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That’s Life

That’s life (that’s life), that’s what all the people say

You’re ridin’ high in April, shot down in May

But I know I’m gonna change that tune

When I’m back on top, back on top in June

I said that’s life (that’s life), and as funny as it may seem

Some people get their kicks stompin’ on a dream

But I don’t let it, let it get me down

’cause this fine old world, it keeps spinnin’ around

I’ve been a puppet, a pauper, a pirate, a poet, a pawn and a king

I’ve been up and down and over and out and I know one thing

Each time I find myself flat on my face

I pick myself up and get back in the race

That’s life (that’s life), I tell you I can’t deny it

I thought of quitting, baby, but my heart just ain’t gonna buy it

And if I didn’t think it was worth one single try

I’d jump right on a big bird and then I’d fly

I’ve been a puppet, a pauper, a pirate, a poet, a pawn and a king

I’ve been up and down and over and out and I know one thing

Each time I find myself layin’ flat on my face

I just pick myself up and get back in the race

That’s life (that’s life), that’s life and I can’t deny it

Many times I thought of cuttin’ out but my heart won’t buy it

But if there’s nothin’ shakin’ come this here July

I’m gonna roll myself up in a big ball a-and die

From: That’s Life, Frank Sinatra, 1966. Writers: Dean Kay and Kelly Gordon.





Abstract

During the past few years, a new generation of robotic platforms has begun being in-

tegrated in distinct environments (e.g. domestic, healthcare, and entertainment). The

robotic platforms must execute autonomously a great variety of tasks (to and in coopera-

tion with humans) in uncertain and dynamic environments. To overcome these challenges,

the robotic platforms are equipped with a high diversity of sensory (e.g. monocular and

stereo cameras; microphones; and force, torque, and tactile sensing arrays) and actuation

apparatus (e.g. dexterous robotic arms and hands, touch screens, humanoid heads, and

audio speakers). The research works presented in this thesis are related to the subject of

robotic dexterous manipulation and haptic exploration of objects (rigid and soft).

This thesis contributes to the development of robotic platforms with autonomous

dexterous manipulation capabilities by studying the human manipulation and haptic ex-

ploration skills, presenting several approaches to translate and transfer them to a robotic

platform. The study of the human visual and somatosensory systems, the neuronal and

functional units supporting the sensory processing pipeline, as well as the behavioural pat-

terns participating in the action-perception loop were used as guidelines and benchmarks

throughout the thesis during the formulation and evaluation of three artificial perception

applications.

Toward the first application, this thesis presents an approach to model the human

strategies executed during a dexterous manipulation task. The human hand is instru-

mented with a tactile sensing array. The thesis proposes a symbolic description of the

tasks using grasping primitives. Each grasping primitive is described by the hand-object

contact interaction signature. During the human demonstration of two different dexter-

ous manipulation tasks, the sequence of grasping primitives is recognized by a Bayesian

model. The statistical relations emerging from the analysis of the sequence of grasping

primitives are used to define the model of the task.

The research works presented in this manuscript contribute to a second application

consisting of an artificial perception system to discriminate in-hand explored objects with

different hardness properties. The human hand is instrumented with a tactile sensing

array and a motion tracking sensor. A Bayesian model integrates features (contact in-

tensity, contact area, and contact indentation) extracted from the sensory data acquired



during the press-and-release exploration of the objects. The cutaneous and kinesthetic

cues are integrated by a Bayesian model so the system can learn to discriminate between

three distinct materials (haptic memory). The learned parameters are used to infer the

perceived hardness properties of unknown objects based on the haptic memory of the

system.

The final contribution of this thesis is concerning the implementation of a proba-

bilistic approach to perform active haptic exploration of surfaces using dexterous robotic

hands (simulation environment). The proposed approach represents the structure of an

unknown surface as a probabilistic grid. As long as the haptic exploration of the surface

progresses, haptic cues regarding texture and compliance are integrated by a Bayesian

model and used to infer the category of material of that region of the workspace. The

approach showed an excellent capability to discriminate between ten different types of

materials (haptic stimulus). Based on this perceptual representation of the workspace,

the robotic system infers the next region of the unknown workspace that should be ex-

plored. This decision is made by integrating bottom-up and top-down cues related to the

haptic saliency of the stimulus, uncertainty of the current perceptual representation of

the workspace, inhibition-of-return mechanisms, objectives of the task, and the current

structure of the exploration path. The Bayesian models involved in this approach were

tested on a planar surface, during the detection and following haptic discontinuities be-

tween three different materials. The following of haptic discontinuity was performed with

good structural accuracy. The tactile attention mechanisms of the system demonstrated a

high specificity, following the discontinuities of interest and ignoring the others. The role

and impact of the different cues (haptic saliency, inhibition-of-return, uncertainty, and

structure of exploration path) was also studied by removing each of these components

from the Bayesian models.



Resumo

Nos últimos anos, uma nova geração de plataformas robóticas tem sido integrada em

novos tipos de cenários (ex: ambiente doméstico, unidades de saúde, locais de entreten-

imento). Neste tipo de cenários as plataformas robóticas necessitam de executar au-

tonomamente uma grande variedade de tarefas (para e em cooperação com Humanos),

sendo confrontadas com ambientes dinâmicos e impreviśıveis. De forma a ultrapassar

estes desafios, as plataformas robóticas são equipadas com uma grande variedade de sen-

sores (ex: câmaras monocular e estéreo, microfones, sensores de força, torque e de tacto) e

interfaces/actuadores (mãos e braços robóticos, ecrãs tácteis, cabeças humanóides, sinteti-

zadores de áudio). Os trabalhos de investigação apresentados nesta tese estão relacionados

com a manipulação e exploração háptica de objectos (ŕıgidos e moles).

Com esta tese pretende-se contribuir para o desenvolvimento de plataforms robóticas

com capacidade autónoma de manipulação, através do estudo da peŕıcia Humana em

tarefas de manipulação e exploração háptica. So propostas diferentes abordagens para

replicar estas habilidades Humanas em platformas robóticas. O estudo do sistema visual

e somatosensorial Humano, das unidades neuronais e funcionais envolvidas no processa-

mento sensorial, assim como dos padrões comportamentais intervenientes nos mecanismos

do ciclo acção-percepção, foram considerados como referências durante a formulação, de-

senvolvimento e avaliação do desempenho de três aplicações de percepção artificial.

Numa primeira aplicação, propõe-se uma metodologia para modelizar as estratégias

utilizadas por Humanos durante uma tarefa de manipulação. A mão Humana é instrumen-

tada com uma série de sensores de tacto. Nesta tese propõe-se uma descrição simbólica

das tarefas, utilizando diferentes primitivas para efectuar essa modelização. Cada prim-

itiva é descrita pelo perfil de contacto (região e intensidade do contacto) entre a mão e

o objecto. Durante a demonstração de dois tipos de tarefas de manipulação, a sequência

temporal de primitivas é reconhecida por um modelo Bayesiano. O modelo de cada um

dos tipos de tarefa é extráıdo a partir das relações de estat́ısticas de causalidade que se

estabelecem entre tipos de primitivas consecutivas que tenham sido inferidas pelo modelo

Bayesiano proposto.

Esta tese apresenta ainda um segundo sistema de percepção artificial que discrimina

objectos com diferentes caracteŕısticas de rigidez, durante tarefas de exploração háptica. A



mão Humana é instrumentada com uma série de sensores de tacto e um sensor de rastrea-

mento de movimento. Desenvolveu-se um modelo Bayesiano que integra simultaneamente

descritores (intensidade de contacto, área de contacto, ńıvel de indentação do contacto)

extráıdas dos dados sensoriais adquiridos durante a exploração dos objectos através de

movimentos de palpação. As componentes cutaneas e quinestésica da interacção dedo-

objecto são integradas pelo modelo Bayesiano de forma a que este estime os parâmetros do

modelo e aprenda a discriminar três materials diferentes (memória háptica do sistema) As

caracteŕısticas de rigidez de objectos desconhecidos ao sistema são inferidas pelo modelo

Bayesiano, baseando-se na memória háptica do sistema desenvolvida anteriormente.

Por fim, esta tese apresenta um sistema de percepção artificial e acção relacionado com

a implementação de uma abordagem probabiĺıstica para executar a exploração háptica

activa de superf́ıcies usando mãos robóticas (ambiente de simulação). Na abordagem

proposta a estrutura espacial das superf́ıcies desconhecidas pelo sistema é representada

por uma grelha probabiĺıstica. À medida que a exploração háptica progride, descritores

relacionados com caracteŕısticas de textura e complacência são integrados por um mod-

elo Bayesiano e usados para inferir a categoria de material existente naquela região da

superf́ıcie explorada. Esta abordagem foi testada experimentalmente, sendo capaz de dis-

criminar com um elevado desempenho 10 materials diferentes. A partir da representação

perceptual do espaço de trabalho inferida pelo modelo Bayesiano referido anteriormente,

o sistema robótico estima qual será a próxima região da superf́ıcie a ser explorada. Esta

decisão é tomada integrando simultaneamente informação relacionada com a saliência

háptica e incerteza associada às diferentes regiões da representação perceptual actual da

superf́ıcie, mecanismos de inibição-de-retorno, objectivos da tarefa de exploração e es-

trutura do percurso de exploração efectuado pelo sistema robótico até ao momento. O

sistema proposto foi testado numa superf́ıcie plana, durante a execução de tarefas de ex-

ploração háptica relacionadas com o seguimento de discontinuidades entre três materiais

diferentes. As discontinuidades entre os três materiais, correspondentes aos objectivos

das diferentes tarefas, foram seguidas com uma boa precisão estrutural. Os mecanismos

de atenção táctil demonstraram uma grande especificidade, fazendo com que o sistema

seguisse as discontinuidades de interesse para a tarefa, ignorando as restantes descon-

tinuidades existentes no espaço de tabalho. O impacto da contribuição de cada uma das

componentes (saliência háptica, inibição-de-retorno, incerteza, estrutura do percurso ex-

plorado) foi estudado através da análise do desempenho do sistema quando o efeito de

cada uma dessas componente era neutralizado na formulação dos modelos Bayesianos.
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Chapter 1

Introduction

1.1 Motivation

During the past few decades, robotic platforms (e.g. Figure 1.1) have been integrated

into industrial and laboratory environments, with the primary task of performing repet-

itive and monotonous tasks quickly and accurately. Typically, the movements and tasks

required to successfully fulfil the job for which the robots were preprogrammed required

little or no sensory feedback or interaction with humans during execution time [Nof, 1999].

This type of robotic platform was primarily designed to be integrated in clean environ-

ments, rely on complete task information, and, if required, to be reprogrammed for new

task execution. This type of platform was not designed to interact directly with humans

and to handle the execution of tasks in uncertain environments.

Currently, various types of robotic platforms (e.g. Figure 1.2) have begun being heav-

ily introduced in different environments (including domestic, healthcare, entertainment,

and education) in which the robots must manage new challenges, such as the ability to

interact with persons and objects in the environment [Zollo et al., 2013]. These new

classes of environments are dynamic, unpredictable, and cannot be completely known in

(a) (b)

Figure 1.1: Integration of robotic systems in controlled environments. a) KUKA IR
160/60 (KUKA Robot Group, Augsburg, Germany) operating at an industrial car fac-
tory. b) Andrew Alliance (Andrew Alliance S.A., Vernier, Switzerland) anthropomorphic
robot handling liquids.
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(a) (b) (c)

Figure 1.2: Integration of robotic systems on daily-life environments. a) ATLAS robot
(Boston Dynamics, Waltham, USA) opening a door. b) Baxter robot (Rethink Robotics,
Boston, USA) grasping objects on table. c) DRC-HUBO robot (Rainbow Co., Daejeon,
South Korea) operating a power drill.

advance. These factors have led to the development of mobile robotic platforms with

multi-modal sensing systems, and complex actuation systems and interaction interfaces

such as active vision systems, audition, multi-articulated arms, dexterous robotic hands,

touch displays, and microphones. These multi-modal modules, actuators, and interfaces

provide a framework to develop artificial perception systems to deal autonomously with

the dynamics of the environments and wide variety of objects, and to interact safely with

humans.

One of the key elements contributing to the performance of that type of robotic plat-

form is the ability to perform autonomous grasping, manipulation, exploration, and char-

acterization of partially known objects in the environment [Saudabayev and Varol, 2015].

To achieve these objectives, the tendency in the field of robotic research is to move the de-

velopment of robotic hands from simple grippers toward human-inspired articulated hands

(with a mechanical structure, integration on robotic arms, and various degrees of freedom

) and introduction on the robotic hand of sensing devices such as tactile, temperature,

and force/torque sensors (e.g. Figure 1.3).

The greater relevance of the study and development of robotic hands and issues re-

lating to autonomous manipulation is revealed by the increasing number of projects and

funding resources applied to this scientific field. In the past years, several collabora-

tive large-scale research projects (primarily between European institutions) were funded:

HANDLE [HANDLE, 2009] (Developmental pathway towards autonomy and dexterity in

robot in-hand manipulation), GRASP [GRASP, 2008] (Emergence of Cognitive Grasping

through Introspection, Emulation and Surprise), DEXMART [DEXMART, 2008](DEX-

terous and autonomous dual-arm/hand robotic manipulation with sMART sensory-motor

skills: A bridge from natural to artificial cognition), GeRT [GeRT, 2011] (Generalizing

Robot Manipulation Tasks), and THE [THE, 2010](The Hand Embodiment).

As presented in Figure 1.4, most of these large-scale research projects in cognitive
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(a) (b)

Figure 1.3: Dexterous robotic hands. a) Shadow (Shadow Robot Company Ltd, London,
UK) robotic hand equipped with Syntouch Biotac (SynTouch LLC, Los Angeles, USA)
sensory fingertips. b) DLR (German Aerospace Center, Cologne, Germany) robotic hand.

robotics follow an approach that develops its engineering solutions to the topic of dexter-

ous robotic manipulation and exploration by integrating principles from the human studies

sciences. Neurobiology and neuroscience provide functional models describing the pro-

cesses involved in the sensing, transduction, and sensory processing pipeline, perception,

cognition, and motor capabilities. Neuropsychology and cognitive science systematically

describe and categorise the standard human behaviours, which are used as benchmarks

to define protocols to evaluate robotic skills [Cheng, 2014].

The objectives of these projects can be grouped in two main classes. One class is

related to the development of hardware and sensors, as well as its integration within the

structure of the robotic hand or the structure of a main robotic platform. A second class

concerns the development of algorithms and techniques dedicated to the modelling and

implementation of artificial perception-to-action and action-to-perception systems based

on hardware platforms provided by the first class of approaches. This work intends to

contribute to the second class of approaches.

The integration of this new generation of robotic hands onto robotic platforms places

new challenges concerning the motion (fingers, palm, coordination fingers-fingers and

fingers-palm) of the robotic hand, with a certain number of degrees of freedom. However,

the introduction of sensing devices opens new possibilities, allowing the replication of

human motor strategies and perceptual capabilities concerning the ability to perform

dexterous, finer manipulation, and exploration skills. These capabilities are boosted due

to the integration of haptic data (flexure level, tactile, force/torque, and temperature) in

the control loop of the robotic manipulation [Yousef et al., 2011] .

This new class of skills is related to in-hand manipulation tasks that consist of inter-

nal consecutive (re-)grasping and release of the object to perform its reorientation, fine

positioning, or more complex interaction such as sequential rotation of the object. Hu-
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Figure 1.4: Overview of the multidisciplinary approach followed to develop robotic dex-
terous manipulation and exploration capabilities. The fields of intervention of this thesis
are highlighted in bold. Adapted from [Cheng, 2014].

mans also use the in-hand manipulation skills to perform in-hand exploration of objects

to complete the construction and definition of the model of the object (e.g. shape, size,

superficial texture, superficial friction coefficient, weight, and softness) [Lederman, 1994],

when the properties are not completely known in advance or to complete partial infor-

mation about the object model provided by other sensing modalities (e.g. vision) [Lacey

and Sathian, 2014], [Stone and Gonzalez, 2015].

Haptic perception plays a relevant role in this type of skills [Dahiya et al., 2010] by

providing sensory cues about the regions of the hand contacting the object, the temporal

sequence, and object-hand contact dynamics [Johansson and Flanagan, 2009]. The con-

tributions of this thesis relate to the development of methodologies used to implement

artificial haptic perception skills and to establish the interdependence of those skills with

actions.

1.2 Thesis outline

This chapter, Introduction, describes the context, motivation, and applications of the

research works presented throughout this thesis.

Chapter 2, Fundamentals, proposes and describes the probability theory, probabilistic
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grids, and information theory formalisms used by this thesis. The graphical and Bayesian

programming notations used to describe the Bayesian models are described as well.

The following chapter, Recording human manipulation and exploration movements,

reviews the human somatosensory apparatus and processing pipeline involved in the dex-

terous manipulation and haptic exploration of objects. Special focus is dedicated to the

extraction of haptic features, tactile attention mechanisms, and hand motion patterns.

Chapter 3 also presents an overview of the current benchmarking guidelines used to eval-

uate robotic manipulation and exploration tasks.

The experimental area of the AP4ISR laboratory (Artificial Perception for Intelligent

Systems and Robotics) used to record multi-modal datasets of human demonstrations

of dexterous manipulation and exploration tasks is presented in chapter 4, Recording

human manipulation and exploration movements. The characteristics of the different

data acquisition devices are detailed. The implementation of the global data acquisition

architecture is explained. The applications of the datasets recorded during this PhD study

are listed. Several software tools developed to promote the acquisition, integration, and

demonstration of the datasets are also documented.

Chapter 5, Recognition of grasping primitives using tactile sensory data, chapter 6,

Categorization of soft objects during haptic exploration tasks, and chapter 7, Active haptic

exploration of surfaces using dexterous robotic hands present different but complementary

approaches to endow robotic platforms with dexterous manipulation and exploration ca-

pabilities. Artificial haptic perception plays a central role in these three chapters. All

three chapters are arranged similarly: introduction; related works discussed using a table

to compare this thesis with other works; proposed approach illustrated by two schemes:

simplified overview and detailed overview of the flow of data, variables, and algorithms;

sections covering methods and algorithms; experimental results; and main conclusions.

Chapter 5, Recognition of grasping primitives using tactile sensory data, proposes an

approach to recognize different grasp shape primitives during the human demonstration

of dexterous manipulation tasks. Chapter 6, Categorization of soft objects during haptic

exploration tasks, implements an approach to recognize the category of material during

the human haptic exploration of objects. Finally, chapter 7, Active haptic exploration of

surfaces using dexterous robotic hands, demonstrates a system (simulation environment)

which performs active haptic exploration of surfaces using dexterous robotic hands. The

contribution of tactile attention mechanisms to improve the exploration performance is

demonstrated.
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1.3 List of deliverables

During the PhD studies conducted in the development of this thesis, several deliverables

were produced. The contribution of each deliverable to this thesis is described in the list

presented next. All the deliverables are available on line at http://www.rmartins.net/

phd-docs/.

1.3.1 Peer-reviewed international journals

• Contributes to chapter 7 ⇒ [Martins et al., 2017] R. Martins, J. F. Ferreira,

M. Castelo-Branco , J. Dias - ”Integration of touch attention mechanisms to im-

prove the robotic haptic exploration of surfaces” - Neurocomputing, Volume 222,

26 January 2017, Pages 204-216.

DOI: 10.1016/j.neucom.2016.10.027

• Contributes to chapter 5 ⇒ [Faria et al., 2012] D. R. Faria, R. Martins, J.

Lobo, J. Dias - ”Extracting Data from Human Manipulation of Objects Towards

Improving Autonomous Robotic Grasping” - Robotics and Autonomous Systems,

Special Issue on Autonomous Grasping, Volume 60, Issue 3, Pages 396-410, March

2012.

DOI: 10.1016/j.robot.2011.07.020

1.3.2 Peer-reviewed proceedings of international conferences

• Contributes to chapter 7 ⇒ [Martins et al., 2014] R. Martins, J. F. Ferreira,

J. Dias - ”Touch attention Bayesian models for robotic active haptic exploration of

heterogeneous surfaces”. Proceedings of 2014 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2014), pages 1208-1215, Chicago, USA,

Sept. 14-18, 2014.

DOI: 10.1109/IROS.2014.6942711

• Contributes to chapter 7⇒ [Martins et al., 2012b] R. Martins, J. F. Ferreira,

J. Dias - ”Touch attention Bayesian models for object feature extraction in robotic

blind manipulation”. Proceedings of 32nd International Workshop on Bayesian In-

ference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2012),

Munich, July, 2012.

• Contributes to chapter 7 ⇒ [Martins et al., 2013] R. Martins, J. F. Ferreira,

J. Dias - ”Touch attention Bayesian models for robotic active haptic exploration”.

http://www.rmartins.net/phd-docs/
http://www.rmartins.net/phd-docs/
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Proceedings of 2nd Workshop on Recognition and Action for Scene Understanding

(REACTS 2013), pages 45-58, York, UK, 30 August, 2013.

ISBN: 978-84-616-7092-5

• Contributes to chapter 6 ⇒ [Martins et al., 2012a] R. Martins, D. R. Faria,

J. Dias - ”Representation framework of perceived object softness characteristics

for active robotic hand exploration”. Proceedings of 7th ACM/IEEE International

Conference on Human Robot Interaction (HRI2012) - Workshop on Advances in

Tactile Sensing and Touch based Human-Robot Interaction, Boston, USA, March

5-8, 2012.

DOI: 10.13140/RG.2.1.2739.3445

• Contributes to chapter 5 ⇒ [Martins et al., 2010] R. Martins, D. R. Faria, J.

Dias, ”Symbolic Level Generalization of In-hand Manipulation Tasks from Human

Demonstrations using Tactile Data Information”. Proceedings of IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS 2010): Workshop on

Grasping Planning and Task Learning by Imitation, Taipei, Taiwan - October 2010.

DOI: 10.13140/2.1.3782.2401

1.3.3 Peer-reviewed poster in international conferences

• Contributes to chapter 6⇒ R. Martins, J. Dias - ”Representation framework

of perceived object softness characteristics for active robotic hand exploration”. In

HANDLE Workshop, Benicassim, Spain, February, 2012.

1.3.4 Research collaborations as co-author

• [Diego Faria, 2012] ⇒ D. R. Faria, R. Martins, J. Lobo, J. Dias. ”A Probabilistic

Framework to Detect Suitable Grasping Regions on Objects”. In 10th IFAC Sym-

posium on Robot Control (SYROCO 2012), Dubrovnik, Croatia, September, 2012.

DOI: 10.3182/20120905-3-HR-2030.00090

• [Faria et al., 2011] ⇒ D. R. Faria, R. Martins, J. Lobo, J. Dias. ”Manipulative

Tasks Identification by Learning and Generalizing Hand Motions”. In DoCEIS’11 -

2nd Doctoral Conference on Computing, Electrical and Industrial Systems. Costa

da Caparica - Portugal, February, 2011.

DOI: 10.1007/978-3-642-19170-1-19

• [Faria et al., 2010b] ⇒ D. R. Faria, R. Martins, J. Dias - Grasp Exploration

for 3D Object Shape Representation using Probailistic Map - In Proceedings of the
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DoCEIS’10 - Doctoral Conference on Computing, Electrical and Industrial Systems.

Lisbon, February, 2010. Springer

DOI: 10.1007/978-3-642-11628-5-23

• [Faria et al., 2010a] ⇒ D. R. Faria, R. Martins, J. Lobo, J. Dias - Probabilistic

Representation of 3D Object Shape by In-Hand Exploration - in Proceedings of

The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS’10, pp. 1560-1565 - Taipei, Taiwan - October 2010.

DOI: 10.1109/IROS.2010.5649286

• [Faria et al., 2009] ⇒ D. R. Faria, R. Martins, J. Dias - Human reach-to-grasp

generalization strategies: a Bayesian approach - Workshop at Robotics: Science and

Systems 2009, Workshop: ”Understanding the Human Hand for Advancing Robotic

Manipulation” - July 28, 2009 - Dillon Eng Seattle, WA, USA.

• [Faria et al., 2010c] ⇒ D. R. Faria, R. Martins, J. Dias - Learning Motion Pat-

terns from Multiple Observations along the Actions Phases of Manipulative Tasks

- to appear in IEEE/RSJ IROS’2010: Workshop on Grasping Planning and Task

Learning by Imitation, Taipei, Taiwan - October 2010.

1.3.5 Technical report

• Contributes to chapters 4, 5, 6 ⇒ [Martins, 2010] Distributed synchroniza-

tion of multi-modal data acquisition devices using NTP (network time protocol).

• Contributes to chapter 4 ⇒ [Martins, 2013] Installing controller area network

(CAN-Bus) drivers and compiling code on Ubuntu.

• Contributes to chapter 4 ⇒ [Martins, 2012b] Experimental evaluation and cal-

ibration protocol of Tekscan Grip system.

• Contributes to chapters 4, 5, 6⇒ [HANDLE-UC, 2009] Protocol for the cor-

pus of sensed grasp and handling data: storage of multimodal datasets.

• Contributes to chapter 3 ⇒ [Martins, 2008] Modelling the Human body and

hand: kinematic structure, degrees-of-freedom.

1.3.6 Software tools and documentation

• Contributes to chapter 3 ⇒ [Martins, 2009a] 3D interactive demonstrator of

human body and hand: kinematic structure, degrees-of-freedom.
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• Contributes to chapter 4 ⇒ [Martins, 2012a] 3D visualization tool of instru-

mented Rubik cube touch data.

• Contributes to chapters 4, 5, 6 ⇒ [Martins, 2009g] importDatasetTB : tool-

box for integrating data in MATLAB.

• Contributes to chapter 4 ⇒ [Martins, 2012c] Annotation tool for multi-modal

Human grasping datasets.

• Contributes to chapters 4, 6 ⇒ [Martins, 2009b] Distributed data acquisition

architecture: software client for CyberGlove (data glove).

• Contributes to chapter 4 ⇒ [Martins, 2009c] Distributed data acquisition ar-

chitecture: software client for instrumented Rubik cube (instrumented object).

• Contributes to chapter 4 ⇒ [Martins, 2009d] Distributed data acquisition ar-

chitecture: software client for instrumented sensing can (instrumented object).

• Contributes to chapter 4⇒ [Martins, 2009f] Distributed data acquisition archi-

tecture: software client for Tekscan Grip system (tactile sensing array).

• Contributes to chapters 4, 6 ⇒ [Martins, 2009e] Distributed data acquisition

architecture: software client for Polhemus Liberty system (6D motion tracking).

1.3.7 Datasets

• Contributes to chapter 4⇒ Human demonstration of dexterous manipulation

tasks:

– Dexterous manipulation of a laboratory pipette.

– Thumb movement during manipulation tasks.

– Screwdriver in-hand rotation.

– In-hand manipulation of toys.

– Grasp the Wii remote and press a button.

– Fill a toy sorting box with objects.

– Pick up a pen and write.

– Pick an object and slide.
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Chapter 2

Fundamentals

The computational models and engineering solutions proposed in this thesis for perform-

ing the dexterous manipulation and haptic exploration of surfaces follow the principles

involved in human perception, cognition, and action.

As presented in Figure 2.1, the perceptual process starts a sequence of sub-mechanisms

that work together to estimate a representation of the environment. The perceptual

representation is then used to infer a reaction strategy to those stimuli coming from the

environment.

Several models have been proposed to explain and describe the mechanisms involved

in human perception and how they are integrated into global human behaviour. Humans

perceive in order to act on the environment and, the actions performed with environment

elements affect the perception of the environment: the so-called action-perception loop

(Figure 2.1).

Although most of the time, the sensory signals are ambiguous and corrupted with noise,

humans have a remarkable capability to create successful perceptual representations which

they use to guide their actions [Ernst and Bulthoff, 2004]. To explain this capability, Her-

mann von Helmholtz proposed an approach to model the perception mechanisms (Figure

2.1), introducing a principle designed by unconscious inference [Westheimer, 2008]. The

principle states that humans perceive a specific state of the environment, choosing the

state which is most likely to have caused the pattern of stimulus that the human subject

has received through the sensory apparatus. Additionally, although sensory data is di-

verse, it is not sufficient to uniquely determine what is perceived. Prior knowledge must

be used, which introduces constraints to the process of inference from ambiguous sensory

signals.

