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Resumo  

As relações sociais são essenciais para uma vida saudável, evitando o 

isolamento social que pode conduzir a condições de ansiedade clinicamente 

relevante e, até mesmo, de depressão. As expressões faciais funcionam como 

sinais sociais, dando informação sobre o estado emocional do “outro” e, por isso, 

constituem a chave para a comunicação social. Desde o primeiro ano de vida que 

as crianças conseguem reconhecer sinais sociais a partir das faces. A capacidade 

de interpretar corretamente esses sinais é crítica para se ser bem-sucedido no 

desenvolvimento de interações diádicas ou multidiádicas no dia-a-dia. Contudo, 

os défices no domínio social constituem o défice mais importante na Perturbação 

do Espectro do Autismo (PEA). PEA é uma patologia do neuro-desenvolvimento 

caracterizada por défices na comunicação e interação social, bem como um 

padrão de comportamentos repetitivos e interesses restritos. A literatura existente 

em estudos com eletroencefalografia (EEG) reporta diferenças de grupo entre 

indivíduos com PEA e indivíduos controlo durante tarefas que envolvem 

reconhecimento e processamento de expressões faciais. 

O principal objetivo do trabalho desenvolvido consistiu em avaliar a 

viabilidade do desenvolvimento de uma aplicação de neurofeedback, com recurso 

a EEG, para reabilitar indivíduos com PEA no que diz respeito aos seus défices a 

nível social, através do reconhecimento e imaginação do “outro” a fazer 

expressões faciais. Para tal, foi adquirido sinal EEG de dezassete adolescentes 

com PEA e dezassete indivíduos controlo durante uma tarefa com uma primeira 

parte de estimulação visual com expressões faciais, seguida de uma parte de 

imaginação do “outro” a realizar a expressão facial da instrução. Usando os dados 

da imaginação de expressões faciais foram extraídas features do domínio 

temporal e features não lineares com o objetivo de classificar entre estados de 

imaginação e não-imaginação. A classificação foi realizada recorrendo a Support 

Vector Machines. Os resultados de classificação obtidos não foram, porém, 
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promissores no que diz respeito ao desenvolvimento da aplicação de 

neurofeedback para reabilitação social dos indivíduos com PEA. 

Como análise complementar avaliou-se a existência de um possível 

biomarcador eletrofisiológico que permitisse distinguir os indivíduos dos dois 

grupos, durante o período de imaginação. Usando as mesmas features de domínio 

temporal e não lineares, através de uma estratégia de classificação leave-one-out, 

cada participante do estudo foi atribuído a um dos dois grupos. Os resultados 

indicam que foi possível distinguir entre os dois grupos com uma precisão entre 

80 % a 90 %. As features mais relevantes para este processo de classificação 

revelaram ser das bandas de frequência teta, beta e gama e, maioritariamente 

determinadas das regiões temporo-parietais e parieto-occipitais do hemisfério 

direito. Estas regiões correspondem também à localização das estruturas 

cerebrais responsáveis pelo processamento da face.  

 

 

Palavras-chave: eletroencefalografia (EEG), Perturbação do Espectro do 

Autismo (PEA) processamento de expressões faciais, emoções, imaginação. 
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Abstract 

Social relationships are essential for a healthy life, preventing social isolation, 

which could lead to anxiety and depression. Faces are the key to social 

communication, conveying information about the emotional state of a person. 

Since the first year of life, young children are capable of understanding and 

processing facial signals, like facial expressions. The ability to interpret these social 

signs is critical for the development of social relationships and successful social 

interactions. However, deficits in social domain are considered the hallmark 

domain of impairment in Autism Spectrum Disorder (ASD). ASD is a 

neurodevelopmental disorder characterized by difficulties in social communication 

and interaction, and a pattern of restricted and repetitive behaviors and interests. 

Previous electroencephalography (EEG) studies reported differences in 

processing and recognition of emotional facial expressions between ASD and 

typically developing age-matched individuals.  

The primary goal of this work was to evaluate the viability of an EEG-based 

neurofeedback approach to rehabilitate social-emotional reciprocity impairments in 

ASD through the recognition of facial expressions and mental imagery of a third 

person performing it. To achieve this goal, we recruited seventeen male teenagers 

with ASD and seventeen typically developing male teenagers for this study. We 

acquired EEG signals during a visual stimulation and a mental imagery task of a 

third person performing happy and sad facial expressions. From the mental 

imagery task, we extracted time-domain and non-linear-domain features to 

compare between two conditions (mental imagery of emotional facial expressions 

and no-imagery states). We developed a classification platform based on features 

extracted using Support Vector Machines for predicting, for each subject, between 

the two conditions. Results obtained could not separate between the two conditions 

with sufficiently high accuracy, which precludes at this stage the development of 

the EEG neurofeedback application for the rehabilitation of social cognition 

impairments in ASD individuals.  
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As a complementary analysis, we tried to find an electrophysiological 

biomarker for ASD using the mental imagery period. The same time-domain and 

non-linear features were extracted for each subject and, using a leave-one-out 

approach, each subject was associated to one of the groups. We were able to 

separate the two groups with an accuracy value between 80 % and 90 %. The 

most relevant features were extracted from theta, high-beta and gamma frequency 

bands, mostly from temporo-parietal and parieto-occipital areas from the right 

hemisphere, which corresponds to the localization of the brain structures 

responsible for face processing. 

 

Keywords: electroencephalography (EEG), Autism Spectrum Disorder 

(ASD), facial expressions processing, emotions, mental imagery. 
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Chapter 1  

Introduction 

Faces are the most important visual stimuli we perceive, conveying 

information about identity and emotional state of a person (Kanwisher and Yovel, 

2006). Since the first year of life young children are capable of understanding and 

processing facial cues, like facial expressions (Bayless et al., 2011). The ability to 

interpret these social signs represents an essential skill in child development and, 

therefore, a basic condition for the development of social relationships and 

successful social interactions early in life (Bayless et al., 2011; Berggren et al., 

2016). Therefore, deficits in the social domain lead to relevant medical conditions 

and are considered the hallmark of Autism Spectrum Disorder (ASD), particularly 

facial emotion recognition (Crider and Pillai, 2016).  

ASD is a neurodevelopmental disorder characterized by deficits in social 

communication and interaction, and a pattern of restricted and repetitive interests, 

behaviors or activities (American Psychiatric Association, 2013b). In recent years 

the number of individuals with ASD reached 1% of the population (American 

Psychiatric Association, 2013a; Centers for Disease Control and Prevention, 

2016).  

Social impairments are frequently debilitating and can diminish quality of life, 

leading to social isolation and comorbid conditions like anxiety and depression; 

thus, it is important to understand the nature of that impairment and to develop 

strategies of intervention that enable social rehabilitation of these individuals. As 

ASD individuals show a strong motivation towards technologies, the use of 

innovative approaches to rehabilitate these individuals, like neurofeedback and 

Brain Computer Interfaces (BCI), can be particularly effective when compared to 

behavior and pharmacological therapies (Coben, Linden, and Myers, 2010; Wainer 

and Ingersoll, 2011). 
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1.1 Problem Definition 
The aim of the project is to evaluate the viability of the development of an 

electroencephalography (EEG)-based BCI system, with neurofeedback, to 

rehabilitate social impairments in individuals with ASD. A BCI system is a direct 

communication pathway between the brain and an external device, and 

neurofeedback is the concept of providing real-time information to an individual 

based on their own brain activity, enabling him to learn how to self-regulate it. A 

deeper explanation of these methods can be found on Chapter 2. The rehabilitation 

process will focus on the facial emotional expression recognition impairments in 

these individuals.  

The IBILI research group has recently developed a similar neurofeedback 

approach using functional Magnetic Resonance Imaging (fMRI). This tool was 

based on activation of the posterior part of the Superior Temporal Sulcus (pSTS) 

during a task involving the processing and recognition of facial emotional 

expressions, and imagery of a third person performing facial expressions. As EEG 

has better temporal resolution than hemodynamic measures (fMRI) and it is less 

expensive, there is high interest in transferring the knowledge obtained in fMRI to 

EEG. 

To achieve this transfer to the EEG technique, we investigated brain 

responses to dynamic facial expression stimuli, for both ASD and healthy 

individuals. Additionally, we searched for neural correlates of imagery of a third 

person performing facial expressions, and assessed the viability of an EEG-based 

BCI with neurofeedback, based on the correlates found.  

This EEG-based tool aims to train the user in two specific tasks of social 

cognition:  

• recognize emotional facial expressions performed by a third person, 

• understand the other’s emotional state based on the facial expression 

performed, enabling these individuals to imagine the third person 

performing facial expressions. 
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1.2 Objectives 
We aimed to: 

• perform a literature systematic review on facial expression processing 

in ASD individuals using EEG technology, 

• study the neural correlates of dynamic response to facial expression 

stimuli and mental imagery of a third person performing facial 

expressions (involving data acquisition with ASD teenagers and age- 

and Intelligence Quotient (IQ)-matched healthy controls, and data 

analysis with existing methods and software tools), 

• extraction of EEG signal features associated to mental imagery of a 

third person performing facial expressions, 

• evaluate the viability of an EEG-based BCI with neurofeedback 

approach based on the identified features. 

 

This project is part of the work performed within the scope of a doctoral thesis 

which aims to evaluate the methods to do the transfer between fMRI and EEG. 

Thus, the data acquisition and analysis were done in collaboration with Marco 

Simões and João Andrade, while literature review, feature extraction and 

evaluation of viability of the EEG-based BCI/neurofeedback approach were done 

particularly by me with their supervision; thus, this dissertation is primarily focused 

on that part. This work was developed under the guidance and supervision of 

Professor Miguel Castelo-Branco. 

 

 

 

1.3 Structure of the Dissertation 
Six chapters constitute this dissertation. The first chapter is the introduction, 

where the problem was defined with its motivation, and the objectives and main 

contributions of this work were stated. The second chapter contains a theoretical 

background where it was explored the clinical context of the Autism Spectrum 

Disorder, with special focus to social-emotional reciprocity impairments, and 
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theoretical concepts important for the comprehension of the following contents. 

The third chapter presents the state of the art of emotional facial expression 

processing in ASD using electrophysiological measures, and EEG-based BCI and 

neurofeedback approaches for individuals with ASD. In the fourth chapter, it is 

described the experimental task used to acquire EEG data on ASD and typically 

developing individuals, the methods used to preprocess and analyze the data, 

feature extraction and evaluation of the viability of a EEG-based BCI with 

neurofeedback approach to rehabilitate social cognition in these individuals. The 

fifth chapter presents the results obtained, and the sixth chapter presents the 

discussion and conclusions of the work.  
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Chapter 2  

Theoretical Background 

2.1 Autism Spectrum Disorder 
Autism Spectrum Disorder (ASD) was the name adopted in 2013 by American 

Psychiatric Association (APA), in the 5th edition of Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5), for a group of four previously separate 

disorders: 

• Autism, 

• Asperger’s Syndrome (a milder form of autism), 

• Childhood Disintegrative Disorder, 

• Pervasive Developmental Disorder Not Otherwise Specified (or 

atypical autism).  

 

As the word “spectrum” suggests, ASD is a heterogeneous, behaviorally 

defined neurodevelopmental disorder, with multiple causes and courses, and a 

great range of severity and symptoms (Amaral et al., 2008; Frith et al., 2005). 

Autism is the major disorder of the spectrum and, therefore, the other disorders of 

the spectrum were not detailed since they are not fundamental for the 

comprehension of the project and its purpose. 
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2.1.1 Clinical Characterization 

Neurodevelopmental disorders are a group of conditions characterized by 

deficits, with onset in the developmental period, that produce impairments in 

personal, social and academic functioning (American Psychiatric Association, 

2013a).  

“Autistic Disturbances of Affective Contact” (Kanner, 1943), published in 1943 

by Dr. Leo Kanner, an Austrian psychiatrist, was the first clinical account of the 

disorder. In his study, based on direct observation of 11 children, he described 

essential features of autism, all of which are still valid in diagnostic manuals 

nowadays. Dr. Kanner (Kanner, 1943) described a group of highly intelligent 

children who displayed a strong desire for aloneness and an inability to relate with 

others, from the beginning of life. Marked limitation on the variety of spontaneous 

activities, repetitive behavior and obsessive desire for the maintenance of 

sameness were also typical behaviors. Currently, according to DSM-5, ASD is 

described as a neurodevelopmental disorder characterized by difficulties in social 

communication and social interaction, and a pattern of restricted and repetitive 

interests, behaviors, or activities (American Psychiatric Association, 2013b). Table 

2.1 describes the main impairments of ASD according to DSM-5. In adults with 

autism which do not present intellectual impairments or language delays, deficits 

in social-emotional reciprocity may be most apparent impairments in processing 

and responding to complex social cues.  

Studies show that the majority of adults with autism have poor outcomes in 

terms of independent living, employment and peer relationships. Therefore, early 

behavioral interventions could help to improve social functioning and reduce 

anxiety and aggressiveness in adulthood (Lai et al., 2014). 
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Table 2.1 – Main impairments of Autism Spectrum Disorder according to DSM-5 (American 

Psychiatric Association, 2013a). 

 

 

 

 

2.1.2 Prevalence and Diagnostic 

In recent years, due to monitoring and diagnosis, the number of individuals 

with ASD reached 1% of the population. Statistics show that the overall prevalence 

of ASD is 4 to 5 times higher in males compared to females, however empirical 

data suggests females are diagnosed later than males, indicating a diagnose bias 

Persistent 
deficits in 
social 
communication 
and social 
interaction

Deficits in social-emotional 
reciprocity

Abnormal social approach

Reduced sharing of interests, emotions or 
affects

Failure to initiate or respond to social 
interactions

Deficits in non-verbal 
communicative behaviors

Abnormalities in eye contact and body 
language

Lack of facial expressions and nonverbal 
communication

Deficits in developing, 
maintaining and understanding 
relationships

Difficulties in adjusting behavior to suit various 
social contexts

Difficulties in sharing imaginative play or 
making friends

Absence of interest in peers

Restricted and 
repetitive 
patterns of 
behavior and 
interests

Stereotyped or repetitive motor movements, repetitive use of objects or 
repetitive speech

Insistence on sameness, inflexible adherence to routines, or ritualizes 
patterns of verbal and nonverbal behavior

Highly restricted interests, that are abnormal in intensity or focus

Hyper- or hypo-reactivity to sensory input or unusual interests in sensory 
aspects of the environment
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towards males (American Psychiatric Association, 2013a; Centers for Disease 

Control and Prevention, 2016; Lai et al., 2014).  

Symptoms are typically recognized during the second year of life, although 

the stage at which functional impairments become obvious varies according to the 

characteristics of the individual and its environment, and also depends on the 

severity of the autistic condition, developmental level and chronological age 

(American Psychiatric Association, 2013a). Primary symptoms of ASD include 

deficits or delays in joint attention and pretend play, deficits in reciprocal affective 

behavior (unusual social interaction and lack of social interest), delayed verbal and 

non-verbal communication, unusual repetitive behaviors and extreme variation in 

temperament (American Psychiatric Association, 2013a; Lai et al., 2014). 

ASD may have several comorbid disorders associated. More than 70% of the 

cases have concurrent conditions, like intellectual and/or language impairment 

(American Psychiatric Association, 2013a; Lai et al., 2014). Emotional problems, 

anxiety and depression, seizure disorders like epilepsy, and Attention 

Deficit/Hyperactivity Disorder (ADHD) can also be associated with ASD (Amaral et 

al., 2008; Marzbani et al., 2016). Anxiety and depression can also contribute to 

social isolation; pharmacological therapies can reduce these comorbid symptoms, 

but do not directly improve social-communicative deficits (Crider and Pillai, 2016; 

Lai et al., 2014). 

