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Caracterização do Perfil Genético e Epigenético do Carcinoma Epidermóide da 

Língua 

Resumo 

O carcinoma epidermóide da língua é uma neoplasia invasiva, caracterizada por 

metástases precoces e extensivas dos gânglios linfáticos, o que contribui para a 

agressividade destes tumores. A sua incidência tem vindo a aumentar mundialmente, 

sendo o tumor maligno mais comum da cavidade oral. O risco de doentes 

diagnosticados com cancro da língua virem a desenvolver uma recidiva é superior ao 

dos diagnosticados com qualquer outro subtipo de cancro da cabeça e pescoço. De 

acordo com o sistema de classificação TNM (Tumor-Nodes-Metastasis), doentes em 

estadios mais iniciais da doença teoricamente deveriam apresentar um prognóstico mais 

favorável. Porém, estes doentes, contrariamente ao antecipado, apresentam um 

prognóstico menos favorável quando comparados com doentes em estadios mais 

avançados de outros subtipos de carcinomas da cabeça e pescoço. Isto revela que o 

presente sistema de classificação não é o mais adequado para um prognóstico correcto 

dos doentes com cancro da língua. Diferenças na evolução clínica dos doentes que varia 

de acordo com a localização anatómica do tumor, sugere a possibilidade de os 

mecanismos moleculares envolvidos no processo carcinogéneo dos diferentes tipos de 

cancro da cabeça e pescoço serem também eles distintos. Por este motivo é importante 

estudar a língua como uma localização anatómica isolada, de forma a identificar as 

principais alterações moleculares específicas envolvidas no desenvolvimento e 

progressão do carcinoma epidermóide da língua. O principal objectivo do presente 

estudo foi a caracterização do perfil genético e epigenético de 31 carcinomas primários 

da língua, obtidos aquando remoção cirúrgica, através da técnica de MS-MLPA 

(Methylation-specific Multiplex Ligation-dependent Probe Amplification). As alterações 

mais frequentes foram detectadas nos genes WT1, PAX5, GATA5, MSH6, PYCARD, 

STK11, CDKN2A, CHFR, BRCA1, GSTP1, TP53, RARB e CADM1, sugerindo a 

importância destes genes no processo carcinogéneo. A metilação do gene MSH6 poderá 

estar associada a estadios mais avançados da doença e ao desenvolvimento de 

metástases. O presente estudo revelou diferentes alterações genéticas e epigenéticas que 

poderão estar envolvidas no desenvolvimento e progressão do carcinoma da língua, 

estabelecendo-se em paralelo uma associação com as características clínicas e 

patológicas dos doentes. Os genes identificados servem de base para estudos futuros 

com uma maior amostragem, de forma a estabelecer uma associação estatisticamente 
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significativa entre genótipo e fenótipo. A identificação de biomarcadores irá permitir 

um diagnóstico cada vez mais precoce, uma avaliação assertiva do prognóstico e 

subdividir os doentes de acordo com o seu perfil genómico e clínico, de forma a prever 

mais eficazmente a sua evolução clínica e qual o melhor tratamento a seguir. O 

desenvolvimento e optimização de metodologias que permitem a extracção de DNA 

genómico pouco fragmentado e em elevada quantidade e pureza a partir de amostras de 

tecido parafinizado é essencial para um aumento da amostragem utilizada em estudos 

genéticos. O presente trabalho permitiu também optimizar e estabelecer um método 

eficiente e reprodutível de extracção de DNA a partir de amostras de tecido incluído em 

parafina de carcinomas da língua, obtendo-se concentrações relativamente elevadas de 

DNA, com elevada pureza. 

 

Palavras-chave: Carcinoma epidermóide da língua; Methylation-specific Multiplex 

Ligation-dependent Probe Amplification; extracção de DNA; tecido incluído em 

parafina. 
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Characterization of the Genetic and Epigenetic Profile of Tongue Squamous Cell 

Carcinoma 

Abstract 

Tongue squamous cell carcinoma (TSCC) is the most common malignancy in the oral 

cavity, characterized by high recurrence rates, reduced overall survival and increasing 

incidence worldwide. A higher risk of locoregional failure is observed in these 

carcinomas as compared with other head and neck subsites, contributing to the 

invasiveness and aggressiveness of these tumors. Applying the Tumor, Nodes and 

Metastasis (TNM) classification system, patients with early stage TSCC would 

theoretically represent those with better prognosis. However, this group of patients has 

the worse prognosis as compared with other head and neck subsites with more advanced 

stage disease, revealing that the current clinicopathological criteria does not 

comprehensively differentiate patient prognosis. The discrepancy in patients’ outcome 

according to the anatomical subsites of head and neck squamous cell carcinoma 

(HNSCC) highlights the presence of different molecular mechanisms underlying 

tumorigenesis. For this reason, further investigation specifically at the tongue subsite 

would be of benefit to determine subsite-specific molecular drivers of carcinogenesis in 

a single and relatively homogeneous site. The main objective of the present thesis was 

the characterization of the genetic and epigenetic profile by Methylation-specific 

Multiplex Ligation-dependent Probe Amplification (MS-MLPA) technique of 31 

primary tongue tumors, collected from patients with TSCC, upon resection surgery. The 

most frequently altered genes in the present cohort were WT1, PAX5, GATA5, MSH6, 

PYCARD, STK11, CDKN2A, CHFR, BRCA1, GSTP1, TP53, RARB and CADM1, 

suggesting the important role of the present genes in the development and progression 

of TSCC. Methylation of MSH6 gene seemed to be associated with more advanced 

stages of the disease and metastasis. The present study revealed several genetic and 

epigenetic alterations that may play a role in TSCC development in association with 

patient’s clinicopathological features. The highlighted genes provide a basis for further 

research in larger cohorts that may lead to the identification of candidate biomarkers 

allowing for a better diagnosis, prognosis and accurate risk-stratification of patients, as 

well as choose the most adequate treatment and predict treatment response in TSCC. 

The development of methods that allow the recovery of optimal quality DNA from 

formalin-fixed paraffin embedded (FFPE) tissues is essential to increase the cohorts for 

cancer research.  In the present study an efficient and reproducible method of DNA 
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extraction from FFPE tongue tumor samples, yielding relatively high concentrations and 

high purity DNA was established. 

 

Key-words: Tongue squamous cell carcinoma; Methylation-specific Multiplex 

Ligation-dependent Probe Amplification; DNA extraction; formalin-fixed paraffin 

embedded tissues. 
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Chapter 1 – Literature review and objectives 
1 – Anatomical considerations, epidemiology and risk factors 
 

1.1 – Anatomical considerations 
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common 

malignancy worldwide and consists of a heterogeneous group of tumors of which 

squamous cell carcinoma constitutes the largest histological group (90-95%). HNSCC 

develops from the mucosa of the upper aerodigestive tract, affecting the nasal cavity, 

paranasal sinuses, nasopharynx, hypopharynx, larynx, trachea, oral cavity, oropharynx 

and salivary glands. Commonly, HNSCC are grouped in three major groups: oral cavity, 

pharynx and larynx (Figure 1). (Leemans, Braakhuis, & Brakenhoff, 2011; Rousseau & 

Badoual, 2012; Takes et al., 2010) 

 

 
 

Figure 1 – Anatomical sites and subsites of head and neck squamous cell carcinoma. Adapted 

from National Cancer Institute, 2012b. 

 

Oral squamous cell carcinoma (OSCC), a subsite of HNSCC, is an invasive 

epithelial neoplasm with predisposition to early and extensive lymph node metastases. 
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This carcinoma arises from different anatomic sites within the oral cavity: oral soft 

tissues, such as gingival and alveolar mucosa, floor of the mouth, tongue, soft and hard 

palates and tonsils (Figure 2). The most predominant anatomic location of oral tumors is 

the tongue, followed by floor of the mouth, as demonstrated in Figure 3. (Cancela et al., 

2010; Jin & Jin, 2011) 

 

 
Figure 2 – Anatomy of the oral cavity. Adapted from National Cancer Institute, 2012a. 

 

 
Figure 3 – Subsite distribution of OSCC among different world regions (1998-2002). Adapted 

from Cancela et al., 2010. 
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Tongue squamous cell carcinoma (TSCC) arises from the squamous epithelium 

of the oral/lingual tongue, which consist of the anterior two thirds of the tongue. 

Circumvallate papillae separate the anterior tongue of the oral cavity from the 

posterior/base of tongue which forms part of the oropharynx. This anatomical 

distinction is essential, due to differences in pathogenesis, behavior and identity of 

tumors arising from these two sites. The most marked difference is that a large number 

of carcinomas of the posterior tongue, oropharyngeal squamous cell carcinomas 

(OPSCCs), develop after Human Papillomavirus (HPV) infection, with a good 

prognosis when compared to not HPV-related (HPV-negative) HNSCCs. 

 

 

1.2 – Epidemiology 
HNSCC normally arises after the fifth decade of life and of the total patients 

diagnosed with the disease only 40-60% survive for 5 years. (Leemans, Braakhuis, & 

Brakenhoff, 2011) From the head and neck cancers, OSCCs are the most common; 

however incidence is not well documented, as these carcinomas are usually grouped 

with other subsites. Still oral cavity cancer (OCC) is thought to be the 8th most frequent 

cancer among males and 14th among females worldwide. (Cancela et al., 2010) 

Together, lip and OCC account for 2,1% of all cancers, with two thirds occurring in 

men. (Ferlay et al., 2015) Incidence of this cancer varies widely reflecting geographic 

differences in exposure to risk factors, as will be discussed in the next section. (Cancela 

et al., 2010; Ferlay et al., 2015) The highest incidence rates are found in Melanesia 

region, South Central Asia and Eastern Europe. Furthermore, a higher burden of lip and 

oral cancer is observed in less developed regions, registering 77% of the 145,000 deaths 

from these diseases in the year 2012. (Ferlay et al., 2015) In Portugal, Registos 

Oncológicos Regionais data from 2001 reported a higher incidence rate of OCC in men 

(11.4 per 100,000 habitants) than in women (2.8). The tongue subsite had the highest 

incidence rate (2.8), followed by lip (1.5). (Bento, 2009; Santos, & Teixeira, 2011)   

Early diagnosis may occur due to the accessibility of oral cavity for visual 

screening, but most oral cavity tumors are diagnosed at an advanced stage, which 

contributes to the poor overall 5-year survival rate. (Silva et al., 2011) In 2008, Instituto 

Português de Oncologia do Porto showed that diagnosis at advanced stages occurred in 

76.9% of the tongue cancer cases and 61.4% for other oral cavity subsites. (Instituto 
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Português de Oncologia do Porto, 2008) The overall 5-year survival rate of OCC was 

36.4%, between 2000 and 2006. (Bento, 2009; Santos, & Teixeira, 2011) Advanced 

stage at initial diagnosis, locoregional recurrence, further primary tumors and lymph 

node metastasis contribute to the limited survival and high mortality rates in OSCC. 

(Silva et al., 2011) 

 Historically, OSCC has been associated with significant tobacco and alcohol 

exposure, arising more commonly in older men. However, more recently, incidence of 

OSCC is decreasing, accompanied by opposite increasing incidence of TSCC, 

particularly in younger patients with limited exposures to risk factors. According to 

Surveillance, Epidemiology and End Results (SEER) published analysis, TSCC was 

stable during the years 1975 to 2007, but was paradoxically increasing in women, 

specifically on a subgroup of young, white women. (Goepfert, Kezirian, & Wang, 2014; 

Patel et al., 2011) This was also verified in a later study, in which Li et al. (2014) 

analyzed 89 patients diagnosed with TSCC, where non-smokers were younger than 

smokers and were more likely to be female. During the same period of time and also 

using the SEER database, a study conducted by Mehta & Schantz (2010)  reported a 

two-fold increase in moderately and poorly differentiated tongue tumors, with a 

concomitant decrease in incidence of well-differentiated tumors. Thus, overall ratio of 

grade III to grade I increased from 2.27:1 to 12.5:1. 

 Despite the advances in cancer diagnosis, management and treatment, patients’ 

outcome has not significantly improved in the last decades. Patients diagnosed with 

TSCC have a poorer prognosis and survival when compared with patients diagnosed 

with other oral cavity and head and neck cancer subsites. (Goldstein et al., 2012; 

Rusthoven et al., 2008) Rusthoven et al. (2008) analysis of 6791 patients with stage I 

and stage II OSCCs found 5-year overall survival (OS) and cause-specific survival 

(CSS) rates of 60,9% and 83,5%, respectively, for patients diagnosed with TSCC in 

opposite to 64,7% and 94,1%, respectively, for patients with other subsites of OCSCC. 

Additionally, patients with stage I and II TSCC had an unfavorable SCC when 

compared with staged-matched patients with other HNSCC subsites. 
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1.3 – Risk factors  
The main risk factors in HNSCC development are tobacco exposure and alcohol 

consumption. These two substances have a synergistic effect between them and 

avoiding consumption could prevent up to 90% of HNSCCs, particularly larynx and 

hypopharynx tumors. Smokers and alcohol drinkers are at higher risk of developing 

second primary oral cancer and experiencing more severe outcomes than patients who 

abstain from these substances. (Massano et al., 2006; Morse et al., 2007; Poveda-Roda 

et al., 2010) 

The risk of developing head and neck cancer is increased by smoking at a young 

age and during a long period of time. Furthermore, a high number of cigarettes smoked 

per day and deep smoke inhalation also contribute to boost the risk. (Hashibe et al., 

2007; Morse et al., 2007; Rousseau & Badoual, 2012) The evident association between 

smoking and OSCC should lead to total smoking cessation among patients diagnosed 

with this disease. However, even after medical advice, many patients continue to smoke, 

despite the fact that it affects patient survival, increases the risk of tumor relapse and 

adds limitations to treatment efficacy. (Poveda-Roda et al., 2010) 

Other than smoking, betel quid (Piper betle) chewing is also a common habit in 

some regions of Asia and has been specifically correlated with poor prognosis in OSCC. 

High rates of oral and oropharyngeal SCC are documented in developing countries, 

mainly due to tobacco chewing habits, especially when consumed in betel quid 

containing areca nut (Areca catechu).  In India, chewing tobacco habits account for 50% 

of men and over 90% of women with this type of tumors. (Rousseau & Badoual, 2012) 

This allied to the fact that 80% of the smokers worldwide live in developing countries 

reflects the higher burden of OSCC in these areas. In contrast, cigarette smoking in 

most developed countries is decreasing and its consumption is becoming equal in both 

genders, namely in European eastern countries where male consumption is decreasing 

whereas increasing in females. (Cancela et al., 2010; Lo et al., 2003; Rousseau & 

Badoual, 2012) 

Difficulties in access screening by a dental or medical professional and access to 

treatment when the disease has already progressed increase the burden of OSCC in 

developing countries.  Although, in developed countries treatment is easily available, 

early diagnosis of oral lesions is still problematic, mainly due to the lack of general 

population and professional´s awareness. Health programs targeting populations at 
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higher risk must be developed in order to improve prevention and minimize 

consequences of the disease. (Cancela et al., 2010) 

Other etiology factors of OSCC have been established, such as nutrition, 

occupational exposure to carcinogens, socioeconomic conditions and, particularly, HPV 

infection. (Gillison et al., 2000; Massano et al., 2006; Rousseau & Badoual, 2012; 

Syrjänen, 2005) Occupational exposure to carcinogens substances, particularly in air 

suspension, such as polycyclic aromatic hydrocarbons, has been associated to a higher 

risk of developing HNSCC. (Rousseau & Badoual, 2012) Lower socioeconomic status 

and education is associated with worse patient outcome, as a result of poorer oral 

hygiene and difficult access to medical care. (Massano et al., 2006; Silva et al., 2011) 

Despite the decrease of smoking habits in developed countries, OSCC incidence 

in some of these countries is increasing, especially in Western European countries such 

as Belgium, Denmark, Greece, Portugal and Scotland. In Eastern Europe, OSCC 

constitutes a real public health issue, with increasing mortality rates observed for over 

the last two decades. (La Vecchia et al., 2004) This may be explained by the increasing 

prevalence of HPV infections and its association with OSCC in this continent, 

especially high rates of SCC of the oropharynx caused by HPV. (Marur et al., 2010; 

Smith et al., 2004) 

 

 

1.4 – Role of HPV in HNSCC 
HNSCC incidence of specific subsites has been decreasing; however, tongue and 

OPSCC are becoming more prevalent, which has been related to an increase in oral and 

oropharyngeal HPV infection, particularly HPV16, 18 and 33. (Kreimer et al., 2005; 

Leemans, Braakhuis, & Brakenhoff, 2011; Smith et al., 2004) HPV16 is the most 

prevalent HPV type in cervical SCC and is also the most common type present in HPV-

positive HNSCCs. (Kreimer et al., 2005) 

HPV-positive and HPV-negative head and neck tumors represent different 

clinicopathological and molecular entities (Table I). HPV-positive HNSCC patients are, 

on average, 5 years younger than their HPV-negative counterparts and often have lower 

alcohol and/or tobacco exposure. Moreover these are usually younger adults that engage 

risk sexual practices, namely oral sex with multiple partners. HNSCC associated with 

HPV infection differ in aetiological factors, molecular identity and prognosis. HPV-
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positive HNSCC has been associated with a more favorable clinical outcome, with an 

increased survival of up to 60-80%. (Gillison et al., 2000; Leemans, Braakhuis, & 

Brakenhoff, 2011; Mehta, Yu, & Schantz, 2010; Smith et al., 2004) 

 

Table I – Differences between HPV-positive and HPV-negative HNSCCs. Adapted from 

Leemans, Braakhuis, & Brakenhoff, 2011; Marur et al., 2010. 

Feature HPV-positive HNSCC HPV-negative HNSCC 

Incidence Increasing Decreasing 

Aetiology Oral sex Smoking, excessive 
alcohol use 

Age Under 60 years Above 60 year 

TP53 mutations Infrequent Frequent 

Predilection site Oropharynx None 

Prognosis Favorable Poor 

Survival Improved Unchanging 
 

Despite initial reports on the low percentage of HPV-associated HNSCCs, the 

link between HPV and HNSCC development is becoming more firmly establish, as a 

result of newer PCR-based methods that have improved detection accuracy and 

reliability. In fact HPV infection has recently been recognized as a primary cause of 

OPSCC, including the tonsils and base of tongue. Recent studies have demonstrated the 

presence of HPV genome in 47% to 63% SCC of the oropharynx. (Fakhry et al., 2008; 

Kreimer et al., 2005; Mehta, Yu, & Schantz, 2010; Smith et al., 2004)  

The major geographic areas affect by oropharynx HPV-positive SCC are North 

America and Asia, where HPV prevalence is significantly higher than compared to 

Europe (Table II). (Kreimer et al., 2005) In United States the percentage of oropharynx 

SCC caused by HPV is 40-80%, whereas in Europe it varies from 20% in areas with 

high rates of tobacco use to 90% registered in Sweden. (Marur et al., 2010) 
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Table II – Prevalence of HPV. Adapted from Kreimer et al., 2005. 