The next sections present the fundamentals of the formalism of probability theory

used to model the state of robotic systems, human agents, and the environment (section

2.1). This chapter also presents the formalism of probabilistic grids (section 2.2), used in

this thesis to represent the workspace surrounding the robotic and human agents. The

information exchanged between the different modules of the methods proposed in this
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Figure 2.1: Representation of the fundamental mechanisms underlying the action-
perception loop. Adapted from [Ernst and Bulthoff, 2004].

work is described using the formalism of information theory (section 2.3).

2.1 Probabilistic modelling

In robotics, different formalisms (such as first-order predicate logic and probability the-

ory) have been followed to represent knowledge and describe reasoning applications. An

extensive review of these formalisms can be found in [Hertzberg and Chatila, 2008].

This work uses the probability theory to represent the knowledge of the state of the

robotic system (and other agents) and its surroundings, following an approach analogous

to the work [Knill and Richards, 1996] to model human perception mechanisms and

reasoning. This formalism has been used extensively in robotics. The increasing interest

in this formalism is related to its ability to deal with the incompleteness of the description

of the system (inaccurate modelling, relevant effect of hidden variables) and uncertainty

of the available data (multimodal noisy data) [Thrun et al., 2005], [Ferreira and Dias,

2014c]. A new generation of computer architectures [Faix et al., 2015] and programming

languages [Lebeltel et al., 2004] is also being developed to optimize and generalize the

implementation of the methods described using this formalism.

The probabilistic methods proposed in this thesis follow the principles of the Bayesian

probability theory.
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2.1.1 Bayes rule

In this thesis, several descriptors such as robot state, multi-modal sensor measurements,

and surrounding environment state, are represented by continuous or discrete random

variables. Each variable is defined for a specific domain (possible values). A random

variable or logical operation of random variables is characterized by a probability density

function (continuous variables) or probability mass function (discrete variables), which

assigns a probability ([0, 1]) to each value of the domain of the random variable. The work

[Chung and AitSahlia, 2012] presents an extensive introduction to the basic concepts of

probability theory.

Let C denote a random variable and c denote a specific value of the domain of C.

In this abstract formulation of a problem, C represents a potential cause of an event of

interest E (with e being a specific value of this variable).

During the probabilist modelling of a problem, the random variables establish statis-

tical independence relations between them. If E and C are considered independent, then

E does not influence C. This type of influence is modelled by a conditional probability,

as shown in equation 2.1 .

P (C|E) = P (C) (2.1)

However, in robotics it is common that a random variable carries information about

other random variables. Considering that assumption and returning to the example pre-

sented previously, equation 2.2 can be formulated.

P (C|E) =
P (C,E)

P (E)
=
P (E|C)P (C)

P (E)
(2.2)

Equation 2.2 describes the Bayes rule. It expresses the relation between P (C|E) and

its inverse P (E|C). C expresses the quantity to be inferred, using the knowledge of

evidence E. The factor P (C) represents the prior probability distribution, expressing the

information available about C before the incorporation of the evidence E.

The probability distribution P (C|E) is denoted as the posterior probability distri-

bution. It describes the knowledge of C after integrating the data E and the a-priori

information about C. The element P (E|C) represents the likelihood probability distribu-

tion, which expresses the knowledge about how the variable C influences E. In robotics,

this factor is also termed the generative model. The likelihood probability distribution is

determined analytically, or it can result from a training period. The data acquired during
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this training period is used to learn the parameters of the probability distribution function

P (E|C). The literature [Ferreira and Dias, 2014b] presents different methods to perform

the probabilistic learning of P (E|C), such as Maximum Likelihood (ML) and Expectation

Maximization (EM).

The factor P (E) is a normalization constant. It guarantees that P (C|E) sums up to 1,

for all the domain of C. In some contexts, this parameter is not represented for simplicity

purposes.

Additional details about the determination of P (E|C) and P (C) are given throughout

this thesis as they are used to model each problem presented in this manuscript.

2.1.2 Bayesian inference

The posterior probability distribution P (C|E) is used as a source of information to perform

a decision about which state of C should be chosen. The work of [Ferreira and Dias, 2014a]

presents different approaches to define the decision rule of the inference process.

In this thesis, the decision rule is formulated directly in the posterior probability dis-

tribution P (C|E) by applying the Maximum a-Posteriori (MAP) principle.

The inferred value ĉ of C is determined by selecting the argument of P (C|E) which

provides the highest value of probability, as presented in equation 2.3 .

ĉ = arg max
c

P (C|E)

ĉ = arg max
c

P (E|C).P (C)

P (E)

ĉ = arg max
c

P (E|C).P (C) (2.3)

2.1.3 Representing the Bayesian models

Throughout this thesis, several Bayesian models are formulated and described to provide

a solution to the different challenges that are identified. In this manuscript, the Bayesian

models are represented and characterized by using two different, but complementary,

formalisms: Bayesian network and Bayesian program.

Bayesian network

A Bayesian network is a directed acyclic graph. The random variables of the Bayesian

model are represented as nodes. The probabilistic (causal) relationships between pairs of
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X3

X1

X2

X4

Figure 2.2: Graphical representation of a Bayesian model described by the random vari-
ables X1, X2, X3, X4 represented in the nodes. The causal dependencies are represented
by the arrows (directed arcs).

random variables are represented as directed arcs. This representation approach provides

an appealing visual description of the dependence relationship between random variables.

The dependence relationships expressed by the structure of a Bayesian network are

used to simplify the formulation of the joint probability distribution function. These

simplifications allow the design of efficient learning and inference algorithms based on

simpler conditional probability distributions.

If the set of nodes which have arcs terminating at Xi is described by parents(Xi),

then equation 2.4 can be formulated. Let us consider a Bayesian model with N random

variables Xi, . . . , XN represented in a graph.

P (X1, X2, . . . , XN) =
N∏
i=1

P (Xi|parents(Xi)) (2.4)

Equation 2.5 describes the joint probability distribution function for N = 4 and im-

plementing the statistical causal dependence relations illustrated in the Bayesian network

of Figure 2.2.

P (X1, X2, X3, X4) = P (X1|X2, X3).P (X3|X4).P (X2).P (X4) (2.5)

Bayesian program

The Bayesian program is a mathematical formalism and methodology used to organize

and systemize the description of a Bayesian model. This approach facilitates the anal-

ysis and comparison of the properties of different Bayesian models and the respective
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• Relevant variables:

Selection of the random variables to model the problem being studied.

• Decomposition:

The global joint probability distribution function is factored as the

product of simpler probability distribution functions, expressing the

conditional independence relations of the random variables.

• Parametric forms:

A custom mathematical function or a family of probability distribution

functions (e.g. uniform, normal, Bernoulli, Poisson, Binomial) is associated

to each of the factors identified during the decomposition stage.

• Identification:

The free parameters of the custom mathematical functions or of the families

of probability distribution functions are estimated/learned from experimental

data acquired during training sessions (or other sources of information).

• Question:

This stage of the formalism describes the inference problem to be answered by the

Bayesian model. The Bayesian model is queried concerning information about a given

random variable. The answer provided by the Bayesian model (posteriori probability

distribution function) is submitted to a Bayesian decision theory criterion (e.g. MAP)

(a)

Figure 2.3: Schematic description of the organization of the formalism used by a Bayesian
program to describe a Bayesian model.

computational implementations.

This methodology represents the Bayesian model as it follows an approach consisting

of different stages, which are described in Figure 2.3.

2.2 Probabilistic grids

In chapters 6 and 7 of this thesis, the environment surrounding the agent (robotic system

or human) performing the haptic exploration is represented by a bi-dimensional proba-

bilistic grid. The workspace is divided into a uniform grid of square cells.

A property of interest of the environment is associated to each cell with coordinates

(i, j) and described by a random variable X(i,j). This approach considers that the repre-
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(a) (b) (c)

Figure 2.4: Example of probabilistic grids used in robotics research. Probabilistic grid
representing: a) the occupancy of a 2D environment [Rocha et al., 2005]. b) the haptic
discontinuity between two regions of a surface [Martins et al., 2014]. c) the 3D shape of a
hand explored object. Occupancy state is fused with color information from an artificial
vision system [Faria et al., 2010a].

sentations of the cells of the grid are independent from each other.

The representation framework allows the integration/fusion of multi-modal data using

probabilistic modelling techniques; this approach can deal with uncertainty of the data

sources. The grid structure also provides the ability to represent heterogeneous environ-

ments (e.g. spatial discontinuities of the property of the environment being represented).

In several previous works (e.g. [Rocha et al., 2005], [Faria et al., 2010a], [Elfes, 1989]),

the bi-dimensional probabilistic grids were typically used to represent the state of the

workspace regions as empty or occupied. In this work, the state X(i,j) of each cell represents

multivalued properties of the workspace regions, such as category of material.

The state Xk
(i,j) of each cell is updated at each time iteration k by integrating new sen-

sory measurements Zk
(i,j) acquired at that region of the workspace. At the time instant k =

n, the cell (i, j) has integrated n sensory measurements Zn
(i,j) = (Z1

(i,j), Z
2
(i,j), . . . , Z

n
(i,j)). At

that time instant, the state of each cell of the probabilistic grid is described by equation

2.6.

P (Xn
(i,j)|Zn

(i,j)) =
P (Zn

(i,j)|X(i,j)).P (Xn−1
(i,j) |Z

n−1
(i,j))

P (Zn
(i,j)|Zn−1

(i,j))
= Θ.P (Zn

(i,j)|X(i,j)).P (Xn−1
(i,j) |Z

n−1
(i,j)) (2.6)

The parameter Θ is a normalization constant. Consecutive sensory measurements

Zk
(i,j) and Zk−1

(i,j) are considered independent.

According to equation 2.6, the updated representation of the state of each cell of
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the grid P (Xn
(i,j)|Z

n
(i,j)), after a new sensory measurement, is given by P (Zn

(i,j)|X(i,j)) and

P (Xn−1
(i,j) |Z

n−1
(i,j)).

The factor P (Zn
(i,j)|X(i,j)) represents the likelihood probability distribution function,

which expresses the sensor measurements model. It models the knowledge available of

how the sensor measurements are affected by the possible state of the cell/workspace

(i, j).

Alternatively, the factor P (Xn−1
(i,j) |Z

n−1
(i,j)) describes the state of the cell (i, j) at the

previous time iteration n − 1. It encodes a complete summary of all past integration of

sensory data by that cell of the grid.

2.3 Information theory and entropy

Several chapters of this thesis use random variables to model the proposed approaches and

transfer information between the different modules. This PhD thesis uses Shannon en-

tropy [Shannon, 2001a] to quantify the information encoded by a probability distribution

function P (X) of a random variable X. The formulation for discrete random variables is

presented in equation 2.7.

H(X) = E[−log(X)] =
∑
x

−P (x) log2(P (x)) (2.7)

Higher values of entropy express lower levels of information (e.g. uniform probability

distribution). Lower values of entropy encode higher levels of information (e.g. certain

event).

Different approaches for calculating the entropy of continuous probability distribution

functions are presented in [Gelfand and Yaglom, 1993].



Chapter 3

Dexterous manipulation and exploration:
from Humans to robots

The human hand is a powerful tool. The dexterous manipulation and haptic exploration

movements are some of the most useful strategies to interact with the surrounding envi-

ronment.

Human manipulation and exploration capabilities result from a combination of a multi-

modal sensorimotor system [Flanagan et al., 2006] and a powerful effector apparatus. The

conjugation and coordination of these two elements is controlled by the human nervous

system following an action-perception loop architecture. Successful manipulation strate-

gies require the capability to predict the appropriate motor commands to grasp, in-hand

manipulate, transport, and release the object, and to predict and evaluate the sensory

events caused by the motor commands.

The following sections elaborate on some of the elements involved in the action-

perception loop: specifically those related to dexterous manipulation and haptic explo-

ration.

3.1 The human hand

3.1.1 Anatomical structure

The human ability to make and use tools to interact with the environment and other

persons is one of the main evolutionary factors that distinguishes humans from other

animals. The human hand plays a fundamental role in these capabilities [Jones and

Lederman, 2006].

The musculoskeletal system of the human hand consists of bones (skeleton), muscles,

tendons, ligaments, and joints. This system is responsible for maintaining the posture

and shape of the hands, and providing the ability to move and to produce dexterous

movements (interaction with the environment). A schematic representation of the bones
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(a) (b)

Figure 3.1: Human hand. a) bones (represented by coloured regions) and joints (specified
by arrows) [Wikipedia, 2014]. b) kinematic model of the human hand describing the
joints, links, and degrees of freedom [Li et al., 2010].

and joints of the human hand is presented in Figure 3.1a.

Previous work [Lee and Kunii, 1995] proposed that the dexterity of the human hand

is supported by a total of 23 internal degrees of freedom of movement. The degrees of

freedom are provided by several joints. The elementary movements of the hand can be de-

scribed by flexion/extension and adduction/ abduction movements. The flexion/extension

movements correspond to the rotations toward and away from the palm. The adduc-

tion/abduction motions are used to describe the movement of joining and separation of

the fingers.

A kinematic model of the human hand was proposed by [Lee and Kunii, 1995], and it

is illustrated in Figure 3.1b. The index, middle, ring, and little fingers have four degrees of

freedom. The distal interphalangeal (DIP) joint and proximal interphalangeal (PIP) joint

have 1 degree of freedom, allowing flexion/extension movements. The metacarpopha-

langeal (MCP) joint has the remaining two degrees of freedom, allowing flexion/extension

movements, as well as adduction/abduction movements. The mechanical structure of the

thumb is different from the other four fingers. It has five degrees of freedom that are dis-

tributed by two joints: two at the carpometacarpal (CMC) joint (flexion/extension and

adduction/abduction), two at the metacarpophalangeal (MCP) joint (flexion/extension

and adduction/abduction), and one at the interphalangeal joint (flexion/extension). The

curve and fold movement of the palm are accomplished by two internal degrees of freedom

located in the transition region between the proximal region of the fingers and the palm.
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Figure 3.2: Screenshot of the 3D virtual visualization tool implemented to demonstrate
the kinematic model of the human hand. The software tool is available online [Martins,
2009a] (url: http://www.rmartins.net/phd-docs/st01/).

Several simplifications of the model may be implemented to reduce the number of free

degrees of freedom, considering the objectives of the application for which the model is

going to be used. One common simplification considers that the flexion/extension level

of the distal interphalangeal joint of the fingers is dependent (by a 2/3 factor) on the

proximal interphalangeal joint flexure/extension level [Lee and Kunii, 1995].

The hand is actuated by two distinct groups of muscle [Jones and Lederman, 2006].

The intrinsic muscles are thenar, hypothenar, interossei, and lumbrical muscles. The

extrinsic muscles (long flexors and extensors) are located on the forearm.

Kinematic model of the human hand: 3D virtual demonstration tool

Using the the kinematic model of the human hand presented previously, a software tool

was developed to demonstrate the kinematic model (various links, types of joints, and

degrees of freedom) of a human hand. The software tool was implemented using Python

programming language and the computer graphics library Vizard VR Software Toolkit.

The software tool allows the use of the graphical interface to select a joint and a

degree of freedom, which is explored interactively by changing the flexure level by moving

a slider. Users also can change the viewing perspective of the 3D avatar. The links are

represented by blue lines and the joints by red dots.

The Python source code and a compiled version (Windows operating system) of the

software tool are available online [Martins, 2009a] (url: http://www.rmartins.net/

phd-docs/st01/). A screen shot of the graphical interface of the software tool is pre-

http://www.rmartins.net/phd-docs/st01/
http://www.rmartins.net/phd-docs/st01/
http://www.rmartins.net/phd-docs/st01/
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sented in Figure 3.2. The technical report Modelling the Human body and hand: kine-

matic structure, degrees-of-freedom [Martins, 2008] provides additional details about the

kinematic models of the human hand and body. The proposed models were used to

build the 3D virtual tool. The technical report also is available online (url: http:

//www.rmartins.net/phd-docs/tr01/).
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Figure 3.3: Schematic representation of the four classes of mechanoreceptors which can
be found on the skin of the human hand. Summary of the different functions [Goldstein,
2002]

.

3.1.2 Sensing apparatus

The somatosensory system is a diverse sensory system that contains the cutaneous senses.

It is responsible for perceptions such as touch, which are typically caused by the mechan-

ical stimulation of the skin; proprioception, which is the ability to sense the position of

the body and limbs; and kinesthesis, which is the ability to sense the movement of the

body and limbs.

The human sense of touch is distinct from the other four sensory modalities (vision,

olfaction, taste, and hearing) in several ways. Receptors for touch are varied and have

different distributions throughout the skin, unlike other sensory modalities (e.g. hearing)

which are confined to localized and specialized structures on the human body. The percep-

tual apparatus (receptors, neural pathways, etc.) mediating touch responds to different

types of stimulation.

Touch is involved in the perception of external stimuli through different types of sen-

sory receptors [Goldstein, 2002]. Mechanoreceptors are involved in the discrimination of

stimuli related to pressure and vibration. Nociceptors are related to the sensing of pain.

http://www.rmartins.net/phd-docs/tr01/
http://www.rmartins.net/phd-docs/tr01/
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However, nociceptors also respond to intense sensory stimulation of heat and pressure,

which are associated with extreme conditions of temperature and mechanical stimulation.

Thermoreceptors participate in the sensing of heat transfers.

The research works presented in this thesis are dedicated to the development of ar-

tificial perception mechanisms that model the tactile perception of mechanical stimulus

during the manipulation and exploration of objects.

The different types of mechanical stimulation (pressure, stretching, and vibration)

are detected by different categories of mechanoreceptors, which are represented in Figure

3.3: Ruffini cylinder, Merkel receptor, Meissner corpuscle, and Pacinian corpuscle. The

distinction between mechanoreceptors is made by the location on the anatomical structure

of the skin. They differ in terms of spatial acuity, dimension of receptive field, and the

manner in which the nervous fibers associated with each mechanoreceptor respond to

stimuli with different mechanical characteristics. The properties of the response can be

associated with a specific function during the execution of dexterous manipulation and

haptic exploration tasks. Table 3.1 summarizes the characteristics and functions of the

different mechanoreceptors. The work [Romano et al., 2011] proposed a methodology to

model and implement the different tactile sensing capabilities of the mechanoreceptors

using the PR2 robotic platform equipped with a tactile sensing array on the gripper of

the robot.

Table 3.1: Mechanoreceptors: physiological integration, stimulation, and function [Dahiya
et al., 2010]

.

Classification
Basis

Pacinian
Corpuscle

Ruffini Corpuscle Merkel Cells Meissner’s
Corpuscle

Type FA II SA II SA I FA I
Adaptation Rate Fast Slow Slow Fast
Spatial Acuity (mm) 10+ 7+ 0.5 3-4
Vibration (µm) 0.01 40 8 2
Indentation
Threshold (µm)

0.08 300 30 6

Stimuli Frequency
(Hz)

40-500+ 100-500+ 0.4-3 3-40

Effective Stimuli Temporal changes in
the skin deformation

Sustained downward
pressure. Lateral
skin stretch. Skin
slip.

Spatial deformation.
Sustained pressure.
Curvature, edge,
corner.

Temporal changes in
skin deformation.

Sensory Function High-frequency vi-
bration detection.
Tool use.

Finger position. Sta-
ble grasp. Tangen-
tial force. Motion di-
rection .

Pattern/form detec-
tion; texture percep-
tion. Tactile flow
perception.

Low-frequency vi-
bration and motion
detection. Grip
control. Tactile flow
detection.

The fibers associated with the sensory receptors, which are integrated on the skin,

follow a path to the somatosensory area of the cortex, as illustrated in Figure 3.4. The

fibers conducting the electrical signals from the sensory receptors enter the spinal cord

through the dorsal root. The signals travel through the spinal cord along two major

pathways: the medial lemniscal pathway and the spinothalamic pathway.
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Figure 3.4: Somatosensory pathways: from fingertip to cortex [Goldstein, 2002]
.

The lemniscal pathway transports signals related to sensing proprioception and kines-

thesis (the ability to sense the position of the body and limbs and the ability to sense the

movement of the limbs, respectively) and perceiving touch (mechanical stimulus). The

spinothalamic pathway transmits signals related to temperature and pain. Both path-

ways synapse in the ventrolateral nucleus of the thalamus and then send fibers to the

somatosensory cortex in the parietal lobe [Goldstein, 2002].

3.2 Planning and control of dexterous manipulation

tasks

When humans intend to perform a manipulation task with an object placed in the sur-

rounding environment, the head and eye gaze are oriented toward the target object. The

category of object and the spatial pose are analysed to plan the configuration of hand

and arm during the reach-to-grasp or transport movement. During the contact of the

hand with the object, the proper amount of force must be applied by the fingers to avoid

dropping the object and breaking it [Johansson and Flanagan, 2009].

The mechanisms involved in the visual and somatosensory processes responsible for

perception and action during manipulation and haptic exploration tasks are detailed in

sections 3.2.1 and 3.2.2.
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3.2.1 Reach-to-grasp and transport movements

A model was proposed in [Oztop and Arbib, 2002] that described the neuronal mechanisms

and functional relations involved in the planning and control of execution of reach-to-grasp

and transport movements.

The online visuo-motor planning and control of the movement integrate visual infor-

mation provided by two main pathways [Goodale and Milner, 1992]. The ventral pathway

(known as what stream) is related to recognition, categorization, and assessment func-

tions. The dorsal pathway (known as where/how stream) is dedicated to the estimation

of the position, orientation, and shape of the target object of the manipulation task.
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Figure 3.5: Oztop and Arbib model [Oztop and Arbib, 2002] describing the role of the
mirror-neuron system in reach-to-grasp manipulation movements guided by vision [Arbib
et al., 2008]

.

The ventral and dorsal visual information streams work closely together in the planning

and control of the dexterous manipulation movement. They also are closely associated

with the somatosensory system in both programming and executing this control [Oztop

and Arbib, 2002] (e.g. object modelling and recognition, initial hand configuration and

grasping forces, and online movement evaluation). These relations are detailed in section

3.2.2.

The model proposed by the work [Oztop and Arbib, 2002] also integrates the represen-
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tation of a mirror neuron system (MNS). Their work extends the previous FARS model

(Fagg - Arbib - Rizzolatti - Sakata) [Fagg and Arbib, 1998]. The mirror neuron system,

initially discovered in macaque monkeys, is a fundamental element to understanding the

neuronal processes involved in the reaching and grasping movements of human manipula-

tion of objects. The MNS links the visual processes of the superior temporal sulcus (STS)

to the parietal regions and premotor regions (F5). Recently, it was demonstrated that

the premotor regions (F5) integrate neurons involved with grasping capabilities. The

two main classes of neurons on F5 are the mirror neurons and the canonical neurons.

The mirror neurons discharge when the monkeys observe other monkeys hand movements

which are similar to those whose execution is associated with the firing of the neuron.

The canonical neurons fire when the monkey performs a specific action and also when the

monkey sees a possible target object of such action. The canonical neurons do not fire

when the monkey sees other monkeys or humans performing that action.

Object features extracted by cIPS (caudal intraparietal sulcus), together with the ob-

ject recognition output provided by IT (inferotemporal cortex), task analysis and work

memory, are processed by AIP (anterior interparietal area) to extract grasp affordances.

The object affordances are sent to the canonical neurons of F5 that choose a particular

prehensile pattern to grasp the object. The location of the object is estimated by MIP

(medial intraparietal sulcus), LIP (lateral intraparietal sulcus) and VIP (ventral intra-

parietal sulcus). These regions provide parameters to the motor programming area of F4

which estimates the characteristics of the reach movement. The motor cortex M1 (F1)

integrates the grasp and reach information provided by the canonical neurons of F5 and

F4 regions, respectively, and coordinates the execution of the proposed motor program.

The quality of the execution of the defined motor program is controlled. The mirror

neurons of F5 recognize the grasping actions being performed to the object, while MIP,

LIP, and VIP provide outputs related to the object location, which are combined with

hand shape and motion recognition provided by STSa (superior temporal sulcus) in 7a,

providing a description of the hand/object spatial relation. The evaluation of the spacial

relation between hand/object, action being performed with the object, and selected object

affordance is made in 7b, which receives inputs from F5 mirror neurons, 7a, AIP, and

STSa. The output of 7b is transmitted to the F5 in order to, if required, readjust the

current motor program being executed.

3.2.2 In-hand manipulation and haptic exploration movements

The work [Dijkerman and Haan, 2007] proposes a model, presented in Figure 3.6, to de-

scribe the somatosensory processing mechanisms. The model describes a parallel process-

ing approach, which is somewhat analogous to the parallel processing described previously
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that is happening in the visual system.

Two streams are proposed. A ”what” pathway involved in the processes related to

somatosensory perception and a ”how” pathway participating in action mechanisms. As

illustrated in Figure 3.6, both pathways start in the thalamus, where the main somatosen-

sory inputs concerning touch and proprioception terminate. The initial somotosensory

processing stages occur in SI (primary somatosensory cortex). Simple and complex fea-

tures are extracted (location and duration). Different theories about the extraction of

haptic features have been proposed and are the object of several ongoing studies. The

two main approaches describing different mechanisms integrating sensory data are illus-

trated in Figure 3.7.
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Figure 3.6: Schematic representation of the Dijkerman model [Dijkerman and Haan, 2007],
describing the somatosensory processing pipeline occurring in the cortex, supporting ac-
tion and perception mechanisms.

After this common initial stage, the two different somatosensory processing pathways

diverge, according to the stimulus characteristics and the purpose of processing.

The ”what” pathway projects from SI via SII (secondary somatosensory cortex) to the

insula. PPC (posterior parietal cortex) is involved in the spatial and temporal integration

of information (velocity of the stimulus). This pathway provides mechanisms to recognize

objects using somatosensory data.

The ”how” pathway projects from SI to SII, terminating in PPC. This pathway is

involved in the planning and control of action mechanisms. PPC is subsequently involved

in crossmodal integration (interaction with the vision system) and the preparation of

movements.

The ”what” (perception) and ”how” (action) pathways are not as independent as they
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are in the vision system. Haptic perception requires a close cooperation between action

and perception, because the sensing apparatus needs to contact directly with the stimulus

/ object.

The features extracted during the somatosensory processing pipeline can be integrated

in high-order association areas to infer complementary properties of objects. All the

mechanisms described previously are regarding the perception of external haptic stimulus

(environment surrounding the subject).

SA1 RA PC
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Control Vibration

MotionTexture
Shape

(a)

SA1 RA PC

Grip 
Control Vibration

MotionTexture
Shape

(b)

Figure 3.7: Integration of somatosensory afferent inputs during the haptic features ex-
traction pipeline. a) submodality segregation. b) submodality convergence [Saal and
Bensmaia, 2014]

.

At a behavioural level, the tactile recognition of external objects requires close co-

ordination between action-related and perception-related somatosensory processes. This

model also demonstrates that the ventral and dorsal streams of the visual system work

closely together not only in the programming and control of skilled manipulation move-

ments, but they also have intimate associations with the somatosensory system in both

programming and executing this control [Dijkerman and Haan, 2007].

As suggested in [Okamura et al., 2001], the in-hand exploration strategies and grasp-

ing movements used by humans are inherently coupled, as shown in Figure 3.8. The

execution of the manipulation movements requires an object model to plan the grasping

configuration of the hand. By having a more complete and accurate model of the object,

the planning of the movements performed with the object can be controlled precisely.

If the model of the object is incomplete, typically humans improve the object model by

performing in-hand exploration of the object. However, manipulation is required for ex-

ploration. To be able to use one or more fingers to explore the surface of the object by

moving the fingers over the uncharacterised regions of the object (such as regions not

accessible to vision), two or more fingers are required to stabilize the object by grasping

it.
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Grasping
Haptic 

Exploration
Object
Model

Provides data necessary for prehension:
· Contact type
· Local friction
· Object shape

Changes the state of the system to enable exploration:
· Objection motion
· Stable grasping
· Finger motion

Haptic exploration extracts:
· Object shape
· Inertia
· Surface properties

Figure 3.8: Interdependence and complementarity between manipulation and haptic ex-
ploration during the representation and progressive update of object model [Okamura
et al., 2001]

.

3.3 Attention mechanisms in somatosensory system

Humans are integrated and interact with the surrounding environment, which provides

multiple sources of noisy sensory data. The sensory overload is not all sensed, perceived,

and processed by the human sensory and neural systems [Corbetta and Shulman, 2002]

[Petersen and Posner, 2012].