 

 

 

2.1.3 Social-Emotional Reciprocity Impairments 

Deficits in social domain are considered the hallmark domain of impairment 

in ASD, as many of its symptoms contribute to social isolation (Crider and Pillai, 

2016). These deficits may not be immediately detected in early years. However, 

they become gradually more evident as they prevent children to develop normal 

interpersonal relationships with their family and other children.  

Individuals with autism have specific impairments in the processing of social 

and emotional information, and these deficits can reliably be identified regardless 

of Intelligence Quotient (IQ) (Foss-Feig et al., 2016; Korkmaz, 2011). Social 

interaction (joint attention and pretend play), social perception (eye contact and 
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emotion perception) and social cognitive abilities, such as imitation, empathy and 

theory of mind1, are social aspects in which individuals with autism are severely 

impaired (Bernier et al., 2013; Crider and Pillai, 2016; Foss-Feig et al., 2016; Lai 

et al., 2014).  

 

 

 

2.2 Functional Electroencephalography 
The human brain is divided into three main parts: cerebrum, brainstem and 

cerebellum (Figure 2.1). The cerebrum has a special dominant position as it 

operates in conscious functions of the nervous system. The functional part of the 

cerebrum is the cerebral cortex, a relatively thin layer of gray matter covering the 

outer surface of the cerebrum; it has a dense collection of nerve cells which send 

and receive sensory information to and from the brain and nervous system. Gray 

matter contains a predominance of cell bodies and the deeper layers, beneath the 

cortex, consist of myelinated axons and are called white matter. Cerebral cortex 

has a highly convoluted surface consisting of gyri (ridges) and sulci (valleys) (Clark, 

2009; Nunez and Srinivasan, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 The ability to conceive mental states of others – understand and infer facial expressions, body language, 
figurative speech and other social cues that convey emotional information – and understand that these may 
differ from our own (Dichter, 2012; Gross et al., 2012; Korkmaz, 2011). 

Figure 2.1 – Illustration of the human brain and their main 

parts. 

Cerebrum 

Brain Stem Cerebellum 
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Information flow in the brain is due to action potentials, which are small 

electrical currents that propagate across neurons’ membranes (Figure 2.2). An 

action potential is the result of an increase in the potential inside the axons due to 

the inflow of positive charges into the cell membrane, which generates electrical 

impulses that propagate across the axons. When an action potential reaches the 

end of an axon a set of chemical neurotransmitters is released from the neuron’s 

presynaptic terminal to the synaptic cleft; this process is called synapse. When 

neurotransmitters bind to postsynaptic receptors (dendrites) a voltage difference 

arises, called postsynaptic potential, causing the opening or closing of the ion 

channels in the membrane of the postsynaptic neuron and, thus, leading to an 

action potential (Luck, 2005).  

The synchronized/desynchronized occurrence of multiple potentials in the 

various regions of the brain can produce a considerable electrical activity which 

can be measured at cortical surface using electrophysiological measures (Clark, 

2009; Dawson et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Illustration of the process of flow of information in the brain. 

Dendrite 

Cell body 
(soma) 
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Axon terminals 

Synaptic cleft 
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2.2.1 Electroencephalography 

An example of a functional electrophysiological technique capable of 

recording electrical brain activity is the electroencephalography (EEG) which uses 

scalp electrodes associated with an appropriate recording system (illustrated in 

Figure 2.3). EEG technique is noninvasive and can be used with participants who 

have limited cognitive or communicative abilities (Dawson et al., 2005). This 

technique is widely used in research, and in clinical in the diagnosis of epilepsy, 

brain death, coma and severe head injury, and monitoring of depth of anesthesia 

(Dawson et al., 2005; Nazari, 2012; Nunez and Srinivasan, 2006).  

An EEG signal is characterized by two major parameters derived from its 

Fourier components: frequency and amplitude. Frequency indicates how fast the 

brainwaves oscillate, measured in Hertz, and amplitude represents the power of 

these waves, measured in microvolts (Marzbani et al., 2016; Nazari, 2012).  

To obtain EEG data, one or more electrodes are placed over the scalp with a 

conductive gel to improve contact of electrode and skin, which diminishes the loss 

of electrical power of the signal (Davies and Gavin, 2007). The recording locations 

are most often chosen according to the International 10-20 system (see section 

2.2.2), or to its expanded versions, in order to ensure reproducibility (M. Fabiani et 

al., 2007). Typically, electrodes are embedded in caps or nets in order to facilitate 

their placement. The electrodes are then connected to an amplifier sensitive to 

potential differences. Electrical signal is then filtered with anti-aliasing filters and 

digitalized using an analog-to-digital converter (Davies and Gavin, 2007; M. 

Fabiani et al., 2007; Guger et al., 2011).  

Electrical signals that arise in the EEG signal but are not originated from brain 

activity are called artifacts, and have to be removed from the signal recorded. 

These artifacts can be of biological origin, like eye blinks or eye movements, 

tension of the muscles of the head and neck and electrical activity generated by 

the heart; or from environmental and experimental origin, like bad grounding (M. 

Fabiani et al., 2007). 
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An EEG signal is extremely sensitive to real time neural processes, providing 

detailed temporal resolution on the scale of milliseconds, whereas hemodynamic 

measures taken from fMRI are limited to a resolution of few seconds. However, 

these hemodynamic measures have a spatial resolution within the millimeter 

range, which electromagnetic measures cannot match. 

 

 

2.2.1.1 The volume conduction problem 

Every neuron receiving synaptic inputs can be thought of as a dipole, with 

specific orientation and polarity. During an action potential, the inflow of positive 

ions, into the cell membrane, at a given position in the dendrite of a neuron is 

instantaneously balanced by an outflow of positive charges at another region of the 

neuron, resulting in a dipole. The instantaneous dipole that appears in each neuron 

is responsible for the production of a dipole field outside the neuron (Destexhe and 

Bedard, 2012). When a dipole is present in a conductive medium such as the brain, 

current is conducted throughout that medium until it reaches the surface (Luck, 

2005). This process is called volume conduction. However, in practice, 

neurological sources do not correspond precisely to one-dimensional dipoles. Any 

activity detected in the EEG is a result of the summation of many individual dipoles. 

Figure 2.3 – Illustration of an 

EEG medical setup (Brain 

Products GmbH, 2016). 
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The voltage recorded at the scalp surface will depend on the position and 

orientation of the dipole resultant of the average of the individual dipoles and, also, 

on the resistance and shape of the various components of the medium which 

electrical activity has to cross (Clark, 2009; Luck, 2005). For instance, when the 

signal reaches the skull it tends to spread laterally as it finds a very low 

conductance medium which smears electric fields, acting as a low-pass spatial 

filter (M. Fabiani et al., 2007). These factors contribute to the blur of the surface 

distribution of the voltage, and to hamper the intention to relate the potentials 

measured on the scalp with their brain current sources and underlying cognitive 

processes (Luck, 2005). Thus, the reduced spatial resolution is the biggest 

disadvantage of EEG technique. 

 

 

 

2.2.2 International 10-20 System 

International 10-20 system is an internationally recognized method that 

describes the location of EEG scalp electrodes using anatomical landmarks of the 

skull (Jurcak et al., 2007; Tatum, 2014). This method has been gaining importance 

as it ensures the standardized reproducibility of EEG experiments. According to 

this electrode system, the position of the electrodes on the scalp is described via 

relative distances between cranial landmarks over the head surface. The 

anatomical landmarks that this system uses are the nasion, point between 

forehead and the nose; the inion, the external occipital protuberance; the left pre-

auricular point (LPA) and the right pre-auricular point (RPA), which are felt as 

depressions anterior to the ear (Jurcak et al., 2007; Marzbani et al., 2016). The 

skull perimeters are measured from these four landmarks, in transverse and medial 

planes. These perimeters are then subdivided by intervals of 10% and 20% where 

electrodes are placed (Jurcak et al., 2007).  

In this system, the skull regions are named using letters, representing the 

proximity of the electrode with a specific brain region, and numbers, which 

represent the location in either right or left hemisphere. The designations Fp, F, T, 

O, C and P represent, respectively, frontopolar, frontal, temporal, occipital, central 

and parietal brain regions. Subsequently numbers combined following the letters 



14 

 

represent the left hemisphere (odd numbers) and the right hemisphere (even 

numbers). The letter “z” is used to designate scalp locations that fall along the 

central midline, running between the nasion and the inion. The numbers reflect the 

location proximity with the midline (Coles and Rugg, 1996; Marzbani et al., 2016; 

Tatum, 2014).  

The International 10-20 system only allows a small number of EEG 

electrodes, typically 21. With the development of EEG technique, signal source 

localization methods become necessary and, with them, a system with higher 

density of electrodes. Therefore, it was proposed a modified combinatorial 

electrode system in which electrode placement is more closely spaced providing a 

higher density of scalp electrode (typically, 81), named International 10-10 system 

(Jurcak et al., 2007; Tatum, 2014). The International 10-20 system does not name 

the intermediate electrode positions created in the International 10-10 system so, 

this combinatorial system designates them by combining the letters for the two 

standard electrode positions that surround them (American Clinical 

Neurophysiology Society, 2006). Thus, frontotemporal (FT) and frontocentral (FC) 

are the designations of electrode positions in the second intermediate coronal line; 

temporo-parietal (TP) and centro-parietal (CP) in the third intermediate coronal 

line; and, anterior-frontal (AF) and parieto-occipital (PO) are the designations of 

the positions in the first and last intermediate coronal line, respectively (American 

Clinical Neurophysiology Society, 2006). In the 10-10 system some positions 

change its designation, like T3/T4 which become T7/T8 and T5/T6 which become 

P7/P8 (Tatum, 2014). Figure 2.4 illustrates the electrode positions according to the 

International 10-20 system (left) and to the International 10-10 system (right).  

However, for studies on topography and source analysis of EEG activity, the 

scientists sought for even higher resolution systems. Thus, Oostenveld and 

Praamstra (2001) logically extended the International 10-10 system to the 

International 10-5 system, an even higher density electrode setting. This system 

enables the use of more than 300 electrode locations (Jurcak et al., 2007).  
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2.2.3 EEG Rhythms 

An EEG signal recorded between electrodes placed on the scalp consists of 

brain oscillations with different characteristics. These different patterns of electrical 

activity consist on a brainwave that varies in time, as such they can be recognized 

by their amplitudes and frequencies.  

Rhythmic activity within a specific frequency range was noted to have a 

certain distribution over the scalp or was associated with certain states of brain 

function. Therefore, waveforms were subdivided into bandwidths known as delta, 

theta, alpha, beta and gamma. Frequency bands are usually extracted using 

spectral methods, like Fourier Transform. Although there is no agreement on what 

the values of the frequency ranges should be (Marzbani et al., 2016), they are more 

or less standardized.  

In general, the frequency and amplitude of brain oscillations are negatively 

correlated. As amplitude of the oscillations is proportional to the number of 

synchronously active neurons, this means that slow brain waves comprise more 

neurons than fast oscillating brain waves (Pfurtscheller and Lopes, 1999). 

Figure 2.4 – Illustration of electrode positions in the International 10-20 System (left) and 

International 10-10 System, or Extended 10-20 System (right). Adapted from (Trans Cranial 

Technologies ldt., 2012). 
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2.2.3.1 Delta Rhythm 

Delta waves include all the waves in the EEG signal with frequencies below 

4 Hz. These rhythms occur in deep sleep. In waking states, delta rhythms are 

generally abnormal and they can be focal (subcortical lesions) or diffuse 

(generalized dysfunction). It is predominantly frontal in adults and posterior in 

children  (Clark, 2009; Medscape, 2014; Tatum, 2014). 

 

 

2.2.3.2 Theta Rhythm 

Theta rhythms are composed of signals with frequencies between 4 and 8 

Hz, and varying amplitude and morphologies. These waves are normally seen in 

young children, or during sleep. The appearance of frontal theta can be facilitated 

by emotions, focused concentration and during mental tasks (Tatum, 2014). 

Usually associated with creative states, fantasy, imagery, dreamlike and 

drowsiness  (Collura, 1997). 

 

 

2.2.3.3 Alpha Rhythm 

Alpha waves occur at a frequency of 8-15 Hz. They are observed when a 

person is relaxed and awake, but with eyes closed. This rhythm disappears when 

subjects are asleep and when subjects’ attention is directed to some specific type 

of mental activity. In normal EEG, the largest contributions to the alpha rhythm 

come from occipital and parietal regions with somewhat lower contributions from 

the frontal regions (Clark, 2009; Nunez and Srinivasan, 2006; Tatum, 2014). 

 

 

2.2.3.4 Beta Rhythm 

Beta waves normally occur in the frequency range of 15 to 30 Hz. Beta 

rhythms are observed when a person is active and alert, with anxious thinking and 

active concentration. It is the dominant rhythm in patients who are alert or have 

their eyes open. These waves are most frequently recorded from the parietal and 
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frontal regions of the scalp, and its distribution on both hemispheres is quite 

symmetrical. Many authors divide this very large frequency band in sub bands, 

named low and high beta, since they found that these different sub bands of the 

same rhythm exhibit different behaviors and performances. Frequency ranges of 

these sub bands are not well established as they vary between studies (Clark, 

2009; Tatum, 2014).  

 

 

2.2.3.5 Gamma Rhythm 

Gamma rhythm is composed of frequencies higher than 30 Hz. These waves 

are very localized and are observed when a person is processing high-level 

information, for example when a person is trying to solve a problem and learning.  

 

 

 

2.2.4 Event-Related Potentials 

Electrical brain activity can be divided into two main categories: spontaneous 

potentials, like sleep rhythms, and evoked or event-related potentials (ERPs). 

Evoked potentials are the direct response to an external stimulus, like a flashlight. 

ERPs are small changes in electrical brain activity that result from synchronized 

activation of population of neurons in response to some internal or external event. 

The ERP signal is caused by high cognitive processes that might involve memory 

updating, attention, expectation, semantic comprehension or changes in mental 

states, activated in response to a specific stimulus (M. Fabiani et al., 2007; 

Luckhardt et al., 2014; Otten and Rugg, 2005).  

The ERP signal is small in comparison to the EEG signal, because EEG 

signal reflects thousands of simultaneously ongoing brain processes and the ERP 

reflects the brain response to a single stimulus of interest. For that reason, ERP 

signal is not usually visible in a single sample of the EEG recording. The most 

common way to overcome this and obtain the brain response to the stimulus is to 

average a large number of samples of the EEG that are time-locked to the repeated 

occurrences of the particular stimulus, named trials. The averaging procedure acts 
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as a low-pass filter and enhances signal-to-noise ratio, causing spontaneous 

potentials of the EEG signal to be averaged out and the relevant ERP signal to 

remain (M. Fabiani et al., 2007). However, this simple and widely used procedure 

is based on the assumption that the ERP signal is invariant across trials and, thus 

it reveals a brain signal that is just an approximation to the reality of the brain 

response to the stimulus. (Otten and Rugg, 2005; Pfurtscheller and Lopes, 1999).  

