
Imagem 

 
 

Teresa Maria da Silva Sousa 

 
 

From parametric decoding of simple mental states to neurofeedback:  

insights into the neuroscience of cognitive control 
 

 
Tese de Doutoramento em Engenharia Biomédica, orientada pelo Professor Doutor Miguel Castelo-Branco e pelo Professor Doutor Urbano Nunes  

e apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra 
 
 

Setembro de 2016 

 
 

 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Imagem 



 

  



 

  



 

 

 

 

 

 

UNIVERSITY OF COIMBRA 

FACULTY OF SCIENCES AND TECHNOLOGY 

 

 

From parametric decoding of simple mental states to neurofeedback:  

 insights into the neuroscience of cognitive control 

 
 

Thesis presented to obtain a Ph.D. degree in Biomedical Engineering at the 

Faculty of Sciences and Technology of the University of Coimbra 

 

 

 

Teresa Maria da Silva Sousa 

 

September of 2016 

 

 

Supervised by: Prof. Dr. Miguel Castelo-Branco 

Co-Supervised by: Prof. Dr. Urbano Nunes 

 

 



 

 

  



 

 

 

 

 

 

UNIVERSIDADE DE COIMBRA 

FACULDADE DE CIÊNCIAS E TECNOLOGIA 

 

 

Da descodificação paramétrica de estados mentais simples ao 

neurofeedback: 

Contribuições para a neurociência do controlo cognitivo  

 
 

 

Tese de Doutoramento apresentada à Faculdade de Ciências e Tecnologia da Universidade de 

Coimbra, para prestação de provas de Doutoramento em Engenharia Biomédica 

 

 

 

Teresa Maria da Silva Sousa 

 

Setembro de 2016 

 

 

Orientada por: Prof. Dr. Miguel Castelo-Branco 

Co-orientada por: Prof. Dr. Urbano Nunes 

 



 

  



 

The studies presented in this thesis were carried out at the Institute for Biomedical Imaging 

and Life Sciences (IBILI), Faculty of Medicine, at the Institute for Nuclear Sciences 

Applied to Health (ICNAS), at the Institute of Systems and Robotics (ISR), Faculty of 

Sciences and Technology, University of Coimbra, Portugal, and at Maastricht Brain 

Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, University of 

Maastricht, Netherlands. 

This research work was funded by a PhD grant with reference SFRH / BD / 80735 / 2011 

from the Portuguese Foundation for Science and Technology and by the BIAL project 

373/14. 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright© 2016 Teresa Sousa 

 

 

 



  



 

 

 

 

 

 

 

 

 

Para ti Mãe 

 

 

 

 

 

 

 

 

 

“What is essential is invisible to the eye.” 

Antoine de Saint-Exupéry in The Little Prince 

 



 

  



 

 

ACKNOWLEDGMENTS 

First of all, I would like to express my sincere gratitude to my supervisors. To Prof. Miguel 

Castelo-Branco, I want to thank him for the enthusiastic and fruitful discussions, for all his 

suggestions and support. His supervision, help and advice were invaluable to carry out the 

research studies presented on this thesis. It is an honor to work with someone with such 

passion and expertise on neuroscience field. To Prof. Urbano Nunes, I want to thank him for 

introducing and training me as researcher and for providing me confidence to follow my 

own directions. I am very grateful for his contributions, continued support and advice. I 

truly admire the simplicity and expertise of both.  

Prof. Rainer Goebel gave me the opportunity to work and learn with him and his group in 

M-BIC. I want to thank him for the opportunity, shared ideas and help. I also would like to 

thank Brain Innovation team and Valentin Kemper for all their support. 

I am deeply grateful to Prof. Gabriel Pires for the discussions about data processing and 

analysis, motivation and advice. Thank you for being a continuous help on my research 

work.  

My PhD host institutes, IBILI, ICNAS, ISR and also M-BIC, provided me the conditions 

and resources to accomplish my PhD work using the most recent methods and equipment in 

neuro-engineering research. I am very grateful to them.  

I feel especially indebted with the participants who volunteered for the studies and gave 

many hours of their time. You were one of the most important helps in my work.  

I would also like to thank the friends that I met at ISR which helped me all the time with 

their joy and care. I am especially grateful to Jérôme, Ricardo, Omar and Alexandre for the 

valuable discussions. 

To my colleagues from IBILI and ICNAS, I would like to thank for their help, kindness and 

support. I want particularly thank the ones that actively participated on my project and my 

office partners for the day-by-day patience and care. João, Otília, Ana, Gabriel and Ricardo, 

thank you for the help during the more complicated moments of this PhD work.    



I wish to thank the friendship and all the relaxing moments shared with my old friends 

Hugo, Vera and Nariguetas. They are always important, but mainly during a PhD work! 

Thank you. You are the best! 

My close family has been truly important for their support and help in all my needs. I am 

especially grateful to Sérgio, my sisters and my parents. Sérgio, thank you for all the times 

you shared my concerns, that you solved problems for me and made my day easier with 

haute cuisine and magic. Sofia and Margarida, my sisters and my best friends, thank you for 

the unconditional support and for being always present. I am mainly grateful to my lovely 

parents, I am very fortunate to have their strong and encouraging example. You are one part 

of me. 

  



 

 

CONTENTS 

List of Abbreviations .................................................................................................................................. i 

Abstract ..................................................................................................................................................... iii 

Resumo ..................................................................................................................................................... vii 

General introduction ................................................................................................................................. 1 

 Mechanism underlying brain activity patterns ............................................................................ 3 1.1.

1.1.1. How to measure brain activity ............................................................................................ 4 

1.1.2. How to decode brain activity .............................................................................................. 9 

 From brain-computer interfaces to neurofeedback ................................................................... 13 1.2.

1.2.1. State-of-the-art of neurofeedback systems ....................................................................... 14 

1.2.2. Neurofeedback system setup ............................................................................................ 17 

1.2.3. Brain activity control levels based on self-regulation ...................................................... 19 

 Goals and key contributions...................................................................................................... 22 1.3.

 Thesis outline ............................................................................................................................ 23 1.4.

Visual motion imagery neurofeedback based on the hMT+/V5 complex ........................................... 33 

 Introduction ............................................................................................................................... 37 2.1.

 Materials and methods .............................................................................................................. 39 2.2.

2.2.1. Participants ....................................................................................................................... 39 

2.2.2. fMRI data acquisition ....................................................................................................... 40 

2.2.3. Online data analysis .......................................................................................................... 40 

2.2.4. Functional definition of the target region-of-interest ....................................................... 41 

2.2.5. Neurofeedback runs and experimental design .................................................................. 41 

2.2.6. Offline data analysis ......................................................................................................... 43 

 Results....................................................................................................................................... 44 2.3.

2.3.1. hMT+/V5 localization ...................................................................................................... 44 

2.3.2. hMT+/V5 modulation ....................................................................................................... 45 

2.3.3. Whole-brain group analysis .............................................................................................. 47 

 Discussion ................................................................................................................................. 50 2.4.

 Conclusion ................................................................................................................................ 53 2.5.

APPENDIX ........................................................................................................................................... 57 

Control of brain activity in hMT+/V5 at three response levels using fMRI-based neurofeedback . 61 

 Introduction ............................................................................................................................... 65 3.1.

file:///C:/Users/User/Dropbox/Defesa/Tese_TS%20(melhor%20versao).docx%23_Toc477946775
file:///C:/Users/User/Dropbox/Defesa/Tese_TS%20(melhor%20versao).docx%23_Toc477946785
file:///C:/Users/User/Dropbox/Defesa/Tese_TS%20(melhor%20versao).docx%23_Toc477946801


 Materials and methods .............................................................................................................. 67 3.2.

3.2.1. Ethics statement and participants ...................................................................................... 67 

3.2.2. Experimental design ......................................................................................................... 68 

3.2.3. fMRI data acquisition ....................................................................................................... 68 

3.2.4. Real-time fMRI data processing ....................................................................................... 69 

3.2.5. Functional definition of the target ROI (localizer experiments using visual stimulation) 70 

3.2.6. Neuromodulation runs (NF experiments using visual imagery) ....................................... 71 

3.2.7. Offline data analysis ......................................................................................................... 71 

 Results ....................................................................................................................................... 73 3.3.

3.3.1. hMT+/V5 localization ...................................................................................................... 73 

3.3.2. hMT+/V5 modulation: imagery based control of brain activity at 3 response levels ....... 74 

 Discussion ................................................................................................................................. 77 3.4.

 Conclusion ................................................................................................................................ 78 3.5.

APPENDIX............................................................................................................................................ 81 

Visual motion imagery as a tool for multiclass EEG-based BCI ......................................................... 87 

 Introduction ............................................................................................................................... 91 4.1.

 Methods ..................................................................................................................................... 93 4.2.

4.2.1. Participants ....................................................................................................................... 93 

4.2.2. Experimental design ......................................................................................................... 93 

4.2.3. Data acquisition ................................................................................................................ 94 

4.2.4. Data analysis ..................................................................................................................... 95 

4.2.5. Imagery data classification ............................................................................................... 96 

4.2.6. Statistical Analysis ............................................................................................................ 97 

 Results ....................................................................................................................................... 98 4.3.

4.3.1. Visual motion stimulation ................................................................................................. 98 

4.3.2. Visual motion imagery...................................................................................................... 99 

4.3.3. Visual motion imagery classification .............................................................................. 102 

 Discussion ............................................................................................................................... 103 4.4.

 Conclusion .............................................................................................................................. 104 4.5.

APPENDIX.......................................................................................................................................... 111 

Perceptual interpretation of visual motion revealed at high-resolution 7T fMRI ........................... 117 

 Introduction ............................................................................................................................. 121 5.1.

 Material and Methods ............................................................................................................. 123 5.2.

5.2.1. Participants ..................................................................................................................... 123 

5.2.2. Experimental design overview ........................................................................................ 123 

file:///C:/Users/User/Dropbox/Defesa/Tese_TS%20(melhor%20versao).docx%23_Toc477946817
file:///C:/Users/User/Dropbox/Defesa/Tese_TS%20(melhor%20versao).docx%23_Toc477946833


 

5.2.3. Stimuli .............................................................................................................................123 

5.2.4. Imaging data acquisition ..................................................................................................127 

5.2.5. Offline data analyses .......................................................................................................128 

 Results......................................................................................................................................131 5.3.

5.3.1. Behavioral analysis results ..............................................................................................131 

5.3.2. hMT+/V5 localization .....................................................................................................133 

5.3.3. Stimulus validation for axes of motion preference mapping ...........................................134 

5.3.4. Ambiguous and unambiguous imaging analysis results ..................................................135 

5.3.5. hMT+/V5 shows domains that are selective for the type of percept ...............................135 

 Discussion ................................................................................................................................137 5.4.

 Conclusion ...............................................................................................................................138 5.5.

APPENDIX ..........................................................................................................................................143 

General discussion and Conclusions .....................................................................................................147 

 General discussion ...................................................................................................................149 6.1.

 Conclusions ..............................................................................................................................157 6.2.

Curriculum vitae ....................................................................................................................................161 

 

 

  

file:///C:/Users/User/Dropbox/Defesa/Tese_TS%20(melhor%20versao).docx%23_Toc477946850


 

 

 

 



i 

 

LIST OF ABBREVIATIONS 

 
 

ADHD Attention deficit hyperactivity disorder 

ANOVA Analysis of Variance 

AR Auto-regressive 

BCI Brain-computer interface 

BOLD Blood-oxygenation-level dependent 

DMN Default mode network  

ECoG Electrocorticography 

EEG Electroencephalography 

EMG Electromyography 

EOG Electrooculography 

EPI Echo planar imaging 

ERSP Event-related spectral perturbation  

FA Flip angle 

FDR False discovery rate 

FFT Fast fourier transform 

FFX Fixed effects 

fMRI Functional magnetic resonance imaging 

fNIRS Functional near-infrared spectroscopy 

FOV Field of view 

GE Gradient echo 

GE-PD Gradient echo proton-density  

GLM General linear model 

GRAPPA Generalized partially parallel acquisitions  

hMT+/V5 Human (middle temporal) motion complex 

HRF Hemodynamic response function 



ii 

ICA Independent component analysis 

LFP Local field potentials 

MEG Magnetoencephalography 

MPRAGE Magnetization-prepared rapid-acquisition gradient echo 

MRI Magnetic resonance imaging 

NF Neurofeedback 

PD Proton density  

PET Positron emission tomography 

PPI Psychophysiological interactions  

PSD Power spectral density  

RF Radiofrequency  

RFX Random effects 

ROI Region of interest 

RSP Relative spectral power  

SEM Standard error of the mean 

sLORETA Standardized low resolution brain electromagnetic tomography 

SVM  Support vector machine 

TE Echo time 

TR Repetition time 

 

 

  



iii 

ABSTRACT 

The physiological activity of nervous system is constantly changing in response to 

contextual changes, which shapes our perception, emotions and cognitive reasoning. Many 

researchers, clinicians and health professionals have become increasingly interested in 

translating the understanding of the function of human nervous system and behavior into 

health technology and human performance. 

A brain-computer interface (BCI) system uses neurophysiological signals originating in 

the brain to activate or deactivate external devices or computers. In addition to the assistive 

functions as communication and control to injured subjects, BCIs offer the opportunity for 

enhancing neural functions and developing therapies for neural disabilities when applied as 

a neurofeedback (NF) approach. NF technology allows the participants to observe what their 

brain is doing in real time. This enables to learn, in an operant manner, how to control brain 

activity, which might have potential therapeutic impact in disorders of anxiety, attention and 

motor performance, for example. 

The voluntary control of brain activity is trained by mean of mental tasks typically 

known to influence a specific brain network, as for example mental calculation, motor 

imagery and emotional recalling. Methods to better determine the nature of the brain 

activity dynamics and plasticity through the formation of self-regulation are still under 

development. Typically, self-regulation of brain activity is based on binary control: the 

users try to increase or to decrease/abolish a given brain activity modulation. This thesis 

presents a research effort developed with the main goal of increase the intrinsic levels of 

control within each class of volitional brain activity control.  

Here, we explored the hypothesis of achieve up to three control levels of hMT+/V5 

activity using visual motion imagery strategies with different number of motion alternations. 

We took advantage of the specific recruitment of this brain region to visualized and 

imagined motion features to go from binary to multilevel/parametric voluntary brain activity 

control. The performed tests were primarily based on 3 Tesla functional magnetic resonance 

imaging (fMRI) data and then the proposed brain activity self-regulation approach was also 

studied using electroencephalography (EEG). Furthermore, the high-resolution 7 Tesla 

fMRI technique was used to explore with more detail the functional properties of the 

hMT+/V5 brain region during visual motion perception and to propose a future work to 

study the possibility of multilevel modulation of functional connectivity. 
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The strategies to achieve self-regulation of brain activity can be applied not only in NF 

approaches but also to achieve more direct and flexible assistive BCI systems. Thus, the 

increase of volitional brain activity control levels might not only allow for more precise NF 

but also for improved assistive BCI systems. The research work presented in this thesis may 

contribute to the technical improvements of BCI systems, to increase their application range 

and to the understanding of neural mechanisms underlying cognitive control. 

First, the feasibility of training healthy volunteers to up-regulate and down-regulate the 

activity of the hMT+/V5 complex using fMRI-based NF and visual motion imagery 

strategies was tested. We show that hMT+/V5 activity can be volitionally modulated by 

focused imagery and that a specific brain network is recruited during visual motion imagery 

leading to successful NF training. The results presented contribute also to the debate on the 

relative value of sensory versus default-mode brain regions in the NF clinical applications. 

Then, the hypothesis whether more than two modulation levels can be achieved in a 

single brain region was tested. Participants performed three distinct imagery tasks with 

different numbers of motion alternation during fMRI-based NF training. Three control 

levels (two up-regulation levels and one down-regulation level) of brain activity in the 

hMT+/V5 complex were achieved. Based on our results we suggest that it is possible to 

design a multilevel system of control based on brain activity self-regulation of a specific 

brain region and using similar strategies across participants. Empirical contributions to the 

comparison between the binary and multilevel control processes and between the passive 

imagery and the active imagery processes assisted by feedback are also provided. 

The hypothesis whether visual motion imagery can be used as a tool to at least achieve 

multiclass (>2) EEG-based BCI was tested. The imagery strategies previously studied with 

fMRI-based NF were applied. We expected that this would be achieved by detection of 

differential modulations, regardless of their polarity, in the EEG domain. EEG signals were 

acquired during passive visual motion imagery in order to identify the evoked brain activity 

patterns by each imagery strategy. Although we did not find levels of brain activity during 

the different imagery tasks, we suggest visual motion imagery as a simple tool to achieve a 

multiclass BCI systems. Furthermore, we contribute for the discussion about the role of 

frontal alpha activity and for the comparison between the univariate and multivariate signal 

analyses. 

Finally, we used high-resolution 7 Tesla fMRI to map functional sub-domains in the 

hMT+/V5 region and to show that the tuning of these sub-domains is for the interpretation 
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of the perceptually relevant motion features regardless of the physical stimulation. These 

results contribute for the discussion about the neural correlates of perceptual switches in 

hMT+/V5 brain region at columnar-level and can be used as the first step for a NF study 

aiming to modulate brain connectivity as a function of perceptual decision. 

 

 

 

Keywords: neurofeedback, brain-computer interfaces, visual motion perception, visual 

motion imagery. 
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RESUMO 

A atividade fisiológica do sistema nervoso varia constantemente em resposta a mudanças 

contextuais, moldando a nossa perceção, emoções e raciocínio. O sistema nervoso e 

comportamento humano têm sido alvo de intensa investigação por parte de neurocientistas, 

médicos e outros profissionais de saúde, nomeadamente para a melhoria de tecnologias da 

saúde e do desempenho humano. 

Uma das aplicações que tem despertado mais interesse na área da neuroengenharia 

baseia-se nos sistemas de interface cérebro-computador (BCI, do inglês Brain-Computer 

Interface), que usam sinais cerebrais para codificar a ativação ou desativação de comandos 

de um aparelho externo ou computador. Para além de permitirem auxiliar pessoas com 

capacidades reduzidas em tarefas de comunicação e controlo, as BCIs podem ser aplicadas 

como métodos de neurofeedbcak (NF), permitindo a melhoria da função dos circuitos 

neuronais e o desenvolvimento de terapias para tratamento de problemas neurológicos e 

psiquiátricos. Os sistemas de NF permitem a observação em tempo real da atividade 

cerebral o que facilita a aprendizagem do controlo voluntário da atividade cerebral, tendo 

por base o condicionamento operante. Estes métodos apresentam potencial terapêutico, por 

exemplo, em perturbações de ansiedade ou da atenção e em patologias que afetem o 

desempenho motor. 

Atualmente, estão em desenvolvimento vários estudos que visam uma melhor 

compreensão da dinâmica da atividade cerebral e da sua plasticidade, recorrendo a métodos 

focados na capacidade de regulação voluntária da atividade cerebral, também conhecida 

como capacidade de neuromodulação voluntária. A neuromodulação voluntária pode ser 

treinada usando tarefas mentais, como por exemplo o cálculo mental, a imaginação motora e 

recordações emotivas, que influenciam redes neuronais específicas e conhecidas. 

Tipicamente, esta capacidade permite dois níveis de controlo voluntário: um baseado no 

aumento e outro na diminuição de um padrão específico de atividade cerebral. Esta tese teve 

como principal objetivo o estudo da possibilidade de regular voluntariamente mais do que 

dois níveis de atividade cerebral.  

Os trabalhos apresentados nesta tese exploram a hipótese de obter até três níveis de 

controlo a partir da neuromodulação voluntária da região hMT+/V5, recorrendo para isso a 

estratégias de imaginação da visualização de movimento não-motor baseadas em diferentes 

quantidades de alternância de movimento. Tirou-se partido do recrutamento desta região 
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cerebral especificamente durante a visualização ou imaginação da visualização de 

movimento, para estudar estratégias de neuromodulação voluntária que permitam ir do 

controlo binário (dois níveis de atividade por cada classe de controlo) ao multinível (vários 

níveis de atividade por cada classe de controlo). Inicialmente, as estratégias de 

neuromodulação voluntária propostas foram testadas usando imagem por ressonância 

magnética funcional (fMRI, do inglês functional Magnetic Ressonance Imaging) a 3 Tesla e 

depois usando a eletroencefalografia (EEG). Além disso, foi usada a técnica de fMRI a 7 

Tesla para explorar com mais detalhe as propriedades funcionais da região hMT+/V5 e para 

propor como trabalho futuro o estudo da possibilidade de controlo multinível baseado na 

conetividade funcional. 

As estratégias de neuromodulação voluntária podem ser usadas em sistemas BCI de 

assistência ou em sistemas BCI aplicados como métodos de NF. Assim, ao aumentarmos os 

níveis de controlo através da neuromodulação voluntária contribuímos para o 

desenvolvimento de métodos de NF mais precisos e também para a melhoria dos sistemas 

BCI de assistência. Os trabalhos apresentados contribuem não só para melhorias 

metodológicas dos sistemas BCI, como também aumentam as suas possibilidades de 

aplicação e permitem a melhor compreensão dos mecanismos neuronais relacionados com o 

controlo cognitivo. 

Primeiro, testou-se a viabilidade de neuromodulação voluntária da atividade na região 

hMT+/V5, em participantes saudáveis, com recurso a treino NF e fMRI. Os resultados 

mostraram que a atividade desta região pode ser voluntariamente regulada usando 

estratégias de imaginação visual de movimento e nos casos de neuromodulação bem-

sucedida foi recrutada uma rede neuronal específica. Além disso, este estudo contribui para 

a discussão do potencial dos métodos de NF focados em regiões sensoriais para aplicações 

clínicas. 

De seguida, foi testada a hipótese de obter três níveis de controlo baseados na 

neuromodulação da mesma região cerebral recorrendo a treino com NF. Os participantes 

usaram três tarefas de imaginação visual baseadas em diferentes quantidades de variação de 

movimento. Foram conseguidos três níveis de controlo: dois através do aumento e um da 

diminuição da atividade na região hMT+/V5. Assim, sugere-se que é possível obter controlo 

multinível baseado na neuromodulação voluntária da atividade de uma região específica e 

de forma similar entre participantes. Os resultados apresentados contribuem também para a 
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comparação empírica entre processos de controlo binário e multinível e entre imaginação 

passiva e ativa (assistida por feedback). 

As estratégias de imaginação propostas foram também estudadas com EEG. Explorámos 

a hipótese de que os diferentes níveis de neuromodulação seriam também encontrados no 

sinal elétrico cerebral. Os sinais foram registados durante imaginação passiva. Apesar de 

não terem sido encontrados três níveis de atividade, usando um algoritmo de classificação 

foi possível distinguir os padrões evocados por cada tarefa de imaginação. Este fato sugere a 

viabilidade das estratégias de imaginação visual de movimento para obter múltiplas classes 

de controlo em sistemas BCI. Para além disso, este estudo contribui também para a 

discussão do papel da atividade alfa frontal e para a comparação entre análise univariada e 

multivariada de sinais neurofisiológicos na descodificação de padrões de atividade cerebral. 

Por fim, foram mapeados subdomínios funcionais da região hMT+/V5 usando fMRI a 7 

Tesla e foi demonstrado que a resposta preferencial destes subdomínios a diferentes 

orientações de movimento corresponde ao movimento percebido, independentemente do 

padrão de movimento real. Estes resultados contribuem para o estudo dos mecanismos 

neuronais relacionados com mudanças de perceção de movimento ao nível dos subdomínios 

percetuais da região hMT+/V5. Adicionalmente, de uma forma preliminar, trazem boas 

perspetivas para o desenvolvimento de uma nova estratégia de neuromodulação multinível 

baseada na perceção visual de movimento. 

 

 

 

Palavras-chave: neurofeedback, interfaces cérebro-computador, perceção visual de 

movimento, imaginação de movimento vizualizado. 
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1. GENERAL INTRODUCTION 
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 General Introduction 

 

 

 

 

Specific brain functions evoke reproducible patterns and sequences of neural activity letting 

the opportunity for carrying on studies focused both in mechanistic understanding and in 

providing brain-computer interactions. Current neuro-engineering technologies allow us to 

detect these brain activity patterns and determine the corresponding behavioral or perceptual 

operation. This concept, referred as brain decoding, spans a variety of research areas 

ranging from interactions between the nervous system and external devices trough the brain-

computer interface (BCI) technologies to its application in neurofeedback (NF) approaches 

based on the interpretation and volitional modulation of neural activity. 

This thesis presents a work developed with the main goal of increasing the number of 

control levels, or at least open new possibilities in brain activity self-regulation to apply on 

BCI technologies. This would help to improve current BCI systems and would allow for NF 

approaches that go beyond binary control.  

In the current chapter we provide an overview of the main concepts and methods behind 

these technologies are outlined, the state-of-the-art is presented and, the goals, key 

contributions and outline of the developed research work are described.  

 

 Mechanism underlying brain activity patterns 1.1.

The brain is composed by a vast neural network working in harmony to control numerous 

conscious and subconscious functions. In all species the brain action is mainly based on two 

classes of cells: neurons and glia cells. Neurons are commonly considered the most 

important cells in the brain, since these cells are the signaling units of the nervous system. 

Glia cells perform a number of critical functions, as structural support or insulation of the 

neurons. The brain outer layer of neural tissue, the cerebral cortex also known as gray 

matter, contains billions of neurons and glia, and is responsible for many high-order 

functions such as perception, consciousness or attention (Bear et al. 2016).  

By means of axons (a thin protoplasmic fiber that extends from the cell body and project 

to other areas), neurons have the ability of send signals to specific target cells over long 

distances. The transmitted signals are electrochemical pulses called action potentials and 

last less than a thousandth of a second. The axonal membrane ion channels open and close 
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to let through electrically charged ions. Some channels allow sodium ions (Na+) to go 

through, while others allow potassium ions (K+). When channels open, the Na+ or K+ ions 

flow down opposing chemical and electrical gradients, in and out of the cell, in response to 

electrical depolarization of the membrane. Through this process, action potentials are 

transmitted along axons at speeds of 1 - 100 meters per second to specialized regions called 

synapses, where the axons contact the dendrites of other neurons. When an action potential, 

traveling along an axon, arrives at a synapse, it causes a chemical called a neurotransmitter 

to be released. Then, the neurotransmitter binds to receptor molecules in the membrane of 

the target cell (figure 1.1). Some neurons emit action potentials constantly, at rates of 10 - 

100 per second, usually in irregular 

patterns; other neurons are quiet most of 

the time, but occasionally emit a burst of 

action potentials (Kandel et al. 2013).  

The brain functions depend on the 

ability of neurons to communicate (The 

Society for Neuroscience 2002).Thus, the 

brain activity is controlled by a variety of 

biochemical and metabolic processes, 

mainly due to the interactions that take 

place at synapses. 

Figure 1.1. Neuronal communication. A neuron 

fires by transmitting electrical signals along its 

axon. When signals reach the end of the axon, 

they trigger the release of neurotransmitters that 

bind to receptor molecules of adjacent neurons. 

Adapted from (The Society for Neuroscience 

2002).  

 

1.1.1. How to measure brain activity 

Brain activity is measured based on changes in the membrane potential of activated neurons 

or, indirectly, based on changes in energy metabolism required to activate neurons using 

electrophysiological techniques or imaging techniques, respectively (Carter & Shieh 2010; 

Crosson et al. 2010). Electrical, magnetic or metabolic variations can be invasively or non-

invasively recorded. The invasive recordings consist in measuring the brain electrical 

activity on the surface of the cortex (electrocorticography, ECoG) or within the cortex 
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 General Introduction 

(action potentials; local field potentials, LFP). Non-invasive recordings are obtained as 

electrical activity from the scalp (electroencephalogram, EEG), magnetic field fluctuation 

(magnetoencephalogram, MEG) or hemodynamic/metabolic changes (functional magnetic 

resonance imaging, fMRI; functional near infrared spectroscopy, fNIRS; positron emission 

tomography, PET). As the studies of this thesis were based on EEG and fMRI data, these 

techniques are briefly described below.  

 

A) Electroencephalography  

When a large number of neurons are synchronously active, the electric fields that they 

generate as result of the electrochemical processes used for signaling can be large enough to 

reach the scalp surface and can be measured using EEG (Berger 1929; Niedermeyer & 

Lopes Da Silva 2005). The EEG systems record over time the electric field generated by 

neural activity through electrodes attached to the scalp (figure 1.2). The electrodes placed at 

standard positions according to the 10-

20 international system (or extended 

versions of this standard) record the 

difference in potential between this 

electrode and a reference one (Chatrian 

et al. 1985; Jasper 1958; Oostenveld & 

Praamstra 2001).  

Figure 1.2. The electroencephalogram (EEG) 

measurement principles. The EEG electrode 

measures a synchronous signal as result of the 

activity of a large number of neurons similarly 

responding at more or less the same time in the 

underlying regions of the brain, each of which 

generating a small electrical field that changes 

over time. The neural activity makes the more 

superficial extracellular space negative with 

respect to deeper cortical regions. Reproduced 

from (Purves et al. 2004). 