By definition, the attention mechanisms have been identified as the set of processes

which allow humans to focus the concious awareness and limited processing resources

of the brain on the relevant part of the enormous multi-modal sensory inputs. The

attention mechanisms are implemented at different levels of the sensory processing and

cortical pipelines. At the physiological level, attention mechanisms are manifested by

different processes such as enhanced synchronization, scale of magnitude of response, and

variation of thresholds.

The processes involved in the attention mechanisms can be categorized differently, de-

pending on the effect being analysed. Attention mechanisms can be considered top-down

(endogenous) or bottom-up (exogenous) [Shipp, 2004]. Top-down attention mechanisms

suppress, enhance, or prioritize the representation of sensory information, taking into con-

sideration only the objectives of the task (e.g. haptic exploration of a surface, searching

for a cold object, and ignoring the textures of the surface). Bottom-up attention mecha-

nisms prioritize and mobilize resources to analyse unexpected external events and salient

sensory signals (e.g. vibration of a cell-phone in the pocket while the subject is resting).

A complementary approach to categorizing the attention mechanisms considers the

domain of the sensory inputs being integrated: space-based vs. feature-based attention
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mechanisms. Space-based attention mechanisms concern processes that enhance or sup-

press in different ways the sensory information coming from sensing apparatus located in

distinct regions. A typical example demonstrating the activation of these mechanisms is

the exploration of a surface using the fingertips of the human hand. Stimuli presented to

the fingertips are processed faster, with higher priority and detail than stimuli presented

in the back of the hand (clothes, watch, bracelet) during the exploration movements.

Feature-based attention mechanisms enhance or suppress processes involved in the anal-

ysis of specific features of the incoming sensory data (e.g. search and recognition of faces

in vision; search for a smooth surface during a haptic exploration task).

The attention mechanisms in vision [Amso and Scerif, 2015] have been studied widely.

In the touch / somatosensory system, research is not as advanced. Many research topics

are still undergoing active and intense research [Chapman, 2009], [Mller and Giabbiconi,

2008]. This section summarizes the relevant processes involved in the touch attention pro-

cess and how these mechanisms are integrated in the somatosensory processing pipeline,

influencing the perception and action behaviours.

Feature Processing
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Further Integration 
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Figure 3.9: Integration of the tactile attention mechanisms (feature-based) proposed by
[Wacker, 2011], in the Dijkerman model [Dijkerman and Haan, 2007].

In robotics, as with humans, the artificial sensing elements of touch can be integrated

in distinct locations of the robotic system (palm, fingers, torso, arms, feet, legs) and with

different extensions and densities [Dahiya et al., 2010]. The selection and hierarchy of the

sensory inputs coming from all different sources would be modelled by artificial space-

based attention mechanisms. However, in this work, the touch sensing elements are only
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integrated in the fingertips of the robotic hands. Thus, space-based attention mechanisms

are not studied in this thesis. The focus of this section is on the feature-based attention

mechanisms.

The feature-based touch-attention mechanisms have been studied using fMRI [Wacker,

2011] . The authors focused the research on the analysis of the role of feature-specific

high-order areas for tactile perception and the functional impact of top-down modulation

in the processing of haptic features. [Wacker, 2011] extended the model of somatosensory

processing for perception and action proposed by [Dijkerman and Haan, 2007] that was

presented in section 3.2.2. The extensions are highlighted in bold in Figure 3.9.

In the box highlighted on the left side of Figure 3.9, the top-down modulation of touch

attention is represented by signals coming from the pre-frontal cortex. These signals

modulate the processing streams between somatosensory areas. Each processing stage

of somatosensory features is modulated by feature selective attention, which promotes

the extraction and processing of haptic features relevant for the objectives of the haptic

exploration or in-hand manipulation tasks. The features considered relevant are extracted

and transmitted to feature-specific and/or posterior parietal areas (PPC) to improve the

perceptual representation of the object being explored.

The box highlighted in bold on the right side of Figure 3.9 integrates in the model

[Dijkerman and Haan, 2007] high-order areas responsible for feature-specific processing.

These areas fuse multi-modal haptic attributes in a modality independent representation

of the object being perceived (e.g. representation of texture of object, by integrating

haptic and visual information).

The inhibition-of-return (IOR) is a behaviour effect that has been described in sev-

eral works studying perception and action, with seminal work by [Posner and Cohen,

1984]. This effect was identified across different sensory modalities. The work [Klein,

2000] presents an extensive review. The IOR is described as a simple, but powerful, ef-

fect. When a salient stimulus is presented at a specific location, the attention mechanisms

promote the perception and processing of that stimulus. However, if consecutive stimula-

tion is presented in that region, the enhanced perception of the first stimulus inhibits the

processing of the next ones.

The subject of IOR mechanisms in touch is an active research topic. Different theories

are proposed to explain the mechanisms underlying IOR effect. The most accepted view

describes the IOR as an effect caused by the attention mechanisms which inhibit attention

to return to a region attended previously. Alternative or complementary formulations were

proposed, presenting mechanisms at the sensory perception or motor control that caused

the IOR effect. Studies [Jones and Forster, 2014] [Jones, 2011] present an extensive review

of this active research topic: IOR on touch.
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Figure 3.10: Grasp taxonomy proposed by Cutkosky [Cutkosky, 1989].

3.4 Categorization of manipulation movements

3.4.1 Grasping patterns

The dexterity of the human hand provides the capability to perform many different grasp

types. This set of possible grasp types has been analysed to model the human strategies

used to grasp different objects. These studies have been been applied in multiple contexts:

human physical therapy and rehabilitation; and development and evaluation of artificial

robotic and prosthetic hands. Several grasping taxonomies have been proposed in the

literature. In general, the taxonomies are derived from a statistical study of human hand

movements while performing the tasks of a typical day.

[Napier, 1956] characterized the human grasping movements in two general categories:

power grasps and precision grasps. In the power grasp, the object is held inside a palm

by opposition of the fingers, which exert a pressure on the object. In the precision grasp,

the object is grasped by the fingertips. The power grasp is used to stabilize the grasped

object. The precision grasp is used in tasks where precision and dexterity are fundamental
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Figure 3.11: Grasp taxonomy proposed by the GRASP project [GRASP, 2008]
.

to the success of the task.

[Kamakura et al., 1980] proposed fourteen grasping patterns under four categories.

The categorization of the prehensile postures of the hand is made considering the different

regions of the hand contacting the object. Each tactile signature is the consequence of the

mechanical configuration of the hand and the implicit characteristics of the object being

held.

[Cutkosky, 1989] proposed a hierarchical taxonomy suitable to be integrated in grasp

planning algorithms for robotic hands (Figure 3.10). The search for the most appropriate

grasp type requires information about task requirements and object shape.

The GRASP project [GRASP, 2008] reviewed 14 different works, identifying a total of

33 different grasping patterns. Based on the properties of the grasping pattern, the grasps

were rearranged in a new grasping taxonomy, represented in Figure 3.11. Each grasp in

that taxonomy is characterized by parameters such as the type of grasp, opposition type,

and thumb position.



34 Chapter 3. Dexterous manipulation and exploration: from humans to robots

(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 3.12: Taxonomy proposed by Elliot and Connolly [Elliott and Connolly, 1984]
describing the different types of in-hand manipulation patterns. a) Pinch. b) Dynamic
tripod. c) Squeeze. d) Twiddle. e) Rock. f) Radial roll. g) Index roll. h) Full roll. i)
Rotary step.

3.4.2 In-hand manipulation patterns

The in-hand manipulation movements are skills performed by humans to manipulate the

objects within the hand after an initial grasp. This skill has been studied by different

research areas (e.g. human development researchers, occupational therapists, and robotic

researchers). Several reference studies have tried to describe, categorize, and test the high

diversity of possible in-hand movements performed by the human hand.

[Exner, 1992] developed a taxonomy to classify the in-hand manipulation movements.

Exner described five classes of in-hand manipulation movements: finger to palm trans-

lation, palm to finger translation, shift, simple rotation, and complex rotation. Pont

[Pont et al., 2009] extended Exners classification system with additional categories of

movements: finger to palm translation to achieve stabilization, palm to finger translation,

simple shift, complex shift, simple rotation, and complex rotation.

Elliot and Connolly [Elliott and Connolly, 1984] extended the previous works and pro-
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posed a system to classify the intrinsic hand movements used to manipulate an object

within the hand. The study proposed four categories of intrinsic in-hand manipulation

movements: simple synergies, reciprocal synergies, sequential patterns, and palmar com-

binations. For each category of movements, several individual movement patterns are

suggested, involving different fingers.

Table 3.2 and Figure 3.12 describe the different classes of in-hand manipulation move-

ments proposed in [Elliott and Connolly, 1984] by Elliot and Connolly .

Table 3.2: Description and demonstration of in-hand manipulation patterns [Elliott and
Connolly, 1984]

In-hand manipulation pat-
terns

Description Demonstration

Pinch The object, typically small, is held between the pulp
surfaces of the opposed thumb and index finger.

Figure 3.12a

Dynamic tripod The object is grasped between the radial distal surface
of digit and the pulp surfaces of the thumb and index.

Figure 3.12b

Squeeze With the thumb opposed and all the digits relatively
extended, the object is squeezed by synergetic flexion
of the digits.

Figure 3.12c

Twiddle Abduction of the thumb combined with metacarpo-
phalangeal extension and some ulnar deviation of the
index.

Figure 3.12d,

Rock The pattern described in twiddle is executed with the
thumb fully opposed and with increasing recruitment
of the ulnar digits, moving in synchrony with the index
but having a greater excursion.

Figure 3.12e

Radial roll With the thumb in relatively slight opposition, the
object is rolled between the ball of the thumb and the
radial surface of the distal phalanx of the index finger.

Figure 3.12f

Index roll With the thumb in full opposition, the object is rolled
between the pulp surfaces of the thumb and index fin-
ger.

Figure 3.12g

Full roll The pattern is similar to Index Roll, but using addi-
tional digits, often all five.

Figure 3.12h

Rotary step The object is stepped around, with brief pauses while
the position of the digits is readjusted, using sequential
or phased set of movements.

Figure 3.12i

3.4.3 Haptic exploration patterns

The characterization of objects using the hand is not a passive process [Gibson, 1962]. The

object is explored actively, promoting the interaction between fingers and palm with the

object, building a perceptual representation of the object. The results of psychophysical

studies suggest that the movements of the fingers and palm are not performed randomly,

but depend on the characteristics of the object being extracted. [Lederman and Klatzky,

1987] observed that when subjects were asked to discriminate a specific characteristic

of the object (e.g. texture, hardness, or weight), different types of movements, named

haptic exploration patterns, were identified. The stereotypical exploration patterns and

the corresponding characteristics are represented in Figure 3.13 and described in Table
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3.3. Recently, the invariance of exploration patterns was verified and quantified using

motion-tracking, force, and tactile sensing technologies [Jansen et al., 2013].

(a) (b) (c)

(d) (e) (f)

Figure 3.13: Taxonomy describing the haptic exploration patterns used to extract object
features [Lederman and Klatzky, 1987]. a) lateral motion. b) pressure. c) static contact.
d) unsupported holding. e) enclosure. f) contour following.

3.5 Benchmarking robotic manipulation and explo-

ration skills

Different research and industrial sectors (e.g. informatics, manufacturing, and computer

vision) have been interested in implementing benchmark methodologies, and in some of

those fields, the benchmarks are established, widely recognized, and accepted. Due to an

increase in research projects, diversity of robotic platforms, and industrial development,

the robotics community is actively discussing and drafting benchmark protocols dedicated

to robotic dexterous manipulation [Bonsignorio and del Pobil, 2015].

The definition of the benchmark protocols in robotics is a challenging task. The field

of robotic dexterous manipulation integrates multiple research areas (advanced sensors,

mechanical design, planning, control, and artificial perception) and can be applied in very

different scenarios, executing multiple tasks with specific objects [del Pobil et al., 2014].

Currently, two main approaches are being followed and used in complementary ways to

develop the benchmark protocols for robotic dexterous manipulation.

One of the proposed approaches employs robots for the existing clinical protocols to

evaluate and score the human dexterous manipulation skills and capabilities.
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Table 3.3: Description and demonstration of the haptic exploration patterns [Lederman
and Klatzky, 1987]

Exploratory strat-
egy

Object property Movement Demonstration

Lateral motion Surface texture The skin is passed laterally across a
surface, producing shear force.

Figure 3.13a

Pressure Compliance or hard-
ness

Force is exerted on the object against a
resisting force; for example, by press-
ing into the surface, bending the ob-
ject, or twisting.

Figure 3.13b

Static contact Apparent temperature The skin surface is held in contact
with the object surface, without mo-
tion; typically a large surface (like the
whole hand) is applied. This EP gives
rise to heat flow between the skin and
the object.

Figure 3.13c

Unsupported holding Weight The object is held while the hand is not
externally supported; typically this EP
involves lifting, hefting, or wielding the
object.

Figure 3.13d

Enclosure Volume; Global shape The fingers (or other exploring effec-
tor) are molded closely to the object
surface.

Figure 3.13e

Contour following Exact shape Skin contact follows the gradient of the
object’s surface or is maintained along
edges when they are present.

Figure 3.13f

(a) (b)

Figure 3.14: Southampton Hand Assessment Protocol (SHAP) [Adams et al., 2009]: a)
complete kit. b) demonstration of assessment of hand function using the kit.

In clinical practice [Pont et al., 2008], different methods have been proposed to eval-

uate in-hand manipulation skills: the in-hand manipulation test quality [Miles Breslin

and Exner, 1999], the test of in-hand manipulation (TIHM) [Case-Smith, 2000], and ob-

servation protocol on in-hand manipulation and functional skill development [Humphry

et al., 1995]. An extensive review of the dexterity assessment of human hands in clinical

practice is presented by [Yancosek and Howell, 2009] .

The Southampton Hand Assessment Procedure [Adams et al., 2009] SHAP is a

clinical test originally developed to assess the physical functionality of hand and arm

prostheses. However, it has been extended to evaluate the hand skills in humans. The

SHAP consists of a kit of general objects and proposes a protocol to evaluate the hand

functions during the execution of fourteen daily living activities. The participants are
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asked to perform the tasks using one of six different grasps. The kit includes software

which generates a score to evaluate the impairment level of the hands.

Additionally, the protocols ARAT [Yozbatiran et al., 2008] (a standardized approach

to performing the action research arm test) and GRASSP [Kalsi-Ryan et al., 2012] (de-

velopment of the graded redefined assessment of strength, sensibility, and prehension) are

used to access and score the function of upper limbs and the human hand.

(a) (b)

Figure 3.15: a) ATLAS robot [ATLAS, 2013] performing a manipulation task during the
DARPA robotic challenge. b) Robotic platform during the Amazon Picking Challenge
[Wurman and Romano, 2015].

In addition to the clinical tests, researchers of the robotics community started imple-

menting and discussing benchmark protocols specifically designed for robotic platforms.

During scientific forums such as EURON (EUropean RObotics research Network), the

robotics community proposed three different scenarios and benchmarking measures in-

volving pick and place tasks, reorientation, and object removal tasks [EURON, 2008].

The DEXMART project (DEXterous and autonomous dual-arm/hand robotic manip-

ulation with sMART sensory-motor skills: A bridge from natural to artificial cognition)

presented [DEXMART, 2008], an extensive and detailed guideline to the implementation

of benchmarking methodologies [DEXMART, 2009]. The guidelines were designed to eval-

uate the project outcomes from the data acquisition level to the complete system level.

For each of the tasks presented in the document, the objectives and control points of the

tasks are defined, as well as the reference outcomes of the task that should be evaluated.

[Matheus and Dollar, 2010] describes a set of tasks compiled from different works in

the literature which have been used to evaluate the performance of manipulation robots

using objects of daily living. [Calli et al., 2015] also reviews ongoing projects related to

the assessment of the dexterous manipulation capability of robotic platforms and proposes

a set of objects and tasks to benchmarks the robotic skills. The set of objects is described

in detail (3D models with RGB data) to facilitate the replication of the experiments

worldwide. [Feix et al., 2013] presents a metric to score the anthropomorphic motion

capability of artificial hands and compare them with the human hand.
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Recently, several international and large-scale challenges also tried to gather together

the robotic community working in (dexterous) manipulation and haptic exploration. Typ-

ically, the events elaborate a list of tasks and scoring rules, and promote the competition

between different teams (universities, research centres, companies, abd consortia). This

allows a good benchmark between the approaches and methods proposed by the differ-

ent teams. Among others, the main events proposing challenges requiring manipulation

tasks are The Amazon Picking Challenge 2015 [Wurman and Romano, 2015], DARPA’s

robotics challenge [Guizzo and Ackerman, 2015], and RoCKIn 2015: Robot Competitions

Kick Innovation in Cognitive Systems and Robotics [Amigoni et al., 2015].
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Chapter 4

Recording Human manipulation and
exploration movements

One of the most popular approaches for endowing robotic systems with human-like ca-

pabilities (e.g. dexterous manipulation, locomotion, and social interaction) is to learn

those strategies from human demonstrations. Extensive overviews are presented in [Ar-

gall et al., 2009] and [Billard et al., 2008]. The research works provided in this PhD

thesis replicate human-like capabilities for dexterous in-hand manipulation and haptic

exploration of objects/surfaces.

Due to the mechanical and functional complexity of the human hand, the recording

of human dexterous manipulation and exploration movements is a challenging task. Typ-

ically, a multi-modal approach (e.g. external RGB cameras, depth sensors, data gloves,

motion trackers, and tactile arrays) is followed to capture all the diverse movements and

contact interactions between the human hand and the objects [Faria et al., 2012]. How-

ever, care should be taken to integrate such a high number of devices simultaneously in

order not to constrain the natural movements and sensing capabilities (e.g. touch feed-

back) of the human hand. A complementary approach consists of using instrumented

objects instead of over-instrumenting the human hand (e.g. [Matsuo et al., 2009], [Lobo

(a) (b) (c)

Figure 4.1: Overview of the experimental area at the Artificial Perception for Intelligent
Systems and Robots AP4ISR laboratory: a) table. b) data acquisition devices and objects.
c) data acquisition operator controlling the central computer.
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et al., 2011]).

This chapter presents the experimental area of Artificial Perception for Intelligent

Systems and Robots AP4ISR laboratory, describing the data acquisition devices (section

4.2) used to record manipulation tasks. The data acquisition software tools and data

acquisition architecture developed for this purpose, during the PhD studies reported by

this thesis, are also described (see section 4.1).

Several datasets of manipulation tasks recorded during the PhD studies are presented

in section 4.3. The contribution of these datasets to robotics research is also reported.

Multiple software tools were developed to promote and ease the integration and annotation

of datasets (section 4.4).

4.1 Experimental area and data acquisition architec-

ture

Figure 4.1 shows an overview of the experimental area of of Artificial Perception for Intel-

ligent Systems and Robots AP4ISR laboratory and the data acquisition devices available

to record data regarding human demonstrations of manipulation tasks.

TCP IP
Network

Data Acquisition
Central Computer

Bluetooth

Data Acquisition
 Operator

Cyberglove Polhemus Liberty Microsoft Kinect Tekscan Grip Instrumented Rubik Instrumented Can

BluetoothRJ 45

Unibrain 
Mono-Camera

Videre 
Stereo-Camera

RS 232 USB Can Bus USB USB

Human Demonstrator

NTP 
synchronization

Figure 4.2: Representation of the data acquisition architecture implemented in the experi-
mental area of Artificial Perception for Intelligent Systems and Robots AP4ISR laboratory.

A distributed data acquisition architecture was implemented on the experimental area.

This approach was followed due to the high number of data acquisition devices that can

be used simultaneously in a single session. The data acquisition architecture is described

in Figure 4.2.

In this data acquisition architecture, each computer can be connected to one or more
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data acquisition devices. For simplicity in Figure 4.2, only one data acquisition device is

connected to each computer. All the computers involved in a data acquisition session are

connected by a TCP/IP computer network. One of the computers of this architecture

works as server and the remaining ones (computers having data acquisition devices con-

nected to them) work as clients. Software clients for each of the data acquisition devices

(RGB cameras, motion trackers, data gloves, tactile sensors, instrumented objects) were

developed, as well as software for the server computer.

The main concept behind this approach is to have the server software coordinating all

the data acquisition sessions. At the beginning of the data acquisition session, the server

software is responsible for acknowledging the connection requests made by the clients

software. The server builds a list of all the clients connected to it. Each client software

manages both the data acquisition from the respective device, as well as the storage of

the data.

The structure of the dataset is based on XML files. Each data acquisition device

stores the data using a specific and predetermined structure of XML files. This allows

easy integration of the datasets by other software applications and the transfer of data

between partners. The structure of the XML files for each data acquisition device is

detailed in the technical report Protocol for the corpus of sensed grasp and handling data:

storage of multi-modal datasets [HANDLE-UC, 2009] expanded upon during the PhD

studies, under the scope of the HANDLE project. The document is available online (url:

http://www.rmartins.net/phd-docs/tr02/).

All the data acquired from the different devices is time-stamped. To enable a common

temporal reference between the different computers involved in the data acquisition ses-

sion, the Network Time Protocol (NTP) is used for clock synchronization of the different

computers. NTP is a free, widely available protocol designed to synchronize the clocks

of computers over a network. The steps involved on setting-up the NTP synchronization

are detailed in the technical report Distributed synchronization of multi-modal data ac-

quisition devices using NTP (network time protocol) [Martins, 2010] examined during the

PhD studies under the scope of the HANDLE project. This tutorial is available online

(url: http://www.rmartins.net/phd-docs/tr03/).

4.2 Data acquisition devices

4.2.1 Cybersystems Cyberglove II

Data glove systems are devices designed to acquire data about movements of the hand:

specifically, the level of flexure of the joints of fingers, palm, and wrist. A survey by

http://www.rmartins.net/phd-docs/tr02/
http://www.rmartins.net/phd-docs/tr03/
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[Dipietro et al., 2008] provides a detailed description of the historical evolution of the re-

search (technologies, main features, and materials) in the field of data glove development.

The type of glove, number of sensors and their position on the glove, as well as the glove

material differ among the various commercial devices available on the market. One of the

most popular high-end models is the Cybersystems CyberGlove II.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Human hand instrumented using different data acquisition devices (Cybersys-
tems CyberGlove II, Polhemus Liberty, Tekscan Grip system).

The Cybersystems CyberGlove II [CyberGloveII, 2008] (CyberGlove Systems LLC,

San Jose, CA, U.S.) is a wireless data glove. Cybersystems CyberGlove II is equipped

with 22 piezo resistive bend sensors. Each glove’s finger (index, middle, ring, and little)

has two bend sensors (located in the metacarpophalangeal (MCP) and proximal inter-

phalangeal joint regions), an abduction/adduction sensor (located in the MCP region),

and an additional sensor in each finger (index, middle, ring, and little) to measure the

distal interphalangeal joint flexure. The Cybersystems CyberGlove II also has sensors to

measure the thumb crossover, palm arch, wrist flexure, and abduction/adduction.

The Cybersystems CyberGlove II is powered by a battery attached to the forearm. A

wireless module (Bluetooth) transmits the data acquired by the glove to a host computer.

The glove has mounting provisions in the wrist region for motion tracking sensors. How-

ever, it can be integrated easily with other types of sensing devices such as tactile sensing

arrays, or motion trackers on wrist and fingertips, as described in Figure 4.3.
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4.2.2 Polhemus Liberty

Most of the data gloves available on the market only provide information about the level

of flexion/bending of the fingers and wrist joints. However, some applications also require

the determination of the global position and orientation of the hand (wrist) in space

(reach-to-grasp trajectories, manipulation trajectories), as well as the relative location

of the joints of the hand or the fingertips, palm global orientation, and position. This

type of data can be provided by motion tracking devices. These devices can be used in

conjunction with the data gloves (Figure 4.3).

The Polhemus Liberty system [Polhemus-Liberty, 2008] (Polhemus, Colchester, VT,

U.S.) is an electromagnetic motion tracking device used to record the pose (6DOF) (posi-

tion and orientation) of magnetic sensors within a restricted area. The main components

of this device are the system central unit, the sensors, and the source.

The system control unit contains the hardware and software responsible for the algo-

rithms supporting the emission and sensing of magnetic fields and interpretation of the

sensed fields. This unit is responsible for determining the position and orientation of each

sensor. The unit communicates with a computer through a RS-232 or USB connection.

The source of the Polhemus Liberty device is responsible for the emission of the magnetic

field. The source defines the inertial reference frame for sensor measurements.

Each sensor is connected to the system control unit by a cable. The position and

orientation of the sensors is determined by considering the magnetic field sensed by each

sensor. The Polhemus Liberty can have up to eight sensors connected to the system control

unit, of which the position and orientation can be updated up to 240 times per second.

This type of motion tracker has a limited operational range around the magnetic field

source, typically between 0.5 and 2 m. However, there are no requirements for direct

line of sight between the sensors and the magnetic source. This device requires that the

environment, where the data will be acquired, does not have metallic materials near or

between the magnetic field source and the magnetic sensors. This requirement ensures

that the metallic materials do not distort the emitted magnetic field, thus avoiding the

introduction of large errors in the measurements.

4.2.3 Tekscan Grip

The devices presented previously were used to determine the position, orientation, and

level of flexure of the hand or specific segments of the hand. However, analysis of the

force/pressure applied by the hand during the execution of grasping and manipulation

tasks is also critical. This analysis will be important to determine the temporal profile

of the pressure/forces applied by the human hand (fingertips and palm) while performing
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different types of grasps. This analysis can also provide information about the fingers

that are more active in different types of grasps and about the sequence of segments of

the hand that come into contact with the object.

The tactile sensing device TekScan Grip [Tekscan-Grip, 2010] (Tekscan Inc, Boston,

MA, U.S.) is a system specifically designed to acquire the pressure applied by the different

regions of the human hand (fingers, thumb, and palm) during the execution of tasks that

require grasping movements. The device consists of a flexible thin film (0.1 mm) with

embedded pressure sensors and electronics connecting the sensors to a data acquisition

module (TekScan VersaTek ) attached to the wrist region. The TekScan VersaTek module

acquires data at up to 850 Hz and provides a USB connection to transfer the acquired

data to a computer.

The TekScan Grip system is composed of five segments which can be attached to the

ventral regions of the fingers, thumb, and palm of the human hand (total of 361 sensing

elements). The sensing regions have a spatial resolution of about 6.2 sensing elements per

square centimeter, and each element can sense pressures up to 50 psi (344.7 KPa). This

device can be used in either the right or left hand.

The TekScan Grip system can be attached directly to the human hand or to a data

glove (e.g. Cybersystems CyberGlove II ), as demonstrated in Figure 4.3.

The performance, characteristics, and calibration methods of the TekScan Grip system

were tested extensively and documented in the technical report Experimental evaluation

and calibration protocol of Tekscan Grip system [Martins, 2012b] available online (url:

http://www.rmartins.net/phd-docs/tr05/).

4.2.4 Instrumented objects

The previous sections described the sensors/devices that can be attached to the human

hand. These devices give a human hand-centred perspective.

However, it can be useful to acquire data related to the movement/pose of the object

during the task being performed; this is the object-centred approach. This type of data

can be obtained by integrating external sensors on the object (attaching motion trackers or

tactile arrays), or making custom-designed objects with those types of sensors embedded

in the design (e.g. instrumented Rubik cube and instrumented sensing can). The object-

centred approach does not constrain the natural movements of the human hand.

Instrumented Rubik cube

The instrumented Rubik cube has the same dimensions and colors as a standard Rubik

cube, as presented in Figure 4.4a. The instrumented Rubik cube [HANDLE-SHADOW,

http://www.rmartins.net/phd-docs/tr05/
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(a) (b) (c)

Figure 4.4: Instrumented objects. a) Rubik cube. b) sensing soda can. c) Nintendo
Wiimote

.

2009] (Shadow Robot Company, London, UK) has 54 tactile sensing regions (six in each

side of the cube) that provide non-calibrated 12-bit-resolution tactile data. Each side

of the instrumented Rubik cube is equipped with a three-axis accelerometer, providing

acceleration data with eight-bit resolution. The instrumented Rubik cube is powered by a

cabled external source and has a wired CAN-BUS communication interface. A technical

report Installing controller area network (CAN-Bus) drivers and compiling code on Ubuntu

was published and is available online [Martins, 2013] (url: http://www.rmartins.net/

phd-docs/tr04/).

