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Abstract 

 Proteins are macromolecules formed by amino acids and they have several biochemical 

functions. Consequently, they are present in the most important reactions at the cellular level. 

So, by knowing the principal functions of a new protein sequence is possible to control several 

metabolic pathways or even certain reactions to a number of stimuli, and so it is possible to 

gain access to different therapeutic procedures. Therefore, it is essential the creation of 

computer tools capable of identifying the biochemical functions and applicability of known 

proteins.  

 In this thesis, we propose a new method for extraction and selection of features from 

proteins’ primary structure in order to improve efficiency in the prediction of their family 

classes. The feature extraction consists in a meticulous and differentiated analysis of all possible 

amino acid subsequences that could be present in the chosen proteins. For each subsequence 

is assigned a set of different values with statistical significance according its length, high or low 

frequency, and also the order that amino acids are present consecutively or not in the protein 

(Scoring). The feature selection is the collection of subsequences that have the highest values 

in each of the previously highlighted parameters (MaxScoring) in order to initialize the particles 

in Particle Swarm Optimization. 

Two sets of proteins were selected with different characteristics, wherein was possible to prove 

that our methodology can improve the proteins’ class family classification based on SVM when 

compared with other more common methods. The best results have an average AUC value 

above 0.80 and it is observed a 10% improvement compared to Amino Acid Composition (AAC), 
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and a 20% improvement when compared to the Pseudo Amino Acid Composition Amino Acid 

(Pse-AAC) and Amphiphilic Pseudo Amino Acid Composition (Am-Pse-AAC). 
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Resumo 

 As proteínas são macromoléculas formadas por aminoácidos e possuem diversas 

funções bioquímicas. Consequentemente, estão presentes nas mais importantes reações 

metabólicas a nível celular. Assim sendo ao saber quais as principais funções de novas 

sequencias proteicas é possível controlar diversas vias metabólicas ou ainda reações especificas 

a certos estímulos, e assim é possível ter acesso a diferentes procedimentos com fins 

terapêuticos. Logo é essencial a criação de ferramentas computacionais capazes de identificar 

a funções bioquímicas e a aplicabilidade de proteínas conhecidas. 

 Nesta tese é proposto um método de extração e seleção de atributos a partir da 

estrutura primária de proteínas de forma a aumentar a eficiência de previsão das suas classes 

de famílias. A extração de atributos consiste numa meticulosa e diferenciada análise de todas 

as possíveis subsequências de aminoácidos que podem estar presentes nas proteínas 

selecionadas. Para cada subsequência é atribuída um conjunto de diferentes valores com 

significância estatística conforme o seu comprimento, alta ou baixa frequência, e ainda a ordem 

em que os aminoácidos estão presentes de forma consecutiva ou não na proteína (Scoring). Já 

a seleção constitui na escolha das subsequências que apresentem os maiores valores em cada 

um dos parâmetros salientados anteriormente (MaxScoring) de forma a inicializar as partículas 

no Particle Swarm Optimization.  

 Foram escolhidos dois conjuntos de proteínas, com características diferentes, sendo 

que em ambos foi possível provar que a nova metodologia consegue melhorar a classificação 

das classes de famílias de proteínas baseada em SVM quando comparada com outros métodos 



vi 
 

mais comuns. Os melhores resultados obtidos apresentam um valor médio de AUC acima de 

0.80 e, nos dois conjuntos é observada uma melhoria acima de 10 % em relação ao de Amino 

Acid Composition (AAC) e de 20% quando comparado com Pseudo Amino Acid Composition 

(Pse-AAC) e Amphiphilic Pseudo Amino Acid Composition (Am-Pse-AAC). 
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1| Introduction 

 In this chapter, it is described the motivation, main objectives and the key concepts 

about proteins and their importance. It will be referred only the most important aspects that 

can influence the biochemical functions in a protein, like the presence of domains and motifs 

as well their structure. Also, it is presented a brief overview of the chapters in a comparative 

scheme.  

1.1 | Motivation 

 The technological advances in the genomic and proteomic sequencing, headed to a 

large increase of available data whose analysis may leads to discoveries in some areas, such as 

pharmaceuticals or medicine. This rises the need to create computational tools able to 

interpret different biological data, in this case proteins. Proteins are present in all cellular 

metabolic reactions by performing a large number of several functions, so it’s important to 

identify their biological purpose based on the data available in order to not require additional 

laboratory work in researches with the study of proteins involved. 

1.2 | Objectives 

 The main objective of this thesis is the design of a new method capable of predicting if 

a protein belongs or not to a class or subclass of proteins, as well as being capable of it effective 

regardless of the data set supplied.  
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 Therefore, all the research is the definition of a possible solution to a problem: the 

prediction of a protein’s biochemical function through its primary structure. 