Event-related signal consists of a waveform containing a series of 

characteristic peaks, named components, and may be related with specific 

cognitive processes (ERP) or with no task (evoked potentials) (M. Fabiani et al., 

2007; Nunez and Srinivasan, 2006). ERP components are commonly described by 

its amplitude, polarity, latency, scalp distribution and its relation to experimental 

variables. The amplitude of the component indicates the amount of allocation of 

neural resources to specific cognitive processes, and the latency informs about the 

time course of the processing activity in milliseconds (Duncan et al., 2009). ERP 

components are commonly referred by a letter indicating the polarity of the peak 

amplitude (P – positive, N – negative), followed by a number indicating the latency 

in milliseconds or the number of the ordinal position of the component in the 

waveform.  

Initially, researchers focused their interest on spontaneous rhythmic activity. 

However, in recent years, researchers have been interested in understanding how 

the brain responds to specific cognitive functions that are activated in response to 

a specific time-locked event/stimulus in an epoch of the EEG signal, i.e., ERPs. An 

advantage of this technique is its high temporal resolution which permits making 

inferences about the timing of cognitive processes (M. Fabiani et al., 2007; Otten 

and Rugg, 2005). ERPs are specific to spatial regions of the brain; therefore, ERP 

signal can map the processing of a visual stimulus from the first processing stages 

in the primary visual cortex to later cognitive stages such as face identification. The 

ERP signals resultant of visual stimuli can be grouped in a subset named Visual 

Evoked Potential (VEP). P100 is one of the earliest visual components, it 

represents the perception and other early stages in visual processing; N170 is an 

ERP component that is related with face processing, and it is considered face 

sensitive and responds to the structural processing of faces (Luckhardt et al., 

2014). Figure 2.5 illustrates these two ERP components. 
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2.3 Neurofeedback and Brain Computer 
Interfaces 

2.3.1 Neurofeedback 

Biofeedback is a process that enables an individual to learn how to change 

his physiological activity for the purposes of improving health and performance 

(Association for Applied Psychophysiology and Biofeedback, 2011). 

Neurofeedback is a type of biofeedback that uses different techniques, like EEG, 

to provide real-time information of brain activity to an individual, enabling him to 

learn how to self-regulate his brain oscillations in vivo and in near real-time 

(Friedrich et al., 2015; Nazari, 2012). The possibility of volitional control of brain 

electrical activity suggests that it is related to cognitive functions, and its modulation 

can have a functional impact (Friedrich et al., 2015). During neurofeedback 

training, brain activity is recorded with EEG, for example. Then, the electrical signal 

recorded is amplified and preprocessed using specific software. Different features 

of the signal are extracted and fed back to the subject thus creating the online 

feedback loop. During this procedure the individual becomes aware of the changes 

in his brain activity and tries to improve his brain patterns in order to achieve 

Figure 2.5 – Illustration of P1 and N170 ERP 

components of an EEG signal. Adapted from (Johan, 

2007). 
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optimum performance (Marzbani et al., 2016; Nazari, 2012). Training systems 

usually provide visual feedback, auditory feedback or verbal feedback given by the 

trainer (Collura, 1997).  

Neurofeedback is a safe and non-invasive technique that is used in basic and 

applied neuroscience as well as in clinical practice as an alternative choice of 

treatment (Q. Wang et al., 2010). Neurofeedback techniques can be used to train 

EEG rhythms and it is claimed that self-regulation of brain electrical activity result 

in a therapeutic benefit (Marzbani et al., 2016; Nazari, 2012). The application of 

this technique in clinical practice showed improvement in many disorders like 

ADHD (Bluschke et al., 2016; Deilami et al., 2016), anxiety and depression (Cheon, 

Koo, and Choi, 2016), autism (Coben et al., 2010; Friedrich et al., 2015; Kouijzer 

et al., 2013), epilepsy (Strehl et al., 2014), insomnia (Schabus et al., 2014), 

learning disabilities (Fernández et al., 2016), dyslexia (Nazari et al., 2012) and 

schizophrenia (Surmeli et al., 2012). However, its validity in conclusive scientific 

evidence and its effectiveness had been questioned; it is also time-consuming and 

its benefits are not long-lasting (Marzbani et al., 2016). 

 

 

2.3.2 Brain Computer Interfaces 

An EEG-based Brain Computer Interface (BCI) is a communication system 

between an external controlling device and the human brain. These systems are 

widely used in clinical and research applications, and allow people to communicate 

through direct measures of the brain activity, without requiring any movement 

(Cecotti and Gräser, 2011). Nowadays, many universities and laboratories are 

trying to provide more interactions with virtual reality through BCI (Marzbani et al., 

2016; Ploog et al., 2013; Wainer and Ingersoll, 2011). 

BCI systems can be invasive or non-invasive. Non-invasive BCI systems use, 

in most of the cases, EEG. Invasive BCI systems, in which electrodes are placed 

directly on the cortex, do not have the same disadvantages as EEG-based systems 

do, like signal blurring by the skull. However, since the electrode placement 

requires surgery, the range of applications is considerably narrower.  

BCI has applications in rehabilitation, neuroscience and cognitive psychology 

(Jue Wang et al., 2007). Existing research in applications of BCI is composed of 
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two main areas: for assistive technology, helping disabled people to communicate 

through and with machines, and as a therapy tool. The primary use of this 

technology is to benefit people with blocking diseases, such as Amyotrophic 

Lateral Sclerosis (ALS), brainstem stroke, cerebral palsy, or people with motor 

disabilities whom have suffered some kind of traumatic accident. This technology 

makes it possible for these people to regain interaction with external environment 

in order to improve their quality of life by controlling, with their brain signals, 

computers, wheelchairs, prostheses, robotic systems and other devices 

(Figueiredo et al., 2011; Martínez and Barrientos, 2011; Jue Wang et al., 2007). 

As a therapy tool, BCI systems helps subjects to recover their cognitive function by 

consciously alter some features of their brain signals. There also exist BCI 

applications for video game controllers and neurofeedback games, presenting real-

time feedback to the user based on EEG signals in the form of video and sound 

display. These “serious” games usually have educational or health-related aims 

beside entertainment (Q. Wang et al., 2010). 

In BCI systems, electrical signals are recorded just like in an EEG. Then, the 

features extracted are processed in order to detect a specific event, or to identify 

and recognize cerebral patterns that are going to be used as inputs. Inputs are 

translated to control commands of the external device (Martínez and Barrientos, 

2011). The real-time system has to work fast enough to present feedback to the 

subject via the stimulation unit (Guger et al., 2011). 

EEG classification strategy depends on the stimulus and, thereby, the 

response to detect. Current BCI systems are mainly based on four different neuro-

mechanisms: slow cortical potentials (SCPs), ERPs (like P300 response), evoked 

potentials or spontaneous EEG related to motor imagery tasks (Cecotti and Gräser, 

2011; Guger et al., 2011; Jue Wang et al., 2007). Devices based on evoked 

potentials or P300 response extract the intention of the users by detecting which 

target users are gazing at (Yoshimura and Itakura, 2011). A largely studied 

paradigm based on the P300 response is the BCI speller. Every time the desired 

character flashes a P300 wave occurs and the system identifies the letter the user 

wants to choose. In SCPs and motor imagery BCI systems the user has to acquire 

control of his/her brain rhythms (Guger et al., 2011). Frequency training is the most 

prevalent method in clinical applications; this method uses spectral analysis and 

focus on specific frequencies at specific scalp locations (G. E. Fabiani et al., 2004). 
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Chapter 3  

State of the Art 

3.1 Facial Expression Processing in 
Autism Spectrum Disorder 

Since the first year of life, young children are capable of understand and 

process facial signals like direction of gaze and facial expressions. The ability to 

interpret these social signs is critical for the development of social relationships 

and successful social interaction (Bayless et al., 2011; Berggren et al., 2016; 

Dawson et al., 2005). However, many of the early social cognitive impairments in 

ASD, such as eye contact, joint attention, and face and emotion recognition, 

involve the ability to process information from faces (Crider and Pillai, 2016; 

Dichter, 2012; Eack et al., 2013; Harms et al., 2010). Therefore, it is important to 

understand the nature of those impairments and to develop strategies of 

intervention that could enable social rehabilitation of these individuals. 

Several behavioral studies, but not all, have described impairments in face 

processing abilities in individuals with autism; in particular, in tasks that involve the 

emotion processing (Feuerriegel et al., 2015; J. A. Walsh et al., 2016). Eack et al. 

(2013) examined the error patterns in response to an emotion recognition task in 

a group of adults with ASD and age- and gender-matched controls. The authors 

reported significant impairments in the accuracy and speed with which ASD 

individuals were able to identify emotional and neutral expressions correctly, 

compared to typical individuals. ASD individuals more frequently misinterpreted 

happy faces as neutral faces, and confused neutral faces with negative facial 

expressions (sad and angry). Walsh et al. (2016) compared the performance of a 

group of adults with ASD and matched typical individuals on four face perception 
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tasks, that involved identity, basic and complex emotional expression and 

trustworthiness perception. The ASD group showed poorer performance in the 

recognition of both simple and complex emotional facial expression recognition 

tasks; suggesting that face processing impairments in these individuals result from 

deficits related to processing emotional information rather than a global face 

processing deficit. Berggren et al. (2016) examined facial emotion recognition with 

face and eyes stimuli in well-matched samples of ASD, ADHD, and typically 

developing (TD) individuals. Results are in agreement with the literature, 

suggesting facial emotion recognition deficits in ASD concerning the response time 

and the correct identification of the emotion, when compared to TD individuals. 

However, no differences were found between ADHD and TD individuals. 

 

 

 

3.1.1 Neural Systems for Facial Expression 
Processing 

Neuroimaging studies have revealed multiple cortical regions along occipito-

temporal cortex that form a neural network specialized in the analysis of faces 

(Bernstein and Yovel, 2015). In healthy individuals, the core brain regions 

responsible for face processing include the inferior occipital gyri (occipital face area 

– OFA), the lateral part of the fusiform gyrus (fusiform face area – FFA) and 

posterior part of the superior temporal sulcus (pSTS) (Bernstein and Yovel, 2015; 

Harms et al., 2010). In 2000, Haxby et al. (2000) proposed a model to describe the 

functional role of this face-selective network. Figure 3.1 illustrates the location of 

the core brain regions that compose this face-selective network, according to the 

Haxby model. According to this model, OFA is responsible for early stages of face 

processing and sends its outputs both to FFA and pSTS, forming two different 

neural pathways. Invariant aspects of the face, such as identity, involve greater 

activation of the FFA in the ventral stream. The variable aspects of the faces, such 

as eye gaze and facial expressions, recruit the pSTS, forming the dorsal stream 

(Bernstein and Yovel, 2015; Harms et al., 2010; Haxby et al., 2000). The 

processing of facial emotions also elicits activity in the limbic regions, such as the 
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amygdala, involved in recognizing emotions from facial expressions, and the insula 

(Harms et al., 2010; Kashihara, 2014). Several studies have identified these brain 

structures to be hypoactive in ASD across tasks using social perception and 

cognition (Coben et al., 2010; Dichter, 2012; Foss-Feig et al., 2016; Lai et al., 

2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2 EEG Studies of Facial Expression 
Processing in Autism Spectrum Disorder 

A systematic review of the existing literature was written in order to evaluate 

evidence for differences in emotional facial expression processing between ASD 

(and Asperger Syndrome, to include pre-DSM-5 nomenclature) and TD individuals. 

A total of 15 articles met the inclusion criteria and were selected for reviewing. 

These articles investigate impairments in emotion perception in ASD using EEG 

recorded during the presentation of emotional face stimuli of an unfamiliar person. 

The most frequent measured ERP components were N170 and P1 recorded over 

posterior temporal and occipital scalp areas, respectively. These potentials are 

associated with structural encoding of faces and early low-level stage of holistic 

face perception, respectively. 

Figure 3.1 – Representation of the core brain regions responsible 

for face processing, according to the Haxby model. Adapted from 

(Bernstein and Yovel, 2015). 
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Statistically significant differences between groups were found in P1 and 

N170 amplitudes and latencies. Individuals with ASD showed higher latencies, as 

well as lower amplitudes, to emotional stimuli (Apicella et al., 2013; Batty et al., 

2011; O’Connor et al., 2005; Tye et al., 2014), suggesting some disruption in the 

processes involved in emotional face perception in ASD (Batty et al., 2011). A main 

effect of age was verified in two studies (Batty et al., 2011; O’Connor et al., 2005), 

indicating that P1 and N170 amplitude and latencies both decreased with age. 

O’Connor and colleagues (2005) found that, in contrast to adults, N170 amplitude 

and latency differences were not observed between ASD and TD children, which 

raises the point of incomplete development of the N170 component in children. The 

authors suggested that N170 component, although present in ASD and TD 

children, continues to mature into adulthood, since group differences were reported 

only in adults. 

Statistically significant effects were found for emotion and emotion by group 

interaction. A main effect of emotion, for both groups, was found for the happy 

facial expression (Tye et al., 2014), suggesting that positive emotions are 

processed faster than negative emotions, for both groups. De Jong et al. (2008), 

Wagner et al. (2013)  and Dawson et al. (2004) found that, unlike ASD individuals, 

TD individuals show differential responses to fear and neutral faces. Jamal et al. 

(2014) also found differences in emotion processing between groups, allowing 

group discrimination using Support Vector Machine classifiers. Akechi et al, (2010) 

and De Jong and colleagues (2008) demonstrated that the combination of facial 

expression and gaze direction modulates neural activity only in the TD group. 

Rapid processing of emotion is believed to rely on low spatial frequencies, which 

carry global stimulus information. However, subjects with ASD showed no emotion 

effect in low spatial frequency condition, but in high spatial frequency condition 

(Hendrika et al., 2010). 

All articles that reported differences between hemispheres showed that ERP 

components had greater amplitude and lower latency in the right hemisphere 

(Akechi et al., 2010; Apicella et al., 2013; Dawson et al., 2004; O’Connor et al., 

2005; Tye et al., 2014; Wong et al., 2008). Gross et al. (2012) found a reduced 

gamma activation of parieto-occipital cortices in individuals with ASD, suggesting 

a disruption of neural signaling in areas responsible for emotional facial 

expressions recognition. 
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Lerner et al. (2013) found that latencies of ERP markers of face processing 

were related to behavioral measures such that faster responses were associated 

with somewhat improved performance. The same finding was achieved by Garman 

et al. (2016) and Dawson et al. (2004). O’Connor et al. (2005) reported that TD and 

AS children do not differ in their ability to recognize basic expressions, but adults 

do.  

In summary, this review provides strong evidence of group differences 

between ASD and TD individuals during facial expression recognition tasks, and 

right hemisphere dominance. However, the evidence in this field is still scarce, with 

several studies reporting results not replicated in the other studies. There is a clear 

need for further investigation on the effects of age and the dynamics of facial 

expressions, since most of the studies used static images as stimuli. 

 

 

 

3.2 Neurofeedback and Brain Computer 
Interfaces in Autism Spectrum Disorder 

Friedrich et al. (2014) highlighted the importance of using innovative 

noninvasive approaches, like BCI and neurofeedback, to provide insight about the 

physiological correlates of ASD. As these individuals often show a strong 

motivation towards technologies, the use of these interventions can be particularly 

effective, when compared to behavior and psychopharmacological interventions 

(which can be associated with side effects and long-term treatment) (Coben et al., 

2010; Wainer and Ingersoll, 2011).  