 No. 
studies 

No. 
cases 

Overall HPV prevalence 
(95% CI) 

HPV16 prevalence 
(95% CI) 

Oral cavity     
  Europe 15 744 16,0 (13,4-18,8) 10,8 (8,6-13,2) 
  North America 8 577 16,1 (13,2-19,4) 10,1 (7,7-12,8) 
  Asia 13 1,133 33,0 (30,3-35,8) 22,3 (20,3-25,2) 
  Other 2 188 18,1 (12,9-24,3) 14,9 (10,1-20,8) 
Oropharynx     
  Europe 17 529 28,2 (24,4-32,2) 23,8 (20,2-27,7) 
  North America 7 285 47,0 (41,1-53,0) 42,1 (36,3-48,1) 
  Asia 4 54 46,3 (32,6-60,4) 35,2 (22,7-49,4) 
  Other 2 101 36,6 (27,3-46,8) 33,7 (24,6-43,8) 
Larynx     
  Europe 19 799 21,3 (18,5-24,3) 13,8 (11,5-16,4) 
  North America 7 297 13,8 (10,1-18,3) 10,1 (7,0-14,1) 
  Asia 8 306 38,2 (32,8-43,9) 26,5 (21,6-31,8) 
  Other 1 33 48,5 (30,8-66,5) 45,5 (28,1-63,6) 
 

Although association between HPV and OPSCC has been well established, with 

strong and consistent epidemiological relation with sexual behavior, the role of the HPV 

in OSCC pathogenesis is still controversial. (Lingen et al., 2013; Mehta, Yu, & Schantz, 

2010) A large multicenter case-control study conducted by International Agency for 

Research on Cancer (IARC) found that the odds of detecting antibodies against HPV16 

major capsid protein (L1) and/or E6 or E7 were significantly higher among cases with 

OCC than among controls (OR 1,5; 95% CI and OR 2,9; 95% CI, respectively).  

(Herrero et al., 2003) Miller & Johnstone (2001), in a large meta-analysis of 94 reports 

with a total of 4680 samples analyzed, also revealed an increased probability of 

detecting HPV in tissue with precancerous and cancerous features compared with 

normal mucosa. These investigators found the probability of detecting HPV to be 10,0% 

(95% CI 6,1-14,6) for normal oral mucosa, 22,2% (95% CI 15,7-29,9) for benign 

leukoplakia, 26,2% (95% CI 19,6-33,6) for intraepithelial neoplasia, 29,5% (95% CI 

23,0-36,8) for verrucous carcinoma and 46,5% (95% CI 37,6-55,5) for OSCC. 

Additionally, other case-control studies reviewed by Mehta, Yu, & Schantz (2010) 

show a sixfold increase in the risk of oral cancer associated with oral HPV infections. 

However, overall prevalence of HPV-positive oral cavity tumors of the IARC study was 

3,9% and 12% in a study conducted by Gillison et al. (2000) Moreover, Lingen et al. 

(2013) reported low etiological fraction for high-risk HPV in OSCC, after evaluation of 

409 consecutive cases of OSCC, diagnosed in North America from 2005 to 2011, for 

high-risk HPV E6/E7 oncogene expression. From the total cases, 5.9% were expression 
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positive for high-risk HPV E6/E7 (95% CI 0.8-3.6), 3,7% for HPV16 (95% CI 1.8-5.5) 

and 2.2% for other high-risk HPV types (95% CI 0.8-3.6). Within the oral cavity the 

numbers of HPV-positive tumors in different subsites were the follow: 9 present in floor 

of the mouth, 6 in anterior tongue, 4 in alveolar process, 3 in hard palate, 1 in gingive 

and 1 in lip. These investigators found significant association of HPV-positive OSCCs 

with male gender, small tumor stage, poor tumor differentiation and basaloid 

histopathology, analogous to oropharynx cancers. 

The rising incidence of TSCC, particularly among young patients with no 

history of tobacco use, has raised the question of whether or not HPV might have a role 

in tongue carcinogenesis. Surprisingly, this increase in incidence has not been 

significantly associated with infection of this virus. Li et al. (2014) studied a group of 

89 patients, in which non-smokers were younger than smokers and were more likely 

females. The young age and fewer TP53 mutations of non-smokers raised the possibility 

of a viral role in development of this disease; however identity of such virus was not 

determined. Although it is now clear that HPV-positive OPSCC constitutes a unique 

epidemiological and clinical entity, HPV role in pathogenesis of OSCCs, particularly 

TSCCs, has not yet been established. Further investigation is required in order to 

identify HPV relationship with development of these tumors or other undiscovered 

environmental or biological risk factors beyond traditional ones, such as tobacco 

exposure. 

 

 

2 – Current clinicopathological staging criteria 

 The current most widely adopt staging criteria for management of HNSCC is the 

Tumor, Nodes and Metastasis (TNM) classification system of the Union Internationale 

Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). The T-

category describes the extent of the primary tumor; the N-category indicates the 

presence and extent of regional lymph node metastasis and the M-category reveals the 

presence or absence of distant metastasis. Combination of different T, N and M 

categories are grouped in I, II, III and IV stages, where increasing stage is associated 

with decreasing prognosis. The most common tumors of the head and neck have their 

own TNM classification; these include lip and oral cavity, pharynx (oropharynx, 

nasopharynx and hypopharynx), larynx, maxillary sinus, nasal cavity and ethmoid sinus, 
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mucosal malignant melanoma, major salivary glands and thyroid gland. (Table III and 

IV) (Sobin, Gospodarowics, & Witteking, 2009) 

 

Table III – TNM classification system to define lip and oral cavity cancer, of which the oral 

tongue is a subsite. Adapted from Sobin, Gospodarowics, & Witteking, 2009. 

Primary Tumor (T) 
TX Primary tumor cannot be assessed. 
T0 No evidence of primary tumor. 
Tis Carcinoma in situ. 
T1 Tumor ≤2 cm in greatest dimension. 
T2 Tumor >2 cm but ≤4 cm in greatest dimension. 
T3 Tumor >4 cm in greatest dimension.  

T4a 

Moderately advanced local disease. 
(Lip) Tumor invades through cortical bone, inferior alveolar nerve, floor of 
mouth, or skin of face, that is, chin or nose. 
(Oral cavity) Tumor invades adjacent structures only (e.g., through cortical 
bone [mandible or maxilla] into deep [extrinsic] muscle of tongue 
[genioglossus, hyoglossus, palatoglossus and styloglossus], maxillary sinus, 
or skin of face). 

T4b 
Very advanced local disease. 
Tumor invades masticator space, pterygoid plates, or skull base and/or 
encases internal carotid artery.  

Regional Lymph Nodes (N) 
NX Regional lymph nodes cannot be assessed. 
N0 No regional lymph node metastasis. 
N1 Metastasis in a single ipsilateral lymph node, ≤3 cm in greatest dimension. 

N2 

Metastasis in a single ipsilateral lymph node, >3 cm but ≤6cm in greatest 
dimension. 
Metastasis in multiple ipsilateral lymph nodes, none >6cm in greatest 
dimension. 
Metastasis in bilateral or contralateral lymph nodes, none >6cm in greatest 
dimension. 

N2a Metastasis in single ipsilateral lymph node, >3cm but ≤6cm in greatest 
dimension. 

N2b Metastasis in multiple ipsilateral lymph nodes, none >6cm in greatest 
dimension. 

N2c Metastasis in bilateral and contralateral lymph nodes, none >6cm in greatest 
dimension. 

N3 Metastasis in a lymph node >6cm in greatest dimension. 
Distant Metastasis (M) 

M0 No distant metastasis. 
M1 Distant metastasis. 
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Table IV – TNM classification system according to anatomic stage / prognostic groups for lip 

and oral cavity cancer, of which oral tongue is a subsite (T – primary tumor; N – regional lymph 

nodes; M – distant metastasis). Adapted from Sobin, Gospodarowics, & Witteking, 2009. 

Stage T N M 
0 Tis N0 M0 
I T1 N0 M0 
II T2 N0 M0 

III 

T3 N0 M0 
T1 N1 M0 
T2 N1 M0 
T3 N1 M0 

IVA 

T4a N0 M0 
T4a N1 M0 
T1 N1 M0 
T2 N2 M0 
T3 N2 M0 
T4a N2 M0 

IVB Any T N3 M0 
T4b Any N M0 

IVC Any T Any N M1 
 

TNM classification and other staging systems have been essential for prediction 

of clinical tumor evolution and patient prognosis, selection of the best treatment 

modality, comparison of treatment results in groups of patients with similar prognosis 

and exchange of information between clinicians and researches. However, these 

classification systems are based almost exclusively on anatomic information and the 

recent shift towards nonsurgical treatments, such as radiotherapy and chemotherapy, has 

increased the discussion of whether or not this information alone is enough for 

management and treatment of HNSCC. Although, prognosis tends to be worse in 

patients belonging to higher-stage groups, it is also evident that within these same stage 

groups significant differences in prognosis may be observed, due to tumor biology 

differences, as well as environmental-factors related with risk factor exposure, that are 

not included in the TNM classification system. (Takes et al., 2010) 

Another category used within the TNM system is histopathological grading, 

designated with the G prefix (Table V). Tumor grade description is based on 

microscopic appearance of abnormal tumor cells and tumor tissue, indicating how 

quickly the tumor is likely to grow and spread. Tumors are classified as well 

differentiated when the cells of the tumor and the organization of the tumor’s tissue are 

close to those of normal cells and tissue. However, when tumors present abnormal cells 
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and lack normal tissue structures, these are classified as undifferentiated or poorly 

differentiated tumors. Well differentiated tumors tend to grow and spread at a slower 

rate and are normally associated with better prognosis, whereas higher histopathological 

grades, by growing and spreading more quickly, require more aggressive and immediate 

treatment. Although, histopathologic grading helps the prediction of tumor progression 

and prognosis, it entails observation subjectivity of the pathologist. For this reason, 

histopathological grading would benefit from further immunohistochemical and 

molecular analysis, particularly in establishing the true identity of undifferentiated 

tumors (G4). (Takes et al., 2010) Genetic studies would be of special interest, as the 

correct diagnosis allows for an adequate choice of therapy. Therefore, the possibility of 

including these studies in routine diagnosis should be considered and further 

investigated, as difficulties arise when classifying tumors of the head and neck. 

 

Table V – Definition of the G-category apply to all head and neck sites, except thyroid and 

mucosal malignant melanoma. Adapted from Sobin, Gospodarowics, & Witteking, 2009. 

Histopathological Grading (G) 

GX Grade of differentiation cannot be assessed. 

G1 Well differentiated. 

G2 Moderately differentiated.  

G3 Poorly differentiated. 

G4 Undifferentiated. 

 

HNSCC progression has been presumed to occur in a stepwise fashion, starting 

from the local primary site to invasion of regional lymph nodes and then to distant sites. 

Although, accordingly with this assumption metastasis is considered a late event in head 

and neck tumors progression, it is now recognized that metastasis may occur in early 

stages. Thus some stage group defining criteria is inconsistent. For instance, a T1 tumor 

that has spread to regional nodes is classified as T1N2c and is completely different from 

a tumor classified as T4N0, yet both tumors are stage IV tumors. Another example, that 

involves nodal status having a greater impact on prognosis than the status of the primary 

tumor, is that T1N1 and T3N0 tumors are both considered stage III tumors; however the 

first may have a worse clinical prognosis than the latter. The stages I-IV are considered 

to group together T, N and M combinations with similar survival, however patients 

within the same group may have very different tumor biology and treatment needs. 
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Again, staging might be helpful in defining prognosis but less applicable in decision-

making regarding treatment. (Takes et al., 2010) 

Regarding TSCC, TNM staging also does not systematically reflects patient 

prognosis, due to its limited ability to identify high risk disease. Liao et al. (2007) 

conducted a retrospective review of 513 consecutive patients with stage III-IVA OSCC, 

which included 170 TSCCs, who underwent radical surgery. The authors did not find 

significant differences in overall survival between pathologically (p-prefix) staged 

pT4N0, pT3N0 and pT1-3N1 tumors (p=1.0, p=0.6 and p=0.6, respectively). 

Furthermore, although pT4N0 oral cavity tumors qualify for stage IVA status that is 

associated with poor prognosis, in patients with stage IVA OSCC, the survival rates for 

pT4N0 are better than those for no pT4N0 (pT4N1 and pTanyN2) and similar to those 

of patients with pathological stage III. These results suggest that patients with pT4N0 

tumors could be managed as pathological staged III patients. Another study conducted 

by Ebrahimi et al. (2011) challenges the current TNM staging system, which classifies 

all patients with bone invasion throughout the cortex as T4, a single high-risk category 

that assigns patients to stage IV disease with resultant prognostic and management 

implications. On a multivariate analysis of T4 OSCCs predominantly defined by the 

presence of medullary bone invasion, these investigators found that patient survival 

differed significantly according to tumor size (p=0.03), suggesting that tumor size is a 

more important predictor of survival than medullary invasion. These two studies 

indicate that TNM classification system does not effectively differentiate patient 

prognosis. 

The shortcomings of the TNM staging system accentuate the need to identify 

molecular biomarkers, as well as determine their clinical relevance, in order to improve 

diagnosis, prognosis and treatment of HNSCC, particularly TSCC. Further research of 

genetic and epigenetic markers will help establish a more specific stratification of 

patients, based on molecular assessment of tumor features. Nevertheless, changes and 

revisions to the current classification system need to be validated and supported by large 

cohorts. Although different putative molecular markers have been identified in HNSCC, 

when referring to the tongue subsite this is hampered by common use of heterogeneous 

cohorts, combining different head and neck subsites. 
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3 – Molecular changes 
Evolution and progression of HNSCC are thought to result from a multistep 

process involving alterations of cellular and molecular pathways in the squamous 

epithelium. These pathways include growth factor receptors, signal transducer, and 

transcription factors, which regulate DNA damage response, cell cycle arrest and 

programmed cell death. Increasing evidence suggests that molecular progression from 

potentially malignant lesions to invasive disease comprises a series of genetic and 

epigenetic alterations that are present at different stages of progression (Figure 4). 

(Crowe et al., 2002; Haddad & Shin, 2008; Leemans, Braakhuis, & Brakenhoff, 2011).   

 

        

Figure 4 – Models of progression and genetic instability in HNSCC. Adapted from Haddad & 

Shin, 2008. 

 

Although, a great deal of studies on the identification of candidate genes in 

HNSCC has been published over the years, only a minority has focused on the oral 

tongue subsite alone. In order to gain a comprehensive view of the genetic and 

epigenetic alterations underlying HNSCC, especially the ones associated with 

development and progression of TSCC, the most relevant and most widely studied 

alterations will be discussed in this section. 
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3.1 – Conventional and molecular cytogenetic alterations 

HNSCC malignancy hallmarks include chromosomal aberrations such as 

deletions, amplifications and structural rearrangements. During progression of the 

disease a pattern of DNA allelic loss and gain is observed, particularly losses at 

chromosomal arms 3p, 9p and 17p and gains at chromosomal arms 3q, 5p, 7p, 8q and 

11q. (Gollin, 2014; Scully, Field, & Tanzawa, 2000a; Silva et al., 2011) 

Loss of heterozygosity (LOH) has been identified at different chromosomal loci 

in association with different stages of HNSCC progression. (Haddad & Shin, 2008)  

LOH in 9p21 in oral dysplasia and OSCC has been reported at a frequency of 30% and 

70-80%, respectively, revealing the potential value in early diagnosis and tumor 

surveillance of this early and common event in oral malignancy. (Silva et al., 2011) 

In OSCC, cell disassociation from the primary tumor usually results in 

metastasis within regional lymph nodes. The identification of molecular markers 

associated with regional metastatic behavior that may represent prognostic indicators, as 

well as increased knowledge of their role in metastatic behavior may be useful in 

clinical decision regarding treatment modality. The most frequently reported 

cytogenetic changes correlated with dysplasia, invasion, nodal and distant metastasis in 

HNSCC include losses at 9p21, 3p14, 3p21 and 17p13 and gains at 11q13. Additionally, 

LOH due to losses reported in chromosomal arms 7q, 10q, 11p, 15q and 20p and gains 

at 19q have been associated with metastatic phenotypes. (Scully, Field, & Tanzawa, 

2000a; Silva et al., 2011) In order to exclude possible bias from other head and neck 

sites, Hannen et al. (2004) analyzed a group of tumors uniformly composed of TSCCs, 

by comparative genomic hybridization,  and found that metastatic behavior of 

metastasize and non-metastasize primary tongue tumors is different, as metastasized 

tumors had significantly more chromosome copy number variations than non-

metastasized. The most frequent aberration in the two groups were gains on 

chromosomal arms 8q and 3q, in concordance with aberrations already described in 

HNSCC. 

Accumulation of numerous genetic alterations in tumorigenesis and concomitant 

genomic instability underlying amplification or deletion or up-regulation or down-

regulation of different oncogenes and tumor-suppressor genes has been widely studied 

in these tumors. Thus, several candidate genes and biomarkers involved in tumor 
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development and progression have been identified over the years (Table VI). (Haddad 

& Shin, 2008; Scully, Field, & Tanzawa, 2000b; Silva et al., 2011)  

 

Table VI – Candidate biomarkers and common gene alterations in oral carcinoma. Adapted 

from Scully, Field, & Tanzawa, 2000b; Silva et al., 2011. 

Gene / 
Biomarker 

Chromosomal 
Position Function Clinical Significance 

NRAS 1p13.2 Signaling, growth Poor prognosis 

RARB 3p24 Cell growth and 
differentiation Decreased overall survival 

VEGF 6p12 Angiogenesis Consideration for targeted 
therapy 

CDKN1A 6p21.1 Cell-cycle 
regulation Tumorigenesis 

EGFR 7p12 Cell proliferation, 
growth 

Nodal metastases; more rapid 
clinical course, consideration 

for targeted therapy 

MYC 8q24 Cell growth, 
apoptosis Tumor progression 

CDKN2A 9p21 Senescence, cell-
cycle progression Decreased overall survival 

MGMT 10q26 Promoter 
methylation Decreased overall survival 

CCND1 11q13 Cell-cycle 
regulation 

Nodal metastases; more rapid 
clinical course 

HRAS 11p15.5 Signaling, growth Poor prognosis 

CDKN1B 12p13.1-p12 Cell-cycle 
progression Poor prognosis 

MDM2 12q13-q14 Cell-cycle 
regulation Tumorigenesis 

TP53 17p13.1 Cell-cycle 
regulation Decreased overall survival 

ERBB2 17q11.2-q12 Cell proliferation, 
growth More rapid clinical course 

STAT3 17q21 Cytokine signaling, 
cell proliferation Decreased survival 

 

Cancer cells overcome senescence and obtain limitless replicative potential 

through changes in cell cycle regulation pathways. In HNSCC altered genes involved in 

cell cycle regulation are the ones encoding proteins in the p53 and RB pathways. 

(Hanahan & Weinberg, 2011; Kastan & Bartek, 2004) 

The p53 signaling pathway responds to intrinsic and extrinsic stress signals that 

can disrupt DNA replication and cell division. Stress signals are transmitted to p53 

protein by posttranslational modifications, resulting in activation of p53 as a 
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transcriptional factor that initiates cell cycle arrest, cellular senescence or apoptosis. 

Another important role of this protein is stimulation of DNA repair after DNA damage. 

(Harris & Levine, 2005) Alterations in tumor suppressor gene TP53, mapped at 17p13, 

through LOH, point mutations, deletions and insertions are early events in HNSCC. 

