readings noise (Conm).

Regarding the systematic errors, they were applied in the process by multiplying arc

length ∆R with a Kse factor, this error simulates a erroneous wheel radius, i.e. the wheel

is bigger:
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∆R =
∆RR + ∆RL

2
×Kse (6.60)

where Kse = 1.03. ∆R will therefore perturb the pose (xk+1, yk+1, θk+1) obtained from

the odometry computation, yielding
xk+1 = xk + ∆R ×Kse × cos(θk + ω/2)

yk+1 = yk + ∆R ×Kse × sin(θk + ω/2)

θk+1 = θk + ωR

(6.61)

The magnitude of the disturbance introduced by systematics errors w.r.t. the vehicle’s

pose (x, y, θcp) is displayed in Figure 6.15 (a).

Gaussian white noise, denoted by Conm, was added to the odometry equations, this

disturbance represent odometers noisy measurements (see Figure 6.15 (b)), resulting in:


xk+1 = xk + ∆×Kse × cos(θk + ω/2) + Conm

yk+1 = yk + ∆×Kse × sin(θk + ω/2) + Conm

θk+1 = θk + ω + Conm

(6.62)

In real environments the detection of the magnets doesn’t return the exact center of

the magnet, but rather a coordinate close to its z-axis center, therefore in order to have

realistic simulated measures, a representative model of the magnetic field radiated by the

magnetic marker was used in simulations (see Figure 6.16).

The process noise covariance matrix Q and the measurement noise covariance matrix

R, used in the KF-CT+MAG are shown below:

Q =

 105 0 0

0 105 0

0 0 105

 ; R =

[
1000 0

0 1000

]
(6.63)

The simulation results of the pose estimation model while using KF-CT+MAG algo-

rithm is presented in Figure 6.17 (b), and they are compared with pose estimation model

using KF-CT presented in Figure 6.17 (a). The KF-CT+MAG algorithm achieves a good

performance.

The controller drives the vehicle along a predefined path, as it moves towards its local

goal it is unaware of the accumulating errors due to the disturbances introduced. Therefore
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Figure 6.16: KF-CT+MAG simulated magnetic vertical field results: the lower right image
displays the simulated magnetic vertical field component of a magnetic marker being detected
by the vehicle front sensors array, ten magnetic markers were placed in the test loop
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Figure 6.17: Path following simulation with KF-CT+MAG position estimation: (a) Odometry
results without using the magnetic markers as correction landmarks KF-CT; (b) Odometry
results using the magnetic markers as correction landmarks KF-CT+MAG. Where: Real Path -
real path followed by the vehicle; Virtual Path - path thought to be followed by the vehicle; (in
meters).

the vehicle continues as if it was following accurately the reference path. If while navigating,

no correction is done, the path followed (Real Path) is significantly different, from the one

(Virtual Path), on which the PFC is generating its commands . This effect is observed in

Figure 6.17 (a)

In Figure 6.17 (b) the KF-CT+MAG handles disturbances by using the magnets located

on the ground at the marked points on the figure. Although the errors are accumulated

during the curves on the straight lines it recovers by using the detected magnets. The

position in which the controller actuates is the virtual (Virtual Path) since it has no

means of knowing about the accumulated errors. Every time it detects a magnet the
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virtual position is updated, moving towards the real position (Real Path), meaning that

the KF-CT+MAG provides a good estimate. Therefore the virtual position is identical to

the real position every time a magnet is found as it can be observed in Figure 6.17 (b) .

If false detection of magnets events occur, either coming from hardware anomaly or

from incorrect positioned magnets, the KF-CT+MAG was also able to use discard them

in the Data Association process of the KF-CT+MAG algorithm.

6.3.3 Inter-vehicle pose estimation using laserscanner data and

magnetic landmark via V2X

This section presents the VPE results obtained using LIDAR, MSS and V2X, contributing

altogether to a more insensitive to disturbance vehicle pose estimation. Regarding the

GPS disturbances they were modelled and accounted in the simulation process. The daily

behavior of the ionospheric delay was simulated using a half cosine function of the local time

during daytime and by a constant level during nighttime, scaled by a satellite elevation

factor. The average ionospheric injected error is 4 meters, no scintillation events were

introduced and the daytime total electron content is bounded by [4 × 1017; 1.6 × 1018].

The simulated tropospheric delay, ranges from 3 meters for a satellite at zenith to 25

meters for a satellite at 5 degrees elevation. The multipath error was simulated for all

satellites and receivers, the code pseudorange and carrier-phase pseudorange multipath

errors have respectively 1.6 and 0.2 meters of standard deviation. The standard deviation

of the thermal noise is 1 meter for code pseudorange and 1 centimeter for carrier-phase

pseudorange.
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Figure 6.18: Satellite skyplot and positioning error: (a) satellite constellation (on the highlighted
area it is depicted the sky path of satellite number 4 during simulation time interval); (b)
pseudorange code positioning error; (c) double-differences carrier-phase pseudorange positioning
error.

Figure 6.18 (a) shows the satellite constellation used during simulations, in the high-
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lighted area one can observe the satellite number 4 path during the simulated time interval.

Figure 6.18(b) and (c) present the positioning error of a static receiver using iterative least

squares method for code pseudorange and double-differences carrier-phase pseudorange

respectively. The double-differencing computation uses the highest elevation satellite for

pivoting and it is assumed that the ambiguity resolution was already achieved and no

cycle slip occurred. A satellite mask angle of 15 degrees was used and no smoothing of

either code or carrier-phase was used. As expected, the accuracy of the double-differences

positioning is centimetric while for the code pseudorange positioning is on the meter scale.

Several disturbances where considered on the simulations related with the fusion of

odometry and landmarks. The simulated wheel radius is 0.32 meters and each of the four

wheels is equipped with a 200 pulses per revolution encoder, to each wheel radius an

independent 0.02 meters variance Gaussian white noise was added and to the encoders

besides the quantization error, a 5 pulses variance integer Gaussian white noise was added.

The simulated steering wheel is equipped with a 4096 pulses encoder and has 64 degrees

from lock to lock front wheel steering angle, a 0.01 radians variance Gaussian white

noise was added and to the encoder besides the quantization error, a 10 pulses variance

integer Gaussian white noise was added. The odometry was also contaminated with two

independent 0.01 meters variance Gaussian white noise on the wheel to wheel distance

and on the front to rear axle distance.

(a) (b)

Figure 6.19: KF-CT disturbances analysis: (a) and (b) respectively ωR and ∆R estimation with
a simulated slippage (Noise - noisy encoders measures with simulated slippage at t=1.8s and
t=10s; Real - ωR and ∆R; KF-CT - estimation with EKF and Confidence Tests).

The magnitude of the disturbance in the vehicle’s pose is displayed in Figure 6.19 (a)

and (b), where besides the magnitude of the introduced error it is possible to observe a

relatively low difference between the real ω and ∆R and the estimates ω̂R and ∆̂R. The
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Euclidean Error Orientation Error
RMSE Average RMSE Average
[m] [103 m] [ ◦] [ ◦]

EKF-CT 10.54 18.26 13.85 419.93
EKF-CT+MAG 1.18 2.05 7.38 223.36
EKF-CT+MAG+LASER(RTK) 1.03 1.79 7.29 220.78
EKF-CT+MAG+LASER 1.06 1.83 7.36 222.87

Table 6.1: Root Mean Square Error RMSE and Average Error for the various pose esti-
mation methods.

good estimation performance is due the Confidence Tests encoders slippage removal and

to the EKF efficiency, enabling the method KF-CT to cope with both wheel slippage

and Gaussian white noise. Both the MSS and LIDAR were simulated with quantization

disturbances and 0.02 meters variance Gaussian white noise on both axes.

Results shown in Figures 6.20 and Table 6.1 testify the efficiency of the pro-

posed algorithm, both Euclidian distance error and orientation error are generally

smaller using the KF-CT+MAG+LASER(RTK) method. On the zoomed Figures 6.20(b)

and (d) one can observe greater error reduction using the corrections made by the

KF-CT+MAG+LASER(RTK) (i.e KF-CT+MAG and RTK-GPS fusion of LIDAR de-

tected preceding vehicle using V2X communications), than the corrections made by

KF-CT+MAG+LASER (i.e KF-CT+MAG fusion of LIDAR detected preceding vehi-

cle using V2X communications). It was assumed that the LIDAR cannot provide pre-

ceding vehicle orientation, therefore the above mention corrections can only be made

when the difference between vehicles’ estimated orientation is very small. When the ve-

hicles’ orientation differ by a considerable amount, the previous restriction leads to both

KF-CT+MAG+LASER(RTK) and KF-CT+MAG+LASER reaching the same level of

accuracy as the KF-CT+MAG.

In Figure 6.21(a) the trajectory estimation is presented. It is easily observed that if no

correction is done, the presumed position (Virtual Path) is much different from the real

path followed. All fusion algorithms handle well the disturbances but the algorithms using

absolute position based corrections; either by the vehicle detecting magnets or by using

information of the preceding vehicle detected magnets or RTK-GPS; handle with them

better. On the zoomed Figure 6.21(b) is appears that the KF-CT+MAG+LASER has a

better performance than the KF-CT+MAG+LASER(RTK) due to being closer to the real

followed path, but it is not the case since the estimated path is ahead in time and when

a magnetic based correction is performed, the KF-CT+MAG+LASER updated position

moves backwards by a greater amount than KF-CT+MAG+LASER(RTK) updates it

position laterally (one should note that in Figure 6.21(b) the y-axis uses a different scale

than the x-axis).
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Figure 6.20: KF-CT + MAG + LASER(RTK) error analysis: (a) and (c) show, respectively,
the Euclidian distance error and orientation error with a simulated slippage; (b) and (d) show,
respectively, the Euclidian distance error and orientation error zoomed area between following
time interval [9.5, 11.5](s). Where: Noise - pose estimation using noisy encoders measures with
a simulated slippage at t=1.8s and t=10s; KF-CT - pose estimation using KF-CT algorithm;
KF-CT+MAG - pose estimation using using KF-CT+MAG and in vehicle magnets absolute po-
sition correction; KF-CT+MAG+LASER(RTK) - pose estimation using KF-CT and RTK-GPS
fusion of LIDAR detected preceding vehicle using V2X communications; KF-CT+MAG+LASER
- estimation with KF-CT+MAG fusion of LIDAR detected preceding vehicle using V2X commu-
nications communication and preceding vehicle magnet detection; Self MAG - it marks where a
correction took place using its own MSS; Front MAG - it marks where a correction took place
using preceding vehicle MSS; Front GPS - it marks where a correction took place using preceding
vehicle RTK-GPS.
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Figure 6.21: Path following simulation using KF-CT+MAG+LASER(RTK) position estima-
tion: (a) and (b) are respectively trajectory and zoomed trajectory followed with a simulated
slippage. Where: Real - real pose; Noise - pose estimation using noisy encoders measures
with a simulated slippage at t=1.8s and t=10s; KF-CT - pose estimation using KF-CT; KF-
CT+MAG - pose estimation using KF-CT and in vehicle magnets absolute position correction;
KF-CT+MAG+LASER(RTK) - pose estimation using KF-CT+MAG and RTK-GPS fusion of
LIDAR detected preceding vehicle V2X communications; KF-CT+MAG+LASER - pose estima-
tion using KF-CT+MAG fusion of LIDAR detected preceding vehicle using V2X communications
communication and preceding vehicle magnet detection; MAG - magnet position;).

6.3.4 Robust and Set-membership based GNSS positioning al-

gorithms

To analyze the performance of the proposed positioning algorithm, simulations and real

experiments are reported.

Simulation Setup

Seven vehicles traveling on an urban road network have been simulated (see Figure 6.22-

6.23). Each vehicle is marked with a pair of coordinate axes indicating local along-track

and cross-track directions. All vehicles are equipped with V2V communications, but only

vehicles 1-6 are equipped with lane-boundary sensor.

The GPSoft [76] software was used to emulate the GNSS system, namely the USA GPS

constellation [75]. The GPSoft Toolbox emulates not only satellites and receivers but also

the propagation channels. Error sources such as thermal noise, multipath, atmospheric

delays and Selective Availability are modelled as an integral part of pseudorange and

integrated Doppler emulation. Furthermore, the errors are emulated such that the proper

temporal and spatial correlation effects are observed in the measurements. This allows for

realistic modelling of both code DGPS and carrier-phase RTK-GPS in addition to usual

stand-alone positioning algorithms. GPSoft also enables emulation of Galileo, GEOs, GPS

and GPS Modernization (C/A-code on L1, L2 and L5) as well as dual-frequency P-code

measurements. The user can emulate signals on additional carrier frequencies defined by
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Figure 6.22: Set-membership based algorithms simulation and experimental setup: (a) simulated
road network; (b) Simulation environment - 7 vehicles simulated road network with starting
vehicle positions and headings, vehicle x-axis and y-axis represent along-track and cross-track
directions respectively; (c) Real Experiment - instrumented vehicle used in the tests.

the user. The satellite constellation emulator supports GPS and Glonass as well as user-

defined constellations. In addition, YUMA-format broadcast almanacs can be used. The

emulation of C/A and P-code pseudorange and integrated Doppler with user definable

civil and military carrier frequencies is available including characteristics such as thermal

noise, ionospheric delay, tropospheric delay and diffuse multipath [76].