Friedrich et al. (2015) implemented a neurofeedback training based on the 

modulation of the mu rhythm, an 8-12 Hz oscillation, recorded over somatosensory 

cortex. Changes in this rhythm amplitude are closely related to social interactions, 

which, as stated before, are aspects in which ASD individuals are impaired 

(Friedrich et al., 2015). The authors developed a video game, which included social 

interaction and non-social interaction sequences. In non-social interaction 

sequences, child’s avatar gets invited by a game character and they start the game 

picking apples and collecting coins to carry on their journey. During social 
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interaction sequences the child’s avatar approaches the non-player character and, 

while facing this character, the participant must modulate his mu power in order to 

get rewarded. ASD children were rewarded if they decrease the mu power during 

social interaction sequences and increasing it in the non-social episodes. The 

rewarding feedback during social interactions consisted on the imitation of the 

facial expressions of the game character by the child’s avatar. Results suggested 

that the game was successful improving brainwave responses, behavior and 

emotional reactions during social interactions; suggesting that this is a powerful 

tool for intervention in ASD individuals. 

Virtual Reality (VR)-based interventions have also been investigated for ASD 

individuals (Fan et al., 2015). This technology creates immersive, interactive and 

realistic safe learning environments for individualized treatment. Fan et al. (2015) 

developed a VR-based driving system with EEG data acquisition for the purpose 

of addressing engagement level, emotional states and mental workload while 

driving. A future goal of the study was to incorporate an EEG-based BCI into the 

VR system to improve the system efficiency through individualized system 

adaptation based on the EEG signal for driving skill learning. 

 

 

 

3.3 Electrophysiological Biomarkers in 
Autism Spectrum Disorder 

In 2001, the Biomarkers Definitions Working Group defined a biological 

marker, biomarker, as “a characteristic that is objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (Atkinson et al., 2001). 

Thus, a biomarker can be used as a diagnostic tool, as a tool for staging a disease, 

as an indicator of the disease prognosis or to monitor the clinical response to an 

intervention (Atkinson et al., 2001). Currently, the diagnosis of ASD can only be 

determined by clinical judgment, and no definitive physiological biomarker for ASD 

exists (Matlis et al., 2015). Thus, an electrophysiological biomarker, deduced from 

scalp EEG, could be important to help clinicians in the diagnosis of ASD, since 
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EEG could assess early neurophysiological dysfunctions that may not be apparent 

at behavioral level (Matlis et al., 2015).   

In recent years, there has been an increase in the number of studies with 

interest in the development of a diagnostic biomarker of ASD using resting-state 

EEG data (Bosl et al., 2011; Duffy and Als, 2012; Heunis et al., 2016; Matlis et al., 

2015; Maxwell et al., 2015; Pistorius et al., 2013; Tierney et al., 2012; Jun Wang 

et al., 2013). Resting state EEG studies allow to extract diagnostic biomarkers 

which are task independent, allowing to study the abnormal maturational trajectory 

in ASD through early childhood (Jun Wang et al., 2013). However, the existing 

studies have mixed results and lack of validation procedures, which limit their 

interpretation. Only few studies used statistical techniques and machine learning 

methods to validate their potential biomarkers of ASD diagnosis identified in the 

exploratory analysis (Duffy and Als, 2012; Matlis et al., 2015; Pistorius et al., 2013) 

and as a biomarker of ASD risk (Bosl et al., 2011).  

Matlis et al. (2015) used spectral and functional connectivity methods to 

analyze EEG data from children with ASD and TD matched controls in an 

exploratory analysis. From the exploratory analysis, the authors hypothesized 

three possible biomarkers of ASD diagnosis: reduced posterior/anterior power ratio 

in the alpha frequency band in ASD individuals, relative to TD; reduced functional 

network density in ASD; and reduced mean connectivity strength in ASD group, 

relative to a subset of spatial locations (a subset of locations of the significant 

differences between ASD and TD networks). These biomarkers were tested in a 

validation group and the first and the third biomarker were validated, providing a 

significant classification between TD and ASD individuals.  

Apart from the traditional EEG methods of analysis, EEG biomarkers can 

include complex signal processing and mathematical methods in time series 

analysis that are able to account for the nonstationary, nonlinear and complex 

nature of the EEG signals (Heunis et al., 2016). Heunis et al. (2016) reviewed three 

methodological approaches to resting-state EEG biomarker development for early 

detection of ASD: multiscale entropy, coherence analysis and recurrence 

quantification analysis.  

Multiscale entropy, as a measure of signal complexity, was investigated by 

Bosl et al. (2011) in infants at high risk for ASD versus TD infants. Multiscale 

entropy quantifies the unpredictability of a time series across several time scales 
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(Jeste et al., 2015). The authors found multiscale entropy to be decreased in 

infants at high risk for ASD. Using multiscale entropy as feature vector, the authors 

used a support vector machine algorithm to classify between the two groups for 

different age groups, from 6 to 24 months. Differences between the two groups 

appear to be greatest at ages of 9 to 12 months, suggesting complexity measure 

goes through different developmental trajectory in infants at high risk for ASD and 

TD controls. 

Duffy and Als (2012) investigated functional connectivity and found stable 

coherence patterns that significantly separate ASD and TD groups by discriminant 

function analysis. Coherence provides a measure of the degree of synchronization 

between two EEG signals (Heunis et al., 2016). Moreover, discriminant functions 

reliably classify individual control- and ASD-group subjects using leave-one-out 

technique. The authors found reduced short-distance and both reduced and 

increased long-distance coherences in ASD subjects, when compared with TD.  

Pistorius et al. (2013) implemented recurrence quantification analysis, which 

is a measure of the system’s complexity. This feature yielded information related 

to the complexity associated with the neural dynamics of each individual, enabling 

prediction of membership of each subject to ASD and TD groups.   

The study of Bosl et al. (2011) investigated infants at high-risk of ASD, rather 

than children with a confirmed diagnosis of ASD. Studies like this (Tierney et al., 

2012) aimed to investigate precursors of autism symptoms in infancy and hoped 

that valid biomarkers that are identified before the onset of clear symptoms will 

help in the clear detection of emerging autism (P. Walsh et al., 2011). Although 

these findings were proposed as an early diagnostic biomarker, and prevalence of 

ASD in siblings of a child with ASD being around 10 % (against the 1 % of the 

prevalence of ASD in general population), the large majority of these subjects does 

not develop ASD. Thus, the results of those studies need to be evaluated in follow-

up investigations that include the subjects who developed ASD in order to assess 

a clear ASD biomarker.   
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Chapter 4  

Methods 

4.1 Participants 
Seventeen male teenagers with ASD, recruited from the Unit of 

Neurodevelopment and Autism from the Pediatric Hospital of Coimbra and from 

the local Portuguese Association for Developmental Disorders and Autism of 

Coimbra and Viseu, participated in this study. The diagnosis was confirmed by 

DSM-5 criteria and Autism Diagnostic Observation Schedule (ADOS) and/or 

Autism Diagnostic Interview-Revised (ADI-R). Seventeen male TD teenagers also 

participated in this study, recruited from the local volunteers’ database.  

Participants from both groups were psychologically evaluated to assess their 

full scale and performance IQ. Cognitive ability was assessed by the Wechsler 

Adult Intelligence Scale (WAIS) for participants older than 15 years old, and by the 

Wechsler Intelligence Scale for Children (WISC) for younger participants. The two 

groups were matched by age and performance IQ.  

 

 

Table 4.1 – Group characterization: Mean (standard deviation) of Age, Full Scale IQ (FSIQ) and 

Performance IQ (PIQ). 

 N Age FSIQ PIQ 

ASD 17 16.4 (2.5) 92.2 (12.7) 99.8 (12.3) 

TD 17 15.5 (2.6) 107.9 (18.0) 105.9 (18.0) 
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4.2 Stimulus and Task 
Assessing facial expression recognition impairments in ASD using static 

photographs of facial expression stimuli, as most studies in this area do, may 

represent a problem, because this type of stimulus could be learned explicitly in 

the context of therapeutic interventions. In daily life, people encounter subtle facial 

expressions more often than those presented in static photographic stimuli. 

Furthermore, even when individuals with ASD demonstrate intact performance on 

facial expression recognition tasks using static photographic stimuli, as some of 

the studies report, they are likely to have problems in everyday social interactions. 

Thus, morphing facial expressions stimuli, that represent expressions of differing 

intensity (like morphing from neutral to facial expressions), are more likely to induce 

the same response as subtle facial expressions in daily social interactions and, 

because of that, may be more sensitive to differences between ASD and TD 

individuals (Harms et al., 2010).  

In this study, subjects performed a visual task divided in two parts. A first part 

with visual stimulation, and a second with mental imagery of a third person 

performing a facial expression, like in visual stimulation. The full length of the 

experiment was around 30 minutes. Both tasks used slow dynamic morphing of 

form neutral to happy or sad facial expressions as visual stimulus. The visual 

stimulation and overall experiment were developed in WorldViz® Vizard VR Toolkit 

(development edition) using the male002 virtual avatar from the Complete 

Characters HD pack and its facial expression poses.  

The visual stimulation part consisted in visually present a virtual avatar 

dynamically morphing happy or sad facial expressions to the participants. Figure 

4.1 presents the structure of the visual stimulation paradigm. Each stimulus has 

1.5 s duration, and is always preceded by a baseline time of 1 s and a jitter of 500 

ms, to avoid preparation. This part of the experiment consisted in two blocks of 120 

randomized trials (60 of each condition).  

 

 

 

 



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mental imagery part used, as instruction, a facial expression stimulus 

similar to the visual stimulation part. An auditory beep triggers the beginning of the 

imagery process, which takes four seconds, in which subjects had to imagine 

mentally the avatar performing the facial expression presented in the instruction. 

After the mental imagery phase, another beep is played to start a neutral phase 

with no imagery, which lasts also for four seconds. In this last phase, the subject 

had to stop the imagery period and to just look at the screen while waits for a new 

visual instruction. Figure 4.2 presents the structure of the mental imagery 

paradigm. The computer screen shows the neutral face of the avatar during the all 

period, except for the instruction. This task consisted in two blocks of 40 

randomized trials (20 for each expression), for a total of 80 trials for the task. 

As said, each subject performed two runs from visual stimulation and mental 

imagery parts. Between runs participants rested for a few minutes to ensure focus 

and reduce fatigue throughout the experiment. 

 

 

 

 

 

 

Figure 4.1 – Schematic representation of the visual stimulation paradigm. In this part the 

subject had to look at the screen while dynamical morphing of happy and sad facial 

expressions is presented randomly. Each stimulus has 1.5 s duration, composed by a 

morphing period of 250 ms, a static period where the virtual avatar is displaying the facial 

expression for 1 s and a final period where the avatar morphs back to the neutral 

expression, with the duration of 250 ms. 

morphing 

expression 

unmorphing 

250 ms 1 s 250 ms 
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4.3 Experimental Setup and Data 
Recording 

The visual stimulation was conducted in a 22-inch LCD Monitor (frame rate 

of 60 Hz, 1680x1050 resolution). The participant sat about 60 cm away from the 

screen (distance measured from the eyes to the center of the screen) and was 

asked to keep his eyes open and fixed on the face of the avatar, to reduce eye 

movement contamination. We recorded EEG data using a Brain Products® 

Package. 

For data acquisition with an EEG system, firstly, individuals’ scalp had to be 

exfoliated with an abrasive gel. Secondly, scalp and skin areas in contact with 

electrodes had to be cleaned with alcohol to ensure low impedances between the 

two surfaces in contact. We then positioned the Brain Products® actiCAP with 64 

electrodes in subjects’ heads, ensuring that the midline row of electrodes was 

properly aligned on the head and that electrode Cz was placed in head’s vertex. 

Figure 4.3 illustrates the localization of the electrodes in actiCAP. This cap 

supports active electrodes based on high-quality Ag/AgCl sensors with integrated 

noise subtraction circuits delivering low noise levels. To create a conductive 

medium between scalp ad electrodes, we loaded all the electrodes with electrode 

Figure 4.2 – Schematic representation of the mental imagery paradigm. First, the dynamic 

morphing of happy or sad facial expressions similar to the visual stimulation part appears as 

instruction to the imagery process, lasting for 1.5 s. After the visual instruction, an interval of 1.5 

s is left for preparation, and an auditory beep indicates the start of the mental imagery process, 

which takes 4 s. After that, a lower pitched beep is played to indicate the end of the mental imagery 

and the start the neutral period, with no imagery. 

instruction 

4 s 1.5 s 1.5 s 4 s 

preparation imagery neutral 



35 

 

gel (see Figure 4.4). This gel allows to reduce the impedance of the brain signal to 

a value acceptable for the acquisition. The system measures each electrode’s 

impedance and displays it at each electrode by an LED; when the value of the 

impedance is acceptable, the LED turns green. The electrode impedances for all 

channels were kept below 10 KΩ during the recordings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 – Illustration of the location of each one of the 64 possible electrodes in actiCAP. 

Adapted from  (Brain Products GmbH, 2011). 
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We recorded the EEG data using fifty-eight active electrodes, according to 

the expanded version of the International 10-20 system, the 10-10 system. We 

chose to place the ground electrode at AFz position and the reference electrode at 

the left earlobe. This electrode is usually placed in a location with minimal cortical 

activity and is used as a reference to subtract out correlated sources of noise. A 

set of four electrode positions recorded vertical and horizontal eye movements 

(electrooculography – EOG). The signal from those electrodes was posteriorly 

removed during the preprocessing procedures.    

We acquired signal at a sampling rate of 1000 Hz using Brain Products® 

actiCHamp Amplifier. Brain Products® Brain Recorder software recorded the EEG 

data while the stimuli were presented to the subjects. The software used for 

stimulation generated different trigger pulses at the onset of each trial, for every 

instant a stimulus was presented. The trigger pulses were sent for the acquisition 

software to allow further processing procedures. 

Before each recording, we instructed the participants to avoid talking, blinking 

or do any facial movements during the recording times due to bioelectrical artifacts 

that could compromise the acquired data. Each session, accounting for preparation 

and recording time took about 70 minutes. 

Figure 4.4 – Representation of Brain Products ® 

actiCAP with 64 possible active electrodes, from 

BrainProducts (Brain Products GmbH, 2016). 



37 

 

4.4 Data Pre-processing 
After storage of the raw data, we performed further processing procedures 

off-line, using MathWorks® Matlab R2013a and the EEGLAB toolbox v13.3.4b. We 

pre-processed EEG data and cleaned it from noise and artifacts. We applied the 

pre-processing chain, illustrated in Figure 4.5, equally in visual stimulation and 

mental imagery data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Firstly, we filtered the data with a high and a low pass filter, to remove all the 

frequency components below 1 Hz and above 80 Hz, respectively. Additionally, we 

applied to the data a notch filter with a stopband of 47 to 53 Hz. This filter sharply 

attenuates electrical noise that occurs around 50 Hz. Before any other pre-

processing procedure, we down sampled EEG data to 500 Hz.  

Next, we segmented the data into epochs using the trigger information of 

each event. For happy and sad events in the visual stimulation task, we performed 

the segmentation in epochs of 1350 ms, from 100 ms pre-stimulus to 1250 ms 

post-stimulus. We also applied a baseline correction procedure on visual 

stimulation data, by subtracting the mean of the 100 ms pre-stimulus interval from 

the data after the stimulus onset. For the mental imagery task, we performed the 

Figure 4.5 – Schematic illustration of the pipeline for the pre-processing of the EEG signals, from 

the acquisition data until it is cleaned of noisy artifacts. 
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segmentation in epochs of 12000 ms with a 3500 milliseconds pre-stimulus 

interval, comprising baseline, visual instruction and preparation time, and 8500 ms 

post-stimulus interval, comprising mental imagery and no-imagery/resting times. 