 

The recorded brain waves reflect rhythmic fluctuations in the excitability of underlying 

neuronal populations. These cortical oscillations vary according to the brain state and 

function and have been linked to many cognitive and behavioral processes (Buzsáki 2006; 

Niedermeyer & Lopes Da Silva 2005). Several waves oscillating at specific frequency 
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ranges have been consistently observed: delta (less than 3 Hz), theta (4-8 Hz), alpha (8-12 

Hz), beta (12-30 Hz) and gamma (higher than 30 Hz).  

EEG devices are simple, relatively low cost, and safe, with a measurement preparation 

relatively fast and high temporal resolution. However, EEG presents some limitations, 

namely, limited frequency range, low spatial resolution, and susceptibility to several types 

of artifacts. An EEG electrode measures the potentials resulting from the summation of the 

synapses of a large number of neurons under the area beneath the surface of the electrode 

and, from surrounding regions up to 10 cm due to volume conduction in the skull and scalp 

(Srinivasan 1999), resulting on a mixing of brain components coming from different 

neurophysiologic sources. Furthermore, the combined effect of the skull signal attenuation, 

the noise sources as neurophysiologic artifacts and external electromagnetic interferences, 

further degrade the quality of the signals. 

 

B) Functional MRI 

The nuclei rotation of some atoms in the body acts as a small spinning magnet, normally 

with random directions so the tissue essentially has no net magnetization. However, when 

placed in a strong magnetic field they will line up with the field and spin at a frequency that 

is dependent on the field strength (Bloch 1946; Purcell et al. 1946). This is the base of the 

magnetic resonance imaging (MRI) (Brown et al. 2014).  

Applying a short radiofrequency (RF) pulse tuned to the spinning frequency of the atoms 

nuclei causes them to become unaligned with the field. Summed across all of the individual 

nuclei, this process creates a rotating magnetic field that changes in time (figure 1.3-A). 

Then, turning off the RF pulse the atoms nuclei gradually realign themselves with the field 

emitting energy in an oscillatory way. It is this alternating electric current that is measured 

in MRI (figure 1.3-B). The amplitude of the measured electric current varies over time at a 

rate that is dependent upon a number of factors, including the type of tissue in which the 

nuclei are embedded. Thus, differences in tissue type appear as different intensities in the 

resulting images. Furthermore, using magnetic gradients, i.e. magnetic fields in which the 

strength of the field changes gradually along an axis, makes possible to obtain three-

dimensional MRI images (Lauterbur 1973). Almost all MRI scanners create images based 

on the distribution of water in different tissues using detectors tuned to the radio frequencies 

of spinning hydrogen. By changing the scanning parameters, images based on a wide variety 

of different contrast mechanisms can be generated (Brown et al. 2014). The MRI allows to  
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Figure 1.3. Magnetic resonance imaging (MRI). A. Protons act as a small spinning magnet with random 

direction (1). When placed in a magnetic field the protons align with it (2). A RF pulse applied in a different 
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direction makes the protons precess around their own axes (3). Summing these individual effects creates a net 

magnetic field variable in time and the signal measured in MRI is originated (4). B. With the protons aligned 

vertically, a horizontal RF pulse is applied (1). Turning off the RF pulse, protons continue to precess (2). Then 

occurs a relatively quickly dephasing that leads to a decay in the measured current with a time constant called 

T2 and the protons realign with the vertical magnetic field. The time constant of this recovery process (slower 

than the dephasing) is called T1 (3-5). To yield a time series of measurements that reflect changes in rates of 

decay and recovery, the entire process should be repeated. Adapted from (Kandel et al. 2013).  

 

construct detailed images of the brain with high spatial resolution. Moreover, the strong 

magnetic field and RF pulses used in MRI scanning are harmless. Thus, the MRI is 

considered a relative safe and versatile technique. 

The energy consumption of the brain does not vary greatly over time, but active neurons 

with high metabolic demands receive more blood than relatively inactive neurons due to the 

required energy on the electrochemical processes that underlie synaptic activity and action 

potentials. When a brain area is activated it begins to use more oxygen and within seconds 

the flow of oxygen-rich blood to this area increases. The fMRI technique is based on the 

detection and mapping of these local metabolic changes in cerebral blood flow (Buxton 

2009). The changes in the concentration of oxygen and blood flow allow to detect blood 

oxygenation level-dependent (BOLD) changes in the magnetic resonance signal (Kwong et 

al. 1992; Ogawa et al. 1990). fMRI takes advantage of the fact that oxyhemoglobin and 

deoxyhemoglobin have different magnetic properties. When oxygen is extracted from the 

hemoglobin, the iron (that is also contained in hemoglobin) is exposed and introduces 

inhomogeneity in the nearby magnetic field. Greater inhomogeneity causes in the atoms 

nuclei a faster desynchronization and consequently, a shorter decay time. Thus, an increase 

of oxyhemoglobin in areas with greater neural activity, results in a longer decay time due to 

the higher homogeneity in the magnetic field (figure 1.4). 

Compared to EEG it has better spatial resolution. However, it presents poorer temporal 

resolution, in the order of seconds, i.e., BOLD signal is observed only a few seconds after 

the neural activation due to the characteristics of the hemodynamic response function in the 

brain. 
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Figure 1.4. Functional magnetic resonance imaging (fMRI). The increase in neural activity results in a 

decreasing in deoxyhemoglobin concentration (due to the increased blood flow) causing dephasing to occur 

slower, hence slowing down the decay of the measured electric current. The fMRI image shows the locations 

of metabolic activity based on the changes in deoxyhemoglobin concentration. Colors in the fMRI image 

indicate regions that responded to stimuli. Reproduced from (Kandel et al. 2013).  

 

1.1.2. How to decode brain activity 

The content of different mental processes can be decoded from functional brain imaging 

measures of the human brain activity. Different activity patterns can reveal how a particular 

perceptual or cognitive state is encoded in brain (Haynes & Rees 2006). 

 

A) Univariate analysis  

In conventional functional neuroimaging approaches, the brain regions activated in 

association with specific stimulus or task are identified, i.e. the brain locations where the 

signal changes are significantly correlated with the experimental paradigm are determined. 

The statistical analysis of fMRI and EEG data is often carried out through univariate 

approaches (Haynes & Rees 2006; Tong & Pratte 2012). Brain activity from diverse 

locations is repeatedly measured and then the data from each location are analyzed 

separately. This yields a measure of any differences in activity, comparing two or more 

mental states at each individual sampled location. The analysis of one location has no 

impact on the analysis of any other. 



 

10 

 
 

Chapter 1 

The fMRI analyses are usually based on the general linear model (GLM) (Friston et al. 

1995). In this approach, univariate statistical tests are applied at each location of the brain 

individually and the statistical parameters are then plotted at each position of the brain. 

First, one creates a standard design matrix (per voxel) whose columns correspond to each 

regressor (experimental condition or factor that may confound the results). These are created 

by convolving onsets of each condition of the experimental task with a fixed model of the 

hemodynamic response function (HRF; an estimate of the fMRI signal change evoked by a 

burst of neural activity (Boynton et al. 1996)). Then the GLM is conducted facilitating 

parameter estimations and a wide range of hypothesis testing (as for example, t test or 

correlation analysis). Voxels that exceed a predefined level of significance will be labeled as 

active voxels. The GLM approach is highly suitable when the aim of a study is to assess 

whether the activity level at a single location in the brain is modulated by a specific mental 

operation (Woolrich et al. 2009), after correction for the massive multiple comparison 

problem. 

In the single-channel EEG analysis, information on the start time and sampling rate of 

the data collection can allow one to visualize the univariate time series graphically as 

function of time over the entire duration of data recording. The information contained in the 

recorded EEG signal can also be encoded through the amplitude and the phase of the subset 

harmonic oscillations over arrange of different frequencies. The most commonly used 

measures for EEG univariate analysis are based on the Fourier transforms and the Wavelet 

transforms that allow to calculate the power spectrum of one or more channels 

(Niedermeyer & Lopes Da Silva 2005; Tong & Thakor 2009).  

The main advantages of univariate analysis approaches are the computational simplicity 

and the reasonably effective methods. While this is a natural way to seek functional 

localization, such approach by definition ignores cooperative interactions among brain 

regions and ignores subtle responses to particular conditions or covariates that might carry 

some important information. Therefore, multivariate analysis emerged as a potential 

complementary approach to the univariate analysis (Cox & Savoy 2003; Haynes & Rees 

2006; Lemm et al. 2011). 

 

B) Multivariate analysis 

Multivariate analyses take into account multiple variables and distributed patterns, 

simultaneously. This is used to consider the interactions between the locations (activity in a 
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single location interpreted as an original feature) and how they relate rather than looking at 

individual channels/voxels. Given the goal of detecting the presence of a particular mental 

representation in the brain, the primary advantage of multivariate methods over univariate 

methods is the increased sensitivity. Multivariate approaches extract the information 

contained in the patterns of activity among multiple brain locations and across multiple 

identified features so that the relative differences in activity between different 

locations/features can provide relevant information. Critically, multivariate methods might 

be able to tell apart the activity patterns for two different conditions even when the data, as 

projected along any individual dimension, are statistically indistinguishable (figure 1.5) 

(Cox & Savoy 2003). 

 

Figure 1.5. Multivariate versus univariate analysis using as example fMRI data. In the graphs the circle 

corresponds to acquisitions and the colors represent experimental conditions. The colored, filled curves on the 

right and above the graphs represent the data distribution. (a) In an ideal univariate situation the projected 

distributions do not overlap, and thus a univariate analysis perfectly discriminates between the two conditions. 

There is a clear mapping between location and condition. Error bars show that Voxel 1 is significantly more 

active during Condition A than baseline, but is not active during Condition B. Similarly, Voxel 2 is active 

during Condition B, but not during Condition A. In (b) both voxels are active relative to baseline during both 

Condition A and Condition B, but there is no clear mapping between voxel and condition. However, it is 

obvious that the data from each condition occupy a distinct region of the two-dimensional space and that one 

need only draw a line between the data clouds to distinguish them. Linear classifiers can perform this basic 

partitioning of space drawing hyperplanes between different classes of data. (c) Nonlinear classifiers take this 

basic idea one step further by allowing decision boundaries to take forms other than straight lines or 

hyperplanes. Reproduced from (Cox & Savoy 2003).  

Modern machine learning and pattern recognition algorithms allowed for the 

development of current multivariate analysis methods (Duda et al. 2001). Based on these 
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methods the brain states discrimination can be treated as a classification problem (Haxby et 

al. 2001). Figure 1.6 summarizes the most common pattern recognition algorithms steps. 

Initially, the raw data are pre-processed in order to reduce the effects of noise and labeled 

according to the corresponding experimental condition. Then, relevant features are extracted 

and selected, reducing the complexity of the data set and increasing the capabilities of the 

prediction scheme. The data are divided into a training set and a testing set: information 

from the training set is used to train a classifier that maps between brain patterns and 

experimental conditions. The prediction is performed using the trained model on a new data 

set (Formisano et al. 2008; LaConte 2011; Lemm et al. 2011; Norman et al. 2006; Pereira et 

al. 2009).  

 

Figure 1.6. General pattern recognition algorithms structure (example). (a) Subjects are presented with 

different stimuli conditions. After the pre-processing of the raw data, features are extracted and selected to 

determine which patterns are relevant in the classification analysis. (b) The data are divided into a training set 

and a testing set. (c) Patterns from the training set are used to train a classifier. (d) The trained classifier 

function defines a decision boundary (red dashed line, right) in the high-dimensional space of voxel patterns 

(collapsed here to 2-D for illustrative purposes). Each dot corresponds to a pattern and the color of the dot 
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indicates its category. The background color of the figure corresponds to the guess the classifier makes for 

patterns in that region. Reproduced from (Norman et al. 2006). 

The BCI development driven technology in this field (Dornhege et al. 2007; Birbaumer 

2006). A wide range of methods improvements focused in neuroscience have emerged as 

dimension reduction and projection methods (De Martino et al. 2008; Hyvarinen et al. 2001; 

Mørup et al. 2008; Parra et al. 2003; von Bünau et al. 2009), classification methods (Müller 

et al. 2003; Ray et al. 2015; Tomioka & Müller 2010), spatio-temporal filtering algorithms 

(Blankertz et al. 2008; Dornhege et al. 2006), synchrony, coherence or causal measures 

(Marzetti et al. 2008; Meinecke et al. 2005; Nolte et al. 2008; Reid et al. 2016; Wang et al. 

2015) and new source localization techniques (Haufe et al. 2008; Noirhomme et al. 2008).  

 

 From brain-computer interfaces to neurofeedback  1.2.

Although early studies in animals (Fetz 1969; Wyrwicka & Sterman 1968) and humans 

(Kamiya 1969) had shown that neural signals can be translated into feedback, the first BCI 

study was published by Jacques Vidal in 1973, when he developed a system that could 

translate EEG signals into computer commands (Vidal 1973). A BCI system measures and 

convert brain signals into artificial outputs. These systems enable users to act on the world 

by using their brain signals rather than the brain's normal output pathways of peripheral 

nerves and muscles. After a training period, the user is able to generate brain signals that 

encode an intention and the BCI system is able to decode the user brain signals and translate 

them into device commands that accomplishes the user’s intention (Shih et al. 2012).  

The BCI systems can be applied as assistive BCIs or as NF approaches (Chaudhary et al. 

2016). The assistive BCIs aim to support the daily life of users that lost for example motor 

or communication functions (McFarland & Wolpaw 2011). These systems are applied to 

substitute the lost functions enabling for example the control of robotic devices. On the 

other hand, the NF systems aim to facilitate the restoration of brain function and/or behavior 

or improve it by self-regulation of brain activity (Thibault et al. 2016). Furthermore, the 

scope of BCI research can include non-medical applications as user state monitoring and 

gaming (Lécuyer et al. 2008).  

Through NF approaches human subjects can use BCI systems to learn self-regulation of 

brain activity. Self-regulation of the brain signal offers new ways to study the relation 

between behavior, brain function, and brain activity. Thus, the NF became an interesting 

experimental approach in cognitive neuroscience (Weiskopf, Scharnowski, et al. 2004). In 
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contrast with conventional studies where brain activity is analyzed as a dependent variable 

on the effect of stimulation or behavior, the NF experiments use the self-regulated brain 

activity as independent variable allowing to study the effects of volitional neuromodulation 

on behavior. Modern imaging technologies of the living human brain (e.g., real-time fMRI) 

and increasingly rigorous NF research protocols and BCI methodologies facilitate more 

effective applications (Larsen & Sherlin 2013; Sreedharan et al. 2013; Shih et al. 2012; 

Thibault et al. 2016). 

The BCI progress has been driven not only by the development of new analysis 

techniques but also by an increase in the number of available techniques to record 

invasively or non- invasively different brain signals. The general BCIs principles are similar 

for the different systems (Min et al. 2010; Naci et al. 2012; Wolpaw et al. 2002). The BCI 

cycle (figure 1.7) starts with the user engaging in a task, in the presence or absence of a 

sensory stimulation. The brain signals are acquired and processed in real-time to extract 

specific features that reflect the user’s intent and then translated into specific commands to 

an external device. The BCI components are controlled by an operating protocol that defines 

the operations timing and the details of signal processing, commands and performance.  
 

 

Figure 1.7. Overview of a brain–computer interface (BCI) system. Typically, a BCI system involves online 

processing and analysis of user’s brain responses (invasively or non-invasively acquired), produced either 

voluntarily (active), or in response to sensory stimulation (passive), to infer a desired command that reflects 

the user’s intention or mental-state to apply in assistive systems, neurofeedback approaches or gaming.  

 

1.2.1. State-of-the-art of neurofeedback systems 

NF draws on diverse functional brain imaging methods to help drive brain activity volitional 

control feeding back to the users information about their own brain activity (Thibault et al. 
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2016). The first attempt of self-regulation of human brain activity was reported in 1969 

(Kamiya 1969). On that study it was shown a quick learning of alpha waves modulation by 

healthy subjects when receiving a continuous sensory feedback about their brain activity. 

These findings in combination with similar results from animal studies (Fetz 1969) triggered 

extensive NF-based research into the link between brain physiology and behavior. These 

reports also corroborated the notion of brain plasticity creating hope for the treatment of 

neurological and neuropsychiatric disorders with learned self-regulation of the disordered 

brain activity (Birbaumer et al. 2013; Thibault et al. 2015). 

The NF studies were primarily based on EEG recordings focusing mainly on self-

regulation and feedback of frequency bands such as slow cortical potentials (Egner & 

Gruzelier 2003; Elbert et al. 1980; Kotchoubey et al. 2001; Rockstroh et al. 1984; Rockstroh 

et al. 1993; Strehl et al. 2006), sensorimotor rhythm (Vernon et al. 2003), theta (Leins et al. 

2007), alpha (Lynch et al. 1974; Zoefel et al. 2011) or gamma (Keizer et al. 2010) bands. 

EEG-based NF has been suggested to treat a range of psychological and neurological 

disorders as epilepsy (Tan et al. 2009), attention deficit hyperactivity disorder (Arns et al. 

2014; Ordikhani-Seyedlar et al. 2016), pain (Hasan et al. 2016), depression and anxiety 

(Hammond 2005), alcohol addiction (Lackner et al. 2015), autistic spectrum disorder 

(Coben et al. 2010), Alzheimer (Luijmes 2016) and stroke (Kober et al. 2015; Ramos-

Murguialday et al. 2013).  It has also been tested to improve the performance (Gruzelier 

2014; Vernon 2005) of healthy volunteers in vision (Nan et al. 2013), motor learning (Ros et 

al. 2014; Rozengurt et al. 2016), memory (Reiner et al. 2014; Wang & Hsieh 2013) and 

cognitive processing speed (Angelakis et al. 2007). However, EEG-based NF is limited by 

its low spatial resolution and by the inability to access deeper brain structures. In this sense, 

the advent of new technologies for non-invasive functional imaging of the living human 

brain, as fMRI, MEG and fNIRS, has vastly expanded the scope of NF studies (Buch et al. 

2008; Sitaram et al. 2007; Weiskopf, Scharnowski, et al. 2004).  

Current NF approaches can be based on electromagnetic or hemodynamic signal based 

training. The imaging method to use should be selected according to the particular research 

question of each study. Whereas EEG and MEG have poor spatial resolution but 

millisecond temporal resolution, fMRI has millimetric spatial resolution yet poor temporal 

resolution, and fNIRS has both poor spatial and temporal resolution (Birbaumer et al. 2009; 

Thibault et al. 2016). EEG represents a low-cost and potentially mobile option. Although 

less affected by the resistive properties of the skull than EEG, MEG is very sensitive to 
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noise of environmental magnetic fields, with non-portable hardware and expensive 

acquisition and maintenance. fNIRS represents a comparably mobile and cost effective 

measurement modality. As is the case with fMRI BOLD measurements, the recorded events 

lag neural activity by several seconds, but the temporal resolution of NIRS is higher (usually 

is in the order of 100 ms).  

In contrast to all other non-invasive BCI measures, when using real-time fMRI the 

regulation of circumscribed cortical and subcortical structures is possible (Caria et al. 2012; 

Scharnowski & Weiskopf 2015; Weiskopf, Scharnowski, et al. 2004; Weiskopf 2012). The 

opportunity to train localized and functionally specific brain activity can improve the 

understanding on the function of targeted brain areas. Figure 1.8 illustrates some of the 

mostly targeted brain regions in fMRI-based NF studies (Scharnowski & Weiskopf 2015).  

The majority of studies described in the literature have used fMRI-based NF for training 

healthy individuals to self-regulate the brain activity in areas related with motor 

performance (Berman et al. 2012; Blefari et al. 2015; Bray et al. 2007; Chiew et al. 2012; 

DeCharms et al. 2004; Hui et al. 2014; Johnson et al. 2012; Scharnowski et al. 2015; Yoo et 

al. 2008; Zhao et al. 2013), emotional processing (Caria et al. 2007; Caria et al. 2010; Grone 

et al. 2015; Hamilton et al. 2011; Lawrence et al. 2014; Mathiak et al. 2015; Posse et al. 

2003; Sarkheil et al. 2015; Veit et al. 2012; Weiskopf et al. 2003; Zotev et al. 2011), 

memory (Scharnowski et al. 2015; Weiskopf, Mathiak, et al. 2004; Zhang et al. 2013), 

visual sensitivity (Scharnowski et al. 2012), linguistic processing (Rota et al. 2009) and 

auditory performance (Yoo et al. 2006).      
 

 

Figure 1.8. Illustration of some of the brain regions most used in neurofeedback studies based on 

functional MRI. Reproduced from (Scharnowski & Weiskopf 2015).  

The behavioral modifications induced by NF training in healthy subjects led to efforts for 

testing this methodology in clinical populations. The fMRI-based NF effect has been studied 
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in several clinical domains, including pain regulation (DeCharms et al. 2005; Guan et al. 

2015), tinnitus (Haller et al. 2010), Parkinson's disease (Subramanian et al. 2011; 

Subramanian et al. 2016), depression (Linden et al. 2012; Young et al. 2014; Zotev et al. 

2016), stroke (Liew et al. 2016; Sitaram et al. 2012), schizophrenia (Cordes et al. 2015; 

Dyck et al. 2016; Ruiz et al. 2013), addiction (Canterberry et al. 2013; Karch et al. 2015; 

Kim et al. 2015; Li et al. 2013), psychopathy (Sitaram et al. 2014), post-traumatic stress 

disorder (Gerin et al. 2016) and phobia (Zilverstand et al. 2015). The NF approaches based 

on fMRI measurements represent a powerful tool to explore the mechanisms underlying 

BCI training effects and the relation between brain functions and behavior, but due to its 

expensive use and complex hardware may not be feasible to apply in large groups 

(Birbaumer et al. 2009; Thibault et al. 2016). 

A new trend of fMRI-based NF studies is to assess the effects of self-regulation and 

learning of self-regulation on brain functional connectivity. The results have been indicating 

that NF training leads to specific changes in connectivity of the target region. Furthermore, 

the feasibility of NF training based on the functional connectivity between different brain 

areas and the distributed brain networks has been tested, as it may allow a better 

representation of brain physiology (Ruiz et al. 2014). The availability of higher magnetic 

fields (e.g., MRI scanners operating at seven tesla) and the detailed functional information 

that can be provided is also raising interest amongst researchers (Grone et al. 2015).  

 

1.2.2. Neurofeedback system setup 

Researchers have developed distinct NF experimental protocols according to each imaging 

modality for appropriate brain signals and physiological processes assessment. However, 

the basic methodological steps (figure 1.9) do not strongly change according to the 

functional imaging methods used in each NF approach.  

NF systems are based in three main elements: the brain signal acquisition, the real-time 

data processing and analysis, and the feedback. Following previous instructions about the 

NF study, participants should be engaged in a mental strategy to self-regulate their brain 

activity. During hemodynamic training, the real-time data analysis quantifies the strength of 

brain activity from a specific brain region or network, or the connectivity between different 

regions (Ruiz et al. 2014; Sulzer et al. 2013). On the other hand, the vast majority of studies, 

during  electromagnetic  training  the  real-time data analysis extracts the power of a specific  
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Figure 1.9. Basic setup of a brain-computer interface (BCI) when used as a neurofeedback (NF) 

approach. Ongoing brain signals from the participant, engaged on a specific mental process, are acquired, 

processed, and presented as feedback (visual, auditory or haptic). The feedback can reflect signals changes in a 

specific brain region or EEG channel, or more complex measures considering simultaneously information 

from different brain regions, channels or frequency-bands. Reproduced from (Thibault et al. 2016).   

frequency-band from one or more channels, but more complex features as the power ratio 

between frequency-bands can also be used (Huster et al. 2014). When a BCI is applied as 

NF, the feedback variations represent the external device response to the command that 

translate the users’ intention. Thus, the NF training is considered an operant or instrumental 

conditioning procedure (Birbaumer et al. 2013). The feedback informs the participants about 

relevant changes in their own brain states and can be provided as a simple increase/decrease 

in levels of displayed thermometer, by mean of a sound, or in the form of a complex and 

immersive virtual reality environment. There is a delay between the feedback presented and 

the participant mental state that depends on the nature of the used brain signals (Thibault et 

al. 2016).   
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Each NF study needs to be designed according to its experimental goals. The research 

questions may range from test the NF induced learning of brain activity self-regulation to 

demonstrate behavioral effects or test the possibility of NF as treatment in clinical groups 

(Sulzer et al. 2013). In general, the NF experimental framework starts with the definition of 

the physiological target and response to be trained. Then, the feedback training runs are 

performed, which may span several minutes with repetitions in the same session, or repeated 

sessions over days. When the participants have achieved successful brain activity self-

regulation, they are tested to demonstrate whether they are able to maintain the skill of 

controlling their own activation in the absence of feedback. All NF studies need to employ 

different control groups or within subject control conditions to control for confounds in 

learning, behavioral and placebo effects. Furthermore, if the research goals include to study 

behavioral or clinical improvements specific tests to the participants need to be done before 

and after learning (Thibault et al. 2016; Weiskopf 2012). 

There is no optimal study design for the NF experiments. Although the common basic 

elements, questions related with the run and blocks length, the given instructions for the 

neuromodulation strategies (if implicit or explicit), the way to calculate and present the 

feedback and the type of feedback (continuous or intermittent) are still remaining and a 

matter for debate. New tests are required to fine-tune various parameters, and to maximize 

learning and robustness (Sulzer et al. 2013; Thibault et al. 2015). 

 

1.2.3. Brain activity control levels based on self-regulation  

Typically, the self-regulation strategies are based in mental tasks to up-regulate and down-

regulate the brain activity (Thibault et al. 2016). In most cases, participants receive (before 

the experiment) examples of possible strategies to influence their brain signal, and then the 

online feedback allows them to adapt the strategy to voluntarily control brain activity. With 

the help of the feedback and by trial and error, participants learn to increase and decrease 

the activity in the targeted brain region (figure 1.10). 

Studies in the literature have shown positive results for the volitional control of targeted 

activity if the feedback is presented in an understandable way and if they are given at least a 

suggestion of a possible strategy on how to control the brain activity (Ruiz et al. 2014). The 

process of learning to control a specific brain activity is difficult and demanding. Thus, 

offering a strategy or a couple of strategies might help participants acquiring brain activity 

control  quicker  and  more  successfully  (Sulzer   et al.  2013).  Furthermore,  the  cognitive  
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Figure 1.10. Typical brain activity self-regulation training during a neurofeedback experiment. The 

training runs are composed of baseline blocks and up-regulation blocks. During the up-regulation blocks the 

participants should increase activity in the targeted brain region and during the baseline blocks the participants 

should down-regulate the targeted activity, i.e. they should decrease their brain activity in relation to the levels 

of activation achieved in the previous block. The feedback is presented to the participants via a thermometer 

icon, for example. Reproduced from (Scharnowski & Weiskopf 2015). 

capacity and the attention span also influence the self-regulation training success. Thus, 

until now the BCI studies using the brain activity self-regulation to encode the user’s 

intention are only based on binary control over a specific brain activity: the users are able to 

encode two commands based on the increasing and decreasing of a specific brain activity, 

the activity from a brain region or the power of a specific frequency-band, for example. The 

most explored self-regulation strategies are based on motor imagery and in recalling 

emotionally relevant experiences (Huster et al. 2014; Ruiz et al. 2014).  

When more than two commands are desired, the users can train the self-regulation of 

different brain activity patterns. Multiclass control systems are possible, but often only with 

two levels of control within each class. Users can train the ability of volitional binary 

control of different brain regions, different frequency-bands or the same frequency-brand 

but from different brain locations. For example, Lee et al. (2009) presented a real-time 

fMRI-based BCI to control a 2-dimensional movement of a robotic arm. The subjects were 

engaged in the right- and/or left-hand motor imagery tasks and the signal originating from 

the corresponding distinct left and right hand motor areas was translated into horizontal or 

vertical robotic arm movement. Already in 2004 Yoo and colleagues shown that a 

multiclass control approach based on self-regulation is possible by exploring different types 
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of mental tasks, such as mental imagery (right and left hand motor imagery) and covert 

cognitive tasks (mental speech generation and mental calculation). Both different spatial 

distribution of activation and its self-regulation allowed spatial navigation in four directions 

by thoughts (Yoo et al. 2004). More recently, a spelling device based on self-regulation of 

BOLD activity was presented (Sorger et al. 2012). 27 distinguishable hemodynamic 

activation patterns were achieved by exploiting spatiotemporal characteristics of 

hemodynamic responses, evoked by performing differently timed mental imagery task. 

Participants voluntarily influenced the location of the signal source by performing three 

different mental tasks (motor imagery, inner speech and mental calculation), influencing the 

signal onset delay by delaying the start of the mental task as well as the signal duration by 

varying the mental task duration.  