The signals coming from different satellites is made distinguishable using pseudo-

random noise (PRN) sequences modulation of the carriers. This modulation is divided in

two binary sequences: coarse/acquisition (C/A) code with a chipping rate of 1.023 MHz

and precise (P) code with a chipping rate of 10.23 MHz. There are two main carriers:

• L1 carrier phase at 1575.42 MHz, modulated by both C/A and P codes;

• L2 carrier phase at 1227.60 MHz, modulated by P code.

In this work, the satellite-receiver distance from the satellite s to the receiver r is

measured using C/A-L1 code. As mentioned earlier, GNSS pseudoranges are affected by

several types of error. The daily behavior of the ionospheric delay has been emulated using

a half cosine function of the local time during daytime and by a constant level during

nighttime, scaled by a satellite elevation factor. The average ionospheric injected error

is 4 meters. No scintillation events have been introduced and the daytime total election

content is bounded by [4× 1017; 1.6× 1018]. The emulate tropospheric delay ranges from

3 meters for a satellite at zenith to 25 meters for a satellite at 5 degrees elevation. A

white noise is passed through a first-order Butterworth low-pass filter to generate the

code diffuse multipath error of zero-elevation angle, which is scaled by the cosine of the

true satellite elevation angle before it is applied to the range measurement. The standard

deviation of pseudorange diffuse multipath errors at zero-elevation is 1.6 meters. A different
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Figure 6.23: Simulation - Satellite constellation configuration major error axis: Zoomed trajectory
and position estimation for vehicles 2 and 4. Vehicles 2 and 4 travel in a road lane parallel to
the Y-axis local coordinates system Σ. Vehicle 2 is rotated by π/2 with respect to Σ. Vehicle 4 is
rotated by 3π/2 with respect to Σ. The two vehicle’s y-axis have opposite directions, leading to a
positive lateral error for vehicle 2 and a negative lateral error for vehicle 4 in each vehicle local
frame. This satellite constellation configuration generates an error with the major axis along the
negative direction of the Σ X-axis.

Table 6.2: Pseudorange intervals risk r and α error bounds as a function of the number
m of measurements

m 4 5 6 7 8 9 10 11
r 0.25 ·10−4 0.20 ·10−4 0.17 ·10−4 0.14 ·10−4 0.13 ·10−4 0.11 ·10−4 0.10 ·10−4 0.09 ·10−4

α 4.21 4.26 4.31 4.34 4.37 4.39 4.42 4.44

uncorrelated diffuse multipath error is generated for each satellite and receiver [75]. The

standard deviation of the thermal noise is 1 meter.

For a global risk R = 10−4 and given the current number m of measurements, the

pseudorange intervals risk r and the error bounds α are computed thanks to equation

3.58 and 3.62. The intervals [ρsr] = [ρsr − ασ, ρsr + ασ] are given in Table 6.2 for up to 11

satellites. The lane-boundary sensor error was assumed to have a standard deviation of

σlb = 0.25m and the lane-boundary interval was set to contain 95% of the measurements,

i.e. 2× σlb.
The satellite constellation setup produced a bias towards negative direction of the local

coordinates X-axis (denoted by −−−) and a very small bias towards the positive direction

of the local coordinates Y-axis (denoted by +). Therefore this satellite constellation

configuration generates an error with the major axis along the negative direction of the

local coordinates X-axis, see Figure 6.23.

Table 6.3 presents a qualitative evaluation of the satellite constellation setup bias on

each vehicle coordinates, e.g. vehicle 1 axis is aligned with local coordinates, therefore

the satellite constellation setup bias on vehicle 1 coordinates has the same direction and
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Table 6.3: Satellite constellation bias on vehicle coordinates and vehicle orientation

Vehicle Vehicles
Coordinates 1 2 3 4 5 6 7

X-axis
−− + ++ − −− ++ −
− + − +

Y-axis
+ ++ − −− + − ++

+ − +

θr 0 π/2 π 3π/2 0 π π/4

signal as local coordinates.

Experimental Setup

Standard road vehicles equipped with the same experimental setup have been used on

the test see Figure 6.22(c). The used test site allows to define a huge variety of paths. The

surrounding environment is made of trees and buildings. Four ublox LEA-6T have been

used as embedded GPS-receivers. This kind of receiver enables easy vehicle integration,

have a standard communication interface and provides raw-data which is necessary for

the pseudoranges processing. The ground-truth setup was a high performance RTK-GPS

system TOPCON HiperPro, able to provide positioning solutions with centimeter accuracy.

The MAFS used by the RTK-GPS used data obtained through a SERVIR project facility

which consists on a military network of permanent reference GNSS stations capable of

providing raw-data observations and corrections for real-time RTK-GPS or post-processed

PPK. During the experiments, one of these stations (SERVIR - Station 9 ) gathered all

the necessary conditions to be used as MAFS: short distance to the test site, no multipath

or electromagnetic interference sources nearby and no signal obstruction caused by trees

or higher buildings. The lane-boundary measurements were obtained using the RTK-GPS

with a 25 cm additional white Gaussian white noise.Therefore, the global accuracy of the

lane boundary measurement is in the order of the accuracy of a classical lane detection

camera [113].

6.3.4.1 Set-membership GNSS positioning (SGP)

When using set-membership GNSS method, an important focus is on the characterization

of domains which contain the solution rather than the search of a punctual result which

might be misleading and with no associated confidence information. In this work, the

unknown variables are (xr, yr, zr, cor). The initial searching volume was set to 27×106[m3]

which is an arbitrarily high value with little impact on the processing time.

The top row of Figures (6.24-6.25) present the enveloping box for the position of vehicle

1, located at (xr1, yr1, zr1) = (0, 100, 0)[m], when the constraints provided by the satellites

constellation are used to reduce the search space of the initial box. If a box does not
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belong to the solution set, it is not explored anymore and discarded. The wide domains are

therefore reduced to a small enclosing set of boxes. The set-membership GNSS positioning

location set X, presented on Figures (6.24-6.25), is made of 407 boxes.

The satellite constellation setup produced a very small bias towards the positive direc-

tion of the local coordinates Y-axis, i.e. a bias towards the left side of vehicle 1. This bias

is shown on the top subplot of Figure 6.25(a) and can be more easily seen on Figure 6.24(a)

where the 3D projection onto the YZ plane (lateral distribution) of the set-membership

GNSS positioning location set X is presented. From the top subplot of Figure 6.25(a),

it is possible to observe a small bias towards negative direction of the local coordinates

X-axis, i.e. the satellite constellation produces a very small bias towards the rear side of

vehicle 1. This bias can be more easily seen on Figure 6.24(b) where the 3D projection

onto the XZ plane (longitudinal distribution) of the set-membership GNSS positioning

location set X is presented. One can also observe from Figure 6.24 a positive bias along

the local coordinates Z-axis.

Figures 6.26 and 6.28 present results of the lateral normalized positioning error, for

simulation and real experiments respectively. The dashed line with ’*’ marker, represent

the lateral position error, determined by solving the weighted center of gravity of the

set-membership (SGP).
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Figure 6.24: Simulation - Vehicle 1 SGP and LB-ASGP 2D1/2 solutions: 2D1/2 set-membership
solution (top) and 2D1/2 lane-boundary constrained set-membership solution (bottom): (a) 3D
projection onto the YZ plane (lat. distribution); (b) 3D projection onto the XZ plane (long.
distribution). The clock offset cor follows the gradient correspondence of (c)

From the simulation results depicted in Figure 6.26, it is possible to observe the bias

along both X-axis and Y-axis local coordinates.

The negative bias along the local coordinates X-axis (i.e. this satellite constellation

configuration generates along local coordinates X-axis a predominant negative error) can
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Figure 6.25: Simulation - All vehicles SGP and LB-ASGP 2D1/2 solutions: (a) 3D projection
onto the XY plane (top view distribution) of vehicle 1, 2D1/2 set-membership solution (top)
and 2D1/2 lane-boundary constrained set-membership solution (bottom); (b) all vehicles set-
membership solution, 3D1/2 set-membership solution (top) and 3D1/2 lane-boundary constrained
set-membership solution (bottom). The clock offset cor follows the gradient correspondence of
Figure 6.24(c).

be easily seen through SGP lateral error of vehicles 2 and 4 and SGP longitudinal error of

vehicles 1, 3, 5 and 6. The simulated vehicles 2 and 4 travel in a road lane parallel to the

local coordinates Y-axis. The mean lateral error of vehicle 2 is positive while the mean

lateral error of vehicle 4 is negative. This is because vehicle 2 heads upwards (its axis is

rotated by π/2 with respect to the local coordinates) and vehicle 4 heads downwards (its

axis is rotated by 3π/2 with respect to the local coordinates), and therefore the vehicle

Y-axis points toward the opposite direction (see Figure 6.23). The simulated vehicles 1, 3, 5

and 6 travel in a road lane parallel to the local coordinates X-axis. The mean Longitudinal

error of vehicle 1 and 5 is negative while the mean lateral error of vehicle 3 and 6 is positive.

This is due to the fact that vehicle 1 and 5 head towards left (their axis are aligned with

the local coordinates) and vehicle 3 and 6 head towards right (their axis are rotated by

π with respect to the local coordinates), and therefore the vehicle axis points toward the
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Table 6.4: Error analysis for all vehicles.

Error [m]
Lateral Longitudinal Euclidean

[
∑N
i=1

‖LAT‖
N mean σ 3σ [

∑N
i=1

‖LON‖
N mean σ 3σ mean σ 3σ

vehicles [1,3,5,6] [2,4] [1-7] [1-7] [1-7] [1,3,5,6] [2,4] [1-7] [1-7] [1-7] [1-7] [1-7] [1-7]

Sim.
SGP 0.372 1.558 0.204 1.27 3.300 1.494 0.349 -0.092 1.402 3.187 1.803 0.624 3.633
LB-ASGP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LB-CASGP 0.568 0.592 0.024 0.705 2.248 0.552 0.572 0.023 0.849 2.690 0.968 0.531 2.712
vehicles [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4] [1-4]

Real
SGP 0.702 0.701 4.367 13.45 0.301 -0.234 4.301 12.38 5.324 3.125 13.95
LB-ASGP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LB-CASGP 0.049 0.003 0.734 3.617 0.453 -0.332 2.109 10.30 1.760 1.447 10.33

[ ∑N
i=1

‖LAT‖
N

and
∑N
i=1

‖LON‖
N

are the average of the absolute mean lateral and longitudinal error respectively.

opposite direction. Hence the absolute mean lateral error value along the local coordinates

X-axis of vehicles 2 and 4 is high, as well as the absolute mean longitudinal error value

along the local coordinates Y-axis of vehicles 1, 3, 5 and 6 (see Table 6.4)

The very small positive bias along the local coordinates Y-axis (i.e. this satellite

constellation configuration generates a Y-axis predominant positive error along local

coordinates) is not easily seen on Figure 6.26, hence the absolute mean lateral error value

along the local coordinates X-axis of vehicles 1, 3, 5 and 6 is small, as well as the absolute

mean longitudinal error value along the local coordinates Y-axis of vehicles 2 and 4 (see

Table 6.4)

Therefore, this satellite constellation configuration generates an error with the major

axis along the negative direction of the local coordinates X-axis as shown in Figure 6.23.

Regarding real experiments results, from Figure 6.28 it is not possible to observe a

predominant axis error, since the trajectories followed by all vehicles have a closed loop

shape. The absolute mean lateral and longitudinal error of SGP for all the vehicles is

moderate, see Table 6.4.

Figures 6.27 and Figure 6.29 displays the normalized positioning lateral (top), longi-

tudinal (center) and 2D euclidean (bottom) error distribution, as well as its cumulative

distribution functions, for the simulated and real experiments respectively. The dashed

line with ’*’ markers represents the position errors using SGP.

From the simulations results given in the top subplots of Figure 6.27 and Table 6.4,

one can observe that the algorithm has a very small mean lateral and longitudinal error

distribution and a high standard deviation σ. This distribution profile is due to the fact

that vehicles traveling in different directions have opposite error signals. The cumulative

distribution 3σ boundary of the lateral positioning error for SGP algorithm is very high

meaning that the positioning method is rather inaccurate most of the time.

From center subplots of Figure 6.27, one can observe that the algorithm has nearly
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zero mean longitudinal bimodal error distribution and a high standard deviation σ. This

distribution profile is due to the fact that vehicles traveling in different directions have

opposite error signals, as in lateral error distribution. The cumulative distribution 3σ

boundary of the longitudinal positioning error for SGP algorithm is very high.

The bottom subplots of Figures 6.27 present the 2D euclidean error distribution. The

cumulative distribution 3σ boundary of the 2D euclidean error is very high.

The real results depicted in Figures 6.29 and Table 6.4 confirm the observations made

in simulation. The lateral and longitudinal errors are therefore quite large and highly

spread for the SGP algorithm.

6.3.4.2 Lane Boundary Augmented Set-membership GNSS positioning (LB-

ASGP)

The simulation and experimental results presented in this section, make use of the lane-

boundary measurements to improve the performance of the set-membership GNSS posi-

tioning method LB-ASGP. The experimental results presented in this section, are entitled

test experiment 1.