Then, we appended in a single dataset the two EEG datasets representing each 

run, for visual stimulation and mental imagery tasks. 

Data from EOG channels, that measured signals from eye movements were 

excluded from further analysis. Additionally, for cleaning noise and artifacts, we 

removed bad epochs and particularly noisy channels through visual inspection of 

the data. For bad epochs we considered those that had considerably large periods 

of noise or artifacts which might compromise further data analysis.  

After removing noisy channels, we re-referenced the data with an average 

reference, in which an average of all the recordings on every electrode site was 

taken and used as a reference. Through this process, only signal/noise that was 

common to all sites remain (correlated); the contribution uncorrelated noise 

sources were minimized (Ludwig et al., 2009).  

We used the Independent Component Analysis (ICA) decomposition method 

to linearly transform the multi-channel EEG data recorded into a collection of 

components that are statistically independent from each other (Erfanian et al., 

2011). These independent components correspond to the outputs of spatial filters 

applied to the whole multi-channel data, which is constituted, in fact, by many 

sources that had been mixed via volume conduction and had been recorded at 

scalp channels. These signal sources may represent synchronous activity within 

one or more cortical patches, or activity from non-cortical sources, constituting 

artifacts. These non-cortical sources could be eye movements or eye blinking, 

resulting in eye artifacts that appear in multiple channels; teeth clenching and 

muscle tension; pulse signal; or single channel artifacts (when a single channel 

goes off only contributing with noise). The components corresponding to these 

types of artifacts are in frequency and voltage range (amplitude) of EEG signals, 

being detected by scalp electrodes. Thus, they should and were removed in order 

to clean the EEG signal. Also, through visual inspection of the EEG signals and 

ICA components, we removed additional components associated with some kind 

of noisy pattern that appeared in the channel data.  

We interpolated signals from removed electrodes using a spherical method. 

Thereafter, we split the dataset corresponding to visual stimulation task in two 
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different files by selecting the specific trials’ indexes corresponding to each 

condition defined by the triggers (happy or sad). We applied the same procedure 

to the mental imagery task. 

 

 

 

4.5 Data Analysis  
In the analysis of the mental imagery task, we used a linear Support Vector 

Machine (SVM) to discriminate: 

• No-imagery states from facial expression imagery states,  

• ASD from TD individuals, based on the data of the mental imagery 

period.  

 

These two different analysis used different processing and feature extraction 

methods. As such, we performed different feature selection procedures and 

classification analysis in the two different datasets. Thus, the processes will be 

described independently in two sections. 

 

 

4.5.1 Classification of Mental Imagery of Facial 
Expressions versus No-Imagery 

For the discrimination between mental imagery and neutral/no-imagery 

states, we extracted features from these two different time intervals for each trial 

of each subject. Figure 4.6 summarizes the key steps taken in this classification 

system. 

We used a 5-fold cross validation technique, and applied a feature extraction 

procedure on the number of trials of each subject dataset, which were afterwards 

used to estimate the accuracies of each subject’s classification. This implies that 

for each subject, we performed feature extraction procedure five times, using 

different sets of trials’ indices to build train and test data sets. At the end, there 
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were five different train and test sets with as many observations per condition as 

the number of trials selected for train and test, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We split the train datasets into four new subsets, corresponding to the time 

intervals of the two conditions tested and their respective baseline intervals. We 

performed the same procedure in test datasets. The epochs extracted for the two 

condition times were of the same size; the same applies to the size of the two 

baseline intervals. We tested different conditions as well as different time windows 

for baseline. For the comparison of mental imagery of facial expressions with no-

imagery states we used the time intervals of [500 4000] ms and [4500 8000] ms, 

respectively; the baseline intervals were the same for both conditions, but we 

tested these two hypothesis: [-3500 -3000] ms (before visual instruction period) 

and [-450 0] ms (preparation period). Initially we chose to perform the tests using 

Figure 4.6 – Schematic illustration of the pipeline for this classification system. Firstly, we divided 

EEG data into training and test datasets, through a 5-fold cross validation technique. After the 

application of the CSP algorithm to the training dataset we extracted the 5 most significant 

patterns. Then, we extracted the defined features from the band-pass filtered data. To select the 

best features, we applied a feature selection algorithm. The best features were to build a linear 

SVM model for this classification system. 
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the baseline interval during the preparation period, but, since the results were not 

very good, we discussed if the individuals could had started the mental imagery 

task just after visual instruction, and suggested a new baseline interval, before the 

visual instruction period. 

To reduce dimensionality of the data to use in feature extraction, we applied 

the Common Spatial Patterns (CSP) algorithm. CSP is a mathematical procedure 

commonly used in electroencephalographic data processing for separating 

multichannel data into additive subcomponents, which have maximum differences 

in variance between two time windows. We applied CSP algorithm to the train 

dataset in order to maximize the differences in variance between the signal of the 

two different epochs. Mathematically, let  of size  and  of size  be 

two windows of a multi-channel data, where  is the number of signals (number of 

channels), and  and  the respective number of samples (time points of the 

windows extracted previously). The CSP algorithm determines the component   

that maximizes the ratio of variance between the two windows, given by,  

 

 
 (4.1) 

 

The solution is given by computing the two covariance matrices: 

 

 
 (4.2) 

 

The elements of  thus represent a measure of the fractional variance of each 

EEG channel in an epoch and the off-diagonal elements represent the fractional 

covariance (Koles et al., 1990). From the covariance matrices  for each selected 

epoch, a population of covariance matrices  is computed as: 

 

 �

 (4.3) 
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where  is the number of EEG epochs in the population  (Koles et al., 

1990). Then, the eigenvalue decomposition is performed and the eigenvectors 

 are determined, and the diagonal matrix of eigenvalues  

sorted by decreasing order, such that: 

 

  (4.4) 

 

The eigenvectors composing  are components with variance ratio between 

the two windows equal to their corresponding eigenvalue. So, the component with 

the maximum ratio of variance is given by the first column of , , as it 

corresponds to the first eigenvalue, and so on, since the diagonal matrix of 

eigenvalues are sorted by decreasing order.  

We, then, reduced the size of the train dataset from fifty-eight channels to the 

five most significant patterns extracted from CSP. We also reduced the size of 

baseline and test datasets using the corresponding data of the five most significant 

patterns selected.   

After the application of CSP to the data and selection of the significant 

patterns to use, we filtered the resultant EEG data from the two windows and their 

respective baselines in seven different frequency bands using a band-pass filter. 

The frequency bands selected for analysis were: theta ([4 8] Hz), alpha ([8 15] Hz), 

beta ([15 30] Hz), beta sub-bands ([15 20] Hz, [20 25] Hz and [25 30] Hz), and 

gamma ([30 40] Hz). Thereafter, EEG data were ready for feature extraction. 

 

 

4.5.1.1 Feature Extraction 

We selected 35 different features for extraction from the source signal 

segments. Those features were grouped in two categories, time-domain features 

and non-linear features. In each dataset, we calculated each feature for each trial, 

frequency band and CSP component. 

Frequency domain information is the most widely used method in clinical 

applications of BCI systems with neurofeedback. However, linear features cannot 

represent the brain activities due to the nonlinearity of the EEG signal itself. While 

mental tasks are being performed, EEG segments of any length started from a 
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specific time point are related to different kinds of brain activity information. Non-

linear methods, like entropy analysis and phase space characteristics became 

popular in many EEG processing for medical applications and could be applied to 

neurofeedback systems to model brain activities (Q. Wang et al., 2010).  

Simões et al. (2015) previously validated the features extracted, as they were 

used in the same task but in an EEG-fMRI environment. 

 

4.5.1.1.1 Time-Domain Features 

• Hilbert Envelope (Env) – extracts the envelope (smooth curve outlining 

the extremes of the signal), which corresponds to the magnitude of the 

analytic signal. The analytic signal is composed by the original waveform 

and its Hilbert transformation. Hilbert transformation of the signal 

corresponds to the original waveform with a 90º phase shift. 

Mathematically, the analytic signal  can be  defined by 

, in which  corresponds to the Hilbert transformation of the 

original signal   (Simões et al., 2015; Ulrich, 2006); 

• Power (Pow) – the sum of the absolute squares of time-domain samples 

of the signal, divided by the signal length (Mathworks, 2016; Simões et 

al., 2015). Mathematically, the power  of a signal  over all time is 

defined by 

 

 
 (4.5) 

 

• Teager Energy (Teag) – an energy estimation operator which uses the 

sum of the instantaneous energy of the signal divided by the signal 

length. The instantaneous energy of a signal  can be determined using 

, (Antoniadou et al., 2012; Simões et al., 2015). 

 

For each one of these features, we extracted maximum, minimum, average 

and standard deviation values. Additionally, we extracted these feature values from 

baseline segments. The final vector of time-domain features included absolute and 
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baseline-corrected values of maximum, minimum, average and standard deviation 

of Env, Pow and Teag. We performed baseline correction by subtracting, to the 

absolute value of the feature, the value of the feature during the baseline segment 

  

4.5.1.1.2 Non-Linear Features 

To extract signal complexity measures, we transformed the signal to phase 

space. Phase space allows to demonstrate and visualize the changes in the 

dynamical variables of the system. Every possible state of the system can be 

represented by a point in the multidimensional phase space and time evolution of 

the system creates a trajectory in the phase space (Kliková and Raidl, 2011). 

Figure 4.7 represents an example of a trajectory of a given signal in the phase 

space. 

The method used to reconstruct the phase space of the signal was based on 

the method of time delay. Mathematically, given a time series of a scalar variable 

it is possible to construct a vector  in phase space in time  as 

following:  

 

 

 
(4.6) 

 

where  is time delay,  is a dimension of reconstructed space and 

 is the number of points (states) in the phase space.  

It was reconstructed a 2 and 3-dimentional phase space associated to the 

EEG data, and we considered the time delay to be mean of the first local minimum 

from the signal’s autocorrelation (Lag).  
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The reconstruction of the phase space allows to estimate non-linear 

measures like: 

• Largest Lyapunov Exponent (Lyap) – characterizes the rate of 

separation of infinitesimally close trajectories of the signal in phase 

space, providing a measure of the degree of the system’s instability 

(Cencini, Cecconi, and Vulpiani, 2010). Mathematically, two 

trajectories in the phase space with initial separation of , diverge at 

a rate given by  

 

  (4.7) 

 

where  is the local Lyapunov exponent (local exponential rate of 

expansion) (Cencini et al., 2010). The rate of separation can be 

different for different orientations of initial separation vector, leading to 

a spectrum of Lyapunov exponents – equal in number to the 

dimensionality of the phase space. The maximum Lyapunov exponent 

corresponds to the mean exponential rate of divergence, 

characterizing the trajectory’s instability (positive values are 

associated with a chaotic system) (Cencini et al., 2010);  

Figure 4.7 – Example of a trajectory of a signal in the 

phase space. 
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• Correlation Dimension (CorrDim) – measure of the space 

dimensionality of the signal in phase space. Correlation sum is defined 

as sum the fraction of pairs of points of the phase space whose 

distance is smaller than , being  the Lag (defined previously). If this 

number of points is sufficiently large, the ratio between the logarithm 

of the correlation sum and logarithm of the time delay is a good 

estimate of the Correlation Dimension (Cencini et al., 2010). 

• Approximate Entropy (ApEn) – quantifies the amount of the regularity 

and unpredictability of fluctuations of the signal (Pincus et al., 1991). 

A time series with many repetitive patterns has a small value of ApEn, 

reflecting its predictability; the opposite happens for less predictable 

signals; 

• Sample Entropy (SpEn) – is a modification of ApEn and is used for 

assessing the complexity of a physiological time series data. ApEn 

depends on the length of the time series and lacks relative 

consistency. SpEn, similarly to ApEn, quantifies the regularity of the 

signal but does not have the disadvantages mentioned (Richman and 

Moorman, 2000); 

• Spatial Filling Index (SFI) – normalizing the phase space, the positions 

spans from -1 to 1 on either axis. The phase space area is then divided 

into small square areas of size , and the number of voxels in the 

normalized phase space is , being  the number of 

dimensions of the phase space. We can obtain a new matrix with its 

elements equal to the number of phase space points falling in each 

grid (Faust et al., 2004). SFI corresponds to the probability of a phase 

space point falling in a grid.   

 

Additionally to absolute value, we extracted difference to baseline values of 

these features and included in the final feature vector.  

 

After feature extraction procedure, we obtained, for each subject and for each 

fold, 1225 features for each observation in train and test sets. As previously said, 

the amount of observations for each condition was the same.  
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In order to reduce the number of features for classification, and before 

applying a feature selection algorithm, we performed an average through the 

features of the five most significant patterns of CSP, for each feature and frequency 

band. The number of features after this procedure was reduced to 245, which 

corresponds to . 

After that, we performed a moving average through observations (trials) using 

a window of one, two and three trials. We performed this procedure for each one 

of the five folds, for each subject. A moving average consists in a calculation to 

analyze data points by creating a series of averages of different subsets of the full 

dataset, smoothing the data. For training sets, given a series of observations, the 

first element of the moving average is obtained by taking the average of the initial 

fixed subset of the observations (one, two or three trials); then, the subset to be 

averaged is modified, excluding the first number of the series and including the 

following number from the original subset in the series. This process is repeated 

over the entire length of the observations. For testing sets, the shifting performed 

to the subset to be averaged was different; after the first average, the next subset 

to be averaged does not contain any element of the previous subset, which 

reduces the number of the final observations depending on the window of samples 

to be averaged.  

After performing the moving average procedure, the final number of train and 

test datasets increased to 15 for each subject, which corresponds to the three 

moving average procedures performed for each one of the 5-fold cross validation 

sets. 

 

 

4.5.1.2 Feature Selection 

Feature selection reduces the dimensionality of the data by selecting a subset 

of features from the input feature set. Usually, feature selection methods are used 

to reduce the computational cost and to remove the irrelevant and redundant 

features from the high dimensional input feature set (Gu et al., 2012).  

Using the training sets of the moving average with one trial, we performed a 

feature selection procedure using Fisher Score algorithm to each one of the 5-fold 

datasets.   
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4.5.1.2.1 Fisher Score Algorithm 

Fisher Score (FS) algorithm is one of the most widely used supervised feature 

selection methods. We used this algorithm to rank the features by relevance and 

the best features were then fed into the SVM classifier.  

FS is a filter-based method which does a binary selection of the features 

according to some performance criterion. This algorithm ranks the features as a 

pre-processing step prior to the learning algorithm, and select those features with 

high ranking score (Gu et al., 2012).  

Mathematically, given a set of  features, denoted by , the goal of the filter-

based feature selection is to choose a subset of  features, denoted by , 

which maximizes some performance criterion , 

 

  (4.8) 

 

where  is the cardinality of a set (Gu et al., 2012).  

Finding the optimal solution for this equation is hard. One common heuristic 

approach is to first compute the score for each feature independently according to 

the criterion , and then select the top  ranked features (with higher scores) (Gu 

et al., 2012). However, this heuristic has some problems: it neglects the 

combination of features, since it scores them individually, and it cannot handle 

redundant features, attributing high score to a set of features even if they are all 

highly correlated (Gu et al., 2012). 

For the implementation of FS for feature selection we used the method 

developed by Giorgio (2016). At the end, we averaged the ranking of the 5-folds 

training sets for each subject, obtaining the mean ranking for each subject. With 

this information, it was possible to perform the mean of the ranking across all the 

subjects and determine which were the best features in the ranking. 
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4.5.1.3 Support Vector Machines Classifier 

For the classification procedure, we used a linear Support Vector Machines 

(SVM) classifier, built in the statistics toolbox of Matlab.  