Regarding the EEG based BCIs, Wolpaw & McFarland (2004) demonstrated that a 

noninvasive BCI using sensorimotor rhythms recorded from the scalp can provide 

multidimensional control. The participants were trained to self-regulate the amplitude of mu 

and beta frequency-bands over the right and left sensorimotor cortices using motor imagery 

to control a cursor movement in two dimensions. More recently this study was extended to 

self-regulation of a cursor movement in 3 dimensions: simultaneous control over vertical, 

horizontal and depth dimensions (McFarland et al. 2010). A similar approach was used in 

(LaFleur et al. 2013) to achieve control in three-dimensional space using motor imagery, but 

now with the support of offline training software and signal processing toolbox to select the 

most discriminant channels and frequency-bands. An example of a simple multiclass 

approach based on self-regulation is to use separately different motor-imagery tasks to 

encode different classes of one dimension control (Schlögl et al. 2005). The multiclass 

control based on brain activity self-regulation can also be based in other mental strategies, 

as for example visual imagery. In (Salari & Rose 2013) participants learned to selectively 

switch between modulating alpha-band or gamma-band oscillations with help of source-

based BCI for NF training. Participants reported using a visual imagery strategy (visualizing 

a concrete figure, object or number at fixation) during the gamma periods and reported 

being relaxed during the alpha periods. 

Only a few studies have attempted to achieve beyond binary control using brain activity 

self-regulation, i.e. achieve different levels of activity of the same pattern. The 

implementation of BrainPong, a variant of the classic computer game Pong using the local 

BOLD signal for control, suggested that with extensive practice subjects can learn to reach 
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and maintain intermediate levels of brain activity (Goebel et al. 2004). After a training 

period to modulate regional brain activity to reach specific target levels and to adapt to the 

hemodynamic response delay, subjects succeeded in controlling the up and down movement 

of the racket by regulating voluntarily the activity in the selected brain region. However, it 

is not completely clear the strategies applied by the users to encode the different game 

commands and which activity levels were achieved. There are few more studies (some of 

which preliminary reports) supporting the idea that humans are able to voluntarily reach 

different target levels by modulating their thoughts based on receiving neurofeedback 

(Dahmen et al. 2008; Sorger et al. 2004; Sorger 2010). 

 

 Goals and key contributions 1.3.

The main goal of this thesis was to study the feasibility of increasing the number of levels of 

brain activity volitional control. We aim to test whether we can use volitional 

neuromodulation to increase the intrinsic number of levels of each class of BCI control. We 

looked for a strategy that allows to train participants to voluntary migrate between more 

than two levels of a specific brain activity, which could potentially be used as BCI input. 

This would allow to go beyond the binary control available until now, i.e. it would be 

possible not only up-regulate and down-regulate a specific brain activity but also achieve 

different levels of up-regulation. The volitional multilevel neuromodulation can contribute 

for more precise and efficient NF approaches or simply to improve the assistive BCI 

systems.  

We decided to focus this work on visual motion imagery as a strategy for brain activity 

self-regulation due to its naturalistic and dynamic character. It can be used on a direct BCI, 

allowing the users to express their intentions in a much more natural way. For example, the 

visual imagery of a moving cursor could make the cursor of an external device move. 

Furthermore, the visual imagery can present therapeutic potential, for example in attentional 

disorders, when applied in NF training (Abraham et al. 2006). Also, we can take advantage 

of previous studies that have shown the reliable recruitment of the human motion complex, 

known as hMT+/V5 and specifically sensitive to moving objects’ features, during visual 

stimulation or during visual motion imagery (Goebel et al. 1998; Kaas et al. 2010). 

To achieve our final goal several intermediary steps needed to be done. The first step was 

to verify whether it is possible to achieve voluntary modulation of the chosen brain region 

by mean of NF training. To explore this question a study with fMRI-based NF was 
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performed, training the participants to up-regulate and down-regulate their own brain 

activity. We aimed to explore not only the proof-of-concept but also the neural circuit 

involved on the volitional neuromodulation process. The aim of the second step was to test 

whether it is possible to design a multilevel system of control based on volitional activity 

modulation of a specific brain region with at least 3 different levels. An extended version of 

the first fMRI-based NF study is driven aiming to train multilevel neuromodulation using 

three visual motion imagery strategies. The third step aimed the real-life transfer of the 

proposed multilevel neuromodulation approach, testing the three visual motion imagery 

strategies using EEG. We intended to verify whether the patterns of brain activity evoked 

according to each imagery task reflect a multilevel linear trend or at least present high 

potential of multiclass discrimination when tested using a classifier. The combination of all 

these exploratory studies also contributes for a better understanding of the neural correlates 

of cognitive control.   

The fourth and last step of this work aimed to evaluate the possibility of a new multilevel 

NF approach using visual motion imagery strategies. We hypothesize that our perception of 

motion is reflected on the functional connectivity between different hMT+/V5 sub-domains. 

Thus the multilevel modulation of functional connectivity as function of perceptual decision 

training would be, at least theoretically, possible. The first work step on this direction is 

presented taking advantage of high-resolution 7 Tesla (7T) fMRI to explore the perceptual 

interpretation of visual motion. We wanted to know how bistable perceptual integration and 

segmentation of interhemispheric 1D directional cues is mapped in hMT+/V5 functional 

sub-domains. Moving from the macroscopic level neuroimaging (3 Tesla – 3T) to the 

mesoscopic level (7T) would lead to a deeper understanding of motion features 

representations and their interaction in the brain. 

 

 Thesis outline 1.4.

The thesis is organized in six chapters, as illustrated in figure 1.11. The current chapter 

(chapter 1) introduces the topic of this thesis, by presenting the main concepts and methods 

behind the BCI systems and its application as NF approach, then the BCI-NF state-of-the-art 

and applications are briefly described, and finally the goals and main contributions of the 

research work are highlighted.  
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Figure 1.11. Thesis outline. 

Chapter 2 presents a study that tested the feasibility of training healthy volunteers to up-

regulate and down-regulate the activity in a specific brain region, the hMT+/V5 complex, 

using real-time fMRI-based NF and visual motion imagery strategies. The results indicated 

that hMT+/V5 is a region that can be volitionally modulated by focused imagery. 

Chapter 3 describes a study where the hypothesis whether more than two modulation 

levels can be achieved in a single brain region was tested. Three control levels (two up-

regulation levels and one down-regulation level) of brain activity in the hMT+/V5 complex 

were achieved using three distinct visual imagery tasks with different numbers of motion 

alternation combined with fMRI-based NF.  

Chapter 4 presents a study that tested whether visual motion imagery can be used as a 

tool to achieve multilevel EEG-based BCI. The higher the alternating number of 

sensory/perceptual signals the stronger would be the expected neural response as 

demonstrated using fMRI. The hypothesis was that differential modulations, regardless of 

their polarity, should also be observed at the EEG domain. The results did not show the 

expected three levels of activity, but suggested the feasibility of visual motion imagery tasks 

as a simple tool to achieve BCI systems with three different classes of control within a small 

group of EEG channels.  

Chapter 5 sets up a study for a future work: a new multilevel neuromodulation approach 

based on the connectivity between perceptual sub-domains of hMT+/V5. The final goal 
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would be to answer the question: can we volitionally control different levels of functional 

connectivity? The study here described is the first step needed to explore this question. It 

took advantage of high-resolution 7T fMRI to find evidence for the existence of perception 

related sub-domains in the hMT+/V5 region. These domains responded preferentially either 

to coherent or incoherent motion and have shown preferred axes of motion that matched the 

perceptual reports. 

Finally, Chapter 6 provides a general discussion and conclusion on the achievements of 

the thesis and the perspectives for future research. 
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Abstract 

Current approaches in neurofeedback research often focus on identifying, on a subject-by-

subject basis, the neural regions that are best suited for self-driven modulation. It is known 

that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and 

implicit motion imagery, in addition to real motion perception.  

This study tests the feasibility of training healthy volunteers to regulate the level of 

activation in their hMT+/V5 complex using neurofeedback based on real-time functional 

resonance magnetic imaging and visual motion imagery strategies. We functionally 

localized the hMT+/V5 complex to further use as a target region for neurofeedback. An 

uniform strategy based on motion imagery was used to guide participants to neuromodulate 

hMT+/V5.  

We found that 15/20 participants achieved successful neurofeedback. This modulation 

led to the recruitment of a specific network as further assessed by psychophysiological 

interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial 

cerebellum was activated for successful neurofeedback runs. The putamen and anterior 

insula were recruited for both successful and non-successful runs. 

 Our results indicate that hMT+/V5 is a region that can be modulated by focused imagery 

and that a specific cortico-cerebellar circuit is recruited during visual motion imagery 

leading to successful neurofeedback. These findings contribute to the debate on the relative 

potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical 

application of neurofeedback paradigms. This novel circuit might be a good target for future 

neurofeedback approaches that aim, for example, the training of focused attention in 

disorders such as ADHD. 
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 Introduction 2.1.

Neurofeedback (NF) and brain computer interface (BCI) paradigms have been successfully 

used to train subjects to get volitional control over a given brain region (Sulzer et al. 2013). 

Real-time functional magnetic resonance imaging (fMRI) allows achieving this goal by 

flexibly defining targets for neuromodulation. Online analysis of fMRI patterns enables to 

provide an updated feedback to individuals that can use this information to regulate their 

own brain activity (DeCharms 2007). 

This concept has been applied in general cognitive domains including visual 

(Scharnowski et al. 2012; Shibata et al. 2011), motor (Subramanian et al. 2011; Weiskopf et 

al. 2004), language (Rota et al. 2009), emotional (Caria et al. 2007; Caria et al. 2010; 

Hamilton et al. 2011; Johnston et al. 2010; Linden et al. 2012; Ruiz et al. 2013) and pain 

processing (DeCharms et al. 2005). Here we focus on the modulation of the mediotemporal 

area of the visual cortex (hMT+/V5 complex), a visual region that has been associated with 

visual motion perception and visual motion imagery. Previous studies of implicit motion 

(Kourtzi & Kanwisher 2000) and motion imagery (Slotnick et al. 2005) have shown robust 

hMT+/V5 effects when participants are consciously experiencing motion that is physically 

absent, and in the absence of neurofeedback. We aimed to understand whether the neural 

correlates of such processes are applicable to the NF context. In particular we were 

interested in the functional connectivity of successful NF. 

The localization criterion for the region serving as region-of-interest (ROI) for NF has 

been widely variable. Some studies focused on specific anatomically defined regions such 

as the somatomotor cortex (DeCharms et al. 2004), anterior cingulate cortex (Weiskopf et 

al. 2003), amygdala (Posse et al. 2003) and the insula (Caria et al. 2007). Others preferred to 

use functionally defined ROIs as target for neuromodulation (DeCharms et al. 2005; Greer 

et al. 2014; Hamilton et al. 2011; Ruiz et al. 2013; Subramanian et al. 2011). To avoid the 

potential problem of obtaining variable anatomical landmarks in relation to particular brain 

regions with a known function, here we applied an explicit functional localizer using a 

validated task (Goebel et al. 1998; Graewe et al. 2013; Kaas et al. 2010) that is accepted as 

functional localizer independently of the anatomical location. 
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fMRI-based NF without stimulus presentation in the early visual cortex can be quite 

powerful (Shibata et al. 2011), even enabling perceptual learning. This illustrates the 

potential of NF approaches in sensory regions. However, this notion is controversial and it 

has been suggested that focusing on higher level regions related to the default mode network 

(DMN) might be a more powerful NF approach (Harmelech et al. 2015). The choice of 

implicit or explicit mental imagery strategies for learning of self-regulation is also a current 

topic of debate in the field (Sulzer et al. 2013). There are pros and cons associated to the use 

of implicit and explicit feedback strategies and findings from studies comparing both are 

inconsistent. On one hand, choosing explicit strategies based on current knowledge of 

target’s brain function are theoretically more efficient for self-regulation and quicker to 

achieve because subjects are guided. This choice has the advantage of avoiding long and 

expensive MRI experiments. On the other hand, implicit strategies do not have to directly 

deal with subjects’ compliance to an explicit cognitive instruction. Besides, they may be 

more advantageous when dealing with subjects with difficulties to understand or report an 

instruction and with some regions that may have no associated explicit strategies. In our 

study, we choose to provide an explicit motion imagery instruction with room for individual 

free exploration of the most appropriate strategy (subjects could ‘animate’ their imagined 

motion with their preferable visual object features). 

Mental imagery, defined as a perceptual experience that occurs in the absence of external 

stimulation, has been intensively studied (Borst & Kosslyn 2008) (for a review see Ishai 

2010), particularly in the visual motion domain (Goebel et al. 1998). It is well established 

that visual imagery shares some of the same neural machinery as the actual perception 

(Farah 1989; Kosslyn & Thompson 2003). O’Craven et al found that fusiform face area 

activates for imagined faces and parahippocampal place area for imagined places (O’Craven 

& Kanwisher 2000) and it was demonstrated that hMT+/V5 is recruited during explicit 

(Goebel et al. 1998) and implicit (Kourtzi & Kanwisher 2000) motion imagery in the 

absence of NF. One can therefore infer that the same area that is localized with appropriate 

stimulus contrasts can be used as a target for NF based on imagery. Studies suggest that 

mental imagery recruits higher level cognitive modules, depending on the nature of the 

imagery task (Harmelech et al. 2015; Kaas et al. 2010; Mellet et al. 1998). 

In summary, this study takes advantage of the power of visual motion imagery, of the 

hMT+/V5 complex’s well established motion selectivity (Castelo-Branco et al. 2002; 

Castelo-Branco et al. 2009; Culham et al. 2001; Goebel et al. 1998; Graewe et al. 2013; 
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Kaas et al. 2010; Tootell et al. 1995; Watson et al. 1993; Zeki et al. 1991), and of the fact 

that this region is one of the visual brain regions that can be most reliably localized, to 

design a NF strategy to train humans to modulate activity in their own hMT+/V5 complex. 

The underlying idea is that a reliable recruitment of this region by motion imagery (Goebel 

et al. 1998; Kaas et al. 2010) would make NF approaches based on hMT+/V5 localization 

and subject driven control of activity in this region theoretically viable. If this goal is 

achieved, we seek to investigate the neural correlates of potential different patterns of 

learning. We hypothesize that the feasibility of training healthy volunteers to regulate the 

level of activation in their hMT+/V5 complex using NF based on visual motion imagery 

strategies might require the recruitment of a specific high level network which might 

potentially also be exploited for NF approaches. Moreover, we expect to observe different 

neural circuits associated with different learning effects. 

While the focus on early visual areas is controversial we opted for training a region 

clearly outside the DMN, which has been suggested to yield powerful NF approaches 

(Harmelech et al. 2015). The reason is that potential clinical applications of NF involve 

attentional disorders in which a ‘failure to deactivate the DMN’ has been postulated 

(Violante et al. 2012). Thereby, NF approaches focused on boosting activity in the DMN 

might be a very good approach for some mental disorders, but not the ones where the 

mechanism to regulate activity in DMN is dysfunctional, with strong hyperactivity. 

Therefore, training of focused imagery or attention to visual features might be a viable 

alternative as well as BCI approaches aiming to reduce ‘lapses of attention’ (DeBettencourt 

et al. 2015), given the known links between mental imagery and attention deficit 

hyperactivity disorder (Abraham et al. 2006). 

 

 Materials and methods 2.2.

2.2.1. Participants 

Twenty healthy participants (11 males; mean age = 28.3, SD ± 6.7) gave informed consent 

and participated in this study. All volunteers had normal or corrected-to-normal vision, and 

none of them had a history of neurological, major medical, or psychiatric disorders. The 

experimental procedures were approved by the ethics committee of the Faculty of Medicine 

of the University of Coimbra. 
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Before the experiment, participants were instructed that they would learn to regulate a 

brain region known to be involved, among other functions, in motion processing (their 

hMT+/V5 complex). Participants were therefore instructed to use a focused visual motion 

imagery strategy to regulate their brain activity. The instructions also included an 

explanation about the time delay between the image collection and the feedback (which 

corresponds to the hemodynamic delay plus the real-time analysis processing time) and an 

explanation about the self-paced (prior signaling of NF attempts to ensure validity) 

procedure of the experiment (see neurofeedback runs and experimental design section). 

 

2.2.2. fMRI data acquisition 

Functional and anatomical scans were performed in a 3 Tesla (3T) Siemens Magnetom 

TimTrio scanner, at the Portuguese Brain Imaging Network, using a 12-channel head coil. 

To minimize the motion of the participant’s head during the acquisition, foam padding was 

employed. A T1-weighted anatomical scan (160 slices) was acquired prior to functional runs 

using a turbo field echo gradient echo pulse sequence, TR (repetition time) = 2.3 s, TE (echo 

time) = 2.98 ms, voxel size = 1 × 1 × 1 mm
3
, FA (flip angle) = 9°, FOV (field of view) = 

256 × 256.  

Functional data, including a localizer scan and ∼4 neurofeedback runs (a minimum of 2 

was required per participant, which occurred only in three participants), were obtained using 

blood oxygenation level-dependent (BOLD) contrast echo planar imaging (EPI) covering 

the entire brain (TR = 3 s; TE = 30 ms; 36 slices; 3 mm thick; flip angle = 90°; in-plane 

resolution = 4 × 4 mm
2
). The first two volumes were discarded to allow for T1 equilibration 

effects. For each participant, 125 volumes were acquired for the localizer run and 150 

volumes for each of the NF runs. 

 

2.2.3. Online data analysis 

Data from the localizer and NF runs were analyzed online. The fMRI setup used for real-

time data processing was based on Turbo-BrainVoyager 2.6 (Brain Innovation, Maastricht, 

The Netherlands). After acquisition and reconstruction, data from the scanner were sent to 

the real-time analysis computer. The data were imported, analyzed volume by volume and 

drift removal and 3D motion detection and correction were performed aligning each volume 

to a reference volume, which was the first volume scanned.  
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The statistical analysis was based on an incremental general linear model (GLM) 

calculation by the real-time fMRI Turbo-BrainVoyager software package. On the NF runs, 

the mean resultant signal estimated for each incoming functional imaging volume within the 

selected ROI, in relation to the baseline, was feedback to the participant using an auditory 

feedback (see neurofeedback runs and experimental design section). Importantly, this 

modality was used for feedback to prevent that additional visual signals were added. 

 

2.2.4. Functional definition of the target region-of-interest 

We used a moving-dot task, as functional localizer, that has been shown to reliably activate 

movement-related visual networks, including hMT+/V5, which we aimed to target (Goebel 

et al. 1998; Mikami et al. 1986; Newsome & Pare 1988). 

Participants viewed a motion stimulus that was generated from a white single dot 

oscillating along a vertical trajectory, up and down, against a black background (figure 2.1-

A). This single dot was shown across three different conditions where the speed was the 

manipulated variable: two 30 s blocks of a moving dot, at two distinct speeds (10 deg/s and 

5 deg/s), interleaved with a 15 s block of a static dot (figure 2.1-B). Stimulus delivery was 

controlled by MATLAB (MathWorks) using the Psychophysics toolbox. 

 

2.2.5. Neurofeedback runs and experimental design 

To test our hypothesis, volunteers were trained to modulate the level of activation in their 

hMT+/V5 complex using fMRI-based NF and strategies of visual motion imagery. After 

defining the target ROI hMT+/V5 for each participant, using the functional localizer, they 

took part in NF training sessions.  

The NF runs were composed of several static imagery blocks (down-regulation blocks 

used as baseline) interleaved by motion imagery blocks (up-regulation blocks) (figure 2.1-

C). At the beginning of each NF run, participants were instructed to press either of two 

buttons to indicate their intention to either up-regulate (right button) or down-regulate (left 

button) the target area. Furthermore, they were instructed to always begin each run with a 

baseline block, to interleave both blocks and to attempt each block with duration of 

approximately 20 s. The exact duration of each block was decided by the participant. The 

timings of the response collection were controlled by MATLAB (MathWorks) using the 

Psychophysics toolbox. This self-pacing criterion allowed the participants to freely decide 

when to interleave their up-regulation blocks with static imagery blocks (baseline). During 
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the NF training runs, the fMRI BOLD signals from the ROI were processed in real-time and 

the level of activity in the ROI was fed-back to the participant. Participants could learn by 

trial and error, using visual motion imagery, how to regulate the level of activity measured 

in the target ROI. Each NF run lasted 7.5 minutes. 
 

 
Figure 2.1. Experimental design for the functional localizer and neuromodulation tasks. (A) The 

functional localizer for the target region-of-interest (ROI) representing the static and motion conditions. The 

moving stimulus is a white dot oscillating up and down along a vertical trajectory. (B) Three different 

conditions were used to localize the hMT+/V5 complex: static, slow and fast visual moving stimulus. Thirty 

seconds blocks of a moving dot, fast (10 deg/s) or slow (5 deg/s), were randomly interleaved with 15 s blocks 

of a static dot (0 deg/s). The distance covered by the dot (each cycle) was 2 degrees of arc, so the half period 

(λ) of one oscillation was 200 ms for the slow condition and 100 ms for the fast condition. (C) Example of the 

design of the neurofeedback session. Static imagery blocks (down-regulation used as baseline: gray blocks) 

were interleaved by motion imagery blocks (up-regulation blocks: green blocks). Motion imagery was self-

paced (indicated a priori to ensure validity) and the participants received an auditory feedback for 

neuromodulation. 

 

Auditory feedback was chosen to avoid the potential interference that a visual 

‘thermometer’ display, as a primary tool for feedback, might eventually cause in hMT+/V5 

modulation. Thus, changes in the ‘thermometer’ display were indirectly fed-back by the 

experimenter to participants via the auditory modality using the intercommunication system 

of the MRI system. At the beginning of each session, the most comfortable dB level was 
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verified for each participant. Each participant confirmed that they could clearly hear the 

experimenter’s voice. The ‘thermometer’ displayed to the experimenter (outside the 

scanner) the percentage signal change as compared with the previous baseline block. Then 

the experimenter quantitatively forwarded these changes, in real-time, to the participant thus 

translating the levels of the standard visual ‘thermometer’ scale of the Turbo Brain Voyager 

software (from level 0 - no activation to level 5 - maximum activation). During the baseline 

blocks, the goal given to the participants was to achieve the level 0, as opposition to the up-

regulation blocks goal (to achieve the maximum level). Accordingly, the auditory feedback 

was given during both imagery tasks. To avoid strong fluctuations of the thermometer 

display and baseline drifts, temporal filtering was applied by averaging up to three previous 

time points. After the experiment participants were asked to describe how they tried to 

manipulate the feedback signal and how effective their strategies were.  

For a complete overview of the experimental design please see the supplementary figure 

2.A1 in appendix. A scheme of the implemented neurofeedback system set-up is also 

presented (figure 2.A2).  

 

2.2.6. Offline data analysis 

Offline image data analyses were carried out using BrainVoyager QX 2.4 (Brain Innovation, 

Maastricht, The Netherlands). Pre-processing included 3D motion correction with intra-

session alignment, slice-scan-time correction with cubic spline interpolation, temporal high-

pass filtering to remove low frequency drifts (GLM Fourier with 2 cycles per run). 

Functional data were co-registered to anatomical data per participant and subsequently 

normalized into Talairach space. 

Statistical analyses were performed per participant and at group level. The block 

predictors were time-locked to the onset of the specific conditions (experimental condition = 

1, baseline condition = 0). In order to account for the hemodynamic delay and dispersion, 

each of the predictors was convolved with a double gamma hemodynamic response function 

(Friston et al. 1998). Furthermore, motion parameters were used as predictors in order to 

control for the potential influence of motion artefacts in our data. Significant differences 

between experimental conditions were assessed by using contrast (t) maps. The obtained 

statistical maps from the localizer runs were corrected for multiple comparisons using 

Bonferroni correction. Effects were considered significant if P < 0.05. The group data 

analyses were performed using random effects GLM. 
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To take into account potential between participants variability, specific offline analyses 

of the NF data were performed per participant to identify the lag with maximal correlation 

with hMT+/V5 time courses. This lag is a result of the cross correlation analysis (performed 

for multiple lags and identifying the one with strongest correlation, just like in retinotopic 

mapping). It provides us information about the mental pacing of the participant and the 

latency of the neuromodulation signal. Furthermore, to search for possible learning effects 

in successful NF runs, we analyzed the improvements within (percentage of signal change 

per run) and between runs (simple comparisons per participant and using the beta values). A 

NF run was labelled as successful if the participant showed an overall positive and 

statistically significant predictor coefficient (beta weight) derived from the correlation of 

ROI GLM BOLD response and its time course. Successful versus non-successful NF runs 

were analyzed using the data from all participants to identify the brain regions involved in 

each case.  

Functional connectivity was assessed at group level for successful and non-successful NF 

runs using psychophysiological interactions (PPI) analyses based on Friston et al. (1997), as 

described in (O’Reilly et al. 2012). The PPI analysis was based on whole-brain data and was 

performed using the defined hMT+/V5 ROI as seed. A PPI analysis identifies which voxels 

increase their connectivity with a seed ROI in a given cognitive context, such as imagery. 

To perform the PPI analysis, the mean activity of the seed ROI for each TR was extracted. 

This time course was previously z-transformed to be multiplied TR by TR with the task time 

course. The result forms a PPI predictor. The task time course was based on the protocol 

associated with the data. Before being multiplied by the ROI time course, the task time 

course was convolved with the hemodynamic response function. GLM analysis included the 

PPI predictor, the hMT+/V5 time course and the task time course. The GLM results show 

which area significantly increase their relationship with the seed ROI in the imagery 

context. 

 

 Results 2.3.

2.3.1.  hMT+/V5 localization 

The independent localizer scan identified hMT+/V5 complex in all participants, in a region 

consistent with prior reports of its localization (figure 2.2) (Castelo-Branco et al. 2002; 

Castelo-Branco et al. 2009; Graewe et al. 2013). As our moving visual stimulus was 
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displayed in central locations, GLM analysis of BOLD responses in bilateral ROIs showed 

greater activation levels to motion contrast conditions (P < 0.001, for all comparisons, 

Bonferroni corrected). hMT+/V5 multi-subject cluster peak voxel coordinates at P < 0.005 

were the following (x, y, z): left (−45, −66, 2) and right (42, −66, −2). Based on this finding, 

we used a bilateral ROI for subsequent neurofeedback runs, from which the response was 

extracted for each of the experimental conditions. Participants’ responses for each condition 

were quantified as the percentage of BOLD signal change. 
 

 

Figure 2.2. Example of hMT+/V5 identification using the defined localizer in one participant. (A) 3D 

view of the resulting region-of-interest (ROI). (B) General linear model (GLM) conjunction analysis (stringent 

criterion being that all particular motion versus static contrasts have to be significant for a voxel to be 

considered positive; for details see text) of blood-oxygenation-level-dependent (BOLD) shows a quite specific 

degree of localization to bilateral hMT+/V5. Regions are shown at the same statistical threshold level (P < 

0.0001, corrected). (C) Time courses of hMT+/V5 activity during the localizer run. The blocks represent the 

different visual stimulus conditions presented to the participant: gray blocks - static dot; dark red blocks - 

moving dot with low velocity; bright red blocks - moving dot with high velocity. 

 

2.3.2. hMT+/V5 modulation 

The target area used for NF was centered on the peak voxel of activation in the hMT+/V5, 

and the signals from all voxels inside the defined ROI were averaged. Fifteen of the twenty 

participants were able to successfully regulate BOLD magnitude in the hMT+/V5 complex 

(see figure 2.3 for example from one participant) in at least one NF run according to the 

defined criteria (the individually selected ROI showed a significant (P < 0.05) increase of 

activity during visual motion imagery when compared to no-motion imagery). Different 

patterns of ROI activity self-regulation were observed within and between runs. We have 

found increased BOLD modulation in ROI across runs or even improvements within the 

same run (see examples in figure 2.4). Participants reported the use of both positive and 
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negative mental imagery (on/off). Although the same focused strategy of visual motion 

imagery was requested, participants were free to ‘animate’ their imagined motion with 

visual object features other than simple dot motion (positive strategies). Negative strategies 

were focused mostly on bringing back fixing a static point or static figures.  

 

Figure 2.3. Example of a successful neurofeedback (NF) training run. (A) 3D view of the hMT+/V5 

region-of-interest (ROI) activation during NF training. (B) Statistical map showing the hMT+/V5 recruitment 

during a NF run (P < 0.0001, corrected). A ROI mask as defined by the localizer was applied. (C) Time course 

from a NF run. The gray blocks represent the down-regulation (baseline) and the green blocks represent the 

up-regulation moments. The tests were self-driven. 

 

 

Figure 2.4. Variability of improvements of self-regulation within and across neurofeedback (NF) runs. 

The red curves depict the smoothed time course during a NF run. The yellow boxcar represents the mean 

values of time course per blocks. The gray blocks represent the down-regulation and the green represent the 

up-regulation periods. (A) A case of progressive mean improvement within a run, as highlighted by the yellow 
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moving average. (B) A participant that showed stable performance in a run (left) and improved self-regulation 

ability in a subsequent run (right, note the larger width of regulation curves). 