The bottom subplots of Figures (6.24-6.25) present the enveloping box for the position

of vehicle 1, located at (xr1, yr1, zr1) = (0, 100, 0)[m], when the constraints provided by the

satellites constellation and lane-boundary constraints provided by GIS and lane-boundary

sensor are used to reduce the search space of the initial box. The set-membership GNSS

positioning location set X is reduced after a characterization of every zone compatible

with the lane-boundary sensor measurements. The resulting lane-boundary constrained

set-membership location set is composed by 137 boxes.

By analyzing the bottom subplot of both Figure 6.24(a) and Figure 6.25(a), it is

possible to observe that the 3D projection onto the YZ plane (lateral distribution) of the

set-membership GNSS positioning location set X is reduced after a search of all locations

compatible with the lane-boundary sensor measurements. The impact of the positive bias

along local coordinates Y-axis that this satellite constellation configuration generates on

vehicle 1 is reduced. From the bottom subplot of both Figure 6.24(b) and Figure 6.25(a), it

is possible to observe that the 3D projection onto the XZ plane (longitudinal distribution)

of the set-membership GNSS positioning location set X, maintains its shape, i.e. the

impact of the predominant negative error along local coordinates X-axis generated by this

satellite constellation configuration on vehicle 1 is not reduced.

After having applied the lane-boundary constrain on the estimated set X, the position

[xr, yr] estimation is determined again by projecting the solution of the center of gravity

weighted by the value of the receiver clock offset cor of each sub-paving.

Figures 6.26 and 6.28 present results of the lateral normalized positioning error, for
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Figure 6.26: Simulation - Lateral normal-
ized positioning error distribution, for all
trajectory path for vehicles 1 to 6, using
SGP and LB-ASGP estimation.
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Figure 6.27: Simulation - All vehicles po-
sitioning errors, lateral (top), longitudinal
(center) and 2D euclidean (bottom), using
SGP and LB-ASGP estimation: (left col-
umn) normalized positioning errors distribu-
tion, (righ column) cumulative distribution
functions.

simulation and real experiments respectively. The solid line with ’�’ marker, represent the

lateral position error, determined by solving the LB-ASGP algorithm.

The LB-ASGP algorithm has considerably less mean absolute lateral error than SGP,

with an error reduction of at least 90%.

Figures 6.27 and 6.29 present the normalized positioning lateral (top), longitudinal

(center) and 2D euclidean (bottom) error distribution, as well as its cumulative distribution

functions, for simulation and real experiments respectively. The solid line with ’�’ marker,

represent the position errors, determined by solving the LB-ASGP algorithm.

From top subplots of Figure 6.27, 6.29 and Table 6.4 one can observe that the algorithm

has nearly zero mean lateral error distribution and a low standard deviation σ, this

distribution profile error is due to the inclusion of lane-boundary constraints provided by

GIS and lane-boundary sensor, leading to a better position estimation.

The cumulative distribution 3σ boundary of the lateral positioning error for LB-ASGP

algorithm is greatly reduced meaning that the positioning method has an accuracy better
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Figure 6.28: Real Experiments - Lateral
normalized positioning error distribution,
for all trajectory path of vehicles 1 to 4,
using SGP and LB-ASGP estimation.
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Figure 6.29: Real Experiments - All vehi-
cles positioning errors, lateral (top), longi-
tudinal (center) and 2D euclidean (bottom),
using SGP and LB-ASGP estimation: (left
column) normalized positioning errors dis-
tribution, (right column) cumulative distri-
bution functions.

1 meter in simulation and 2.5 meters in real experiments, most of the time. The 3σ is

reduced by least a factor of 4 when using the LB-ASGP algorithm. From center subplots

of Figure 6.27 and 6.29, one can observe that algorithm has nearly zero mean longitudinal

spread error distribution and a high standard deviation σ. As expected, this distribution

profile is similar to the one obtained without the lane-boundary constraints, since the

lane-boundary sensors only provide additional geometric diversity for the axis orthogonal

to the road lane. The cumulative distribution 3σ boundary of the longitudinal positioning

error for LB-ASGP algorithm maintains a very high value as expected.

The bottom subplots of Figures 6.27 and 6.29 present the 2D euclidean error distri-

bution. For both simulations and real experiments, the mean and standard deviation σ

error of the LB-ASGP algorithm are reduced, being more evident on the real experiment,

therefore validating the simulations.

Figure 6.30(a) shows the trajectory followed by all simulated vehicles and position

estimation for algorithms SGP and LB-ASGP. The subplots represent the zoomed trajec-
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Figure 6.30: Trajectory and zoomed trajectory followed by each vehicle and SGP and LB-ASGP
position estimation: (a) Simulation - vehicle 1 trajectory in the bottom-left zoom subplot; vehicle
2 trajectory in the bottom-right zoom subplot; vehicle 4 trajectory in the top-left zoom subplot
and vehicle 6 trajectory in the top-right zoom. (b) Real Experiments

tory for vehicles 1, 2, 4 and 6 respectively bottom-left, bottom-right, top-left and top-right

zoom subplot. As mentioned earlier, this satellite constellation configuration generates

errors along both X and Y local coordinates axes, with the major error axis along the
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negative direction of the local coordinates X-axis (see position estimation of vehicles 2 and

4 using SGP in Figure 6.30(a). Therefore, the improvement of position estimation by using

lane-boundary sensors is more noticeable for vehicles travelling along the local coordinates

Y-axis and with the lane-boundary sensors measurements along the local coordinates X-

axis, as with vehicles 2 and 4. The position estimation improvement of LB-ASGP algorithm

for vehicles 2 and 4 is shown in subplots bottom-right and top-left respectively, where

the position estimate is shifted right towards the real position. The position estimation

improvement for vehicles 1 and 6 is less evident since these vehicles travel along the local

coordinates X-axis and with the lane-boundary sensors measurements along the local

coordinates Y-axis and the error along the local coordinates Y-axis is medium positive

(see position estimation of vehicles 1 and 6 using SGP in Figure 6.30(a)). The estimates of

vehicles 1 and 6 are shifted down towards the real position. This correction can be observed

on subplot bottom-left and top-right respectively of Figure 6.30(a). This correction reflects

a medium improvement of LB-ASGP algorithm on the position estimate.

Figure 6.30(b) shows the trajectory followed by all vehicles and position estimation

for all presented algorithms. By analysing the subplots of Figure 6.30(b), it is possible to

observe that the satellite constellation configuration, during the real experiments, generates

an error with the major axis along the north-east direction (i.e towards the top-right corner

of Figure 6.30(b)). This bias is successfully mitigated using the LB-ASGP algorithm.

6.3.4.3 Collaborative Set-membership augmented GNSS positioning (LB-

CASGP)

The simulation and experimental results presented in this section, make use of the lane-

boundary measurements and it uses road transverse corrections shared among networked

vehicles in order to improve the performance of the collaborative set-membership GNSS

positioning method LB-CASGP. The experimental results presented in this section, are

entitled test experiment 2.

After having applied the lane-boundary constrain on the estimated set X, the position

[xr, yr] estimation is determined again by projecting the solution of the center of gravity

weighted by the value of the receiver clock offset cor of each sub-paving.

Figures 6.31 and 6.32 present results of the lateral and longitudinal normalized po-

sitioning error, for simulation and real experiments respectively. Figures 6.33 and 6.34

present the normalized positioning lateral (top), longitudinal (center) and 2D euclidean

(bottom) error distribution, as well as its cumulative distribution functions, for simulation

and real experiments respectively. The dotted line with ’♦’ marker, represent the position

error, determined by solving the LB-CASGP algorithm.

Figures 6.31 and 6.32 reveal that the LB-CASGP concentrates the majority of both
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Figure 6.31: Simulation - normalized positioning error distribution, for all trajectory path for
vehicles 1 to 7, using SGP and LB-CASGP estimation: (a) lateral, (b) longitudinal.

lateral and longitudinal errors around 0, while in SGP the errors are more spread. This

reveals that by sharing corrections, position estimates improves in both cross-track and

along-track.

From top subplots of Figure 6.33, 6.34 and Table 6.4 one can observe that the algorithm

has nearly zero mean lateral error distribution and a very low standard deviation σ, this

distribution profile error is due to the inclusion of lane-boundary constraints provided by

GIS and lane-boundary sensor, leading to a better position estimation.

The LB-CASGP algorithm has considerably less mean absolute lateral error than

SGP, with an error reduction of at least 90%. The cumulative distribution σ boundary

of the lateral positioning error for LB-CASGP algorithm is greatly reduced meaning that

the positioning method has an accuracy better than 1 meter in simulation and in real

experiments. The 3σ is reduced by least 60% when using the LB-CASGP algorithm, which

mean a significant lateral error reduction during most of the time.

From center subplots of Figure 6.33, 6.34 and Table 6.4, one can observe that algorithm

has nearly zero mean longitudinal spread error distribution and a low standard deviation σ.

As expected, when using LB-CASGP algorithm, the σ is improved w.r.t. to the one obtained
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Figure 6.32: Real Experiments - normalized positioning error distribution, for all trajectory
path for vehicles 1 to 4, using SGP and LB-CASGP estimation: (a) lateral, (b) longitudinal.

without the collaborative sharing of satellite specific errors, since the lane-boundary sensors

not only provide additional geometric diversity for the axis orthogonal to the road lane

of the carrying vehicle but as well for networked vehicles. The σ is reduced by at least

49% when using the LB-CASGP algorithm, which mean a significant longitudinal error

reduction. The cumulative distribution 3σ boundary of the longitudinal positioning error

is also reduced as expected.

The bottom subplots of Figures 6.33 and 6.34 present the 2D euclidean error distri-

bution. For both simulations and real experiments, the mean and standard deviation σ

error of the LB-CASGP algorithm are reduced, being more evident on the real experiment,

therefore validating the simulations.

Figure 6.35 shows the trajectory followed by all vehicles and position estimation for

all presented algorithms, tested in simulation Figure 6.35(a) and in real experiments

Figure 6.35(b).

The subplots of Figure 6.35(a), represent the zoomed trajectory for vehicles 2, 6 and 7,

respectively bottom-right, top-right and top-left zoom subplot. As mentioned earlier, this

satellite constellation configuration generates errors along both X and Y local coordinates

axes, with the major error axis along the negative direction of the local coordinates X-

axis (see position estimation of vehicles 2 using SGP in bottom-right zoomed zoomed

of Figure 6.35(a)). Therefore, the road-transverse improvement of position estimation

by using LB-CASGP algorithm is more noticeable for vehicles travelling along the local

coordinates Y-axis and with the lane-boundary sensors measurements along the local

coordinates X-axis, as with vehicles 2 and 4. The road-transverse position estimation
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Figure 6.33: Simulation - All vehicles po-
sitioning errors, lateral (top), longitudinal
(center) and 2D euclidean (bottom), us-
ing SGP and LB-CASGP estimation: (left)
normalized positioning errors distribution;
(right) cumulative distribution functions.
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Figure 6.34: Real Experiments - All ve-
hicles positioning errors, lateral (top), lon-
gitudinal (center) and 2D euclidean (bot-
tom), using SGP and LB-CASGP estima-
tion: (left) normalized positioning errors dis-
tribution; (right) cumulative distribution
functions.

improvement of LB-CASGP algorithm for vehicle 2 is shown in subplot bottom-right,

where the position estimate is shifted right towards the real position. The road-parallel

improvement of position estimation by using LB-CASGP algorithm is more noticeable

for vehicles travelling along the local coordinates X-axis and using the shared corrections

along the local coordinates X-axis, as with vehicles 1, 3, 5 and 6. The road-transverse

position estimation improvement of LB-CASGP algorithm for vehicle 6 is shown in subplot

top-right, where the position estimate is shifted right towards the real position. The road-

transverse improvement for vehicles 1, 3, 5 and 6 and the road-parallel improvement for

vehicles 2 and 4 is less evident since this satellite constellation produces a very small

positive bias along the local coordinates Y-axis.

The position estimation for vehicle 7 reflects a medium improvement of LB-CASGP

algorithm on the position estimate as this vehicle is not equipped with lane-boundary sen-

sor. Nevertheless it benefits from the corrections estimates broadcast by all lane-boundary

sensor equipped vehicles, making its correction noticeable in both road-transverse and
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Figure 6.35: Trajectory and zoomed trajectory followed by each vehicle and position estimation
using SGP and LB-ASGP: (a) Simulation - vehicle 2 trajectory in the bottom-right zoom subplot;
vehicle 6 trajectory in the top-right zoom subplot and vehicle 7 trajectory in the top-left zoom
subplot (b) Real Experiments

road-parallel. This correction can be observed on subplot top-left of Figure 6.35(a).

The trajectory followed by vehicle 3 and position estimation for all presented algorithms,
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under real experiments is shown in Figure 6.35(b). Vehicles were platooning and therefore

most of the time they were nearly collinear, this poses a problem as LB-CASGP reaches

a singularity when all networked vehicles are collinear. This event is higly unlikely to

occurs in city scenarios with the presence of a high number of networked vehicles. When

all networked vehicles are collinear, the position estimation is achieved using the non-

collaborative position estimation method LB-ASGP. In Figure 6.35(b), only solutions,

when the LB-CASGP is able provide a solution are shown, i.e. only epochs where the

vehicles are non-collinear or not nearly collinear are presented in the figure. By analysing

the subplots of Figure 6.35(b), it is possible to observe that the satellite constellation

configuration, during the real experiments, generates an error along the south-west direction

(i.e. towards the top-right corner of Figure 6.35(b)) and west (i.e. towards the right side of

Figure 6.35(b)). These biases are successfully mitigated using the LB-CASGP algorithm.