Mutations in this gene are the most common reported mutations in these tumors, being 

somatic mutations found in 60-80% of the cases. (Agrawal et al., 2011; Leemans, 

Braakhuis, & Brakenhoff, 2011) Early TP53 mutations commonly occur in guanine 

nucleotide, probably due to exposure to carcinogens in tobacco smoke, and are 

maintained through metastasis. (Agrawal et al., 2011; Denaro et al., 2011; Govindaraja, 

Chandramouli, & Chandramouli, 2010; Haddad & Shin, 2008) In OSCC, mutations in 

TP53 exons 5-9 were found in 60% of the cases in association with overexpression of 

p53. The prevalence of positive immunohistochemical detection of p53 has been 

reported between 30-50%, occurring frequently in adjacent non-tumoral mucosa, which 

indicates that these alterations are early events in squamous cell carcinoma 

development. (Bettendorf, Piffkò, & Bànkfalvi, 2004) Furthermore, 17p13 LOH in 

poorly differentiated tumors suggests that loss of p53 function may be associated with 

the transition from preinvasive to invasive head and neck tumors. (Denaro et al., 2011) 

The role of p53 as a prognostic marker of head and neck tumors is controversial. 

However, a large study of 420 heterogeneous HNSCC, including 180 tumors of the oral 

cavity, found association of TP53 mutations with significantly worse patient survival, 

particularly disruptive mutations (p=0.003). (Poeta et al., 2007)  

The aberrant p53 protein activity may also be caused by aberrant production of 

other proteins that regulate its activity, such as mouse double minute 2 (MDM2) and 

viral proteins. (Leemans, Braakhuis, & Brakenhoff, 2011) MDM2, a negative regulator 

of TP53, is a cellular proto-oncogene amplified in 25-40% of all human cancers. In 

HNSCC, MDM2 expression or upregulation varies from 40-80%. This protein is a p53 

target and in turns it limits the amount of p53, by targeting the latter and promoting its 

degradation. The relationship between these two molecules is vital for regulation of 

proliferation and apoptosis. In this type of cancer, inactivation of p53 is frequently due 

to MDM2 binding and at the same time MDM2 low expression is associated with 

mutations in p53 that prevents upreguation of MDM2. (Denaro et al., 2011) 

Additionally, interactions between p53 and viral protein E6 encoded by oncogenic HPV 

types, mainly HPV16 and -18, results in increased ubiquitin-dependent proteolysis of 

p53. A high frequency of TP53 mutations in HPV-negative cases contrasts with 
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expression of wild-type p53 in HPV-positive tumors and this seems to be related with 

better prognosis in patients with HPV-positive OSCC. (Gillison et al., 2000; Massano et 

al., 2006) 

Mapped at 13q14, retinoblastoma 1 (RB1) tumor suppressor gene is involved in 

cell cycle control. Mutations of RB1 and loss of Rb protein activity result in 

uncontrolled cell proliferation. In HNSCC, decreased Rb expression has been observed 

in 6-74% of the tumors and LOH in 14-37%. (Bettendorf, Piffko, & Bankfalvi, 2004) 

CCND1, located on chromosome 11q13, is a proto-oncogene that encodes cyclin 

D1 protein. Cyclins function as regulators of cyclin-dependent kinases (CDKs) and 

exhibit distinct expression and degradation patterns which contribute to the temporal 

coordination of each mitotic event. Cyclin-D1-CDK4/6 complex formation and 

subsequent Rb phosphorylation result in cell cycle G1/S transition. This cyclin activity 

is inhibited by several tumor suppressor genes, including CDKN2A, CDKN1A and 

CDKN1B. Amplification and overexpression of CCND1 are independent prognostic 

factors in HNSCC. Amplification of this gene has been reported in over 80% of these 

tumors (Smeets et al., 2006) and increased cyclin D1 expression has been associated 

with the presence of regional nodal metastases and advanced tumor stage. (Bettendorf, 

Piffko, & Bankfalvi, 2004; Massano et al., 2006; Scully et al., 2000a, 2000b) In oral 

cancer, cyclin D1 expression and amplification was observed in 20-68% cases and, even 

though, association with recurrence, nodal metastasis and survival has been verified in 

HNSCC, further investigation is needed to find specific clinical associations with cyclin 

D1 alterations in OSCC alone. (Bettendorf, Piffko, & Bankfalvi, 2004; Massano et al., 

2006; Scully et al., 2000a, 2000b) 

CDKN2A, located on chromosome 9p21, encodes p16INK4A that inhibits cell 

cycle progression via inhibiting phosphorylation of  Rb. p16INK4A inhibition of cyclin 

D1 interaction with CDK4/6 maintains the hypophosphorilated form of Rb, sustaining 

the Rb-mediated sequestration of E2F transcriptional factor, thereby preventing cell 

cycling progression from G1 to S phase. CDKN2A is frequently inactivated in HNSCC 

by mutation or methylation in combination with chromosome loss or, more commonly, 

by homozygous deletion. Decreased p16INK4A expression is associated with reduced 

survival, increased recurrence rates and nodal metastasis. (Bettendorf, Piffko, & 

Bankfalvi, 2004; Leemans, Braakhuis, & Brakenhoff, 2011) Negative or low p16INK4A 

expression has been reported in up to 83% of OSCCs and up to 60% of potentially 

malignant lesions. (Silva et al., 2011) Despite the large number of studies investigating 
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the relevance of CDKN2A alteration in HNSCC, its role in TSCC and impact on patient 

prognosis is still unclear. 

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase and a 

member of the ErbB family of cell-surface receptors. When phosphorylated, EGFR can 

signal through mitogen-activated protein kinase (MAPK), protein kinase β (Akt/PKB), 

extracellular-signal-regulated kinase (ERK) and Janus kinase – signal transducer and 

activator of transcription (Jack/STAT) pathways. (Hynes & Lane, 2005) EGFR and its 

ligands are essential for cellular proliferation, migration, adhesion, invasion, metastasis 

and angiogenesis. Activation of EGFR oncogene is either by mutation or amplification. 

In HNSCC, mutations are rarely found and amplifications are documented in 30% of 

these tumors. Although overexpression data alone is unreliable, EGFR is overexpressed 

in over 80% of HNSCC and is associated with poor prognosis, more aggressive 

phenotypes and resistance to chemotherapeutic agents. For this reason the efficacy of 

agents that target EGFR has attracted interest in anticancer drug development. (Hama et 

al., 2009; Leemans, Braakhuis, & Brakenhoff, 2011; Temam et al., 2007) For instance, 

development of anti-EGFR monoclonal antibodies, such as cetuximab, in combination 

with high-dose radiation has shown to lead to a better patient prognosis. (Hama et al., 

2009; Silva et al., 2011) In OSCC, EGFR gene amplification was found in 30% of 

tumors and has also been observed in potentially malignant lesions. Overexpression of 

EGFR has been frequently associated with advanced T stage of the primary tumor, 

diffuse tumor invasiveness and high incidence of cervical node metastases. Expression 

of EGFR has also been correlated with lower histologic tumor differentiation and 

shorter patient survival. (Bettendorf, Piffko, & Bankfalvi, 2004; Massano et al., 2006; 

Ulanovski et al., 2004) 

The vascular endothelial growth factor (VEGF) plays a decisive role in the 

development of blood vessels by stimulation of vasculogenesis and angiogenesis. Four 

subtypes have been described – A, B, C, and D. Expression of this growth factor has 

been described in OSCC, correlating VEGF-A and VEGF-B with angiogenesis and 

VEGF-C and VEGF-D with the risk of nodal metastases. Up-regulation of the latter two 

in the invasive front of the tumor revealed their possible role in tumor invasion and 

metastases development. (Shintani et al., 2004) High expression of VEGF has also been 

correlated with worse prognosis in OSCC. (Massano et al., 2006; Uehara et al., 2004) 

The von-Hippel Lindau (VHL) gene is a tumor suppressor gene, mapped at 3p26-

p25, that codes VHL protein, contributing to the ubiquitination and proteasomal 
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degradation of hypoxia-inducible factor 1α (HIF1α), a transcriptional factor for the 

VEGF, underlying tumor growth and angiogenesis. In TSCC, LOH of VHL gene was 

found at high frequency in 45.5% of tumors and has been found less likely to occur in 

younger patients, which indicates that development and progression of these tumors 

may differ between patients within different age groups.  (Asakawa et al., 2008) 

Over expression of MYC and RAS gene families is an important event in head 

and neck tumor progression and has been correlated with poor prognosis. Member of 

the RAS gene family, NRAS oncogene encodes N-ras protein, which increased 

expression in dysplasia has been associated with early steps of oral carcinoma 

development. Another member of the Ras family is HRAS; mutations in this gene have 

been reported in 35% of oral tumors in Asian populations, particularly linked with betel 

nut chewing. c-Myc oncogene encodes the transcriptional factor c-Myc involved in gene 

expression regulation. Over expression of this transcriptional factor results of gene 

amplification and is a common event in OSCC, associated with loss of differentiation. 

(Bettendorf, Piffko, & Bankfalvi, 2004; Silva et al., 2011) 

 Besides, few studies have been focusing specifically on the tongue subsite, this 

number has been increasing, with evidence that tumors of different subsite of the head 

and neck behave differently and have their own identity. Previous reports on candidate 

biomarkers involved in oral cavity tumorigenesis (Table VI) represent a great starting 

point for identification of putative TSCC markers. However, special attention must be 

pay to the relative frequency of the oral cavity subsites investigated in different cohorts, 

as anatomical proximity does not necessarily means identical tumor features. 

 

 

3.2 – Hypermethylated loci 
Promoter methylation profiling of primary head and neck tumors found 

methylation of tumor suppressor genes CHFR, RARB, DAPK1, RASSF1A and APC to 

be the most frequently reported epigenetic event in HNSCC. (Chen et al., 2007; 

Demokan & Dalay, 2011; Yalniz et al., 2011) Although a vast number of 

hypermethylated loci have been reported in HNSCC (Table VII), few were the studies 

focusing specifically on the tongue subsite. Aberrant epigenetic changes have been 

described during the development and progression of TSCC in genes responsible for 

cell signaling, growth, motility, angiogenesis and cell cycle control. 
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Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene is located 

at 10q23.3 and plays an important role in tumorigenesis, thus somatic mutation or 

deletion of this gene has been described in a variety of tumor types.  Loss of PTEN 

expression was demonstrated in 29% of TSCCs, associated poor patient outcome with 

reduced overall survival and event-free survival. Also, when compared with tumor 

grade and nodal status, PTEN expression is an independent predictor of poor outcome. 

(Lee et al., 2001) Although genetic alterations of PTEN are rare in HNSC (5-10%), in 

TSCC these alterations are not uncommon and play an important role in tumorigenesis 

and progression. Since other mechanism may be responsible for PTEN gene loss of 

function, such as promoter hypermethylation, the frequency of PTEN alterations may be 

underestimated in HNSCC. Further research is needed in order to establish the possible 

epigenetic role in PTEN inactivation in these tumors. (Lee et al., 2001; Molinolo et al., 

2009) 

 Loss of CDKN2A expression by promoter hypermethylation has been described 

as an early event in oral cancer. In a study conducted by Cao et al. (2009), promoter 

methylation of this gene occurred in 41% of the 78 patients analyzed with histologically 

confirmed mild or moderate oral epithelial dysplasia and was significantly associated 

with a higher rate of progression to oral cancer (P=0.013). Particularly, in TSCC, this 

epigenetic event may serve as a useful molecular marker for local recurrence prediction. 

A prospective study performed by Sinha et al. (2009) identified CDKN2A promoter 

hypermethylation in 86.8% of the 38 tongue carcinomas evaluated. Promoter 

methylation was present in 43,3% of the 30 patients with histologically free margins, 

which predicted a 6.3-fold increased risk of having local recurrence as compared to 

patients whose margins were negative for CDKN2A promoter methylation. 

 The O6-methylguanine-DNA methyltransferase (MGMT) gene codes the MGMT 

protein essential for genome stability. This detoxifying agent of DNA adducts prevents 

mismatch and errors during DNA replication and transcription and is also involved in 

the repair of naturally occurring mutagenic DNA lesion O6-methylguanine back to 

guanine. Promoter hypermethylation of MGMT has been reported as an early event in 

HNSCC, revealing its potential role as a molecular marker for early detection in this 

type of cancer. (Chen et al., 2007; Demokan & Dalay, 2011) In OSCC, MGMT 

methylation is a common event and is present in 25-52% of primary tumors. (Ha & 

Califano, 2006) 
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 Wingless type (Wnt) signaling has been increasingly implicated in cancer 

initiation and malignant transformation, particularly in OSCC. Wnt proteins bind to 

specific transmenbrane receptors and activate β-catenin that accumulates in the 

cytoplasm, being then translocated to the nucleus, which results in activation of growth 

promoting oncogenes and regulation of cell polarity, invasion, metastasis and 

angiogenesis. (Lo Muzio, 2001) Wnt antagonists, Runt-related transcription factor 3 

(RUNX3) and WNT inhibitory factor 1 (WIF1), are negative modulators of Wnt, 

preventing β-catenin function as a transcriptional factor. Recent studies have revealed 

expression of RUNX3 downregulation by hypermethylation and methylation silencing 

of WIF1 in several types of cancer including OCC.  In TSCC, a study conducted by 

Supic et al. revealed promoter hypermethylation of WIF1 and RUNX3 in 35% and 25% 

of the 76 tongue carcinomas analyzed, respectively. RUNX3 promoter hypermethylation 

was significantly associated with lymph node involvement (P=0.013) and tumor stage 

(P=0.006). Additionally, comethylation of both genes was associated with tumor stage 

(P=0.055) and nodal status (P=0.058). (Supic et al., 2011) 

 

Table VII – Candidate genes frequently methylated in HNSCC. Adapted from Ha & Califano, 

2006; Yalniz et al., 2011. 

Gene Chromosomal Position Function 
RASSF1 3p21.3 Tumor suppression 
MLH1 3p22.3 DNA repair 
RARB 3p24 Tumor suppression 
APC 5q21-q22 Tumor suppression 

CDKN2A 9p21 Tumor suppression 
DAPK1 9q34.1 Apoptosis 
MGMT 10q26 DNA repair 
WIF1 12q14.2 Inhibition of Wnt signaling 
CHFR 12q24.33 Early G2/M checkpoint 
CDH1 16q22.1 Cell adhesion 

 

DNA methylation assessment is an appealing and developing area in cancer 

research. Aberrant methylation of cytosine occurs at CpG dinucleotide (CpG islands) 

rich promoter regions of tumor suppressor genes and is catalyzed by DNA 

methyltransferases (DNMTs). Promoter hypermethylation of these genes is the best 

characterized epigenetic event in carcinogenesis. Tumor suppressor genes 

transcriptional silencing is achieved by this process, likely due to the inhibition of 
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transcriptional factor binding, as closed chromatin configuration leads to blockage of 

the assess of transcription factors to the promoter region. (Baylin & Jones, 2011) 

Epigenetic alterations are susceptible to change and represent excellent 

candidates to disclose how environmental factors are implicated in increased risk of 

cancer. Normal cells gene expression patterns are maintained through organization of 

methylation and chromatin status, however in cancer cells expression patterns 

homeostasis is lost and becomes unrecognizable, as transformed cells undergo 

concomitant genomic hypomethylation and dense hypermethylation of CpG islands 

within gene regulatory regions. This results in genomic instability and transcriptional 

silencing of associated genes. (Esteller, 2002; Feinberg & Tycko, 2004) 

Aberrant promoter hypermehylation of CpG islands is an early event in 

tumorigenesis, representing a potencial target for early tumor detection, as well as a 

biomarker of malignant transformation and predictor of tumor behavior. Also, 

methylation patterns are tissue-specific and have tumor-type specificity, being possibly 

useful in subclassifying specific tumor types and determining tissue origin in metastasis. 

(Baylin, 2005; Costello et al., 2000; Esteller, 2002; Feinberg & Tycko, 2004) 

Furthermore,   as opposed to genetic events, DNA methylation is reversible, 

representing an attractive target for new therapeutic strategies involving inhibitors of the 

DNMT for reactivation of methylation-silenced genes. (Tsai & Baylin, 2011) 

Promoter hypermethylation profiles of HNSCC have been widely explored. 

However, most promoter hypermethylation studies only evaluate a limited number of 

genes and usually combine different HNSCC subsites, with different tumor stages. 

Also, HPV-status of these tumors is not always defined, which as mentioned before is 

an important prognostic factor especially in oral cavity and oropharingeal cancers. 

Differences in composition of patient cohorts as well as methylation assessment 

methodologies and sample procession result in a wide range of reported 

hypermethylation frequencies. Thus, assessment of methylation profile of each head and 

neck subsites individually, particularly TSCC, as means to classify molecularly distinct 

groups is highly important for risk cancer evaluation, early detection, prognosis 

stratification, treatment modality selection and treatment response prediction. 
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3.3 – The relevance of studying genetic and epigenetic changes 
The prognostication, management and treatment of HNSCC have been 

traditionally established by grouping all the different head and neck subsites together, 

assuming homogeneity of the disease; however,  this is not supported by the distinct 

tumor behavior and patient outcome observed according to the different subsites from 

which the tumors arise. (Haddad & Shin, 2008; Rusthoven et al., 2008) In the numerous 

studies and cohorts published over the years, attempting to understand the pathogenesis 

of HNSCC, combination of different anatomical subsites has resulted in a wide range of 

information on genetic and epigenetic events involved in tumourgenesis, however with 

little regard for the individual identity of these tumors. (Bernier & Cooper, 2005; 

Gillison et al., 2000; Leemans, Braakhuis, & Brakenhoff, 2011; Stransky et al., 2011) 

Beyond any doubt, this has resulted in inadequacy to stratify patients according to risk 

of disease, as well as choosing the most appropriate treatment, particularly in the tongue 

subsite. For this reason the primary ambition of molecular studies is the identification 

and characterization of biomarkers in order to improve prognostic prediction and risk-

stratification of patients, as well as be able to predict treatment response. 

 

 

4 – Formalin-fixed paraffin embedded specimens 

Formalin-fixed paraffin embedded (FFPE) tissues have been used in diagnostic 

pathology for decades, resulting in a vast amount of samples readily accessible for 

molecular research. Most importantly, almost all FFPE samples have associated 

pathological and clinical information, allowing for its application on association and 

classification studies.  

Identifying molecular targets as diagnostic and prognostic markers requires 

optimal preservation of proteins, RNA and DNA, in human specimens. However, 

routine fixation methods fail to conserve the structure of these molecules, thus ability to 

extract adequate material from fixed tissues is limited. Several factors involved in the 

fixation process are listed in Table VIII. (Srinivasan, Sedmak, & Jewell, 2002) 
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Table VIII – Prefixation, intrafixation and postfixation parameters involved in the maintenance 

of the in vivo status of the human tissue ex vivo. Adapted from Srinivasan, Sedmak, & Jewell, 

2002. 

Prefixation Intrafixation Postfixation 

Constant factors Properties of the fixatives Storage parameters 

Nature of the anesthetic 
Duration of anesthesia 
Anoxic injury in situ 

 

Chemistry and mechanism 
of action 

Tissue penetration 

Duration 
Temperature 

Condition 
(vacuum/nonvacuum 

packed) 

Variable factors Condition of fixation Nature of the biological 
factor to be analyzed 

Prefixation time 

Temperature 
Duration 

pH 
Osmolarity 

Concentration 
Size of the specimen 

Volume of the fixative 
 

Proteins 
Enzymes 

Lipids 
Nucleic acids 

Mucopolysacharides 
Biogenic amines 

Glycogen 
 

 

Numerous chemical fixatives have been used in the last few decades, with 

formaldehyde and glutaraldehyde being the most popular. (Magdeldin & Yamamoto, 

2012) Since glutaraldehyde is a larger molecule, its rate of diffusion through 

membranes is slower, for this reason formaldehyde as a 10% neutral buffered solution, 

formalin, is the most widely used fixative.  