For the participants with more than one successful NF run, the highest prediction 

coefficients were found mainly for the second NF run. More specifically, six participants 

presented the highest modulation performance in the second run, five in the first run, three 

in the third run and one in the last run. The analyses of the percentage of signal change per 

trial showed that, within each run, the main differences in activity, as compared to the 

baseline, were found in the middle trials (suggesting an interaction of learning and fatigue 

effects). 

 

2.3.3. Whole-brain group analysis 

Group analysis (figure 2.5) showed significant hMT+/V5 activations during successful NF 

runs (RFX, P < 0.05, corrected for multiple comparisons). Furthermore, additional imagery 

related brain activations during successful NF runs were also identified: anterior and 

posterior insula, putamen, caudate nucleus, cerebellum and putative V6. Their time courses 

showed up-regulation during positive mental imagery and down-regulation during negative 

mental imagery in these areas.  

 

Figure 2.5. hMT+/V5 group activity during successful neurofeedback (NF) runs. Statistical map showing 

hMT+/V5 mask as identified by the localizer corresponds to the region recruited for group analysis of 

successful NF runs (RFX, q(FDR) = 0.05). 

Comparing successful (table 2.1) and non-successful runs (table 2.2) some common 

regional activations were found (insula and putamen). However, successful NF recruited a 

region corresponding to the coordinates of V6, the cerebellum during visual motion imagery 

(figure 2.6-A) and the caudate nucleus whereas non-successful NF primarily recruited a 

frontal (premotor) region, which was not activated in successful NF (figure 2.6-B). 
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Table 2.1. Summary of regions activated during successful neurofeedback (NF) runs. The brain regions 

activated during successful NF are known to be involved either in motion perception or decision making. Peak 

voxels according Talairach coordinates and the number of used voxels recruited in each region using the 

contrast up-regulation versus down-regulation are presented (RFX, q(FDR) = 0.05). 

 

Brain area Talairach coordinates (x,y,z) Voxels  

MT 
Left (-45.63,-56.96,-3.30) 449  

Right (41.63,-58.29,-2.86) 35  

Cerebellum 

Left (-7.57,-66.10,-22.60) 461  

Medial (-0.54,-66.11,-19.30) 780  

Right (9.31,-65.31,-26.69) 514  

V6 
Left (-14.26,-75.62,39.15) 484  

Right (14.12,-73.23,38.60) 158  

Insula 
Posterior (-33.14,21.93,8.35) 450  

Anterior (34.22,23.44,5.93) 27  

Putamen 
Left (-24.89,-5.32,12.07) 453  

Right (24.80,-5.35,10.41) 187  

Caudate nucleus 
Left (-13.07,17.74,11.68) 131  

Right (13.29,17.14,12.21) 66  

 

 

Table 2.2. Summary of regions activated during non-successful neurofeedback (NF) runs. Peak voxels 

according Talairach coordinates and the number of used voxels are presented based on the contrast up-

regulation versus down-regulation (RFX, q (FDR) = 0.05). 

 

Brain area Talairach coordinates (x,y,z) Voxels  

Insula Left  (-31.53,20.15,11.19) 159 
 

Putamen 
Left  (20.62,1.32,9.42) 355 

 

Right  (-24.85,1.30,8.01) 267 
 

Frontal Cortex Left  (-28.69,-10.04,53.05) 468 
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Figure 2.6. Successful versus non-successful neurofeedback (NF) run analysis (P < 0.0001, corrected). 
(A) Significantly activated areas in the former are in a region corresponding to V6 and the middle cerebellum. 

(B) The strongest activation in the latter is in premotor frontal cortex. The contrasts used were successful up-

regulation vs. down-regulation (A) and non-successful up-regulation vs down-regulation (B). 

 

To further explore the neural correlates of the observed learning effects, we performed a 

PPI analysis using the defined hMT+/V5 ROI as seed. PPI analysis (figure 2.7) showed 

significant (P = 0.001) connectivity between hMT+/V5 and putamen, middle cerebellum 

and putative V6 for the successful NF runs. For the non-successful runs the strongest 

interaction was between hMT+/V5 and the frontal premotor cortex. The main PPI 

differences comparing successful and non-successful runs, using the contrast successful runs 

PPI versus non-successful runs PPI, were found between hMT+/V5 and the putative V6 

(stronger interactions in the successful runs) and between hMT+/V5 and the frontal 

premotor cortex (stronger interactions in the non-successful runs). Furthermore, the middle 

cerebellum presented significant (P < 0.05) stronger interactions with the hMT+/V5 ROI in 

the successful runs. 
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Figure 2.8. Psychophysiological interactions (PPI) of the hMT+/V5 complex during successful and non-

successful neurofeedback (NF) runs. The hMT+/V5 complex showed interactions with the middle 

cerebellum, the putamen and the putative V6 during successful runs (A). During non-successful runs (B) the 

strongest interaction was with the premotor frontal cortex. PPI maps are presented at threshold of P = 0.001, 

using RFX group analysis. (C) Significant differences (P = 0.04) using the PPI contrast for successful vs non-

successful NF runs were mainly found in putative V6 (higher interaction with the hMT+/V5 in the successful 

runs) and in premotor frontal cortex (higher interaction with the hMT+/V5 in the non-successful runs). 

Different psychophysiological interactions are also confirmed at the middle cerebellum for successful (higher 

interaction with the hMT+/V5) and non-successful runs. 

 

 Discussion 2.4.

In this study we trained healthy participants to regulate the level of activation of their 

hMT+/V5 complex, a region involved in motion perception and imagery, using fMRI-based 

NF. The hMT+/V5 complex is well activated by visual motion imagery (Goebel et al. 1998) 

thereby allowing for a self-driven and self-monitored (using feedback) brain modulation. 

Seventy five percent of our participants were able to effectively use this strategy to 

achieve their proposed goal. We found different patterns of learning effects and 

characterized their neural basis and functional connectivity. Most of our participants 

successfully regulate the target region in the first two NF runs (albeit only in about half of 

the runs, on average). This demonstrates an ability to quickly learn how to modulate their 

brain but also a growing influence of fatigue as the session progresses. A specific neural 

circuitry was found to be involved in successful learning, as corroborated by PPI analysis. 

This circuitry involves not only visual areas such as V6 and hMT+/V5 but also the striatum 

and cerebellum. 

Only a few previous NF approaches have focused on the visual cortex (Scharnowski et 

al. 2012; Shibata et al. 2011). These studies focused on ROIs that encompassed several early 

visual areas (including areas V1, V2 and V3). Here, we proposed a ROI definition based on 

a functional criterion that was subsequently used as a NF strategy, taking advantage of 
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hMT+/V5 motion selectivity and imagery responses. Our approach of focusing on a single 

ROI forces a similar strategy in all participants, which may actually be an advantage 

because focused visual motion imagery is relatively simple to learn and to instruct in a 

generalized way. Moreover the single ROI choice potentially renders group effects more 

homogeneous. To prevent mixing of imagined and perceived feedback we opted for 

auditory feedback (Posse et al. 2003), which allowed to isolate motion responses just in 

terms of the imagery component. Furthermore, as we controlled for motion artefacts by 

including these parameters as predictors, we could assure that our results are not explained 

by higher participants’ motion in the scanner during the NF runs. 

Although we focused on hMT+/V5 as a region for NF modulation, our results suggest 

that other regions would potentially be equally effective, in particular those more closely 

involved in decision-making, attention and imagery. The whole-brain analysis showed 

additional brain activations during the hMT+/V5 visual motion imagery modulation 

training: insula, putamen (in successful and non-successful runs), cerebellum, caudate 

nucleus, and putative V6 (particularly in successful runs, as also shown by PPI analysis). 

These additional regions found during NF training based on imagery, which were reliably 

activated across participants, are known to contribute to motion perception and/or imagery 

(including the putamen and cerebellum), attention (striatum) (DeBettencourt et al. 2015) and 

to decision making, such as the anterior insula (Rebola et al. 2012). Furthermore, there are 

previous studies using NF to modulate the BOLD signal in the latter (Caria et al. 2010) in 

particular using emotional imagery. 

The basal ganglia and the cerebellum are also known to have non-motor functions and to 

be recruited during imagery (Bauer et al. 2013). Both the caudate and putamen respond to 

simple visual motion stimuli and their recruitment is therefore unsurprising (Kovács et al. 

2008; Nagy et al. 2008; Romero et al. 2008). Moreover, it is worth pointing out that basal 

ganglia regions have also recently been successfully trained in NF experiments aiming to 

improve sustained attention abilities (DeBettencourt et al. 2015) and to exert control over 

nucleus accumbens, an important brain area implicated in motivation and learning and 

known to be impaired in psychiatric disorders (Greer et al. 2014). Moreover, it has been 

suggested that hMT+/V5 motion imagery specific activation results from a top-down 

influence from frontoparietal regions (Goebel et al. 1998; Kaas et al. 2010; Mechelli et al. 

2004). This particular neural network seems to be central in visual motion imagery (Kaas et 

al. 2010). In our study we found both frontal and occipitoparietal (putative V6) activations 
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(the latter only found for successful NF). We previously found that this network activates in 

difficult and effortful task conditions (Graewe et al. 2013). Here we only found frontal 

activation in non-successful runs. Importantly, our results also show many similarities with 

the motion imagery study of Kaas et al. where significant activation of right anterior insula, 

right basal ganglia, and left middle occipital gyrus was found (Kaas et al. 2010). 

Previous evidence suggests that the cerebellum may have a critical role in motion 

perception (Händel et al. 2009). This study demonstrated that visual motion processing in 

the cerebral cortex critically depends on an intact cerebellum and established a correlation 

between cortical function and impaired visual perception resulting from cerebellar damage. 

Our results showed that this is also the case for visual motion imagery. We found midline 

cerebellar activations, particularly in successful NF runs. These results are consistent with 

evidence in patients with midline lesions that showed perceptual deficits very similar to the 

ones reported following cortical area hMT+/V5 lesions in primates (Ignashchenkova et al. 

2009; Nawrot & Rizzo 1995). To our knowledge this is the first study establishing a direct 

functional link between the hMT+/V5 and the cerebellum particularly in active motion 

imagery. We propose that our findings are consistent with the suggestion raised from these 

reports of a cerebellar mechanism involved in perceptual stabilization. Such mechanism 

may be very important in motion imagery, where stabilization of the imagined visual 

representation is required. Our study supports an additional important role for these 

particular structures in visual motion imagery tasks. 

Our findings demonstrated that given appropriate fMRI-based NF information, 

individuals could significantly enhance the regional BOLD activity in the hMT+/V5 

complex by visual motion imagery strategies. Reliable up-regulation of the target area 

already during the first two sessions in most participants converges with the previous report 

of effective hMT+/V5 activation with visual motion imagery (Goebel et al. 1998). Previous 

studies (Caria et al. 2007; DeCharms et al. 2005; Weiskopf et al. 2004) also showed that one 

single-day training with fMRI-based NF training is enough to achieve learning. Our study 

therefore suggests that hMT+/V5 is at least as effective as other brain regions used as targets 

of NF approaches: the right anterior insula (Caria et al. 2007), somatomotor cortex and ACC 

(DeCharms et al. 2004) and amygdala (Zotev et al. 2011). 

One of the main neuroscientific contributions of this study was the identification of a 

specific brain circuitry recruited only during successful NF training. This core circuit 

involved in visual motion imagery includes regions previously known to be involved in 



 

53 

 Visual motion imagery neurofeedback based on the hMT+/V5 complex 

motion perception (putative V6, putamen, cerebellum and hMT+/V5). Our findings raise the 

interesting question that this whole circuit might also be used as a target for NF. We suggest 

that the use of functional connectivity based NF instead of the more classical region based 

approach may be advantageous and should be considered in future NF studies. A recent 

study has actually confirmed this (Kim et al. 2015). 

Finally, an important point of our study is that it may help highlight the debate on the 

relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the 

clinical application of NF paradigms. While a focus on the DMN may yield powerful NF 

approaches (Harmelech et al. 2015) here we opted for an early visual area because of our 

interest in clinical applications of NF involving attentional disorders such as ADHD and 

Neurofibromatosis type 1, in which a ‘failure to deactivate the DMN’ has been postulated 

(Violante et al. 2012). It is known that in ADHD mental imagery is impaired (Abraham et 

al. 2006; Williams et al. 2013). We believe that training of focused imagery or attention to 

visual features might be a reasonable approach, as well as other approaches attempting to 

reduce ‘lapses of attention’ in such disorders (DeBettencourt et al. 2015). ‘BCI-eligibility’ 

might therefore not only depend on ‘learning’ abilities but also on the particular clinical 

condition to be treated. 

 

 Conclusion 2.5.

We found that volitional control of hMT+/V5 visual area by using fMRI-based NF training 

is possible and quick to learn. This neuromodulation did not depend on recruitment of 

frontoparietal regions, typically found in many imagery tasks. Successful NF training on 

hMT+/V5 modulation allowed for the identification of a specific neural circuit involved in 

visual motion imagery and perceptual stabilization, which included putative V6 and the 

medial cerebellum. This circuit activated during NF related motion imagery, but not in non-

successful runs and may be a viable approach as a target for attentional disorders where a 

boost of activity of the already hyperactive DMN is undesirable. 
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A1. Experimental design 
 

 
Figure 2.A1. Summary of the main steps of the experimental procedure followed in the study. Each 

participant took part of a single session lasting approximately about 1.50 h. First, clear instructions about the 

experimental steps and procedures were given to participants outside the scanner. Then, participants performed 

neurofeedback training based on fMRI signal and visual motion imagery to up- and down-regulate their 

hMT+/V5 activity. Anatomical data was also acquired to posterior co-registration of the functional data during 

offline analysis. The fMRI real-time analysis was performed on Turbo-Brain Voyager software and the offline 

analyses were performed using Brain Voyager Qx. The main analyses were based on general liner model 

(GLM) and psychophysiological interactions (PPI) approaches. fMRI – functional magnetic resonance imaging, TR 

– repetition time, FA – flip angle, TE – echo time, FOV – field of view, ROI – region of interest. 

 
 

Participants’ preparation (outside of scanner) 

 20 healthy volunteers (11 males; mean age = 28.3 ± 6.7 years) 

 Informed consent  

 Explanation about experimental steps, hemodynamic delay and brain activity volitional 

self-regulation procedure  

MRI data acquisition 

 3 Tesla Siemens Magnetom TimTrio scanner  

 12-channel head coil 

 T1-weighted anatomical scan (160 slices) 

 TR = 2.3 s; TE = 2.98  ms; Voxel size = 1 x 1 x 1 mm
3 
;  FA = 9º; FOV = 256 x 256 

 

fMRI data acquisition 

 BOLD contrast EPI covering the entire brain (36 slices) 

 TR = 3 s; TE = 30 ms; Voxel size = 3 x 4 x 4 mm
3 
;  FA = 90º; 3 mm thick 

 Functional definition of the target ROI 

 125 volumes 

 Visual stimulus based on the contrast between motion and no-motion of single dot 

 Stimulus delivery controlled by Matlab using the Psycophysics toolbox 

 Online ROI definition based on Turbo-Brain Voyager software (voxels selected at  

t  ≥ 3.00) 

 hMT+/V5 voluntary binary modulation 

 Visual motion imagery (imagery of the visual stimulus conditions used) 

 Up-regulation blocks: imagery of a moving dot 

 Down-regulation blocks: imagery of a static dot 

 150 volumes per run 

 ~ 4 runs of neurofeedback training per participant  

 Real-time fMRI analysis based on Turbo-Brain Voyager software (version 2.6) 

 Auditory feedback of the activity on the defined ROI 

Offline data analysis 

 Analysis carried out using Brain Voyager 2.4 

 Pre-processing: motion correction (intra-session alignment), slice-scan-time correction 

(cubic spline interpolation), temporal high-pass filter (GLM Fourier, 2 cycles per run) 

Functional data co-registered to anatomical data and normalized into  Talairach space 

 Statistical analysis based on GLM per participant and at group level  

 Functional connectivity analysis based on PPI estimation 
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A2. Implemented neurofeedback system 
 

 
Figure 2.A2. Set-up of the implemented neurofeedback system. The participant was trying to up-regulate and 

down-regulate brain activity by applying strategies of visual motion imagery, inside the MRI scanner. The 

acquired fMRI data were analyzed in real-time and the level of brain activity was given as feedback to the 

participant. The Turbo-BrainVoyager (TBV) software was used for the real-time data processing. It was 

installed on a separate computer to ensure optimal hardware usage and, thereafter, best results in real-time 

processing. The TBV uses an incremental recursive least squares (RLS) based general linear model (GLM) to 

perform the statistical analysis. 

MRI host computer 
 

Real-time data export of the MRI 

images to a shared folder 

 

MRI scanner 
 

Participant in the scanner using visual motion imagery strategies to up- 

and down-regulate the activity in the brain region hMT+/V5 

MRI intercommunication system 
 

Continuous auditory feedback in a scale from 0 to 5 given by the experimenter 

as a direct translation of the standard visual feedback (thermometer) 

TBV computer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real-time data analysis 
 

 Reading of EPI slices into working memory 

 3D motion correction (with sinc interpolation) 

 Incremental statistical analysis (RLS GLM) 

 Drift removal via design matrix (confound predictors) 

 Slice scan time correction using shifted predictors per slice 

 Incremental event-related averaging 

 

Feedback calculation 
 

 Given a baseline level bl , the feedback value fb for the current time point  with 

value val is calculated within a neurofeedback trial 

 

fb = (val - bl) / bl * 100 

 

 Baseline interval defined just before the interval of the current feedback 

condition 

 Shift of 3 time-points at the beginning and 1 time-point at the end  of each 

baseline condition  

 Smoothing of 3 time-points applied to the feedback signal 

 bl = average of signal values of the identified data as baseline for the subsequent 

modulation block 

 Minimum of  4 points for a pre-modulation bl estimation  

Network connection 

F
ee

d
b

ac
k
 



 

 

  

 

CHAPTER 3 

CONTROL OF BRAIN ACTIVITY IN HMT+/V5 AT 

THREE RESPONSE LEVELS USING FMRI-BASED 

NEUROFEEDBACK 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Sousa, T., Direito, B., Lima, J., Ferreira, C., Nunes, U., Castelo-Branco, M., 

2016. Control of brain activity in hMT+/V5 at three response levels using fMRI-based 
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Abstract 

A major challenge in brain-computer interface research is to increase the number of 

command classes and levels of control. Brain-computer interface studies often use binary 

control level approaches (level 0 and 1 of brain activation for each class of control). 

Different classes may often be achieved but not different levels of activation for the same 

class. The increase in the number of levels of control in brain-computer interface 

applications may allow for larger efficiency in neurofeedback applications.  

In this work we test the hypothesis whether more than two volitional modulation levels 

can be achieved in a single brain region, the hMT+/V5 complex. Participants performed 

three distinct imagery tasks during neurofeedback training: imagery of a static dot, imagery 

of a dot with two opposing motions in the vertical axis and imagery of a dot with four 

opposing motions in vertical or horizontal axes (imagery of 2 or 4 motion directions). The 

larger the number of motion alternations, the higher the expected hMT+/V5 response.  

A substantial number (17 of 20) of participants achieved successful binary level of 

control and 12 were able to reach even three significant levels of control within the same 

session, confirming the whole group effects at the individual level. With this simple 

approach we suggest that it is possible to design a multilevel system of control based on 

volitional activity modulation of a specific brain region with at least three different levels. 

Furthermore, we show that particular imagery task instructions, based on different number 

of motion alternations, provide feasible achievement of different control levels in brain-

computer interface and/or neurofeedback applications. 
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 Introduction 3.1.

Multivariate supervised learning methods combined with real-time functional magnetic 

resonance imaging (fMRI) have allowed for the development of approaches enabling 

decoding of brain states based on the blood-oxygenation-level-dependent (BOLD) signal 

(Formisano et al. 2008). The decoded brain states can be used as control signals for a brain-

computer interface (BCI) and/or to provide neurofeedback (NF) to the subject (LaConte 

2011; Weiskopf, Mathiak, et al. 2004; Weiskopf 2012). 

NF systems represent a BCI variant which allow training of voluntary regulation of brain 

activity, by feeding back information based on users’ brain activity (Weiskopf, 

Scharnowski, et al. 2004). It is known that healthy subjects can learn to self-regulate their 

local BOLD response with the help of real-time fMRI-based NF (Caria et al. 2007; Caria et 

al. 2010; DeCharms et al. 2004; Hamilton et al. 2011; Johnston et al. 2010; McCaig et al. 

2011; Rota et al. 2009; Scharnowski et al. 2012; Yoo et al. 2007). Specific behavioral 

effects have been reported as a result of NF in line with the idea that it allows for useful 

self-regulation of neuronal activity (Caria et al. 2010; Johnston et al. 2010; Rota et al. 2009; 

Scharnowski et al. 2012). Accordingly, the potential importance of NF for learning self-

regulation goes beyond what may be achieved by simple behavioral approaches based on 

the sole use of conscious cognitive strategies (Caria et al. 2007; DeCharms et al. 2005; Rota 

et al. 2009). Clinical results of real-time fMRI-based NF studies focused at behavioral 

modulation do support its role as a novel non-invasive treatment tool for neurological and 

psychiatric disorders (DeCharms et al. 2005; Haller et al. 2010; Linden et al. 2012; Ruiz et 

al. 2013; Sitaram et al. 2012; Subramanian et al. 2011). 

The correspondence between distinct brain activity patterns and particular perceptual 

states are key factors in determining whether cognitive states can be decoded. One typical 

case of such separation is given when different cognitive states/commands are encoded in 

spatially distinct locations of the brain (Haynes & Rees 2006). In this case, BCI/NF studies 

are usually implemented using binary control level approaches. In other words, level 0 and 1 

of brain activation are tested for a particular command. If multiple classes of control are 

aimed at, then multiple brain regions are needed to encompass several commands using this 

approach. Accordingly, a few studies have tested multiple classes of control based on a 
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variety of mental tasks, but critically, they recruited distinct brain areas for different 

commands, and not the same brain region (Lee et al. 2009; Yoo et al. 2004), or took 

advantage of different spatio-temporal aspects of the BOLD signal (Sorger et al. 2012). 

Different classes of control could be achieved but not different levels of up-regulation in the 

same region. Yoo et al. (2004) explored the possibility of using real-time fMRI to interpret 

the spatial distribution of brain activity as BCI commands. They asked participants to 

perform four different mental tasks (‘right hand motor imagery’, ‘left hand motor imagery’, 

‘mental calculation’, and ‘inner speech’) that evoke differential brain activation in four 

distinct brain locations and were interpreted as four BCI commands (four classes of control, 

each with a binary up-regulation level). Lee et al. (2009) applied the same strategy to 

control a robotic arm movement. BOLD signals originating from the hand motor areas 

during right or left hand motor imagery tasks were translated into horizontal or vertical 

robotic arm movement (two classes of control with one upregulation level). More recently, 

Sorger et al. (2012) proposed a spelling device based on fMRI, by exploiting spatiotemporal 

characteristics of hemodynamic responses, evoked by performing differently timed mental 

imagery tasks (again, multiple commands, but only one up-regulation level). 

When aiming to use real-time fMRI-based training for practical applications, it is 

relevant to demonstrate that training can produce beyond binary levels of control which 

might be advantageous as compared to those that can be achieved using conventional 

strategies. Therefore, it is of potential interest to assess multilevel/parametric BCI/NF (with 

more than one level of up-regulation) (Sorger 2010). The increase of the number of levels of 

control in BCI applications would allow for more powerful NF applications (different levels 

of volitional neuromodulation, i.e. more control levels over the activity of one particular 

brain region). 

In this study we tested different visual imagery tasks with real-time fMRI-based NF in 

order to modulate the activity level of the same specific brain region, the hMT+/V5 

complex, to verify whether more activation levels could be achieved than the typical binary 

case. We hypothesized that imagery tasks involving different numbers of imagined motion 

alternations, would lead to different levels of brain activity. 

Pattern-based decoding of fMRI signals can successfully predict the perception of low-

level perceptual features. For example, the orientation (Haynes & Rees 2005) and direction 

(Kamitani & Tong 2006) of a motion visual stimulus presented to an individual can be 

predicted by decoding spatially distributed patterns of signals from local regions in early 
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visual cortex. Decoding these patterns in imagery tasks is rather complex and none of these 

approaches alone has been successfully used to yield different levels of activation in 

imagery-based NF. Therefore, we decided to train the modulation of activity in the motion 

sensitive hMT+/V5 complex by exploring the alternative combination of multiple motion 

features, and to test three distinct visual imagery tasks based on those combinations. 

We were inspired by the notion that strong and reliable fMRI responses are produced by 

the alternation of distinct grating orientations (Tootell et al. 1998) in primary visual cortex 

(V1) in humans. In the motion perception domain, conditions for which motion alternations 

occur more often lead to stronger responses due to a break in brain response adaptation 

and/or higher attentional deployment. We adapted this notion to design our approach by 

hypothesizing that a larger number of motion alternations during the imagery tasks would 

lead to higher activity levels in hMT+/V5 as compared to a lower number of imagined 

alternations. We tested two up-regulation tasks using visual imagery strategies, imagery of a 

dot with two opposing motions in the vertical axis (imagery of two motion directions) and 

imagery of a dot with four opposing motions in vertical or horizontal axes (imagery of four 

motion directions) and one additional condition of down-regulation through the imagery of 

a static dot (no motion). Our hypothesis is that three distinct levels of hMT+/V5 activity can 

be achieved based on these three imagery tasks with different number of motion 

alternations. 

The visual region hMT+/V5 was chosen, since it is a well-studied motion sensitive area, 

at the intersection of the occipital, temporal and parietal lobes, often specified as located at 

the occipito-temporo-parietal pit, and easily identified through functional visual localizers 

with robust motion selective responses including imagery (Castelo-Branco et al. 2009; 

Goebel et al. 1998; Graewe et al. 2013). Response sensitivity to three-dimensional structure 

from motion is also well characterized in this region and in accordance with its monkey MT 

homologue (Kolster et al. 2010; Tootell et al. 1995). 

 

 Materials and methods 3.2.

3.2.1. Ethics statement and participants 

This work was approved by the Ethics Committee of the Faculty of Medicine of the 

University of Coimbra. Twenty human volunteers gave written informed consent to 
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participate in the experiment. The study has been conducted according to the principles 

expressed in the Declaration of Helsinki. 

Twenty volunteers (fifteen male, between 20 and 53 years old, mean age = 28, SD ± 6.8, 

all right handed) with normal or corrected-to normal vision participated in this study. None 

of them had a history of neurological, major medical, or psychiatric disorders. 

 

3.2.2. Experimental design 

First, participants were given instructions about the tasks and overall experiment. These 

included an explanation of the nature of feedback and recommendations concerning the 

regulation strategy (requiring imagery of different levels of movement direction alternation). 

We also explained the presence of a short time delay between the image acquisition and the 

feedback (which corresponds to the hemodynamic delay plus the real-time processing time). 

Then an anatomical scan was acquired. Participants performed a functional localizer task 

designed to identify the region-of-interest (ROI) hMT+/V5 over the left and right regions 

involved in visual motion processing. This ROI served as the subsequent signal source for 

NF runs. 

Four imagery runs, each lasting nine minutes, with three different imagery tasks (visual 

imagery of the three types of stimuli shown during the previous localizer run) performed 

according to auditory instructions, were acquired. First, a passive imagery run (i.e. control 

run without feedback) was performed. In the two subsequent NF runs, participants 

attempted the up-regulation (during two motion imagery tasks) and down-regulation (during 

a static dot imagery task) of the selected ROI fMRI signals assisted by a real-time auditory 

feedback. Finally, participants tried self-regulation in the absence of feedback during the 

final transfer run. They were asked to close the eyes throughout the four imagery runs, to 

breathe steadily, and to remain as still as possible. For a complete overview of the 

experimental design please see the supplementary figure 3.A1 in appendix. 

 

3.2.3. fMRI data acquisition 

Scanning was performed using a 3 Tesla (3T) Siemens Magnetom TimTrio scanner, at the 

Portuguese Brain Imaging Network Central Facilities, using a 12-channel head coil. For 

each participant, scanning included the acquisition of five BOLD contrast echo-planar 

imaging (EPI) fMRI runs - one hMT+/V5 localizer experiment, one visual motion imagery 

run, two NF runs, and the final transfer run. 
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The recorded functional images consisted of 33 slices (field of view (FOV): 256 x 256 

mm
2
, voxel size 4.0 x 4.0 x 3.0 mm

3
, flip angle (FA): 90°) yielding a total coverage of the 

occipital and posterior temporal lobe. Repetition time (TR) was 2000 ms (echo time (TE): 

30 ms). For each participant, 200 volumes were acquired for the localizer run and 275 

volumes for each NF, imagery and transfer runs. The beginning of each run was 

synchronized with the acquisition of the fMRI volumes. 

Each scanning session included the acquisition of a high-resolution magnetization-

prepared rapid acquisition gradient echo (MPRAGE) sequence for co-registration of 

functional data (176 slices; TR: 2530 ms; TE: 3.42 ms; voxel size 1.0 x 1.0 x 1.0 mm
3
; FA: 

7°; FOV: 256 x 256 mm
2
). 