The road-transverse error is significantly removed as the position estimate is shifted

towards north-east. The road-parallel error is corrected by shifting the position towards

east. Subplots of Figure 6.35(b), where each position estimate is numbered, enables us to

conclude that the position estimate using LB-CASGP is always better than using SGP,

both in road-transverse and in road-parallel.

6.3.4.4 Integrity Analysis of SGP, LB-ASGP and LB-CASGP

An integrity metric of major interest when dealing with integrity concerns is the Horizontal

Protection Level (HPL) [114][115]. Stanford diagrams are widely used and consist of a his-

togram of positioning solutions in terms of actual error and protection level. The Stanford

diagrams of both SGP and LB-ASGP obtained with the real data with test experiment 1

are shown in Figure 6.36. The Stanford diagrams of both SGP and LB-CASGP obtained

with the real data with test experiment 2 are shown in Figure 6.37.

They illustrate the integrity performance achieved during the periods analyzed. For

each algorithm, the navigation solution of all the vehicles has been merged in the same plot

in order to show the total domain integrity per algorithm. For the HPL, it was considered

a probability of missed detection of 0.001 and a false alarm tolerance of 3.33333×10−7, the

horizontal alarm limit (HAL) was set here to 10[m] but this value can be easily adapted

to the requirements of different applications. Regarding the horizontal GNSS positioning

system, its integrity risk is the probability that, at any moment, the horizontal position

error (HPE) exceeds an HAL. The integrity system is declared unavailable when the HPL

is greater than HAL. If the system is available and the HPE is not bounded by the HPL, the

event is considered as a Misleading Information (MI), since the HPL is always supposed to

be an upper bound of the HPE. Moreover, the event is declared as Hazardously Misleading

Information (HMI) if the HPE exceeds the HAL [115].
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Figure 6.36: Real Experiments - HPL Stanford diagram of test experiment 1: (a) SGP; (b)
LB-ASGP (misleading information (MI), hazardously misleading information (HMI))
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Figure 6.37: Real Experiments - HPL Stanford diagram of test experiment 2: (a) SGP; (b)
LB-CASGP (misleading information (MI), hazardously misleading information (HMI))

The position error of test experiment 1, is not always bounded by the protection level,

that is, there are several MI events in both SGP and LB-ASGP algorithms, although they

are almost six times higher for the SGP. Regarding HMI, both algorithms have only one

event. The real experiments results reveal that the SGP algorithm is 88% of the time

under normal operation whereas the LB-ASGP is 93%, which is a significant improvement

in terms of positioning availability.

Regarding the test experiment 2, there are also several MI events in both SGP and

LB-CASGP algorithms, although they are almost ten times higher for the SGP. Regarding

HMI, the LB-CASGP achieves none events while the SGP has four events. The real

experiments results reveal that the SGP algorithm is 78% of the time under normal

operation whereas the LB-CASGP is 90%, which is a significant improvement in terms of
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positioning availability.

6.3.4.5 Multipath satellite removal of Augmented and Collaborative GNSS

positioning

The simulation results presented in this section, make use of the lane-boundary measure-

ments to find aberrant satellite pseudoranges LB-RSSMFDE.

NLOS multipath error is always positive and, although typically tens of metres, is

potentially unlimited. Signals received via distant tall buildings can exhibit errors of more

than a kilometre [109].

In the simulation results presented in this section, vehicle 1 GPS receiver suffer a

NLOS multipath disturbance of 50 meters in one satellite, this level of disturbance is

consistent with observations made in urban environment. Olivier Le Marchand on a 500

seconds trip in urban environment, registered 80% of the satellites reached multipath

values above 50 meters and that 30% of the satellites reached multipath values above 200

meters [116].

Iterative Least Squares based Positioning Methods
The robustness of the algorithms LB-RAIGP and LB-RCAIGP is obtained by means

of the removal of the aberrant satellite pseudoranges from the computation of individual

vehicle position estimation.

Figures 6.38 and 6.39 present the results obtained using IGP, LB-AIGP, LB-CAIGP,

LB-RAIGP and LB-RCAIGP.

The overall performance of the robust algorithms (LB-RAIGP and LB-RCAIGP) is

significantly higher than the non-robust algorithms (IGP, LB-AIGP and LB-CAIGP),

see Figure 6.39(a). The traditional IGP positioning method can be even better than the

non-robust collaborative positioning algorithm, the reason behind this poor performance

of LB-CAIGP is due to the fact that the broadcasted corrections are biased by vehicle 1,

leading to a worst position estimation.

Vehicle 1 The effect of NLOS multipath disturbance of 50 meters on vehicle 1,

can be easily seen in top subplot of Figure 6.38, this effect is more evident in Figure

6.39(b). All non-robust algorithms, namely IGP, LB-AIGP and LB-CAIGP, have their

estimated position highly affected. The LB-AIGP is the only non-robust algorithms that

achieves a good performance but only on the lateral position. This due to the fact that

the lane-boundary measurement, provides an additional road transverse information that

superimposes to the NLOS multipath disturbance. Regarding the robust algorithms, all

of them are able to provide good position estimates due to the removal of the aberrant

satellite measurement using LB-RSSMFDE. As expected the LB-RCAIGP is able to
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Figure 6.38: Simulation - normalized positioning error distribution, for all trajectory path for
vehicles 1 to 7, using IGP, LB-AIGP, LB-CAIGP, LB-RAIGP and LB-RCAIGP estimation: (a)
lateral, (b) longitudinal.

improve the position estimate in both lateral and longitudinal axis while the LB-RAIGP

is only able to improve the position estimate along the lateral axis since it uses the

lane-boundary measurement but it lacks the collaborative correction estimates to improve

the longitudinal estimate.

Vehicle 2-6 As expected the effect of NLOS multipath disturbance of 50 meters

of vehicle 1, on vehicles 1-6 should only occur on collaborative algorithms, namely

LB-CAIGP and LB-RCAIGP. This third party effect can be easily observed in Figure

6.38 on LB-CAIGP algorithm, but it is mitigated on LB-RCAIGP due to the removal of

the aberrant satellite measurement using LB-RSSMFDE. Vehicle 1 offset due to NLOS

multipath disturbance leads to a wrongly correction estimation along its lateral axis. The

sharing of this wrongly estimated correction using LB-CAIGP, leads to a lateral bias on

the position estimation off vehicles travelling parallel to vehicle 1 (i.e. vehicle 3, 5 and

6) and a longitudinal bias on the position estimation off vehicles travelling orthogonal

to vehicle 1 (i.e. vehicle 2 and 4). This means that in the presence of NLOS multipath

disturbance, using collaborative positioning worsens the overall solution. As expected the
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Figure 6.39: Simulation results for all trajectory path for vehicles 1 to 6, using IGP, LB-AIGP,
LB-CAIGP, LB-RAIGP and LB-RCAIGP estimation: (a) All vehicles positioning errors, lateral
(top), longitudinal (center) and 2D euclidean (bottom); (b) Trajectory followed by each vehicle.

LB-RCAIGP is able to improve the position estimate in both lateral and longitudinal

axis of all connected vehicles.

Set Membership based Positioning Methods

The LB-RASGP and LB-RCASGP besides benefitting from the removal of aberrant

satellite pseudoranges using LB-RSSMFDE, it also includes a 1-relaxed set-membership

method in order to be robust with an undetected aberrant measure.

Figures 6.40 and 6.41 present the results obtained using SGP, LB-ASGP, LB-CASGP,

LB-RASGP and LB-RCASGP.

The overall performance of the robust set-membership based algorithms (LB-RASGP

and LB-RCASGP) is higher than the non-robust algorithms (SGP, LB-ASGP and

LB-CASGP), see Figure 6.41(a).

Vehicle 1 All non-robust algorithms, namely SGP, LB-ASGP and LB-CASGP, are un-

able to provide an estimate for the vehicle position as can be seen in top subplot of Figure
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Figure 6.40: Simulation - normalized positioning error distribution, for all trajectory path for
vehicles 1 to 7, using SGP, LB-ASGP, LB-CASGP, LB-RASGP and LB-RCASGP estimation:
(a) lateral, (b) longitudinal.

6.40. The effect of NLOS multipath disturbance of 50 meters on vehicle 1, results in an

empty set, and therefore no position estimate is possible to compute. Regarding the robust

algorithms, all of them are able to find a location zone given the uncertainty on satellites

observations and satellites positions due to the removal of the aberrant satellite measure-

ment using LB-RSSMFDE. As expected the LB-RCASGP is able to improve the position

estimate in both lateral and longitudinal axis while the LB-RASGP is only able to improve

the position estimate along the lateral axis since uses the lane-boundary measurement

but it lacks the collaborative correction estimates to improve the longitudinal estimate.

Vehicle 2-6 Regarding non-collaborative algorithms (LB-ASGP and LB-RASGP), a

multipath disturbance on a third party vehicle would not hinder its own position estimate,

whether the third party vehicle computes and empty set (lack of a solution) or a biased

estimate. The effect of NLOS multipath disturbance of 50 meters off vehicle 1, leads to an

empty set and a lack of a solution, this means that there is no correction estimation from

vehicle 1, that could be shared with connected vehicles, meaning that the contamination

effect from vehicle 1 on third party vehicles is, therefore inexistent, hence the LB-CASGP

position estimation is similar to the LB-RCASGP.
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Figure 6.41: Simulation results for all trajectory path for vehicles 1 to 6, using SGP, LB-ASGP,
LB-CASGP, LB-RASGP and LB-RCASGP estimation: (a) All vehicles positioning errors, lateral
(top), longitudinal (center) and 2D euclidean (bottom); (b) Trajectory followed by each vehicle.

6.4 Final Remarks

In this chapter simulations and field experiments were presented and they deeply charac-

terize the performance of all algorithms composing the VPE data fusion module.

The odometry calibration with the MSS revealed good results. The majority of sys-

tematic errors associated to the odometry relying only on encoders, are by the magnetic

markers based calibration, somehow eliminated. However that procedure by itself does

not solve the wheel slippage problem, which was reduced by applying confidence tests.

If the magnetic markers are not widely distributed the problem of accurate positioning

is still present. Simulation results show that the V2X communication allied with sensor

fusion, has the potential to lead to the improvement of the robustness and accuracy of

vehicle-positioning estimation. The results show that although the errors accumulated,

every time a landmark is detected the pose accuracy is significantly improved, where

landmarks can either be provided by a front laser detected vehicle or natural feature, or by

a MSS detected magnetic marker. The fusion method also handles false detections either
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coming from hardware anomaly, incorrect positioned magnets or false LIDAR detection, by

discarding them on the innovation process of the filters. The overall performance including

the RTK-GPS and MSS fusion with odometry revealed good results.

In an effort to move away from costly RTK-GPS receivers, several algorithms improving

the performance of low cost standalone GNSS algorithms were presented. They improved

the position estimate by augmenting the GNSS localization algorithm in environments

where a lane-boundary sensor is capable of detecting the distance from vehicle to the lane

and relate the detected lane boundary with a GIS database. When applying the collabora-

tive algorithms, the satellite-specific errors are used in a cooperative framework enabling

the reduction of its impact on networked vehicles in both cross-track and along-track

components. This method can also improve position estimates of vehicles not equipped

with lane-boundary sensor. The non-equipped vehicles use the cooperative estimation of

the satellite-specific errors to improve its own position estimate.

The proposed set-inversion algorithms have the advantage of guaranteeing not to lose

any solution in the computation process and are insensitive to local minimum convergence

issues. They are based on constraints propagation on real intervals. They are therefore

naturally very reliable by nature.

In this chapter, we have also included a performance analysis of several iterative least

squares based GNSS localization algorithms: standard, a lane-boundary augmented and

collaborative. The two later versions were implemented using two different approaches:

robust and non-robust. When subjected to multipath disturbances the collaborative pro-

posed algorithms can provide worst estimation than stand-alone solutions, i.e. the vehicle

receiver affected by multipath is contaminating the estimation of the vehicles in the vicin-

ity. Therefore, robust set-inversion based algorithms were also developed. They extend

the guaranteed zone computation algorithm to take into account outliers, namely, by

removing detected aberrant satellite measurements and using a relaxed set-membership

approach. The repeatability and the errors magnitude of all algorithms were evaluated in

a comparative way, and revealed that the proposed robust algorithms achieved a greater

level of accuracy. The position estimation improvement at a low cost enables massification,

which consequently provides sufficient data for an intelligent traffic management system

to proper regulate traffic by being aware of every vehicle position with high accuracy.



Chapter 7

Final remarks and conclusion

The simulation framework is paramount to achieve the goals set for the assessment of

novel ITM algorithms. One of the goals of the research work was to provide open-source

tools, easy to use and to add new custom modules, for the research academic community.