SVM is one of the most popular machine learning methods. This algorithm is 

often used for BCIs and to classify biological signals (Kashihara, 2014; Yoshimura 

and Itakura, 2011).  Given a training set, with each observation labelled to one of 

two classes, an SVM training algorithm builds a model that allows for the 

classification of new testing examples, assigning each test observation into one 

class or the other. An SVM model consists on a representation of the observations 

of the training set into points in space, mapped so that the observations assigned 

to different classes are divided by a clear gap that is as wide as possible (Martínez 

and Barrientos, 2011). The support vectors are the points at the minimum distance 

from the hyperplane which separates the two classes. The SVM classification 

algorithm maps the test set observations into the same space and predicts which 

class they belong based on which side of the hyperplane they fall on. 

Mathematically, in a linear SVM, given a training set , with  observations 

and  variables, each  observation is a – dimensional real vector. Each  has 

an attributed class , which can be either  or . The objective is to find the 

maximum-margin hyperplane that divides the group of points  for which  

from the group of points for which , defined in order to maximize the 

distance between the hyperplane and the nearest points (support vectors) from 

either group (see Figure 4.8). 

Any hyperplane can be written as the set of points  satisfying , 

where  is the normal vector to the hyperplane. If the training data are linearly 

separable, is possible to select two parallel hyperplanes that separate the two 

classes of the data so that the distance between them is as large as possible. The 

maximum-margin hyperplane is the hyperplane that lies between the two parallel 

hyperplanes, defined by  and ; the distance between 

these two hyperplanes is . It is assumed that the bigger this distance is, the 

bigger the generalization capability of the model is (Martínez and Barrientos, 2011). 
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In this case, for each fold, we used the training dataset to build the SVM 

model using the data corresponding to the  best features, with . We 

determined the best features through averaging the ranking across all the 34 

subjects. We then applied the SVM model to the test set (built with the 

corresponding data from the same best features). The original labels and the 

outputs of the classification for each one of the 5-fold sets were saved. We 

repeated this process to the data corresponding to each moving average 

procedure done (single trial, two and three trials).  

For each window of the moving average (one, two and three), we determined 

the accuracy based on the results from the classification of the 5-fold sets. Also, 

we determined the -value based on 10000 permutations for each window. We 

performed this procedure for each subject, which allowed to determine the average 

accuracy for each group of subjects. 

Figure 4.8 – Schematic representation of a linear SVM model. Blue and red dots correspond to 

data points from two different classes. Green dots represent the support vectors which define the 

maximum-margin hyperplane that separated the two classes. 
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4.5.2 Classification of ASD versus TD individuals  

We performed this second analysis with the objective to find a biomarker or 

a set of biomarkers that may distinguish the two groups of subjects, using the 

mental imagery of facial expressions.  

Figure 4.9 summarizes the key steps taken in this classification system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each subject, from its original data, the time interval corresponding to the 

mental imagery state was extracted (500 to 4000 ms post-stimulus event), and its 

corresponding baseline (from 3500 to 3000 ms pre-stimulus event). We did the 

extraction of these epochs from a dataset containing both happy and sad condition 

trials and we did not make any differentiation between the two facial expressions.   

We filtered the EEG data selected from the time intervals in seven different 

frequency bands using a band-pass filter. The frequency bands selected, like in 

the previous analysis, were: theta ([4 8] Hz), alpha ([8 15] Hz), beta ([15 30] Hz), 

Figure 4.9 – Schematic representation of the pipeline for this classification system. Firstly, we 

filtered the EEG data into different frequency bands. Then, we extracted 35 different features from 

each data set. We applied a feature selection procedure followed by a PCA analysis in order to 

select the principal components used to build the linear SVM model for this classification system. 
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beta sub-bands ([15 20] Hz, [20 25] Hz and [25 30] Hz), and gamma ([30 40] Hz). 

Thereafter, EEG data were ready for feature extraction. 

 

 

4.5.2.1 Feature Extraction 

In this case, we extracted the same time-domain and non-linear features used 

in the previous analysis from the EEG filtered data. For each subject, we calculated 

each feature for each trial, frequency band and EEG channel. After feature 

extraction, we performed an average through the trials, obtaining only one set of 

features for each subject. At the end, each subject had a set of 14210 features that 

characterized him. 

To reduce the dimension of the set of features, we defined a set of 13 channel 

clusters and we performed an average for each feature of each frequency band 

through the channels constituting each one of the 13 clusters. Figure 4.10 

represents the locations of the 13 clusters defined for this analysis. With this 

average procedure we reduced the set of features for each subject to 3185 

features, which corresponds to 

. 
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4.5.2.2 Feature Selection 

We applied Fisher Score algorithm to the data matrix 

 in order to obtain the ranking of the features extracted, and select 

the most relevant features to distinguish between ASD and TD individuals. We then 

preprocessed a data set with the best 100 features selected from the ranking in 

two different ways: Principal Component Analysis (PCA) and best cluster and 

frequency selection. 

 

For the first approach, we applied a PCA to the data in order to reduce the 

dimensionality of the data and redundancy between features.  

Figure 4.10 – Representation of the clusters selected for this 

analysis. Cluster 1: POz, Oz; Cluster 2: Cz, CPz, Pz; Cluster 3: 

AFz, Fz, FCz; Cluster 4: PO4, PO8, O2; Cluster 5: CP2, CP4, CP6, 

P2, P4, P6, P8; Cluster 6: FC2, FC4, FC6, C2, C4, C6; Cluster 7: 

AF4, F2, F4, F6, F8; Cluster 8: FT8, FT10, T8, TP8; Cluster 9: 

PO3, PO7, O1; Cluster 10: CP1, CP3, CP5, P1, P3, P5, P7; 

Cluster 11: FC1, FC3, FC5, C1, C3, C5; Cluster 12: AF3, F1, F3, 

F5, F7; and Cluster 13: FT7, FT9, T7, TP7. 
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PCA is also a well-known feature selection method. Its purpose is to find an 

orthogonal set of projection vectors which are uncorrelated variables, called 

principal components, for feature selection from a given input set of observations 

of possibly correlated variables. This orthogonal transformation is defined in such 

a way through maximizing the variance of the projected data (the first principal 

component has the largest possible variance, that is, accounts for as much of the 

variability in the data as possible, and each succeeding component has the highest 

variance possible under the constraint that it be orthogonal to the preceding 

components). The resulting vectors are an uncorrelated orthogonal basis set, with 

aim of optimal representing the data in terms of minimal reconstruction error 

(Erfanian et al., 2011). If a multivariate dataset is visualized as a set of coordinates 

in a high-dimensional data space, PCA can supply a lower-dimensional view of the 

data using only the first few principal components, a projection of the data when 

viewed from its most informative viewpoint. However, this method does not use 

class information and so, its maximization of the variance of the projected patterns 

might not be necessarily a good contribute to the following of discrimination of 

classes. Thus, the projected data loses some useful discriminating information for 

classification (Erfanian et al., 2011).  

Mathematically, given a data matrix , with  – observations   – variables, 

a set of  –dimensional vectors of weights,  (being  

the number of principal components), can be defined in order to map each 

observation , of , to a new vector of principal component scores 

. The orthogonal linear transformation is then given by , in 

which the individual variables of  contains the maximum possible variance from , 

with each loading vector  constrained to be a unit vector. 

 

The second approach was to select from that set of 100 best features only 

the features correspondent to the best channel clusters and frequency bands. We 

selected the best channel clusters and frequency bands based on their 

distributions through the ranking. Then, to the new dataset built with the features 

from the best clusters and frequency bands, we applied a Principal Component 

Analysis to select the principal components which best explain the information 

present in the dataset. 
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4.5.2.3 Support Vector Machines Classifier 

After obtaining the principal components of each dataset, we used a linear 

SVM classifier to distinguish ASD and TD individuals.  

In this case, the classification procedure was based on a leave-one-out cross 

validation technique. For 34 times , we built a training dataset with  

subjects (observations) and their  principal components, the subject left out was 

used as a testing set. We performed this procedure until all the subjects had been 

used as the test set. The original label of all the testing sets and the outputs of the 

classification were saved, in order to determine the accuracy of the classification. 

In addition, we determined the -value associated to the accuracy result, based on 

10000 permutations. 
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Chapter 5  

Results 

5.1 Classification of Mental Imagery of 
Facial Expressions 

In this analysis, we explored different comparisons between conditions and 

different baseline intervals. Results presented in the next subsections correspond 

to the best accuracy values obtained and, because of that, they are based on one 

of the two baseline intervals tested: [-450 0] ms and [-3500 3000] ms, pre-stimulus. 

Mental imagery and no-imagery features were extracted from [500 4000] ms and 

[4500 8000] ms time intervals, respectively. 

 

 

 

5.1.1 Mental Imagery of Facial Expressions 
versus No-Imagery 

For this comparison, we extracted features from EEG datasets containing 

trials of both conditions (happy and sad facial expressions). The two baseline 

intervals were tested, and the best results of classification were obtained using as 

baseline interval time points from 3500 ms to 3000 ms pre-stimulus. 

We applied Fisher Score algorithm to each subject’s training data and 

obtained a feature ranking for each one. Additionally, we performed an average 

through the 34 subjects to determine the average ranking. We analyzed frequency 

bands distribution over average ranking for all features extracted, for time-domain 

features alone and for non-linear features alone. The box plots representing these 
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distributions are presented in Figure 5.1, Figure 5.2 and Figure 5.3. It is possible 

to note, in Figure 5.1, that all frequency bands have the similar median ranking 

positions. However, some frequency bands have narrower ranges of the ranking 

positions of their features than others.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the distribution of time-domain features, Figure 5.2, it becomes clear 

which are the frequency bands with the lowest mean positions in ranking. Until the 

75th position theta and gamma appear to be the most common frequency bands. It 

is also clear the median ranking positions for that features appear to be close from 

100, for all frequency bands, and, that 75% of the features (also for all frequency 

bands) are below 175th ranking position. In contrast, non-linear features (Figure 

5.3) appear to occupy the highest positions in the ranking, not having much 

relevance to the correct classification of the observations.  
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Figure 5.1 – Distribution of the different frequency bands over ranking. Ranking 

positions of the features corresponding to each frequency band were saved and 

plotted in a box plot graph. This box plot shows the median ranking position of each 

frequency band, as well as the range of their positions in ranking. 
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Figure 5.2 – Distribution of the different frequency bands over ranking. Ranking 

positions of the time-domain features corresponding to each frequency band were 

saved and plotted in a box plot graph. This box plot shows the median ranking 

position of each frequency band, as well as the range of their positions in ranking. 
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Figure 5.3 – Distribution of the different frequency bands over ranking. Ranking 

positions of the non-linear features corresponding to each frequency band were 

saved and plotted in a box plot graph. This box plot allows to know the distribution 

of ranking positions of each frequency band. 
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The type and frequency band of the best 10 features of the average ranking 

is presented in Table 5.1. All the 10 best features were from time-domain, as 

expected from the visual inspection of the information given from Figure 5.2 and 

Figure 5.3. Except for only one feature, the others were absolute values of the 

features extracted during the time intervals of both conditions. Most of the features 

present in this set were extracted from the theta band EEG signal, [4 8] Hz. 

 

 

Table 5.1 – Characteristics of the 10 best features of the ranking. 

Ranking 
Position 

Feature 
Frequency 
Band (Hz) 

Time-Domain Non-Linear 

Absolute Baseline 
Correction Absolute Baseline 

Correction 

1 SD Env - - - [4 8] 

2 SD Teag - - - [4 8] 

3 Maximum 
Teag - - - [4 8] 

4 - Maximum Env - - [15 30] 

5 Average 
Teag - - - [4 8] 

6 SD Pow - - - [4 8] 

7 SD Pow - - - [30 40] 

8 Average 
Pow - - - [4 8] 

9 Average 
Env - - - [4 8] 

10 SD Teag - - - [30 40] 

 

 

 

We built a linear SVM model for the classification procedure, using the 

corresponding data from best features of the average ranking, and classification 

accuracies were determined through a 5-fold cross validation technique, as 

explained earlier (Section 4.5.1.3). We performed that procedure over the data 

resultant from the moving average of one, two and three trials, also as explained. 
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Figure 5.4 shows the accuracy progression using moving average data of one, two 

and three trials for both groups using from 5 to the 50 best features of the ranking. 

The accuracy value presented in the graph corresponds to the mean accuracy of 

the group, and the error bars to the Standard Error of the Mean (SEM), determined 

by 

 

  (5.1) 

 

in which  corresponds to the Standard Deviation (SD) of the 

sample, and  to the size of the sample. 
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Figure 5.4 – Accuracy progression using the best features of the ranking. The mean 

accuracy value was determined for both groups, for the moving average procedures with 

one, two and three trials. The labels with “1trial” correspond to the single trial accuracy 

classification, and the labels with “2trials” and “3 trials” correspond to the accuracy of the 

classification with data from the moving average procedures with two and three trials, 

respectively. 
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Accuracies of TD individuals are always higher than accuracies of ASD 

group. However, for each line in the graph, the accuracy values do not change 

significantly along all the classifications done. Moving average of three trials 

achieved the best results in both groups, and the opposite happened for single trial 

classification.  

Using, as training data, the features of the first 20 ranking positions, we 

compared subjects’ accuracies for both groups using the non-parametric Wilcoxon 

rank sum test. We chose the number of best features to use in this analysis by 

testing different sets and selecting the one that presented relatively higher mean 

accuracy for both groups in all moving average procedures. Statistical tests 

showed that accuracies of both groups were statistically different using data from 

the moving average of one (p<0.01), two (p<0.05) and three trials (p<0.02).  

Table 5.2 shows the number of subjects of each group whose accuracy 

classification (using the 20 best features) was statistically significant (p<0.05), 

obtained from 10000 permutations. Mathematically, let  be the set of 

 randomized versions of the original data  sampled from a given null distribution. 

The empirical p-value for the classifier  is given as: 

 

 
 (5.2) 

 

in which  is the accuracy value of the application of the classifier  in a given 

dataset  (Ojala and Garriga, 2009).  

It is clear that TD group had always more subjects with statistically significant 

classification accuracies than ASD group. The lowest accuracy value belongs to 

ASD individuals (40 %), and the highest, 73 %, belongs to TD individuals.  
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Table 5.2 – Number of subjects with statistically significant accuracy classification for ASD and TD 

groups, and for moving average procedures of one, two and three trials.   

Trials 

T
D

 

Number of Subjects (p<0.05) 

A
S

D
 

Number of Subjects (p<0.05) 

1 8/17 5/17 

2 8/17 3/17 

3 11/17 3/17 

 

 

 

 

5.1.1.1 Mental Imagery of Happy Facial Expression 
versus No-Imagery 

In this analysis, we tried to differentiate between mental imagery states from 

no-imagery states, but using only the trials corresponding to the mental imagery of 

happy facial expression. The best classification results were obtained using the 

other baseline interval tested, from 450 ms to 0 ms pre-stimulus. 