 

3.2.4. Real-time fMRI data processing 

The fMRI setup used for real-time data processing was based on Turbo-BrainVoyager 3.0 

(Brain Innovation, Maastricht, The Netherlands) (Goebel 2012) as previously described in 

(Weiskopf, Mathiak, et al. 2004). A scheme of the implemented NF system set-up is 

presented as supplementary figure 3.A2 in appendix. 

Data were analyzed with real-time with Turbo-BrainVoyager software performing online 

3D motion detection and correction, and drift removal. The statistical analysis was based on 

a parametric general linear model (GLM) and event-related averaging. 

The feedback level was computed based on the mean activation level of the ROI of each 

incoming acquisition volume, i.e. at each TR the feedback was calculated based on 

percentage of ROI mean signal change in relation to the last baseline (down-regulation task) 

period. The feedback value was given to the participant using auditory instructions to 

prevent visual contamination/noise leading to additional signals in hMT+/V5 induced by 

motion in the visual field. The experimenter quantitatively forwarded the changes in mean 

activation level of the ROI, at each 2 TR, to the participant thus translating the exact levels 

of the standard visual “thermometer” scale of the Turbo Brain Voyager software (from level 

0 - no activation to level 5 - max activation). 

 

 

 

 



 

70 

 Chapter 3 

3.2.5. Functional definition of the target ROI (localizer experiments using 

visual stimulation) 

Studies based on both single and multiple dots (Goebel et al. 1998; Mikami et al. 1986; 

Newsome & Pare 1988) have shown that a moving dot task reliably activates the hMT+/V5 

complex (Graewe et al. 2013). 

The NF target ROI, the hMT+/V5 complex, was determined using a functional localizer 

with 200 volumes. Participants were asked to fixate on a moving dot stimulus with two 

distinct motion conditions interleaved with a static dot. As described in figure 3.1, the 

moving stimulus is a white dot either oscillating up and down along a vertical trajectory or 

with a back/forward movement according to a horizontal trajectory, against a black 

background. Three different conditions with different number of motion alternations were 

used: zero motion (static dot), a dot with two opposing motions (in the vertical axis) and a 

dot with four opposing motions (either horizontal or vertical axes).  

 

Figure 3.1. Functional localizer used to define the hMT+/V5 region-of-interest (ROI). (A) Static dot, 

condition used as baseline to the moving conditions depicted in (B) and (C). The arrows are here merely 

representing the dot motions used during the localizer. Each motion condition was repeated six times and 

randomly interleaved with the static dot condition. The duration of each block was 8 TR. 

Sixteen seconds blocks of a moving dot (2.5 deg/s), were randomly interleaved with 16 

seconds blocks of a static dot. The distance covered by the dot was 2 degrees of arc. The 2 

blocks with motion were repeated 6 times, that resulted in a total of 25 blocks, 6 minutes 

and 40 seconds, 200 volumes. The point size was 0.5 x 0.5 cm
2
 and the stimulus was 

displayed at 44.5 cm (visual angle of the dot: 0.64 deg) from the subject at a screen of 24.1 

x 18.2 cm
2
. Stimulus display was controlled by MATLAB (MathWorks) using the 

psychophysics toolbox. The ROI was defined by selecting on the occipito-temporo-parietal 

pit all significantly activated voxels at P = 0.001 during the functional localizer run. The 

bilateral ROI size was not fixed, given that it was only dependent on the defined threshold. 
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3.2.6. Neuromodulation runs (NF experiments using visual imagery) 

After the anatomical and fMRI localizer scans, each subject performed four different real-

time fMRI imagery runs: one control run of passive imagery, two NF runs and one control 

transfer run. Each run was composed by the three visual imagery tasks, matching the three 

visual stimulation conditions presented during the localizer run: imagery of a static dot, 

imagery of the dot with 2 opposing motions along the vertical axis and imagery of the dot 

with 4 opposing motions along either the horizontal or vertical axis. Instructions for each 

task/condition were provided as auditory cues and were coded as ‘A’, ‘B’ and ‘C’ 

respectively. Each run was composed of several up-regulation blocks (pseudo-randomly 

presented dot motion imagery tasks, 6 repetitions of each task) interleaved by down-

regulation blocks (imagery of a static dot). The duration of each block was 22 seconds. Each 

run lasted 9 minutes and 10 seconds (i.e. a total of 275 volumes per run). 

The passive imagery (imagery without feedback) run was acquired as a control. With the 

exception of the feedback component, all the other parameters of this run are similar to the 

NF runs during which participants performed different imagery tasks while trying to control 

the feedback value based on the activity of hMT+/V5. At the end of the NF training runs 

participants were instructed to modulate their ROI activity using the same strategies, but 

now without feedback (transfer run). All runs were performed consecutively on the same 

session. 

Participants were not explicitly asked to try to achieve different levels of activation in the 

two different tasks of up-regulation (imagery of 2 or 4 motion directions). They were 

instructed to allocate similar effort (mere imagery) in the up-regulation conditions to 

achieve the highest level of activation possible. The goal was to achieve different activation 

levels depending on the used strategy (2 vs 4 motion directions) at a similar effort level. For 

the down-regulation condition (baseline) they were instructed to decrease as much as 

possible their ROI activity (imagery of static dot). 

 

3.2.7. Offline data analysis 

The BrainVoyager QX 2.8.4 software version (Brain Innovation, Maastricht, The 

Netherlands) (Goebel 2012) was used for fMRI offline post-processing and analysis. 

Pre-processing of the functional data included temporal high-pass filtering (GLM 

Fourier) with 2 cycles per run, space domain 3D spatial smoothing with a Gaussian filter of 

4 mm, 3D motion correction with intra-session alignment and slice scan time correction 
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with cubic spline interpolation. Functional data were co-registered to anatomical data per 

subject and subsequently normalized into Talairach coordinate space (Talairach & 

Tournoux 1988). 

For each stimulus condition or imagery task presented to the subject, statistical maps 

were computed using a GLM (Kutner et al. 2004). The design matrix of the GLM was given 

by predictors encoding the stimulus conditions (localizer runs) and imagery task blocks 

(neuromodulation runs). The design matrixes were convolved with a double gamma 

hemodynamic response function in order to account for the hemodynamic delay and 

dispersion (Friston et al. 1998). 

Statistical significant differences between each experimental motion condition and 

baseline (no motion condition), and between motion conditions were assessed using contrast 

(t) maps in each run. The contrasts beta, t and P values were analyzed after correction for 

serial correlations (Kutner et al. 2004). This correction was performed using a second-order 

autoregressive, AR (2), method (Lenoski et al. 2008). A group random effect - RFX - 

analysis (with false discovery rate - FDR - correction for multiple comparisons) was 

performed to determine the ROI multi-subject cluster peak voxel resulting from the 

stimulation runs. Furthermore, supplementary whole-brain tests per imagery run were 

performed at the group level using fixed effects - FFX - analyses (with FDR correction for 

multiple comparisons) to list which other brain regions were recruited during the visual 

motion imagery (see supplementary table 3.A1 in appendix). These analyses were 

performed separately for each run due to the fact that we include control and NF runs, and 

that inter-run variability is a recognized feature (Sulzer et al. 2013) (either due to learning 

and/or fatigue). 

In order to verify if there was a group overall significant difference between the three 

different stimulation conditions (localizer visual stimulation experiments) and also between 

the three imagery tasks (imagery experiments organized in two groups of runs: imagery with 

feedback and the two types of imagery runs without feedback), we performed group 

analyses using linear trend tests and repeated measures ANOVA. These statistical analyses 

were based on percentage of signal change for each experimental condition extracted from 

the event-related averaging of each participant and using as baseline the average of every 

value of each pre-period (2 TR of the beginning of each condition) over the whole time-

course. We also performed post-hoc tests to verify between which conditions (static and 2 or 

4 direction of motion imagery) occurred those differences. Furthermore, a two-way 
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ANOVA was conducted to examine the effect of feedback on ROI response level. Chi-

square tests and Pearson correlation were computed as well to analyze the putative influence 

of gender or age, respectively. Effects were only accepted as significant when P < 0.05 

(corrected for multiple comparisons). 

 

 Results 3.3.

3.3.1. hMT+/V5 localization 

The GLM statistical maps resulting from the localizer run, (P < 0.05, Bonferroni corrected), 

revealed significant activations in the hMT+/V5 complex for each participant motion 

contrast (figure 3.2, example from one participant), consistent with prior reports of its 

localization (Castelo-Branco et al. 2002; Castelo-Branco et al. 2009; Graewe et al. 2013). 

The ROI multi-subject cluster peak voxel center coordinates at P = 0.001 (RFX, q (FDR) = 

0.05), were as follows (x, y, z): left (-44, -69, 2) and right (44, -68, 2). 

 

Figure 3.2. Example of hMT+/V5 identification using the defined localizer. General linear model (GLM) 

conjunction analysis (using the stringent criterion that all particular motion vs static blood-oxygenation-level-

dependent (BOLD) signal contrasts had to be significant for a voxel to be considered positive) shows the 

resulting region-of-interest (ROI): hMT+/V5. Regions are shown at the same statistical threshold level (P < 

0.0001, Bonferroni corrected). 

Activation maps calculated in the offline analysis matched and validated activations 

maps observed in real-time using Turbo-Brain Voyager. This region was used as a ROI 

from which BOLD responses were extracted for each of the subsequent experimental 

conditions. 

We predicted that different stimulation conditions with different quantity of motion 

alternation would lead to different levels of hMT+/V5 activity (for example 4 directions of 

motion lead to larger activity than 2 directions of motion). Accordingly, different ROI 
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activation levels were observed as response to the different stimulation conditions (figure 

3.3). A repeated measures ANOVA determined that mean ROI activity differed significantly 

between stimulation conditions (F (1.52, 22.80) = 51.35, P < 0.0001). Post-hoc tests using 

the Bonferroni correction revealed that motion conditions evoked stronger hMT+/V5 

activity than the zero motion condition (statistically significant at P < 0.0001). Furthermore, 

the two movement conditions evoked significantly different activity levels (P = 0.045), and 

larger activity was observed for the condition with 4 directions of motion. 

 
 

Figure 3.3. Mean blood-oxygenation-level-dependent (BOLD) activity within hMT+/V5 region-of-

interest (ROI) during visual motion stimulation at different response levels. Group results for the localizer 

run, based on mean event-related BOLD response to the three stimulation conditions in the defined ROI per 

participant. Significant differences between all conditions were found at P < 0.05 (with Bonferroni correction 

for multiple comparisons). Values are presented as mean ± s.e.m. Level 0 - static dot; level 1 - dot with two 

opposing motions; level 2 - dot with four opposing motions. 

 

3.3.2. hMT+/V5 modulation: imagery based control of brain activity at 3 

response levels 

During the NF runs only three of the twenty participants were not able to modulate the 

hMT+/V5 activation. We considered that a participant was able to modulate the ROI 

activation when he/she showed an overall positive and statistically significant ROI response 

during at least one of the two up-regulation tasks in comparison to the down-regulation. 

From the remaining group, one participant achieved significant estimated effect (beta 

weight) for the 2 opposing motions imagery task, and sixteen participants were able to 

significantly increase (in relation to the down-regulation task) the defined ROI activity (P < 

0.05) to both up-regulation tasks in at least one of the NF runs. Nevertheless, the contrast 

analysis between the ROI evoked responses during both up-regulation imagery strategies 

(with distinct number of imagined motion alternations), for each of these 16 participants, 

allowed us to verify that 12/20 participants showed not only a significant contrast between 
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the evoked response during each of up-regulation task and the down-regulation task, but 

also a significant contrast between the responses evoked by the both up-regulation strategies 

(hereafter, we refer to this group of participants as the successful neuromodulators group). 

Globally, mean hMT+/V5 BOLD activity levels achieved during the up-regulation using 

the imagery of the dot with 4 opposing motion as strategy were higher than the mean 

activity resulting from the up-regulation using as strategy the imagery of the dot with 2 

opposing motions. Figure 3.4 shows the mean group (N = 20) BOLD activity levels on the 

selected ROI for neuromodulation runs with and without feedback (separating the passive 

imagery and transfer runs) as result of the three imagery tasks. As illustrated, group results 

taking into account all the participants in the study show evidence for multilevel/parametric 

neuromodulation (responses levels 0, 1 and 2) according the number of motion alternations 

involved in each visual motion imagery strategy.  

 

 
 
Figure 3.4. Mean blood-oxygenation-level-dependent (BOLD) activity within hMT+/V5 region-of-

interest (ROI) during the neuromodulation runs with and without feedback. Group results (N = 20) based 

on mean event-related BOLD response to the three imagery tasks in the defined ROI per participant for 

neuromodulation runs with feedback (NF training) and for neuromodulation runs without feedback (prior 

passive imagery and transfer runs). Values are presented as mean ± s.e.m. Three response levels were achieved 

depending on the applied imagery strategy (level 0: imagery of a static dot; level 1: imagery of a dot with two 

opposing motions; level 2: imagery of a dot with four opposing motions). A significant linear trend between 

response levels was found during the neurofeedback (F (1, 57) = 20.74, P < 0.0003) which persisted in the 

transfer run (F (1, 57) = 11.86, P = 0.003). 

The comparison of the percentage of signal change achieved with distinct 

neuromodulation strategies using repeated measures ANOVA confirmed the main effect 

that mean ROI activity differed significantly between imagery tasks for all groups of runs: 

passive imagery (F (1.20, 22.79) = 6.29, P = 0.02), NF (F (1.50, 28.44) = 14.90, P < 

0.0001) and transfer run (F (1.40, 26.68) = 11.19, P = 0.001). Furthermore, post-hoc 

comparisons between the 3 responses levels using Bonferroni correction revealed that 

differences between the response activity to the motion imagery strategies (level 1 and level 
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2) and the zero motion imagery (level 0) were significant for runs with (P = 0.02, P < 

0.0001) and without feedback (passive imagery, P = 0.05 for both comparisons; transfer run, 

P = 0.03, P = 0.004). However, the differences between the level responses evoked by both 

up-regulation strategies were not significant, in particular passive imagery (P = 1.00) and 

NF (P = 0.124). Concerning the transfer run, a marginal effect was found (P = 0.06). In 

agreement with these findings, linear trend tests were not significant for the passive imagery 

run (F (1, 57) = 4.40, P = 0.12). Importantly, trend tests for level dependence were 

significant for the ROI response levels in the presence of NF (F (1, 57) = 20.74, P < 0.0003) 

and transfer run (F (1, 57) = 11.86, P = 0.003). A difference at the whole-group level of 

participants, concerning presence or absence of feedback and its effect on the difference in 

response levels, was further confirmed by a two-way ANOVA (F (1, 19) = 5.22, P = 0.034). 

For the successful neuromodulators group we found a main effect for all 

neuromodulation runs (passive imagery (F (1.38, 15.19) = 20.85, P < 0.0001), NF (F (2, 22) 

= 47.80, P < 0.0001) and transfer run (F (2, 22) = 22.46, P < 0.0001). Furthermore, the post-

hoc tests with Bonferroni correction revealed that level 0 differed from level 1 and from 

level 2 for all runs (passive imagery, P = 0.004, P = 0.001; NF, P < 0.0001, P < 0.0001; 

transfer, P = 0.005, P < 0.0001). Differences between all responses levels were significant 

only the in the feedback runs (passive imagery, P = 0.97; NF, P = 0.002; transfer, P = 0.07). 

A linear trend was also found for all runs, with stronger effect sizes during NF training 

(passive imagery (F (1, 33) = 13.75, P = 0.003), NF (F (1, 33) = 51.23, P < 0.0003 and 

transfer run (F (1, 33) = 19.87, P = 0.0003). 

In order to understand if age and gender had an influence in the ability of 

neuromodulation, we ran a chi-square test that shown no statistically significant association 

between gender and success of neuromodulation (χ (1) = 1.11, P = 0.292) and, a Pearson 

correlation was run to determine the relationship between individual's age and their 

performance in neuromodulation, which revealed no correlation between age and difference 

between maximal and minimal level of activity during the neuromodulation runs (r = 0.072, 

N = 20, P = 0.763). 

The GLM results for group analyses per imagery run showed significant activations in 

the hMT+/V5 complex (FFX, q (FDR) = 0.05) during all performed neuromodulations runs. 

The recruited brain areas were similar in all runs (see supplementary table 3.1). We 

observed the typical imagery parieto-frontal network (Kaas et al. 2010; Mechelli et al. 2004) 

and the hMT+/V5 complex. 



 

77 

 Control of brain activity in hMT+/V5 at three response levels using fMRI-based neurofeedback 

 Discussion 3.4.

We found evidence for the feasibility of BCI/NF applications with different levels of 

volitional modulation at the same brain location using the same strategy across participants. 

The possibility that multilevel neuromodulation based on the same brain region and using 

the same strategy across participants is feasible had so far not been explored in the 

literature, although some alternatives have been suggested (Sorger 2010). Previous studies 

have mainly tried to reach multiple commands by analyzing not one but instead multiple 

regions, or by exploring particular spatio-temporal aspects of the BOLD signal (Lee et al. 

2009; Sorger et al. 2012; Yoo et al. 2004). 

Here, multiple visual motion imagery strategies which take advantage of differential 

evoked brain responses according to the number of imagined motion alternations, allowed 

achieving up to three distinct levels of hMT+/V5 activity modulation. The larger number (4) 

of motion alternations during imagery tasks evoked higher activity levels in hMT+/V5 as 

compared to imagery tasks with a lower number of motion alternations (2) and static 

imagery. These results can be explained by the fact that in human visual cortex frequent 

movement or orientation changes lead to break in adaptation and increased fMRI responses. 

Lower signal adaptation does indeed occur as compared to brain responses evoked by a 

movement with less alternation (Tootell et al. 1998). Our results are also consistent with the 

previous visual stimulation studies of Huk & Heeger (2002) and Larsson et al. (2006) where 

the visual stimulus with the highest alternating rate evoked stronger brain activations. 

However, an alternative explanation is possible concerning the distinct levels of hMT+/V5 

responses as a function of different imagery strategies. Accordingly, the different number of 

motion alternations may lead to distinct levels of attentional modulation which in turn 

impact on activity levels. 

Trend analysis to the whole-group of participants revealed significant multilevel 

neuromodulation during NF runs. Furthermore, there was no significant trend on response 

levels during passive imagery runs (control run without feedback previous to NF training). 

In contrast, a significant trend was found during the transfer run (control run after NF 

training). These results suggest that the provided feedback contributed for successful 

neuromodulation and learning during NF training. The comparison between runs with 

feedback and runs without feedback shown a significant feedback effect on the achieved 

response levels in agreement with the effects identified by group trend analyses. 
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The significant difference in level of modulation achieved with the use of auditory 

feedback based on the BOLD signal changes, suggests that the participants effectively used 

neurofeedback strategies. It is important to point out that auditory feedback was used to 

avoid interferences that would have been induced by spurious brain activations due to the 

visual feedback and that would perturb the signals evoked by the imagery task. 

Future studies should address how many sessions are necessary to achieve stable 

performance. Binary neuromodulation (successful up-regulation during the two motion 

imagery tasks, and successful down-regulation during non-motion imagery) was often 

obtained (17/20 participants) and three levels of modulation were documented in a 

substantial number of subjects (12/20 participants). Future studies beyond proof of concept 

should establish whether training can stabilize NF performance. We suggest that three levels 

of control of hMT+/V5 activity are possible but also imply that they may require a higher 

level of focused attention and training than the binary case. 

We have shown that the same strategy can be efficiently used by different participants to 

achieve modulation of hMT+/V5, and that the type of instruction can be useful in BCI and 

NF applications. Thus, this approach could be useful in the future to dampen the variability 

due to ROI and subject-by-subject strategy definition, and to allow more effective 

neuromodulation training or at least improved BCI control. We postulate that the proposed 

approach is promising for future NF applications and even more for BCI applications, 

because it provides a simple way to achieve three control levels with simple instructions. 

 

 Conclusion 3.5.

We demonstrated that both visual motion stimulation and imagery with different number of 

motion alternations lead to distinct activity levels in hMT+/V5, and this can be effectively 

used in a NF application. Up to three levels of volitional control of hMT+/V5 visual area by 

using real-time fMRI training could be achieved. The same imagery strategy was used by all 

participants, showing that the proposed novel methodology is of potential interest to 

implement in applications using level dependent multilevel BCI and/or NF. 
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A1. Experimental design 
 

 
Figure 3.A1. Summary of the main steps of the experimental procedure followed in the study. Each 

participant took part of a single session lasting approximately 1.50 hour. First, a clear explanation about the 

fMRI based neurofeedback experiment procedures and visual motion imagery strategies was given to the 

participants outside of the scanner. Then, participants performed a passive imagery run (control run), two runs 

of neurofeedback training and a transfer run (to verify possible effects of learning after neurofeedback). 

Anatomical data were also acquired to posterior co-registration of the functional data during offline analysis. 

The fMRI real-time analysis was carried out on Turbo-Brain Voyager software and the offline analyses were 

performed using Brain Voyager Qx. All statistical analyses were based on general linear model (GLM) 

approaches. fMRI – functional magnetic resonance imaging, TR – repetition time, FA – flip angle, TE – echo time, FOV – 

field of view, ROI – region of interest. 

 

Participants’ preparation (outside of scanner) 

 20 healthy volunteers (15 males; mean age = 28 ± 6.8 years) 

 Informed consent  

 Explanation about experimental steps, hemodynamic delay, brain activity volitional 

self-regulation procedure and visual motion imagery strategies to apply  

MRI data acquisition 

 3 Tesla Siemens Magnetom TimTrio scanner  

 12-channel head coil 

 T1-weighted anatomical scan (176 slices) 

 TR = 2.5 s; TE = 3.42  ms; Voxel size = 1 x 1 x 1 mm
3 
;  FA = 7º; FOV = 256 x 256 

 

fMRI data acquisition 

 BOLD contrast EPI covering the entire brain (33 slices) 

 TR = 2 s; TE = 30 ms; Voxel size = 3 x 4 x 4 mm
3 
;  FA = 90º; 3 mm thick 

 Functional definition of the target ROI 

 200 volumes 

 Visual stimulus based on the contrast between motion and no-motion of single dot 

 Stimulus delivery controlled by Matlab using the Psycophysics toolbox 

 Online ROI definition based on Turbo-Brain Voyager software (voxels selected at  

t  ≥ 3.00) 

 hMT+/V5 voluntary multilevel modulation  

 Visual motion imagery (imagery of the 3 visual stimulus conditions used) 

 Up-regulation blocks: imagery of a dot with constant  or alternate motion  

 Down-regulation blocks: imagery of a static dot 

 275 volumes per run 

 1 passive imagery run; 2 runs of neurofeedback training; 1 transfer run  

 Real-time fMRI analysis based on Turbo-Brain Voyager software (version 3.0) 

 Auditory feedback of the activity on the defined ROI 

Offline data analysis 

 Analysis carried out using Brain Voyager 2.8.4 

 Pre-processing: motion correction (intra-session alignment), slice-scan-time correction 

(cubic spline interpolation), temporal high-pass filter (GLM Fourier, 2 cycles per run), 

spatial smoothing (Gaussian filter of 4 mm) 

 Functional data co-registered to anatomical data and normalized into  Talairach space 

 Statistical analysis based on GLM per participant and at group-level  
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A2. Implemented neurofeedback system 
 

 
Figure 3.A2. Set-up of the implemented neurofeedback system. The participant was trying to up-regulate and 

down-regulate the hMT+/V5 brain activity, inside the MRI scanner. Three visual motion imagery strategies 

with different quantities of motion alternation were applied. The goal was to verify whether the different 

strategies would allow the voluntary regulation of 3 levels of brain activity, with the support of neurofeedback 

training. The acquired fMRI data were analyzed in real-time and the level of brain activity was given as 

feedback to the participant. The Turbo-BrainVoyager (TBV) software was used for the real-time data 

processing. It was installed on a separate computer to ensure optimal hardware usage and, therefore, best 

results in real-time processing. The TBV uses an incremental recursive least squares (RLS) based general 

linear model (GLM) to perform the statistical analysis. 

MRI host computer 
 

Real-time data export of the MRI 

images to a shared folder 

 

MRI scanner 
 

Participant in the scanner using 3 specific visual motion imagery strategies 

to control 3 levels of hMT+/V5 activity  

MRI intercommunication system 
 

Continuous auditory feedback in a scale from 0 to 5 given by the experimenter as a 

direct translation of the standard visual feedback (thermometer) 

TBV computer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Real-time data analysis 
 

 Reading of EPI slices into working memory 

 3D motion correction (with sinc interpolation) 

 Incremental statistical analysis (RLS GLM) 

 Drift removal via design matrix (confound predictors) 

 Slice scan time correction using shifted predictors per slice 

 Incremental event-related averaging 

 

Feedback calculation 
 

 Given a baseline level bl , the feedback value fb for the current time point  with 

value val is calculated within a neurofeedback trial 

 

fb = (val - bl) / bl * 100 

 

 Baseline interval defined just before the interval of the current feedback 

condition 

 Shift of 3 time-points in the beginning and 1 time-point at the end  of each 

baseline condition  

 Smoothing of 2 time-points applied to the feedback signal 

 bl = average of signal values of the identified data as baseline for the subsequent 

modulation block 

 Minimum of  4 points for a pre-modulation bl estimation  

Network connection 
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A3. Whole-brain analysis 
 

Table 3.A1. Summary of whole-brain regions activated during visual motion imagery. Peak voxels 

according Talairach coordinates and the number of used voxels (FFX, q (FDR) = 0.05 using the contrast up-

regulation tasks versus down-regulation task. Results presented per imagery run: passive imagery run (control 

run without feedback), imagery runs with feedback (neurofeedback 1 and 2, NF1 and NF2) and transfer run. 

  Passive imagery NF1 NF2 Transfer run 

Brain region 
Talairach 

coordinates 

(x, y, z) 

Voxels 

Talairach 

coordinates 

(x, y, z) 

Voxels 

Talairach 

coordinates 

(x, y, z) 

Voxels 

Talairach 

coordinates 

(x, y, z) 

Voxels 

hMT+/V5 
Left -49, -60, -1 1248 -44, -60, 0 5182 -47, -60, -2 2482 -48, -60, -1 1941 

Right 46, -59, -4 690 48, -57, -4 2029 47, -61, -5 244 50, -58, -5 409 

Putamen 
Left -22, 1, 13 2335 -22, 1, 8 4203 -23, 2, 6 3398 -23, 1, 9 4448 

Right 21, 2 , 12 1982 23, 1, 11 3093 21, 3, 10 3177 21, 4, 8 3502 

Superior 

parietal lobule, 

Precuneus 

Left -21, -65, 48 3717 -21, -68, 47 2734 -21, -65, 46 3649 -22, -66, 46 2891 

Right 16, -67, 48 2666 15, -71, 46 2613 16, -66, 47 1957 14, -69, 42 2424 

Inferior 

parietal lobule 

Left -37, -43, 43 5930 -34, -38, 37 4374 -39, -41, 42 4674 -38, -37, 38 4143 

Right 38, -42, 42 5587 30, -46, 40 3573 34, -42, 44 2842 35, -43, 38 4018 

Precentral 

gyrus 

Left -49, -6, 40 3084 -50, 1, 29 3767 -51, 3, 22 3595 -50, 2, 25 4532 

Right 48, -4, 42 3430 52, 3, 27 3231 53, 3, 25 2945 50, 5, 24 4090 

Medial frontal gyrus 5, 12, 43 972 -3, 4, 43 1745 -5, 1, 46 1169 -3, 10, 44 1178 
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CHAPTER 4 

VISUAL MOTION IMAGERY AS A TOOL FOR 

MULTICLASS EEG-BASED BCI 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Sousa, T., Amaral, C., Andrade, J., Gabriel, P., Nunes, U., Castelo-Branco, M., 

2016. Visual motion imagery as a tool for multiclass EEG-based BCI. (submitted) 
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Abstract 

The achievement of multiple instances of control with the same type of strategy represents a 

way to improve flexibility of brain-computer interface systems. In this study we test the 

hypothesis that visual motion imagery can be used as a tool to achieve 

electroencephalographic based brain-computer interfaces with three classes of control. 

We hypothesize that different number of imagined motion alternations lead to distinctive 

signals, as predicted by distinct temporal motion modulation patterns and/or attentional 

deployment. Accordingly, distinct number of alternating sensory/perceptual signals would 

lead to distinct neural responses as previously demonstrated using functional magnetic 

resonance imaging. We anticipate that differential modulations, regardless of their polarity, 

should also be observed at the electroencephalographic domain. Electroencephalographic 

recordings were obtained from twelve participants during three tasks of visual imagery: 

imagery of a static dot, imagery of a dot with two opposing motions in the vertical axis 

(imagery of 2 motion directions) and imagery of a dot with four opposing motions in 

vertical or horizontal axes (imagery of 4 motion directions).  