The study of vehicular road traffic simulators revealed a wide range of simulators available,

nevertheless all existing traffic simulators lack key characteristics needed for the mentioned

thesis work goals, namely being proprietary and lack of detailed sensors models. Therefore

to achieve an accurate and realistic simulator, with the level of detail required, a new

simulator ISR-TRAFSIM was developed in Matlab, with the disclosure of the source

code. ISR-TRAFSIM was built based on a MAS architecture and it provides a vehicle

simulation, up to the level of representation, required for the development of intersection

traffic management algorithms for automated vehicles; a vehicle emission model that is

comprehensive, computationally inexpensive and accurate for the assessment of fuel con-

sumption and greenhouse gas emissions of CO2; it integrates both V2X communications

as well as different sensors/actuators models, as well as their behavior and associated

noise characteristics for the automated vehicles pose estimation and control. The

ISR-TRAFSIM is highly customizable allowing the analysis of ITM algorithms integrated

with other ITS-related studies, such as, PFC performance evaluation and sensor fusion for

accurate vehicle localization for both conventional Ackermann steering and 4WS vehicles.

The integration of an instantaneous emission model, provides improved assessments of

the environmental impact of traffic control strategies at intersections. The conversion

of the simulator architecture to a socket-based multi-client intersection connected

to a managing server is marked as future work, as well as the modeling of the elec-

tric and hybrid electric vehicles emissions, featuring batteries, supercapacitor and fuel cells.

The ITM algorithms are aimed to minimize accidents, traffic congestion and

consequently the environmental costs of road traffic. The developed intelligent traffic

management ITM algorithms, which are based on a spatio-temporal reservation scheme,

ensure that vehicles proceed through the intersection without colliding with other vehicles

while at the same time reducing the intersection delay and environmental impacts.

Specifically, the spatio-temporal reservation scheme provides each vehicle a collision-free
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path that is decomposed into a speed profile along with navigational instructions. Three

ITM algorithms for vehicles equipped with V2X communications are proposed aiming

the reduction of the traffic environmental impacts in urban areas. The first algorithm

(WMITM), decelerates the vehicle and reserve the upcoming layer cells after the last layer

occupied cells of the spatio-temporal matrix. The second algorithm (EMITM), decelerates

the vehicle and reserve the earliest layer free cells of the spatio-temporal matrix. The

third algorithm (FMITM), accelerates the vehicle and reserve the layer free cells of the

spatio-temporal matrix earlier than it would be if the vehicle followed a regular speed

profile. The developed ITM algorithms are very well suited for autonomous vehicles,

but it can also be used by human drivers if they follow accurately the proposed speed

profile along the path. Compared with traditional traffic management techniques, the

simulation results prove that the proposed ITM algorithms increased traffic output flux,

that the traffic flow rate can be higher and the average time to cross intersections can be

significantly reduced. The research also show that these improvements are more significant

when the traffic flow increases. Regarding the CO2 emissions they are significantly

reduced until the ITM algorithm reaches its saturation point. One ITM algorithm for

vehicles not equipped or with faulty V2X communications is proposed aiming to enable

to accommodate a transitory period where both equipped and not equipped vehicles

share the intersection. The conducted studies show that the inclusion of a low percentage

of vehicles, not equipped or with faulty V2V and V2I communications, in intelligent

intersections using the legacy algorithm, have a low impact on the traffic flow. This

research demonstrates the potential of emission reduction of optimized traffic flow through

the use of ITM techniques. Future work will focus on adapting the canonical potential

fields and A∗ algorithms, used in local path-planning, to a spatio-temporal reservation

based technique. Moreover, the introduction of high priority emergency vehicles is also

marked as future work.

To implement the traffic management in cooperative driving scenarios, the pose and

speed of vehicles must be accurately determined. In the first stage of this research a vehicle

pose estimator for autonomous vehicles navigation in semi-structured outdoor environ-

ments was developed. It integrates redundant encoders data and absolute positioning data

provided by landmarks and artificial beacons. Natural features are localized using a laser

range sensor, and magnetic sensing rulers were developed to detect magnetic markers

buried in the ground. In the first fusion stage, data from four wheel encoders and one

steering encoder are fused by means of an EKF, providing robust odometric information,

namely in face of undesirable effects of wheels slippage. Next, a second fusion stage is pro-

cessed for integrating odometric and absolute positioning data. Cooperation between road
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users trough V2X communication is a way to improve localization accuracy. The vehicle

pose estimator was further extended to enable inter-vehicle sensor fusion for an higher

vehicle positioning accuracy. This extension included augmenting GNSS localization with

other sensory information.

Finally set-membership methodologies were used to compute GNSS guaranteed risk

integrity zone. When vehicles localization systems involve standalone GNSS receivers, the

resulting accuracy can be affected by satellite-specific errors of several meters. This work

studied how road-features like lane marking detected by on-board cameras can be exploited

to reduce absolute position errors of cooperative vehicles sharing information in real-time

in a network. The algorithms considered in this work are based on a error bounded set

membership strategy. In every vehicle, a set membership algorithm computes the absolute

position and an estimation of the satellite-specific errors by using raw GNSS pseudoranges,

lane boundary measurements and a 2D georeferenced road map which provides absolute

geometric constraints. As lane-boundary measurements provide essentially cross-track

corrections in the position estimation process, cooperation enables the vehicles to improve

their own estimates whatever the orientation of the roads. Set-membership methods are

very efficient to solve this problem since they do not involve any independence hypothesis of

the errors and so, the same information can be used several times in the computation. Such

class of algorithm provides a novel approach to improve position accuracy for connected

vehicles guaranteeing the integrity of the computed solution which is pivoting for automated

vehicles requiring guaranteed safety-critical solutions. Results from simulations and real

experiments show that sharing position corrections reduces significantly satellite-specific

GNSS errors effects in both cross-track and along-track components. Moreover, the lane-

boundary measurements help reducing the estimation error in all networked vehicles even

those which are not equipped with an embedded perception system.

A robust set-inversion based algorithm was also developed, to solve the problem of

NLOS multipath and its error propagation when using collaborative algorithms, i.e. the

vehicle receiver affected by multipath is contaminating the estimation of the vehicles in

the vicinity. The robust algorithms extend the guaranteed zone computation algorithm to

take into account outliers, namely, by removing detected aberrant satellite measurements

and using a relaxed set-membership approach. The integration of a inertial measuring

unit tightly coupled with multiple GNSS receivers per vehicle is set as future work.
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[26] P. Melo, R. de Castro, and R. E. Araújo, Evaluation of an Energy Loss-Minimization

Algorithm for EVs Based on Induction Motor. INTECH Open Access Publisher, 2012.

[27] X. Kang, Vehicle-Infrastructure Integration (VII) enabled Plug-in Hybrid Electric Vehicles

(PHEVS) for traffic and energy management. Master of Science in Engineering Thesis,

University of Clemson, 2009.

[28] C. Ongini, Analysis and design of energy-oriented driving assistance systems. PhD thesis,

Italy, 2014.

[29] M. C. Figueiredo, R. J. Rossetti, R. A. Braga, and L. P. Reis, “An approach to simulate

autonomous vehicles in urban traffic scenarios,” in Intelligent Transportation Systems,

2009. ITSC’09. 12th International IEEE Conference on, pp. 1–6, IEEE, 2009.

[30] C. Mehlführer, J. C. Ikuno, M. Simko, S. Schwarz, M. Wrulich, and M. Rupp, “The vienna

lte simulators-enabling reproducibility in wireless communications research.,” EURASIP

J. Adv. Sig. Proc., vol. 2011, p. 29, 2011.

[31] S. Ray, J. B. Carruthers, and D. Starobinski, “Evaluation of the masked node problem in

ad hoc wireless lans,” Mobile Computing, IEEE Transactions on, vol. 4, no. 5, pp. 430–442,

2005.

[32] A. Hassan and T. Larsson, “On the requirements on models and simulator design for

integrated vanet simulation,” in 8th International Workshop on Intelligent Transportation

(WIT 2011), 22-23 March, 2011, Hotel Hafen Hamburg, Hamburg, Germany, pp. 191–196,

2011.

[33] J. L. Pereira and R. J. Rossetti, “An integrated architecture for autonomous vehicles

simulation,” in Proceedings of the 27th annual ACM symposium on applied computing,

pp. 286–292, ACM, 2012.

[34] A. Winder, M. Brackstone, P. D. Site, and M. Antognoli, “Traffic management for land

transport: Research to increase the capacity, efficiency, sustainability and safety of road,

rail and urban transport networks,” 2009.

[35] H. Liimatainen, “Utilization of fuel consumption data in an ecodriving incentive system

for heavy-duty vehicle drivers,” Intelligent Transportation Systems, IEEE Transactions on,

vol. 12, no. 4, pp. 1087–1095, 2011.

[36] M. Munoz-Organero and V. C. Magana, “Validating the impact on reducing fuel con-

sumption by using an ecodriving assistant based on traffic sign detection and optimal

deceleration patterns,” Intelligent Transportation Systems, IEEE Transactions on, vol. 14,

no. 2, pp. 1023–1028, 2013.



174 Bibliography

[37] C. Suthaputchakun, Z. Sun, and M. Dianati, “Applications of vehicular communications for

reducing fuel consumption and co 2 emission: the state of the art and research challenges,”

Communications Magazine, IEEE, vol. 50, no. 12, pp. 108–115, 2012.
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Appendix A

Fuzzy-logic background and FLC for
4WS Kinematic Vehicle

WMR Fuzzy-Logic background

The fuzzification transforms numerical variables into fuzzy sets, which can be manip-
ulated by the controller. A fuzzy set in a universe of discourse U is defined by µA, with
values between 0 and 1 , i.e. µA : U 7→ [0, 1]. A fuzzy set A in a universe of discourse U
can then be expressed by u and its membership level µA(u) :

A = {(u, µA(u)) : u ∈ U} (A.1)
A mathematical function that defines a fuzzy set on the universe of discourse is called

membership function. The controller uses fuzzy functions to encode inputs and outputs.
A membership function µ(u) assign a correspondence between values in the range of [0,1]
to elements u in the universe of discourse. The membership functions used were typical
membership functions in fuzzy expert systems, such has triangular and right and left
shoulders.

Triangular membership function- is given by the following equation:

T (u; a, b, c) =


0 u < a
u−a
b−a a ≤ u ≤ b
c−u
c−b c ≤ u ≤ d

0 u > c

(A.2)

left and right shoulder membership functions - are respectively given by the fol-
lowing equations:

T (u; a, b) =


1 u < a
b−u
b−a a ≤ u ≤ b

0 u > b
(A.3)

T (u; a, b) =


0 u < a
u−a
b−a a ≤ u ≤ b

1 u > b
(A.4)

Generally the smoothness of higher order membership functions is not directly reflected
on the quality of the fuzzy-logic system output, therefore the triangular and right and left
shoulders membership functions were chosen due to the easiness of implementation and
to low computation resources used.

Fuzzy Set Theory defines Fuzzy Operators on Fuzzy Sets. Fuzzy-logic uses IF/THEN
rules, these rules are conditional statements expressed in the form:

IF x is A THEN y is B
where x and y are linguistic variables, and A and B are linguistic values determined

by fuzzy sets on the ranges (universes of discourse) X and Y , respectively.
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For the following rule the “IF A(u)” part is called the antecedent or premise, while
the then-part of the rule “ THEN B(v)” is called the consequent or conclusion.

A⇒ B or IF A(u) THEN B(v)
A fuzzy relation in a conditional statements is given by the cross product between A

and B (A × B), this represents all possible combinations between the elements of each
universe of discourse, i.e.

A×B =

∫
U×V

µA(u)tµB(v)/(u, v) (A.5)

The logical operator AND that joins together two antecedents in a production rule is
called conjunction; the membership function µA∩B(u) of the conjunction A ∩B is defined
by:

µA∩B(u) = µA(u)tµB(u), u ∈ U (A.6)
where t is the t-norm, i.e. two-input function [0, 1]× [0, 1] 7→ [0, 1] that describes a superset
of fuzzy intersection (AND) operators such as:

minimum
xty = x ∧ y = min(x, y) (A.7)

algebraic product
xty = x ∗ y = x.y (A.8)

The logical operator OR that joins together two antecedents in a production rule is
called disjunction, the membership function µA∪B(u) of the disjunction A ∪B is defined
by:

µA∪B(u) = µA(u)sµB(u), u ∈ U (A.9)
where s is the s-norm, i.e. two-input function [0, 1] × [0, 1] 7→ [0, 1] that describes a

superset of fuzzy intersection (OR) operators such as:

maximum

xsy = x ∨ y = max(x, y) (A.10)
algebraic sum

xsy = x+ y = x+ y − xy (A.11)

The process of reasoning based on fuzzy-logic is called “inference method”. Fuzzy infer-
ence includes four steps: fuzzification of the input variables, rule evaluation, aggregation
of the rule outputs and defuzzification

The “inference method” used is described here (Mamdani max-min), it is the
combination of “inference” and “composition”. The term “max-min inference” mean the
combination of “max” composition and “min” inference. Consider the following rule type
has reference for the knowledge base presented in A.1:

R(l): IF x1 is Al1 AND · · · AND xn is Aln︸ ︷︷ ︸
antecedent

THEN y is Bl︸ ︷︷ ︸
consequent

where:



187

• x1, ..., xn ∈ U are the input linguistic variables and y ∈ V is the output linguistic
variable.