Similarly to what was described earlier, after obtaining the average ranking 

positions to all 34 subjects, we determined the frequency bands distribution over 

the ranking (Figure 5.5). From Figure 5.5 it is possible to see that that theta and 

alpha frequency bands ([4 8] Hz and [8 15] Hz, respectively) have the lowest mean 

ranking positions; bands with highest frequency have also higher ranking positions 

and, so, they are expected to contribute less to better classification results. 
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From Figure 5.6 and Figure 5.7, which correspond to time-domain and non-

linear features distribution, respectively, it is possible to see that non-linear 

features, in opposite to time-domain features, have their mean ranking positions 

above the 150th position, for all frequency bands. This fact supports the hypothesis 

that non-linear features do not have much relevance in the classification of the two 

conditions analyzed. The outlier feature that appears in Figure 5.7 in each 

frequency band corresponds to the Correlation Dimension. 
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Figure 5.5 – Distribution of the different frequency bands over ranking. Ranking 

positions of the features corresponding to each frequency band were plotted in this 

box plot. 
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Figure 5.6 – Distribution of the different frequency bands over ranking. Ranking 

positions of the time-domain features corresponding to each frequency band were 

saved and plotted in a box plot graph. 

0

50

100

150

200

4-8Hz 8-15Hz 15-30Hz 15-20Hz 20-25Hz 25-30Hz 30-40Hz
Frequency Bands

Frequency Bands Distribution Over Ranking - Non-Linear Features

R
an

ki
ng

 P
os

iti
on

Figure 5.7 – Distribution of the different frequency bands over ranking. Ranking 

positions of the time-domain features corresponding to each frequency band were 

saved and plotted in a box plot graph. 
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Table 5.3 presents the best 10 features of the ranking, determined for the 

classification between imagery of happy facial expressions and no-imagery 

epochs. Absolute time-domain features from theta and alpha bands appear to be 

the most relevant among this set of features; no non-linear features were present 

in this set of the best 10 features. 

 

 

 

Table 5.3 – Characteristics of the 10 best features of the ranking for this analysis. 

Ranking 
Position 

Feature 
Frequency 
Band (Hz) 

Time-Domain Non-Linear 

Absolute Baseline 
Correction Absolute Baseline 

Correction 

1 Average 
Env - - - [4 8] 

2 Average 
Env - - - [8 15] 

3 SD Env - - - [4 8] 

4 SD Env - - - [8 15] 

5 Maximum 
Env - - - [4 8] 

6 Average 
Env - - - [15 30] 

7 Average 
Pow - - - [8 15] 

8 Maximum 
Env - - - [8 15] 

9 Average 
Env - - - [15 20] 

10 Average 
Pow - - - [4 8] 
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We built the linear SVM model for classification procedure using the 

corresponding data from the best features of the average ranking. Classification 

accuracies were determined, also, through a 5-fold cross validation technique. We 

performed that procedure was performed over the data resultant from the moving 

average of one, two and three trials, as explained. Figure 5.8 shows the accuracy 

progression using from 1 to the 8 best features.  
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Figure 5.8 – Accuracy progression using the best features of the ranking. The mean 

accuracy value was determined for both groups, for the moving average procedures with 

one, two and three trials. The labels with “1trial” corresponds to the single trial accuracy 

classification, and the labels with “2trials” and “3 trials” correspond to the accuracy of the 

classification with data from the moving average procedures with two and three trials, 

respectively. No convergence was achieved within the maximum number of iterations from 

more than 8 features. Accuracy progression was determined using the mean accuracy of 

the group and the correspondent SEM for each feature set. 
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Classification results were similar for both groups; however, accuracies of TD 

groups were slightly higher. The range of accuracies within each group was high 

leading to high values of SEM, particularly in TD group. Classification with the 

moving average of three trials originated the highest accuracy values in each group 

and, also, the highest SEM values.  

We performed a non-parametric Wilcoxon rank sum test to determine if there 

were statistical differences between the accuracies of both groups. This statistical 

test was performed using the classification results of each subject using the six 

best features. We also chose the number of features to use as the one that appear 

to have relatively high mean accuracy in both groups and moving average 

approaches. Statistical tests showed that accuracies of both groups were not 

statistically different for none of the moving average datasets. 

 

 

 

Table 5.4 – Number of subjects with statistically significant accuracy classification for ASD and TD 

groups, and for moving average procedures of one, two and three trials. 

Trials 

T
D

 

Number of Subjects (p<0.05) 

A
S

D
 

Number of Subjects (p<0.05) 

1 6/17 10/17 

2 8/17 7/17 

3 9/17 7/17 

 

 

 

Table 5.4 shows the number of subjects of each group whose accuracy 

classification were statistically significant (p<0.05) obtained from the 10000 

permutations (Equation (5.2)), using the same six best features. Except for single 

trial classification, the number of subjects with statistically significant classification 

accuracy was slightly higher in TD group than in ASD group. The highest accuracy 

value was 100 % obtained for a TD individual in all moving average trials’ accuracy. 

TD individuals’ range of accuracies was from 40 % to 100 % and the range of 

accuracies of ASD individuals was from 40 % to 85 %. 
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5.1.1.2 Mental Imagery of Sad Facial Expression 
versus No-Imagery 

As performed for mental imagery of happy facial expression, in this analysis 

we tried to differentiate between mental imagery states from no-imagery states, but 

using only the trials corresponding to the mental imagery of sad facial expression. 

Like for mental imagery of happy facial expressions, we obtained the best 

classification results using the time points from 450 ms to 0 ms pre-stimulus as 

baseline interval.  

We also determined frequency band distribution over ranking positions, using 

all features extracted (Figure 5.9), only time-domain features (Figure 5.10) and only 

non-linear features (Figure 5.11). 
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Figure 5.9 – Distribution of the different frequency bands over ranking. Ranking 

positions of the features corresponding to each frequency band were plotted in this 

box plot. 
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Figure 5.10 – Distribution of the different frequency bands over ranking. Ranking 

positions of the time-domain features corresponding to each frequency band were 

saved and plotted in a box plot graph. 
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Figure 5.11 – Distribution of the different frequency bands over ranking. Ranking 

positions of the non-linear features corresponding to each frequency band were 

saved and plotted in a box plot graph. 
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Results were very similar to the results obtained for happy mental imagery 

versus no imagery. Theta and alpha frequency bands appear to be more frequently 

at the lowest positions of the ranking than high frequency bands, exhibiting a large 

contribution to the classification accuracies with low number of features. As 

previously reported, non-linear features appear always in the last positions of the 

ranking, do not showing great contribution to the achievement of high accuracy 

values. Like in Figure 5.7, the outlier feature that appears in Figure 5.11 in each 

frequency band corresponds to the Correlation Dimension. 

As done in the previous analysis, the 10 best features of the ranking are 

presented in Table 5.5. Also, as Figure 5.9, Figure 5.10 and Figure 5.11 show, 

alpha and theta bands were the most common frequency bands in the set of the 

10 features with the lowest ranking values. The dominance of the time-domain 

features in the lowest positions of the ranking is also notorious. It should be noted 

also that except the feature Maximum Env of [8 15] Hz band, at happy facial 

expression imagery versus no imagery, and feature CorrDim of [4 8] Hz band, in 

this analysis all the other features of the 10 best features set are the same in both 

analysis, with slightly different ranking positions. 
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Table 5.5 – Characteristics of the 10 best features of the ranking for mental imagery of sad facial 

expression versus no-imagery analysis.  

Ranking 
Position 

Feature 
Frequency 
Band (Hz) 

Time-Domain Non-Linear 

Absolute Baseline 
Correction Absolute Baseline 

Correction 

1 Average 
Env - - - [4 8] 

2 Average 
Env - - - [8 15] 

3 SD Env - - - [4 8] 

4 SD Env - - - [8 15] 

5 Maximum 
Env - - - [4 8] 

6 Average 
Pow - - - [4 8] 

7 Average 
Env - - - [15 30] 

8 Average 
Env - - - [15 20] 

9 Average 
Pow - - - [8 15] 

10 - - CorrDim - [4 8] 

 

 

 

 

Also, we used a linear SVM model for the classification procedure. In Figure 

5.12 it is possible to see a clear gap between the accuracies of TD and ASD 

groups; classification accuracies of TD individuals achieved much higher values 

than the ones achieved by ASD group. In TD group, single trial classification 

obtained the lowest accuracy values and classification with moving average of 

three trials achieved the highest. In ASD group, these differences were not clear. 

As reported in the previous analysis, with the happy facial expression, the range of 

accuracies within each group is very high, especially in TD group, leading to higher 

SEM.  
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We performed a non-parametric Wilcoxon rank sum test in the accuracies 

results of the subjects of each group using the four best features. We chose this 

number of best features to use as explained in previous sections. Statistical tests 

showed statistically significant results for accuracies of the moving average of two 

and three trials (p<0.05). Table 5.6 shows the number of subjects of each group 

whose accuracy classification were statistically significant (p<0.05) obtained from 

the 10000 permutations (Equation (5.2), using the four best features. The number 

of subjects with statistically significant classification accuracy was much higher in 

TD group for the moving average of two and three trials. The highest accuracy 

value was 100 %, obtained for a TD individual in all moving average trials’ 
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Figure 5.12 – Accuracy progression using the best features of the ranking. The mean 

accuracy value was determined for both groups, for the moving average procedures with 

one, two and three trials. The labels with “1trial” corresponds to the single trial accuracy 

classification, and the labels with “2trials” and “3 trials” correspond to the accuracy of the 

classification with data from the moving average procedures with two and three trials, 

respectively. The linear SVM model does not converged with more than 8 features. 

Accuracy progression was determined using the mean accuracy of the group and the 

correspondent SEM for each feature set. 
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accuracy. TD individuals’ range of accuracies was from 50 % to 100 % and the 

range of accuracies of ASD individuals was from 43 % to 80 %. 

 

 

Table 5.6 – Number of subjects with statistically significant accuracy classification for ASD and TD 

groups, and for moving average procedures of one, two and three trials. 

Trials 

T
D

 

Number of Subjects (p<0.05) 

A
S

D
 

Number of Subjects (p<0.05) 

1 8/17 7/17 

2 11/17 4/17 

3 12/17 5/17 

 

 

 

5.1.2 Mental Imagery of Happy versus Sad Facial 
Expressions 

Besides trying to discriminate between mental imagery and no-imagery 

states, we also tried to discriminate between mental imagery of happy and sad 

facial expressions, using only the mental imagery time interval. We achieved the 

best classification results for this analysis using, as baseline, the time interval from 

3500 ms to 3000 ms pre-stimulus.  

Furthermore, we obtained frequency bands distribution over ranking (Figure 

5.13, Figure 5.14 and Figure 5.15). Low frequency bands had also the lowest 

positions in the ranking, contributing to better accuracy values in the classification 

process with the best features. The difference in ranking positions of time-domain 

and non-linear features, although clear, was not so “linear” as in the previous 

analysis. In time-domain features, it was clear the low median ranking positions for 

theta and alpha bands but, although low, the median positions of the features from 

other frequency bands were approximately at the middle of the ranking (Figure 

5.14). For non-linear features, in this case, not every frequency band had high 

mean ranking position, as gamma frequency band presented a median ranking 

position below the middle of the ranking (Figure 5.15). 



75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

4-8Hz 8-15Hz 15-30Hz 15-20Hz 20-25Hz 25-30Hz 30-40Hz
Frequency Bands

Frequency Bands Distribution Over Ranking

R
an

ki
ng

 P
os

iti
on

Figure 5.13 – Distribution of the different frequency bands over ranking. Ranking 

positions of the features corresponding to each frequency band were plotted in this 

box plot. 
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Figure 5.14 – Distribution of the different frequency bands over ranking. Ranking 

positions of the time-domain features corresponding to each frequency band were 

saved and plotted in a box plot graph. 



76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 5.7, which contains the characteristics of the 10 best features, it is 

possible to see that all the features were extracted from the theta frequency band, 

which had the lowest mean ranking position. The features were all, also, from time-

domain. 
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Figure 5.15 – Distribution of the different frequency bands over ranking. Ranking 

positions of the non-linear features corresponding to each frequency band were 

saved and plotted in a box plot graph. 
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Table 5.7 – Characteristics of the 10 best features of the ranking for discrimination of mental 

imagery of happy and sad facial expressions. 

Ranking 
Position 

Feature 
Frequency 
Band (Hz) 

Time-Domain Non-Linear 

Absolute Baseline 
Correction Absolute Baseline 

Correction 

1 Average 
Teag - - - [4 8] 

2 Maximum 
Teag - - - [4 8] 

3 SD Pow - - - [4 8] 

4 - Maximum 
Power - - [4 8] 

5 SD Env - - - [4 8] 

6 Maximum 
Pow - - - [4 8] 

7 SD Teag - - - [4 8] 

8 Average 
Pow - - - [4 8] 

9 Maximum 
Env - - - [4 8] 

10 Average 
Env - - - [4 8] 

 

 

 

Figure 5.16 presents the progression of the mean accuracy values, for each 

group, using data from 5 to the 50 best features of the ranking. We determined 

accuracy values resultant from the linear SVM classifier using a 5-fold cross 

validation technique. 
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In this case, accuracy values were slightly higher in ASD group, and did not 

differ very much regarding the moving average procedure.  

We performed statistical non-parametric Wilcoxon rank sum test in accuracy 

values of the subjects from both groups, using only the five best features. Mean 

group accuracy appeared to change randomly with the number of features used 

for classification; thus, we chose the five first features to apply the statistical tests. 

Results revealed a statistical significant difference only in the moving average of 

three trials (p<0.05). Using the same dataset, we also determined the number of 

subjects with statistically significant classification accuracy. We achieved the 

statistical p-value from 10000 permutations, according to Equation (5.2). The 
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Figure 5.16 – Accuracy progression using the best features of the ranking. The mean 

accuracy value was determined for both groups, for the moving average of one, two and 

three trials. The labels with “1trial” corresponds to the single trial accuracy classification, 

and the labels with “2trials” and “3 trials” correspond to the accuracy of the classification 

with data from the moving average procedures with 2 and 3 trials, respectively. 
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results are shown in Table 5.8. No subjects from TD group showed statistically 

significant accuracy classification and few from ASD group did. 

 

 

Table 5.8 – Number of subjects with statistically significant accuracy classification for ASD and TD 

groups, and for the moving average of one, two and three trials. 

Trials 

T
D

 

Number of Subjects (p<0.05) 

A
S

D
 

Number of Subjects (p<0.05) 

1 0/17 1/17 

2 0/17 1/17 

3 0/17 4/17 

 

 

 

 

5.2 Classification of Autism Spectrum 
Disorder versus Typically Developing 
Individuals 

This analysis is completely different from the ones explained in previous 

sections. Here, we tried to find biomarkers that could be used to distinguish ASD 

individuals from TD individuals. To do that, we extracted 35 features from each 

EEG channel signal filtered for seven different frequency bands, during the imagery 

epoch [500 4000] ms. We extracted the baseline epoch from 3500 ms to 3000 ms 

pre stimulus.  

Using the information given by the ranking of the features extracted, it was 

possible to analyze the distribution of the features from each frequency band 

through the ranking. We performed that analysis through visual inspection of the 

box plot distribution (Figure 5.17). Gamma, High Beta ([25 30] Hz) and theta 

frequency bands showed the lowest median ranking positions. We expected that 

most of the features from those frequency bands to be present at the lowest 
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positions of the ranking and highly relevance for the discrimination between the 

two groups of individuals.  

 

 

 

We also determined frequency distribution over ranking for time-domain and 

non-linear features (Figure 5.18 and Figure 5.19, respectively). 