An increase of alpha-band power was found in frontal and central channels as a result of 

visual motion imagery tasks when compared with imagery of the static dot, in contrast with 

more posterior alpha decreases found during simple visual stimulation. The successful 

classification of the three imagery tasks using a support vector machine based on the power 

of this particular frequency-band and using a small group of six channels confirmed that 

three different classes of control based on visual motion imagery can be achieved. Patterns 

of alpha activity, as captured by classifier, closely reflected motion imagery properties, in 

particular the number of imagined motion alternations.   

These results are consistent with the notion that frontal alpha synchronization is related 

with high internal processing demands, changing with the number of alternation levels 

during imagery. Our findings suggest the feasibility of visual motion imagery tasks as a 

strategy to achieve multiclass BCI systems and support the advantage of multivariate over 

univariate analysis methods.  
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 Introduction 4.1.

A brain-computer interface (BCI) is a system that acquires and analyzes brain signals to 

create a communication channel between the human brain and a computer or a machine. 

These systems measure and convert brain activity into artificial outputs (Farwell & Donchin 

1988; Shih et al. 2012; Wolpaw & Wolpaw 2012). 

In the last decades, many studies using BCI systems have been performed in the fields of 

motor rehabilitation and stroke with a particular emphasis in restoration of communication 

in paralyzed and locked-in patients (Birbaumer & Cohen 2007; Lopes et al. 2013; Pires et 

al. 2012). Furthermore, a BCI system can be applied as a neurofeedback (NF) approach 

allowing to train the self-regulation of a specific brain activity (Huster et al. 2014). Several 

studies have demonstrated that learned brain self-regulation gained through NF training can 

lead to specific behavioral modifications, and therefore a BCI could potentially be used, not 

only as a communication interface but also, as a cognitive neuroscience research tool and as 

therapeutic tool for neurological and psychiatric disorders (Friedrich et al. 2015; Ramirez et 

al. 2015; Strehl et al. 2006).  

Effective BCI communication or device control based on electroencephalographic (EEG) 

signals – EEG-based BCI – has been demonstrated using slow cortical potentials 

(Birbaumer et al. 1999; Karim et al. 2006; Kubler et al. 2001), brain rhythms (McFarland et 

al. 2015; Ono et al. 2014; Pfurtscheller et al. 1997; Treder et al. 2011) or event-related 

potentials (Amaral et al. 2015; Baek et al. 2013; Combaz & Van Hulle 2015; Nijboer et al. 

2008). The most used EEG-based BCI inputs are sensory-motor rhythms (Ge et al. 2014; 

Leeb et al. 2013; Maria et al. 2015; Ramos-Murguialday & Birbaumer 2015) and P300 

evoked potentials (Amaral et al. 2015; Lopes et al. 2013; Pires et al. 2012). Due to the long 

learning process required for the participant, slow cortical potentials are not commonly used 

in BCI.  

BCI studies often use binary control level approaches (level 0 and 1 of brain activation 

for each class of control). One of major goals of the current BCIs research is to increase the 

number of classes and the intrinsic number of levels of control, i.e. to increase the degrees 

of freedom in BCI applications. This would allow to increase communication efficiency and 

might favor more precise neurofeedback. Human brain functions can be at least in part 
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spatially localized, even in EEG, and thus separate commands can be encoded by taking 

advantage from information derived from different functional modules. This possibility is 

used in BCI systems based on motor imagery, where the imagery of different motor tasks 

(for example, leg or hand movement, right and left) produce spatially distributed brain 

activations (Ramos-Murguialday & Birbaumer 2015; Schlögl et al. 2005). Conventional 

P300 paradigms also allow to generate different BCI commands, e.g. to move a wheelchair 

(Lopes et al. 2013) or to generate a speller (Pires et al. 2012), when translating different user 

intentions. However, they require all the time a stimulus to encode the attentional focus.  

Therefore, multilevel BCI approaches are still relatively incipient, and it remains difficult 

to go beyond binary levels of each class of control. Wolpaw and McFarland suggested a 

multidimensional point-to-point movement control based on the combination of mu or beta 

rhythm amplitude modulation over the right and left sensorimotor cortices (Wolpaw & 

McFarland 2004). They showed that people can learn to use scalp-recorded EEG rhythms to 

move a cursor in two dimensions, and recently also in 3 dimensions (McFarland et al. 

2010). In another study, it was shown that self-regulation of slow cortical potentials can be 

reliably translated as two BCI commands (Karim et al. 2006). More recently, a BCI study 

proposed an approach where participants were able to switch between modulation of alpha-

band and gamma-band oscillations in the visual cortex (Salari & Rose 2013). Although 

these studies attempted different levels of activity control, most only achieved two levels, 

and the proposed BCI approaches required some days of training.  

In this work we test the possibility of obtaining three classes of brain activity control 

using visual motion imagery. To our best knowledge this is the first time that such approach 

is carried on. Our hypothesis is that focusing on a particular perceptual function, using 

visual motion imagery strategies with different number of motion alternations, it is possible 

to achieve different patterns of brain activity modulation allowing for simple self-regulation 

based multiclass control. We attempt to infer whether EEG can be used to test the notion 

that in visual motion perception domain the stimulus conditions or the imagery tasks for 

which motion alternations occur more often lead to stronger brain activations, as 

demonstrated using functional magnetic resonance imaging (fMRI) (Huk & Heeger 2002; 

Larsson et al. 2006; Tootell et al. 1998). This phenomenon occurs due to distinct temporal 

motion patterns and/or higher attentional deployment. Thus, our study is based on imagery 

of three stimulation conditions with different number of motion alternations:  imagery of a 

static dot (no-motion), imagery of a dot with two opposing motions in the vertical axis 
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(imagery of two motion directions, constant orientation) and imagery of a dot with four 

opposing motions in the vertical and horizontal axes (imagery of four motions directions, 

alternate orientation). We test if using a reduced number of EEG channels, in a consistent 

way across participants, it is possible to classify three distinguishable patterns of brain 

activity according to the level of imagined motion alternation. 

Our study is also based on the knowledge resulting from brain imaging studies which 

demonstrated that neural representations of visual motion imagery and perceptual images 

resemble one another (Banca et al. 2015; Emmerling et al. 2015; Goebel et al. 1998; Sousa 

et al. 2016). Mental imagery refers to the emergence of constructive representations and the 

accompanying experience of sensory information without a direct external stimulus. This 

process plays a core role in many mental health disorders and plays an increasingly 

important role in their treatment (Pearson et al. 2015). Therefore, we expect that this work 

might contribute to the discussion on feasibility of multiclass self-regulation control in BCI 

methods as well as in the potential usefulness of controlling mental imagery at a finer scale.  

 

 Methods  4.2.

4.2.1. Participants 

Twelve males participated in this study. On average, study participants were 28.9 years old 

(SD = 3.8 range 21-34 years). All participants were right-handed, had normal or corrected-

to-normal vision and reported no medical or psychological disorders. Participants gave 

written informed consent prior to the EEG recording session. The procedure was approved 

by the Ethics Committee of the Faculty of Medicine of the University of Coimbra. 

 

4.2.2. Experimental design 

The experiments were composed of two sessions: visual motion stimulation and visual 

motion imagery. During the visual stimulation session, participants were asked to fixate a 

central cross. As illustrated on figure 4.1, three different conditions were used: (A) zero 

motion (static dot), (B) a dot moving in two opposing directions (with constant vertical 

orientation, less alternation, hereinafter referred as constant motion) and (C) a dot moving in 

four opposing directions (horizontal and vertical orientations, more alternation, hereinafter 

referred as alternate motion). Four second trials of a moving dot (5 deg/s) were randomly 

interleaved with 2 second trials of a static dot. The distance covered by the dot was 2.5 
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degrees of arc. The motion conditions were repeated 60 times divided in two parts. The 

point size was 0.5 x 0.5 cm
2
 (dot visual angle: 0.64 deg) and the stimulus was displayed at 

44.5 cm from the participant at a screen of 24.1 x 18.2 cm
2
. Stimulus display and imagery 

instructions were controlled by MATLAB (MathWorks) using the Psychophysics toolbox 

(Brainard 1997).  

 

Figure 4.1.  Stimulation conditions. (A) Static dot - static condition used as baseline to the motion 

conditions, (B) constant motion - moving dot alternating the direction, and (C) alternate motion - moving dot 

alternating the direction and the orientation. The arrows are here merely representing the dot motions. Each 

motion condition was repeated 60 times and randomly interleaved with the static dot condition. The duration 

of each motion condition was 4 seconds. Each static dot trial was presented only during 2 seconds.  

In the visual motion imagery session, participants were asked to imagine the three 

previously presented stimulus conditions. The instruction for each imagery task was 

provided as an auditory cue coded as ‘A’, ‘B’ and ‘C’ respectively, and took one second. A 

beep sound was given to the participants 1.5 seconds after the beginning of each motion 

imagery task as a reminder of the spent imagery time. 

The duration and number of repetitions of each task were equal to the stimulation session 

ones. The imagery session was divided in two parts intercalated with stimulation (also 

divided in two parts) in order to decrease fatigue effects. Participants were seated 

comfortably in the darkened sound-attenuating EEG recording room and, were asked to 

close the eyes throughout the imagery tasks, to breathe steadily, and to remain as still as 

possible without eyes movement. For a complete overview of the experimental design 

please see the supplementary figure 4.A1 in appendix. 

 

4.2.3. Data acquisition  

First, the participants scalp was cleaned using abrasive gel and then an actiCAP cap was 

placed on their heads. The EEG was recorded by means of a Brain Products Package (Brain 

Products, Germany) and sampled at a frequency of 1000 Hz. Ag/AgCl active electrodes 

(Brain Products), were located in 58 positions (according to the international 10-20 system 
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with interspaced positions, figure 4.2), a ground electrode was located on the forehead and, 

two reference electrodes were placed on the earlobes. The electrooculogram (EOG) was 

monitored via electrodes positioned at the standard positions (vertical and horizontal) to be 

used in the correction of artifacts due to blinking and eye movements. The signal was 

filtered between 0.1 Hz and 100 Hz and an additional 50 Hz notch filter was applied to 

avoid power line contamination. Electrode impedances were kept below 10 kΩ during the 

acquisitions. An overview of the acquisition system set-up is presented in supplementary 

figure 4.A2 in appendix.  

 

Figure 4.2. Layout of the EEG channel acquisition set up (58 EEG channels). The three channel clusters 

used in statistical data analysis are highlighted at different colors (frontal – blue, central – green, parieto-

occipital – red). 

 

4.2.4. Data analysis 

The data analysis was made offline using Matlab (MathWorks) and the EEGLAB toolbox 

(version 13.5.4b) (Delorme & Makeig 2004). The signals were filtered between 0.5 Hz and 

70 Hz, re-referenced to the average signal of the earlobes channels and segmented in epochs 

locked to each stimulation condition/imagery task onset. Then, it was applied an eye 

movement related artifacts correction based on independent component analysis (ICA) of all 

electrode data (including the EOG channels). Artifact components were identified based on 

their correlation with the EOG electrodes and on the scalp topography (increased activity 

distribution) and removed from the data (Keren et al. 2010). Signals were also corrected for 
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possible artifacts related to body movement or muscle tension, which were marked and 

excluded from further analysis. After artifact rejection we were able to keep more than 50 

epochs for each stimulation condition/imagery task, except for the imagery data of one 

participant. For the data analysis of visual motion stimulation, we used a baseline taken 

from the last 500 ms of pre-stimulus time (last 500 ms of static dot condition before the 

motion conditions). For visual motion imagery data, the baseline was based on the last 500 

ms of the static dot imagery period.  

We performed time-frequency analyses of the stimulation and imagery data. Mean event-

related changes in spectral power (from baseline) at each time during the epochs and at each 

frequency were analyzed using the event-related spectral perturbation (ERSP) method 

(Makeig 1993). ERSP analyses were performed for frequencies ranging from 3 to 50 Hz for 

all channels by applying Morlet wavelets with incremental cycles (2 cycles at 3 Hz, up to 27 

at 50 Hz) resulting in 200 time points. To visualize power changes across the frequency 

range, the mean baseline log power spectrum from each spectral estimate was subtracted 

producing the baseline-normalized ERSP. Significance of deviations from baseline power 

was assessed using a bootstrap method. ERSP group results were analyzed at P = 0.05 

(Delorme & Makeig 2004).  

In order to understand the main differences for specific frequency bands between 

stimulation conditions and between imagery tasks, the mean power of EEG signal from all 

channels over the 500 ms and 1500 ms of all epochs was calculated for the three stimulation 

conditions and for the three imagery tasks.  The power spectral density (PSD) was estimated 

via the Welch's method which uses the fast Fourier transform (FFT) (Welch 1967). 

We also performed source localization of the EEG data based in sLORETA (standardized 

low resolution brain electromagnetic tomography) software package (Pascual-Marqui 2002). 

This method employs the current density estimate given by the minimum norm solution. 

The localization inference is based on standardized values of the current density estimates 

(Pascual-Marqui et al. 1994; Pascual-Marqui 2002). The source analysis was performed to 

infer about the biological significance of the most relevant frequency results found.  

 

4.2.5. Imagery data classification 

In order to verify if the three employed imagery tasks may successful achieve three classes 

of control in BCI applications, we attempted to classify these classes using a reduced 

number of channels and features.  
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We used pre-processed (filtered, re-referenced and with artifact correction) trials, with 

one second each (from 0.5 to 1.5 of each trial). The duration of the trials used for 

classification was chosen to be the same to the three conditions and to not include the 

reminder beep. The initial 0.5 seconds after the auditory instruction cue were also excluded.  

The channels and features were selected based on group analysis of the imagery results. 

The relative spectral power (RSP) of the frequency band from 7 Hz to 15 Hz was extracted 

from 6 EEG channels (F3, F5, FC3, FC5, C3, C5). These 6 features from 50 trials of each 

imagery task were normalized and then classified using a support vector machine (SVM).  

As shown in previous studies (Khalighi et al. 2013; Sousa et al. 2015), the RSP provides 

some of the most relevant information from the EEG signals to classification. The RSP of 

each frequency-band is given by the ratio between the band spectral power and the total 

spectral power (Mormann et al. 2007). The spectral power was calculated based on FFT. To 

avoid features in greater numeric ranges dominating those in smaller numeric ranges, each 

feature was independently normalized dividing its value by the difference between 

maximum and minimum of the feature across trials.  

The classifier was trained and tested using leave-one out cross-validation (LOOCV). The 

libsvm toolbox (Chang & Lin 2011) with a sigmoid kernel was used in classification. The 

sigmoid degree and C parameter of SVM were optimized between 0 and 5 for each 

participant model classification. The classifier was trained and tested individually per 

participant. In order to characterize the trial-by-trial classification performance, some well-

known measures such as balanced accuracy, sensitivity and specificity were used. The 

classification algorithm is presented in supplementary figure 4.A3 in appendix.  

 

4.2.6. Statistical Analysis 

Statistical analyses were performed to compare the group mean EEG power for the most 

relevant frequency-bands found in the evoked brain responses during the three stimulations 

conditions and during the three imagery tasks.  The Friedman’s test was applied to verify 

the presence of a main effect for each defined frequency band. Further, we computed 

pairwise comparisons for stimulation condition/imagery task per EEG channel cluster using 

Wilcoxon tests and applying the Dunn’s correction for multiple comparisons. The EEG data 

were organized in three channel clusters: frontal (anterior-frontal, frontal, fronto-temporal 

and fronto-central channels), central (central, centro-parietal, temporal and tempo-parietal 

channels) and parieto-occipital (parietal, parieto-occipital and occipital channels). Statistical 
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analyses were performed with the IBM (Armank, NY) SPSS Statistics 22.0 software 

package. 

 

 Results 4.3.

4.3.1. Visual motion stimulation  

Comparing the evoked brain activation by the motion conditions to the static dot condition 

brain response (used as baseline) we found a significant decrease of alpha-band power 

mainly on the parietal, parieto-occipital and occipital channels for visual moving stimuli 

conditions (figure 4.3).  

 

Figure 4.3. Brain responses to visual moving stimuli. Group event-related spectral perturbation (ERSP) for 

frequencies between 5 Hz and 50 Hz across entire trials (from -0.5 second to 4 seconds) pooled for moving 

stimuli when compared to a no-motion stimulation condition (baseline). All shown ERSP values different from 

zero are significant at P = 0.05. 

For the parieto-occipital channels cluster we found statistically significant main effect 

differences between the evoked mean alpha-band power during the different stimulation 

conditions (𝜒𝐹 
2 (2) = 10.57, P = 0.005). The peak power frequency (10 Hz) is consistent 

across the brain responses to the different stimulation conditions and is within the 

conventional alpha-band (figure 4.4). The alpha-band power was significantly lower during 

both moving stimulation conditions (CM and AM, P = 0.01, P = 0.02) than during the no-
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motion stimulation (ST). Concerning the frontal and central channel clusters we found no 

significant differences. In the mean of participants and parieto-occipital cluster of channels, 

the power spectrum of the evoked brain activity during the constant motion stimulation and 

the alternate motion stimulation is similar.  

 

Figure 4.4. Group mean alpha-band power according to stimulation conditions (±SEM). Power spectrum 

of the evoked brain activity recorded in occipital channels cluster per stimulation condition (A) and its average 

from 8 Hz to 12 Hz (B). Color codes: red - alternate motion (AM), blue - constant motion (CM), gray - static 

dot (ST). The alpha-band power decreases significantly from no-motion to motion conditions (CM vs. ST, P = 

0.01, corrected; AM vs. ST, P = 0.02, corrected).  

 

4.3.2. Visual motion imagery  

The time-frequency analyses of the visual motion imagery tasks revealed an increase of the 

alpha power activity when compared to the baseline (imagery of a static dot), starting after 

the participants received the specific imagery instruction (figure 4.5). This effect is mainly 

evident for the frontal and central EEG channels, suggesting that it is a different type of 

alpha activity as compared to the decreasing pattern seen for real stimulation conditions 

(figure 4.3).  

The mean alpha power (figure 4.6) shows significant differences between the imagery 

tasks on the frontal channel cluster (𝜒𝐹 
2 (2) = 13.56, P = 0.001). Post-hoc tests revealed the 

existence of statistically significant differences between the average of alpha-band power 

evoked by imagery of a static dot and by constant motion imagery (P = 0.007) and between 

the average of alpha-band power evoked by imagery of a static dot and by alternate motion 

imagery (P = 0.003).  The peak power frequency (around 10 Hz) is consistent across the 

brain responses during the different imagery tasks. Although a classical statistical approach 

does not detect significant differences between both, the alpha-band power during the 

alternate motion imagery seems distinct from the pattern observed during constant motion 

imagery (see below a multivariate analysis strategy results based on SVM classification).  
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Figure 4.5. Brain responses to visual motion imagery. Group event-related spectral perturbation (ERSP) for 

frequencies between 5 Hz and 50 Hz across entire trials (from -0.5 second to 4 seconds) pooled for motion 

imagery tasks when compared to a no-motion imagery task (baseline). Time 0 corresponds to auditory 

instruction end. All shown ERSP values different from zero are significant at P = 0.05. 

 

 

Figure 4.6. Group mean alpha-band power according to each imagery task (±SEM). Power spectrum of 

the evoked brain activity recorded in frontal channels cluster per imagery task (A) and its average from 10 Hz 

to 12 Hz (B). Color codes: red - alternate motion imagery (AM), blue - constant motion imagery (CM), gray - 

static dot imagery (ST). The alpha-band power of the evoked brain activity recorded in frontal channels cluster 

differs significantly between the moving stimuli and the no-motion stimulus (CM vs. ST, P = 0.007, corrected; 

AM vs. ST, P = 0.003, corrected).  

In order to understand the origin of the alpha activity increasing during the visual 

imagery of motion when compared to the visual imagery of a static dot, the EEG source 
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localization for alpha-band (from 8 Hz to 12 Hz) and for two frequency sub-bands within 

the alpha range were examined (from 8 Hz to 10 Hz and from 10 to 12 Hz) applying the 

sLORETA method. The source localization of the alterations within this frequency-band 

during the visual stimulation was also performed for comparison. We used the comparison 

of visual moving stimuli (both motion conditions data combined) versus no-motion stimulus 

(figure 4.7, left) and the comparison of visual motion imagery (both visual motion imagery 

tasks data combined) versus no-motion visual imagery (figure 4.7, right), using the data 

time interval from 0.5 seconds to 1.5 seconds.  

 

Figure 4.7. Source localization of the distinct alpha activity alterations during visual stimulation and 

visual imagery performed using sLORETA. The source found for the decrease in alpha during visual 

moving stimuli, when compared to non-moving stimulus, is shown at the left panel (maximum difference at 

the frequency-band from 8 Hz to 10 Hz). The right panel shows the identified dominant frontal source for the 

increase in alpha during visual motion imagery when compared to non-motion imagery (maximum difference 

at the frequency-band from 10 Hz to 12 Hz).   

The highest level of alpha activity during the visual motion imagery in relation to the 

imagery of a static dot was found on the frontal lobe (t = 5.24, significant at P = 0.05 for 

two-tailed t test) at the frequency-band from 10 Hz to 12 Hz. During the visual moving 

stimulation the lowest recorded level of alpha activity in relation to the non-moving 

stimulus evoked brain activity was found in the occipital lobe at the frequency-band from 8 

Hz to 10 Hz (t = -4.52, significant at P = 0.05 for two-tailed t test).  
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4.3.3. Visual motion imagery classification  

The data were classified on trial-by-trial basis and using the relative spectral power of the 

frequency band from 7 Hz to 15 Hz of 6 selected EEG anterior channels (F3, F5, FC3, FC5, 

C3, and C5). 

On average the three imagery tasks were classified with 87.64 % of accuracy: 88.68 % 

on the classification of static dot imagery, 88 % on the classification of constant motion 

imagery, and 86.23 % on the classification alternate motion imagery (table 4.1). The mean 

accuracy of classification was above the chance level for all participants (group results 

significant at P = 0.001 as revealed by a 2-tailed binomial test). From the eleven tested 

participants, only two were classified with accuracy lower than 80 %. On those cases, the 

misclassifications were mainly between the static dot imagery and the alternate motion 

imagery.  

Table 4.1. Group classification performance ± SEM. Sensitivity (Sens), specificity (Spec) and balanced 

accuracy (bACC) are presented as the group classification performance evaluation results for the imagery of a 

static dot (ST), imagery of a dot with constant motion (CM) and imagery of a dot with alternate motion (AM). 

 
Sens Spec bACC 

ST 83.45 ± 4.20 93.91 ± 1.41 88.68 ± 2.72 

CM 84.55 ± 2.47 91.45 ± 1.96 88.00 ± 2.07 

AM 82.55 ± 3.16 89.91 ± 1.93 86.23 ± 2.32 

Total 83.52 ± 2.99 91.76 ± 1.49 87.64 ± 2.24 

 

In the group confusion matrix (table 4.2), it can be seen that the best performance of the 

classification algorithm was in the distinction of constant motion imagery from no-motion 

imagery. On the other hand, the classifier presented the highest number of misclassifications 

in distinguishing between constant motion imagery trials and alternate motion imagery 

trials.  

Table 4.2. Confusion matrix of the classified EEG trials. Classification results of 550 trials from each 

imagery task - static dot imagery (ST), constant motion imagery (CM) and alternate motion imagery (AM). 

 Classification 

ST CM AM 

Im
a

g
er

y
 

tr
ia

ls
 ST 459 38 53 

CM 27 465 58 

AM 40 56 454 
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 Discussion 4.4.

In this study we tested the hypothesis that visual motion imagery can induce different 

discriminable classes (at least 3) of EEG signal modulation. We tested three visual 

stimulation conditions with different number of motion alternations and the imagery of each 

visualized condition. We were motivated by findings showing that a different number of 

alternating sensory/perceptual signals (real or imagined) lead to distinct neural responses 

(Huk & Heeger 2002; Larsson et al. 2006; Sousa et al. 2016; Tootell et al. 1998). 

Stimulation conditions and imagery strategies evoked different patterns and sources of 

alpha activity and, the spectral power of this frequency-band seems to reflect the complexity 

of the imagined visual motion. Importantly, only single-trial classification approaches were 

successful in differentiating the 3 imagery strategies while standard statistical measures 

failed.  The visual motion stimulation evoked an alpha pattern different than the visual 

motion imagery: in the first case we found a decrease of alpha activity on the parieto-

occipital channels while for the second case it was found an increase of alpha activity on the 

fronto-central channels. That is, we have identified different functional forms of alpha 

activity for evoked brain responses by visual motion stimulation and visual motion imagery.  

It is well known that visual stimulation elicits an occipital alpha power decrease, 

reflecting a functional mechanism by which information is selected or gated in visual cortex 

(Foxe & Snyder 2011; Klimesch 2012; Klimesch et al. 2011; Schomer & Lopes Da Silva 

2011). We found similar alpha power suppression, mainly on the parieto-occipital region, 

during both visual motion conditions presentation. However, a significant increase of alpha 

activity was found on the frontal channels cluster during both visual motion imagery tasks. 

Some studies have suggested an increasing of frontal alpha activity during high internal 

processing demands as top-down processing and working memory (Benedek et al. 2011; 

Sauseng et al. 2005) and processes requiring imagination of stimulus sequences (Cooper et 

al. 2003). According to Klimesch et al. (2007) and Schomer & Lopes Da Silva (2011) the 

functional state where frontal alpha oscillations are dominant reflects a state of reduced 

external information processing that is referred as a ‘modulation gate’, and the decrease of 

occipital alpha power corresponds to a situation in which attention to external stimuli is 

enabled. Moreover, previous studies suggest that mean frontal alfa amplitudes are enhanced 

for more complex tasks (Cooper et al. 2003). Thus, there are some evidences that the 

differences found between the different visual motion imagery tasks results on the frontal 
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alpha activity, with frequency peak above 10 Hz, can be related with the process of 

recovering the different visualized motion sequence conditions.  

The source for the highest difference between the no-motion conditions/tasks and the 

motion conditions/tasks differs on the alpha sub-band frequency and location. These results 

are in agreement with previous studies that have shown different patterns of alpha 

desynchronization/synchronization subdividing the alpha frequency-band into different sub-

bands (Klimesch 1999; Klimesch et al. 2007). The source localization results for the frontal 

alpha power increase during visual motion imagery can be related with the frontal lobe role 

on memory processes (Lenartowicz & McIntosh 2005). In animal studies similar 

observations could be reported for memory tasks involving temporally complex visual 

information (Gaffan & Wilson 2008).  

EEG studies using non-visual imagery modulation strategies, for example focused on 

mental calculation, also reported increased frontal activity and suggested that it would be 

associated with the frontal lobe role in memory and cognitive challenges (Harmony et al. 

1999; Harmony et al. 2004). However, they reported increased delta and theta activity 

instead of alpha activity. Thus, more research is needed to understand the relation of the 

frontal alpha increase with visual motion imagery. 

Although a more classical statistical approach could not discern between the motion 

imagery tasks with different number of alternations, the applied classification algorithm 

performed a successful distinction between all visual motion imagery strategies supporting 

the advantage of multivariate data analysis approaches (Lemm et al. 2011). The high 

performance achieved by the classifier reveals potentially distinguishable brain activity 

patterns according to each imagery tasks, which suggests that visual motion imagery can be 

used as simple strategy to BCI multiclass control. Yet, real-time tests need to be carried on 

to confirm this proof-of-concept result. Furthermore, according to the number of 

classification errors related to the differentiation of constant motion imagery and alternate 

motion imagery, some participants had difficulties in achieving distinct patterns of brain 

activity during the motion imagery tasks. 

 

 Conclusion 4.5.

This study provides a proof-of-concept showing that it is possible to achieve up to three 

classes of volitional brain activity using visual motion imagery. Results show that the 

imagery and stimulation of a single dot motion evokes different alpha activity patterns (with 
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distinct neural sources). While for the visual motion stimulation the parieto-occipital alpha 

activity showed a decrease, the frontal alpha increased during imagery with distinguishable 

patterns of activity (by means of a classifier) depending on the motion imagery strategy. 

EEG data collected from visual motion imagery were used to test its applicability for 

BCI. A 3-class classifier was learned, using only a few channels, achieving 87.64 % offline 

accuracy, which shows the potential relevance of frontal alpha activity in imagery processes 

and their applications in BCI research. 
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A1. Experimental design 
 

 
Figure 4.A1. Summary of the main experimental steps. The visual motion stimulation was used as a control 

study and as a guide for the visual motion imagery tasks. Participants were asked to imagine alternately the 3 

visual conditions, based on different quantities of motion variation. The data analyses were performed offline. 