Instrumented sensing can

The instrumented sensing can [HANDLE-SHADOW, 2010] (Shadow Robot Company,

London, UK) is designed to mimic a standard 330 ml soda can (Figure 4.4b). It has

a total of 40 (4 × 10) independent tactile sensing regions distributed using ten sensing

vertical panels. Each panel contains four tactile sensing elements (eight-bit resolution per

sensing element) and has a three-axis accelerometer attached to it (ten-bit resolution per

channel).

The instrumented sensing can is portable. It is powered by an internal set of four

AAA batteries, and it has a Bluetooth communication interface.

Nintendo Wiimote

The Nintendo Wiimote [Nintendo, 2006] (Nintendo Co. Ltd, Kyoto, Japan) is a useful

instrumented object that can be employed during the data acquisition sessions (Figure

4.4c). The Nintendo Wiimote is a portable device (Bluetooth interface) of an appropri-

ate size for handling tasks; it contains embedded sensors (three-axis accelerometer and

infrared camera sensor) and several buttons.

http://www.rmartins.net/phd-docs/tr04/
http://www.rmartins.net/phd-docs/tr04/
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The accelerometer provides information about the movements of the device. The

infrared camera sensor has an integrated multi-object tracking engine that can determine

the position (x,y) and size of up to four simultaneous infrared light sources [Lee, 2008].

The buttons can be used to acquire user inputs during the execution of the task.

4.2.5 Microsoft Kinect

The Microsoft Kinect [Microft-Kinect, 2009] (Microsoft Corporation, Redmond, WA,

U.S.) is a device initially designed to be used by the gaming and entertainment industry

as a human-computer interface [Smisek et al., 2013]. However, due to its versatility and

low price, it became a revolutionary device in other areas such as robotics, physical re-

habilitation and therapy, art installations, and do-it-yourself (DIY) homemade projects

[Zhang, 2012].

Figure 4.5: Microsoft Kinect integrated in a wood box.

The Microsoft Kinect device integrates different types of sensors (Figure 4.5). An

infrared (IR) projector of light patterns and IR camera (structured light principles) pro-

vides a depth map (1280× 1024) of the environment surrounding the device. The depth

data is fused with the output of a monocular RGB camera (1280 × 1024), generating a

RGB-D map (cloud points with color). The Microsoft Kinect also incorporates an ar-

ray of four microphones. They can be used to implement voice recognition systems and

speaker spatial tracking applications.

Several software development kits (SDK) that have been released take advantage of

the features of the Microsoft Kinect : face recognition, human body tracking, and 3D

reconstruction.
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4.2.6 Videre camera

The Videre STH-MD CS3 [Videre, 2006] is a digital stereo camera consisting of two 1.3

MP CMOS sensors mounted on a metallic (aluminium) package, as shown in Figure 4.6b.

This camera has a fixed 9 cm baseline.

The stereo camera can acquire colour and monochromatic data at different frame

rates (30 Hz for 640x480, 15 Hz for 1024x768 colour only, and 7.5 Hz for 1280x960). The

camera is powered through a firewire cable, which is also used for data transmission and

control (synchronization, exposure, gain, and colour balance).

(a) (b)

Figure 4.6: RGB cameras: a) Unibrain camera. b)Videre camera.

4.2.7 Unibrain camera

The Unibrain Fire-I Digital [Unibrain, 2007] (Unibrain, Athens, Greece) is a firewire

colour digital camera (CCD sensor), as presented in Figure 4.6a. This device can acquire

video at different frame rates (30, 15, 7.5, 3.75 frames per second), different resolutions

(640x480, 320x240, 160x120) and video coding modes (YUV, RGB 24-bit, monochromatic

eight-bit).

The Unibrain Fire-I Digital can be powered by the firewire cable (when the camera is

connected to a desktop computer) or through a DC adapter (when the camera is connected

to a laptop computer). The camera is housed in a plastic polymer package.
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Figure 4.7: Homepage of the HANDLE project [HANDLE, 2009] online data repository.

4.3 Datasets

The datasets described in this section were recorded at the experimental area of Artifi-

cial Perception for Intelligent Systems and Robots AP4ISR laboratory during the PhD

studies, under the scope of the HANDLE project. The datasets were acquired to fulfil

the objectives and requests made by other partners. The publications and applications

related to each of the datasets are listed in Table 4.1. All the datasets are available online

at the HANDLE project web repository.

The participants were seated in a chair in front of the table presented in Figure 4.1.

The data acquisition devices and objects used in each session are summarized in Table

4.1, and the configuration of the experimental area is demonstrated in the figures listed

in the description of each dataset (section 4.3.1 to 4.3.8).

4.3.1 Dexterous manipulation of a laboratory pipette

The participants were instructed to move a liquid from a container to a second container,

using a laboratory pipette. The experimental materials were dispensed as presented in

Figure 4.8. The laboratory pipette was grasped and manipulated using only the dom-

inant hand. Before starting each run, the pipette was placed on a pipette stand. The

participants were instructed to place the pipette back on the stand or to leave the pipette

directly on top of the table by the end of each run. A video demonstrating this task is

available online www.rmartins.net/phd-docs/ds01.

To stimulate and challenge the participants with unexpected situations, during some

www.rmartins.net/phd-docs/ds01
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Table 4.1: List of HANDLE datasets acquired during the PhD studies

Task Data Acquisition De-
vices

Participants Runs Application

Dexterous manipulation of
a laboratory pipette

2 Microsoft Kinect 12 240 final demonstration: HAN-
DLE project

Thumb movement during
manipulation tasks

1 Microsoft Kinect
7 Polhemus Liberty sensors
1 Cyberglove II

1 5 journal paper: HANDLE
partner [Berglund et al.,
2012]

Screwdriver in-hand rota-
tion

1 Microsoft Kinect
1 Cyberglove II
1 Tekscan Grip

1 5 conference paper, PhD
thesis: HANDLE part-
ner [Cheng et al., 2012],
[Cheng, 2013]

In-hand manipulation of
toys

1 Microsoft Kinect
8 Polhemus Liberty sen-
sors
1 Videre camera
1 Tekscan Grip

1 35 conference paper, PhD
thesis: HANDLE part-
ner [Cheng et al., 2012],
[Cheng, 2013]

Grasp the Wii remote and
press a button

1 Cyberglove II
1 Unibrain camera
6 Polhemus Liberty sensors
1 Videre camera
1 Tekscan Grip

3 18 conference papers: HAN-
DLE partner [Hendrich
et al., 2010], [Hendrich
et al., 2012]

Fill a toy sorting box with
objects

1 Cyberglove II
1 Unibrain camera
5 Polhemus Liberty sensors
1 Videre camera
1 Tekscan Grip

3 17 conference papers: HAN-
DLE partner [Hendrich
et al., 2010], [Hendrich
et al., 2012]

Pick up a pen and write 1 Unibrain camera
8 Polhemus Liberty sensors
1 Videre camera
1 Tekscan Grip

3 10 conference papers: HAN-
DLE partner [Hendrich
et al., 2010], [Hendrich
et al., 2012]

Pick an object and slide 1 Instrumented rubik cube
1 Unibrain camera
7 Polhemus Liberty sensors
1 Videre camera
1 Tekscan Grip

4 20 conference papers: HAN-
DLE partner [Hendrich
et al., 2010], [Hendrich
et al., 2012]

runs, the manipulation of the pipette was done without using the thumb to press the

pipette buttons. This variant of the protocol was used to record the ways in which the

participants adapted the standard manipulation strategy to this constraint. The data

acquired during the demonstrations was manually annotated (grasp and in-hand manip-

ulation primitives) using the MATLAB tool developed for that purpose and presented in

section 4.4.3.

The datasets were used by several partners of the HANDLE project to develop various

applications concerning robotic learning by human demonstration. This approach was

used to provide the SHADOW robotic platform with pipette manipulation skills. The

results were demonstrated during the final review meeting of the HANDLE project. The

HANDLE final demonstration was presented publicly in Euronews Futuris, disseminating

science and technology. The video of the demonstration is available online at http://www.

youtube.com/watch?v=XSw5QVdzGW4. Figure 4.9 summarizes some segments of the TV

show. The datasets are available online at http://www.rmartins.net/phd-docs/ds01/.

http://www.youtube.com/watch?v=XSw5QVdzGW4
http://www.youtube.com/watch?v=XSw5QVdzGW4
http://www.rmartins.net/phd-docs/ds01/
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(a) (b)

Figure 4.8: Participant demonstrating the task Dexterous manipulation of a laboratory
pipette.

Figure 4.9: Final demonstration of HANDLE project presented during Euronews TV show
Futuris (url: https://www.youtube.com/watch?v=XSw5QVdzGW4). The final demonstra-
tion consisted of the robotic dexterous manipulation of a laboratory pipette learned from
the human demonstrations. The TV show also featured the instrumented Rubik cube data
visualization tool presented in section 4.4.4 (url: https://www.youtube.com/watch?v=

KJybBorZjH0).

4.3.2 Thumb movement during manipulation tasks

The participant started with the palm of the right hand flat on the table. The hand

was lifted off the table, keeping the palm and index, middle, and little fingers straight

(Figure 4.10). The thumb was then moved around. The participant went through all

possible movements of the thumb several times, exploring all the degrees of freedom of

that finger. A video demonstrating this task is available online at www.rmartins.net/

phd-docs/ds02/.

The data recorded by the data glove, motion tracker, and camera was sent to the ORU

partner (Orebro University - AASS Learning Systems Lab) of the HANDLE project. The

data was used to train an algorithm that learns the mapping and correspondences between

the kinematic structure of the human hand and Shadow robotic hand. The human thumb

https://www.youtube.com/watch?v=XSw5QVdzGW4
https://www.youtube.com/watch?v=KJybBorZjH0
https://www.youtube.com/watch?v=KJybBorZjH0
www.rmartins.net/phd-docs/ds02/
www.rmartins.net/phd-docs/ds02/
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(a) (b)

Figure 4.10: Participant demonstrating the task Thumb movement during manipulation
tasks.

has a complex mechanical structure, which is different from the kinematic structure of the

robotic thumb. The data was used to improve the behaviour of the robot during robotic

learning from human demonstrations or in tele-manipulation applications. The results of

this work were published in an international journal [Berglund et al., 2012].

4.3.3 Screwdriver in-hand rotation

The participant is instructed to use the two hands to grasp a screw and use a screwdriver

to insert and adjust the screw in a hole. The participant was seated in front of the table,

where a screwdriver and screw were placed in their initial configurations (Figure 4.11).

(a) (b)

Figure 4.11: Participant demonstrating the task Screwdriver in-hand rotation.

The left hand was not instrumented, and it was used to grasp the screw, insert it in

the hole, and keep it stable as long as the task progressed. The right hand was used to

perform consecutive in-hand manipulation movements (re-grasps), using the screwdriver,

to insert the screw. By the end of each run, the participant placed the screwdriver

on the table (initial configuration). A video demonstrating this task is available online

www.rmartins.net/phd-docs/ds03/.

The data was delivered to the UHAM partner (University of Hamburg - Technical

Aspects of Multimodal Systems (TAMS) Lab) of the HANDLE project. The data was

www.rmartins.net/phd-docs/ds03/
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used to develop a software tool to automatically segment dexterous in-hand manipulation

movements. The automatic segmentation was compared (benchmark) to the segmentation

performed manually by a human operator. This work was published at an international

conference [Cheng et al., 2012] and in a PhD thesis [Cheng, 2013].

4.3.4 In-hand manipulation of toys

The participant was instructed to grasp the toys (wood pieces) placed on top of the table

and then perform several in-hand manipulation movements to rotate the toy around itself

inside the hand. When the demonstration finished, the toy was placed back on the table.

(a) (b)

Figure 4.12: Participant demonstrating the task In-hand manipulation of toys.

The data was delivered to the UHAM partner (University of Hamburg - Technical

Aspects of Multimodal Systems (TAMS) Lab) of HANDLE project. The objectives and

applications of this data acquisition were the same as the objectives reported for the

dataset described in section 4.3.4. A video demonstrating this task is available online

www.rmartins.net/phd-docs/ds04/.

4.3.5 Grasp the Wii remote and press a button

The participant was seated in a chair in front of the table where the Nintendo Wii-mote

was placed. Three different orientations of the Nintendo Wii-mote on the table were used

as starting pose. As the data recording starts, the subject moves the right hand toward

the Nintendo Wii-mote, grasping and picking-up the object (Figure 4.13). The subject

performed some in-hand manipulation movements so that the Nintendo Wii-mote points

toward the frontal camera recording the session. Participants used the thumb to press a

button on the Nintendo Wii-mote and then put the Nintendo Wii-mote back on the table

in the starting configuration.

This dataset was acquired and delivered to the UHAM partner (University of Hamburg

- Technical Aspects of Multimodal Systems (TAMS) Lab) of the HANDLE project. The

multi-modal dataset was used to develop a method to automatically segment the data

www.rmartins.net/phd-docs/ds04/
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(a) (b)

Figure 4.13: Participant demonstrating the task Grasp the Wii remote and press a button.

from in-hand manipulation tasks. The primitives consist of a basic set of finger and

hand movement patterns, which can be used to model manipulation tasks. The learned

model was transferred to robotic platforms. The datasets were used in the experimental

implementation of the work [Hendrich et al., 2010], which was published in the proceedings

of an international conference. A video demonstrating this task is available online at

www.rmartins.net/phd-docs/ds05/.

4.3.6 Fill a toy sorting box with objects

The participant was seated in front of a table where the toy sorting box and the toys were

placed in their starting configurations, as shown in Figure 4.14.

(a) (b) (c)

Figure 4.14: a) - b) Participant demonstrating the task Fill a toy sorting box with objects.
c) Toy sorting box and toys (wood pieces).

The participant was instructed to use the right hand to consecutively grasp each of the

toys displayed on the table and fit each of them in the corresponding hole of the box. The

positions of the toys were adjusted using only in-hand manipulation movements during

the transport movement between the table and the toy sorting box. Each run ended when

all the toys were placed inside the box.

This dataset was acquired and delivered to the UHAM partner (University of Hamburg

- Technical Aspects of Multimodal Systems (TAMS) Lab) of the HANDLE project. The

www.rmartins.net/phd-docs/ds05/
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motivation and applications of this dataset were the same as for the dataset described in

section 4.3.5. A video demonstrating this task is available online at www.rmartins.net/

phd-docs/ds06/.

4.3.7 Pick up a pen and write

The participant was seated in front of a table where a pen and a piece of paper were placed

in their starting configurations (Figure 4.15). The participant manipulated a standard

ball-point pen with typical active click mechanics on the back-end. The pen was placed

in different starting poses. The pen was also instrumented with a motion tracking sensor.

(a) (b)

Figure 4.15: Participant demonstrating the task Pick up a pen and write.

The participant started each run by picking up the pen. After grasping the pen, in-

hand manipulation movements were performed to move the pen to a configuration suitable

to activate the click mechanism with the thumb a few times. Then, the pen was in-hand

manipulated to achieve a configuration for writing. The participant wrote ”HANDLE”

on a piece of paper. After that, the participant placed the pen back on the table in the

starting configuration.

This dataset was acquired and delivered to the UHAM partner (University of Hamburg

- Technical Aspects of Multimodal Systems (TAMS) Lab) of the HANDLE project. The

motivation and applications of this dataset were the same as for the dataset described in

section 4.3.5. A video demonstrating this task is available online at www.rmartins.net/

phd-docs/ds08/.

4.3.8 Pick an object and slide

The participant was comfortably seated in front of the table where the objects were placed.

The participants performed this task using two different objects: an instrumented Rubik

cube and a box, as described in Figures 4.16 and 4.17, respectively.

The participant was instructed to grasp the object (box or instrumented Rubik cube)

with the index finger and thumb. This precision grasp was performed not in the geometric

www.rmartins.net/phd-docs/ds06/
www.rmartins.net/phd-docs/ds06/
www.rmartins.net/phd-docs/ds08/
www.rmartins.net/phd-docs/ds08/
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(a) (b)

Figure 4.16: Participant demonstrating the task Pick an object and slide with an instru-
mented Rubik cube.

center of the object, but near one end. The object was moved up using only the index

and thumb, maintaining the orientation of the object. The index and thumb applied a

pressure, which prevented the inertial momentum of the object from changing its pose.

After reaching the maximum height of the movement, the participant reduced the pressure

applied by the index and thumb fingers, allowing the object to slide and rotate around

the index and thumb fingers, changing its orientation. The object was then moved back

to its starting pose on the table.

This dataset was acquired and delivered to the UHAM partner (University of Hamburg

- Technical Aspects of Multimodal Systems (TAMS) Lab) of the HANDLE project. The

motivation and applications of this dataset were the same as for the dataset described

in section 4.3.5. A video demonstrating this task is available online www.rmartins.net/

phd-docs/ds09/.

(a) (b)

Figure 4.17: Participant demonstrating the task Pick an object and slide with box.

www.rmartins.net/phd-docs/ds09/
www.rmartins.net/phd-docs/ds09/
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4.4 Software tools

4.4.1 Software clients for data acquisition devices

As described in section 4.1, each of the data acquisition devices has a dedicated software

client. The software clients are responsible for the integration of the data acquisition

devices in the distributed data acquisition architecture. They connect to a server software

which coordinates the data acquisition session, and they receive the triggers to start and

stop the data acquisition during each run.

Parameters such as data acquisition rate, image resolution, and calibration parameters

are configured locally in each client prior to the start of the session. The data acquired by

each device is formatted by the corresponding software client according to the XML format

presented in the technical report Protocol for the corpus of sensed grasp and handling data:

storage of multi-modal datasets [HANDLE-UC, 2009].

During the PhD studies reported in this thesis, I was responsible for the implementa-

tion of the software clients for the Cybersystems Cyberglove II [Martins, 2009b], instru-

mented Rubik cube [Martins, 2009c], instrumented sensing can [Martins, 2009d], Tekscan

Grip system [Martins, 2009f], and an alternative software client for Polhemus Liberty

[Martins, 2009e]. All software clients were developed using C++ programming language

for Ubuntu environment. The alternative software client for Polhemus Liberty was devel-

oped using Python.

The programming of these clients required the analysis of requisites for each of them

and the understanding of the technologies: I/O communications (USB, RS-232, CAN-

bus), TCP-IP socket communications, and XML data structure.

4.4.2 importDatasetTB : toolbox for integrating data in MAT-

LAB

A MATLAB toolbox (importDatasetTB) was developed to promote the use of the datasets

by the HANDLE partners, improve dissemination of the datasets, and facilitate the in-

tegration of the datasets in the research activities of the HANDLE partners (including

this PhD study). The importDatasetTB MATLAB toolbox automatically imports the

different types and configurations of datasets that were recorded using the XML stor-

age scheme described in the technical report Protocol for the corpus of sensed grasp and

handling data: storage of multi-modal datasets [HANDLE-UC, 2009].

The toolbox allows an automatic and fast integration of large multi-modal datasets.

Initially, the toolbox was compatible with datasets containing data structures of Cyber-

systems Cyberglove II, Polhemus Liberty, instrumented Rubik cube, instrumented sensing
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Figure 4.18: Section of HANDLE project website [HANDLE, 2009] presenting and sup-
porting the MATLAB toolbox importDatasetTB.

can, Tekscan Grip system, monocular RGB cameras, and stereo RGB cameras. After-

ward, it was extended and made compatible with additional data acquisition devices of

the Artificial Perception for Intelligent Systems and Robots AP4ISR laboratory: Microsoft

Kinect, Nintendo Wii-mote, NDI optotrak, and Xsens IMU. The importDatasetTB MAT-

LAB toolbox source code and documentation are described in the technical report ”im-

portDatasetTB: a MATLAB toolbox to integrate multi-modal datasets” [Martins, 2009g].

This MATLAB toolbox, importDatasetTB, was developed on top of a Java library

(jParserToolbox ) which was programmed from scratch for this tool. This Java library

implements a XML SAX (Simple API for XML) parser for the XML dataset structures

[HANDLE-UC, 2009]. This custom-designed Java library was used in the development of

the MATLAB toolbox because MATLAB natively includes a Java Virtual Machine. Thus,

the Java interpreter can be used via the MATLAB scripting shell. The importDatasetTB

MATLAB toolbox imports datasets of hundreds of megabytes in a few seconds. This

tool improved the low performance and bad memory management for large XML data

structures of the XML parsing tools native with MATLAB; it is based in DOM (Document

Object Model).

The source code and documentation with practical examples are available online at

[Martins, 2009g] (url: http://www.rmartins.net/phd-docs/st02/).

http://www.rmartins.net/phd-docs/st02/
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(a) (b)

Figure 4.19: a) Section of HANDLE project website [HANDLE, 2009] presenting and
supporting the MATLAB annotation tool for multi-modal datasets. b) Snap shot of the
graphical interface of the MATLAB annotation tool for multi-modal datasets.

4.4.3 Annotation tool for multi-modal human grasping datasets

The dataset Dexterous manipulation of a laboratory pipette presented in section 4.3.1 was

annotated offline by several partners of the HANDLE project. To facilitate this task, an

annotation tool was developed using MATLAB. The MATLAB annotation tool presents

to the user a graphical interface displaying side-by-side two synchronized images from the

two Microsoft Kinect RGB cameras. The user performing the annotation employs the

two perspectives of the manipulation strategy to annotate the images with the types of

grasps and in-hand manipulation actions performed by the participant. The dictionary

of possible labels is presented on the graphical interface and follows the categories of

manipulation movements given in section 3.4. The MATLAB exports the annotations in

plain text or XML format.

The annotation tool is demonstrated in Figure 4.19a. The MATLAB code, doc-

umentation, and video tutorials are available online at [Martins, 2012c] (url: http:

//www.rmartins.net/phd-docs/st09/).

4.4.4 Instrumented Rubik cube: touch data visualization tool

An interactive and intuitive 3D visualization tool was developed to demonstrate the design

and touch sensing capabilities of the instrumented Rubik cube (presented in section 4.2.4).

The 3D model of a Rubik cube changes the color of each cell, as long as the corresponding

sensing element is pressed on the real cube. The visualization tool was developed in

Ubuntu, using the C++ OpenGL-GLUT library.

The 3D visualization tool was presented during the final demonstration of the HAN-

http://www.rmartins.net/phd-docs/st09/
http://www.rmartins.net/phd-docs/st09/
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Figure 4.20: Demonstration of the instrumented Rubik cube visualization tool during a
interactive session.

DLE project. The source code, tutorials for the installation of the CAN-BUS Linux drives,

and OpenGL-GLUT libraries used on this Linux C++ software project are available on-

line at [Martins, 2012a] (url: http://www.rmartins.net/phd-docs/st08/). A video

demonstrating a typical live interaction with the instrumented Rubik cube is available as

well [Martins, 2012a], and it is illustrated in Figure 4.20.

http://www.rmartins.net/phd-docs/st08/
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Chapter 5

Recognition of grasping primitives us-
ing tactile sensory data

5.1 Introduction

Over the past few years, several research fields (e.g. human-computer interface sciences,

crowd behaviour, medical rehabilitation, robotics, surveillance, and sport performance

analysis) have focused some of their attention on the understanding and analysis of human

behaviour and human motions [Aggarwal and Ryoo, 2011]. In robotics, the analysis of

human movements has been applied (among others) in research areas concerning the task

of learning by imitation of human demonstrations [Billard et al., 2008]. This approach was

motivated by principles described in several studies from human developmental sciences,

which propose that humans learn most of their skills by observing and analysing others

performing those tasks (observational learning) [Magill and Anderson, 2007].

Robot learning by human demonstration consists of using examples (successful and

failed) of a task performed by humans, to extract key-points and other types of con-

straints (e.g. velocities, contact intensity, and trajectories) and statistics (e.g. causal

dependencies, alternative redundancies, and contextual preferences). The data extracted

from the demonstrations is used to estimate several parameters of the model of the task

being learned.

The diversity of the demonstrations is essential to provide the robotic system with a

robust model of the task. The robustness of the model establishes the capability to deal

autonomously with (partially) new contexts (generalization capability). The approaches

based on the robot learning by human demonstration try to implement generalizable

models of the tasks, in contrast to the traditional approaches consisting of the full analytic

formulation and specification of the models.

The work presented in this chapter of the thesis intends to contribute to the devel-

opment of autonomous robotic hands by modelling the strategies used by humans to

manipulate objects using the intrinsic movements of the hand (fingers, palm), which is
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Table 5.1: Comparison between the contributions of this work and the related works

Study Task Model a Approach b Features c Application d

This Work SL P T HMA
[Delson and West, 1996] TL D F, M RPD

[Tso and Liu, 1996] TL P M RPD
[Calinon et al., 2007] TL P M RPD
[Kondo et al., 2011] SL D T RPD

[Bernardin et al., 2005] SL P T, M HMA
[Kruger et al., 2010] SL P M RPD

a SL- symbolic level; TL- trajectory level.
b P- probabilistic; D- deterministic.
c T- tactile based; F- force based; M- movement trajectories based;
d HMA- Human movement analysis; RPD- robotic platform development;

known as in-hand manipulation. This type of movements requires the complex coordi-

nated action of the fingers and palm. The temporal characteristics and sequence of the

contact between the object, fingers, and palm plays a crucial role in the stabilization of

the object being manipulated and consequently in the success of the manipulation task.

This work intends to contribute with the definition of a set of primitives to represent in-

hand manipulation movements, as well as the statistical relations between them, in order

to model different tasks of this class performed by humans; this is termed generalization

capability.

5.2 Related work

In the robotics research field, several approaches to solve the motion learning problem

from human demonstrations have been proposed [Billard et al., 2008]. Typically, the

proposed approaches can be grouped in two main categories.

One approach represents the movements at the trajectory level and generalizes the

representation of the movements through the extraction of statistical regularities from

several human demonstrations of the movements. Researchers [Tso and Liu, 1996] ap-

plied Hidden Markov Models to encode a training dataset built from a set of human

demonstrations. Given a human demonstration as input, the system reproduces the tra-

jectory of the training dataset with the highest likelihood. A simple approach was also

presented by [Delson and West, 1996] . The authors simply made a statistical analysis

of human demonstrations of a pick-and-place task and defined the range of Cartesian

trajectories that can be performed to achieve that task. Calinon [Calinon et al., 2007]

proposes to extract continuous constraints from a set of demonstrations, using different

initial positions of the object. The Cartesian trajectories of these demonstrations are

projected using Principal Component Analysis, and then the constraints are represented

through Gaussian Mixture Models. To reproduce the task, the constraints are reprojected

on the original data space, and the generalized version of the Cartesian trajectory is found
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Figure 5.1: Schematic representation of the typical contact signatures of different grasps.
Adapted from [Bernardin et al., 2005]. The boxes highlighted with orange border show
different demonstrations of the grasp. The green border highlights the regions of the hand
recruited to perform that type of grasp.

by estimating the trajectory that satisfies all the constraints. The approaches described

previously propose the learning and encoding of movements at the trajectory level.

This work follows an alternative class of approaches defined using a symbolic learn-

ing and encoding of manipulation movements, performing the supervised segmentation

and labelling of the primitives during the learning stage. Several works use Support

Vector Machines (SVM) to extract sequences of primitives from human demonstrations.

The output of the SVM, temporal sequences of labelled data, is combined with Hidden

Markov Models (HMM), which provides the most probable temporal sequence of primi-

tives [Vicente, 2007]. The HMM complements the initial sequence of primitives estimated

by SVM, which does not consider the temporal relations and dependencies between the

data elements.

[Kondo et al., 2011] proposes a method to describe in-hand manipulation movements

by recognizing a sequence of contact state transitions between the human hand and the

manipulated object. The recognition algorithm is based on a Dynamic Programming

approach by comparing the similarity of the contact state transition between an input

sequence and templates of manipulation primitives.

[Bernardin et al., 2005] describes a technique to recognize continuous human grasping

sequences using HMM. Twelve different grasp primitives are recognized, combining data

from palm tactile sensors and hand joint flexure levels from a data glove.
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Figure 5.2: Modular representation of the processes involved in the planning and execution
of a manipulation task. The representation is simplified to highlight the mechanisms
(grasping primitives based on contact signatures) supporting the approach proposed in
this chapter, Figure 5.3.