Time-domain features appear to occupy higher ranking positions than non-

linear features for almost frequency bands studied. It should be noted that theta, 

high beta and gamma frequency bands occupy also the lowest mean ranking 

positions. Nevertheless, theta band appears to be more relevant in non-linear 

features, while gamma and high beta frequency bands appear to have more 

importance in time-domain features. 
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Figure 5.17 – Distribution of the different frequency bands over ranking. Ranking 

positions of each feature, from each channel cluster, corresponding to the frequency 

bands studied was determined. The distribution of the ranking positions of the 

features belonging to each frequency band were plotted in this box plot. 
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Figure 5.18 – Distribution of the different frequency bands over ranking. Ranking 

positions of each time-domain feature corresponding to each frequency bands 

studied was determined. The distribution of the ranking positions of those features, 

belonging to each frequency band, were plotted in this box plot. 
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Figure 5.19 – Distribution of the different frequency bands over ranking. Ranking 

positions of each non-linear feature corresponding to each frequency bands studied 

was determined. The distribution of the ranking positions of those features, 

belonging to each frequency band, were plotted in this box plot. 
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We also analyzed the ranking distribution over the channel clusters (Figure 

5.20).  

 

 

 

 

Channel clusters that appear to have more influence for distinguishing 

between the two groups are Cluster 8, Cluster 5, Cluster 10 and Cluster 4, 

corresponding to, respectively, right Fronto-Temporal, right Centro-Parietal, left 

Centro-Parietal, and right Parieto-Occipital regions. 

Table 5.9 presents the 10 best features according to FS ranking. Those 

features were mostly from time-domain and baseline corrected values of the 

features extracted. All time-domain features of this set were estimated from [25 30] 

Hz and, in smaller number, from [30 40] Hz frequency bands, as expected from the 

visual analysis of Figure 5.18. The only three non-linear features present in this set 

were extracted from the lowest frequency band, theta band ([4 8] Hz), also visible 
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Figure 5.20 – Distribution of the ranking positions of the features belonging to the different 

channel clusters defined. Ranking positions of each feature corresponding to each channel 

cluster was determined. The distribution of the ranking positions of those features, 

belonging to each channel cluster, were plotted in this box plot. 
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through the analysis of Figure 5.19. The most frequent cluster was the fourth, 

corresponding to electrodes at the Occipital and Parieto-Occipital sites in the right 

hemisphere; this cluster had one of the lowest mean positions in the ranking, 

showed in Figure 5.20. 

 

 

Table 5.9 – Characteristics of the 10 best features of the ranking for discrimination between ASD 

and TD individuals. 

Ranking 
Position 

Feature 
Frequency 
Band (Hz) 

Channel 
Cluster 

Time-Domain Non-Linear 

Absolute Baseline 
Correction Absolute Baseline 

Correction 

1 - Average Env - - [25 30] 4 

2 - Average Env - - [30 40] 4 

3 - - - SFI [4 8] 4 

4 - Average 
Teag - - [25 30] 1 

5 - Average 
Pow - - [25 30] 4 

6 - Average Env - - [30 40] 5 

7 - Average 
Teag - - [25 30] 4 

8 - - - Lyap [4 8] 4 

9 - Average 
Pow - - [25 30] 1 

10 - - - SFI [4 8] 11 

 

 

 

After knowing which were the best features, we classified the data using a 

certain number of the best features, ordered by their ranking position. Starting with 

the five best features from the ranking, we repeated the classification process by 

adding the next five features until reaching a set with the 100 best features. Figure 

5.21 presents the accuracy progression of the classification accuracy values 

obtained using from 5 to 100 best features. These values correspond to the leave-

one-out accuracy classification of each subject. 
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In order to reduce even more the data dimensionality, after selecting the data 

corresponding to the 100 best features, we applied a PCA analysis to this data 

using two different approaches (explained in section 4.5.2.2). 

In the first approach, we directly applied the PCA analysis to the data from 

100 best features given from the FS algorithm to reduce redundancy between 

features.  

Then, using the leave-one-out cross validation method, we classified the data 

using until its 15 principal components, and we built a graph with the accuracy 

progression (Figure 5.22).   

Classification accuracy seems to stabilize at a very high accuracy value from 

the first five principal components. 
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Figure 5.21 – Progression of the accuracy classification values, obtained using from 5 to 

the 100 best features of the ranking. 
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In the second approach, through visual inspection of the Figure 5.17, Figure 

5.18, Figure 5.19, and Figure 5.20, we selected the channel clusters and frequency 

bands which had the lowest median ranking positions. We selected four channel 

clusters, Cluster 8, Cluster 5, Cluster 10 and Cluster 4 (represented in red circles 

– Figure 5.23), as well as three frequency bands, theta ([4 8] Hz), sub-band high 

beta ([25 30] Hz), and gamma ([30 40] Hz).  
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Figure 5.22 – Progression of the accuracy classification values of the first approach of the 

analysis. Accuracy values were determined using up to the 15 first principal components, 

resultant from the application of a PCA analysis to the data corresponding to the 100 best 

features of the ranking. 
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Figure 5.24 shows the distribution of the frequency bands through the ranking 

relative to the features of each one of the four clusters selected. From the box plot 

distributions, it is clear that the frequency bands selected had the lowest median 

ranking positions for the features of the four channel clusters selected. 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 – Representation of the locations of the channel 

clusters selected. Clusters 8, 5, 10 and 4 correspond, respectively, 

to right Fronto-Temporal, right Centro-Parietal, left Centro-

Parietal, and right Parieto-Occipital electrode positions. 
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Then, to reduce even more the dimensionality and to narrow the range of 

features to use in classification process, we extracted, from the 100 best features 

data, the features corresponding to these selected channel clusters and frequency 

bands. The final data, after the selection, had 31 features, being that 13 were 

related to [4 8] Hz frequency band, 7 to [25 30] Hz and 11 to [30 40] Hz; all the 

features from theta band were non-linear and those from the other two frequency 

bands selected were mostly time-domain features (as expected from the analysis 

of Figure 5.18 and Figure 5.19); cluster 4 had the most contributions of features in 

Figure 5.24 – Distribution of the ranking positions of the features corresponding to each one of 

the four clusters selected through each frequency band. In all four clusters, it is visible that 

frequency bands with the lowest mean ranking positions are theta, high-beta and gamma. The 

cluster 8 appears to have the lowest mean ranking positions in all frequency bands, which 

corroborates the ranking position distribution in Figure 5.20. 
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this set, followed by cluster 10, 8 and 5 respectively. To these data, with the 31 

selected features, the PCA analysis was done. We used the principal components 

to classify the data using the leave-one-out cross validation technique. Figure 5.25 

shows the progression of accuracy classification values using from 1 to the 15 

principal components resultant from PCA analysis.  

  

 

 

 

 

Comparing the accuracy progressions obtained in both approaches (see 

Figure 5.26), it is clear that the second approach had high values of accuracy using 

less than the 5 first principal components. The first approach resulted in the best 

accuracy values for almost all of the sets of principal components tested. The 

second approach revealed to be very restrictive in the features to use for PCA, 

leading to, although high, not so good results. 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

A
C

C
U

R
A

C
Y

 (
%

)

NUMBER OF PRINCIPAL COMPONENTS

ACCURACY PROGRESSION

Figure 5.25 – Progression of the accuracy classification values of the second approach of 

the analysis. Accuracy values were determined using up to the 15 first principal 

components, resultant from the application of a PCA analysis to the data corresponding to 

the features of the best clusters and frequency bands (selected from the 100 best features 

of the ranking). 
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Figure 5.26 – Comparison of the two approaches tested for the discrimination between 

ASD and TD individuals. The highest accuracy value obtained using the second approach 

was of 91.17 %, using 4 principal components. Using 5 principal components, accuracy 

using the first approach was of 94.12 % and, accuracy resultant from the second approach 

was of 85.29 %, and using 10 principal components the accuracy values obtained were 

85.29 % and 76.47 %, respectively. 
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Chapter 6  

Discussion and Conclusions 

The main objective of this work was to evaluate the viability of the 

development of an EEG-based BCI with neurofeedback to rehabilitate social 

cognitive impairments in ASD individuals through the training of the processing and 

mental imagery of facial expressions. To do that, we implemented different 

classifier approaches and tested different conditions: firstly, to distinguish between 

the mental imagery of the two different facial expressions and, at last, to distinguish 

between the two groups of individuals and then to distinguish between mental 

imagery times and no imagery times.  

 

 

 

6.1 Classification of Mental Imagery of 
Facial Expressions 

Initially, we performed classification tests using the baseline interval from 450 

ms to 0 ms pre-stimulus, which corresponds to a small epoch of the preparation 

time (after the visual instruction and before the imagery period). As the 

classification results obtained were not very good, around 50 %, possibly because 

the imagery networks were already being recruited, we discussed a new baseline 

interval, before the visual instruction time, from 3500 ms to 3000 ms pre-beep. This 

is because as individuals received the instruction before the beginning of each run, 

they could have started a mental imagery preparation after visual instruction. With 

this new baseline, the classification results were slightly better, even though not 

above 55 % to happy versus sad imagery and 60 % for facial expressions imagery 
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versus no imagery. For the classification of happy mental imagery versus no 

imagery and sad mental imagery versus no imagery the results were nevertheless 

better with the first baseline interval defined, between visual instruction and mental 

imagery times.  

Regarding the distribution of the features in the ranking, obtained through the 

application of the Fisher Score algorithm to the training data, in all four analysis 

performed, it was clear the dominance of time-domain features at the first positions 

of the ranking; notice that the first ranked features are the ones with the highest 

relevance to discriminate between the two conditions that are being analyzed. 

Time-domain features appear to be more relevant than non-linear features in order 

to differentiate imagery from no imagery times. In all the analysis performed, the 

median position of the ranking distribution of non-linear features appears always 

above the middle ranking position. In the first analysis, where it is compared the 

mental imagery of facial expressions (happy and sad) with no-imagery times, it is 

possible to see clearly (Figure 5.2) that theta and gamma frequency bands had the 

lowest median distribution position in the ranking. In every other analysis 

performed, the dominant frequency bands were clearly theta and alpha, as can 

also be seen in the analysis of the tables containing the 10 best features. Theta 

rhythm is related to processing of emotions, focused concentration during mental 

tasks and imagery states (Collura, 1997; Tatum, 2014), and alpha rhythm is mostly 

recorded over occipital and parietal regions (Clark, 2009; Nunez and Srinivasan, 

2006; Tatum, 2014), which correspond to regions where the core system for face 

perception is located.  

As Fisher Score algorithm choses the features independently, and not the set 

of features that better separate the two conditions, by classifying with, for example, 

the best 10 features of the ranking, it does not mean that this specific set would 

give the better results. Also, that can explain the fact that accuracy values do not 

stabilize with the increase of the number of features.  However, it was necessary 

to apply an algorithm that minimally ranked the features extracted in order to 

reduce the dimensionality of the dataset.  

In the first three analyses (sections 5.1.1, 5.1.1.1 and 5.1.1.2), in which we 

compared mental imagery states with no-imagery states, TD group had always 

slightly better accuracy results than ASD group. Also, we found a higher number 
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of subjects whose classification was statistically significant (p<0.05) for the TD 

group than for the ASD group. 

Comparing the analysis reported in sections 5.1.1.1 and 5.1.1.2, in which the 

classification of mental imagery of happy or sad facial expressions with no imagery 

times is performed, it is clear that the first 10 features of the ranking are very similar 

in both analyses; containing almost the same features although in different ranking 

positions. An interesting fact is that most of the subjects that had statistically 

significant classifications in one analysis were the same that had statistically 

significant accuracy classifications in the other. However, discrimination between 

imagery of sad facial expressions from no imagery times was easier from TD 

individuals than the discrimination between imagery of happy facial expressions 

and no imagery times, and a higher number of individuals had statistical significant 

classification accuracies. For ASD individuals, mean accuracy group was similar 

between these two analyses, although the number of individuals with statistically 

significant classifications was higher in happy mental imagery analysis.   

When comparing mental imagery of happy facial expression with mental 

imagery of sad facial expression (section 5.1.2), the mean group accuracies were 

slightly higher for ASD than for TD groups, and only a few individuals of ASD group 

had its classification statistically significant. This last analysis revealed the worst 

results, as expected, in comparison to the results of the discrimination between 

“simpler” conditions.  

Only for happy versus sad mental imagery discrimination, the moving 

average over trials did not have any effect. For the other analyses, moving average 

over three trials resulted in the best accuracy values, for both groups; and the 

single trial classification resulted in the worst results. Moving average led to the 

increase of the differences between individuals from the two groups, which can be 

seen by the statistically significant differences found in the accuracies of subjects 

from the two groups in the data corresponding to the moving average of two and 

three trials (in two of the four analyses performed). However, the number of 

observations to classify in the three trials’ moving average is significantly reduced 

compared to the single trial classification. 
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6.2 Classification of ASD versus TD 
Individuals 

In this analysis, the main goal was to find biomarkers that could be used to 

distinguish ASD from TD individuals.  

Frequency bands distribution obtained from Fisher Score feature ranking 

shows that, in this analysis, not only low frequency bands like theta, but also high 

frequency rhythms, high-beta and gamma, had the lowest median ranking 

positions and greatly contribute for the accuracy classification values with low 

number of features (the best ones). An interesting fact is that theta band presence 

at the lowest ranking positions is given by the non-linear features, and the presence 

of the two highest frequency bands studied is given by time-domain features. In 

this analysis, not only time-domain features are present at the lowest ranking 

positions, as was the case of imagery vs no-imagery analysis, but also non-linear 

features were found and at a specific frequency band.  

The channel clusters distribution over ranking revealed that Temporal, 

Parietal and Occipital regions, mostly from the right hemisphere, had great 

relevance in distinguishing between the two groups. These areas correspond to 

the location of the core brain regions responsible for face processing, that include, 

OFA, FFA and, in particular, pSTS, responsible for the processing of variable 

aspects of the face such as facial expressions.  

Accuracy classification values, obtained using from 5 until the 100 best 

features, was very unstable, and so we decided to do a PCA analysis over the 100 

best features data in order to reduce the dimensionality and the redundancy 

between features. We analyzed the accuracy values using the first 15 principal 

components and, from the fifth principal component, accuracy values seemed to 

stabilize around 95 %. In order to improve even more the accuracy values, from 

the 100 best features we selected only those corresponding to theta, high beta and 

gamma frequency bands and those from the four best channel clusters. We applied 

the PCA analysis to those features and then, as previously, we analyzed the 

accuracy values using from 1 to 15 principal components. However, this selection 

revealed to be too much restrictive; the accuracy values did not stabilize along the 
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15 principal components and were higher than in the previous analysis just until 

the fifth principal component. 

 

 

 

6.3 Conclusions  
It was possible to distinguish the two groups using the imagery period, 

however it was not possible to distinguish between states of mental imagery of 

facial expressions and no-imagery states at an interesting accuracy level. 

Results showing that regions from parietal, temporal and occipital right 

hemisphere greatly contribute to the discrimination between ASD and TD 

individuals corroborate results previously found by the team (not reported in this 

dissertation), in which a statistically significant difference between the two groups 

was found in the right precuneus area for the mental imagery of happy and sad 

facial expressions.  

However, it was not possible to distinguish with relatively high accuracy 

values the time intervals of mental imagery of facial expressions and no-imagery. 

The main goal of the project was to evaluate the viability of the development of a 

EEG-based BCI with neurofeedback approach to rehabilitate ASD individuals, 

based on this task. With the results obtained it is possible to conclude that the 

development of that training approach is still impracticable and further study on the 

subject is needed. Nevertheless, the results also suggest that it is possible do 

define biomarkers of ASD pathology based on EEG correlates of facial 

expressions. 
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