Formalin fixation and paraffin wax embedding process preserves cytoskeletal 

structure and proteins, essential for pathological purposes, due to irreversible formalin-

protein cross-links. However, formalin and other cross-linking fixatives degrade nucleic 

acids, being up to 30% of nucleic acids lost during fixation. (Srinivasan, Sedmak, & 

Jewell, 2002) DNA isolation from FFPE tissues is impaired by formalin cross-links 

formation and paraffin wax, resulting in low concentration yields and fragmented DNA, 

generally 500 bp or less.  

DNA fragment size is mostly influenced by fixation process and how long it is 

fixed for. It can also be affected by the time since surgical resection until fixation, as 

tissues experience anoxia and environmental changes. The time the tissue has been 

stored for has also been suggested but it is found to have minor effect. 
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During the fixation process, DNA formalin-induced modifications depend on 

concentration, temperature and pH of the fixative. Temperature is directly related to 

extracted DNA size, lower temperatures upon fixation, particularly at 4°C, yields less 

fragmented DNA. Low pH environment should be avoided since acidic pH results in 

nucleic acid degradation. (Srinivasan, Sedmak, & Jewell, 2002) 

Regarding fixation time, at least one hour is required per mm of tissue thickness, 

but routinely the tissues are fixed for 24 to 48 hours. This represents a major problem 

since size of DNA extracted from tissues fixed in formalin decreases with increasing 

fixation time. In order to obtain greater amounts of high-molecular DNA, tissues should 

be fixed for 3 to 6 hours in buffered formalin. (Srinivasan, Sedmak, & Jewell, 2002) 

Ultimately, using formaldehyde as a fixative in order to preserve tissue nucleic 

acids should be performed under specific criteria: minimal prefixation time, preferable 

less than 2 hours; use of cold (4°C) 10% neutral formalin; duration of fixation from 3 to 

6 hours. (Srinivasan, Sedmak, & Jewell, 2002) However, FFPE tissues samples are not 

obtained for molecular research purposes. Routine sample preparation consists of 

previous established methods for routine pathological diagnosis, with little regard for 

the nucleic acid degradation, thus knowledge about the effects of fixatives on the 

integrity and utility of the preserved DNA and RNA is increasingly important. 

Overcome these major obstacles and isolate great high quality DNA from FFPE 

tissue from tumor samples is crucial, since these large archives frequently have 

historical records of patient progression and outcome, allowing retrospective studies to 

be performed exploring DNA changes that influence cancer development and 

progression. 

 Still caution must be taken in adapting this information because it is possible that 

alterations in gene expression profiles can occur either during and or after the resection 

of the tissue. Thus comparing the genetic profile of fresh frozen tissues and FFPE 

tissues is imperative to validate the latter application in future studies. 
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5 – Methylation-specific Multiplex Ligation-dependent Probe 

Amplification 
The number of genes known to be hypermethylated in cancer has been largely 

increasing, revealing the necessity of sensitive and robust multiplex methods able to 

detect aberrant methylation patterns of promoter regions. This is particularly important 

when analyzing DNA extracted from FFPE tissue specimens that have been stored over 

the years, resulting in poor quality DNA. (Esteller, 2002; Nygren et al., 2005) 

Over the years innumerous approaches have been used for methylation detection 

based on conversion of cytosine residues into uracil after bisulphite treatment. However, 

during subsequent PCR, these residues are converted to thymidine, resulting in different 

DNA sequence of the alleles that were originally methylated and the corresponding 

unmethylated alleles. Although techniques exist that are able to exploit this aspect, such 

as Methylation-specific PCR (MSP) and Combined Bissulfite Restriction Analysis 

(COBRA), the majority of them are laborious and/or only allow for the analysis of one 

gene at a time, thus not being suitable to study large numbers of FFPE tissue samples. 

The relatively recent developed Methylation-specific Multiplex Ligation-dependent 

Probe Amplification (MS-MLPA) technique represents a desirable solution, as  it is able 

to detect changes in methylation status as well as copy number changes of up to 40 

selected sequences in a reaction using only 20ng of DNA. (Nygren et al., 2005) 

MS-MLPA consists of a semi-quantitive method for methylation status 

assessment. This variant of the MLPA technique allows for further analysis of 

methylation profile in addition to the copy number detection already inherent to the 

MLPA method, by making use of methylation-sensitive restriction enzyme. The 

usability of MS-MLPA for detection of epigenetic alterations has been widely 

recognized for tumor analysis, particularly for identification of tumor suppressor genes 

methylation patterns involved in tumorigenesis. (Nygren et al., 2005) 

The MS-MLPA assay protocol consist of different steps: DNA denaturation and 

hybridization of MLPA probes, ligation and ligation plus digestion reactions, PCR 

amplification and subsequent capillary electrophoresis separation of amplification 

products, as demonstrated in Figure 5. This procedure is very similar to the 

conventional MLPA protocol, except that MS-MLPA assay generates two types of 

samples, one undigested sample for copy number detection that is processed as a 

standard MLPA reaction and a digested one that was additionally incubated with HhaI 
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endonuclease. Probes for methylation detection resemble the MLPA probes, but their 

target sequence contains the restriction site for methylation-sensitive enzyme. After 

ligation and ligation plus digestion reactions, digested probes cannot be amplified 

exponentially during PCR and do not produce a signal during capillary electrophoresis. 

The opposite occur when sample DNA is methylated, as DNA-probe hybrids are 

protected against HhaI digestion and ligated probes will generate a peak. (MCR-

Holland, 2015a) 

 

 
Figure 5 - Outline of the MS-MLPA procedure. Adapted from MRC-Holland, 2015a. 
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6 - Objectives 
The main objective of the present thesis is the characterization of the genetic and 

epigenetic profile of 31 primary tongue tumors, collected from patients with TSCC, 

upon resection surgery, by MS-MLPA technique. Unraveling the genetic and epigenetic 

alteration patterns present in TSCC will allow for the establishment of candidate genes, 

as well as determine their clinical significance, providing a great opportunity to identify 

the molecular pathways underlying the development and progression of the disease. The 

association between the tongue-specific genotype with patients’ clinicopathological 

features will contribute for the improvement of diagnosis, prognosis and accurate risk-

stratification of patients, as well as choose the most adequate treatment and predict 

treatment response in TSCC. 

Clinical assessment and histopathological evaluation of tumors often show 

limitations regarding prognosis and clinical decision-making due to significant diversity 

in patients’ clinical course and treatment response. This diversity can be explained by 

alterations at the genetic and epigenetic level that result in unique/individual 

phenotypes. Identification of the genetic and epigenetic profile of TSCC will contribute 

to the establishment of specific molecular diagnosis for individual patients, improving 

prognostic prediction, treatment decision-making and ultimately to further improve the 

survival rate of these patients. 

Limitations of the current clinicopathological staging system capability of 

identifying patients with high risk disease, highlights the need for prognosis biomarkers 

to be identified. Furthermore, aberrant DNA methylation patterns have been reported as 

early events in the carcinogenic process, revealing their potential role as diagnostic 

biomarkers. Establishing correlations between molecular alterations and 

clinicopathological features will warrant the future application of the MS-MLPA 

technique in clinical practice for early detection and patient’s follow-up. 

Towards the need of analyzing a great amount of tumor samples for the 

establishment of molecular biomarkers involved in malignant transformation and 

progression of TSCC, FFPE tissue samples represent a valuable resource. FFPE tissues 

have been used in diagnostic pathology for decades, resulting in a vast amount of 

samples readily accessible for molecular research. These large archives of FFPE 

specimens frequently have associated pathological and clinical information, allowing 

for its application on retrospective studies. However, DNA isolation from FFPE tissues 
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is impaired by formalin cross-links formation and paraffin wax, resulting in low 

concentration yields and fragmented DNA. Thus the present thesis also aimed the 

development of an optimized protocol for DNA extraction from FFPE specimens of 

TSCC. 
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Chapter 2 – Materials and Methods 
1 – Patients, tumors and control samples 

The present study was approved by Medicine Faculty of University of Coimbra 

Ethics Committee. Thirty one fresh-frozen tumor samples and 16 matched-paired FFPE 

specimens were obtained from the Anatomical Pathology Department of the Coimbra 

Hospital and University Center, CHUC, EPE, between 2010 and 2014. Informed 

consent was obtained from all patients. Pathological features and clinical annotations of 

each patient were obtained and these included patient’s sex, age at the diagnosis, tumor 

staging, histological differentiation, presence or absence of metastasis, treatment 

modality and tobacco and alcohol history. Clinicopathological features of all cases are 

summarized in Table IX. 

All tumor tissue samples were collected upon surgical resection, followed by 

histopathological evaluation of the mirror sections performed by an experienced 

pathologist. Hematoxylin and eosin (H&E) staining was used to confirm diagnosis and 

select tumoral representative areas. Fresh tumor specimens were snap frozen by 

immersion in liquid nitrogen and stored at -80ᵒC until analysis. FFPE blocks preparation 

consisted of tissue fixation in neutral buffered formalin, followed by paraffin 

embedding, according to routine pathologic laboratory protocols. Five histological cuts 

of 20 µm thick paraffin sections were obtained from each FFPE resection block for 

analysis. The first and last FFPE tissue cut slides were stained with H&E and evaluation 

of tumor content was performed by an experienced pathologist. Areas of interest were 

circled on the H&E slides and manually microdissected. When only small tumoral 

tissue areas were identified, more cuts were performed to obtain optimal tissue quantity. 

Gingival samples from 16 healthy donors subjected to third molar removal were used as 

fresh-frozen controls and obtained from Maxillofacial Surgery and Stomatology Unit of 

the Coimbra Hospital and University Centre, CHUC, EPE. One non-tumoral FFPE 

sample was also included that consisted of 5 histological cuts of 20 µm thick paraffin 

section of a surgically removed prosthesis-fibroma from a healthy donor and was 

obtained from the Anatomical Pathology Department of the Coimbra Hospital and 

University Center, CHUC, EPE. 
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Table IX – Patient and tumor clinicopathological features. 

Characteristic No. of Patients (n=31) 
Mean age, yrs (range) 63.87 (44-94)    
Gender  
   Male 25 
   Female 6 
Stage  
   I and II 12 
   III and IV 17 
   Not recorded 2 
Treatment  
   Surgery only 12 
   Surgery+RT 12 
   CT+Surgery 1 
   Surgery+RT+CT 5 
   Not recorded 1 
Clinical outcome  
   Death from the disease 9 
   Alive 22 
Smoking (cigarettes per day)  
   ≥20 13 
   <20 3 
   None 8 
   Not recorded 7 
RT radiation therapy, CT chemotherapy 

 

 

2 – DNA extraction 
2.1 – Fresh-frozen tissue 
 DNA was extracted from fresh-frozen tissue samples using the High Pure PCR 

Template Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany), according 

to the manufacturer’s instructions.  (Roche Diagnostics GmbH, 2008) 

 

 

2.2 – FFPE tissue 
 DNA was extracted from FFPE tissue samples using three different methods (A, 

B and C). Method A consisted of simultaneous paraffin removal and proteinase K 

digestion, whereas method B and C consisted of heat paraffin removal and xylene 

deparaffinization, respectively, followed by proteinase K digestion. For all three 
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methods, genomic DNA (gDNA) extraction was performed using the QIAmp DNA 

FFPE Tissue kit (Qiagen, Hilden, Germany), with protocol variations. 

 

2.2.1 – Method A 

Day 1 (1st tissue digestion) 

Paraffin flakes were placed in 1.5 ml microcentrifuge tubes, 400µl of Buffer ATL 

was added, vortexed and incubated at 70ᵒC for 1 hour at 20 rpm in a hybridization oven 

(Shellab, Illinois, USA), until all paraffin was liquefied. For tissue digestion 20µl of 

Proteinase K (20 mg/ml) was added and samples were incubated in a water bath at 54ᵒC 

overnight. 

 

Day 2 (Paraffin removal, 2nd tissue digestion and gDNA extraction) 

Paraffin was removed by immediate centrifuge 10,000 g x 5 min., as paraffin 

solidifies at the solution top, forming a wax disk. After paraffin removal, 20µl of 

Proteinase K (20mg/ml) was added and samples were incubated in a water bath at 54ᵒC 

until full tissue digestion. Genomic DNA was isolated using the QIAmp DNA FFPE 

Tissue kit, according to Agilent Oligonucleotide Array-Based CGH for Genomic DNA 

Analysis (ULS Labeling for Blood, Cells, Tissues or FFPE) (Agilent Technologies, 

California, USA) protocol for gDNA extraction from FFPE samples. (Agilent 

Technologies, 2008) 

 

2.2.2 – Method B 

Day 1 (Paraffin removal) 

 Paraffin flakes were placed in 1.5 ml microcentrifuge tubes, 480 µl PBS and 20 

µl of 20% Tween were added, vortexed and incubated at 90ᵒC for 3 hours in a water 

bath to melt paraffin wax. Samples were immediately centrifuged at 10,000 g x 15 min. 

and placed on ice for 2 min. to remove solid paraffin disk. Pellet was ressuspended with 

1,000 µl of 100% ethanol, vortexed and centrifuged at 10,000 g x 5 min. Ethanol was 

removed after wash, 400 µl of 1M NaSCN (Sigma-Aldrich, Missouri, USA) was added 

to the dried pellet, vortexed and incubated at 37ᵒC overnight at 20 rpm. 

 

Day 2 (1st tissue digestion) 

 Samples were removed from hybridization oven and centrifuged at 10,000 g x 

20 min. The tissue pellet was washed with 400 µl PBS, vortexed and centrifuged at 



38 
 

10,000 g x 20 min. Pellet was ressuspended with 360 µl of Buffer ATL, 40 µl of 

proteinase K was added, vortexed and incubated at 55ᵒC overnight at 20 rpm. 

 

Day 3 (2nd tissue digestion) 

 Samples were centrifuged at 6,000 g x 30 sec. to drive the contents of the wall 

and lid, 40 µl of proteinase K was added, vortexed and incubated at 55ᵒC for 6 hours at 

20 rpm. Samples were then centrifuged at 6,000 g x 30 sec., 40 µl of proteinase K was 

added, vortexed and incubated at 55ᵒC overnight at 20 rpm. 

 

Day 4 (gDNA extraction) 

Genomic DNA was isolated using the QIAmp DNA FFPE Tissue kit (Qiagen, 

Hilden, Germany), according to Agilent Oligonucleotide Array-Based CGH for 

Genomic DNA Analysis (ULS Labeling for Blood, Cells, Tissues or FFPE) (Agilent 

Technologies, California, USA) protocol for gDNA extraction from FFPE samples, with 

minor changes. (Agilent Technologies, 2008) Samples were cooled down to room 

temperature, centrifuged at 6,000 g x 30 sec. to drive contents off the walls and lid, 8 µl 

of RNase A (100 mg/mL) was added, vortexed and incubated at room temperature for 2 

min. The mixture was centrifuged at 6,000 g x 30 sec., 400 µl of Buffer AL was added, 

vortexed and incubated at 70ᵒC for 10 min. in a water bath. Samples were centrifuged at 

6,000 g x 30 sec., 440 µl of 100% ethanol was added, vortexed and centrifuged at 6,000 

g x 30 sec. Each sample was transferred to two QIAamp MinElute columns, centrifuged 

at 6,000 g x 1 min. and flow-through was discarded. 500 µl of Buffer AW1 was added, 

centrifuged at 6,000g x 1 min. and flow-through was discarded. 500 µl of 80% ethanol 

was added, centrifuged at 13,000 g x 3 min. and flow-through was discarded. DNA was 

eluted from each column with 50 µl nuclease free water (Promega, Wisconsin, USA) at 

70ᵒC, for a total elution volume of 100 µl of each sample, incubated at room 

temperature for 5 min. and centrifuged at 6,000 g x 1 min. Eluted DNA solution was 

added again to the column, incubated at room temperature for 5 min. and centrifuged at 

13,000 g x 1 min. 

 

2.2.3 – Method C 

Day 1 (Deparaffinization) 

Paraffin flakes were placed in 1.5 ml microcentrifuge tubes, deparaffinized 3 

times with 1000 µl of xylene, vortexed, incubated at 45ᵒC for 10 min. at 20 rpm and 



39 
 

centrifuged at 13,000 g x 5 min. The tissue pellet was washed with 1,000 µl methanol 

(Merck KGaA, Darmstadt, Germany), vortexed and centrifuged at 13,000 g x 5 min., 

washed with 1,000 µl phosphate-buffered saline (PBS), vortexed and centrifuged at 

13,000 g x 5 min. Pellet was ressuspended with 1,000 µl 1M NaSCN (Sigma-Aldrich, 

Missouri, USA) vortexed and incubated at 37ᵒC overnight at 20 rpm.  

 

Day 2 (1st tissue digestion) 

Samples were removed from hybridization oven, centrifuged at 13,000g x 5 min. 

and washed for 2 times with 1,000 µl PBS, vortexed and centrifuged at 13,000 g x 10 

min. The deparaffinized tissue was ressuspended in 200 µl of Buffer ATL (Qiagen, 

Hilden, Germany), followed by 20µl of Proteinase K (20 mg/ml) digestion at 55ᵒC for 4 

hours at 20 rpm. Another 20µl of Proteinase K (20 mg/ml) were added and lysate was 

incubated at 55ᵒC overnight at 20 rpm. 

 

Day 3 and 4 (2nd tissue digestion) 

Samples were removed from hybridization oven, 20 µl of Proteinase K (20 

mg/ml) was added, followed by digestion at 55ᵒC for 4 hours at 20 rpm. Another 20 µl 

of Proteinase K (20 mg/ml) was added and lysate was incubated at 55ᵒC overnight at 20 

rpm. 

 

Day 5 (DNA isolation) 

Genomic DNA was isolated using the QIAmp DNA FFPE Tissue kit (Qiagen, 

Hilden, Germany), according to the manufacturer’s instructions with some 

modifications. Briefly, 200 µl of Buffer AL was added, vortexed and incubated for 70ᵒC 

for 10 min. at 20 rpm.  200 µl of 100% ethanol was added and immediately vortexed for 

15 sec. The mixture was briefly centrifuged, the entire lysate was transferred to two 

QIAamp MinElute columns, centrifuged at 6,000g x 1 min. and flow-through was 

discarded. 500 µl of Buffer AW1 was added, centrifuged at 6,000g x 1 min. and flow-

through was discarded. 500 µl of Buffer AW2 was added, centrifuged at 13,000 g x 1 

min. and flow-through was discarded. In order to completely dry the membrane, the 

column was centrifuged at 13,000 g x 2 min. and flow-through discarded. DNA was 

eluted from each column with 50 µl nuclease free water (Promega, Wisconsin, USA) 

(100 µl total elution volume for each sample), incubated at room temperature for 5 min. 
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and centrifuged at 6,000 g x 1 min. Eluted DNA solution was added again to the 

column, incubated at room temperature for 5 min. and centrifuged at 13,000 g x 1 min. 

 

 

3 – Sample analysis – concentration, purity and integrity 

assessment 
Accurate assessment of extracted DNA quantity and quality is essential for 

successful molecular downstream applications. High quality DNA is defined by being 

free of contaminants and with minimal degradation. Measure of these parameters when 

extracting DNA from FFPE tissues is particularly important, as the extraction process 

results in various degrees of DNA degradation and contamination.  