The work by [Kruger et al., 2010] presents the automatic extraction of action primitives

(without the necessity of presegmentation and manual labelling) and the corresponding

grammar from continuous movements of several human demonstrations of grasping tasks.

The approach considers that all the actions can be described by a set of elementary

building blocks (action primitives). A grammar (set of rules) defines how the action

primitives can be combined. The action primitives are represented by parametric HMM

(an extension of HMM). The extraction of the motion primitives from the movements also

considers the changes in object state.

Matsuo proposed a segmentation method of human manipulation task that measures

the contact force imposed by a human hand on the grasped object [Matsuo et al., 2009].

The work proposes a metric, whose values are used for segmenting a manipulation move-

ment into primitives. The temporal evolution of the metric is calculated from the contact

forces sensed at different regions of the hand, as long as the manipulation task progresses.

5.3 Approach overview

This work presents an approach to model the strategies underlying the in-hand manipula-

tion tasks performed by humans. The main contributions of this chapter are summarized

in Figure 5.3 and are detailed throughout the next sections of the manuscript.
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Several studies [Johansson and Flanagan, 2009], [Castiello, 2005] concluded that a gen-

eral human manipulation movement can be decomposed on different stages such as reach,

load, lift, hold, replace, and unload. The manipulation movements can be segmented

and represented as a sequence of primitives, which can be thought of as the elementary

building blocks of the task model. The temporal transition between different primitives

is made by specific events such as the variation of the intensity and extension of the

hand-object contact areas, variation of grip aperture, and type of grasp.

Human Subject

Perception and Cognitive Components

Action 
for Haptic Perception

Haptic Perception 
for Action

Recognition of the Grasping Primitive

Section 5.6 πgrasp
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P( Sk  | Gk , πgrasp)    gk

Human Demonstration of the Manipulation Task

Figure 5.3: Global architecture of the approach proposed in this chapter. The main con-
tributions (description of the sensing apparatus, grasp interaction encoding, and inference
of grasping primitives) are highlighted in bold and presented in sections 5.4, 5.5, and 5.6,
respectively. The variables representing the flow of the data are detailed in Table 5.2.

Table 5.2: Summary of the relevant variables used in this chapter

Variable Description Domain
k Time iteration N0

hk Tactile sensing output of the instrumented hand. (360
elements)

R360, hi ∈ [0, 255]

h
′i
k Tactile sensing output of the instrumented hand (15

cluster regions)
R15, h

′i ∈ [0, 255]

Gk Category of the grasping primitive {Primitive1, . . . , P rimitive7}
Sk Tactile activation descriptor of the instrumented hand. Si ∈ {”NotActive”, ”LowActive”,

”HighActive”}

The approach described in Figure 5.3 models the in-hand manipulation tasks by a
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temporal sequence of primitives. The in-hand manipulation movements are performed to

reorient and to repost the manipulated object, which require the change of the type of

grasp applied to the object and a precise contact interaction between the object and the

hand.

Each type of grasp can be characterized by a specific hand-object contact signature

(Figure 5.1), resulting from the interaction of the hand and the object during that period of

the task. Thus, the in-hand manipulation task can be described by a temporal sequence of

the contact signatures corresponding to different types of hand configurations interacting

with the object. The primitives used to model the in-hand manipulation task are defined

on the tactile sensing domain.

For each primitive, the spatial configuration of the contact signatures is stored, as

well as the force intensities for each region of the hand. These parameters characterizing

each primitive can then be used as control states, described by the tactile intensity and

hand locations, during the transfer of these skills to a robotic platform with manipulation

capabilities.

The flow of the data is summarized in Figure 5.3. The human demonstrator performs

an in-hand manipulation task using an instrumented data glove equipped with tactile

sensors distributed on the hand palm and finger surface region. The haptic sensory data

output is presented in section 5.4. The descriptor used to encode the grasping interaction

is detailed in section 5.5. During the execution of the task, a sequence of the elementary

primitives, selected among the set of pre-defined primitives, is extracted from the raw

data provided by the data glove. The detection of primitives is performed by a Bayesian

model detailed in section 5.6. The set of pre-defined primitives is shown in Figure 5.5.

The set of task primitives is defined and learned a-priori from human demonstrations.

The diversity of the demonstrations promotes the exploration of the variability of the

strategies used by humans to perform the same task. The essential primitives of those

strategies will emerge as permanent elements. Then, it is possible to build the temporal

and functional relations between those elements to find a canonical representation of

those strategies. This canonical representation of different in-hand manipulation tasks

and the learned parameters describing each of the primitives can be transferred to robotic

platforms (not addressed in this thesis).

5.4 Haptic sensory data

This work considers that the hand of the participant manipulating the object is instru-

mented with a data glove, which is equipped with a distributed tactile sensing array

throughout the hand surface (palm and fingers). The methods presented in this work
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were formulated considering the Tekscan Grip (Tekscan Inc, Boston, MA, U.S.) tactile

sensing array (Figure 5.4). However, the proposed approach can be adapted easily to

other types of tactile sensing devices.

During a manipulation task, at each time interaction k , the instrumented hand inter-

acts with the object, producing the haptic sensory output presented in equation 5.1.

hk = (h1, h2, . . . , h360)

h1, h2, . . . , hN ∈ [0, 255] (5.1)

The variables h1, h2, . . . , h360 represent the raw tactile sensing outputs of each of the

360 elements of the tactile sensing array. The output of each of the Tekscan Grip sensing

elements is an eight-bit integer (equation 5.1).

The sensing outputs are used to encode (section 5.5) and categorize (section 5.6.2)

different classes of grasping primitives.

2

1
14

6

10

3

7

11

4

8

12

5

9

13

15

Region i

Figure 5.4: Representation of the fifteen spatial segments Regioni and their correspon-
dence with the sensing elements of the instrumented glove.

5.5 Encoding of the grasping interaction

This section proposes the descriptor used to model the tactile sensing signatures produced

during the interaction between the instrumented hand and the manipulated object. The

tactile sensing device Tekscan Grip consists of 360 sensing elements distributed by the

hand palm and finger surface, as presented in Figure 5.4. This work groups the 360

sensing elements in 15 regions (highlighted in red, Figure 5.4).
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The contact sensing output of each of these 15 regions Regioni of the hand is described

by the variable presented in equation 5.2 .

h
′

k = (h
′1, h

′2, . . . , h
′15)

h
′1, h

′2, . . . , h
′15 ∈ [0, 255] (5.2)

The variable h
′i (equation 5.3 ) represent the mean output of the tactile sensing ele-

ments hj belonging to the Regioni of the instrumented hand shown in Figure 5.4.

h
′i = mean( {∀j∈Regioni

hj} ) (5.3)

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Human demonstration of the grasping primitives: a) Primitive1, b)
Primitive2, c) Primitive3, d) Primitive4, e) Primitive5, f) Primitive6. Primitive7

corresponds to a grasp in which the hand does not contact the object.
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5.6 Recognition of the grasping primitive

5.6.1 Random variables of the model

The Bayesian model πgrasp presented in this section is used to discriminate different types

of grasp primitives during a manipulation task. A grasping primitive recognized by the

system, at time iteration k, is represented by the discrete random variable Gk, described

in equation 6.8.

Gk − ”Category of the grasping primitive.”

Gk ∈ {”Primitive1”, . . . , ”Primitive7”} (5.4)

This work considers that the system is able to recognize seven different grasping prim-

itives (equation 5.4). Six of these grasping primitives are demonstrated in Figure 5.5.

The remaining one, ”Primitive7”, corresponds to the situation when there is no contact

between the hand and the object.

The subset of seven grasping primitives was selected from an extended set of grasping

primitives presented in chapter 3. This subset was considered representative for the type

of manipulation tasks proposed in this work.

During each time iteration k, the interaction of the instrumented hand equipped with

the tactile sensing array and the manipulated object is described by the sensory output

h
′

k presented in equation 5.2. The level of tactile activation of each of those 15 regions h
′i

during the manipulation task is described by the discrete random variable Si presented

in equation 5.5.

Sk − ”Tactile activation descriptor of the instrumented hand at instant k.”

Sk = (S1, S2, . . . , S15)

Sik ∈ {”NotActive”, ”LowActive”, ”HighActive”} (5.5)

The tactile activation levels NotActive, LowActive, and HighActive are defined as

proposed in equation 5.6.
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”NotActive” : h
′i ∈ [0, 10]

”LowActive” : h
′i ∈ [11, 190]

”HighActive” : h
′i ∈ [191, 255] (5.6)

The 3 levels of discretization of the contact intensity are considered appropriate to

characterize and distinguish the fundamental functional levels of mobilization of the dif-

ferent regions of the hand. The proposed contact activation levels are used to distinguish

different stages of the interaction between the hand and object. Regions of the hand

corresponding to NotActive are involved in pre-grasp segments of the manipulation task

and in transitions between consecutive re-grasp. LowActive regions participate in initial

contact with the object and are partially involved in a stage of the manipulation task.

HighActive regions are highly involved in stabilization of the object.

5.6.2 Inference of the category of grasping primitive

The inference of the category of the grasping primitive Gk at each time iteration step k

is performed by the Bayesian model πgrasp presented in Figure 5.6a.

Based on the statistical independence relations between the random variables Gk and

Sk described in Figure 5.6a, the joint probability distribution function P (Gk,Sk|πgrasp) is

decomposed as summarized in Figure 5.6b and presented in equation 5.7.

P (Gk,Sk|πgrasp) = P (Sk|Gk, πgrasp)P (Gk|πgrasp) (5.7)

The factor P (Sk|Gk, πgrasp) expresses the likelihood of a specific grasping contact pro-

file, given a category of grasping primitive. This probability distribution function is

modelled by a histogram function as described in detail in section 5.6.3. The factor

P (Gk|πgrasp) expresses the a-priori probability distribution function of the category of

the grasping primitive. In this work, P (Gk|πgrasp) is modelled by a uniform probability

distribution function.

The category of grasping primitive Gk is inferred by running the Bayesian program

described in Figure 5.6b with the question proposed in equation 5.8.

P (Gk|sk, πgrasp) =
P (sk|Gk, πgrasp)P (Gk|πgrasp)∑

Gk

P (sk|Gk, πgrasp)P (Gk|πgrasp)
(5.8)
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(b)

Figure 5.6: Description of the Bayesian model πgrasp ”Recognition of the grasping primi-
tive”. a) Graphical representation. b) Bayesian program.
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The estimated category of the grasping primitive ĝk is given by equation 5.9 via Max-

imum a-Posteriori decision rule (MAP).

ĝk = arg max
Gk

P (Gk|sk, πgrasp) = arg max
Gk

P (sk|Gk, πgrasp)P (Gk|πgrasp) (5.9)

5.6.3 Determination of P (Sk|Gk, πgrasp)

The parameters of the histogram function modelling the probability distribution function

P (Sk|Gk, πgrasp) are learned during a training period. Each of the grasping primitives Gk

is demonstrated for a pre-defined number of training runs. For each training run, the cor-

responding contact signature of the instrumented hand Sk is acquired. After completing

the training runs, the parameters of the histogram function are statistically estimated.

This methodology is demonstrated during the presentation of the experimental results

(section 5.7.2).

5.7 Experimental results

5.7.1 Experimental setup

During the Human demonstrations of the in-hand manipulation tasks, the subject wears in

the right hand an instrumented glove (Cyberglove II ) with a tactile sensing array (Tekscan

Grip System) attached to the palm and fingers.

The objects that are placed on the top of a table are manipulated only with one hand

(right hand). The subject is seated during the demonstration of in-hand manipulation

tasks. The data from the tactile sensing array is sampled at 500 Hz. The configuration

of the tactile sensing array, as well as the typical configuration of the experimental area

during the task demonstration, are shown in Figure 5.8.

5.7.2 Learning of the grasping primitives P (Sk|Gk, πgrasp)

During the training period, a participant performs five runs demonstrating each of the

seven grasping primitives, illustrated previously in section 5.6. The data acquired from

the demonstrations is used to estimate the parameters of the probability distribution

function P (Sk|Gk, πgrasp) for each primitive Gk. The results of the learning stage of the

grasping primitives are shown in Figure 5.7.
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Figure 5.7: Illustration of the probability distribution function P (Sk|Gk, πgrasp) learned
from the human demonstration data (training period). a) Primitive1. b)Primitive2.
c)Primitive3. d)Primitive4. e)Primitive5. f)Primitive6. g)Primitive7. h) Colormap
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5.7.3 Detection of grasp primitives in manipulation tasks

The approach proposed in section 5.6, to segment a human manipulation task as a se-

quence of grasping primitives, was tested for two different tasks, as shown in Figure 5.8.

(a)

(b)

Figure 5.8: Human demonstration of the tasks. a) Task I: ”Mug reorientation”. b) Task
II: ”Mug displacement/elevation”.

During the execution of both tasks, the participant is seated comfortably in front of a

table. A mug is placed on top of the table in its initial configuration.

In Task I: ”Mug reorientation”, the participant rotates the mug around the longitudi-

nal axis. This rotation moves the the handle of the mug to a pose suitable to be grasped

by the right hand of the participant (Figure 5.8a).

In Task II: ”Mug displacement/elevation”, the participant grasps the mug and elevates

it along the direction of the longitudinal axis. The participant finishes the task by placing

the mug back on the table (Figure 5.8b).

The data acquired during the demonstrations of the two tasks was segmented and

time-averaged using a time window of 500 ms. Each time iteration k corresponds to a

temporal segment of the sensory data.

The results of the segmentation of the data and recognition of grasping primitives are

presented in Figure 5.9 (Task I: ”Mug reorientation”) and Figure 5.10b ( Task II: ”Mug

displacement/elevation”). In both tasks, the first segments are categorized as Primitive7.

The human hand is not contacting the object yet. The segments correspond to the reach-

to-grasp stage, when the hand moves toward the object which will be manipulated.

The runs of Task I: ”Mug reorientation” (figure 5.9) were segmented, by the Bayesian

model πgrasp, on a cyclic sequence of grasping (Primitive1, Primitive5) and releasing

(Primitive7) the object. The sequence was used to reorient the mug placed on top of
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Figure 5.9: Grasping primitives ĝk inferred from the data acquired during the execution
of Task I: ”Mug reorientation”. a) Run 1. b) Run 2. Colormap represented in figure 5.7h.
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Figure 5.10: Grasping primitives ĝk inferred from the data acquired during the execution
of Task II: ”Mug displacement/elevation”. a) Run 1. b) Run 2. Colormap represented in
figure 5.7h.

the table. The sequence of grasp-release allows the participant to reposition the hand on

the object, adapting the grasp configuration to the new pose of the object. This strategy

promotes the maximization of the effect of the subsequent grasp primitive actuating the

object. The regions of the fingers recruited during the reorientation of the mug are pre-

dominantly the distal segments of the index, thumb, and middle fingers. These grasping

primitives are involved in actions requiring the fine and precise control of the movements

of the object: precision grasps.

The runs of Task II: ”Mug displacement/elevation” (Figure 5.10) were segmented, by

the Bayesian model πgrasp, on a continuous sequence of grasping primitives (Primitive3,

Primitive5). Due to the objective of the task (object displacement), the object was

not reoriented. The grasping primitives modelling the strategy are characterized by the

recruitment of larger extensions and with more intensity of the palm and surface of the

fingers. These primitives provide powerful grasps, contributing to the stability of the

execution of the task: power grasps.
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5.8 Conclusions

This work presents an approach to modeling the mechanisms underlying the strategies

performed by humans to perform manipulation tasks requiring the in-hand manipulation

(reorientation and repositioning) of objects. The description and representation of the

tasks is made symbolically by using a set of primitives defined on the tactile domain.

Each primitive represents a specific spatial distribution of tactile force intensities across

the palm and fingers.

The Bayesian model πgrasp was able to categorize different types of grasping primi-

tives using as input only the hand-object contact interaction signature. The sequence of

primitives modelling two different manipulation tasks was inferred by the Bayesian model

πgrasp. Task I required regrasping and precision grasps. Task II was demonstrated using

power grasps.
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Chapter 6

Categorization of soft objects during
haptic exploration tasks

6.1 Introduction

Due to the introduction of robotic platforms in new types of environments (chapter 1),

the principles and demands guiding the implementation of robotic platforms are changing.

The robotic systems need to interact autonomously with a wide variety of objects (size,

shape, compliance, and texture) [Feix et al., 2014]. The work presented in this chapter is

focused on the study of objects with different hardness-softness properties [Tiest, 2010].

Typically, the autonomous planning of a robotic manipulation task starts by the es-

timation of an initial model of the object, through the extraction of features from the

vision data, as described in chapter 2 and [Bohg, 2011]. The initial estimation of dis-

tance to object, shape affordances, and other characteristics of the surface is based on

previous perceptual experiences. It allows the robot to infer several parameters of the

reach-to-grasp movement and initial grasp required to hold the object without slipping.

The contributions presented in this chapter are associated with the manipulation move-

ments happening after this initial interaction. When the perceived model representing the

object is not sufficiently informative to perform the required task, the system uses the

robotic hand to explore the object progressively. The haptic exploration movements are

used to perceive complementary properties of the object such as hardness, texture, weight,

shape, and temperature (chapter 3).

This chapter presents a probabilistic spatial framework suitable to integrate multi-

modal data (vision, tactile, and motion) acquired during the interaction with an object.

The multi-modal data is used to build a perceptual model of the manipulated object

and infer the category of material being explored. The categories of material considered

in this chapter have different perceived hardness characteristics. In terms of hardness

characteristics, this work considers the perception that the robotic hand receives when

it interacts with objects made of compliant materials. The methods proposed in this
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chapter do not achieve a full, precise, and universal characterization of the objects as

studied in materials science (stiffness, Young’s modulus, mass spring system, finite element

methods). The approach presented in this chapter formulates a descriptor defined from

features extracted during the interaction between an exploratory element and a surface,

to discriminate different objects using its previous knowledge about a finite set of objects.

The description of the perceived hardness can contribute to the discrimination and

recognition of objects and adapt the manipulation strategies accordingly.

6.2 Related works

The study of deformable objects has been a research field explored extensively in very

different areas: computer vision [Dufour et al., 2011] (tracking, reconstruction, and recog-

nition), computer graphics [Garre et al., 2011] [Ni et al., 2011] (primarily for rendering

purposes), industrial materials sciences (very restricted and controlled tests and applica-

tions labs or clean rooms with high-accuracy measurement devices), medicine [Liu et al.,

2010a] [Ni et al., 2011] (organ analysis and anatomical abnormality detection, virtual

haptics simulation for medical training).

Table 6.1: Comparison between the contributions of this work and the related works

Study Apparatus Haptic Perception

Platform a Sensing b Approach c Features d

This work HH HS P CI, CD
[Okamura et al., 2001] RS HS D C

[Oddo et al., 2011] RS HS D V, T
[Hongbin Liu, 2011] RS HS P F

[Fishel and Loeb, 2012] RS HS P CD, CI, V, H
[Hui and Kuchenbecker, 2014] RS HS D CI, CD

[Xu et al., 2013] RS HS P CI, V, T
[Faria et al., 2012] HH HS, VS P C, L

[Chitta et al., 2011] RS HS D CI
[Frank et al., 2010] RS HS, VS D L, CI, CD

a RS- robotic system; HH- human hand.
b HS- haptic sensing; VS- visual sensing.
cP- probabilistic; D- deterministic.
d T- texture; C- curvature; F- friction coefficient; L- RGBD cloud points; CI- contact intensity; CD-
contact indentation; V- micro-vibration; H- heat flow.

Typically, soft objects can be represented by 3D computational models in the discrete

(e.g. mass spring systems) or continuous (e.g. finite element methods) domain. This type

of computational model provides an accurate description of the dynamics of soft objects.

However, the elaboration of this type of model by an autonomous robotic platform faces

several challenges and constraints.

Some experimental conditions of the material sciences laboratories are difficult to repli-

cate in the context of autonomous robotic manipulation (restrictions on hardware design:

hand dexterity, calibration accuracy of tactile and vision sensors, real-time computational
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power, and energy efficiency). Additionally, autonomous robotic platforms must deal with

the uncertainty associated with the dynamics of the environment and noise of the data

measurements.

In the cognitive autonomous robotic manipulation field, different approaches have been

proposed to improve the perceived representation of the object during the manipulation

and exploration tasks. Some approaches are dedicated to the estimation of the surface

characteristics of the object, such as texture and stickiness. [Hongbin Liu, 2011] proposes

an algorithm to categorize objects using the surface friction properties. The friction

coefficients of the surfaces are estimated from force and torque data sensed by a robotic

finger.

The work by [Oddo et al., 2011] proposes the design of a robotic fingertip with an

artificial haptic perception system for surface texture discrimination. [Okamura et al.,

2001] proposes a method to identify different types (cusp, step, and bump) of surface

features during the lateral sliding of a robotic finger.

Recently, several works have used the Biotac robotic fingertip to discriminate objects.

This compact device replicates the anatomic characteristics of a human fingertip, being

capable of sensing temperature, micro-vibration, and pressure. [Fishel and Loeb, 2012]

applied lateral sliding movements of a metallic bar equipped with Biotac to recognize

different textures. The work also studied the impact of velocity and pressure of lateral

sliding movement to the performance of the system. The work by [Hui and Kuchenbecker,

2014] used the Biotac device integrated on the tip of a probe to explore simulated sam-

ples of tissues. Haptic palpation was used to recognize lumps on tissues by integrating

pressure and indentation depth features. The work of [Xu et al., 2013] integrates Biotac

fingertip on a Shadow robotic hand and performs two types of exploratory movements

to extract three type of haptic features: texture (lateral sliding movement), compliance

(palpation/press-and-release), and heat flow (palpation/press-and-release). These three

features are integrated simultaneously to discriminate different classes of objects.

Other works are focused on representing the perceived shape of the object to find

suitable regions for stable grasping. [Faria et al., 2012] builds a volumetric representation

of the shape of the object as long as the object is progressively explored. The repre-

sentation is decomposed in volumetric primitives, and the best elementary regions for

stable grasping are identified based on human demonstrations. [Chitta et al., 2011] infers

the internal state (empty, full, open, closed) and recognizes objects using deformation

signatures during a haptic exploration task. The approach only uses tactile data.

The work of [Frank et al., 2010] tries to integrate information from a vision and

force/torque sensing system to estimate the elasticity properties of objects during a haptic

exploration task. The work establishes a relation between the deformation induced by the
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robotic end-effector and the intensities of the sensed forces. Different objects have distinct

deformation / force intensity signatures. The work does not use a dexterous robotic hand

to interact with the object. A rectangular bar is used to explore the environment.

The motivation for this work is introduced in section 6.1. The proposed approach is

summarized in section 6.3 and compared with related works in Table 6.1.

ActionPerception

Haptic Stimulus 
Detection

Environment
(haptic stimulus)

Motor Reaction
Generation

Memory

ActuationSensing

High Level
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Functions

Sensory
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Memory

Task Objectives
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Signal Pre-Processing Motion Controllers
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Motor Commands
(low-level representation)

Figure 6.1: Schematic representation of the action-perception loop involved in the haptic
exploration of surfaces. The elements highlighted with bold border are discussed in this
chapter.

6.3 Approach overview

To endow the robotic systems with the capability to recognize and categorize distinct

materials (different hardness-softness properties), the approach presented in this chapter

analyses the principles and strategies used by humans to perform such types of tasks. The

capability to discriminate the materials results from the integration of different types of

haptic data.

During the haptic exploration tasks, the perception and discrimination of hardness-
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Figure 6.2: Global architecture of the approach presented in this chapter. The main con-
tributions are identified and referenced in the scheme (description of the sensing appara-
tus, estimation of the contact interaction parameters, local perception of haptic stimulus,
and post-processing of haptic stimulus map). The variables involved in the flow of data
are summarized in Table 6.2.

Table 6.2: Summary of the relevant variables used in this chapter

Variable Description Domain
v Cell of the workspace grid. R2

k Time / exploration iteration. N0

h(v,k) Raw haptic sensing data acquired on v. Rn ∗

cP Contact sensing: intensity. R+
0

cA Contact sensing: area. R+
0

cD Contact sensing: indentation distance. R+
0

M(v,k) Material category of v {Material1, . . . ,Material3}
A(v,k) Cutaneous contact interaction parameters. R2

N(v,k) Kinesthetic contact interaction parameters. R2

H(v) Entropy of the grid cell v. R
∗ In this work, the description of the sensory apparatus of the instrumented hand platform follows a
generic formulation. In this context, n represents the dimensionality of the raw sensing data provided
by the haptic sensory apparatus of the robot.
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softness characteristics of objects depends on the simultaneous integration of cutaneous

and kinesthetic information by performing ”press-and-release” movements [Lederman and

Klatzky, 1987] - active haptic perception. This haptic exploration strategy and integra-

tion of multi-modal data was demonstrated by psychophysical experiments performed in

[Srinivasan and LaMotte, 1995] and [Lederman and Klatzky, 1987], respectively.

As described in detail in chapter 3 and shown using a simplified representation in

Figure 6.1, several types of haptic features can be extracted from the cutaneous and

kinesthetic data. In this chapter, the human hand is instrumented with a tactile sensing

array and a motion tracking system, described in section 6.4.

The haptic data is subjected to a feature extraction processing pipeline formulated

in chapters 6.5.1 (extraction of contact sensing features) and 6.5.2 (extraction of contact

interaction parameters). The features extracted in the previous stages are integrated by

the Bayesian model πhaptic ”Local Perception of the Haptic Stimulus” (chapter 6.6).

The Bayesian model πhaptic infers and updates the category of material describing the

region of the workspace which was explored. The workspace is represented by a planar 2D

probabilistic (inference) grid (details about this representation framework are provided in

chapter 2). The description of the perceived category of material is updated after each

haptic exploration iteration step, integrating new sensory inputs on the haptic processing

pipeline and on the Bayesian model πhaptic.

This representation framework is suitable to integrate noisy multi-modal sensory in-

puts from multiple exploratory elements (dexterous robotic hands). The grid also allows

the representation of non-homogeneous objects/surfaces.

In this chapter, a exploration iteration step corresponds to a press-and-release ex-

ploration movement. This is the exploration pattern used to extract hardness-softness

properties of objects (literature review presented in chapter 3). The perceived spatial

representation of the object is improved and optimized using methods presented in sec-

tion 6.7.

In the approach proposed in this chapter, the press-and-release movements are per-

formed at pre-defined locations of the workspace. In the next chapter of this thesis

(chapter 7), the the regions of the workspace which are going to be explored next are in-

ferred online and autonomously as the exploration progresses (closes the action-perception

loop).

6.4 Haptic sensory data

During the haptic exploration of an object, the sensory apparatus interacts with the object

producing raw sensory outputs represented by the variable h(v,k). The type of sensory
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Figure 6.3: Partial representation of the bidimensional grid framework, which is used to
describe the workspace region (e.g.: sponge object).

outputs h(v,k) produced during the exploration process is dependent on the technology and

design of the sensing apparatus (force, torque, tactile, temperature, vibration; single point,

array), as well as the type of movement strategy used to perform the haptic exploration.

The methods proposed in this chapter are defined following a generic formulation.

This work considers that the agent involved in the exploration process is equipped with

a tactile sensing array and that the exploration strategy consists of a sequence of ”press-

and-release” (palpation) movements.

Thus, at each time iteration k, the haptic sensory output resulting from the interaction

between the exploratory element and the material at the region v of the workspace is

described by the variable presented in equation 6.1.

h(v,k) = (h1, h2, . . . , hN , hX , hY , hZ)

h1, h2, . . . , hN ∈ R+
0 , hX , hY , hZ ∈ R (6.1)

The variables h1, h2, . . . , hN , represent the tactile sensing outputs of each of the N

elements of the tactile sensing array. The outputs hi express the contact intensity sensed

by each element of the array. The Cartesian coordinates of the end-effector of the explo-

ration system are expressed in the inertial reference frame {W} and represented by the

variables hX , hY , hZ .

A cell v of the bidimensional grid and the inertial reference frame {W} are illustrated

in Figure 6.3.
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hZ0

hZ
cD cA

press-and-release movement

cP

Figure 6.4: Schematic representation of the contact sensing variables extracted during the
haptic exploration of a surface. Variables described in section 6.5. Image adapted from
[van Kuilenburg et al., 2013].