• Al1(i = 1, ..., n) are fuzzy sets in Ui

• Bl are the output fuzzy set in V

• l = 1, ...,M , number of rules

Table A.1: Knowledge base

R1: IF x is A1 AND y is B1 THEN z is C1 OR
R2: IF x is A2 AND y is B2 THEN z is C2 OR
...
Rn: IF x is An AND y is Bn THEN z is Cn

Under “inference”, the truth value for the premise of each rule is computed, and applied
to the conclusion part of each rule. This results in one fuzzy subset to be assigned to each
output variable for each rule. In the “min” inferencing, the output membership function
is clipped off at a height corresponding to the rule premise’s computed degree of truth
(fuzzy-logic AND)

µCi(z) = min(min(µAi(x0), µBi(y0)), µCi(z)) (A.12)
Under “composition”, all of the fuzzy subsets assigned to each output variable are

combined together to form a single fuzzy subset for each output variable. In “max” compo-
sition, the combined output fuzzy subset is constructed by taking the pointwise maximum
over all of the fuzzy subsets assigned to variable by the inference rule (fuzzy-logic OR).

µC(z) = max(µC1(z), · · · , µCn(z)) (A.13)
The last step in fuzzy inference is called defuzzification; it is the process of convert-

ing a combined output of fuzzy rules into a crisp (numerical) value. The input for the
defuzzification process is the aggregate set and the output is a single number

The center of gravity defuzzification method was used.
centre of gravity - also called the centroid, where a vertical line would slice the aggregate
set into two equal masses:

u =

∑
i µ(xi)xi∑
i µ(xi)

(A.14)

where xi is the degree of activation of the ith rule and µ(xi) is the output membership
function.

Because more than one output term can be evaluated as valid, the defuzzification
method must be a compromise between different results. The center of gravity method
was chosen because it takes into account, better than any other method, the distribution
of the resultant fuzzy set. In this method the defuzzified value u is a weighted sum of the
term membership.

Fuzzy-Logic path following Controller (FLC) for a
4WS Kinematic Vehicle
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This section addresses the path following problem using fuzzy-logic. It was chosen to
develop a fuzzy-logic based controller, so that non-skilled programmers could tweak or
test new controlling setups. The fuzzy-logic based PFC was firstly evaluated on a simple
kinematic model (i.e. a differential drive vehicle) (found in Appendix A), and further
development is built upon the first iteration on a rather complex kinematic model, (i.e. a
single and double steered car-like vehicle).

The fuzzy-logic based PFC is made up of two main modules: VP and LC. The LC as
the following set of inputs:

uFL = [θcpe , d
cp
e ,∆θ

cp
e ,∆d

cp
e , timp, dile, c(s), v] (A.15)

where v denotes the linear reference velocity, timp is the time-to-collision computed in
the MTDT, dile is the inline lateral error (see section A) and the differential errors ∆dcpe
and ∆θcpe , at the CP, are given by

∆dcpe = dcpe (k)− dcpe (k − 1) (A.16)
and

∆θcpe = θcpe (k)− θcpe (k − 1) (A.17)
Collision avoidance is achieved by controlling the vehicle’s reference velocity, reducing or
even stopping the vehicle in situations of eminent danger. The main goal of the path-
following controller is to ensure that the vehicle follows the predefined reference path with
appropriate orientation. For the fuzzy-logic controller this can be understood as a task of
minimizing the vehicle lateral and heading errors (dcpe , θ

cp
e ) with respect to the reference

path, at a given CP located at a distance La denoted by lookahead distance, as illustrated
in Figure 4.7.

θe = v1
tanϕ

L
− v1

c(s) cos(θe)

1− dtge c(s)
(A.18)

c(s)

[
v1 cos(θe) +

v1d tanϕ

L
− θ̇ed

]
=
v1d tanϕ

L
− θ̇e (A.19)

For both controllers the curvature along the path c(s) is estimated as described in [95].
From the third row of (B.22) one can obtain a linearly parameterizable system in c(s)
written by:

y = wa (A.20)

where

y =
v1d

tg
e tanϕ

L
− θ̇tge (A.21)

w = v1 cos(θtge ) +
v1d

tg
e tanϕ

L
− θ̇tge dtge (A.22)

a = c(s) (A.23)
Knowing the w and y an estimate of a, i.e. â, is obtained using the least squares estimator:

J =

∫ t

0

(y − wâ)2 dτ (A.24)

Solving for â so as to minimize J , the following update equation for â is obtained:

˙̂a = P (wy − w2â) (A.25)

where P and its update equation Ṗ are given by:
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P =
1∫ t

0
w2dτ

(A.26)

Ṗ = −P 2w2 (A.27)

Figure 4.8 presents the controller architecture. The architecture is divided in high and
low level controller. The high level controller LC computes the control commands for the
low level controller, some of the high level modules are also presented has they provide
inputs to the LC. The LC is based on fuzzy-logic, it is composed by four independent
modules: front steering controller, rear steering switch, velocity command generator and
lookahead distance computation (see Figure 4.8). The low level controller is responsible
for the traction control and besides regular vehicles it also enables the control of electrical
4WD and 4WS vehicles.

The controller provide a control vector ([ϕc, vc, ϕsw]) to the traction control level,where
ϕc (in degrees) is the steering angle, vc[ms

−1] is the velocity command, and ϕsw is
the rear steering switch that controls the two possible driving modes: DDM and
PDM (see Figure A.1). In DDM the rear axle steers in opposite direction of the front
axle, while in PDM the rear and front axle steers in the same direction, both modes
are 4WS. If the vehicle is 2WS then the ϕsw as no effect on the low level traction controller.

Fuzzy System Structure
input variables 8

output variables 4
intermediate variables 1

rule blocks 5
rules 615

membership functions 48

Table A.2: Overall Fuzzy-Logic Con-
troller characteristics

Figure A.1: Driving Modes: Park Driv-
ing Mode (DDM) and Park Driving Mode
(PDM).

The fuzzy LC is composed by four independent modules: front steering controller, rear
steering switch, velocity command generator and lookahead distance computation (see
Figure 4.8). In order to properly avoid collisions with obstacles the time-to-impact timp
(also referred here as time-to-collision), provided by the MTDT, is integrated in the velocity
command generator. All modules are fuzzy-logic based. Figure 4.8 shows the LC identifying
the fuzzy-logic inference flow from the input variables to the output variables. The fuzzy
controller is characterized in Table A.2. The knowledge base of the LC expresses how the
system should react. Part of the the fuzzy knowledge base, the input sets, the output sets
and some of the membership functions are presented in the following paragraphs.

Front steering module

The front steering module (composed by controller 1 and 2) computes the steering
command ϕc. The purpose is to minimize both the orientation error θcpe , and the lateral
error dcpe . A steering increment fuzzy variable (ϕinc) is computed in order to achieve a
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Figure A.2: Lateral error (dcpe ) membership functions distribution

dcpe ; θcpe Linguistic terms
HN High Negative
N Negative

LN Low Negative
Z Zero

LP Low Positive
P Positive

HP High Positive

Table A.3: Linguistic terms of dcpe and θcpe .

∆dcpe ; ∆θcpe Linguistic terms
D Decreasing
C Constant
I Increasing

Table A.4: Linguistic terms of ∆dcpe and
∆θcpe

faster recovery from an undesirable pose. ϕinc is the output of a fuzzy module which has
as inputs c(s) and ∆θcpe . This module ensures a geometrical convergence towards the path
to be followed.

Rear steering switch module
The Rear Steering Switch module decides whether the rear axle should steer to opposite

direction of the front axle DDM or in the same direction PDM. The inputs of this module
are ∆dcpe , and the inline lateral error dile given by

dile = |d
cp
e

dcge
|+ |θcpe | (A.28)

If ∆dcpe is decreasing and dile is small, this module steers the rear wheels in the same
direction as the front wheels; the result is a decreasing of the vehicle’s yaw motion. The
yaw motion is necessary for executing a manoeuvre but is not desired from the point of
view of the vehicle’s stability control [90]. This module was only implemented and tested
in simulations.

Velocity command generator module

c(s); dile; v; ϕinc Linguistic terms
Z Zero
M Medium
H High

Table A.5: Linguistic terms of κ, dile, v and
ϕinc

timp Linguistic terms
L Low
M Medium
H High

Table A.6: Linguistic terms of timp
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Figure A.3: Orientation error (θe) membership functions distribution

The inputs of this module are ∆dcpe , dcpe , ∆θcpe , θcpe and the timp. This module computes
a weight factor assigning a level of significance to the reference velocity, i.e. if the errors
have a high magnitude or the time-to-collision has a low magnitude then the velocity
must be decreased, otherwise the reference velocity is applied. This module is of extreme
importance since collision avoidance is decided here, i.e. if the timp is small, then the
vehicle velocity is reduced or the vehicle is even stopped; if timp is high the vehicle velocity
(weight factor) is not affected.

Lookahead distance computation module
This module computes the lookahead distance, La, which is a function of the vehicle

velocity, v. If the velocity increases, the damping factor of the closed loop system gets worse
and is improved by increasing the lookahead distance. The lookahead distance provides a
prediction behaviour to the controller, since it enables the control point to be far ahead
of the CG of the vehicle, see Figure 4.7.

Fuzzy input sets
The lateral error dcpe and the orientation error θcpe membership functions distributions

are each one composed by a fifth-pronged triangular membership function and two shoulder
membership functions (see Figure A.2 and Figure A.3). Their linguistic terms are shown
in Table A.3.

The differential dcpe (∆dcpe ) and the differential θe (∆θe) membership functions dis-
tributions are each composed by a triangular membership function and two shoulder
membership functions. Their linguistic terms are shown in Table A.4.

The curvature c(s), inline lateral error dile, vehicle velocity v and the steering incre-
ment fuzzy variable ϕinc membership functions distributions are each one composed by a
triangular membership function and two shoulder membership functions. Their linguistic
terms are shown in Table A.5.

The time-to-collision (timp) membership functions distribution is similar to the previous
one. Its linguistic terms are shown in Table A.6.

Fuzzy output sets
The steering command ϕc membership functions distribution is a fifth-pronged trian-

gular membership function and two shoulder membership functions (see Figure A.4). Its
linguistic terms are shown in Table A.7.

The rear steering switch ϕsw membership functions distribution is a two non-
overlapping shoulder membership function, corresponding to the two possible driving
modes. Its linguistic terms are shown in Table A.8.
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Figure A.4: Steering command (ϕc) membership functions distribution

ϕc Linguistic terms
HN High Negative
N Negative

LN Low Negative
Z Zero

LP Low Positive
P Positive

HP High Positive

Table A.7: Linguistic terms
of ϕc

ϕsw Linguistic terms
DDM Dual Driving Mode
PDM Park Driving Mode

Table A.8: Linguistic terms
of ϕsw

vc; La Linguistic terms
Z Zero
M Medium
H High

Table A.9: Linguistic terms
of vc and La

The velocity vc and the lookahead distance La membership functions distributions are
each one composed by a triangular membership function and two shoulder membership
functions. Its linguistic terms are shown in Table A.9:

Fuzzy knowledge base
Tables A.10-A.13 show the fuzzy rules that constitute part of the knowledge base of

the LC and express how the system should react.

Front steering module II
1-If dcpe is HN and θcpe is HN and ϕinc is H then ϕc is HP;
2-If dcpe is LN and θcpe is LP and ϕinc is Z then ϕc is LN;
3-If dcpe is LN and θcpe is HN and ϕinc is H then ϕc is P;
4-If dcpe is MN and θcpe is Z and ϕinc is Z then ϕc is MP.

Table A.10: Fuzzy rules subset of the front steering controller II

Velocity planner

The VP module calculates the linear reference velocity, as well as determines the local
reference trajectory points. One main objective taken into account was to make the trip
as comfortable as possible, i.e. to give the system the capability of fully controlling the
smoothness of the acceleration profile either lateral or longitudinal.

A Canadian study [91] used a highway testing ground to test speed and lateral acceler-
ation on both wet and dry pavement on horizontal curves. They found that ”comfortable
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Rear steering switch module
1-If ∆dcpe is I and dile is Z then φsw is PDM;
2-If ∆dcpe is I and dile is M then φsw is DDM;
3-If ∆dcpe is I and dile is H then φsw is DDM;
4-If ∆dcpe is D and dile is H then φsw is DDM.

Table A.11: Fuzzy rules of the rear steering switch

Velocity control module
1-If dcpe is HN and θe is Z and ∆dcpe is I and
∆θe is C and timp is H then vc is M ;
2-If dcpe is Z and θe is Z and ∆dcpe is I and
∆θe is I and timp is H then vc is M;
3-If dcpe is Z and θe is Z and ∆dcpe is C and
∆θe is C and timp is H then vc is H;
4-If dcpe is HN and θe is HN and ∆dcpe is C and
∆θe is C and timp is L then vc is Z;

Table A.12: Fuzzy rules of the velocity control module

Lookahead module
1-If v is Z then La is Z;
2-If v is M then La is M;
3-If v is H then La is H.

Table A.13: Fuzzy rules of the
lookahead module

lateral acceleration” and ”speed environment” limited the driver’s speed, while pavement
surface conditions (dry or wet) and the driver’s gender did not. Drivers adjusted their com-
fortable speed according to their comfortable lateral acceleration tolerance, approximately
between 0.35g and 0.40g. Another study [92] revealed the comfortable longitudinal accel-
eration, i.e. steady deceleration under expected-stop conditions; drivers generally exert an
average steady braking force of −0.35g. This amount of braking force seems comfortable
for most drivers.