DNA purity and concentration of all samples were assessed using NanoDrop 

1000 Spetrophotometer (Thermo Fisher Scientific, Wilmington, USA), according to 

manufacturer’s instructions. A260/A280 and A260/A230 ratios were recorded, allowing 

for sample purity determination, as the first indicates the presence or absence of 

contaminating proteins and the second of organic compounds such as guanidinum 

isothiocyanate, alchohol and phenol, as well as cellular carbohydrates. DNA samples 

with A260/A280 ratio values of 1.8 to 2.0 and A260/A230 ratio values >2 were 

considered high-quality/pure. (Thermo Fisher Scientific, 2008) Re-quantification of 

DNA concentration was performed in all FFPE samples using Qubit Fluorometer 3.0 

(Life Technologies, Wilmington, USA), according to manufacturer’s instructions. 

(Thermo Fisher Scientific, 2014) 

An additional concentration step was performed in 4 samples extracted with 

method C that presented the lowest yields of isolated DNA, using Concentrator plus 

(Eppendorf, Hamburg, Germany). Samples were concentrated by speed vacuum of 80 

µl for 20 min. at 60ᵒC and resuspended with 40 µl of nuclease free water. Resulting 

concentrated extracts concentration and purity were evaluated. 

Since determination of FFPE derived DNA fragment sizes is crucial to ensure 

downstream processing suitability, an agarose gel electrophoresis was performed in 

order to assess DNA integrity and the average molecular weight of DNA samples 

extracted from FFPE tissue specimens. Selected samples for analysis consisted of 9 

FFPE DNA samples from 3 patients (23, 24 and 26) extracted with the three different 

methods, 1 FFPE control sample extracted with method C, 4 concentrated DNA 
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samples extracted with method C (control, patient 23, 24 and 26) and 3 fresh-frozen 

DNA samples. DNA concentration of all analyzed samples was 23 ng/µl. Briefly, a 2% 

agarose gel was stained with Midori Green (Nzytech, Lisboa, Portugal). 4 µl of 

molecular weight 50 pb DNA Step Ladder (340 µl/ml) (Promega, Wisconsin, USA) was 

used. The gel was run at 100V for 50 minutes and resulting gel image obtained with 

Bio-Rad ChemiDoc XRS, using Quantity One v4.2 software (Bio-Rad, California, 

USA). 

 

 

4 – MS-MLPA 
In order to evaluate copy number changes and methylation status, MS-MLPA 

was performed in all fresh-frozen tissue samples, as well as respective controls, using 

the tumor specific ME002-C1 MS-MLPA probemix (MRC-Holland, Amsterdam, 

Netherlands), as previously described by Nygren et al. (2005). ME002-C1 MS-MLPA 

probemix contains 27 probe sequences, with the recognition site for the HhaI 

methylation-sensitive restriction enzyme and allows the detection of methylation status 

of a total of 25 different tumor suppressor genes promoter regions. The present panel 

also includes 14 reference probes which are not digested by HhaI. All 41 probes provide 

information on copy number alterations of 38 cancer related genes. MGMT, ATM and 

RB1 genes are targeted by two probe sequences each. (Figure 6) (MRC-Holland, 2015b) 

Briefly, 120 ng DNA samples were heat-denatured at 98ᵒC for 10 min. and cooled down 

to 25ᵒC. After addition of target-specific MLPA probes, samples were heated at 95ᵒC 

for 1 min. and incubated at 60ᵒC for 15 hours. The reaction was then split into two 

tubes. Standard MLPA reaction was performed in one tube (copy number test), whereas 

the other was incubated with HhaI restriction enzyme (methylation test).  Ligation of 

annealed probes was performed at 49ᵒC for 30 min. in buffer containing Ligase-65 for 

the first tube and ligation-digestion reaction in buffer containing Ligase-65 and HhaI for 

the second one. After heat inactivation of the enzymes at 98ᵒ for 5 min., PCR was 

carried out using FAM-labeled primers, dNTPs and SALSA polymerase. PCR consisted 

of 35 cycles of denaturation for 30 sec. at 95ᵒC, annealing for 30 sec. at 60ᵒC, an 

extension step for 60 sec. at 72ᵒC, a final extension for 20 min. at 72ᵒC and a hold at 

15ᵒC. All reactions were performed on a thermal cycle equipped with a heat lid (ABI 

2720, Applied Biosystems, California, USA). After heat-denatured, PCR products were 
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analyzed on a GeneScan ABI PRISM 3130 capillary electrophoresis system (Applied 

Biosystems, California, USA). For each set of MLPA reaction, a negative control 

without DNA and 3 previously analyzed DNA samples from healthy controls were 

included. The DNA control samples were previously analyzed and had no significant 

genomic imbalances for the loci being studied. In terms of copy number detection, 

results were displayed as a ratio between obtained signals for reference and tumor 

samples. Ratio values higher than 1.2 were scored as numerical gains and lower than 0.8 

were scored as numerical losses. For methylation status assessment, no signal was 

generated when probes suffered digestion, as digested probes are not amplified during 

PCR. In contrast, when target DNA is methylated, probe-sample DNA hybrids are not 

digested by HhaI, the target region is amplified and a signal is generate. Quantification 

of the methylation status was performed by comparison of the signal peaks from 

digested and undigested samples. Positive methylation was scored for methylation 

values ≥20% (20-49% methylated; ≥50% hypermethylated) and negative scored for 

values <20%. 
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Table X – Genes analyzed by MS-MLPA with ME002-C1 probemix. 

Gene Chromosomal 
Position Function 

TP73 1p36.3 Tumor protein p73 

MSH6 2p16 mutS homolg 6 

VHL 3p25.3 von Hippel-Lindau tumor supressor  

RARB 3p24 Retinoic acid receptor, beta 

CASR 3q21.1 Calcium-sensing receptor 

IL2 4q26-q27 Interleukin 2 

APC 5q21-q22 Adenomatous polyposis coli 

Figure 6 
– 
Chromos
omal 
distributio
n of the 
analyzed 
genes by 
MS-
MLPA, 
using the 
ME002-
C1 
probemix. 
Tumor 
suppresso
r genes of 
which 
methylati
on status 
was 
assessed ( 
– ).  
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ESR1 6q24-q27 Estrogen receptor 1 

CDK6 7q21-q22 Cyclin-dependent kinase 6 

CFTR 7q31.2 Cystic fibrosis transmembrane conductance 
regulator 

CDKN2A 9p21 Cyclin-dependent kinase inhibitor A 

PAX5 9p13.2 Paired box 5 

PTCH1 9q22.1-q31 Patched 1 

CREM 10p12.1-p11.1 cAMP responsive element modulator 

KLLN 10q23 Killin 

PTEN 10q23 Phosphatase and tensin homolog 

MGMT 10q26 O-6-methylguanine-DNA methyltranferase 

PAX6 11p13 Paired box 6 

WT1 11p13 Wilms tumor 1 

CD44 11p13 CD44 molecule 

GSTP1 11q13.2 Glutathione S-transferase pi 1 

ATM 11q22-q23 ATM serine/threonine kinase 

CADM1 11q23.2 Cell adhesion molecule 1 

PAH 12q22-q24.2 Phenylalanine hydroxylase 

CHFR 12q24.33 Checkpoint with forkhead and ring finger domains 

BRCA2 13q12-q13 Breast cancer 2 

RB1 13q14.2 Retinoblastoma 1 

MLH3 14q24.3 mutL homolog 3 

THBS1 15q15 Thrombospondin 1 

TSC2 16p13.3 Tuberous sclerosis 2 

PYCARD 16p11.2  PYD and CARD domain containing 
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CDH13 16q23.3 Cadherin 13 

TP53 17p13.1 Tumor protein 53 

PMP22 17p12 Peripheral myelin protein 22 

BRCA1 17q21.31 Breast cancer1 

STK11 19p13.3 Serine/threonine kinase 11 

KLK3 19q13.41 Kallikren-related peptidase 3 

GATA5 20q13.33 GATA binding protein 5 
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Chapter 3 - Results 
1 – Patients, tumors and control samples 
 In the present study, a cohort of 31 patients with TSCC was retrospectively 

identified.  Patients clinicopathological features, treatment modalities, outcome and risk 

factor exposure are summarized in Table IX.  The majority of patients was male, 

80.65% (n=25/31), and ranged in age from 44 to 94 years, with an average of 63.87 

years (±12.65). All patients received appropriate treatment, consisting of surgery 

(n=12/31, 38.71%), surgery with adjuvant radiotherapy (RT) (n=12/31, 38.71%), 

surgery with adjuvant chemotherapy (CT) (n=1/31, 3.23%) or surgery with adjuvant 

radiotherapy and chemotherapy (n=5/31, 16.13%). Sixteen patients had a smoking 
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history (51.61%) at the time of diagnosis or had been smokers for several years and 

25.81% (n=8/31) of patients had a history of alcohol consumption. 

Diagnosis and clinicopathological assessment of tumors was based on the 

American Joint Committee on Cancer TNM classification system. (Sobin, 

Gospodarowics, & Witteking, 2009) Five tumors were classified as stage I, 7 as stage II, 

11 as stage III and 6 as stage IV. At the time of diagnosis, 48.39% (n=15/31) of the 

patients presented metastasized TSCC. Of these patients, 8 presented stage III tumors, 5 

stage IV tumors and 1 a stage II tumor. 

 

 

2 – DNA extraction and samples analysis 
2.1 – DNA extraction from fresh-frozen tissue samples 
 Fresh-frozen DNA samples quantity and quality assessment with NanoDrop 

1000 showed that the 31 samples had relatively high concentration values, hence MS-

MLPA technic only requires as little as 20 ng of DNA. In terms of quality, registered 

A260/A280 and A260/A230 ratios were in general within accepted values, showing the 

absence of contaminants. Overall DNA samples were considered high quality and 

suitable for molecular downstream processing. 

 

 

 

2.2 – DNA extraction from FFPE tissue samples – Protocol 

optimization 
 FFPE DNA samples analysis with NanoDrop 1000 revealed an overestimation 

of the DNA amount present. In general, DNA concentration values for FFPE DNA 

samples were lower than for DNA samples extracted from fresh-frozen tissues, however 

there were samples for which DNA concentrations were even higher than fresh-frozen 

DNA samples. Concentration of all FFPE DNA samples was then measured by Qubit 

Fluorometer 3.0, in a fluorescent-based assay that is DNA specific, revealing an 

overestimation of 3 to 4 times of the concentration measured by NanoDrop 1000. This 

is mainly due to the fact that UV absorbance measurements are not selective, resulting 

in higher concentration values that are influenced by the presence of contaminants such 
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as proteins, salts and organic compounds. Moreover, spectrophotometer measure is 

often inaccurate for the quantification of DNA at low concentrations. 

 DNA extraction from FFPE specimens was performed using three different 

methods (A, B and C). As shown in Figure 7, concentration values of DNA samples 

extracted from FFPE tissues were highly dependent on the method used. The medium 

amounts of extracted DNA from each method were 24.55 (±12.12) ng/µl, 25.76 (±9.27) 

ng/µl and 37.14 (±7.24) ng/µl for methods A, B and C, respectively (Figure 8). These 

results contemplate only DNA concentration values of samples extracted with the three 

different methods (patients 7, 8, 9,21, 23, 24, 26 and 30), enabling comparison.  

 Although spectrophotometer measurement is not proper for DNA quantification, 

it is very accurate for evaluation of the FFPE extracts purity. DNA quality assessment 

revealed differences between methods, being the best absorption ratios observed when 

using the C extraction method. For 4 FFPE DNA samples extracted using this method 

that had the lowest concentration yields, a concentration step was needed which resulted 

in a 1.5-fold increase in DNA concentration. After concentration, the 4 FFPE DNA 

samples extracted using this method continued to have high purity DNA. 

 
Figure 7 – Concentration values of FFPE DNA samples extracted with methods A, B and C, 

from patients 7, 8, 9, 21, 23, 24, 26 and 30. 
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Figure 8 – Medium DNA concentration obtained using extraction methods A, B and C. 

 
2.3 – DNA fragmentation 
 DNA fragmentation was evaluated by an agarose gel electrophoresis, analyzing 

14 FFPE DNA samples and 3 fresh-frozen DNA samples, as shown in Figure 9. DNA 

extracts from fresh-frozen tissues (15, 16 and 17) did not present fragmentation and 

were present in enough concentration for posterior analysis by MS-MLPA technique. In 

contrast, FFPE DNA samples (1 to 14) showed significant fragmentation and lower 

concentration. Extracted FFPE DNA samples using method C (5, 9 and 13) had 

relatively higher DNA amounts when compared with samples extracted using method A 

(3, 7 and 11) and B (4, 8 and 12) and control sample extracted using method C (1). 

After concentration, FFPE DNA samples showed increasing DNA amounts (2, 6, 10 

and 14).  
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Figure 9 – Gel electrophoresis of representative DNA extracts from FFPE specimens and fresh-
frozen tissue samples, assessing DNA fragmentation and molecular weight. MW – molecular 
weight 50 pb DNA Step Ladder; 1 – control FFPE DNA sample (method C); 2 – concentrated 
control FFPE DNA sample (method C); 3, 4 and 5 – FFPE DNA sample of patient 23 (method 
A, B and C, respectively); 6 – concentrated FFPE DNA sample of patient 23 (method C); 7, 8 
and 9 – FFPE DNA samples of patient 24 (method A, B and C, respectively); 10 – concentrated 
FFPE DNA sample of patient 24 (method C); 11, 12 and 13 – FFPE DNA samples of patient 26 
(method A, B and C, respectively); 14 – concentrated FFPE DNA sample of patient 26 (method 
C); 15, 16 and 17 – fresh-frozen DNA samples. 
 

 

 

 

3 – MS-MLPA analysis of fresh-frozen tumor samples 
 Copy number abnormalities and methylation status of all 31 fresh-frozen TSCC 

tumor samples and 16 fresh-frozen control samples were assessed by MS-MLPA. The 

obtained data was analyzed with Coffyanalyzer software (MRC-Holland, Amsterdam, 

Netherlands), which allows DNA fragments analysis and comparative analysis of 

samples. 
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For each sample two electropherograms were generated, one for the MS-MLPA 

undigested product for copy number detection and one for the digested product for 

methylation detection. (Figure 10 and 11) In all obtained electropherograms, sample 

quality and quantity were assessed by registered initial peaks. MS-MLPA ME002-C1 

probemix includes 9 control fragments: Q-fragments for DNA quantity control that are 

only visible with less than 100 ng sample DNA, D-fragments which are used to 

highlight incomplete denaturation, X chromosome specific fragment at 100 nt for the 

identification of female samples and Y chromosome specific fragment at 105 nt for the 

identification of male samples. 

For quantitative assessment of copy number alteration, namely loss or gain of 

genetic material, data normalization is required. ME002-C1 panel includes 14 reference 

probes which are not affected by HhaI digestion. The peak area of each single probe 

amplification product is divided by the cumulative peak area of all reference probes 

within individual samples, in order to compensate differences in PCR efficiency. MS-

MLPA is a relative technique that detects relative differences by comparison of samples 

peak patterns. Copy number changes detection is obtained by comparing electrophoresis 

peak patterns of the undigested MS-MLPA reactions of test sample and three reference 

samples, included in each run. Determining methylation status is achieved by 

comparison of electrophoresis peak pattern of test sample with digested counterpart. 

MS-MLPA electropherograms of a healthy control female proband shows no 

copy number alterations (Figure 10-A) and no aberrantly methylated promoter regions 

were detected (Figure 10-B). The digested reaction of this reference sample only shows 

peaks from reference probes, since the target sequences of probes containing HhaI 

restriction site are unmethylated and were therefore digested.  
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Figure 10 – Electropherograms obtained by Coffyanalyzer software. MS-MLPA results 

obtained for female control sample for copy number (A) and methylation status (B) detection. 

 
MS-MLPA electropherograms obtained for patient 29 (Figure 11) show copy 

number changes and aberrant methylation patterns. Two probes had a reduced peak 

signal as compared to reference samples, revealing gene copy number loss of PAX5 and 

CADM1. In contrast, four probes had increased peak signal, revealing numerical gains 

of CDK6, CFTR, MLH3 and PYCARD. In addition to signal peaks of reference probes, 

the electropherogram of the digested reaction shows two extra peaks, resulting from the 

methylation of RARB, PAX5 and WT1 promoter region. 
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Figure 11 – Electropherograms obtained by Coffyanalyzer software. MS-MLPA results 

obtained for male patient 29 for copy number (A) and methylation status (B) detection. 

 

 

3.1 – Copy number alterations 
 MS-MLPA analysis of fresh-frozen gingival samples from 16 healthy donors, 

which were subjected to third molar removal, showed no significant genomic 

imbalances for the loci being studied. After control samples analysis, specific cut-off 

values for copy number gain and loss were determined and results were displayed as a 

ratio between obtained signals for reference and tumor samples. Ratio values higher 

than 1.2 were scored as numerical gains and lower than 0.8 were scored as numerical 

losses. 

 As shown in Table XI, genetic imbalances were observed in 28 (90.32%) of the 

31 tumor samples analyzed. No copy number changes were detected in tumor samples 

from patients 9, 12 and 24 for the analyzed 38 cancer-related genes. Genetic imbalances 

were verified for 36 genes, with the exception of PTEN and RB1 which did not exhibit 
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any copy number changes in the tumor samples. Overall, 150 copy number alterations 

were identified of which 42 were losses and 108 were gains. The number of tumor 

samples exhibiting copy number gains was higher than the ones showing losses. 

Thirteen samples (41.94%) showed both gains and losses of genetic material, whereas 

14 samples (45.16%) exhibit only copy number gains and 1 sample (patient 1) showed 

only copy number losses. 

 

Table XI – Copy number alterations detected by MS-MLPA using the ME002-C1 probemix in 

31 fresh-frozen tumor samples from patients with TSCC. Gains – blue; Losses – red. 

 
 In the tumor tissue samples of the analyzed 31 patients, a higher frequency of 

copy number gains were present at chromosomal arms 16p, 19p, 11q, 17q, 7q and 20q, 

whereas losses were more frequent at 9p, 11p and 11q, as shown in Figure 12 and Table 

XI. 
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Figure 12 – Genetic imbalances detected by MS-MLPA in 31 fresh-frozen tumor samples from 

patients with TSCC. Each line represents one gene analyzed. Gains – blue; Losses – red. 

 

 Genes exhibiting a higher frequency of copy number gains were PYCARD, 

STK11, BRCA1, GSTP1 and GATA5, whereas losses were more frequent for CDKN2A, 

IL2, CADM1, PAX6 and WT1, as shown in Table XII. 

 

Table XII – Genes presenting a higher frequency of copy number gains or losses in the 31 

patients with TSCC.  

Gains Losses 

Gene 
Chromosomal 

Position 

Number of 

Patients 
Gene 

Chromosomal 

Position 

Number of 

Patients 

PYCARD 16p11.2 13 CDKN2A 9p21 7 

STK11 19p13.3 12 IL2 4q26-q27 4 

BRCA1 17q21.31 9 CADM1 11q23.2 4 

GSTP1 11q13.2 8 PAX6 11p13 3 

GATA5 20q13.33 8 WT1 11p13 3 

 

The analyzed genes with a higher frequency of copy number changes in the 

patients samples were PYCARD, STK11, CDKN2A, BRCA1, GATA5, GSTP1 and TP53, 

as shown in Figure 13. Copy number gains of PYCARD (16p11.2) gene were present in 
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41.94% (n=13/31) of the analyzed tumor samples. The second most frequent copy 

number change was genetic gains of STK11 (19p13.3) that was present in 38.71% 

(n=12/13%) of all patient samples. Copy number losses of CDKN2A (9p21) were 

present in 22.58% (n=7/31) of tumor samples, whereas gains of this gene were present 

in 6.45% (n=2/31) of the samples. In 29.03% (n=9/31) of all tumor samples, copy 

number gains of BRCA1 (17q21.31) were registered. Copy number changes of GATA5 

(20q13.33) were mostly gains, present in 25.81% (n=8/31) of patients. Copy number 

loss of GATA5 was only verified in the tumor sample from patient 1. GSTP1 (11q13.2) 

and TP53 (17p13.1) genes only exhibit genetic material gains in 25.81% (n=8/31) and 

22.58% (n=7/31) of tumor samples, respectively. 