6.5 Pre-processing of the haptic sensory data

6.5.1 Determination of the contact sensing features cP , cD, cA

The sensory outputs h(v,k) presented in equation 6.1 are processed to extract features

modelling the contact interaction behaviour of the material. A description of the contact

sensing features is presented in Figure 6.4.

The total intensity of the contact is described by the variable cP presented in equation

6.2. This variable corresponds to the total sum of the individual outputs of the elements

hj of the tactile array.

cP =
N∑
j=1

hj (6.2)

As long as the ”press-and-release” exploration movement is performed, the area of the

tactile sensing array contacting the surface of the object changes. This area is described

by the variable cA described in equation 6.3 .
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cA = ϑha

ϑ = #{∀hj : hj > 0}

cA ∈ [0, Nha] (6.3)

The total area of contact interaction is determined by the number of active tactile

sensing elements of the array, ϑ, and the area, ha, of each element of the array, as described

in equation 6.3. A sensing element of the tactile array is considered active if its individual

output hj is higher than zero (equation 6.3). This means that if a sensing elements is

contacting the object, the sensing element is active.

In this work, the objects to be explored are made of soft materials. Thus, during a

”press-and-release” exploration movement, the deformation of the surface of the object

can be described by the variable cD, as shown in equation 6.4 and illustrated in Figure

6.4.

cD = hZ − hZ0

cD ∈ R+
0 (6.4)

This work considers that the ”press-and-release” exploration motion is performed uni-

axially along the Z axis of the inertial reference {W}. Considering this, cD measures the

indentation distance, hZ , of the exploratory element relative to the point where it made

the initial contact with the natural surface of the object, hZ0 .

The contact sensing features cA, cP , cD extracted from the haptic sensory data h(v,k)

are used as input to the estimation of the contact interaction parameters described in

section 6.5.2.

6.5.2 Estimation of the cutaneous and kinesthetic interaction

parameters

During a ”press-and-release” exploration movement, several samples of the features cA,

cP , cD are acquired. The profile represented by the set of the corresponding data points

(cA, cP , cD) encodes relevant information about the haptic characteristics of the material

being explored and can be used to discriminate different classes of materials.

The categorization of different materials based on their contact interaction signature

can be performed by integrating two different sources of information. As demonstrated by

[Scilingo, 2010], the simultaneous integration of information related to cutaneous tactile
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sensing (relation between contact intensity and contact area) and information related

to kinesthetic sensing (relation between contact intensity and contact indentation level)

during a haptic exploration task, is essential to perceive and discriminate soft materials

based on their haptic properties. This multi-modal integration is also essential to resolve

some ambiguities which can occur if each of type of information is used separately.

Considering an exploratory element with a spherical design [Scilingo, 2010] (e.g.: hu-

man fingertip), the cutaneous component of the contact interaction signature is described

by the relation presented in equation 6.5.

cP = a1c
3
2
A + a2

a1, a2 ∈ R (6.5)

The kinesthetic component in the contact interaction signature is described in equation

6.6 .

cP = n1c
3
2
D + n2

n1, n2 ∈ R (6.6)

The constants a1, a2 and n1, n2 are the cutaneous and kinesthetic interaction parame-

ters, respectively. These parameters are different for each class of materials. They encode

the signature of the dynamic behaviour of the material during a ”press-and-release” ex-

ploration movement. The behaviour is related to the haptic properties of that material.

The parameters can be used as descriptors of the class of the materials to discriminate

objects made of different materials.

Given some data cA, cP , cD resulting from a ”press-and-release” exploration move-

ment, the parameters a1, a2 and n1, n2 are estimated using the method MLE (Maximum

Likelihood Estimation). The general goal of this method is to identify the parameters of

the models presented in equations 6.5 and 6.6 which are most likely to have generated the

set of data points cA, cP , cD.

The next section presents the Bayesian model proposed in this chapter to discriminate

different classes of materials.

6.6 Perception of the haptic stimulus map

This section proposes a Bayesian model to infer the perceived category of haptic stimulus

(class of material) from the contact and kinesthetic interaction parameters extracted
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P (N(v,k)|M(v,k), πhaptic) ≡ NN(µN(M), σN(M))

P (A(v,k)|M(v,k), πhaptic) ≡ NA(µA(M), σA(M))

For k = 0:

Map initialization.

P (M(v,0)|πper) ≡ Uniform

For k > 0:

Map update using previous state information.

P (M(v,k)|πper) = P (M(v,k−1)|n(v,k−1), a(v,k−1), πhaptic)
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- Constants defined during the learning stage.

Question:

P (M(v,k|n(v,k), a(v,k), πhaptic)

(b)

Figure 6.5: Bayesian model πhaptic Perception of the haptic stimulus map. a) Graphical
representation. b) Bayesian program.
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from the sensory data h(v,k). The Bayesian model πhaptic is presented in Figure 6.5a

and described in detail in the next sections.

6.6.1 Random variables of the model

The perceived category of the haptic stimulus is modelled by the discrete random variable

M(v,k), as described in equation 6.7. N is the total number of different materials which

can be discriminated by the system.

M(v,k) − ”Material category of v”

M(v,k) ∈ {Material1, . . . ,MaterialN} (6.7)

In this Bayesian model, the information about the cutaneous contact interaction is

integrated by the continuous random variable A(v,k), detailed in equation 6.8.

A(v,k) − ”Cutaneous contact interaction parameters”

A(v,k) = (a1, a2)

A(v,k) ∈ R2 (6.8)

Conversely, the information encoded by the kinesthetic interaction parameters is de-

scribed by the continuous random variable N(v,k), presented in equation 6.9.

N(v,k) − ”Kinesthetic contact interaction parameters”

N(v,k) = (n1, n2)

N(v,k) ∈ R2 (6.9)

The description and methods used to determine the parameters a1, a2, n1, n2 from

the haptic sensory data h(v,k) are presented in section 6.5.2.

6.6.2 Inference of the haptic stimulus category

Figure 6.5a shows a graphical representation of the Bayesian model proposed in this chap-

ter. It describes the statistical independence relationship between the random variables

M(v,k), A(v,k) and N(v,k) of the model. Considering the relations presented in Figure 6.5a,

the joint probability distribution function P (M(v,k), N(v,k), A(v,k)|πhaptic) can be decom-
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posed as presented in Figure 6.5b and equation 6.10.

P (M(v,k), N(v,k), A(v,k)|πhaptic) =

= P (N(v,k)|M(v,k), πhaptic)P (A(v,k)|M(v,k), πhaptic)P (M(v,k)|πhaptic) (6.10)

The factors P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic) express the likelihood of

having specific measurements of kinestethic n(v,k) and cutaneous a(v,k) contact interaction

parameters for a given type of material (haptic stimulus) M(v,k). P (M(v,k)|πhaptic) is the

a-priori probability of exploring a specific type of material.

The probability distribution function modelling the category of the haptic stimulus

(type of material) is formulated from equation 6.10, as described in equation 6.11.

P (M(v,k)|n(v,k), a(v,k), πhaptic) =

=
P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k), πhaptic)∑

M(v,k)

P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k), πhaptic)
(6.11)

The category of the haptic stimulus is inferred using the Maximum a-Posteriori (MAP)

decision rule, as described in equation 6.12.

m̂(v,k) = arg max
m(v,k)

P (M(v,k)|n(v,k), a(v,k), πhaptic)

m̂(v,k) = arg max
m(v,k)

P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k)|πhaptic) (6.12)

Each of the factors involved in the inference of m̂(v,k) is modelled by a probability

distribution function presented in Figure 6.5b and detailed in section 6.6.3.

6.6.3 Determination of P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

The probability distribution functions P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

are normal probability distribution functions. Thus, both are modelled by bi-dimensional

Gaussian functions as described by equations 6.13 and 6.14.

P (N(v,k)|M(v,k), πhaptic) ≡ NN(µ(M),Σ(M)) (6.13)
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P (A(v,k)|M(v,k), πhaptic) ≡ NA(µ(M),Σ(M)) (6.14)

For each of the reference materials M(v,k) recognized by the system, the mean µ and

covariance matrix Σ of the functions NN and NA are learned during a training period.

In this training period, a sample of each reference material recognized by the system

is explored during several ”press-and-release” movements. The (cP , cA, cD) data acquired

during each of the ”press-and-release” cycles are used to determine the contact interac-

tion parameters (a1, a2) and (n1, n2) for that material, using the Maximum Likelihood

Estimation (MLE) method.

After a pre-defined number of press-and-release cycles, the average µ values of (a1, a2)

and (n1, n2) are determined, as well as the respective covariance matrix Σ.

6.7 Post-processing of haptic stimulus map

As mentioned in the previous section, the haptic properties of the objects explored in the

workspace are represented using a probabilistic (inference) grid. The formulation of this

type of representation framework (analogous to an occupancy grid) considers that the

representation of each grid cell v is independent from the remaining cells v of the grid

(see details in section 2). This assumption frequently originates from unexplored grid cells

having high uncertainty, even if those regions are surrounded by cells which were explored,

having an informative haptic description assigned to them and thus a lower uncertainty.

This section proposes a method which is applied to the final haptic stimulus map

provided by the Bayesian model πhaptic presented in section 6.6. The methods proposed

in this chapter consider some constraints derived from the physical world. The physical

world (explored object) has spatial structure; thus, it is expected to find local spatial

continuity in the haptic perceptual characterization of contiguous grid cells.

The methods proposed in this section improve the perceptual representation of the

haptic properties of the object by estimating the representation of unexplored grid cells

based on the representation of neighbour cells which were explored.

The set of unexplored grid cells is defined by the variable ϑunexpl. The haptic descrip-

tion of an unexplored cell is estimated as the weighted mean of the haptic description of

the eight grid cells surrounding that cell, as described in 6.15.
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∀v ∈ ϑunexpl, P (M(v,k)|N(v,k), A(v,k), πhaptic) =

∑8
j=1

1
H(vj)

P (M(vj,k)|N(vj,k), A(vj,k), πhaptic)∑8
j=1

1
H(vj)

(6.15)

H(vj) is the entropy of the grid cell vj (more details in chapter 2). The weights 1
H(vj)

of the extrapolation method assign a higher contribution to the representation of grid cells

with lower entropy H(vj) (less uncertainty). vj represents each of the eight neighbour

cells of v. The determination of the entropy of a random variable is detailed in section 2.

6.8 Experimental results

6.8.1 Experimental setup

The methods proposed in this work were tested using a human hand as exploration agent.

The right hand of the participant was instrumented with a tactile sensing array Tekscan

Grip System (Tekscan Inc, Boston, MA, U.S.) and a motion tracking system Polhemus

Liberty (Polhemus Inc, Colchester, VT, U.S.). The instrumented hand is shown in Figure

6.6b.

The tactile sensing array is attached to the surface of the fingers using glue tape. It

provides information about the spatial configuration of the regions of the hand contacting

the object, the intensity, and the area of contact (cutaneous information). In this work,

only one pad (array with 16 = 4 × 4 sensing elements) of the Tekscan Grip System is

attached to the index fingertip (Figure 6.6b) (Figure 6.6a). The output of each sensing

element of the array is an eight-bit integer. This work considers the raw outputs of the

tactile sensing array without prior calibration. A method, called equilibration, proposed

by the manufacturer of the system, is applied before each run of the data acquisition. The

method is used to compensate for unexpected variations of the output between sensing

elements. The data of each tactile sensing element is sampled at 50 Hz.

One sensor of the motion tracking device Polhemus Liberty was attached using glue

tape to the same index fingertip of the tactile sensing array, as shown in Figure 6.6b.

This motion tracking sensor provides information about the 6D pose (3D position, 3D

orientation) of the fingertip and inherently of the tactile sensing array. This data provided

the kinesthetic component of the interaction, related to the indentation depth of the

fingertip in the natural shape of the object. The motion tracking sensor was sampled at

approximately 30 Hz.

The multi-modal data samples were individually timestamped in millisecond ms reso-
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(a) (b)

Figure 6.6: Instrumented finger involved in the haptic exploration of objects. a) global
overview. b) detailed view of the integration of the Tekscan Grip system and the motion
tracking sensor Polhemus Liberty.

lution by the software applications developed for each of the data acquisition devices (see

chapter 4). The clocks of the different computers involved in the architecture of the data

acquisition were synchronized using Network Time Protocol (NTP) (see chapter 4).

6.8.2 Learning of the contact interaction parameters of the ref-

erence materials

Experimental protocol

During the learning stage of the contact interaction parameters (a1, a2), and (n1, n2),

physical samples of three reference materials Material1, Material2, and Material3 are

selected and placed in the experimental area.

The samples selected for this work are presented in Figure 6.7. They were selected to

represent common objects of daily life and to have distinct haptic properties. Material1,

Material2, and Material3 were evaluated empirically by a human operator (exploration

using a non-instrumented human hand) and have increasing levels of perceived hardness,

respectively.

Each of the reference materialsMaterial1, Material2, andMaterial3 was submitted to

ten press-and-release exploration cycles using the index fingertip of the instrumented hand,

as presented in Figure 6.6b. All the press-and-release exploration cycles were performed

in the same region of the surface of the object. Thus, the subject applies a unidirectional

movement perpendicular to the natural shape of the physical samples of the reference

materials (Figure 6.7d).
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(a) (b) (c)

cD cD cD

{ W } Y
X

Z
{ W } Y

X
Z { W } Y

X
Z

(d)

Figure 6.7: Reference materials a) Material1. b) Material2. c)Material3. d) Demon-
stration of the press-and-release exploration pattern.

Estimation of P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

The contact sensing features cP , cA, and cD extracted from the haptic sensory data h(v,k)

during all ten press-and-release exploration movements are presented in Figure 6.8, 6.9,

and 6.10, for each of the reference materials Material1, Material2, and Material3, re-

spectively.

For all the reference materials, during each of the ten press-and-release movements, as

the press segment of the movement progresses, the contact intensity cP , contact area cA,

and contact indentation level cD increase, as long as the press movements progress. During

the release segment, they decrease. This work only uses segments from the press explo-

ration movements. The contact sensing features cP , cA, cD from the ten press segments of

the press-and-release cycles for Material1, Material2, and Material3 are represented in

Figure 6.11.

However, although the global behaviour is analogous, each of the reference materials

has its own characteristic profile. That unique profile is specified by the contact interaction

cutaneous (a1, a2) and kinesthetic (n1, n2) parameters.

For each of the press segments of the press-and-release exploration movement, the

parameters (a1, a2) and (n1, n2) were estimated using the MATLAB Curve Fitting Toolbox

(The MathWorks Inc, MA, U.S.). The results are shown in Table 6.3, Table 6.4, and Table

6.5, for Material1, Material2, and Material3, respectively. The curve fitting errors, sum
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Figure 6.8: Typical temporal profile of the variables cP , cA, and cD during ten press-and-
release exploration movements of Material1.
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Figure 6.9: Typical temporal profile of the variables cP , cA, and cD during ten press-and-
release exploration movements of Material2.
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Figure 6.10: Typical temporal profile of the variables cP , cA, and cD during ten press-
and-release exploration movements of Material3.
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Figure 6.11: Typical contact interaction profile (cP , cA, cD) of Material1, Material2,
Material3.
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Table 6.3: Contact interaction parameters N(v,k) (kinesthetic) and A(v,k) (cutaneous) for
Material1

Exploration N(v,k) A(v,k)

Run n1 n2 ΦN a1 a2 ΦA

1 83.1 15.6 7706.7 2.9 10.1 12997.9
2 66.7 18.7 9977.2 3.4 2.8 19108.7
3 70.1 19.8 4518.4 3.2 2.3 8505.6
4 74.2 11.8 6777.1 3.3 14.5 5485.2
5 66.4 10.5 4493.4 3.0 20.9 5285.1
6 67.4 10.8 4868.4 3.1 14.1 3389.3
7 66.7 18.8 6408.7 3.6 15.1 15691.7
8 102.4 19.1 3109.7 2.6 18.9 1773.5
9 82.8 -2.8 2793.3 2.8 17.4 3036.6
10 72.6 16.9 5570.4 2.3 18.5 3750.4

Table 6.4: Contact interaction parameters N(v,k) (kinesthetic) and A(v,k) (cutaneous) for
Material2

Exploration N(v,k) A(v,k)

Run n1 n2 ΦN a1 a2 ΦA

1 493.6 30.2 1715.9 3.0 -0.7 415.4
2 467.9 -3.4 2147.5 2.8 12.1 5172.4
3 380.4 -7.7 1989.5 2.9 5.5 1182.3
4 436.0 -16.9 3571.0 2.9 0.1 1290.9
5 679.7 7.9 625.6 2.4 7.3 572.4
6 604.2 -1.3 450.5 2.8 0.0 1372.9
7 525.9 4.0 4496.3 2.1 14.4 446.1
8 177.2 38.9 9807.9 3.8 -9.7 2282.8
9 385.8 4.6 1723.4 3.1 6.4 389.9
10 175.5 40.0 8935.9 3.0 -0.2 818.8

Table 6.5: Contact interaction parameters N(v,k) (kinesthetic) and A(v,k) (cutaneous) for
Material3

Exploration N(v,k) A(v,k)

Trial n1 n2 ΦN a1 a2 ΦA

1 2030.4 -31.2 5091.9 10.6 -64.7 70064.9
2 952.6 -112.6 69435.6 10.1 -48.1 35691.9
3 1858.4 -30.2 31394.8 12.9 -117.7 165029.3
4 2144.5 -48.8 26389.5 11.2 -91.4 132650.9
5 183.6 213.1 671769.1 10.5 -44.2 101726.5
6 2154.0 -17.1 13875.6 9.8 -37.2 36101.0
7 2128.4 -8.0 19706.1 12.2 -91.1 239131.8
8 2204.5 -14.4 8201.4 10.6 -69.5 104792.6
9 1818.9 -45.8 19224.5 10.9 -73.1 103725.3
10 1357.5 68.1 410851.5 10.3 -59.8 164797.7
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Table 6.6: LearMean (µ) and co-variation matrix (Σ) parameters learned from the data
in Table 6.3, Table 6.4, and Table 6.5

Parameters Material1 Material2 Material3
µN

(
75.2 13.9

) (
432.6 9.6

) (
1638.3 −2.7

)
ΣN

(
117.4 −3.5

−3.5 42.5

) (
24042.6 −1626.1

−1626.1 356.2

) (
396276.5 −32354.7

−32354.7 6959.4

)
µA

(
3.0 12.5

) (
2.9 3.5

) (
10.9 −69.7

)
ΣA

(
0.1 −1.1

−1.1 38.1

) (
0.2 −2.4

−2.4 44.9

) (
0.8 −20.2

−20.2 554.2

)

of squared 2-norm of the residuals, are represented by the variables ΦN and ΦA and

reported in Table 6.3, Table 6.4, and Table 6.5. The determination of ΦN and ΦA is

described in equations 6.16 and 6.17. S represents the number of sensory samples used

in each trial as input to the curve fitting method.

ΦN =
S∑
i=1

(cP,i − (n̂1c
3
2
D,i + n̂2))2 (6.16)

ΦA =
S∑
i=1

(cP,i − (â1c
3
2
A,i + â2))2 (6.17)

The results in Tables 6.3, 6.4, and 6.5 are used to determine the parameters average µA,

µN and co-variance matrices ΣA, ΣN for each of the reference materials, as presented in

Table 6.6. These parameters, which are learned from the training data, are used to specify

the probability distribution functions P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic),

represented in Figure 6.12, Figure 6.13, and Figure 6.14.

The probability distribution functions are used in section 6.8.3 to infer the haptic

properties of objects unknown to the system.

Evaluating the learned parameters of P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

The evaluation of the probability distribution functions P (N(v,k)|M(v,k), πhaptic) and

P (A(v,k)|M(v,k), πhaptic) learned from the experimental data is performed following the

cross-validation scheme leave-one-out. For each reference material, P (N(v,k)|M(v,k), πhaptic)

and P (A(v,k)|M(v,k), πhaptic) are learned from nine of the ten press segments of the press-

and-release exploration movements and tested for the remaining. The categorization of

the sample (n1, n2), (a1, a2) is made according to equation 6.18.
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(a) (b)

Figure 6.12: Graphical representation of the probability distribution functions learned
from Material1 data. a) P (N(v,k)|M(v,k), πhaptic). b) P (A(v,k)|M(v,k), πhaptic).

(a) (b)

Figure 6.13: Graphical representation of the probability distribution functions learned
from Material2 data. a) P (N(v,k)|M(v,k), πhaptic). b) P (A(v,k)|M(v,k), πhaptic).

(a) (b)

Figure 6.14: Graphical representation of the probability distribution functions learned
from Material3 data. a) P (N(v,k)|M(v,k), πhaptic). b) P (A(v,k)|M(v,k), πhaptic).
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Table 6.7: Confusion table for the categorization of Materiali (ground truth) as M.i
(perceived category) by the Bayesian model πhaptic, using a leave-one-out cross-validation
scheme

M.1 M.2 M.3
Material1 0.82 0.18 0.00
Material2 0.00 1.00 0.00
Material3 0.00 0.00 1.00

{ W } X
Y

(a)

{ W }

Y
X

(b)

{ W } X
Y

(c)

Figure 6.15: Unknown objects a) Object1 b) Object2 c)Object3.

m̂(v,k) = arg max
m(v,k)

P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k)|πhaptic) (6.18)

Table 6.7 presents the confusion table resulting for the cross-validation of the Bayesian

model πhaptic following a leave-one-out scheme.

The results presented in Table 6.7 show that the proposed Bayesian model πhaptic has

a high capability to discriminate the proposed reference materials. The model shows only

a minimal confusion in the discrimination of Material1 and Material2.

6.8.3 Haptic exploration of unknown objects

Experimental protocol

After the learning stage of the Bayesian model πhaptic for the reference materialsMaterial1,

Material2, and Material3, the model πhaptic can be used to infer the similarity of haptic

properties of new objects unknown to the system with the reference materials previously

learned by the system. This work proposes the haptic exploration of three new objects,

Object1, Object2, and Object3, presented in Figures A, B, and C, respectively.

The workspace region is partitioned on a bi-dimensional inference grid. Each cell is

a square of 1cm side. Each of the new objects is placed in this workspace region and

explored in five pre-defined regions of the surface, using a total of ten press-and-release

exploration movements (two press-and-release movements per region). The list of five
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Table 6.8: Pre-defined coordinates of the cells on the grid where the press-and-release
exploration movements are performed

Object1 Object2 Object3
Region1 (3,3) (5,5) (3,3)
Region2 (4,6) (12,7) (4,6)
Region3 (3,8) (5,8) (3,8)
Region4 (5,3) (20,5) (5,3)
Region5 (5,8) (20,8) (5,8)
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Figure 6.16: Typical temporal profile of the variables cP , cA and cD during press-and-
release exploration movements of Object1.

pre-defined regions is proposed in Table 6.8.

The hand of the subject performing the haptic exploration of the new objects is in-

strumented with the same tactile sensing array Tekscan Grip System and motion tracking

sensor Polhemus Liberty, as presented in Figure 6.6b.

Representation and update of the haptic stimulus map of unknown objects

The profile of the contact sensing features cP , cA, cD (gathering the data from the ten

exploration movements) of each of the new objects is presented in Figures 6.19, 6.20, and

6.21.

The temporal evolution of the haptic representation of each of the unknown objects

Object1, Object2, and Object3 is illustrated in Figures 6.23, 6.24, and 6.25 and detailed in

Tables 6.9, 6.9, and 6.9. Initially, (k = 0), and all the cells v of the workspace are described

by a uniform probability distribution function P (M(v,k)|A(v,k), N(v,k), πhaptic) ≡ Uniform.

As long as the exploration of the unknown objects progresses (k = 1, . . . , k = 10) in

the pre-defined regions listed in Table 6.8, the representation of those regions improves
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Figure 6.17: Typical temporal profile of the variables cP , cA and cD during press-and-
release exploration movements of Object2.
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Figure 6.18: Typical temporal profile of the variables cP , cA and cD during press-and-
release exploration movements of Object3.
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Figure 6.19: Typical contact interaction profile (cP , cA, cD) of Object1, compared with
Material1, Material2, Material3.
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Figure 6.20: Typical contact interaction profile (cP , cA, cD) of Object2, compared with
Material1, Material2, Material3.
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Figure 6.21: Typical contact interaction profile (cP , cA, cD) of Object3, compared with
Material1, Material2, Material3.

P(M(v,k) =”Material3”| a(v,k) , n(v,k) , πhaptic) = 1 

P(M(v,k) =”Material1”| a(v,k) , n(v,k) , πhaptic) = 1 P(M(v,k) =”Material2”| a(v,k) , n(v,k) , πhaptic) = 1 

Figure 6.22: Colormap used to represent P (M(v,k)|N(v,k), A(v,k), πhaptic).

remarkably.

The regions of Object1 are described as being similar (higher probability) toMaterial1.

Some of these regions improve their representation by integrating additional haptic data

acquired in the exploration cycles. Two of the regions of Object1 show a contact interac-

tion behaviour recognized as Material2.

Alternatively, all the explored regions of Object2 and Object3 are described as be-

ing made of materials with a contact interaction behaviour similar to Material2 and

Material3, respectively. Since the initial exploration cycles, that tendency is evident.

Extrapolation of the representation of unexplored grid ells

The final representation of the workspace of Object1, Object2, and Object3 are processed

in an effort to improve the representation of the unexplored cells. The method presented

in section 6.7 intends to reduce the uncertainty of the representation of the workspace by

reducing the entropy of the representation. The results are shown in Figure 6.26.

By comparing Figures 6.23c, 6.24c, 6.25c, and 6.26, the extension of uncertain re-

gions is reduced. The extension of regions characterized as being similar to Material1,
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(a) (b) (c)

Figure 6.23: Probabilist representation of the result of the haptic exploration of Object1.
a) Initial representation (k = 0). b) Representation after five press-and-release movements
(k = 5). c) Representation after five press-and-release movements (k = 10). Colormap
described in Figure 6.22.

(a) (b) (c)

Figure 6.24: Probabilist representation of the result of the haptic exploration of Object1.
a) Initial representation (k = 0). b) Representation after five press-and-release movements
(k = 5). c) Representation after five press-and-release movements (k = 10). Colormap
described in Figure 6.22.

(a) (b) (c)

Figure 6.25: Probabilist representation of the result of the haptic exploration of Object1.
a) Initial representation (k = 0). b) Representation after five press-and-release movements
(k = 5). c) Representation after five press-and-release movements (k = 10). Colormap
described in Figure 6.22.
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Table 6.9: Evolution of the probability distribution function P (M(v,k)|n(v,k), a(v,k), πhaptic)
during the exploration of Object1

Initial condition
(k = 0)

1st exploration cycle
(k = 1, . . . , 5)

2nd exploration cycle
(k = 6, . . . , 10)

Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3
Region1 0.33 0.33 0.33 0.01 0.99 0.00 0.00 1.00 0.00
Region2 0.33 0.33 0.33 0.89 0.11 0.00 0.97 0.03 0.00
Region3 0.33 0.33 0.33 0.08 0.92 0.00 0.01 0.99 0.00
Region4 0.33 0.33 0.33 0.67 0.33 0.00 0.98 0.02 0.00
Region5 0.33 0.33 0.33 0.75 0.25 0.00 0.95 0.05 0.00

Note: For simplicity and compactness of the notation, Mat.1, Mat.2, and Mat.3 were used to designate
Material1, Material2, and Material3, respectively.

Table 6.10: Evolution of the probability distribution function P (M(v,k)|n(v,k), a(v,k), πhaptic)
during the exploration of Object2

Initial condition
(k = 0)

1st exploration cycle
(k = 1, . . . , 5)

2nd exploration cycle
(k = 6, . . . , 10)

Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3
Region1 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region2 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region3 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region4 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region5 0.33 0.33 0.33 0.01 0.99 0.00 0.00 1.00 0.00

Note: For simplicity and compactness of the notation, Mat.1, Mat.2, and Mat.3 were used to designate
Material1, Material2, and Material3, respectively.