Participants’ preparation (before EEG acquisition) 
 12 healthy volunteers (12 males; mean age = 28.9 ± 3.8 years) 

 Informed consent  and explanation about experimental steps and procedures  

 Cleaning of participant’s scalp with abrasive gel and experimental  set-up preparation  

EEG data acquisition: system configuration 
 Brain Products acquisition system (actiCHamp) and BrainVision Recorder 

 actiCAP cap: Ag/AgCl active electrodes (Brain Products)  

 Sample rate = 1000 Hz 

 58 EEG channels positioned according to 10-20 standard system 

 Ground electrode on the forehead 

 Reference electrodes on the earlobes 

 EOG vertical and horizontal 

 Electrodes impedance  ≤ 10 kΩ 

 Applied second-order butterworth filters: high-pass and low pass filters between 0.1 Hz and 100 

Hz and 50 Hz Notch filter 

 

EEG data acquisition: experimental tasks 

 Visual motion stimulation (control) 

 3 conditions (static dot, constant motion and alternate motion) 

 60 repetitions of each condition  

 Stimulus delivery controlled by Matlab using the psychophysics toolbox 

 Stimulation triggers sent to acquisition computer via parallel port   

 Visual imagery of a moving or non-moving dot 

 3 visual imagery tasks: visual imagery of the 3 stimulation conditions 

 60 repetitions of each task 

 Auditory instructions  controlled by Matlab 

 Imagery triggers sent to acquisition computer via parallel port 

Offline data analysis 
 Analysis carried out using Matlab and EEGLAB toolbox (version 13.5.4b) 

 High-pass filter at 0.5 Hz and low-pass filter at 70 Hz (linear finite impulse response (FIR) 

filtering, third-order filter) 

 Re-reference to the average of the earlobes channels  

 Data segmentation in epochs  

 Reject epochs with strong artifacts related to body movements and muscle tension 

 Run independent component analysis (ICA) in EEG channels to identity and remove ocular 

artifact  

 Group study 
o Event-related spectral perturbation (ERSP) for frequencies from 3 Hz to 50 Hz by applying 

Morlet wavelets with incremental cycles (2 cycles at 3 Hz up to 27 at 50 Hz, 200 time 

points) and considering as baseline the last 500 ms of the static dot stimulation/imagery 

condition 

o Power spectral density (PSD) estimated based on fast Fourier transform (FFT) 

o Source localization using standardized low resolution brain electromagnetic tomography 

(sLORETA) software package  

o Imagery data classification: relative spectral power (RSP) of the frequency-band from 7 Hz 

to 15 Hz extracted from 6 EEG channels (F3, F5, FC3, FC5, C3, C5) classified using a 

support vector machine (SVM) from libsvm toolbox;  train and classification per participant 

using leave-one-out cross validation 
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A2. Acquisition system set-up 
 

 

 
 

Figure 4.A2. Schematic diagram of acquisition set-up. The EEG data were acquired during visual motion 

stimulation and during visual motion imagery. The stimulation conditions and the imagery instruction 

(auditory) were controlled using the Matlab and its psychophysics toolbox. The stimulation computer sent the 

triggers to the acquisition computer via parallel port. The EEG data were recorded using active electrodes and 

the actiCHamp system from Brain Products.     
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A3. Classification algorithm 
 

 
Figure 4.A3. Classification algorithm. The EEG data acquired during each imagery task – imagery of a static 

dot (ST), imagery of a dot with constant motion (CM) and, imagery of a dot with alternate motion (AM) – 

were classified per participant using a support vector machine (SVM), based on the relative spectral power 

(RSP) of a small number of channels. 
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Branco, M., 2016. Perceptual interpretation of visual motion revealed at high-resolution 7T 

fMRI in functional domains within visual area hMT+/V5. (In preparation) 
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Abstract 

It has been suggested that activity in hMT+/V5 reflects global motion interpretation of 

perceptual bistability. The multistability in perceptual decision in the presence of an 

unchanging stimulus can arise from a variety of stimulus types, involving alterations in a 

pattern’s perceived depth, direction of motion, or visibility. These perceptual phenomena 

are extensively used in the visual sciences as a tool for investigating mechanisms of 

perceptual organization, but fine grained studies of the respective neural dynamics are still 

lacking.  

Here we took advantage of high resolution seven tesla functional magnetic resonance 

imaging to investigate how bistable perceptual integration/segmentation of interhemispheric 

1D directional cues is mapped in hMT+/V5 functional sub-domains. To achieve this goal 

we used a paradigm in which 2D motion coherence requires interhemispheric integration of 

line gratings and incoherence breaks such binding across hemispheres.  

We found evidence for the existence of perception related sub-domains in the hMT+/V5 

region. These domains responded preferentially either to coherent or incoherent motion and 

have showed preferred axes of motion that matched the perceptual reports.  Accordingly, an 

interaction between the type of perceptual sub-domain and the axes of motion preference 

was found, suggesting columnar-level neural correlates of perceptual content in area 

hMT+/V5. Moreover, our results suggest that hMT+/V5 also has a functional role in 

integrating interhemispheric representations of bistable percepts. Finally, these findings 

suggest that both the transition of perceptual states and the content of perception can be 

read-out directly from the activity patterns across perceptual sub-domains in hMT+/V5 area. 
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 Introduction 5.1.

During continuous observation of an unchanging stimulus, visual perception may alternate 

between competing interpretations, switching over time between alternative dominant 

percepts. This phenomenon is called multistable visual perception (Leopold & Logothetis 

1999; Kornmeier & Bach 2012) and is generated by stimuli commonly referred to as 

ambiguous perceptual stimuli. It is in general possible to study the temporal dynamics of 

perceptual oscillations using simple functions that may be useful to infer about putative 

neural mechanisms underlying perceptual decision. The study of multistable perception can 

offer powerful insights into mechanisms of visual awareness, perceptual organization, and 

decision (Pomerantz & Kubovy 1981; Crick & Koch 1998; Blake & Logothetis 2002; Blake 

et al. 2014). Low level explanations of multistable visual phenomena suggest that the 

spontaneous perceptual switches are due to antagonistic connectivity within the visual 

system and adaptation phenomena. However, the origin of perceptual reversals is still highly 

under debate and the role of high level regions is also relevant (Leopold & Logothetis 1999; 

Long & Toppino 2004; Kornmeier et al. 2009; Kornmeier & Bach 2012). 

The inherent ambiguity of the direction of motion of a line is known for a long time 

(Wallach 1935). This is because collinear line patterns (gratings) only define one dimension 

in velocity space. Perceptually, a line is always seen to move in the direction perpendicular 

to its orientation, in spite of the inherent ambiguity of 1D stimuli. Because of this fact, when 

the line moves behind an aperture, the perceived direction changes from the perpendicular 

direction and is affected by the shape of aperture. If instead of a single line we have a group 

of lines as a grating pattern, the single lines together constitute a new object that is 

characterized by its perceived motion as a whole (Wallach 1935; Movshon et al. 1985; 

Wuerger et al. 1996).  

There are several studies using two line grating patterns combined, exploring how full 

integration of multiple globally moving surfaces is achieved within the visual system, such 

as plaid stimuli, made by superimposing two gratings of different orientations (Adelson & 

Movshon 1982; Burke et al. 1994; Castelo-Branco et al. 2000; Castelo-Branco et al. 2002; 

Castelo-Branco et al. 2009; Kozak & Castelo-Branco 2009). Even when physically constant, 

this type of stimulus produces perceptual bistability, in which observers spontaneously 
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switch perception between two independent moving objects or one single object moving 

coherently. A close relation was found between the activity changes in the the human 

motion complex (hMT+/V5), known to be involved in motion perception (Tootell et al. 

1995; Kolster et al. 2010), and the perceptual switches involving differential binding of 

stimulus components moving in different directions (Castelo-Branco et al. 2002). Thus, it 

has been suggested that activity in this brain area reflects global motion interpretation in 

relation to perceptual bistability. However, it remains to be established whether functional 

domains related to visual perception can be identified in hMT+/V5.  

Ultra-high field functional magnetic resonance imaging (fMRI) provides higher spatial 

specificity (Uǧurbil et al. 2003; Uludağ et al. 2009), signal-to-noise ratio (Vaughan et al. 

2001) and functional specificity (Shmuel et al. 2007) than conventional 3 Tesla fMRI. These 

advances in fMRI have led to the possibility of detecting small neuronal ensembles that 

constitute fundamental computational units in the brain, down to the columnar or quasi-

columnar level. The study of the functional organization of the human visual system close to 

these levels may allow to understand early visual integration mechanisms and beyond 

(Menon et al. 1997; Cheng et al. 2001; Yacoub et al. 2007; Yacoub et al. 2008), particularly 

in the hMT+/V5 complex (Zimmermann et al. 2011). More recently, also perceptual tasks 

have been investigated at this detailed level of organization, revealing columnar-level neural 

correlates of perceptual switches in area hMT+/V5 using plaid stimuli (see preliminary 

report by Goebel et al. 2014).  

Here we have used a previously described ambiguous moving stimulus in a non-

overlapping configuration whereby 1D components are presented to each hemisphere  

(Wallach 1935; Wuerger et al. 1996) thereby requiring long range integration. Accordingly, 

the motion coherence requires interhemispheric binding and incoherence interhemispheric 

segregation. We took advantage of high resolution 7 Tesla (7T) fMRI to explore the relation 

between hMT+/V5 spatial and temporal activity patterns and perceptual oscillations related 

to bistable perception. We aimed to map functional sub-domains in the hMT+/V5 region 

responding specifically for each type of global motion percept (coherent or incoherent). 

Moreover, we aimed to test if these perceptual sub-domains have different axes of motion 

preferences and if they matched the type of perceived global motion. With this study, we 

attempted to provide new insights about the relation between putative perceptual domains 

and global direction-selective responses in hMT+/V5.  
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 Material and Methods 5.2.

5.2.1. Participants  

Ten healthy participants (six males; mean age ± standard deviation: 28.4 ± 8.0 years; 9 

right-handed and 1 left-handed) with normal or corrected-to-normal vision participated in 

this study. Participants gave informed consent and were paid for their participation.  

All experimental procedures were conducted with approval from the Ethical Committees 

of Coimbra University and the Faculty of Psychology and Neuroscience at Maastricht 

University. 

 

5.2.2. Experimental design overview 

All the recruited participants performed a familiarization session outside of the scanner 

(twelve minutes per day – two runs of ambiguous stimulation, during five days in the week 

before of the scanning session). During the familiarization session the participants should 

get used to the ambiguous stimulus and to report perceptual alternations, which after these 

sessions should have stabilized in terms of their dynamics. The ambiguous stimulus was 

presented with the same parameters of the scanning session (see stimulus description 

below). In order to be able to use an efficient block design in our analyses, only participants 

with minimum average duration of six seconds per each motion percept were selected for 

the study. 

The scanning session included the acquisition of anatomical data for co-registration of 

functional data, two runs of an hMT+/V5 functional localizer for the correct slice 

positioning of the subsequent high-resolution functional images, two control runs 

(unambiguous stimulation), four runs of ambiguous stimulation (each two interleaved with 

one control run) and three runs of a functional localizer of the hMT+/V5 sub-domains with 

different axes of motion preference. The total of the scanning session took two hours. 

Participants were asked to breathe steadily and to remain as still as possible.  

The experimental design is further detailed in the next subsections and its complete 

overview is given as supplementary figure 5.A1 in appendix.  

 

5.2.3. Stimuli  

The stimuli were created with MATLAB (The Mathworks, Inc.), using the Psychophysics 

Toolbox (Brainard 1997; Pelli 1997). In the scanner, they were projected on a screen located 
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at 99 cm away from the participant (screen size: 17.2 deg x 10.4 deg (horizontal x vertical); 

stimuli size: 11 deg x 10 deg; projected display: resolution of 1920 x 1080 and refresh rate 

of 60 Hz). Responses were collected through an MR compatible button box (Current 

Designs, 4-button response device, Philadelphia, USA). 

 

A) Ambiguous Stimulation  

The ambiguous stimulus was designed based on  the original description of Wallach 

(Wallach 1935; Wuerger et al. 1996). The roof shaped stimulus consisted of continuously 

moving downward oblique black lines forming an inverted V-shape, on a white background 

(orientation: ± 25 deg relative to x-axis; contrast: 100 %; motion speed: 3 deg/s; duty cycle: 

6%; spatial frequency: 0.6 cycle/deg; stimulus visual angle: 11 deg x 10 deg - horizontal x 

vertical). A central blue cross (visual angle: 0.2 deg) was present as a fixation target at the 

visual midline. The lines terminations on the stimulus border were smoothed using a mask, 

with a central aperture (9.9 deg x 10 deg), superimposed to the Wallach stimulus. The mask 

was prepared using a bi-dimensional squared Gaussian kernel (width and height: 0.6 deg) 

with an identical standard-deviation (0.3 deg) on both dimensions. 

In spite of the absence of physical change in the moving stimulus, participants 

spontaneously exhibited perceptual alternations between coherent motion (the lines were 

perceived moving downward as a single roof-like object – figure 5.1-A) or incoherent 

motion (the lines were perceived as two separate objects, one in each visual hemi-field, 

moving inward – figure 5.1-B). Participants indicated their perceived motion pattern 

through a button press.  

 

Figure 5.1.  Patterns of motion perceived during ambiguous stimulation. The bistable percept resulting 

from ambiguous stimulation was reflected on the alternation of two patterns of motion perceived by each 

participant: one roof-like object moving downward - coherent motion percept (A) or two separate objects 
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moving inward - incoherent motion percept (B). The arrows are representing the perceived direction of 

motion. The blue cross was used as central fixation point. The line offset in right panel does not necessarily 

physically exist and maybe virtually perceived. 

In order to facilitate more stable percepts we performed pilot tests where we varied 

features of stimulus. By offsetting the lines between the two hemi-fields participants 

reported larger and more balanced perceptual durations, thus the stimuli were prepared with 

a slight offset of 0.06 deg. The ambiguous stimulation was run in four separated runs with 

180 volumes each, completing a total of 20 trials of motion (60 seconds each) interleaved 

with no-motion periods (static figure of the inverted V-shaped lines presented during 15 

seconds).  

 

B) Unambiguous Stimulation  

The unambiguous stimulation was used as control test for the brain response to the coherent 

and incoherent motion. We added background moving dots (600 dots randomly distributed 

with contrast of 40 % and visual angle of 0.1 deg) to the ambiguous stimulus biasing the 

participants to unambiguously perceive each kind of motion. With all dots moving inward 

simultaneously on each hemi-field the participants were induced to perceive the incoherent 

motion pattern (figure 5.2-B) and with all dots moving simultaneously downward the 

participants were induced to perceive the coherent motion pattern (figure 5.2-A). The dots 

were moving at the same speed as the inverted V-shaped lines (3 deg/s).  

 

Figure 5.2. Motion conditions during unambiguous stimulation (control). By disambiguating the stimulus 

with additional moving dots the participants were biased to unambiguously perceive each kind of motion, as 

induced by dot motion pattern: dots moving downward - coherent motion (A), dots moving inward - 

incoherent motion (B). The arrows are representing the perceived direction of motion. The blue cross was used 

as central fixation point. 
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The unambiguous stimulation was performed in two runs of 180 volumes each. The 

duration of each motion condition varied between 6 and 9 seconds. Per run, each motion 

condition was repeated 10 times and randomly interleaved with no-motion condition (static 

figure of the inverted v-shaped lines with the added dots presented during 15 seconds). In 

order to confirm the perceived pattern of motion, we asked to the participants to indicate via 

a button press their perceptual content.  

 

C) Axes of motion preference mapping 

To explore the relation between bistable perception and axis of motion preference, we 

designed a stimulus to functionally localize direction of motion tuned columnar like features 

in hMT+/V5. We showed participants moving conditions in different axes of motion (0 deg, 

45 deg, 90 deg and 135 deg) randomly interleaved with a no-motion condition (figure 5.3).  

 

Figure 5.3. Stimulation conditions used for axes of motion preference mapping. A) Each axis of motion 

(45 deg, 0 deg, 135 deg or 90 deg) was defined pooling together stimulation conditions with opposing 

directions. The red arrows are indicating the motion directions of each stimulation condition. The motion 

conditions were randomly interleaved with a no-motion condition (18 trials of each motion orientation). B) 

Each trial (motion or no-motion) lasted 8 seconds. The blue cross was used as central fixation point. 

As previously demonstrated axis of motion columns are referred as aggregated functional 

clusters responding to opposing motion directions (Zimmermann et al. 2011). Therefore we 

pooled responses to motion conditions with opposing directions to select functional domains 

with preference for a specific orientation. The stimulus was composed by 8 motion 

conditions and 1 no-motion condition, all with the duration of 8 seconds. All the motion 

conditions consisted of black moving lines on a white background with the same parameters 
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as the ambiguous and the unambiguous stimuli (with the exception of the axis of motion). 

Each condition with different motion direction was repeated 9 times across 3 stimulation 

runs with 196 volumes each (3 trials of each motion direction per run) totaling a total of 18 

trials of each motion orientation in this study.  

 

5.2.4. Imaging data acquisition 

Images were acquired with a Siemens MAGNETOM 7T scanner (Siemens; Erlangen, 

Germany) and a 32-channel head-coil (Nova Medical Inc.; Wilmington, MA, USA). 

Structural images were acquired for anatomical reference using a T1-weighted 

magnetization prepared rapid acquisition gradient echo (3D-MPRAGE) (256 sagittal slices; 

isotropic resolution of 0.6 mm; repetition time (TR) = 3100 ms; echo time (TE) = 2.52 ms; 

flip angle = 5
o
; matrix = 384 × 384; generalized partially parallel acquisitions (GRAPPA) 

acceleration factor = 3). To correct for intensity inhomogeneities additional gradient echo 

proton-density (GE-PD) images (same parameters as 3D-MPRAGE, except TR = 1440 ms) 

were acquired. 

High-resolution functional images were obtained using a gradient echo (T2-weighted) 

echo-planar imaging (2D GE-EPI) (28 slices; isotropic resolution of 0.8 mm; TR = 2000 

ms; TE = 25.6 ms; flip angle = 69
o
; matrix = 186 × 186; GRAPPA acceleration factor = 3). 

To correct for EPI distortions additional functional volumes (five volumes with a reversed 

encoding direction) were acquired right after the GE-PD images. The field-of-view included 

a very restricted functional coverage (figure 5.4). In order to ensure that functional images 

with isotropic resolution of 0.8 mm would be in the correct position to cover the bilateral 

ROI, two hMT+/V5 functional localizer runs were first acquired for slice positioning (39 

coronal slices; isotropic resolution of 1.6 mm; TR = 2000 ms; TE = 17.2 ms; flip angle = 

70
o
; matrix = 88 × 88; GRAPPA acceleration factor = 2). The hMT+/V5 localizer protocol 

was based on studies of Huk & Heeger (2002) as used by Zimmermann et al. (2011) and 

Emmerling et al. (2015).  
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Figure 5.4. Functional field-of-view. Example from one participant showing the restricted functional 

coverage of the high-resolution functional magnetic resonance imaging (fMRI) data acquired.  

 

5.2.5. Offline data analyses 

The offline data analyses were performed using BrainVoyager QX (BV QX) software 

(version 2.8.4; Brain Innovation; Maastricht, The Netherlands) (Goebel et al. 2006) and 

with the IBM (Armank, NY) SPSS Statistics 22.0 software package. 

 

A) Behavioral data analysis 

Aiming to understand the temporal distribution of bistable perception during the ambiguous 

stimulation we calculated the mean duration of each percept and the number of perceptual 

switches per participant. Furthermore, we estimated the probability of occurrence of a 

particular duration for each percept using the probability density function. The gamma and 

the lognormal distributions, commonly used for fitting perceptual duration data of 

ambiguous stimuli (Borsellino et al. 1972; Leopold & Logothetis 1999; Zhou et al. 2004), 

were fitted to the data using the maximum likelihood method to estimate the parameters. 

The maximum likelihood estimates of α and β (gamma distribution) or σ and μ (lognormal 

distribution) parameters were calculated for each participant using a time-window from zero 

to the longest percept duration that occurred, and the goodness of fit was assessed using the 

Kolmogorov-Smirnov test (P > 0.05). 

 

B) Imaging data pre-processing 

First, spatial intensity inhomogeneities of the anatomical images were corrected based on 

proton density (PD) measurement information. The PD scan acts as a coarse estimation of 
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spatial intensity inhomogeneities allowing to remove them from the corresponding T1 data 

by dividing the T1 data by the PD data (Van de Moortele et al. 2009). In order to further 

improve the homogeneity of the data, was also applied a standard correction which uses 

low-order polynomials to model low-frequency variations across the 3D image space. The 

polynomials were fitted to a subset of voxels that have been labeled as belonging to white 

matter. After estimating the low-frequency intensity fluctuations, they were removed from 

the data producing voxels with more homogeneous intensities that improved visualization 

and were also better starting points for subsequent functional co-registration steps (Hou et 

al. 2006; Sled et al. 1997).  

After inhomogeneity corrections the anatomical data were normalized to the AC-PC 

space. Like native space, AC-PC space reflects the true shape of an individual brain since 

this rigid body transformation only translates and rotates the brain in a canonical orientation 

(Talairach & Tournoux 1988). Moreover, using a sinc-weighted interpolation the anatomical 

images were up-scaled to an isotropic resolution of 0.8 mm to match the resolution of the 

functional data.  

The functional data were corrected for 3D rigid body motion (aligning all subsequent 

runs to the closest functional run of the anatomical scans) and high-pass filtered using a 

general linear model (GLM) Fourier basis set of two cycles sine/cosine per run (including 

linear trend removal). Furthermore, as EPI images suffer from geometric distortions due to 

non-zero off-resonance fields, a correction method based on opposite phase encoding was 

applied (Andersson et al. 2003). The susceptibility-induced off-resonance field was 

estimated from the pairs of images with distortions in opposite directions (recorded 

functional volumes of normal and reversed phase encoding).  

Finally, functional images were co-registered to the 3D anatomical data and resampled at 

the original resolution using a sinc interpolation. The functional images with 0.8 mm 

isotropic resolution matched the final resolution of the anatomical data.  

 

C) Imaging data analysis 

First, a standard GLM was used to assess the functional activation pattern (Kutner et al. 

1996). The condition predictors were created by convolving the activation blocks with a 

standard hemodynamic response function (Friston et al. 1998). For each stimulation 

protocol (ambiguous, unambiguous and axes of motion preference mapping), all runs were 

analyzed together on a single subject-by-subject basis using the motion parameters as 
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confound predictors. Then, we defined the hMT+/V5 region of interest (ROI) per participant 

using the axes of motion preference mapping data. The ROI was defined for each 

hemisphere including all voxels significantly activated at 𝑞(FDR) = 0.05  contrasting all 

motion stimulation conditions with the baseline. This ROI served as base for the subsequent 

analysis steps.  

The ambiguous evoked responses were analyzed as a function of presence of coherent or 

incoherent percepts and compared with the evoked responses during unambiguous 

stimulation. Importantly, we asked whether perceptually selective ROIs could be discovered 

based on the ambiguous stimulation data (incoherent perceptual ROI and coherent 

perceptual ROI). Then we asked whether preferred responses to given axes of motion also 

matched the direction of the preferred type of percept. Our goal was to investigate whether 

an interaction between the motion preference of each functional domains and preference for 

each kind of percept. The axes of motion preference mapping stimulus included motion 

conditions tuned for the coherent or incoherent percept due to their different orientations 

(figure 5.5). The resulting axis of motion of the perceived coherent pattern after integration 

is vertical despite the diagonal lines. On the other hand, for incoherent percepts the axis of 

motion of each object is diagonal.  

 

Figure 5.5. Correspondence between patterns of motion perceived during ambiguous stimulation and 

the studied axes of motion. The red arrows in the figure represent the motion direction. Due to the different 

axes of motion perceived during ambiguous stimulation (A) we asked whether a matched occurred between 

the functional domains with preference for each kind of percept and axes of motion preference (B). 

The perceptual ROIs were defined based on the contrast between the hMT+/V5 

responses to the incoherent and coherent percept. For each ROI were selected the significant 
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voxels of the contrast (P < 0.05) with preference for each percept. The ROIs were defined 

with equal size, which was determined by the percept recruiting the lower number of 

specific voxels.  

The beta values of the evoked responses on each perceptual ROI (from each hemisphere 

and from each participant) according the moving simulation conditions on different axes of 

motion were extracted. A two-tailed t test was used to verify if there were significant 

differences in the responses of each perceptual ROI to the different stimulus conditions at 

the group level. Furthermore, we ran a mixed ANOVA in which the within-subjects factor 

was the type of moving condition (tuned for axis of motion identical to the coherent percept 

or tuned for axes corresponding to incoherent percept) and the between-subjects factor was 

the type of perceptual ROI (coherent or incoherent) to understand if there was an interaction 

between these two factors on the dependent variable (measured brain activity). 

In order to validate our approach we performed the axes of motion preference mapping. 

The ROIs mapping voxels with different axes of motion preferences were defined using the 

winner maps tool from BV QX restricted to the defined hMT+/V5 ROI. Following previous 

studies that have reliably mapped axes of motion, we pooled responses with opposing 

directions (Zimmermann et al. 2011). First, a probabilistic map for each stimulus motion 

orientation (0⁰, 45⁰, 90⁰ and 135⁰) was created using the contrast of each motion orientation 

versus baseline. Second, the maps were combined and the winner map was determined and 

finally, a ROI restricted to the localized hMT+/V5 region was defined per each orientation 

preference winner. The responses of each ROI to the different motion orientations were 

registered and the tuning curves of each functional domain represented by these ROIs were 

traced.  

All analyzed beta values on offline processing of the data were extracted after correction 

for serial correlations performed according to a second-order autoregressive method 

(Lenoski et al. 2008). Furthermore, all averaged results are presented as mean ± standard 

error of the mean (SEM). 

 

 Results 5.3.

5.3.1. Behavioral analysis results 

Concerning bistable perceptual dynamics, mean percept duration and the number of 

perceptual switches per participant during ambiguous stimulation are presented in figure 
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5.6. In general all participants showed a sufficiently large number of switches for analysis, 

the same holding true for perceptual durations, which were relatively balanced for each 

percept type. 

 

Figure 5.6. Percepts duration and number of perceptual switches during ambiguous stimulation per 

participant. The mean duration of the perceived coherent pattern of motion is represented by the blue 

rectangles and the mean duration of the perceived incoherent motion is represented by the red rectangles (A). 

Error bars represent ± SEM. In (B) are plotted the number of perceptual switches reported per participant.  

The mean group results are plotted in figure 5.7. During ambiguous stimulation 

participants perceived the coherent condition for 8.35 ± 1.01 seconds, on average, while the 

mean duration of the incoherent condition was 7.25 ± 0.75 seconds. Furthermore, 69.50 ± 

7.50 perceptual switches per participant were found.  

 

Figure 5.7. Group mean percepts duration and number of perceptual switches occurred on ambiguous 

stimulation. Each box presents the group mean duration of the perceived coherent pattern of motion and of the 

incoherent pattern of motion (A), and the average of perceptual switches occurred during ambiguous 

stimulation (B). 

 

For each percept, the probability distribution of perceptual durations was estimated per 

participant and the gamma and lognormal distributions were fitted to the resulting 

histogram. In figure 5.8 is presented one example from one participant. For this particular 

example, both distributions fit similarly the percepts duration histogram (coherent motion 
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percept duration distribution (figure 5.8-A) and incoherent motion percept durations 

distribution (figure 5.8-B)). 

 

Figure 5.8. Data from one participant exemplifying the distribution of percepts durations during the 

ambiguous stimulation runs. The dots are representing the coherent (A) and incoherent (B) motion percepts 

duration histograms from one participant. The gray and green lines are illustrating the gamma and the 

lognormal distributions, respectively, fitted to the data.  

In agreement with previous bistable perception studies (Borsellino et al. 1972; Zhou et al. 

2004) the Kolmogorov-Smirnov test group results demonstrated no significant deviation 

between the fitted distributions and each percept duration histogram (P > 0.05). 

Additionally, both distributions fitted similarly the data and both percepts duration 

histograms.  

According to the participants reports the unambiguous stimulus clearly produced 

unequivocal coherent or incoherent percepts following the pattern of motion of the 

background dots. Moreover, participants reported that the perceived patterns of motion were 

similar to the ones perceived during the ambiguous stimulation.  

 

5.3.2. hMT+/V5 localization  

The hMT+/V5 ROI definition by the localizer was the first imaging analysis step and the 

base of all subsequent steps. The contrast between the evoked brain activity during localizer 

stimulus conditions moving in different directions and the no-motion condition produced 

statistical maps with clear bilateral activations (figure 5.9, example from one participant). 

The defined ROIs included on average 512.89 ± 84.29 voxels from right hemisphere and 

811.33 ± 102.45 voxels from left hemisphere.  
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Figure 5.9. Example of bilateral hMT+/V5. Activation map resulting from the contrast between motion 

conditions and static condition during the localizer experiment. The hMT+/V5 left and right are shown at the 

same statistical threshold level (q (FDR) = 0.05). 