 

Figure 13 – Genes with a higher frequency of copy number changes in the 31 patients with 

TSCC. Percentage of tumor samples exhibiting gains (blue) or losses (red) in the analyzed 

genes. 
 

Less frequent copy number changes were observed of VHL, PAX5, CHFR, 

MLH3, CASR, MSH6, CDK6, CFTR, IL2, CADM1, WT1, TP73, CD44, ATM, PAX6, 

RARB, ESR1, PTCH1, CDH13, APC, CREM, KLLN, TSC2, KLK3, MGMT, PAH, 

BRCA2, THBS1 and PMP22 genes. Gain of genetic material of VHL (3p25.3) was 

present in 16.13% (n=5/31) of tumors, whereas loss of this gene was only detected in 

one tumor sample. PAX5 (9p13.2) copy number changes consisted of gains, present in 

12.90% (n=4/31) of tumor samples, and losses identified in 6.45% (n=2/31) of samples. 
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CHFR (12q24.33) and MLH3 (14q24.3) only exhibited gains of genetic material that 

were present in 19.35% (n=6/31) of tumors. Copy number gains of CASR (3q21.1) were 

present in 12.90% (n=4/31) of tumor samples, whereas loss of this gene was only 

present in one sample. MSH6 (2p16), CDK6 (7q21-q22) and CFTR (7q31.2) only 

exhibited copy number gains that were present in 12.90% (n=4/31) of the tumors. Copy 

number losses of IL2 (4q26-q27) and CADM1 (11q23.2) were identified in 12.90% 

(n=4/31) of tumor samples. Loss of genetic material of WT1 (11p13) was present in 

9.68% (n=3/31) of tumors, whereas gain of this gene was only detected in one of the 

analyzed tumors. TP73 (1p36.3), CD44 (11p13) and ATM (11q22-q23) showed copy 

number gains in only one tumor sample (patient 14, 19 and 21, respectively) and losses 

of genetic material of these genes were present in 6.45% (n=2/31) of tumors. Copy 

number losses of PAX6 (11p13) were present in 9.68% (n=3/31) of tumor samples. 

RARB (3p24) and ESR1 (6q24-q27) only exhibited copy number losses that were 

present in 6.45% (n=2/31) of tumor samples. Two tumor samples (6.45%) showed 

genetic material gains of PTCH1 (9q22.1-q31). Copy number changes of CDH13 

(16q23.3) were present in two tumor samples (6.45%), one exhibiting gain and one loss 

of this gene. The genes with the lowest frequency of copy number changes were APC 

(5q21-q22), CREM (10p12.1-p11.1), KLLN (10q23), TSC2 (16p13.3) and KLK3 

(19q13.41) which only exhibited copy number gains in 3.23% (n=1/31) of the tumors 

and MGMT (10q26), PAH (12q22-q24.2), BRCA2 (13q12-q13), THBS1 (15q15) and 

PMP22 (17p12) that only showed loss of genetic material in the same percentage of 

samples. 

 

 
3.2 – Methylation status 

Methylation profile analysis by MS-MLPA of the 16 control gingival samples 

extracted from healthy donors, upon third molar removal, allowed determination of 

specific methylation cut-off values. Positive methylation was scored for methylation 

values ≥20% (20-49% methylated; ≥50% hypermethylated) and negative scored for 

values <20%. Quantification of samples methylation status was performed by 

comparison of the signal peak patterns from digested and undigested counterpart 

samples. All control samples showed methylation values <20% for all 25 tumor 

supreessor genes, with the exception of one that showed 43% of methylation of CD44. 
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As shown in Table XIII, aberrant methylation was observed in 96.77% 

(n=30/31) of the 31 tumor samples analyzed. Eight tumor samples (25.81%) showed 

promoter methylation in one gene, in 12.90% (n=4/31) of tumors methylation was 

present in two genes, in 35.48% (n=11/31) of tumors three genes were aberrantly 

methylated and in 22.58% (n=7/31) of tumors at least four genes showed methylation. 

Methylation of promoter regions was present in 14 of the total 25 cancer-related genes 

analyzed. Seven of these genes also showed promoter hypermehylation (CDKN2A, 

PAX5, PAX6, WT1, CADM1, CHFR and GATA5). In contrast, TP73, VHL, CD44, 

GSTP1, ATM, BRCA2, RB1, THBS1, PYCARD, BRACA1 and STK11 showed no 

aberrant promoter methylation (data not shown). 

The most frequently methylated gene was WT1, in 77.42% (n=24/31) of tumor 

samples, as shown in Figure 14. Methylation of this tumor suppressor gene was verified 

in 41.94% (n=13/31) of patients and promoter hypermethylation was detected in 

35.48% (n=11/31) of tumors. PAX5 showed promoter methylation in 48.39% (n=15/31) 

of tumors, being hypermethylated in 3 (9.68%) of them. Promoter methylation of MSH6 

was present in 35.48% (n=11/31) of cases. GATA5 promoter region showed aberrant 

methylation in 25.81% (n=8/31) of tumor samples. This tumor suppressor gene was 

methylated in 19.35% (n=6/31) of patients samples and hypermethylated in 6.45% 

(n=2/31). Promoter regions of tumor suppressor genes RARB, ESR1 and MGMT did not 

show hypermethylation. Methylation of this three genes was detected in 16.13% 

(n=5/31), 12.90% (n=4/31) and 9.68% (n=3/31) of the analyzed tumors, respectively. 

Aberrant methylation of CADM1 and CHFR promoter regions was identified in 9.68% 

(n=3/31) of tumors, being promoter methylation of these genes detected in 6.45% 

(n=2/31) of tumor samples and hypermethylation registered in 3.23% (n=1/31) of 

samples. KLLN methylation was verified in 2 (6.45%) tumor samples. Promoter 

methylation and hypermethylation of PAX6 was present in 6.45% (n=2/31) of patients 

samples. CDKN2A showed only promoter hypermethylation in one of the tumor 

samples. CDH13 and TP53 promoter regions were methylated in 3.23% (n=1/31) of 

tumors. 
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Table XIII – Methylation profile of 25 tumor suppressor genes promoter regions detected by 
MS-MLPA using ME002-C1 probemix of 31 fresh-frozen tumor samples from patients with 
TSCC. Dark grey – hypermethylation (≥50%); light grey – methylation (20-49%); white – 
absence of methylation (<20%)  

 
 

 
Figure 14 – Methylation of the tumor supressor genes analysed by MS-MLPA in 31 TSCC. 

Percentage of tumor samples presenting gene methylation (dark blue) and hypermethylation 

(light blue). Cut-offs: 20-49% - methylation; ≥50% - hypermethylation. 
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Chapter 4 – Discussion 
1 – Genetic and epigenetic profiling of TSCC by MS-MLPA 
 In recent years, advances in molecular research and genomics have allowed for a 

deeper understanding of the molecular processes involved in the initiation and 

progression of HNSCC. Studies and cohorts published over the years have resulted in a 

wide range of information on genetic and epigenetic events involved in tumourigenesis. 

However, the combination of different anatomical subsites within the head and neck has 

impaired the identification of molecular markers specific for the different primary sites, 

as well as their clinical significance. Beyond any doubt, this has resulted in inadequacy 

to stratify patients according to risk of disease, as well as choosing the most appropriate 

treatment, particularly in the tongue subsite. Unraveling the genetic and epigenetic 

alteration patterns present in TSCC will allow for the identification of candidate genes, 

and determine their clinical significance, which is imperative to improve diagnosis, 

prognosis, accurate risk-stratification of patients and choose the most adequate 

treatment and predict treatment response. For this reason, the present study sought to 

determine the genetic and epigenetic signatures of 31 primary tongue tumors collected 

from patients with TSCC upon resection surgery and establish a correlation between the 

resulting tumor-specific genetic and epigenetic changes with patient’s key 

clinicopathological features, providing a great opportunity to identify the molecular 

pathways underlying the development and progression of the disease. 

 Analysis of genomic DNA samples extracted from fresh-frozen tumor samples 

and control gingival samples was performed by MS-MLPA technique using the ME002 

probemix. The most remarkable advantage of using this technique is the fact that in 

addition to the detection of copy number alterations, MS-MLPA assay allows for the 

detection of aberrant methylation patterns of CpG islands on a large number of genes 

using one single and simple reaction. MS-MLPA requires only a minimum amount of 

20ng DNA in each sample and is simple to preform, allowing for a large number of 

samples to be simultaneously analyzed. Thus, this simple to perform, sensitive and 

reproducible technique is suitable for multiplex analysis. (Nygren et al., 2005) ME002 

probemix includes 27 probes for methylation status detection of 25 different tumor 

suppressor genes that contain a restriction site for the methylationsensitive restriction 

enzyme HhaI and 14 reference probes that are not affected by HhaI digestion, the total 

41 probes allow for the detection of copy number alterations. (MCR-Holland, 2015b) 
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The present probemix panel was chosen due to the fact that copy number loss, copy 

number gain or methylation of the genes target by the probes included in this particular 

tumor suppressor kit had been reported in the literature in association with different 

types of tumors, including head and neck cancers. 

 For MS-MLPA data analysis, Coffalyser software was used as it has been 

recommended and designed by MRC-Holland as the optimal analysis program for this 

technique including accurate analysis algorithm and quality checks. (MRC-Holland, 

2015b) (Homig-Holzel & Savola, 2012) Specific cut-off values were established for 

detection of copy number alterations and methylation status assessment. Copy number 

changes were detected by comparing the relative signal strength of the probes between 

patients DNA samples and normal reference samples. The theoretically expected ratios 

between obtained signals for reference samples and tumor samples of 0.0, 0.5, 1.0 and 

1.5 indicate absence of the target region (homozygous deletion), loss of one of the two 

alleles (heterozygous deletion), presence of the two alleles (wild-type) and allele gain 

(duplication), respectively. The Coffalyser software uses stringent cut-off values of 0.7 

and 1.3 for heterozygous deletion or duplication, respectively. However, when 

analyzing tumor samples, these sharp cut-off values are not applicable as obtained ratios 

will depend on the percentage of different cell types present in the samples. The 

differences in tumor content resulting from contaminating normal cells present in tumor 

samples and tumor heterogeneity impair the detection of aberrations, as these will be 

only present in a subpopulation of cells from which genomic DNA was extracted for 

analysis. (Jeuken et al., 2006) The signals generated for the genomic DNA present in 

diploid normal cells will cause dilution of signals representing the copy number changes 

in the genome of tumor cells. For this reason, in the present study, less stringent specific 

cut-off values for copy number changes were established: ratio values higher than 1.2 

were scored as numerical gains and lower than 0.8 were scored as numerical losses. In a 

study attempting to establish the applicability of the MLPA technique for the reliable 

identification of different region-specific genetic aberrations of gliomas, Jeuken et al. 

(2006) verified that this technique enables the correct identification of copy number 

changes when the percentage of tumor cell represents at least 50% of the tumor sample, 

setting the threshold to detect losses and gains at 0.8 and 1.2, respectively. 

Quantification of samples methylation status was performed by comparison of the 

signal peak patterns from digested and undigested counterpart samples. Methylation 

specific cut-off values were determined after methylation profile analysis by MS-MLPA 
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of the 16 control gingival samples extracted from healthy donors, upon third molar 

removal. Positive methylation was scored for methylation values ≥20% (20-49% 

methylated; ≥50% hypermethylated) and negatively scored for values <20%. The choice 

of cut-off values by control samples analysis is crucial for an accurate assessment, since 

methylation levels and the subsequent effect on gene expression differ according to 

tissue histological type. (Lim et al., 2014a; Liu, Ji, & Qiu, 2013) Low levels of 

methylation are usually unlikely to represent a driving alteration in tumorigenesis, 

however the specific level of methylation that results in altered gene expression has not 

been yet identified. Thus, analysis of methylation patterns of equivalent normal tissue 

types and tumoral subsite allows for the establishment of the significant levels of 

methylation. Similar to the effects on copy number detection, normal tissue 

contamination of the tumor samples resulting from infiltrating stroma and tumor 

heterogeneity may lead to the detection of low levels of methylation that may be 

discarded. (Lim et al., 2014a) 

Analysis by MS-MLPA of all fresh-frozen control samples from healthy 

individuals with no history of neoplasia diagnosis, at the time of gingival sample 

collection, showed no significant genomic imbalances in terms of copy number changes 

for the 41 loci being studied. Thus, these samples were suitable for inclusion in MS-

MLPA analysis of tumors samples as controls for copy number aberration detection. In 

terms of methylation status, all control samples had no significant percentage of 

promoter region methylation for the 25 tumor suppressor genes analyzed, with the 

exception of one which showed 43% of methylation in CD44 gene. Aberrant 

methylation patterns may be detected in individuals with normal phenotype. The 

significance of this level of methylation and its impact on gene expression may be 

further analyzed by enlarging the number of normal control samples from healthy 

individuals in order to determine if this epigenetic alteration is a relatively common 

event in healthy individuals. Interestingly, methylation of CD44 was not detected for 

any of the analyzed tumor samples. Thus, methylation of this gene may not play a 

significant role in TSCC development and progression. 

Another important aspect to be considered when performing the MS-MLPA 

technique for tumor samples analysis is the choice of adequate reference probes. Tumor 

samples analysis is a complex process as a variety of loci of different chromosomes can 

be affected. Different reference probes are included in the probemix for data 

normalization in order to allow the comparison of probe signals between different 
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samples. For this reason, the reference probes should only target chromosomal regions 

in which copy number changes are not expected. It is important to avoid probemix 

panels in which reference probes target oncogenes or tumor suppressor genes that have 

been associated to initiation or progression of the type of cancer in analysis. (Homig-

Holzel & Savola, 2012) Reference probes included in the ME002 probemix target 

CASR, IL2, APC, CDK6, CFTR, PTCH1, CREM, PTEN, ATM, PAH, MLH3, TSC2, 

PMP22 and KLK3 genes. (MRC-Holland, 2015b) In the present analysis, copy number 

alterations of these genes were present in only a few samples. MLH3 and CASR 

specifically targeted by reference probes were the most altered, being alterations of 

these genes present in less than 6 tumor samples (n≤6/31, 19.35%).  PTEN and ATM 

showed no alteration in none of the samples. The remaining genes were altered in less 

than 4 samples (n≤4/31, 12.90%). The reference probes included in the ME002 

probemix used in the present study were adequate for a reliable analysis of TSCC, as a 

low number of genetic imbalances were detected for the genes specifically targeted by 

these probes and these were distributed on several chromosomes, lowering the risk of 

affecting the normalization process and increasing the robustness of the results. 

(Homig-Holzel & Savola, 2012) (Jeuken et al., 2006) 

In all 31 tongue tumor samples included in this study, a total of 233 genetic and 

epigenetic alterations were observed, of which 42 consisted of copy number losses, 108 

were gains of genetic material and 83 comprised aberrant methylation. As expected, a 

significantly higher number of genetic imbalances and methylation aberration patterns 

were detected in tumor tissue as compared to normal controls, revealing the increasing 

number of genetic and epigenetic alterations and chromosomal instability characteristic 

of the carcinogenic process. From all 38 analyzed cancer-related genes, only PTEN and 

RB1 showed no alteration in any tumor sample, suggesting that these two genes may not 

play an important role in TSCC development and progression. However, due to the 

relatively small size of the present cohort and the fact that only one and two probes were 

target-specific for the PTEN and RB1 genes, respectively, further validation of the 

present results is needed. Alterations of TP73, VHL, CASR, IL2, APC, ESR1, CDK6, 

CFTR, PTCH1, CREM, KLLN, MGMT, PAX6, CD44, ATM, PAH, BRCA2, MLH3, 

THBS1, TSC2, CDH13, PMP22 and KLK3 genes were only present in less than 22.58% 

(n<7/31) of tumor samples, suggesting that the present genes could play a small role in 

the onset and progression of TSCC and do not represent suitable molecular markers of 

tongue tumorigenesis. Since the scope of the present work is to identify genetic and 
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epigenetic alterations that are representative of the biological processes underlying 

TSCC, the most frequent alterations present in the analyzed tumor samples will be 

discussed in detail in association with their clinical relevance. 

The most frequently altered gene in the present cohort was the WT1, which was 

consistently altered in 90.32% (n=28/31) of tumor samples. Aberrant methylation of this 

gene was present in 24 tumor samples, whereas copy number changes were less 

frequent, being losses and gains of genetic material verified in 3 and 1 samples, 

respectively. Mapped at 11p13, WT1 gene was first isolated as a tumor suppressor gene 

that was inactivated in a subset of patients with Wilms’ tumor (Call et al., 1990) and 

encodes a transcriptional factor that plays an important role in cell growth and 

differentiation (Sugiyama, 2010). This transcriptional factor has four zinc fingers and 

has been associated with the transcriptional regulation of genes such as insulin-like 

growth factor (IGF)-II (Drummond et al., 1992) and retinoic acid receptor (RAR)-α 

(Goodyer et al., 1995). During development, WT1 is manly expressed in the developing 

kidney, gonad and mesothelium. (Davies et al., 1999) Methylation of WT1 in tumors 

suggests a decrease in the expression of this gene in concordance with a tumor 

suppressor role that has been previously described (Jomgeow et al., 2006). However, 

overexpression of WT1 has been verified in a variety of human cancers, such as 

leukemia (Inoue et al., 1994), astrocytic tumors (Yusuke Oji et al., 2004), colorectal 

adenocarcinoma (Oji et al., 2003b), esophageal cancer (Oji et al., 2004b), prostate 

cancer (Gregg et al., 2010) and HNSCC (Oji et al., 2003), indicating that WT1 plays an 

oncogenic role rather than acting as a tumor suppressor in the tumorigenesis of these 

cancers. Also, reinforcing this idea is the fact that growth of cancer cells showing high 

levels of WT1 expression was consistently inhibited by treatment with WT1 antisense 

oligomers. (Algar et al., 1996; Oji et al., 1999; Yamagami et al., 1996) Oji et al. (2003) 

analyzed WT1 gene expression using quantitative real-time reverse transcriptase-

polymerase chain reaction (RT-PCR) in 56 HNSCCs, of which the majority was from 

the tongue subsite (25). Overexpression of this gene was present in 68% of the tongue 

tumors, suggesting an important role of WT1 in TSCC tumorigenesis. These 

investigators also found a significant correlation between poor histological tumor 

differentiation and more advanced stages of HNSCC with the high levels of WT1 

expression. Brett, Pandey, & Fraizer (2013) showed an inverse relationship between 

WT1 and E-cadherin expression levels in prostate cancer cells. High levels of WT1 

expression were able to dampen E-cadherin levels and enhanced the cells migratory 
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ability, thus contribute to the development of metastatic phenotype. WT1 gene may 

serve as a potential predictive marker of cell migration and metastasis in prostate 

cancer. (Brett, Pandey, & Fraizer, 2013) In a study conducted by Hylander et al. (2006), 

the correlation of overexpression of WT1 and higher tumor grade and stage was 

demonstrated in a large set (100) of epithelial ovarian cancers. Overexpression of WT1 

also represents an attractive target for immunotherapy. After immunization with WT1-

specific cytotoxic T cells, an in vivo murine leukemia model showed tumor regression. 