Table 6.11: Evolution of the probability distribution function P (M(v,k)|n(v,k), a(v,k), πhaptic)
during the exploration of Object3

Initial condition
(k = 0)

1st exploration cycle
(k = 1, . . . , 5)

2nd exploration cycle
(k = 6, . . . , 10)

Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3
Region1 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region2 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region3 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region4 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region5 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00

Note: For simplicity and compactness of the notation, Mat.1, Mat.2, and Mat.3 were used to designate
Material1, Material2, and Material3, respectively.



110 Chapter 6. Categorization of soft objects during haptic exploration tasks

(a) (b) (c)

Figure 6.26: Probabilist representation of the result of the haptic exploration and post-
processing of a) Object1. b) Object2. c) Object3. Colormap described in Figure 6.22.

Material2, or Material3 increases. This methodology can be used, not only to improve

the representation of the workspace, but also to speed up the exploration of the workspace

toward an optimal representation.

6.9 Conclusions

The work presented in this chapter contributed to the development of autonomous dex-

terous robotic hand platforms by proposing a probabilistic inference grid to represent

and discriminate the perceived hardness-softness characteristics extracted during the ex-

ploration of soft objects. The proposed approach follows some principles inspired by

human strategies to perceive and estimate the haptic characteristics of objects in uncer-

tain environments. The perceived hardness-softness characteristics of unknown objects

are described by a probabilistic combination of previously known characteristics of a set

of reference materials (haptic memory of the system).

This approach is designed to progressively receive haptic inputs (cutaneous and kines-

thetic data). As long as the object exploration progresses, the total entropy of the rep-

resentation is reduced, showing that the representation becomes less uncertain. The pro-

cessing stages related to the integration of local context information have also contributed

to the improvement of the representation.



Chapter 7

Active haptic exploration of surfaces
using robotic hands

7.1 Introduction

Dexterous robotic hands are a key element for interacting with the surrounding envi-

ronment because of their mechanical (high number of degrees of freedom) and sensory

(tactile, force, torque, and heat) capabilities, which are becoming tendentiously analo-

gous to human hands. They allow robotic platforms to perform precise manipulation of

objects [Johansson and Flanagan, 2009] (reach, grasp, transport, and in-hand reorien-

tation), as well as to perform the haptic exploration of surfaces using different patterns

of movements (lateral motion, press-and-release, and static contact) promoting the ex-

traction and integration of different haptic properties of the surfaces [Lederman, 1994]

(contours, texture, compliance, and temperature).

a) b) c)

Figure 7.1: Results presented in [Martins et al., 2014], illustrating the typical exploration
behaviour performed by a robotic system robot during a haptic discontinuity following
task: straight line geometry. Three time instants a), b), and c) are represented.

The contributions presented in this work relate to the robotic haptic exploration of

surfaces.The haptic exploration of surfaces plays a fundamental role in reduced visibility
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scenarios (i.e. underwater robotic manipulation, smoky and foggy disaster environments,

and partial or complete occlusion of elements in the scenario). Although this work only

addresses the implementation of haptic exploration strategies, the proposed Bayesian

framework allows the integration of additional sensory sources such as vision (depth,

color) and laser to infer the robotic exploration path. The approach proposed in this

work can be used to complement methods already available to explore surfaces using non-

haptic sensory inputs exclusively [Meng et al., 2016] [Ban and Lee, 2006] [Gomes et al.,

2013].

Figure 7.1 shows an example presented in [Martins et al., 2014]. A robotic platform

follows a haptic discontinuity between two surfaces made of different materials (different

haptic properties) placed on top of a table.

ActionPerception

Recognition of
Haptic Stimulus 

Environment
(haptic stimuli)

Generation of 
Motor Reaction

Memory

High Level
Cognitive 
Functions

Sensory
Memory

Motor
Memory

Perceptual 
representation 

of the environment

Signal Pre-Processing
Motion Controllers

Haptic Features Exploration Target
(mid-level representation)

Motor Commands
(low-level)

ActuationSensing

Haptic Sensory Data

Physical
Stimulus

Physical
Interaction

Actuation 
and 

Sensing Feedback

Task Objectives
(symbolic representation)   

Task Objectives
(symbolic representation)   

Figure 7.2: Conceptual representation of the action-perception loop [Ernst and Bulthoff,
2004] involved in the haptic exploration of surfaces [Wacker, 2011]. In this work, the
objectives of the task and corresponding solution are represented in two levels: symbolic
and mid-level.

Section 7.2 of this manuscript describes several works performing the haptic explo-

ration of surfaces, using deterministic methods with a set of control rules defined a-priori.
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This strategy demonstrates difficulties to overcome the high diversity of noisy sensory

signals and to show a generalization capability when dealing with the uncertainty of the

structure of the environments (see Table 7.1).

To deal with these characteristics of the application scenarios, this chapter implements

an approach that follows a typical architecture of a cognitive robotic system, formalized

using a Bayesian framework. The Bayesian models implementing the action-perception

loop and the attention mechanisms integrated to increase the efficiency of those processes

are presented in section 7.3 and detailed in sections 7.4, 7.5, and 7.6.

The experimental setup implemented in this chapter is described in section 7.7. The

generalization capability of the proposed approach is tested experimentally in one scenario,

which is explored autonomously by the robotic system. Section 7.8 presents the main

conclusions of this chapter and key guidelines for future developments of this approach.

7.2 Related works

The robotic exploration of surfaces using haptic inputs has been a research topic pursued

for a long time, with seminal works by [Harmon, 1982], [Klatzky et al., 1985], [Dario and

De Rossi, 1985], and [Nicholls and Lee, 1989]. The complexity and variety of applica-

tion fields of the proposed approaches followed the developments verified during the last

years on force, torque, and tactile sensing manufacturing technologies [Lucarotti et al.,

2013], [Yousef et al., 2011]: miniaturization, higher resolution and accuracy, improved me-

chanical resistance, variety of materials (e.g. compatible with MRI environments). The

integration of this type of sensing devices on robotic platforms, especially in the new gen-

eration of dexterous robotic hands, has become standard and tendentiously mandatory,

as presented in [Dahiya et al., 2013].

The literature describes a class of approaches performing the haptic exploration of

surfaces with the objective of achieving a categorization of the surface or object. The

exploration is performed locally, assuming that the explored region is homogeneous or

uniform in terms of the haptic features under analysis.

Discrimination between the different classes of surfaces is performed by extracting

different types of haptic features such as surface curvature [Okamura et al., 2001], texture

[Oddo et al., 2011], [Xu et al., 2013], [Fishel and Loeb, 2012], [Chathuranga et al., 2013],

compliance [Martins et al., 2012a], [Xu et al., 2013], stickiness [Liu et al., 2012], and

thermal conductivity [Xu et al., 2013], [Castelli, 2002] from the haptic sensory signals.

The formalization of the descriptors of each of those haptic features is dependent on the

type of robotic platform and type of sensing apparatus involved in the exploration. The

modelling of the contact interaction and the characteristics of the sensory signals produced
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Table 7.1: Comparison between the contributions of this work and related works

Study Apparatus a Local Haptic Perception Global Exploration of the workspace

Approach b Features c Approach d Task e Strategy f Workspace g

This Work HS P T, CO P M:E, F:E AE GD:2D
[Okamura
et al., 2001]

HS D C - - - -

[Oddo et al.,
2011]

HS D T - - - -

[Xu et al.,
2013]

HS P CO, T, TC - - - -

[Fishel and
Loeb, 2012]

HS P T - - - -

[Chathuranga
et al., 2013]

HS D T - - - -

[Martins et al.,
2012a]

HS P C - - - -

[Liu et al.,
2012]

HS P S - - - -

[Castelli, 2002] HS D C, TC - - - -
[Liu et al.,
2010b]

HS D CO D M:C PD CS:2D

[Bologna et al.,
2013]

HS D RO P F:T PD -

[Li et al., 2013] HS P C D F:C AE -
[Bohg et al.,
2010]

HS, VS P TO P M:E AE GD:2D

[Martinez
et al., 2013]

HS P RO D M:E, F:E AE GD:2D

[Li et al., 2013] HS D CI, CR D F AE CS:3D
a HS- haptic sensing; VS- visual sensing.
b,d P- probabilistic; D- deterministic.
c T- texture; CO- compliance; C- curvature; TC- thermal conductivity; S- stickiness; RO- raw sensory
output; CI- contact intensity; CR- contact orientation.
e M:E- mapping edge; M:C - mapping compliance; F- following; F:E- following edge; F:T- following
texture; F:C: following curvature;
f AC- active exploration; PD- pre-defined exploration path.
g GD:2D - bi-dimensional grid; CS:2D- bi-dimensional Cartesian space points; CS:3D- tri-dimensional
Cartesian space points;

during the interaction are specific to the different types of robotic setups. However,

independently of the factors regarding the design of the sensory apparatus, the specific

motor exploratory procedures, which are involved in the perception of each type of haptic

feature, are the same in different works.

This work contributes to this class of approaches by presenting a Bayesian model

to discriminate different categories of materials by integrating compliance and texture

features. This work presents a formulation to perform the perceptual discrimination of

different materials that abstracts the contact interaction models between the exploratory

element and the surface.

A second group of works integrates sensing, perception, and local exploration mech-

anisms similar to the previous works. However, they expand the exploration strategy

to large and heterogenous surfaces in terms of the haptic domain under analysis. The

perceptual map of the surface can be constructed following different strategies. Some

works proposed a fixed global exploration strategy and defined a-priori. In [Liu et al.,
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2010b], the haptic exploration is performed using pre-defined exploration paths to build a

stiffness map of biological tissues. As long as the perception of the haptic stimulus occurs,

it does not influence the exploration movement. In [Bologna et al., 2013], Braille reading

is performed real-time by a robotic platform. The Braille symbols are explored and rec-

ognized. The exploration velocity is adjusted depending on the recognition uncertainty.

Nevertheless, the exploration path is also pre-defined.

Although restricted exploration strategies may be successful when substantial infor-

mation about the structure of the environment is available, in most of the scenarios

identified during the motivation of this work, the structure of the environment is initially

unknown (partially or completely) or can change during the exploration task. Thus, the

exploration strategy should have an (re)active behaviour to progressively integrate and

analyse the local perceptual representation of the environment (perception for action) and

estimate which should be the next global region to be explored and perceived (action for

perception) [Dahiya et al., 2010].

[Barron-Gonzalez et al., ] presents a surface-following controller for active haptic ex-

ploration. The controller reactively adapts the orientation of the robotic hand according

to the perceived variations of curvature. The active exploration of a scene represented by

a occupancy grid was proposed in [Bohg et al., 2010]. An initial estimation of the scene

structure is made using stereo vision data which is projected on a 2D occupancy grid.

The exploration strategy is dependent on that initial representation, and haptic inputs

(lateral contact/non-contact) are used to confirm and update the occupancy of the grid

representing the scene.

In other works, the active exploration task is started without any knowledge about

the structure of the scene. The work of [Martinez et al., 2013] proposes a method to

perform the active contour following of objects by executing tap movements using a

robotic fingertip equipped with a tactile array. The reaction of the system is formulated

considering the interaction profile between the haptic stimuli with the tactile sensing array,

integrating specific deterministic rules defined a-priori by a human operator. By the end

of the exploration, the contour of the object, which is described by the full exploration

path, is used to recognize the object. In [Herzog et al., 2013], the categorization of the

structure of the object is applied to estimate the affordance of the object and synthesize

the corresponding robotic grasps [Bohg et al., 2013]. In [Martinez et al., 2013], [Herzog

et al., 2013] the structure of the exploration path did not influence the active exploration

of the workspace. [Li et al., 2013] presents a generic formulation of a control framework

for different types of tasks requiring tactile servoing (e.g. tracking a touched object and

tactile object active exploration). The different behaviours are obtained by adjusting

several matrix parameters and selecting the corresponding haptic primitives extracted



116 Chapter 7. Active haptic exploration of surfaces using robotic hands

from a tactile array.

Figure 7.3: Illustration of a 2D isometric grid partitioning a real-world workspace area.
Each cell v has a dimension ε and is described by position (x, y) expressed in {W}.

This work contributes to this class of approaches by proposing a formulation of

Bayesian models implementing touch attention mechanisms involved in the active haptic

exploration of unknown surfaces by generic robotic hands and sensory apparatus. The

formulation is independent of the contact interaction model between the surface and the

robotic exploratory element. The definition of the architecture of the Bayesian models

follows the principles for how humans manage uncertainty to make motor decisions from

perceptions [Ernst and Bulthoff, 2004]. This formulation assumes that the workspace is

unknown a-priori to the system (blind exploration). The exploration path is adapted ac-

tively by the touch attention mechanisms, as long as the exploration occurs. The system

integrates information from the saliency of the perceived workspace (bottom-up), objec-

tives of the task, structure of current exploration path, uncertainty of the perceptual map

representing the workspace, and inhibition-of-return mechanisms (top-down). The im-

plementation provides the ability to deal with ambiguous sensory signals corrupted with

noise and to perform the active haptic exploration of surfaces with different geometries.

It is expected that a generalized behaviour of the systems emerges from this formulation.

7.3 Approach overview

The approach proposed in this chapter assumes that the exploration task will be per-

formed on top of a table (workspace defined by a planar surface) and using a generic

robotic system with manipulation capability. The internal structure and configuration

of the workspace is unknown a priori to the robotic system. Thus, the solution to the
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Figure 7.4: Detailed diagram of the architecture of the proposed system. The main
contributions of this work are identified in the diagram as main block (local perception of
haptic stimulus, recognition of the shapes of discontinuities, progressive determination of
the exploration path). The variables of the system are summarised in Table 7.2.

haptic exploration task is described in the bidimensional Cartesian space by progressively

determining the sequence of regions of the workspace that should be visited by the robotic

platform during the task execution.

The 2D Cartesian space is partitioned using a planar isometric 2D grid (square cells),

as represented in Figure 7.3 . Each cell vk has a side dimension ε and is described

by a 2D Cartesian location (x, y) expressed in the inertial world referential {W}. This

type of representation framework, which can be used as an inference grid, has been used

extensively in robotics [Ferreira and Dias, 2014c] to integrate multi-modal sensing data

(see chapter 2.2). The inference grid establishes the loop between the perception and

action models.

The methods presented in this chapter follow the principles and architecture of the

human somatosensory processing pipeline and cognition (reviewed in chapter 3.2.2). A

simplified overview of the approach is presented in Figure 7.2.

During the local interaction of the robotic exploratory elements with the workspace
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Table 7.2: Summary of the relevant variables used in this chapter

Variable Description Domain
v Cell of the workspace grid. R2

k Time / exploration iteration. N0

Rk Category of structure of the exploration path. {”Shape1”, ”Shape2”}
templatei Set of points defining the template of each category of structure. R2

Li
k Matching error between the exploration path and templatei. [0,1]

M(v,k) Material category of v {Material1, . . . ,Material10}
E(v,k) Texture characterization of v. R
C(v,k) Compliance characterization of v. R
h(v,k) Raw haptic sensing data acquired on v. Rn ∗

Ok Next workspace region to be explored. v
I(v,k) Inhibition level for cell v. [0, 1]

U(v,k) Uncertainty level for cell v. [0, 1]

S(v,k) Saliency of the perceived haptic stimulus in region v. [0, 1]

T Objective of the haptic exploration task. {T1, T2, T3}
∗ In this work, the description of the sensory apparatus of the robotic platform follows a generic
formulation. In this context, n represents the dimensionality of the raw sensing data provided by the
haptic sensory apparatus of the robot.

at the region vk, the haptic sensory inputs h(v,k) are acquired. Haptic features such as

texture, compliance, and temperature are extracted. The features are used to discriminate

the different classes of materials found in the workspace.The local perception of haptic

stimulus is modelled by the Bayesian model πper presented in section 7.4.

Following the somatosensory processing pipeline, the robotic system uses the update

perceptual representation of the workspace to select the next region of the workspace

that should be explored. The mechanisms involved on this selection are described by the

Bayesian model πtar and presented in section 7.6. The model implements touch attention

mechanisms (feature based) by integrating the haptic saliency and uncertainty of the per-

ceptual representation of the workspace, inhibition-of-return mechanisms, and shape cues

about the structure of the discontinuity extracted from the current exploration path (de-

termined by the Bayesian model πobj, section 7.5). The integration of the touch attention

mechanisms on the action-perception loop architecture contributes to increasing the effi-

ciency of the action-perception loop mechanisms by promoting the selective exploration

of regions of the workspace likely to be useful to the task.

The detailed structure of the approach proposed in this chapter is presented in Figure

7.4, following an action-perception loop architecture.

7.3.1 Path planning of the global haptic exploration strategy

The framework conceptually represented in Figure 7.2 and detailed in Figure 7.4 imple-

ments a haptic exploration path planning method, which infers a series of global via-points

in the workspace that should be probed by the robotic system.

This work does not address the low-level control loop involved in physical interaction

of the fingers with the surface and the ability to move the fingers along the surface by
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keeping contact. In other words, the low-level modelling and control of local contact

interaction (e.g. force, impedance, and position control) and processing of haptic sensory

data are not discussed by this work. These processes are implemented in Figure 7.4 by

the module Low-Level Control and Signal Processing and inner loop labelled Actuation

and Sensing Feedback .

Our solution assumes that algorithms (dependent on specific robotic devices and sens-

ing apparatus) implemented by other works (e.g. [Xu et al., 2013]) extract different haptic

features and control the local movements during the haptic exploration of a region vk.

The integration between these lower-level control models (dashed boxes) and the global

exploration path planning method (bold boxes) proposed by this work is detailed in Figure

7.4.

7.4 Local perception of haptic stimulus

7.4.1 Random variables of the model

During the local exploration of the region v of the workspace at time iteration step k,

the robotic system senses the haptic measurements h(v,k). The haptic sensory inputs are

integrated by the Bayesian model πper, determining the perceived category of material

describing the cell v of the workspace.

The type of material describing the workspace region v is represented by the discrete

random variable M(v,k), defined in equation (7.1).

M(v,k) − ”Material category of v”

M(v,k) ∈ {Material1, . . . ,Material10} (7.1)

The categories of materials are characterized by different properties of texture and

compliance. The texture and compliance characteristics of the region v of the workspace

are described by the continuous random variables E(v,k) and C(v,k), respectively, according

to equations (7.2) and (7.3).

E(v,k) − ”Texture characterization of v”

E(v,k) = f(h(v,k)), E(v,k) ∈ R (7.2)
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P (E(v,k)|M(v,k), πper).P (C(v,k)|M(v,k), πper).P (M(v,k)|πper)
Parametric forms:

P (E(v,k)|M(v,k), πper) ≡ N (µE(M), σE(M))

P (C(v,k)|M(v,k), πper) ≡ N (µC(M), σC(M))

For k = 0:

Map initialization.

P (M(v,0)|πper) ≡ Uniform

For k > 0:

Map update using previous state information.

P (M(v,k)|πper) =
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(b)

Figure 7.5: Bayesian model πper:”Local perception of haptic stimulus”. a) Graphical rep-
resentation. b) Description of the Bayesian program.
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C(v,k) − ”Compliance characterization of v”

C(v,k) = g(h(v,k)), C(v,k) ∈ R (7.3)

The parameter h(v,k) represents haptic sensing measurements provided by the sensory

apparatus. The function g transforms the haptic sensing measurements h(v,k) in a com-

pliance characterization of the explored surface, while f transforms h(v,k) in a texture

characterization of the surface. This work uses the data provided by [Xu et al., 2013];

thus it considers the same operator functions f and g of the work [Xu et al., 2013].

This work considers the same set of materials (n = 10) that were used in [Xu et al.,

2013]: acrylic, brick, copper, damp sponge, feather, rough foam, plush toy, silicone, soft

foam, and wood. In the datasets made available by [Xu et al., 2013], the different cat-

egories of materials are characterized by varying properties of texture, compliance, and

thermal conductivity, extracted using BioTac biomimetic tactile sensor raw data (contact

intensity, vibration, and heat flow).

7.4.2 Inference of the haptic stimulus category

The statistical independence relations between the random variables E(v,k), C(v,k),M(v,k)

are expressed in Figure 7.5 a). Based on these statistical assumptions, the joint probability

distribution function P (E(v,k), C(v,k),M(v,k), πper) is decomposed as described in Figure 7.5

b). Each of the factors follows a probability distribution function presented in Figure 7.5

b).

On each time iteration step, the probability distribution function P (M(v,k)|e(v,k), c(v,k), πper)

describing the category of material of v is inferred using the observed data e(v,k), c(v,k) (ex-

tracted from the samples acquired by the sensory apparatus of the robotic system). Thus,

the Bayesian program described in Figure 7.5 b) is run with the question presented in

equation 7.4.

P (M(v,k)|e(v,k), c(v,k), πper) =
P (e(v,k)|M(v,k), πper)P (c(v,k)|M(v,k), πper)P (M(v,k), πper)∑

M(v,k)

P (e(v,k)|M(v,k), πper)P (c(v,k)|M(v,k), πper)P (M(v,k), πper)

(7.4)

The determination of the free parameters µE(M), σE(M), µC(M), σC(M) of the Gaus-

sian functions used to define the normal probability distributions P (E(v,k)|M(v,k), πper) and

P (C(v,k)|M(v,k), πper) is detailed in section 7.4.3.
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Figure 7.6: Representation of P (E(vi,k)|M(vi,k), πper) (a)) and P (C(vi,k)|M(vi,k), πper) (b))
learned for ten reference materials. Data extracted from [Xu et al., 2013].

7.4.3 Determination of P (E(v,k)|M(v,k), πper) and P (C(v,k)|M(v,k), πper)

The free parameters µE(M), σE(M), µC(M), σC(M) of the Gaussian functions used to

model the normal probability distributions P (E(v,k)|M(v,k), πper) and P (C(v,k)|M(v,k), πper)

are estimated during experimental learning sessions. As described in [Xu et al., 2013],

during the learning period, standard local exploration procedures are performed for each

of the n = 10 reference materials.

After the pre-determined number of standard local explorations, the free parameters

µE(M), σE(M), µC(M), σC(M) of the normal (N ) distributions are determined by cal-

culating the averages µ and standard deviations σ of E and C for each reference material.

The results are represented in Figures 7.6 a) and 7.6 b), extracting the data available

from the manuscript of the work [Xu et al., 2013].
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7.5 Recognition of the shape of the exploration path

7.5.1 Random variables of the model

In this work, the structure of the discontinuity is actively estimated as long as the haptic

exploration performed by the robotic hand progresses. The exploration path and thus the

structure of the haptic discontinuity is described in the bi-dimensional Cartesian space.

The Bayesian model πobj implemented in this Bayesian program determines the cate-

gory of the structure of the discontinuity being followed in the workspace. The category

of the structure of the discontinuity is represented by the discrete random variable Rk, de-

scribed in equation (7.5). The robotic system can recognize Θ = 2 categories of structures

of discontinuities.

Rk − ”Category of structure of the exploration path”

Rk ∈ {Shape1, . . . , ShapeΘ} (7.5)

Each class of structure described by the discrete random variable Rk is associated with

a template, which consists of a set of points representing the boundaries of each category

of structure of the discontinuity, as described in equation (7.6).

∀i∈{1,...,Θ} 〈”Shapei”, templatei〉 (7.6)

The categories of structure recognized by the system consist of two elementary geo-

metric shapes described by the edge points of a triangle and a rectangle. The templates

are illustrated in Figure 7.7.

The sequence of regions explored by the robotic system until the time iteration (k −
1) is described by the set of workspace locations (ô0, ô1, . . . , ôk−1) (section 7.6). The

categorization process consists of establishing a match between the points (ô0, ô1, . . . , ôk−1)

explored by the robotic system until the iteration (k − 1) and each of the templates,

templatei, representative of each category of structure of discontinuity. The normalized

matching error between each template and the current exploration path is described by

the continuous random variable Li, described by the equation (7.7).
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Li − ”Normalized matching error between (ô0, ô1, . . . , ôk−1) and templatei”

[Li,Υi] = fICP ((ô0, ô1, . . . , ôk−1), templatei)

Li ∈ [0, 1] (7.7)

The matching between the two sets of points (ô0, ô1, . . . , ôk−1) and templatei is de-

termined using the method Iterative Closest Point (ICP) [Zhang, 1994], as described in

equation 7.7.

Figure 7.7: Datasets 〈”Shapei”, templatei〉 for a) Rk = ”Template1” b) Rk = ”template2”

The ICP function fICP also returns the estimation of the geometrical transformation

Υi between the two sets of points. This transformation can be used to determine a new

set of points template
′
i which results from the registration of the points templatei on the

structure described by the set of points (ô0, ô1, . . . , ôk−1).

This relation can be described by the geometrical transformation represented in equa-

tion (7.8).

template
′

i = Υi.templatei (7.8)
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Relevant variables:

Rk, L
1
k, . . . , L

∆
k

Decomposition:

P (Rk, L
1
k, . . . , L

∆
k |πobj) =

P (L1
k|Rk, πobj). . . . .P (L∆

k |Rk, πobj).P (Rk|πobj)
Parametric forms:

P (Lik|Rk, πobj) ≡ B(αLi , βLi)

P (Rk|πobj) ≡ Uniform

Identification:

αLi , βLi

−Constants defined empirically.

Question:

P (Rk|l1k, . . . , l∆k , πobj)

(b)

Figure 7.8: Bayesian model πobj:”Recognition of the shapes of discontinuities.”. a) Graph-
ical representation. b) Description of the Bayesian program.
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7.5.2 Inference of the category of structure

The graphical representation of the Bayesian model πobj, presented in Figure 7.8 a), ex-

presses the statistical dependence relations between the random variables L1
k, . . . , L

Θ
k , Rk.

According to these dependence relations, the joint probability distribution function

P (L1
k, . . . , L

Θ
k , Rk|πobj) can be factorized as presented in Figure 7.8 b).The probability

distribution function followed by each of those factors is also presented in 7.8 b).

The inference of the category of the structure of the discontinuity is performed by

running, at each time iteration step k, the Bayesian program presented in Figure 7.8 with

the question P (Rk|l1k, . . . , lΘk , πobj), detailed in equation 7.9. This probability distribution

function is determined by considering the observed normalized matching errors l1k, . . . , l
Θ
k .

P (Rk|l1k, . . . , lΘk , πobj) =
P (l1k|Rk, πobj). . . . .P (lΘk |Rk, πobj).P (Rk|πobj)∑
Rk

P (l1k|Rk, πobj) . . . P (lΘk |Rk, πobj)P (Rk|πobj)
(7.9)

The determination of the probability distribution functions P (lik|Rk, πobj) is detailed

in section 7.5.3.

7.5.3 Determination of P (lik|Rk, πobj)

The probability distribution functions P (lik|Rk, πobj) are described by beta probability

distribution functions BL with the constant parameters αL = 1.0 and βL = 4.5. We

assume that all the Θ probability distribution functions are identical.

The typical profile of the probability distribution functions P (lik|Rk, πobj) is represented

in Figure 7.9. The profile proposed for P (lik|Rk, πobj) attributes higher probabilities for

lower levels of normalized matching errors lik and lower probabilities to higher values of

lik. This promotes the selection of categories of the structure Rk that have a template

similar to the current exploration path (ô0, ô1, . . . , ôk−1).

7.6 Integration of attention mechanisms in the infer-

ence of the exploration path

7.6.1 Random variables of the model

After the local exploration of the region v of the workspace is completed, the perceptual

representation of the workspace is updated with the sensory measurements acquired at v

(update mechanisms presented in section 7.4) and the robotic system has to determine
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P(Li
k | Rk , πobj)

Figure 7.9: Graphical representation of P (lik|Rk, πobj).

which is going to be the next region v of the workspace grid to be explored.

The mechanisms involved in the selection of that region are described by the Bayesian

model πtar, presented in this section of the work. The next exploration target is repre-

sented by the discrete random variable Ok, presented in equation (7.10). θ is the total

number of cells in the grid representing the workspace. vi is a compact representation of

the cell identifier.

Ok − ”Next workspace region to be explored”

Ok ∈ {v1, v2, v3, . . . , vθ} (7.10)

The sequence of regions on workspace (ô0, ô1, . . . , ôk−1) that were previously explored

by the robotic system may provide cues about the spatial structure of the discontinuity

being followed and indirectly influence the estimation of ôk. The cues are provided by

matching the current structure of the exploration path with representations of typical

shapes stored in the memory of the robotic system. As presented in section 7.6.3, regions

of the workspace that are coincident with the structure of the shape templates will be

more likely to be explored.