The previous acceleration limits were used to set up the maximum comfort acceleration
amc and maximum comfort velocity vmc. The maximum acceleration without slipping
amws and maximum velocity without slipping vmws still had to be computed to cope with
unexpected situations. To estimate vmws, it is necessary to know the forces that actuate
on the vehicle, which are basically the horizontal forces, the wheel ground contact forces,
the force that the vehicle exerts on the ground and the wind force over the vehicle (air
resistance). In this study we consider a plane road, and no wind force effects are taken
into account.

The friction force is proportional to the normal reaction, where the proportionality
factor is the friction coefficient (static or dynamic):

Ffric = µFz (A.29)
The force that the vehicle exerts on the ground (weight P ) is proportional to its mass m,

P = m× g (A.30)
where g is the gravity acceleration. Furthermore there is the centrifugal force that actuates
on the vehicle when it describes a curvilinear trajectory,

Fc = m
v2

r
(A.31)

where v is the vehicle velocity and r the curvature radius. The vehicle, when describing a
curvilinear trajectory, should not slide (either on the inner or the outer side of the curve).
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y[m]

x[m]

Figure A.5: Vehicle following a given path. In the figures some sampling points are marked (11,
21, 31 and 41 ) (x-axis and y-axis are in meters)

So, in order to avoid sliding, the sum of the forces, along y-axis (lateral direction) must
be null:

Fc − Ffric − P sin(ψ) = 0 (A.32)
where ψ denotes the roll angle of the vehicle.

The friction force is proportional to the normal reaction, where the proportionality
factor is the friction coefficient µ (static or dynamic).

Taking into account the previous assumptions one can derive the maximum velocity
without slipping

vmws =
√
rg(µ cos(ψ) + sin(ψ)) (A.33)

where g is the gravity acceleration, r the curvature radius and ψ denotes the roll angle of
the vehicle.

The main difficulty in the calculation of the reference velocity is the friction coefficient,
which must be estimated with a significant precision. An estimate of µ is obtained by the
following equation:

µ(S) = (c1(1− e−c2S)− c3S)e−c4Sv(1− c5F
2
z ) (A.34)

where S is the resultant slip, and the constants ci (i = 1..5) are characteristic parameters
of various types of road [117]. The velocity vmc determines the intended vehicle velocity
used in the vehicle motion. The vmws has a more ruggedness profile, as can be observed
in Figure A.6, which shows the velocity profiles correspondent to the example of a vehicle
following the path depicted in Figure A.5. In order to fulfill the amws, or the amc constraints,
the vehicle should start braking in advance being more restrictive for the amc profile, see
Figure A.7. The profit of being more restrictive is a smoother variation on the amc profile.

Additionally the VP outputs the instantaneous curvature κ(t) of the trajectory being
described by the vehicle

κ(t) =
sin(ϕ(t) + φ(t))

L cos(ϕ(t))
=
dθ(t)

ds
(A.35)

where L is the distance between the rear and front axles, ϕ is the front steering angle, φ



195

5 01 51 02 52 03 53 04

0

5

01

51 stniartsnoc tuohtiw v
v swm
v cm

[ms   ]

[sampling points]

-1

Figure A.6: Velocity profiles for the example of Figure A.5
(x-axis denotes the sampling points, and y-axis is in m/s)
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Figure A.7: Acceleration profiles for
the example of Figure A.5 (x-axis de-
notes the sampling points, and y-axis
is in m/s2)

is the rear steering angle and θ is the vehicle orientation in the world coordinate system,
as depicted in Figure 4.7.

Multi-Target Detection and Tracking (MTDT)

Although the author of this research contributed to the implementation of the MTDT
System, the main contribution is from Institute of Systems and Robotics (ISR) researcher
Abel Mendes. An overview of this module is presented here in order to fully understand
the overall architecture. The block diagram in Figure A.8 describes the dataflow between
the modules, that constitute the anti-collision system: Segmentation, Object Tracking,
Obstacle Classification and Impact-time Computation.

• Segmentation: The goal here is to identify the limits of possible existing objects
detected by the LIDAR (see Figure A.9) and if so, to filter and provide additional
information about the object in analysis. The readings are subdivided into small
sets of neighbour points (segments), taking into account the proximity between two
consecutive points of the scan [118] [119]. A segment is, hence, a set of measurement
values (points of the scan) close enough to each other, which due to their proximity,
probably belong to the same object. The segmentation criterion is based on [120].
After the subdivision of each scan in segments, a selection of several points of the
segment and the computation of the visible dimensions of the object take place.

• Object Tracking: It is necessary to identify the segment-object pair in an unques-
tionable fashion. For that purpose, the reference point of the detected segments is
compared with the reference point estimated with a Kalman filter for each tracked
object. For each detected segment, an interest region is defined, in which the search
of existing objects is performed [121]. Since the LIDAR is carried by vehicles it is nec-
essary to consider the movement of the LIDAR in the tracking of the objects. When
performing the Kalman filtering update cycle all the variables involved (including
actual and previous state) are expressed in the same reference frame [121].
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Figure A.8: Anti-collision system architecture.

Figure A.9: Robucar prototype
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Figure A.10: Geometrical method of impact com-
putation. (vector V represents the obstacle velocity
relatively to the CyberCar; edge e will be the impact
point)

• Impact-Time Computation: The Impact-Time Computation module uses the
results of all the Segmentation and the Object Tracking to estimate the impact-time
and position, for each one of all detected objects. The method used is based on the
projection of all possible points of impact in the direction of the object’s velocity,
and for each instant it is assumed a constant object velocity relative to the vehicle.
As we can see in Figure A.10, these points are the edges of the car (d, e, f) and of
the object (a, b, c). So, from the projection lines starting on the object, defined by
the starting points and velocity vector, we select the shortest line that intercepts
a line segment of the boundary of the vehicle. Applying the same method for the
projection lines that start on the car, we finish the process and achieve the colliding
shortest distance. Note that the object velocity is assumed to be constant (V ).



Appendix B

Chained Form Path Following
Controller for front steered vehicles

Front steered vehicles Kinematic model

Consider the car-like robot moving on a plane, as shown in Figure B.1. For simplicity,
we assume that the two wheels on each axis (front and rear) collapse into a single wheel
located at the midpoint of the axis (bicycle model). The front wheel can be steered while
the rear wheel orientation is fixed. Based on the center of rear wheel axle, the system is
subject to four constraints, i.e. pure rolling and non-slipping constraints.

Non-slipping constraints
Rear virtual Wheel:

ẋR sin θ − ẏR cos θ = 0 (B.1)
Front virtual Wheel:

ẋR sin(θ + Ψ)− ẏR cos(θ + Ψ)− Lθ̇ cos Ψ = 0 (B.2)
Pure rolling constraints
Rear virtual Wheel:

ẋR cos θ + ẏR sin θ = VR (B.3)
Front virtual Wheel:

ẋR cos(θ + φ) + ẏR sin(θ + φ) + Lθ̇ sinφ = VF (B.4)
Then the robot configuration is given by the generalized coordinate vector q.

q = [xR, yR, θ,Ψ, VR, VF ]T (B.5)
The constraint matrix is given as follows A(q)q̇ = 0, where A(q) is obtained using

eq. B.1-B.5 and is given by:

A(q) =


sin θ

sin(θ + Ψ)
cos θ

cos(θ + Ψ)

− cos θ
− cos(θ + Ψ)

sin θ
sin(θ + Ψ)

0
−L cos Ψ

0
L sin Ψ

0
0
0
0

0
0
−1
0

0
0
0
−1

 (B.6)

Choosing Ω(q) so as to satisfy the following condition A(q)Ω(q) = 0, the model for
rear-wheel drive can be derived: 

ẋR = u1 cos(θ)
ẏR = u1 sin(θ)

θ̇ = u1
tan(Ψ)
L

Ψ̇ = u2

(B.7)

Where u1 = VR is the driving velocity of the rear wheel, and u2 is the steering velocity
input of the front wheel. There is a control singularity at Ψ = ±π/2, where the vector
w1 is discontinuous. This corresponds to the rear wheel drive car becoming jammed when
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Figure B.1: Front steered Vehicle geometrical configuration. WΣ and RΣ represent respectively
the world coordinate system and the vehicle local coordinate system with its origin at the
midpoint of the rear axle and its x-axis aligned with the longitudinal axis of the vehicle

the front wheel is normal to the longitudinal axis L of the car body, the relevance of this
singularity is limited, due to the restricted range of the steering angle Ψ in most of the
vehicles.

A different way of obtaining the kinematic equations is by using geometrical analysis,
as follows. Since there exists a linear velocity vector and instantaneous rotation center at
the reference frame located at the midpoint of the rear axle RΣ due to to pure rolling,
non-slipping and rigid body assumptions, one can also derive the kinematics equation has
follows. The instantaneous curvature center when driving in front steering mode can be
written:

θ̇ =
VR
DR

=
VF
DF

(B.8)

where

DR =
L

| tan(Ψ)|
= DF · cos(Ψ) (B.9)

the combination of (B.8) and (B.9) gives
VR = VR · cos(Ψ) (B.10)

therefore the equations of movement for the rear axle and front axle are given by
equations (B.11) and (B.12) respectively.

ẋR = VR · cos(θ)
ẏR = VR · sin(θ)

θ̇ = VR · tan(Ψ)
L

(B.11)
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
ẋF = VF · cos(θ + Ψ)
ẏF = VF · sin(θ + Ψ)

θ̇ = VF · sin(Ψ)
L

(B.12)

one can also express the equations of movement of the rear axle function of the front
instantaneous velocity VF and the front axle function of the rear instantaneous velocity
VR; equations (B.13) and (B.14) respectively.


ẋR = VF · cos(Ψ) · cos(θ)
ẏR = VR · cos(Ψ) · sin(θ)

θ̇ = VF · tan(Ψ)
L

(B.13)


ẋF = VR · cos(θ+Ψ)

cos(Ψ)

ẏF = VR · sin(θ+Ψ)
cos(Ψ)

θ̇ = VR · tan(Ψ)
L

(B.14)

Using equation (B.11) the kinematic model of the vehicle, for a reference frame located
at the midpoint of the rear axle RΣ, is given in the matrix form by the following equations:


ẋ
ẏ

θ̇
ϕ̇

 =


cos(θ)
sin(θ)
tan Ψ
L

0

 v1 +


0
0
0
1

 v2 (B.15)

Where v1 = VR represents the linear velocity of the vehicle, v2 is the angular velocity
of the steering wheels, L is the distance between the rear and front axles, ϕ is the front
steering angle and θ is the vehicle orientation in the world coordinate system, as depicted
in Figure B.1. As expected equations B.15 and B.7 are equivalent.

A different point of view and more useful in terms of path following is the one that
describes the vehicle behaviour in terms of the the path coordinates [122]. Assuming that
has vehicle has to follow a path defined by its arc length, one can define the following
variables, dtge is the perpendicular distance between the rear axle midpoint and the current
tangent to the path and s is the corresponding value of the path parameter. θtge is the angle
between the x axis of the vehicle and the current tangent to the path, i.e. θtge = θR − θP ,
where θR is the vehicle heading angle and the θP is the path tangent angle.

Therefore one can derive the following equations:

ṡ = v1 · cos(θtge ) + θ̇P · dtge (B.16)

ḋtge = v1 · sin(θtge ) (B.17)

c(s) =
∂θP
∂s
⇒ θ̇P = c(s) · ṡ (B.18)

Where c(s) is the curvature of the path.
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Replacing equation B.18 in B.16 one obtain ṡ.
ṡ− θ̇P · dtge = v1 · cos(θtge )

⇔
ṡ− ṡ · c(s) · dtge = v1 · cos(θtge )

⇔
ṡ = v1·cos(θtge )

1−c(s)·dtge

(B.19)

for θ̇P the following expression is obtained

ṡ− θ̇P · dtge = v1 · cos(θtge )
⇔

θ̇P
c(s)
− θ̇P · dtge = v1 · cos(θtge )

⇔
θ̇P

(
1
c(s)
− dtge

)
= v1 · cos(θtge )

⇔
θ̇P = v1·cos(θtge )·c(s)

1−dtge ·c(s)

(B.20)

From equations B.7, B.16 and B.20
θtge = θR − θP
θ̇P = v1·cos(θtge )·c(s)

1−dtge ·c(s)

θ̇R = v1 · tan(Ψ)
L

⇒ θ̇tge = v1 ·
(

tan(Ψ)

L
− cos(θtge ) · c(s)

1− dtge · c(s)

)
(B.21)

Using the previous transformations one can write in the matrix form the kinematic
model in terms of the path coordinates:


ṡ

ḋtge
θ̇tge
ϕ̇

 =


cos(θtge )

1−c(s)dtge
sin(θtge )
tan Ψ
L
− c(s) cos(θtge )

1−dtge c(s)
0

 v1 +


0
0
0
1

 v2 (B.22)

Odometry model

Let the vehicle position be represented by the middle point rear axle with Cartesian
coordinates (xk, yk) at time tk. The vehicle local coordinate system is defined as having
origin M and its x-axis aligned with the longitudinal axis of the car. θk is the vehicle
heading angle at time tk. Assuming that the vehicle’s motion is locally circular, its position
and orientation at time tk is given by

xk+1 = xk + ∆R cos(θk + ω/2)
yk+1 = yk + ∆R sin(θk + ω/2)
θk+1 = θk + ωR

(B.23)

where ∆R is the arc length and ωR the elementary rotation of the rear axle. Assuming
that there is no wheel slippage and using only data from the rear wheels encoders, then

∆R = ∆RR+∆RL

2
, ωR = ∆RR−∆RL

2e
(B.24)

where e is the half distance between wheels, and ∆RR and ∆RL are calculated using the
right and left wheel encoders measurements, respectively.