(Oka et al., 2002) Additionally, WT1 peptide vaccination in patients with WT1 

expressing breast or lung cancer, myelodysplastic syndrome, or acute myeloid leukemia 

was able to induce WT1-specific cytotoxic T lymphocytes and showed positive clinical 

responses such as reduction in tumor size without damage to normal tissues. (Oka et al., 

2004) These results are inconsistent with the high levels of methylation observed in the 

present cohort that suggest a tumor suppressor role of the WT1 gene. Other studies have 

reported promoter methylation of WT1 in several human neoplasms, such as colorectal 

cancer (Hiltunen et al., 1997), breast cancer (Laux et al., 1999), ovarian cancer 

(Kaneuchi et al., 2005), lung cancer (Nikolaidis et al., 2012) and OSCC (Viet & 

Schmidt, 2008) (Gasche et al., 2011). Promoter methylation of WT1 gene has been 

indicated as a significant clinical biomarker in cervical cancer (Lai et al., 2008) and lung 

cancer screening (Nikolaidis et al., 2012). DNA methylation analysis of 44 OSCCs 

conducted by Jithesh et al., showed that WT1 was differentially methylated between 

extracapsular spread (ECS) and non-ECS tumor samples, revealing the possible role of 

WT1 methylation as a diagnostic and prognostic predictor in oral carcinogenesis. 

(Jithesh et al., 2013) Hypermethylation of WT1 gene has been previously described in 

tissue and saliva samples of patients with OSCC (Viet & Schmidt, 2008), in accordance 

to the results of the present TSCC cohort that showed high levels of methylation of this 

gene, being WT1 hypermethylated in 35.48% (n=11/31) of tumor samples. Viet et al. 

methylation analysis of saliva samples before and after treatment showed that WT1 

methylation was completely reversed after successful treatment of OSCC patients, 

suggesting the role of this gene in oral carcinogenesis and the potential utility of 

methylation analysis in saliva samples for early detection and evaluation of treatment 

response. Gasche et al. demonstrated alterations in WT1 methylation patterns by 

interleukin-6 (IL-6) mediated chronic inflammation in oral cancer cells. IL-6 was able 

to alter WT1 methylation patterns from a hemimethylated to a fully methylated state, 

suggesting that IL-6 promotes tumorigenesis by altering DNA methylation in OSCC. 



71 
 

(Gasche et al., 2011) Methylation of WT1 was present in a significantly high percentage 

of the tongue tumors, suggesting the important role of this gene as a tumor suppressor in 

TSCC carcinogenesis. Also, given the fact that overexpression of WT1 has been 

associated with poor histological differentiation and increased tumor stage, the present 

gene represents a potential prognostic marker in TSCC. (Oji et al., 2003) Although the 

high levels of methylation of the present gene indicate low levels of WT1 gene 

expression, further validation of the present results may be performed by proteomic or 

gene expression studies. 

 PAX5 was the second most frequently altered gene in the tumor samples 

analyzed (n=21/31, 67.74%). PAX5 showed promoter methylation in 48.39% (n=15/31) 

of tumors and copy number losses and gains of this gene were present in 2 and 4 tumor 

samples, respectively. PAX5 gene is located on chromosome region 9p13 and belongs to 

the PAX family of genes that includes nine developmentally regulated genes, which 

encode transcription factors that have key roles in organ development and 

differentiation of tissue during embryogenesis.  PAX5 protein is expressed during B-

cell development, with the exception of plasma cells. (Adams et al., 1992) Additionally 

to the normal physiological process carried out by PAX5 during development, this 

transcriptional factor also plays an important role in tumorigenesis. Frequent 

methylation of PAX5 gene has been reported in ductal carcinoma in situ, invasive breast 

cancer, neuroendocrine carcinomas and HNSCC. (Guerrero-Preston et al., 2014; 

Moelans, Verschuur-Maes, & Van Diest, 2011) Guerrero-Preston et al. (2014) have 

identified promoter methylation of PAX5 gene as a frequent event in HNSCC, 

associated with low PAX5 expression levels, suggesting a tumor suppressor role of this 

gene in head and neck carcinogenesis. Methylation of PAX5 gene was higher in HPV-

negative tumors (83%) when compared to HPV-positive tumors (25%). Given that the 

HPV-positive HNSCC has been associated with a more favorable clinical outcome, with 

an increased survival of up to 60-80% (Gillison et al., 2000; Leemans, Braakhuis, & 

Brakenhoff, 2011; Marur et al., 2010), PAX5 gene represents a potential molecular 

marker for prognosis and patient outcome prediction. These investigators also found an 

interesting relationship between TP53 and PAX5, as 79% of the samples presenting 

mutations of the TP53 gene also showed promoter methylation of PAX5, contributing to 

support the idea that promoter methylation and somatic mutations represent the main 

cause of gene inactivation and pathway disruption in HNSCC. Patients with combined 

PAX5 methylation and TP53 mutations had a worse overall survival than patients 
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presenting only the latter. (Guerrero-Preston et al., 2014) In superficial bladder 

carcinoma, concomitant high expression levels of PAX5 and TP53 have been correlated 

with higher recurrence and progression rates. (Babjuk et al., 2002) Norhany et al. (2006) 

reported high levels of PAX5 expression in primary tumor samples from patients with 

OSCC, OSCC-derived cell lines and leukoplakia lesions, suggesting that PAX5 plays an 

important role during oral carcinogenesis. Overexpression of PAX5 in premalignant 

oral lesions and early stages reveals the potential role of the present gene as a biomarker 

for diagnosis and early detection of these tumors. (Norhany et al., 2006) In the present 

study, the high percentage of the tongue tumors with methylation of PAX5 gene 

suggests the important role of this gene as a tumor suppressor in TSCC carcinogenesis. 

Of note is also the potential role of this gene as a molecular marker in early detection 

and prognostic prediction in TSCC. 

 The third gene that showed a higher number of genetic and epigenetic alterations 

in the population of tongue tumor samples was GATA5 (n=17/31, 54.84%). Genetic 

imbalances of GATA5 were present in 9 tumors analyzed tumors, being mainly gains of 

genetic material detected (n=8/31, 25.81%). Promoter methylation of GATA5 was 

verified in 8 patients with TSCC (25.81%). Mapped at 20q13.33, GATA5 gene encodes 

a transcription factor that contains two GATA-type zinc fingers. GATA5 guides 

differentiation and development of endoderm-derived organs. (Laverriere et al., 1994) A 

tumor suppressor role for GATA5 has been described, resulting from methylation and 

loss of expression of this gene in glioblastoma (Rankeillor et al., 2014), lung  (Guo et 

al., 2004), gastric (Akiyama et al., 2003), esophageal (Guo et al., 2006), colorectal 

(Hellebrekers et al., 2009) and ovarian (Wakana et al., 2006) cancers. In glioblastoma, 

promoter methylation of GATA5 has been associated with poor outcome, revealing the 

predictive/prognostic significance of this gene. (Rankeillor et al., 2014) In lung cancer, 

concomitant promoter methylation of GATA4 and GATA5 genes was significantly 

associated with increased methylation frequency and increasing patient age. (Guo et al., 

2004) In a study conducted by Hellebrekers et al. (2009), frequent promoter methylation 

of GATA5 was verified in colorectal carcinoma, suggesting an important role of this 

tumor suppressor gene in colorectal carcinogenesis. Induced GATA5 overexpression in 

human colorectal cancer cell lines resulted in suppressed colony formation, 

proliferation, migration, invasion and anchorage-independent growth, revealing the 

tumor suppressive response of this gene.  This study also suggested GATA5 promoter 

hypermethylation as a potential biomarker for noninvasive colorectal cancer detection. 
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Gasche et al. (2011) demonstrated alterations in GATA5 methylation patterns by 

interleukin-6 (IL-6) mediated chronic inflammation in oral cancer cells, promoter region 

hypermethylation of this gene and concomitant downregulation of its expression were 

observed following IL-6 exposure, suggesting that epigenetic silencing may results from 

chronic inflammation in OSCC. Promoter methylation of GATA5 has been reported in a 

variety of other tumor types, but not in TSCC. The present cohort shows a novel 

observation that GATA5 methylation is present in 25.81% of patients, revealing the 

importance of the present gene in tongue tumorigenesis. 

Genetic and epigenetic alterations of MSH6 were also frequent in the population 

of tumors of the present study (n=15/31, 48.39%). Promoter methylation of MSH6 was 

more frequent than genetic imbalances, being observed in 35.48% (n=11/31) of tumor 

samples. MSH6 gains of genetic material were verified in 4 of the patients, of which one 

showed also methylation of this gene. MSH6 gene is located at chromosomal region 

2p16 and encodes a mismatch repair protein involved in the DNA mismatch repair 

system, which main function is to repair mispaired bases in DNA sequence, resulting 

from replication errors in order to prevent mutation accumulation. MSH6 forms a 

heterodimeric complex with MSH2 (MutSα) that recognizes mispaired DNA bases and 

repairs base-base and small insertion/deletion mispairs.  (Acharya et al., 1996; Gazzoli 

& Kolodner, 2003; Genschel et al., 1998) Elevated percentage of promoter methylation 

of MSH6 has been reported in ductal carcinoma in situ and invasive breast cancer. 

(Moelans et al., 2011) In glioblastomas, significant low levels of MSH6 protein 

expression have been associated with recurrence after adequate treatment. (Felsberg et 

al., 2011) Particularly in HNSCC, low levels of expression of the MSH6 gene have been 

associated with an increased risk of developing this type of cancer. (Wei et al., 1998) In 

the present cohort, the frequent promoter methylation of MSH6, suggest the important 

role of this mismatch repair gene in tongue carcinogenesis. Additionally, MSH6 

methylation was present in 16.67% (n=2/12) of the 12 staged as I and II tumors and 

47.06% (n=8/17) of the staged III and IV tongue tumors. Promoter methylation of this 

gene was also found to be a more common event in patients with metastasis at the time 

of diagnosis, as MSH6 methylation was present in 8 of the 15 patients with metastasized 

TSCC (53.33%) and only 2 of the 12 patients without metastasis (16.67%) had 

methylation of the mismatch repair gene. The present results, suggest that MSH6 

promoter region methylation may be associated with more advanced stages of the 
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disease and metastatic phenotype in TSCC, additional studies with a larger number of 

subjects are still warranted to confirm these findings. 

PYCARD and STK11 genes only presented genetic imbalances, namely copy 

number gains in the tumor samples analyzed. PYCARD and STK11 showed frequent 

gains of genetic material in 41.94% (n=13/31) and 38.71% of tumors, respectively. 

Mapped at 16p11.2, PYCARD gene codes a bipartite signaling protein, containing two 

protein-protein interaction domains, a pyrin domain (PYD) and caspase recruitment 

domain (CARD), that is involved in apoptosis and inflammation. Overexpression or 

oligomerization of PYCARD induces apoptosis via a caspase-8 dependent mechanism 

in epithelial cells. (Masumoto et al., 2003; McConnell & Vertino, 2004) Epigenetic 

silencing of PYCARD gene by promoter methylation has been reported in various tumor 

types, such as glioblastoma (Stone et al., 2004), breast (Conway et al., 2000), prostate 

(Collard et al., 2006) and colorectal (Yokoyama et al., 2003) cancers. However, in the 

present cohort no tumor samples exhibited methylation of this gene, suggesting that this 

mechanism of epigenetic silencing is not involved in tongue tumorigenesis. On the other 

hand, copy number gains of PYCARD were rather a frequent event in the analyzed 

samples, suggesting an oncogenic role of PYCARD in TSCC development and 

progression. Drexler et al. demonstrated that PYCARD may influence tumor growth in 

completely different directions, as this protein limits keratinocyte proliferation by 

interactions with p53, possibly through p53 activation, but it also presents a 

proinflammatory role in infiltrating cells that benefits tumor development. (Drexler et 

al., 2012) STK11 is located at chromosomal region 19p13.3 and encodes a 

serine/threonine protein kinase. During development, high levels of STK11 expression 

occur in heart esophagus, pancreas, kidney, colon lung, small intestine and stomach, 

whereas in adult tissues expression of this protein is more common in epithelium, 

ovaries, testis, myocytes in skeletal muscle and glia cells. (Sanchez-Cespedes, 2007) 

STK11 has a tumor suppressor role in breast cancer, being low levels of expression of 

this gene associated with decreased survival, which indicates expression of STK11 as 

potential prognostic marker in these tumors. (Shen et al., 2002) Zhi-Gang et al. 

demonstrated overexpression of STK11, in vitro, in breast cancer cells in association 

with significant inhibition of migration and invasion. Additionally, in vivo studies 

demonstrated that high levels of expression of this gene resulted in low tumor growth 

and decreasing of lung metastasis. (Zhuang et al., 2006) Qiu et al. (2006) reported 

A205T point mutation of the STK11 gene results in inactivation of protein function and 
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is involvement in HNSCC carcinogenesis in association with loss of cell growth 

inhibition by this tumor suppressor gene. (Qiu et al., 2006) STK11 gene shows frequent 

loss in several types of cancer , such as lung adenocarcinoma (Sanchez-Cespedes et al., 

2002), endometrial adenocarcinoma (Contreras et al., 2008) and intestinal polyposis 

(Sanchez-Cespedes, 2007),  which is not in concordance with the present results that 

show only gains of the present gene, revealing the potential role as a oncogene of 

STK11 in TSCC. 

Alterations of CDKN2A gene were mainly genetic imbalances. Copy number 

losses and gains of this gene were present in 22.58% (n=7/31) and 6.45% (n=2/31) 

tumor samples, respectively. Promoter methylation of CDKN2A was only observed in 

one tumor. Mapped at 9p21, CDKN2A gene encodes p16INK4A protein involved in the 

inhibition of cell cycle progression from G1 to S phase. Disruption of CDKN2A is 

considered to be an early event in HNSCC tumorigenesis. (Reed et al., 1996) CDKN2A 

is frequently inactivated in HNSCC by mutation or methylation in combination with 

chromosome loss or, more commonly, by homozygous deletion. Decreased p16INK4A 

expression is associated with reduced survival, increased recurrence rates and nodal 

metastasis.   (Bettendorf et al., 2004; Leemans, Braakhuis, & Brakenhoff, 2011) 

Negative or low p16INK4A expression has been reported in up to 83% of OSCCs and up 

to 60% of potentially malignant lesions. (Silva et al., 2011) Cyclin D1 and p16INK4A 

play an important role in cell cycle control, being overexpression of the first and loss of 

expression of the latter common events in HNSCC. Bova et al. (1999) were the first 

who sought to determine the relationship between expression of this two molecules and 

disease outcome in TSCC. Overexpression of cyclin D1 was observed in 68% of the 

tumors, associated with increased lymph node stage (P= 0.014), increased tumor stage 

(P= 0.003) and reduced disease-free (P= 0.006) and overall (P= 0.01) survival. Loss of 

p16INK4A expression in 55% of tumors was correlated to reduced disease-free (P=0.007) 

and overall (P= 0.014) survival. Cyclin D1 overexpression and loss of p16INK4A 

expression are established independent predictors of death from TSCC. Additionally, 

simultaneous assessment of these proteins expression defines subgroups of patients at 

increased risk of relapse. (Bova et al., 1999) Loss of CDKN2A expression by promoter 

hypermethylation has been described as an early event in oral cancer. In a study 

conducted by Cao et al. (2009), promoter methylation of this gene occurred in 41% of 

the 78 patients analyzed with histologically confirmed mild or moderate oral epithelial 

dysplasia and was significantly associated with a higher rate of progression to oral 
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cancer (P=0.013). Particularly, in TSCC, this epigenetic event may serve as a useful 

molecular marker for local recurrence prediction. A prospective study performed by 

Sinha et al. identified CDKN2A promoter hypermethylation in 86.8% of the 38 tongue 

carcinomas evaluated. Promoter methylation was present in 43,3% of the 30 patients 

with histologically free margins, which predicted a 6.3-fold increased risk of having 

local recurrence as compared to patients whose margins were negative for CDKN2A 

promoter methylation. (Sinha et al., 2009) A large cohort of 131 patients with TSCC 

conducted by Lim et al. revealed the frequency of CDKN2A mutations, homozygous 

loss, hemizygous loss and promoter methylation of 20%, 7%, 31% and 18%, 

respectively, demonstrating that CDKN2A alteration is a frequent event in TSCC 

tumourigenesis. (Lim et al., 2014b) Although, conducted in a relative small group of 

oral tongue carcinomas, studies have shown that both TP53 mutations and CDKN2A 

alteration are speculated to be relevant to patients developing TSCC at a young age, 

who develop disease without risk factor exposure and may also be associated with high 

risk disease. (Heaton et al., 2014; Li et al., 2014) 

Genetic and epigenetic changes observed in CHFR, BRCA1, GSTP1, TP53, 

RARB and CADM1 genes were present in 22.58-29.03% of the analyzed tongue tumors. 

Although the frequency of alterations of these genes in the present cohort in study was 

lower, these represent important markers of TSCC development and progression. 

However, in order to establish a significant correlation between the present genes and 

tongue carcinogenesis, additional studies comprising a larger number of samples are 

needed. 

CHFR exhibited promoter methylation in 3.23% (n=3/31) of the tumors and 

gains of genetic material in 19.35% (n=6/31) of samples. Mapped at chromosomal 

region 12q24.33, CHFR codes a checkpoint protein in the G2S to M phase transition, 

playing an important role in cell cycle regulation. (Gao et al., 2009) Frequent promoter 

methylation of the present gene has been reported in HNSCC (Yalniz et al., 2011), 

however in lower frequency than for gastric cancer (Gao, Xin, Zhang, & Zhou, 2008; 

Oki et al., 2009). CHFR methylation has also been reported in cervical (Banno et al., 

2007), ovarian (Gao et al., 2008) and endometrial (Yanokura et al., 2007) cancers. Syed 

et al. reported CHFR promoter methylation in association with higher overall survival 

and progression-free survival, suggesting the role of the present gene as a potential 

biomarker in outcome prediction. Additionally, RNAi-dependent silencing of the 

present gene in HNSCC cancer cells increased sensitivity to cisplatin and irradiation, 
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revealing the possible role of CHFR in treatment adequate choice and prediction of 

treatment response in HNSCC. (Syed et al., 2005) 

BRCA1 and GSTP1 genes showed only copy number gains in 29.03% (n=9/31) 

and 25.81% (n=8/31) of the tumors, respectively. BRCA1 is located at chromosomal 

region 17q21.31 and is involved in cell cycle progression, DNA repair pathways and 

apoptotic processes. Mutations of this gene are associated with 40-45% of cases of 

hereditary breast cancers. (Mitrovic et al., 2013) In the present cohort, BRCA1 gain of 

genetic material may be indicative of increased expression of this gene, but in order to 

confirm that further expression and proteomic analysis is required. Overexpression of 

the present gene has been previously reported in breast cancer. (Mitrovic et al., 2013; 

Rosen, Fan, & Isaacs, 2005) Saiki et al. demonstrated BRCA1 increased levels of 

expression in cis-diamminedichloroplatinum(CDDP)-resistant cell lines as a 

predictive marker of taxane sensitive HNSCC. These two types of antitumor agents are 

the most active against HNSCC, thus the possible role of BRCA1 in establishing the 

inverse relationship between resistances of these chemotherapeutic agents is crucial for 

clinical management when patients develop CDDP resistance. (Saiki et al., 2011) 

Mapped at 11q13.2, GSTP1 encodes the GSTP1 protein, belonging Glutatione S-

transpherase (GST) family that plays an essential role in carcinogens and cytotoxic 

drugs detoxification by conjugation with glutathione. In oral carcinogenesis, GSTP1 is 

the most common expressed GST isoform and is responsible for the detoxification of 

carcinogens present in tobacco. (Geisler & Olshan, 2001) GSTP1 reduced activity has 

been previously described in association with enhanced chemotherapy response in 

HNSCC, suggesting an important role of the present gene in prediction of treatment 

response. (Ruwali et al., 2009) 

Genetic imbalances of TP53 were present in 22.58% (n=7/31) of the tumor 

samples and were all numerical gains. Promoter methylation of TP53 was only present 

in one patient. Mapped at 17p13, TP53 encodes p53 protein involved in cell cycle 

arrest, cellular senescence and apoptosis. (Harris & Levine, 2005) Alterations in in this 

gene through LOH, point mutations, deletions and insertions are early events in 

HNSCC. (Agrawal et al., 2011; Leemans, Braakhuis, & Brakenhoff, 2011) In terms of 

clinical outcome, TP53 mutations represent one of the worst molecular alterations in 

patients with HNSCC, as patients with disruptive mutation of this gene have a reduced 

survival and are more likely to relapse after complete resection and radiation therapy. 