The selection of Ok is also conditioned by inhibition-of-return mechanisms. The in-

hibition level imposed by the inhibition-of-return process involved in the touch attention

mechanisms is implemented by the continuous random variable I(v,k), described in equa-

tion (7.11). The inhibition level assigned to each cell in the grid varies according to

equation (7.11).
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I(v,k) − ”Inhibition level for cell v.”

I(v,k) = 1−Θdα−1(1− d)1−β, I(v,k) ∈ [0, 1] (7.11)

I(v,k)

d

Figure 7.10: Graphical representation of I(v,k).

Due to the characteristics of the haptic exploration procedures presented in section

7.1, the inhibition-of-return process promotes, at time iteration k + 1, the exploration

of regions of the workspace different from the current position of the end-effector of the

robotic system (ôk−1). However, simultaneously, the inhibition-of-return process inhibits

the exploration of regions too distant from ôk−1, to avoid breaks during the following

exploration tasks. The inhibition levels I(v,k) for each cell v can be described by the

equation 7.11, considering α = 1.01 and β = 9 (profile represented in Figure 7.10). The

parameter d is determined by d = dk/dmax. The parameter dk expresses the Euclidean

distance between ok and ôk−1, and dmax is a constant representing the maximum possible

distance between ok and ôk−1 for the workspace dimensions. Θ is a normalization constant.

The values of I(v,k)(d) range between 0 and 1. I(v,k) = 0 indicates that the inhibition-

of-return mechanism applies no inhibition to cell v, whereas I(v,k) = 1 indicates a full

inhibition of v.

The selection of the region Ok is also dependent on mechanisms to avoid the return

to regions already explored and perceived with low uncertainty. These mechanisms are

formulated to promote the curiosity of the system and are represented by the continuous

random variable U(v,k), described in equation (7.12). The operator H determines the

information entropy [Shannon, 2001b] of the discrete random variable M(v,k).
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U(v,k) − ”Uncertainty level for cell v.”

U(v,k) =
H(M(v,k))

max(H(M(v,k)))
, U(v,k) ∈ [0, 1] (7.12)

Another factor conditioning the determination of Ok is the saliency of the haptic

stimulus perceived in region v of the workspace and in its surroundings. In addition to

depending on the perceived haptic stimulus M(v,k) map, the formulation of the saliency of

those haptic stimulus is also dependent on the current objectives of the exploration task.

The objectives of the task being executed by the robotic platform are represented by the

discrete random variable T = ”Task objective.”, given that T ∈ {T1, . . . , TΦ}. During an

experimental trial, the value of T = t is considered constant in time k. Φ expresses the

total number of tasks that can be executed by the robotic platform.

Based on these considerations, the saliency of the haptic stimulus perceived in the

surroundings of v can be formulated by the continuous random variable S(v,k), presented

in equation (7.13).

S(v,k) − ”Saliency of the perceived haptic stimulus in region v.” (7.13)

This work defines S(v,k) for a class of tasks T=”Search and follow of discontinuities

between regions of surfaces with Materiala and Materialb.”, as presented in equation

7.14. S(v,k) is related by a soft evidence relation with the perceived haptic stimulus M(v,k)

characterization of the workspace.

S(v,k) =
max(|sx|, |sy|)

snorm

S(v,k) ∈ [0, 1] (7.14)

The parameters sx = Gsobelx(d), sy = Gsobely(d), and sz = Gsobelz(d) are determined

using the edge detector Gsobel following an approach analogous to the operator proposed

approach in [Bhattacharya and Wild, 1996]. Considering that the exploratory element is

located at region v of the workspace, a type−8 neighbourhood can be defined around that

location. For a given neighbourhood v1, . . . , v8, we can define d = (Ω(v1,k), . . . ,Ω(v8,k))

as the set of values of Ω(vi,k). We consider that the haptic stimulus perceived at each of

the cells (v1, . . . , v8) of a neighbourhood can be described by a probability distribution

function P (M(vi,k)|e(vi,k), c(vi,k), πper), respectively (details in section 7.4). Considering
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each region vi, a constant Ω(vi,k) is defined, expressing the similarity of the perceived

material category of a region with Materiala or Materialb. The constant Ω(vi,k) ∈ [0, 1]

is determined by equation 7.15.

Ω(vi,k) =
1− P (M(vi,k) = Mat.b|e(vi,k), c(vi,k), πper) + P (M(vi,k) = Mat.a|e(vi,k), c(vi,k), πper)

2
(7.15)

7.6.2 Inference of the next exploration target

Based on the statistical independence relations between the random variables Ok, I(v,k),

U(v,k), Rk S(v,k), T , presented in Figure 7.11 a), the joint probability distribution function

P (Ok, T, S(v,k), U(v,k), I(v,k), Rk|πtar) for the Bayesian model πtar can be decomposed as

summarized in Figure 7.11 b). Each factor is described by a probability distribution

function presented in Figure 7.11 b). The final estimate for the next exploration target

ôk is given via a Maximum a Posteriori (MAP) decision rule, as expressed in equation

7.16 given a specific task T = t.

ôk = arg max
ok

P (Ok|t, s(v,k), i(v,k), u(v,k), Rk, πtar)

ôk = arg max
ok

∑
Rk


P (t|πtar)P (i(v,k)|Ok, πtar).

P (Ok|πtar)P (s(v,k)|Ok, t, πtar).

P (u(v,k)|Ok, πtar)P (Rk|Ok, πtar)

 (7.16)

The determination of the probability distribution functions P (S(v,k)|Ok, T, πtar), P (I(v,k)|Ok, πtar),

P (U(v,k)|Ok, πtar), P (Rk|Ok, πtar) involved in equation (7.16) is described in detail in sec-

tion 7.6.3.

7.6.3 Determination of P (S(v,k)|Ok, T, πtar), P (I(v,k)|Ok, πtar),

P (U(v,k)|Ok, πtar), P (Rk|Ok, πtar)

The probability distribution function P (Rk|Ok, πtar) is characterized by a Gaussian Mix-

ture Model (GMM), as presented in equation 7.17.

P (Rk = ”Objectj”|Ok, πtar) =
∑

i∈template′j

wi.gi(Ok|µi,Σ) (7.17)
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Relevant variables:

Ok, T, S(v,k), U(v,k), I(v,k), Rk

Decomposition:

P (Ok, T, S(v,k), U(v,k), I(v,k), Rk|πtar) = P (Ok|πtar).P (T |πtar).P (I(v,k)|Ok, πtar).

P (U(v,k)|Ok, πtar).P (Rk|Ok, πtar).P (S(v,k)|Ok, T, πtar)


Parametric forms:

P (Ok|πtar) ≡ Uniform

P (T |πtar) ≡ Uniform

P (I(v,k)|Ok, πtar) ≡ B(αI , βI)

P (U(v,k)|Ok, πtar) ≡ B(αU , βU)

P (Rk|Ok, πtar) ≡ G.M.M.

P (S(v,k)|Ok, T, πtar) ≡ B(αS, βS)

Identification:

αI , βI , αU , βU , αS, βS

−Constants defined empirically.

Question:

P (Ok|t, s(v,k), u(v,k), i(v,k), Rk, πtar)

Decision criteria: MAP - Maximum a posteriori.

ôk = arg maxok P (Ok|t, s(v,k), u(v,k), i(v,k), Rk, πtar)

(b)

Figure 7.11: Bayesianl model πtar:”Selection of the next exploration target”. a) Graphical
representation. b) Description of the Bayesian program.
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P(I(v,k) | Ok , πtar)

P(U(v,k) | Ok , πtar)

P(S(v,k) | Ok , T, πtar)

Figure 7.12: Graphical representation of P (I(v,k)|Ok, πtar), P (U(v,k)|Ok, πtar),
P (S(v,k)|Ok, T, πtar).

The Gaussians gi of the Gaussian Mixture Model are centred at the locations µi of

the workspace, with a covariance matrix Σ. Assuming a 2-D structure of the workspace,

each of the Gaussian function gi is represented by equation 7.18.

gi(Ok|µi,Σ) =
1

2π | Σ |1/2
exp−

1
2

(Ok−µi)T Σ−1(Ok−µi) (7.18)

The centres µi of the Gaussians correspond to the points belonging to the set Template
′
j,

determined as presented in detail in section 7.5. The exploration of regions predicted as

belonging to stereotyped structures of exploration paths is promoted by assigning higher

probabilities to them.

As presented in Figure 7.11 b), P (I(v,k)|Ok, πtar) is described by a beta probability

distribution function BI characterized by the constants αI = 1 and βI = 2.5. The profile

of the probability distribution function P (I(v,k)|Ok, πtar) is represented in Figure 7.12.

The selected profile for P (I(v,k)|Ok, πtar) attributes higher probabilities for lower levels of

I(v,k) and lower probabilities to higher values of I(v,k) to promote the selection of regions

of the workspace with low values of inhibition level.

Following an analogous approach, P (U(v,k)|Ok, πtar) is described by a beta probability

distribution function BU (Figure 7.12) with the constant parameters αU = 4 and βU = 1.

P (U(v,k)|Ok, πtar) attributes higher probability values to regions of the workspace perceived

with higher uncertainty U(v,k), promoting the curiosity of the system.

P (S(v,k)|Ok, T, πtar) is described by a beta probability distribution function BR defined

by αR = 3 and βR = 1 (Figure 7.12), assigning higher probability values to workspace

regions v with higher values of saliency S(v,k), promoting the exploration of regions of the
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workspace with relevant haptic stimulus for the task under execution.

7.7 Experimental results

7.7.1 Computational simulation environment

The path planning method proposed by this work, supporting the global haptic explo-

ration strategy, was simulated in a computational environment. As detailed previously in

section 7.3.1, this work does not address the low-level (motor and sensing) control loop

involved in physical interaction between robotic fingers and surface.

The simulation environment consists of a planar 2D probabilistic grid representing the

workspace placed in front of a robotic platform, as represented in Figure 7.13. This work

considers that all the regions of the workspace are reachable by the robotic exploratory

element. In the scenario illustrated in Figure 7.13, three different materials were used:

wood (Material10, brown cells), silicone (Material8, blue cells), and flush (Material7,

green cells). The spatial distribution of the three materials is employed to simulate a

hypothetical real-world scenario, as shown in Figure 7.13.

In the computational simulation, the sensory features modelling the haptic properties,

texture (E(v,k)) and compliance (C(v,k)), of materials Material7, Material8, Material10,

were extracted from a previous work [Xu et al., 2013], as detailed in section 7.4.

The workspace region is integrated on top of the table. The workspace region is

partitioned in a bidimensional grid, as suggested in Figure 7.3. In this work, the workspace

grid has the following lower and upper dimensions, respectively: XW
l = 0m, XW

u = 0.30m,

Y W
l = 0m, Y W

u = 0.60m. Each cell (square) has a side dimension of ε = 0.01m.

Scenario

Different configurations (homogeneous surfaces, heteronegous surfaces) and behaviours

of haptic stimulus can be specified in the simulation environment. This work considers

haptic stimulus consisting of heterogeneous surfaces. The haptic exploration tasks were

tested on surfaces made of three different materials.

The scenario proposed in this work is presented in Figure 7.13 a). Three different

materials are used: wood (brown), silicone (blue), and flush (green). This scenario (spatial

configuration of the haptic stimulus) is mounted on the top of the table presented in

Figure 7.13 b)-c) and explored autonomously by the robotic platform. The objective of

the exploration tasks tested in this scenario are described in section 7.7.3, and the different

perspectives about the experimental results are discussed as well.
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(a) (b)

Figure 7.13: a) Real-world representation of the scenario. b) Schematic representation
of configuration of the haptic stimulus placed in the workspace. The materials wood
(Material10), silicone (Material8) and flush (Material7) are represented in brown, blue,
and green, respectively.

7.7.2 Evaluation of the haptic stimulus perception model

As mentioned previously, this work extracts the parameters µE(M), σE(M), µC(M),

σC(M) from the work of [Xu et al., 2013] . However, the Bayesian program proposed

in this work to categorize the haptic stimulus Material1, . . . ,Materialn implements a

different approach than in [Xu et al., 2013].

Following an approach analogous to several previous works (e.g. [Xu et al., 2013],

[Bologna et al., 2013], [Liu et al., 2012], [Pape et al., 2012]), the performance of the

Bayesian model πper proposed in section 7.4 was evaluated by performing a numerical

simulation of 400 runs consisting of the local haptic exploration of samples of each of the

reference materials Material1, . . . ,Material10. On each run, the local haptic exploration

of the reference materials was simulated by generating random samples e
′

(v,k) and c
′

(v,k),

obtained from e(v,k) and c(v,k), corrupted with additive white Gaussian noise (qC and qE),

according to the formulations c
′

(v,k) = c(v,k) + qC and e
′

(vi,k) = e(v,k) + qE, respectively.

As presented previously, C(v,k) ∼ N (µC(M), σC(M)) and E(v,k) ∼ N (µE(M), σE(M))

and in this experimental setup the additive white Gaussian noise is described by QC ∼
N (0, µC(M)

2
) and QE ∼ N (0, µE(M)

2
). For each reference material Materiali, the classifi-

cation performance was evaluated for a initial exploration of that region v (k = 0) and for

progressive exploration of that region of the workspace v during (k = 1, . . . , 4) exploration

iterations. The categorization m̂(v,k)) of the perceived haptic stimulus is determined by

MAP - Maximum a Posteriori following equation 7.19.

m̂(v,k) = arg max
m(v,k))

P (M(v,k)|e
′

(v,k), c
′

(v,k), πper) (7.19)
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Figure 7.14: The modules and variables involved in the determination of the reference
signal ôk are represented with a solid line.

Table 7.3: Confusion table for the categorization of Materiali (ground truth) as M.i
(perceived category) by the Bayesian model πper, using only one exploration sample k = 0
(400 runs).

M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10
Material1 243 0 60 0 0 0 0 0 77 20
Material2 17 176 20 0 0 45 1 4 22 115
Material3 108 2 146 0 0 0 0 0 97 47
Material4 0 0 0 371 0 25 4 0 0 0
Material5 0 0 0 0 397 0 3 0 0 0
Material6 0 11 1 24 0 257 38 29 14 26
Material7 0 1 0 6 1 19 340 32 1 0
Material8 0 0 0 0 0 10 9 381 0 0
Material9 78 1 9 0 0 0 0 0 270 42
Material10 15 65 32 0 0 42 1 6 38 201

The evaluation of the performance of the Bayesian model πper proposed in section 7.4

is presented in the confusion tables using one exploration iterations (k = 0, Table 7.3) in

location v and using five exploration iterations (k = 4, Table 7.4).

The results presented in Table 7.3 show that, globally, the Bayesian model πper has

a good capability to discriminate and categorize the perceived haptic stimulus with the

correct category of reference materials Materiali. The Bayesian model πper shows a worst

classification performance for haptic stimulus Material2, Material3, and Material10. By

integrating a higher number of sensory samples (k = 4, Table 7.4), the global performance

of the Bayesian model πper increases, including Material2, Material3, and Material10

materials. The integration of five sensory samples (k = 4) allows the system to improve

the erroneous effect introduced by the uncertainties of the measurements and by the

additive white Gaussian noise. As in other works [Xu et al., 2013], [Bologna et al., 2013],

[Liu et al., 2012] and [Pape et al., 2012], the different materials are correctly discriminated
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Table 7.4: Confusion table for the categorization of Materiali (ground truth) as M.i
(perceived category) by the Bayesian model πper, using five exploration samples k = 4
(400 runs).

M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10
Material1 331 1 50 0 0 0 0 0 18 0
Material2 0 316 2 0 0 0 0 0 0 82
Material3 34 0 337 0 0 0 0 0 25 4
Material4 0 0 0 399 0 1 0 0 0 0
Material5 0 0 0 0 400 0 0 0 0 0
Material6 0 0 0 0 0 397 1 0 0 2
Material7 0 0 0 0 0 0 400 0 0 0
Material8 0 0 0 0 0 0 0 400 0 0
Material9 17 1 19 0 0 0 0 0 362 1
Material10 0 92 2 0 0 1 0 0 0 305

with a high performance (average recognition rate higher than 90%).

This work also studied how the classification performance of the Bayesian model πper

can be affected by increasing levels of additive white noise QC and QE. The increasing

levels of additive white Gaussian noise were simulated by increasing the standard devi-

ation of the distributions of QC and QE, as presented in Figure 7.15. By increasing the

magnitude of the standard deviation of the distributions of QC and QE, the classification

performance of the Bayesian model πper decreases. This effect is attenuated by the con-

secutive integration of several sensory samples (k = 4). This demonstrates the relevancy

of implementing an active haptic exloration strategy in order to promote the exploration

of uncertainty regions of the workspace to improve the current perceptual representation.

7.7.3 Autonomous exploration of the workspace

This work assumes that at each time iteration step k of the system, illustrated in Figure

7.4, an exploratory element of a robotic hand probes a workspace region v. The sensory

samples modelling texture e(v,k) and compliance c(v,k) are artificially synthesised from the

respective probability distribution functions P (E(v,k)|m(v,k), πper) and P (C(v,k)|m(v,k), πper),

given the known ground truth material m(v,k) for that region of the workspace, as defined

in Figure 7.13. Following the architecture of the sensory processing pipeline represented in

Figure 7.4, the sensory feature samples e(v,k), c(v,k) are integrated by the Bayesian models

to infer the next region (via point) of the workspace that should be probed by a robotic

system.

In this scenario, the exploratory element of the robotic system is initialized (k = 0) at

random locations of the 2D grid representing the workspace. The full list of initialization

locations for the 100 runs is available online at http://www.rmartins.net/phd-docs/

ae/. Unlike the previous work [Martins et al., 2014], these cells of the grid are not only

located on a haptic discontinuity between the different materials of the scenario, they

can be located on homogeneous regions. This provides a completely blind and unbiased

http://www.rmartins.net/phd-docs/ae/
http://www.rmartins.net/phd-docs/ae/
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Figure 7.15: Classification performance (average for ten materials) of the Bayesian model
πper, using sensory samples corrupted with three different levels of additive white noise.
The performance is evaluated integrating 1 (k = 0) and 5 (k = 4) successive sensory
samples. The error bars represent the SEM (standard error of mean).

initialization of the exploration task for each exploration run.

For each of the exploration tasks described next, the workspace presented in Fig-

ure 7.13 was explored during 100 runs (100 different initial locations of the exploratory

element). For each run, the exploration procedure lasts k = 100 time iterations.

Exploration tasks

To evaluate the specificity and robustness of the Bayesian models implementing the touch

attention mechanisms proposed in this work, the autonomous exploration of the workspace

was performed using three different tasks (T1, T2, and T3). The objectives of T1, T2, and

T3 are the following:

• T1=”search and follow of discontinuities between Material7 and other materials”;

• T2=”search and follow of discontinuities between Material8 and other materials”;

• T3=”search and follow of discontinuities between Material10 and other materials”;

The ground-truth exploration path for each of the tasks T1, T2, and T3 is defined in

Figure 7.17. The ground-truth exploration paths are used for benchmarking purposes dur-
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ing the evaluation of the general behaviour of the system and analysis of the contribution

of the different components of the Bayesian models.

Performance metric

Although the internal structure and configuration of the haptic stimulus encountered in

the workspace is unknown a-priori to the robotic system, the ground truth describing the

target locations (cells) of the workspace that should be visited by the robotic platform

during the task execution are defined by a human operator for benchmark purposes and

represented by B = {b1,b2,b3, . . . ,bl}, bi = (x, y) ∈ R2. The set of workspace regions

visited by the robotic platform during the task execution can be represented by V =

{v1,v2,v3, . . . ,vk}, vi = (x, y) ∈ R2.

The performance of the autonomous execution of the task by the robotic platform

during an experimental run can be evaluated by an error metric defined in equation 7.20.

Γ =
l∑

i=1

‖bi − vnearest‖, given that

∀vi∈V ∃vnearest : ‖bi − vnearest‖ ≤ ‖bi − vi‖ (7.20)

‖ . . . ‖ represents the Euclidean distance operator. Better autonomous exploration

strategies provide lower values of Γ. This metric determines the total Euclidean distance

between each ground truth point and the nearest point belonging to the exploration path

executed by the robotic platform.

The impact of the different components (discontinuity shape cues, uncertainty, haptic

saliency, and inhibition-of-return) of the Bayesian models implementing the touch at-

tention mechanisms was also evaluated by comparing the exploration performance after

discarding specific components of the Bayesian model πtar: shape cues Rk, haptic saliency

S(v,k), inhibition-of-return mechanisms I(v,k), and uncertainty cues U(v,k). The influence

of those components was discarded by assuming that each of those random variables is

described by a uniform probability distribution during all the time iterations of those

experimental runs.

Discussion of the experimental results

The ground truth exploration paths for the objectives of the exploration tasks T1, T2, and

T3 are represented in Figures 7.17 I.a), II.a), and III.a) representing the borders of the

Material7, Material8, and Material10 with the remaining materials in the workspace,

respectively.
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Figure 7.16: Temporal evolution (from k = 0 to k = 100 ) of mean value (average for the
100 runs; shaded colors represent SEM: standard error of mean ) of performance metric Γ
by integrating different configurations of Bayesian model πtar: full-model, removing shape
cues Rk, removing haptic saliency S(v,k), removing inhibition-of-return mechanisms I(v,k),
removing uncertainty cues U(v,k). a) Task T1. b) Task T2. c) Task T3.
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Figure 7.17: I.a) Ground truth exploration path for task T1. II.a) Ground truth explo-
ration path for task T2. III.a) Ground truth exploration path for task T3. I-III b)-f)
Heat map of the exploration paths after 100 exploration runs with a duration of 100 time
iterations each. Different exploration behaviours by integrating different configurations
of the Bayesian model πtar: b) full-model c) removing shape cues Rk d) removing haptic
saliency S(v,k) e) removing inhibition-of-return mechanisms I(v,k) f) removing uncertainty
cues U(v,k).
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By performing an empirical comparison between the ground truth exploration paths

and the heat maps resulting from the exploration behaviour inferred by the full Bayesian

model πtar in Figures 7.17 I.a)-b), 7.17 II.a)-b), and 7.17 III.a)-b), there is a high cor-

respondence between the spatial structure of the most explored regions and the spatial

structure of the ground truth exploration paths. The performance metric presented in

Figure 7.16 also shows that the full-model always provides a good result. The touch atten-

tion mechanisms implemented by the Bayesian model πtar have promoted the exploration

of regions corresponding to the discontinuities described in the objectives of the tasks T1,

T2, and T3, ignoring other types of haptic discontinuities in the scenario.

The structural correspondence is better for the exploration tasks T1 and T2, which

involve the search and follow of discontinuities involving Material7 and Material8, re-

spectively, and the remaining materials. This better performance is justified by the better

perceptual discrimination capability of this system concerning Material7 and Material8

relative to Material10. The perceptual discrimination capability of this system was evalu-

ated extensively in section 7.7.2. The confusion of Material10 with other materials causes

the haptic sensory data acquired during the exploration of regions made of Material10

to be perceived erroneously as other categories of materials. During the execution of the

exploration task T3, this phenomenon has induced a high magnitude of haptic saliency

during the exploration of homogeneous regions of the workspace, dispersing the system

during the exploration task. However, it is evident from Figure 7.17 III.b) that the explo-

ration paths follow the borders between Material10 and the remaining materials in the

workspace.

The analysis of the results of discarding the influence of specific components of the

Bayesian model πtar (Figure 7.17) shows that the degradation of performance of the

exploration behaviour is big (Figure 7.16) when the effect of the haptic saliency S(v,k) is

not considered. This causes the system to explore the workspace randomly, considering

only criteria related to the regions where it was previously and not any information

about relevancy for the task regarding the perceptual characteristics of the sensed haptic

stimulus.

By neutralizing the integration of the information about the uncertainty of the per-

ceptual representation of the workspace (Figure 7.17), the robotic system fails to have

an exploration strategy that produces results similar to the ground truth. Although the

Bayesian model πtar implements inhibition-of-return mechanisms, their effect is transient

on time, and after some time iterations, the system tends to return to the same regions of

the workspace that were explored before and were perceived with low uncertainty; thus

it can provide high haptic saliency features. The plot of the performance metric Γ for

those conditions shows that the degradation of performance of the exploration behaviour
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is considerable. Figure 7.16 describes this poor behaviour of the robotic system.

Conversely, by disabling the integration of the effects of the inhibition-of-return mech-

anisms (Figure 7.17), the performance of the execution of the exploration tasks is not

as degraded. The plots of the metric Γ, presented in Figure 7.16, support this evidence

by showing a performance of the system at the same level as the full-model condition.

The removal of the transient effect of the inhibition-of-return mechanisms is compensated

by the integration of information of the mechanisms related with the uncertainty of the

perceptual representation of the workspace. Once the explored regions in this work tend

to have low uncertainty (due to the high capability of the system to perceive and discrimi-

nate the materials used in this work), these regions tend to be avoided by the system, even

without the influence of the inhibition-of-return mechanisms. However, the inhibition-of-

return mechanisms can play a more relevant role in scenarios made of materials that the

system can only discriminate with higher uncertainty. This topic will be evaluated in

future works.

Discarding the effects provided by the integration of shape cues (Figure 7.17) does

not have a strong influence on the performance of the exploration behaviour of the sys-

tem (Figure 7.16). The weak contribution of the shape cues of the discontinuity to the

improvement of the performance of the robotic system was caused by the low number

of shape primitives recognized by the robotic system (only two: rectangle and triangle)

and by the high number of points that were used to describe each of the shape templates

(around 50 points). In future developments of this work, elementary shape primitives

should be recognized by the system, and alternative methods to ICP should be tested

so the system can recognize earlier tendencies about the shape of the discontinuity and

match the current exploration path with the shape templates more robustly (noise, scale,

and orientation).

7.8 Conclusions and future work

The integration of the touch attention mechanisms during the exploration of surfaces

by robotic hands have proved to be effective to search and follow of haptic discontinu-

ities in unknown and noisy environments. The updated perceptual representation of the

workspace, provided by the Bayesian model πper, together with shape cues about the

structure of the discontinuity being followed, provided by the Bayesian model πobj (ex-

tension of previous work [Martins et al., 2014]), are then used by the Bayesian model πtar

to infer the region that should be explored during the next time iteration.

The Bayesian models were tested in a scenario made of three different materials dur-

ing three different haptic exploration tasks. The results presented in section 7.7.3 have
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Figure 7.18: Representation of the P (I(v,k)|Ok, πtar), P (S(v,k)|Ok, T, πtar),
P (U(v,k)|Ok, πtar), P (Rk|Ok, πtar), P (Ok|t, r(v,k), i(v,k), u(v,k), rk, πtar) probability dis-
tribution functions and the exploration behaviour during the execution of the task T2

search and follow of discontinuities between Material8 and remaining materials, run
18. Dark colors represent lower values. Light colors represent higher values. Animated
versions of this type of representations for autonomous exploration tasks T1,T2 and T3,
are available online http://www.rmartins.net/phd-docs/ae/.

http://www.rmartins.net/phd-docs/ae/
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demonstrated that the proposed approach provides to the robotic system a good frame-

work to define and generalize the exploration behaviours. As in [Martinez et al., 2013],

the system was able to handle severe changes in the slope of the discontinuities. In all

the tasks, the robotic system was able to follow haptic discontinuities with progressive

inversions in the slope of the discontinuity, which clearly demonstrates the generalization

capability of the proposed approach. This emergent behaviour of the system presents an

improvement of the results presented in [Martinez et al., 2013]. The test of the system

with other slope variations in discontinuities than right angles (90 degrees) was suggested

by [Martinez et al., 2013] for future work.

According to the results presented in section 7.7.3, the performance of the robotic

system during the haptic exploration tasks is heavily dependent on the integration by the

Bayesian model πtar of information about the haptic saliency S(v,k) and uncertainty U(v,k)

of the perceptual representation of the workspace.

The formulation of the contributions of the inhibition-of-return mechanisms I(v,k) and

shape cues of the haptic discontinuities Rk will be studied extensively in future works to

improve and optimize the contributions of these components of the Bayesian model πtar.

The future developments of this work will also investigate the implementation of the

automatic computational optimization of the parameters defining the profile of Beta dis-

tribution functions. Currently, the selection of parameters is made empirically, testing

different sets of values and analysing the behaviour of the system.
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