Chained form background
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Consider a driftless two-input control system of the form
q̇1

q̇2

q̇3

q̇4

=
=
=
=

u1

u2

q2u1

q3u1

or q̇ = g1(q)u2,

...

q̇n = qn−1u1

with

g1 =

1
0
q2

q3
...

qn−1

, g2 =

0
1
0
0
...
0

System (7.45) is a special case of chained form called one-chain system. If we set
u1 = 1, the system becomes linear and behaves like a chain of integrators from qnto qn,
driven by the input u2. Note that the two-input case is sufficiently broad to cover most
of the kinematic models of practical wheeled mobile robots. For the case m ≥ 3 and for
the corresponding multi-chain forms, the reader is referred to [54], where these canonical
forms were originally introduced.

The structure of system (7.45) is particularly interesting, in that controllability is
achieved via g1,g2 and (repeated) Lie brackets of the form adkg1g2, where

adg1g2 = ad1
g1g2 = [g1, g2] , adkg1g2 =

[
g1,ad

k−1
g1 g2

]
.

In fact, a simple computation shows that

adkg1g2 =


o
...

(−1)k

...
o

 , 1 ≤ k ≤ n− 2,

where the nonzero element is the (k + 2)− nd entry. As a consequence, the n vector
fields{

g1, g2,ad
1
g1,g2,....,ad

n−2
g1 g2

}
are linearly independent everywhere, and the controllability rank condition is satisfied.

Equivalently, we may say that system (7.45)is completely nonholonomic, with degree
of nonholonomy k = n − 1, growth vector r = (2, 3, 4, ..., n), and relative growth vector
σ = (2, 1, 1, ..., 1). In connection with the foregoing calculation, u1is called the generating
input, while q1 and q2are often referred to as base variables. Note also that, for k > n−2,the
repeated Lie brackets are identically zero ; this property of the system is called nilpotency.

It is natural to ask how general the chained form (7.45) is. In particular, we are
interested in conditions for converting the driftless control system (7.44) into chained
form by means of the invertible input transformation v = β(q)u and the change of
coordinates z = φ(q). If these conditions hold, then we can design the controller for the
chained form and apply a precompensator to the system, that performs the input and
state transformations.



202 Appendix B. Chained Form Path Following Controller for front steered vehicles

Recently, Murray[55] established a set of necessary and sufficient conditions for the
conversion of a two-input system into chained form. Let M= span {g1, g2} and define the
two filtrations:

E1 = ∆
E2 = E1 + [E1, E1]

...
Ei + 1 = Ei + [E1, E1] ,

F1 = ∆
F2 = F1 + [F1, F1]

...
Fi + 1 = Fi + [Fi, Fi] .

Then, system(7.44), with m = 2,can be cast in chained form if and only if

dimEi = dimFi = i+ 1, i = 1, ..., n− 1.

By applying this condition, one can show that completely nonholonomic systems with
two inputs and relative growth vector (2, 1) (obtained for n = 3) or (2, 1, 1) (obtained
for n = 4) can always be put in chained form.

The proof of this result relies on the theory of exterior differential systems , and in
particular on the Goursat normal form, which is the dual of the chained form . The
constructive procedure given in the proof has general validity, and has been used for
example to find local transformations which convert the N-trailer system into chained
form (see [41, 56]).

However, there is a simpler constructive algorithm based on the following sufficient
condition for local conversion of a two-input system to chained form. Define the distribu-
tions

∆0 = span
{
g1, g2, adg1g2, · · · , adn−2

g1 g2

}
∆1 = span

{
g2, adg1 , g2, . . . , ad

n−2
g1

g2

}
∆2 = span

{
g2, adg1g2, . . . , , ad

n−3
g1

g2

}
If for some open set U, dim ∆0 = n and ∆1,∆2 are involutive, and there exists a smooth

function h1 : U → IRnsuch that

dh1.∆1 = 0 and dh1.g1 = 1,

then there exists a local feedback transformation and change of coordinates that trans-
form the system into chained form.

In particular, the change of coordinates z = φ(q) is given by

z1 = h1

z2 = Ln−2
g1 h2

...

zn−1 = Lg1h2

zn = h2,

with h2independent from h1and such that

dh2.∆2 = Lg1h2 = 0.

The existence of independent h1 and h2with the above properties is guaranteed by
Frobenius theorem, since ∆1 and ∆2 are involutive. Using the invertible input transforma-
tion

v1 = u1

v2 = (Ln−1
g1 h2)u1 + (Lg2L

n−2
g1 h2)u2

results in the transformed system
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ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1
...

żn = zn−1v1.
To apply this procedure, we must solve two sets of partial differential equations, namely,

eqs.(7.46)− (7.47) If g1 and g2 have the special form

g1 =


1

g12(q)
...

g1n(q)

, g2 =


0

g22(q)
...

g2n(q)


with arbitrary gij’s , then it is easy to verify that ∆1 is always involutive and we can

choose h1 = q1. In this case, we only have to verify that ∆2 is involutive, and solve the
associated partial differential equation (7.47) . To this end, one may in general use the
constructive procedure given in the proof of Frobenius theorem (see [4, p.26]). Note that
it is always possible to cast g1 and g2 in above special form, by reordering variables and
by virtue of the independence assumption on the input vector fields .

Chained form based lateral controller

The control law designed here, based upon the kinematics model uses the chained
systems theory [123]. Although mobile robot models cannot be linearized, it has been
proved that one can convert the nonlinear system in an almost linear system, termed as
chained form.

Scaling the input v1 so that it enters directly into ṡ. Denoting by ṽ1 the new input and
setting and ṽ2 = v2 the kinematic equations model of the front-steered car-like vehicle, in
terms of the the path coordinates given by eq. B.22, are written in the following form:


ṡ

ḋtge
θ̇tge
ϕ̇

 =


1
1−c(s)dtge
cos(θtge )

· sin(θtge )

1−c(s)dtge
cos(θtge )

·
(

tan Ψ
L − c(s) cos(θtge )

1−dtge c(s)

)
0

 ṽ1+


0
0
0
1

 ṽ2 =


1(

1− c(s)dtge
)

tan
(
θtge
)

(1−c(s)dtge ) tan (Ψ)

L cos (θtge )
− c(s)

0

 ṽ1+


0
0
0
1

 ṽ2

(B.25)

then g1 g2 are given by:

g1 =


1

(1− c(s)dtge ) tan (θtge )
(1−c(s)dtge ) tan (Ψ)

L cos (θtge )
− c(s)

0

 ; g2 =


0
0
0
1

 (B.26)

The vectors g1 and g2 have the special structure described above, then h1 = s and
h2 = dtge . The resulting change of coordinates is as following:
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z1 = h1

z2 = L2
g1
h2

z3 = Lg1h2

z4 = h2

(B.27)

where L denotes the Lie derivative operator.

From eq. B.26 and eq. B.27 one can obtain z3:

z3 = Lg1h2 =
∑n

i=1
∂h2

∂q
· g1i(q) ∧ n = 4

= ∂h2

∂s
· g11(q) + ∂h2

∂dtge
· g12(q) + ∂h2

∂θtge
· g13(q) + ∂h2

∂ϕ
· g14(q)

= ∂dtge
∂s
· 1 + ∂dtge

∂dtge
· (1− c(s)dtge ) tan (θtge )

+ ∂dtge
∂θtge
·
(

(1−c(s)dtge ) tan (Ψ)

L cos (θtge )
− c(s)

)
+ ∂dtge

∂ϕ
· 0

= (1− c(s)dtge ) tan (θtge )

(B.28)

From eq. B.26, eq. B.27 and eq. B.28 one can obtain z2:

z2 = L2
g1
h2 =

∂(Lg1h2)
∂q

· g1(q)

=
∂((1−c(s)dtge ) tan (θtge ))

∂q
· g1(q)

=
∂((1−c(s)dtge ) tan (θtge ))

∂s
· g11(q) +

∂((1−c(s)dtge ) tan (θtge ))
∂dtge

· g12(q)

+
∂((1−c(s)dtge ) tan (θtge ))

∂θtge
· g13(q) +

∂((1−c(s)dtge ) tan (θtge ))
∂ϕ

· g14(q)

=
∂((1−c(s)dtge ) tan (θtge ))

∂s
· 1 +

∂((1−c(s)dtge ) tan (θtge ))
∂dtge

· (1− c(s)dtge ) tan (θtge )

+
∂((1−c(s)dtge ) tan (Ψ))

∂θtge
·
(

(1−c(s)dtge ) tan (θtge )
L cos (θtge )

− c(s)

)
+

∂((1−c(s)dtge ) tan (θtge ))
∂ϕ

· 0

= −dtge · c′(s) tan (θtge ) +
c(s) sin (θtge )

2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

cos (θtge )
2 +

tan (Ψ)(dtge ·c(s)−1)
2

L cos (θtge )
3

(B.29)

Using the invertible input transformation
u1 = ṽ1

u2 = (L3
g1h2)ṽ1 + (Lg2L2

g1h2)ṽ2
(B.30)

where ṽ1 is:

ṽ1 = 1−c(s)dtge
cos(θtge )

v1 (B.31)
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L3
g1h2 is:

L3
g1h2 =

∂(L2
g1
h2)

∂q · g1(q)

= ∂
∂s

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· 1

+ ∂
∂dtge

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· (1− c(s)dtge ) tan (θtge )

+ ∂
∂θtge

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· (1−c(s)dtge ) tan (Ψ)

L cos (θtge )
− c(s)

+ ∂
∂Ψ

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· 0

= − tan (θtge )
(
dtge c′′(s) + 2 (c(s))

2
(dtge c(s)− 1)

)
+

c′(s)(sin (θtge ))
2
(3dtge c(s)−2)−

2c(s) sin (θtge ) tan (φ)(dtge c(s)−1)
2

L +c′(s)(3dtge c(s)−1)
(cos (θtge ))

2

− 3(c(s))2(sin (θtge ))
3
(dtge c(s)−1)+3(c(s))2 sin (θtge )(dtge c(s)−1)+

3d
tg
e c′(s) tan (φ)(1−dtge c(s))

L

(cos (θtge ))
3

−
2c(s)(sin (θtge ))

3
tan (φ)(dtge c(s)−1)

2

L +
7c(s) sin (θtge ) tan (φ)(dtge c(s)−1)

2

L

(cos (θtge ))
4 +

3 sin (θtge )(tan (φ))2(1−dtge c(s))
3

L2(cos (θtge ))
5

(B.32)

and Lg2L2
g1h2 is:

Lg2L2
g1h2 = Lg2

·
(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
= ∂

∂s

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· 0

+ ∂
∂dtge

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· 0

+ ∂
∂θtge

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· 0

+ ∂
∂Ψ

(
−dtge · c′(s) tan (θtge ) +

c(s)(sin (θtge ))
2
(dtge ·c(s)−1)+c(s)(dtge ·c(s)−1)

(cos (θtge ))
2 +

tan (Ψ)(dtge c(s)−1)
2

L(cos (θtge ))
3

)
· 1

=
(dtge ·c(s)−1)

2

L(cos (θtge ))
3
(cos (Ψ))2

(B.33)

The transformed system becomes two inputs and four states chain form system (2, 4)
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and has the following structure:
ż1 = u1

ż2 = u2

ż3 = x2 · u1

ż4 = x3 · u1

(B.34)

the above change of coordinates (and thus,the obtained chained form) is only locally
defined.

Although the system has two inputs, u1 and u2, this model can be considered single
input if u1 is known a priori. Then the objective of the control law is to achieve path
following under the assumption that the vehicle linear velocity u1 is constant.

The controller was made using the smooth time-varying feedback stabilization method
described in [122], where control is either smooth or at least continuous with respect to
the robot state.

As a first step, the variables of the chained form are redefined

χ = (χ1, χ2, χ3, χ4) = (x1, x4, x3, x2) (B.35)
resulting the chained form system

χ̇1 = u1

χ̇2 = χ3u1

χ̇3 = χ4u1

χ̇4 = u2

(B.36)

The above reordering is simply an exchange between the second and fourth coordi-
nates. Path following is achieved via input scaling, which requires zeroing the χ2, χ3 and
χ4 variables, independently from χ1. The system (B.30) is controllable if u1 is a piece-
wise continuous, bounded, and strictly positive (or negative) function, as stated in [123].
Therefore u2 is the only input to the system as long has u1 is known a priori :

u2(χ2, χ3, χ4, t) = −k1|u1(t)|χ2 − k2u1(t)χ3 − k3|u1(t)|χ4 (B.37)
The complete deducing of the controller and its background theory are described in

[123].
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