(Poeta et al., 2007) In the present cohort, the increase frequency of copy number gains 



78 
 

observed for TP53, suggest an increase expression of this gene that may be further 

validated by expression and proteomic studies. In literature, the prevalence of positive 

immunohistochemical detection of p53 has been reported between 30-50%, occurring 

frequently in adjacent non-tumoral mucosa, which indicates that these alterations are 

early events in squamous cell carcinoma development. (Bettendorf et al., 2004) Thus, 

these results indicate TP53 gene as a potential molecular marker for the early detection 

and the assessment of histopathologically free margins in TSCC. Furthermore, 17p13 

LOH in poorly differentiated tumors suggests that loss of p53 function may be 

associated with the transition from preinvasive to invasive head and neck tumors. 

(Denaro et al., 2011) 

RARB and CADM1 showed genetic and epigenetic alterations in 22.58% 

(n=7/31) of the analyzed tongue tumors. Promoter methylation of RARB and CADM1 

was identified in 16.13% (n=5/31) and 9.68% (n=3/31) of patients, respectively. These 

two genes exhibited only genetic material loss in 6.45% (n=2/31) and 12.90% (n=4/31) 

of tumor samples, respectively. RARB is mapped at chromosomal region 3p24 and is 

involved in cellular signaling in embryonic morphogenesis, cell growth and 

differentiation. Loss of RARB gene is frequently caused by promoter methylation rather 

than deletion (Shaw et al., 2008) (Yalniz et al., 2011), which is in concordance with the 

present results for TSCC. Methylation of RARB has been reported in leukemia (Galm et 

al., 2004), HNSCC (Chen et al., 2007; Yalniz et al., 2011), breast (Moelans et al., 2011; 

Zhu et al., 2010) and prostate (Tang et al., 2013) cancer. RARB promoter methylation 

has been suggested as an early and frequent event in HNSCC. Methylation of this gene 

has been reported at a higher frequency in premalignant and invasive tumors of the head 

and neck, indicating that epigenetic silencing of RARB by the present mechanism may 

be used in early detection and prognostication of these tumors. (Chen et al., 2007; 

Maruya et al., 2004) Mapped at 11q23.2, CADM1 encodes a transmembrane 

glycoprotein involved in cell interaction of epithelial cells and mediates cell-to-cell 

adhesion (Masuda et al., 2002). Silencing of CADM1 occurs mostly by promoter 

methylation, but could also occur in combination with allelic loss. (Allinen et al., 2002; 

Fukami et al., 2003; Van Den Berg et al., 2011) In the present cohort, inactivation of 

CADM1 was associated with methylation and copy number loss of this gene, but none 

of the patients showed concomitant silencing of CADM1 by these two mechanisms. 

CADM1 promoter methylation has been reported in different tumor types, such as 

cervical (Overmeer et al., 2008), breast (Allinen et al., 2002), lung (Van Den Berg et al., 
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2011) and oral (Hayama et al., 2009) cancers. Frequent CADM1 alterations have been 

reported in HNSCC (Sanchez-Cespedes et al., 2000; Worsham et al., 2006), particularly 

in OSCC (Hayama et al., 2009), suggesting that the present gene is involved in oral 

carcinogenesis. 

In the present cohort, the genetic and epigenetic characterization of tongue 

tumors highlighted several genes and pathways that play an important role in TSCC. 

Thus the identified genes represent putative biomarkers for diagnosis, prognosis, 

treatment choice and prediction of treatment response in carcinoma of tongue. Although 

no significant association between genotype and phenotype was establish, methylation 

of MSH6 gene showed elevated association with advanced tumor stage and metastasis. 

In order to more firmly establish this and other associations between genetic and 

epigenetic changes and clinicopathological features of patients with TSCC, a larger 

number of samples is warranted and FFPE specimens represent the answer. 

 

 

2 – Protocol optimization for genomic DNA extraction from 

FFPE samples 
 Molecular studies for identification of genes and pathways associated with 

cancer development and progression have been mainly focused on surgically removed 

snap-frozen tumor samples, in order to grant the highest possible amount of high quality 

DNA for analysis. However, the limited number of available fresh-frozen tumor 

samples represents a disadvantage. The solution resides in the FFPE specimens that 

have been routinely used in diagnostic pathology for decades, resulting in a vast amount 

of samples and representing the most readily available source of tumor tissue. Most 

importantly, almost all FFPE samples have associated pathological and clinical 

information, allowing for its application on association and classification studies. 

Formalin is the most widely used fixative in routine diagnostic pathology 

laboratories and tissue fixation with this 10% neutral buffered formaldehyde solution 

results in DNA-protein cross-links formation and DNA fragmentation due to low pH 

upon fixation. Since genetic studies are based in DNA analysis throughout PCR-

dependent techniques, recovering DNA from FFPE tissue samples has been proven a 

challenge. Fixation-induced DNA modifications include intra- and interstrand cross-

linking (Srinivasan et al., 2002), extensive strand cleavage and base modification (Rait 
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et al., 2006). Translation research would benefit from the optimization of the DNA 

extraction protocols from these specimens, by allowing the isolation of great high 

quality DNA for downstream molecular biology applications. 

Innumerous studies have focused on the optimal recovery of DNA from FFPE 

specimens by developing optimized methods for this purpose. However, the 

reproducibility of the different methodologies has been proven difficult, as different 

DNA quality assessment measures, FFPE inter-sample variability, DNA fragment size 

and different performed methods impair comparison of the different results. (Gilbert et 

al., 2007; Hostetter et al., 2009) For this reason, the second aim of the present work was 

to compare three different methods of DNA extraction from FFPE specimens obtained 

from the same pathological laboratory that were fixed using a routine and well establish 

method and obtained from the same tissue source in order to minimize sample to sample 

variation for the development of an efficient and reproducible method of DNA 

extraction from FFPE tongue tumor samples. 

For DNA extraction optimization, 5 histological cuts of 20 µm thick paraffin 

sections were obtained from each FFPE resection block, for a total of 37 FFPE samples 

obtained from 16 TSCC patients of the 31 previously analysed and 1 healthy individual. 

DNA extraction was performed by three different methods, A, B and C. Method A 

consisted of simultaneous paraffin removal and proteinase K digestion, whereas method 

B and C consisted of heat paraffin removal and xylol deparaffinization, respectively, 

followed by proteinase K digestion. Genomic DNA isolation was then performed by 

column-based DNA extraction commercial kit.  As accurate assessment of extracted 

DNA quantity and quality is essential for successful molecular downstream applications 

and particular important for appraisal of FFPE DNA extracts as these frequently exhibit 

high degrees of fragmentation and contamination, spectroscopy and flourimetric 

analysis was performed by NanoDrop and Qubit assay, respectively. 

Determination of DNA concentrations was performed by Qubit assay, as this 

represents a more adequate methodology than NanoDrop for accurate evaluation of 

DNA quantity present in samples containing low amounts of DNA that are 

characteristic of extraction from FFPE samples. NanoDrop showed a 3 to 4-fold 

increase in registered concentrations values than the obtained using Qubit assay. This is 

explained by the fact that NanoDrop UV absorbance is not selective; resulting in higher 

concentration values that are influenced by the presence of contaminants such as 

proteins, salts, organic compounds and paraffin wax in DNA extracts.  Although 
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spectrophotometer measurement is not proper for FFPE DNA quantification, it is very 

accurate for evaluation of the FFPE extracts purity, by A260/A280 and A260/A230 

ratios measurement. The first indicates the presence or absence of contaminating 

proteins and the second whether organic compounds such as guanidinum 

isothiocyanate, alchohol and phenol, as well as cellular carbohydrates are present. DNA 

samples with A260/A280 ratio values of 1.8 to 2.0 and A260/A230 ratio values >2 were 

considered high-quality/pure. (Thermo Fisher Scientific, 2008) 

The total amount of DNA extracted was highly dependent on the method used. 

The medium amounts of extracted DNA from each method were 24.55 (±12.12) ng/µl, 

25.76 (±9.27) ng/µl and 37.14 (±7.24) ng/µl for methods A, B and C, respectively. 

Samples consisted of 5 histological cuts of 20 µm thick paraffin sections, but whenever 

only small tumor tissue areas were identified, more cuts were performed to obtain 

optimal tissue quantity. Although, similar tissue quantity was used for extraction, laser-

based microdissection of present FFPE samples would allow a more precise cut of the 

tumor tissue, thus sustaining a consistently amount of tissue in all samples for a more 

rigorous evaluation of DNA yields variation using the three different methods. Laser-

based microdissection of FFPE tissue samples enables a more detailed molecular 

analysis of tumors, allowing the retrieval of representative tumor content without the 

contamination of normal cells, as well as obtaining cells subpopulations of interest. 

Additionally, A260/A280 and A260/A230 ratios revealed that method C was the 

best in terms of DNA extracts purity, followed by method A and B. The present work 

demonstrated that method C was the most adequate for DNA extraction from FFPE 

tongue tumor samples and that xylol treatment allows for efficient paraffin removal 

from these specimens. On the contrary, heat paraffin removal is not as efficient as xylol 

deparaffinization, resulting in higher contamination of DNA extracts. Tissue digestion 

after paraffin removal performed in method B and C demonstrated to be more efficient 

than simultaneous deparaffinization and digestion. Further, successful DNA extraction 

obtained with method C also reflects the longer time needed when performing the 

present protocol, as longer incubation times seems to enhance paraffin removal, tissue 

digestion and decrease the amount of contaminants. 

Four samples extracted with method C and presenting low yields of isolated 

DNA were selected to be concentrated in a speed vac.  After concentration, these 4 

FFPE DNA samples showed a 1.5-fold increase in DNA concentration and continued to 
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have high purity DNA, representing suitable samples for downstream molecular biology 

applications.  

Since determination of FFPE derived DNA fragment sizes is crucial to ensure 

downstream processing suitability, an agarose gel electrophoresis was performed in 

order to assess DNA integrity and the average molecular weight of DNA samples 

extracted from  14 FFPE tissue specimens and 3 fresh-frozen tissues (Figure ). DNA 

extracts from fresh-frozen tissues did not present fragmentation.  In contrast, FFPE 

DNA samples showed significant fragmentation and lower concentration. Extracted 

FFPE DNA samples using method C had relatively higher DNA amounts when 

compared with samples extracted using method A and B and control sample extracted 

using method C. FFPE DNA concentrated samples showed increasing DNA amounts. 

DNA extraction from FFPE tissue samples often results in high fragmentation, 

influenced by the fixation process and how long the tissue was fixed for. It can also be 

affected by the time since surgical resection until fixation, as tissues experience anoxia 

and environmental changes. The storage time has also been suggested to contribute to 

FFPE DNA fragmentation, but studies report this as a minor effect. (Srinivasan et al., 

2002) The present study was unable to determine the latter, since analyzed FFPE 

samples had been stored for a relative similar period. 

The development of methods that allow the recovery of optimal quality DNA 

from FFPE tissues is essential to increase the cohorts for cancer research. The present 

work shows an efficient and reproducible method of DNA extraction from FFPE tongue 

tumor samples, yielding relatively high concentrations and high purity DNA. 

At the present, the developed method opens the possibility of using the existing 

large archives of FFPE tongue tumor samples in retrospective genetic studies, as these 

specimens have associated pathological and clinical information. This will allow 

association of the genetic and epigenetic events underlying TSCC malignant 

transformation and progression with patients’ clinicopathological features. Establishing 

genotype-phenotype relations will aid in the determination of the clinical significance of 

putative molecular markers underlying tongue tumorigeneis. This will improve 

diagnosis, prognosis and accurate risk-stratification of patients, as well as choose the 

most adequate treatment and predict treatment response. Still, the suitability of FFPE 

DNA extracts obtained with the present method for application in downstream 

molecular biology techniques such as MS-MLPA needs to be further assessed in future 

studies. Caution must be taken in adapting information obtained through FFPE samples 
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analysis, as DNA fragmentation may lead to the identification of false-positives and 

alterations in gene expression profiles may also occur after the resection until tissue 

fixation. Thus comparing the genetic profile of fresh-frozen tissues and FFPE tissues is 

imperative to validate the latter application in future studies. 
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Chapter 5 - Conclusions 
The present thesis has focused on the identification of genetic and epigenetic 

alterations underlying TSCC as putative biomarkers involved in tongue malignant 

transformation and progression. Additionally, the present work aimed to optimize a 

protocol for genomic DNA extraction from FFPE tongue tumor samples. The following 

conclusions were drawn from the realization of the present thesis: 

 

 MS-MLPA technique demonstrated to be an efficient and reliable method for the 

multiple parallel analyses of quantitative genetic and epigenetic alterations 

present in these tumors. 

 

 MS-MLPA analysis of 31 fresh-frozen TSCC tumor samples enabled the 

detection of copy number alterations, namely gains and losses of genetic 

material, of 37 from a total of 38 cancer-related genes and promoter methylation 

of 14 of the 25 tumor suppressor genes analyzed. 

 

 The most frequently altered genes in the present cohort were WT1, PAX5, 

GATA5, MSH6, PYCARD, STK11, CDKN2A, CHFR, BRCA1, GSTP1, TP53, 

RARB and CADM1, suggesting the important role of the present genes in the 

development and progression of TSCC. 

 

 Promoter methylation of WT1 was the most frequent alteration and was present 

in 77.42% of the tongue tumors analyzed, suggesting the important role of this 

gene as a tumor suppressor in TSCC carcinogenesis. Also, given the fact that 

overexpression of WT1 has been associated with poor histological differentiation 

and increased tumor stage, the present gene represents a potential prognostic 

marker in TSCC. 

 

 PAX5 was the second most frequently altered gene in the tumor samples 

analyzed (67.74%), indicating the important role of this gene in tongue 

malignant transformation and progression. The present gene showed promoter 

methylation in 48.39% of tumors. Since this gene is associated with a more 

favorable clinical outcome with improved survival, methylation of PAX5 gene 
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represents a potential molecular marker for prognosis and patient outcome 

prediction. 

 

 Methylation of MSH6 gene showed elevated association with advanced tumor 

stage and metastasis in TSCC. In order to more firmly establish the correlation 

between genetic and epigenetic changes and clinicopathological features of 

patients with TSCC, a larger number of samples are warranted. 

 

 The development of methods that allow the recovery of optimal quality DNA 

from FFPE specimens is essential to increase cancer cohorts. Thus, from the 

three DNA extraction methods tested, method C represents an efficient and 

reproducible method of DNA extraction from FFPE tongue tumor samples, 

yielding relatively high concentrations and high purity DNA. These open new 

possibilities for TSCC genetic and epigenetic research. 
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Chapter 6 – Future Perspectives 
TSCC is the most common malignancy in the oral cavity, characterized by high 

recurrence rates, reduced overall survival and increasing incidence worldwide. 

Advanced stage at initial diagnosis, locoregional recurrence, further primary tumors and 

lymph node metastasis contribute to the limited survival and high mortality rates in 

OSCC. (Silva et al., 2011) Despite the advances in cancer diagnosis, management and 

treatment, patients’ outcome has not significantly improved in the last decades. 

Furthermore, patients diagnosed with TSCC have a poorer prognosis and survival when 

compared with patients diagnosed with other oral cavity and head and neck cancer 

subsites. (Goldstein et al., 2012; Rusthoven, Ballonoff, Raben, & Chen, 2008) This 

allied to the fact that the current clinicopathological staging system is not consistently 

capable of identifying patients with high risk disease, highlights the need for prognostic 

biomarkers to be identified. In this context, unraveling the genetic and epigenetic 

alteration patterns present in TSCC will allow for the establishment of candidate genes, 

as well as determine their clinical significance, providing a great opportunity to identify 

the molecular pathways underlying the development and progression of the disease.  

Analysis of the genetic and epigenetic profile of 31 patients with TSCC in 

present study sought to determine the association between the tongue-specific genotype 

with patients’ clinicopathological features, with the purpose of identify putative 

molecular markers for further improvement of diagnosis, prognosis and accurate risk-

stratification of patients, as well as choose the most adequate treatment and predict 

treatment response in TSCC. However, limitations in establishing associations between 

genetic and epigenetic changes and clinicopathological features, as well as difficulty in 

detecting other alterations less relevant in the analyzed population of tumors, revealed 

the need for analyzing a greater amount of tumor samples. Since, FFPE tissues have 

been used in diagnostic pathology for decades, a vast amount of samples is readily 

accessible for molecular research. Still the most significant advantage of these archival 

specimens is the associated clinical and pathological information obtained over the 

treatment course of patients, allowing retrospective studies to be performed. DNA 

isolation from FFPE tissues is impaired by formalin cross-links formation and paraffin 

wax, resulting in low concentration yields and fragmented DNA. With the achievement 

of our secondary objective we optimized a protocol for DNA extraction from FFPE 

specimens of TSCC with relatively high concentrations and high purity DNA. Thus, the 
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suitability of FFPE DNA extracts obtained with this present method for application in 

downstream molecular biology techniques such as MS-MLPA needs to be further 

assessed in future studies. Caution must be taken in adapting information obtained 

through FFPE samples analysis, as is possible that alterations in gene expression 

profiles can occur either during and/or after the resection of the tissue. Thus comparing 

the genetic profile of fresh-frozen tissues and FFPE tissues is imperative to validate the 

latter application for future studies. After validation of FFPE tissues samples 

applicability in this type of genetic and epigenetic analysis for these particular tumors, 

great amounts of samples can be readily analyzed allowing for genotype-phenotype 

correlations. For instance, analysis of well characterized sub-set of tumors will allow 

the identification of phenotype-specific putative prognostic markers. In cases of tumor 

reoccurrence, the comparison between the genomic alterations present in the primary 

tumor and the secondary one will allow the establishment of bimolecular markers 

predictive of tumor recurrence. 

The establishment of putative molecular markers involved in tongue malignant 

transformation and progression will allow the development of TSCC-specific probemix 

panels for MS-MLPA analysis of these tumors, warranting the future application of the 

MS-MLPA technique in clinical practice for early detection and patient’s follow-up. 

FFPE tongue tumor samples analysis in large cohorts by grouping tumors according to 

well characterized clinical and pathological features may even result in the development 

of even more specific panels for the detection of patients histological types, tumor grade 

and treatment outcome prediction.  
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