5.3.3. Stimulus validation for axes of motion preference mapping 

In order to verify if the used 1D component stimuli can be related to different axes of 

motion preferences, the hMT+/V5 evoked responses during the localizer moving stimulus 

were analyzed. As expected the hMT+/V5 voxels were differentially activated according the 

moving stimulus axis of motion. Therefore, the different motion orientations of the stimulus 

conditions allowed to map per participant functional hMT+/V5 sub-domains with specific 

preference for the diagonal, vertical or horizontal axis of motion. The defined ROIs included 

on average 54.89 ± 8.46 voxels from the right hemisphere and 95.11 ± 14.19 voxels. As 

illustrated on the tuning curves of figure 5.10 each mapped hMT+/V5 sub-domain 

responded significantly more to the stimulus moving with a preferred orientation than to the 

stimulus with other motion orientations (P < 0.0001, adjusted for multiple comparisons 

using Bonferroni correction).  

 

Figure 5.10. Tuning curves resulting from axes of motion preference mapping. Average response results 

of hMT+/V5 functional sub-domains (regions-of-interest - ROIs - represented by the lines) with different axes 
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of motion preference to stimulation conditions with different motion orientations (0 deg, 45 deg, 90 deg or 

135deg). hMT+_H: ROIs with preference for horizontal motion; hMT+_D: ROIs with preference for diagonal 

motion; hMT+_V: ROIs with preference for vertical motion. Error bars represent ± SEM. 

 

5.3.4.  Ambiguous and unambiguous imaging analysis results  

During ambiguous and unambiguous stimulation both left and right hMT/V5 were recruited. 

The evoked responses were significantly higher (P < 0.0001, as revealed by mean of a t 

test) during the incoherent motion percept than during the coherent motion percept for both 

types of stimulation (figure 5.11). Accordingly, during ambiguous stimulation, the beta 

value of coherent percept evoked hMT+/V5 response was on average 2.71 ± 0.18 and the 

incoherent percept evoked a response of 3.48 ± 0.22. Similarly, the unambiguous 

stimulation evoked hMT+/V5 response during the coherent motion was of 2.95 ± 0.14 and 

during the incoherent motion was 4.14 ± 0.25.  
 

 

Figure 5.11. hMT+/V5 evoked activation during coherent and incoherent motion perception. Group 

average of general linear model (GLM) beta values of responses to each kind of percept during ambiguous and 

unambiguous stimulation at hMT+/V5. Error bars represent ± SEM. 

 

5.3.5. hMT+/V5 shows domains that are selective for the type of percept  

We found that it is possible do identify hMT+/V5 domains that are selective for the type of 

percept. Such perceptually defined ROIs were found per participant and per hemisphere 

based on hMT+/V5 significantly activated voxels at P ≤ 0.05 for the contrast between 

coherent and the incoherent motion percepts elicited by ambiguous stimuli.   

The identified domains with preference for the coherent percept are now labelled as 

coherent perceptual ROIs and likewise for incoherent perceptual ROIs. The mean size of the 

perceptual ROIs from right and from left hemispheres was 17.67 ± 6.09 and 19.0 ± 4.19, 

respectively. The clear perceptual preferences of the defined ROIs are depicted for visual 

purposes in figure 5.12. 
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Figure 5.12. Perception related functional domains for the coherent and incoherent percepts. Group 

average of general linear model (GLM) beta values of evoked responses to each kind of percept (coherent or 

incoherent) during ambiguous stimulation are shown (for visualization purposes) in the discovered perception 

related hMT+/V5 functional sub-domains. Error bars represent ± SEM. 

We then tested whether the responses of the perception selective domains were tuned to 

axes of motion that matched each type of percept. One participant was excluded from this 

analysis due to excessive movement artifacts in the data. The responses of these domains 

were organized in two groups (figure 5.13): responses to the stimulus with axis of motion 

tuned for the coherent percept (moving along the vertical axis) and responses to the stimulus 

with axis of motion tuned for the incoherent percept (moving along diagonal axes). 

 

 

Figure 5.13. Responses of domains selective to perception type (coherent or incoherent). Group average 

of GLM beta values of perceptual ROIs responses to stimulus conditions moving on different orientations 

tuned for coherent or incoherent percept. The perceptual ROIs with preference for incoherent motion percept 

responded significantly more to the stimulus with motion orientation tuned for incoherent percept than to the 

stimulus with motion orientation tuned for coherent percept (P = 0.009).  Error bars represent ± SEM. 

We found that the domains selective to incoherent perception showed responses that 

were on average significantly stronger for stimuli with axis of motion matching the 

incoherent percept (5.71 ± 0.46) than for stimuli with axis of motion matching the coherent 

percept (4.90 ± 0.41) (significant differences at P = 0.009, see ANOVA below). The 
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coherent perceptual ROIs responded similarly during both type of motion conditions (3.50 ± 

0.27 for stimuli with axis of motion matching the coherent percept and 3.53 ± 0.22 for 

stimuli with axis of motion matching the incoherent percept, no significant differences). 

We had hypothesized that the hMT+/V5 functional sub-domains with preference for one 

kind of percept (coherent or incoherent) during ambiguous stimulation (no physical changes 

on moving stimulus) would be differentially modulated by moving stimulus in different 

axes of motion (moving stimulus with real physical changes). A mixed way ANOVA 

revealed a significant interaction between the type of perceptual ROI (coherent or 

incoherent) and the stimulus motion orientation (tuned for coherent or incoherent percept) 

on the measured brain activity (F (1, 34) = 5.64, P = 0.023). This interaction can be 

appreciated in figure 5.13. Domains selective for the incoherent percept showed stronger 

activation for stimuli with axis of motion matching such incoherent percept, suggesting a 

clear interaction between percept type and motion tuning in these domains. 

 

 Discussion  5.4.

Here we took advantage of high resolution fMRI to investigate if functional sub-domains 

related to perceptual content exist in hMT+/V5 and if they reflect preference for axes of 

motion matching the perception. To answer these questions we used a bistable perception 

paradigm, and assessed neural responses during ambiguous stimulation (yielding coherent 

motion or incoherent motion percept). A critical test to this hypothesis was whether an 

interaction between perception and axis of motion tuning could be found.  

All these predictions were found to hold true. Moreover we also found that incoherent 

motion percept induced higher hMT+/V5 activity, on average, than the coherent motion 

percept, in line with previous findings (Castelo-Branco et al. 2002). The perception of 

incoherent motion involves two moving objects, whereas the perception of coherent motion 

involved only one moving object. Moreover, incoherent percepts may activate a larger 

number of component selective neurons (which respond to the 1D stimulus components). 

This notion is consistent with data showing that 40 % of the neurons in primate MT are 

component direction selective and only 25 % are pattern direction selective (Movshon et al. 

1985). Therefore, perceiving incoherent motion may be associated with activation of a 

larger pool of neurons than perceiving coherent motion, and this could account for a higher 

BOLD signal. 
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It has been suggested that overall activity in the hMT+/V5 reflects global motion 

interpretation of perceptual bistability (Castelo-Branco et al. 2002). The current work goes a 

substantial step further by showing with high resolution fMRI that it is possible to identify 

hMT+/V5 functional sub-domains which activity is modulated according to the visual 

motion perception content. Our results show that the bistable perception is reflected not only 

at the global level of hMT+/V5 region but also at the level of perception related functional 

sub-domains. Importantly, these perceptual sub-domains presented different axes of motion 

preference. During the stimulation with different motion conditions the sub-domains 

selective for incoherent perception had also selective responses to axes of motion matching 

the incoherent percept. These results suggest that the tuning of the hMT+/V5 functional sub-

domains is for the interpretation of the perceptually relevant motion features irrespective of 

real physical stimulation. This finding was corroborated by interaction analysis and found to 

be true in particular for sub-domains selective for incoherent percepts. Future studies should 

elucidate the reason for this asymmetry. A parsimonious explanation would be that only 

component neurons regions in the first stage of global motion computation are sensitive to 

perceptual modulation by feedback signals at the level of hMT+/V5.   

The interaction found between the type of perceptual sub-domain and the axes of motion 

preference support the reports of previous studies that suggested quasi columnar-level 

neural correlates of perceptual switches in area hMT+/V5 (Goebel et al. 2014). Importantly, 

our findings show that the identified hMT+/V5 functional sub-domains related to bistable 

perception emerge even when 1D representations have to be bound/segregated inter-

hemispherically. 

The results of the present study greatly encourage the development of a new application 

for a multilevel neuromodulation approach using visual motion strategies. We hypothesize 

that the self-regulation of the functional connectivity between different hMT+/V5 

perceptual sub-domains could allow to train our perception of external stimuli. Moving from 

the macroscopic level neuroimaging (3Tesla) to the mesoscopic level (7Tesla) might lead 

e.g. to more natural brain-computer interface systems. 

 

 Conclusion  5.5.

We demonstrated that not only the transition of perceptual states but also the content of 

perception can be read-out directly from the activity patterns across perceptual sub-domains 
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in hMT+/V5 area. We found an interaction between the content of bistable perception of 

motion and the axes of motion preference within the identified perception related 

subdomains. Furthermore, our results showed that neural responses in hMT+/V5 functional 

sub-domains reflect perceptual interpretation of global motion matching local tuning and not 

strict physical stimulus properties. 
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A1. Experimental design 
 

 
Figure 5.A1. Summary of the main steps of the experimental procedure followed in the study. Each 

participant took part of a familiarization session with the ambiguous stimulus during the week before the fMRI 

acquisition session. The hMT+/V5 sub-domains preferring each type of motion percept during the ambiguous 

stimulation were mapped and their response to different axes-of-motion was compared. The functional data 

were acquired using the 7T fMRI and offline analyzed using a general linear model (GLM) approach to assess 

the functional activation patterns. fMRI – functional magnetic resonance imaging, TR – repetition time, FA – flip angle, 

TE – echo time, FOV – field of view.  

 

Participants’ preparation (outside of scanner) 
 10 healthy volunteers (6 males; mean age = 28.4 ± 8.0 years) 

 Informed consent  

 Explanation about experimental steps and procedures 

 Familiarization session (12 minutes of ambiguous stimulation per day – 5 days in the week 

before of  the scanning session) 

MRI data acquisition 
 7 Tesla Siemens Magnetom scanner  

 32-channel head coil 

 T1-weighted magnetization prepared rapid acquisition gradient eco (3D-MPRAGE) (256 slices) 

o TR = 3.1 s; TE = 2.52  ms; Voxel size = 0.6 x 0.6 x 0.6 mm3 ;  FA = 5º; FOV = 384 x 384 

 Gradient eco proton-density (GE-PD) 

o TR = 1.44 s; TE = 2.52  ms; Voxel size = 0.6 x 0.6 x 0.6 mm3 ;  FA = 5º; FOV = 384 x 384 

 

fMRI data acquisition 
 Gradient eco (T2-weighted) echo-planar imaging (2D GE-EPI) (28 slices) 

 TR = 2 s; TE = 25.6 ms; Voxel size = 0.8 x 0.8 x 0.8 mm3 ;  FA = 69º; FOV = 186 x 186 

 Stimulus delivery controlled by Matlab using the Psycophysics toolbox 

 Responses were collected via button box  (Current Designs) 

 Functional localizer for slice positioning  

 TR = 2 s; TE = 17.2 ms; Voxel size = 1.6 x 1.6 x 1.6 mm3 ;  FA = 70º; FOV = 88 x 88 

 Ambiguous stimulation  

 180 volumes per run; 4 runs 

 Unambiguous stimulation (control) 

  180 volumes per run; 2 runs 

 Axes of motion preference mapping and hMT+/V5 localization 

  196 volumes per run; 3 runs 

 

Offline data analyses 
 Behavioral data analyses: temporal distribution of bistable perception and number of 

perceptual switches 

 Imaging data analysis carried out using Brain Voyager 2.8.4 

o Pre-processing 

 Anatomical data: inhomogeneity correction (correction based on proton density and 

standard correction), data normalized to the AC-PC space and up-scaled to an isotropic 

resolution of 0.8 mm using sinc-weighted interpolation,  

 Functional data: motion correction (intra-session alignment), slice-scan-time correction 

(cubic spline interpolation), temporal high-pass filter (GLM Fourier, 2 cycles per run), 

distortion correction based on opposite phase encoding, co-registration and resample 

using sinc interpolation. 

o Statistical analysis per participant (based on GLM) 

o Statistical analysis per group extracting the beta values per participant and using the IBM 

SPSS Statistics 22.0 software package 
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 General discussion 6.1.

Current neuroimaging technology offers the opportunity to non-invasively investigate 

detailed brain anatomy and structural connectivity, but more importantly, to also monitor 

brain function in real-time, beyond simple localization. If a subject can observe in real-time 

his own brain activity, he may potential learn how to control it. Based on this concept, the 

neurofeedback (NF) training comes up as an alternative to the currently used methods 

(neurosurgery, pharmacology and psychotherapy) to change brain function (Thibault et al. 

2016). As we form thoughts they generate distributed patterns of brain activity and complex 

functional interactions in our brain, between identifiable regions. Thus, the training of brain 

activity self-regulation with NF approaches is based on mental strategies to voluntarily 

increase (up-regulate) or decrease (down-regulate) specific brain activity either from a 

single region or a network of areas. In this thesis we present some proof-of-concept studies 

suggesting possible advances volitional brain activity control. Based on visual motion 

imagery strategies we explored the hypothesis of volitional parametric/multilevel control of 

brain activity.  

There are many different paradigms that might endow the brain with the power to control 

an external device through a brain-computer interface (BCI) (McFarland & Wolpaw 2011; 

Shih et al. 2012; Wolpaw et al. 2002). We explored approaches that are active, i.e. that 

require the engagement of the subject in controlling a device, and where the subject 

controlling the device develops a sense of agency, i.e. knowledge or awareness that he is 

controlling. The visual motion imagery was chosen to take advantage of the specific 

recruitment of hMT+/V5 brain region during the visualization or imagery of moving stimuli 

(Goebel et al. 1998; Tootell et al. 1995). Thus, we were able ensure that the measured 

activity during the performed mental tasks was due to specific imagery processes. 

Furthermore, contrarily to for example motor imagery, a commonly used strategy to self-

regulation of brain activity, visual motion imagery is still a non-explored strategy to 

volitional brain activity control (Ruiz et al. 2014; Thibault et al. 2016).  

Although it has been demonstrated that focusing on default-mode network (DMN) may 

yield powerful NF approaches (Harmelech et al. 2015), we opted for an early visual area 

because of our interest in NF potential to clinical applications, as the attentional disorders 
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ADHD and Neurofibromatosis type 1, in which a ‘failure to deactivate the DMN’ has been 

postulated (Violante et al. 2012). We defend that ‘BCI-eligibility’ might not only depend on 

‘learning’ abilities but also on the particular clinical condition to be treated. Thus, the 

research work presented on this thesis can contribute to the debate on the relative potential 

of sensory versus DMN brain regions in the clinical application of NF paradigms.  

We started with studies based on functional magnetic resonance imaging (fMRI) data and 

then we probed similar paradigms using electroencephalography (EEG) in order to try the 

“real-life transfer” of the proposed brain activity control approach. An EEG-based BCI 

approach is desirable due its low-cost and portability (Huster et al. 2014). However, EEG 

offers only a low spatial resolution and ambiguous localization of neural activity, since 

underlying electric sources need to be reconstructed from the distribution of electric 

potentials across the scalp (Niedermeyer & Lopes Da Silva 2005). Therefore, fMRI studies 

are helpful to effectively map and understand the underlying brain functions. The technical 

progresses in real-time fMRI allowed to observe the ongoing brain activity while a subject 

is scanned and select specific brain regions for NF due to its high spatial resolution 

(Weiskopf et al. 2007) and may enable a subject to learn greater explicit control over his/her 

own cognitive and neural activities by self-regulation of desired brain states (DeCharms 

2007; Weiskopf 2012).  

In the first step of the developed research work, presented on chapter 2, we trained 

healthy participants to achieve self-driven hMT+/V5 activity modulation using fMRI-based 

NF. In our first experiment, two levels of brain activity control based on self-regulation 

strategies were tested and successfully achieved by seventy five percent of our participants 

(15/20 participants). We show that the hMT+/V5 activity up-regulation is possible through 

visual imagery of a moving dot and the down-regulation is possible based on visual imagery 

of a static dot. These strategies allowed reliable self-regulation of the target area already 

during the first two NF runs in most participants, demonstrating that hMT+/V5 is at least as 

effective as other brain regions used as targets of NF approaches, as for example the 

somatomotor cortex (DeCharms et al. 2004) and amygdala (Zotev et al. 2011). Furthermore, 

our results converges with the previous report of effective hMT+/V5 activation with visual 

motion imagery (Goebel et al. 1998) and corroborate the possibility of a single-day training 

with fMRI-based NF training to be enough to achieve learning (Caria et al. 2007; DeCharms 

et al. 2005; Weiskopf et al. 2004).  
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Although, the few previous studies that have targeted the visual cortex for NF training 

encompassed several early visual areas (Scharnowski et al. 2012; Shibata et al. 2011), we 

proposed a brain activity self-regulation approach focused on a single ROI functionally 

defined. By this way, all participants are forced to the use of a similar mental strategy. 

Focused visual motion imagery showed to be relatively simple to learn and to instruct in a 

generalized way. Thus, we suggest that the single ROI choice can be an advantage and 

potentially renders group effects more homogeneous.  

A specific neural circuitry was found to be involved in successful hMT+/V5 

neuromodulation, which includes regions known to contribute to visual motion perception 

and imagery (putative V6, putamen, cerebellum and hMT+/V5), attention (striatum) 

(DeBettencourt et al. 2015) and to decision making, such as the anterior insula (Rebola et al. 

2012). These results may indicate that this whole circuit might be used as a target for future 

NF studies based on functional connectivity. The use of functional connectivity based NF 

instead of the more classical region based approach may be advantageous. Kim et al. (2015) 

recently demonstrated that NF training based on functional connectivity facilitates greater 

volitional control over brain activity and greater modulation of mental function than NF 

training based on simple measures of brain activity. Importantly, the analysis of the core 

circuit found to be involved in visual motion imagery based NF contributed for a better 

understanding of the neural correlates of cognitive processes, establishing, for example, for 

the first time a direct functional link between the hMT+/V5 and the cerebellum. 

After we have shown that operant control over brain activity can be achieved using visual 

motion imagery, in a subsequent experiment we attempted to train subjects to go beyond 

binary control using three different visual motion imagery strategies. This research work, 

presented in chapter 3, took advantage of differential evoked brain responses according to 

the number of imagined motion alternations. In human visual cortex frequent motion or 

orientation changes lead to break in adaptation and increased fMRI responses (Tootell et al. 

1998). Furthermore, the different number of motion alternations may lead to distinct levels 

of attentional modulation which in turn impact on activity levels. We show that using three 

mental strategies consisting on visual imagery of a static point, motion in opposing 

directions and motion in four alternating directions is possible to achieve up to three distinct 

levels of hMT+/V5 activity self-regulation. Our approach was inspired by literature 

addressing the physiological basis of visual motion processing: the visual stimulus with the 
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higher rate of motion alternation evoked stronger brain activations than the stimulus with 

less motion alternation (Huk & Heeger 2002; Larsson et al. 2006). 

We also found evidence that the provided feedback contributed for successful 

neuromodulation and learning during NF training. The three modulation levels were only 

achieved during NF training or after it. Furthermore, we suggest that multilevel 

neuromodulation may require a higher level of focused attention and training than the binary 

case, but future studies beyond proof-of-concept should establish whether training can 

stabilize NF performance and how many sessions would be necessary. Moreover, it is 

important to point out that the ability to learn NF strategies is known to be variable in the 

population (learners versus non-learners) (Coben & Evans 2010; Enriquez-Geppert et al. 

2013; Neumann & Birbaumer 2003; Wan et al. 2014).  

The new brain activity self-regulation approach presented on this thesis provides a simple 

way to achieve up to three control levels with simple instructions and can be efficiently used 

by different subjects, which is of potential interest for future assistive BCI systems and also 

for NF applications. Our approach can be useful to dampen the variability due to ROI and 

subject-by-subject strategy definition and to allow more effective neuromodulation training 

or at least improved BCI control. Our work present a novel contribution to operant BCI 

control because for our best knowledge, although the parametric/multilevel 

neuromodulation has been suggested (Goebel et al. 2004; Sorger et al. 2004; Sorger 2010), 

this is the first report in the literature demonstrating that multilevel neuromodulation based 

on the same brain region and using the same strategy across participants is feasible. The 

previous studies that report more than two classes of control using BOLD signal self-

regulation attempted mainly to achieve multiple classes and not multilevels of the same 

class of control (Lee et al. 2009; Sorger et al. 2012; Yoo et al. 2004).  

In a follow-up part of the research work presented in this thesis (chapter 4) we 

investigated the EEG activity patterns induced by the three visual stimulation and imagery 

tasks with different number of motion alternations previously studied with fMRI. We 

attempted to transfer the proposed new methodology of brain activity self-regulation from 

the fMRI basis to EEG.  

We found different functional forms of alpha activity for evoked brain responses by 

visual motion stimulation and visual motion imagery. A decrease of alpha activity on the 

parieto-occipital channels was found during visual stimulation with moving stimuli and an 

increase of alpha activity on the fronto-central channels was found during visual motion 
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imagery. The occipital alpha decrease during visual stimulation reflects a functional 

mechanism by which information is selected or gated in visual cortex (Foxe & Snyder 2011; 

Klimesch et al. 2011; Klimesch 2012; Schomer & Lopes Da Silva 2011). The functional 

state where frontal alpha oscillations are dominant reflects a state of reduced external 

information processing that is referred as a ‘modulation gate’ (Klimesch et al. 2007; 

Schomer & Lopes Da Silva 2011). It has been reported during high internal processing 

demands as top-down processing and working memory (Benedek et al. 2011; Sauseng et al. 

2005) and processes requiring imagination of stimulus sequences (Cooper et al. 2003). EEG 

studies using non-visual imagery modulation strategies, as mental calculation, reported also 

increase of frontal delta and theta rhythms related to neural processes associated with the 

frontal lobe role in memory and cognitive challenges (Harmony et al. 1999; Harmony et al. 

2004). In any case, we found a frontal activation pattern possibly evoked by brain functions 

under memory and planning processes subjacent to imagery.  

The spectral power of alpha activity seems to reflect the complexity of the imagined 

visual motion. As previous studies described that mean frontal alfa amplitudes are enhanced 

for more complex tasks (Cooper et al. 2003), we suggest that the differences found between 

the different visual motion imagery tasks results on the frontal alpha activity, can be related 

with the process of recovering the different visualized motion sequence conditions. 

Although a more classical statistical approach could not discern between the motion 

imagery tasks with different number of alternations, the applied classification algorithm 

performed a successful distinction between all visual motion imagery strategies supporting 

the advantage of multivariate data analysis approaches (Lemm et al. 2011). Based on the 

high classification accuracy achieved, we propose the visual motion imagery as a simple 

strategy to BCI multiclass control. However, real-time tests need to be carried on to confirm 

this proof-of-concept result.  

The volitional multilevel neuromodulation was not achieved in the EEG study, only 3 

different classes not linearly related, but it is importing to point out that we were only using 

passive imagery. The participants did not have the opportunity to be aware of their brain 

activations. We were still searching for the evoked brain activity patterns by the different 

visual motion imagery strategies.  

Recent advances in magnetic resonance imaging technology allow recording fMRI 

signals with sub-millimeter spatial resolution (Harel 2012), offering the opportunity to go 

into the mesoscopic level of the hMT+/V5 functional organization (Emmerling et al. 2015; 
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Zimmermann et al. 2011). Taking advantage of high-resolution fMRI we investigated 

hMT+/V5 functional sub-domains related to perception of different patterns of motion. This 

study, described in chapter 5, gave us a detailed functional account of the brain region that 

we have been targeting during the NF training, which might potentially contribute for the 

development of new research works focused on neural correlates of perceptual decision 

making and cognitive control. We aimed to evaluate the possibility of a new multilevel 

neuromodulation approach based on the connectivity between the functional hMT+/V5 

region sub-domains to train visual motion perception, specifically in cases of ambiguous 

moving stimuli. In short, if participants can influence their own perceptual decision making, 

this would allow for a novel form of NF. 

Using 7 Tesla (7T) fMRI and a bistable perception paradigm we assessed to the 

hMT+/V5 activity during ambiguous stimulation (yielding coherent motion or incoherent 

motion percepts). In line with previous findings (Castelo-Branco et al. 2002) we found 

higher hMT+/V5 activity during the perception of incoherent motion, than during the 

perception of coherent motion. When a participant reported the incoherent motion pattern, 

he was perceiving two moving objects/surfaces, whereas during the coherent motion he was 

perceiving only one moving object, which can explain the differences on hMT+/V5 

responses during the ambiguous stimulation: the higher number of perceived moving 

surfaces evokes stronger responses. These differential hMT+/V5 responses can be also 

related with the types of neurons contributing for its activity. It is described in the literature 

that 40% of the neurons in primate MT (the equivalent to the human hMT+/V5 region) are 

component direction selective and only 25 % are pattern direction selective (Movshon et al. 

1985). Thus, due to the two 1D motion objects the component neurons should be mainly 

active during the perception of incoherent motion (in addition to the 2 pattern populations 

responding to the inwardly moving surfaces) and then a larger pool of hMT+/V5 neurons 

are recruited leading to higher activations. 

The 7T fMRI allowed to identify hMT+/V5 functional sub-domains which activity is 

modulated according to the visual motion perception content. We demonstrate that the 

motion perception is reflected not only at the global level of hMT+/V5 region (Castelo-

Branco et al. 2002) but also at the level of perception related functional sub-domains. 

Furthermore, the hMT+/V5 functional sub-domains presented different axes of motion 

preference, which allowed to verify that the tuning of these sub-domains is for the 

interpretation of the perceptually relevant motion features irrespective of real physical 
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stimulation. Our results support the reports of previous studies that suggested quasi 

columnar-level neural correlates of perceptual switches in area hMT+/V5 (Goebel et al. 

2014).  

The finding that activity levels in hMT+/V5 region depend on the perceptual 

interpretation paves the way for the design of NF paradigms based on perception decision 

dependent activity or connectivity modulation down to the quasi-columnar level, which 

should be followed up in future studies. 
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 Conclusions  6.2.

BCI research features a rapidly developing area that benefits from research on the basic 

cognitive neuroscience in a cross-fertilizing dialogue. The research work presented in this 

thesis, focusing on multilevel brain activity control, provides the basis for future projects 

aiming more direct and flexible assistive BCI systems and more precise NF approaches. The 

developed studies focused on mental strategies to multilevel self-regulation of brain activity 

that were successful in particular for fMRI. Visual motion imagery was proposed as a new 

mental strategy for BCI control. fMRI experiments consisting of visual imagery of a static 

point, constant motion and alternate motion showed the possibility of a multilevel 

discrimination in the visual cortex and, EEG only for multiclass non-level dependent 

control. These findings suggest the feasibility of visual motion imagery for multiclass EEG-

based BCI control and for multilevel fMRI-based NF. 

First, we showed that the volitional binary control of hMT+/V5 is possible and simple to 

learn when using the fMRI-based NF to train its brain activity up-regulation and down-

regulation with visual motion imagery strategies. The comparison between successful and 

non-successful NF training on hMT+/V5 modulation allowed for the identification of a 

specific neural circuit involved in visual motion imagery and perceptual stabilization, 

recruited only during the successful runs. We suggest this circuit as a potential target for NF 

training applied to attentional disorders where a boost of activity of the already hyperactive 

DMN is undesirable. 

The proof-of-concept of volitional control of hMT+/V5 using visual motion imagery 

strategies was the basis for a more detailed study that aimed to explore the potential of these 

kind of mental tasks to achieve volitional multilevel neuromodulation. Three levels of 

volitional control of hMT+/V5 visual area by using real-time fMRI training were achieved. 

As in visual motion stimulation, in imagery, different number of motion alternations led to 

distinct levels of hMT+/V5 activity. We demonstrated that using the same imagery strategy 

across participants is possible to achieve up to three levels of volitional control of 

hMT+/V5, which is of potential interest to implement in multilevel BCI and/or NF 

approaches.  
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The attempt to transfer the proposed new methodology of brain activity self-regulation 

from the fMRI basis to EEG showed that using the same visual motion imagery strategies 

than in the fMRI study is possible to achieve up to three classes of volitional EEG activity, 

but not in a multilevel way. The pattern of power changes of frontal alpha activity varied 

depending on the number of imagined visual motion alternations. However, these 

differences were only distinguishable by means of a classifier. Although we were not able to 

achieve different levels EEG activity neuromodulation, we show that the proposed visual 

motion imagery strategies evoke different patterns of brain activity with potential of 

discrimination. A 3-class classifier was learned using only a few channels and achieved high 

classification accuracy, showing the potential of the proposed strategies of brain activity 

control in BCI research. Furthermore, we suggest that the proposed imagery strategies have 

the potential to evoke different levels of EEG brain activity when trained via EEG-based 

NF.  

Finally, taking advantage of high-resolution 7T fMRI, we demonstrated that the 

hMT+/V5 is composed by perceptual sub-domains, whose neural responses reflect 

perceptual interpretation of motion matching local tuning and not strict physical stimulus 

properties. These findings support our future goal of use NF to train visual motion 

perception, based on participant driven, by self-controlled perceptual decision, modulation 

of activity. 
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