1.3 | Proteins  

 Proteins are macromolecules formed by amino acids joined by peptides bonds. The 

sequence of amino acids is determined by the sequences of nucleotide on a process called 

translation (Campbell, 1996) after a gene as coded to pre-mRNA (Transcription). The sequence 

of amino acid only is the primary structure of a protein. 

 The following sections will explain some of the elements that can determine or influence 

the proteins’ biochemical functions as well as the functions themselves. 

1.3.1 | Structures 

 As it is shown in figure 1, a protein can assume four different structures: Primary, 

secondary, tertiary and quaternary. The first one is the sequence of amino acids and second is 

the polypeptide chain taking the form of alpha helices or beta strands because of hydrogen 

bonds processed between specific molecular groups of certain amino acids. In the tertiary 

structure elements of either alpha helix or beta sheet or both, as well loops and links with no 

secondary structures are folded into a globular form. At last, the quaternary structure is the 

association of folded chains with more than one polypeptide. 

 

Figure 1 – The different structures which a protein can assume illustrated by the catabolite activator 
protein (Petsko & Ringe, 2004) 

 The structure of a protein is important because in order for a polypeptide to function 

as a protein in most cases must have a stable tertiary structure under physiological conditions. 
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 Regarding the amino acids, they have different side chains which allows them to interact 

differently with each other and with water. These differences affect their contributions to the 

protein’s stability as well to the protein’s function. So, the amino acids are categorized as the 

side chains present in them: hydrophobic, hydrophilic and amphipathic amino acids residues. 

 Also, certain amino acids are easier found or present in a greater amount in some 

structures than others. It is the case of leucine and glutamine, which are often found in helices 

in contrast to valine or isoleucine that are more often in beta sheets. But there also exceptions, 

like the proline presence does not favor any kind of secondary structure. This is because each 

side chains of each amino acid are essential for the chemical reactions needed for a protein to 

assume any kind of form. As for the tertiary structure, most proteins can be unfolded or 

refolded according to the diluted solution that they are in, indicating that the primary structure 

contains all the information needed to specify the folded state. 

 In addition, the water molecules present on the surface of folded protein and the 

possible bonds created also determines how a protein can be folded, since as referred before, 

there are different types of amino acids and therefore different kinds of interactions between 

amino acids and water. So, the side chains of amino acid will be arranged accordingly to the 

presence of water molecules, the hydrophilic side chains will be arranged to be closer to water 

molecules and the hydrophobic side chains will settle in the opposite way. 

1.3.2 | Protein Domain 

 A domain is a specific region of a protein structure usually composed by a subsequence 

of amino acids and is capable of existing on its own in aqueous solution. This segment holds 

part of the biochemical function of the protein they belong to.  

 Not all the known domains are continuous segments of amino acids, in many proteins a 

domain is divided and dispersed across the sequence and also they vary in size, being able to 

contain an average of 200 amino acids, in which the smallest domain was registered with 57 

amino acids and the biggest with 907 residues. 
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1.3.3| Motifs 

 A motif can be a particular amino acids sequence that is present for a precise biological 

function, or can be a set of contiguous secondary structure elements that either retain a 

specific functional importance of a portion of a folded domain. In this sense, it can exist 

functional motifs (like the ones found in DNA-binding proteins), or simpler structural motifs. 

This last one does not exist separately from a protein and it can be used as a recognition 

element for a group of similar proteins. A lot of structural motifs are found in many hormones 

as well as proteins with NAD cofactors. 

 The recognition of a motif in a sequence is not easy since most of sequence motifs are 

discontinuous and the space between their elements can vary significantly and this makes them 

easier to detected from a structure view rather than from the amino acids sequence. As for the 

structural motifs, its identification only from the sequence is very difficult given that many 

different amino acids can lead to same secondary structure making algorithms based in 

similarity alone not enough. 

1.3.4 | Biochemical Functions 

 The different protein biochemical functions can be categorized into four main functions: 

binding, catalysis, switching and as structural elements. In binding, proteins bind to a specific 

or more substrates like Myoglobin binds a molecule of oxygen reversibly to the iron atom in its 

heme. As for the second category, the proteins are responsible to increase the velocity of every 

chemical reaction in a living cell. Switching proteins are flexible molecules and their 

conformation change with ph or a ligand binding, allowing some cellular processes to be 

controlled. These conformational changes are crucial for the molecular basis of many cancers 

like the ones that occurs in the GTPase Ras1 when GTP2 is hydrolyzed to GDP3. At last, structural 

proteins give strength or toughness to living systems, and they depend on specific protein 

subunits with other proteins or molecules. 

                                                      
1 Protein from a large family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate, this 
particular protein is a member of the Ras superfamily of proteins 
2  Guanosine triphosphate 
3  Guanosine diphosphate 
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1.4 | Thesis Structure 

 This thesis has six distinctive chapters. In chapter 2 a synopsis of related works is 

presented. In chapter 3 all the implemented methods, as well the new method, are explained. 

In chapter 4, it is presented an application and a website created to implement the different 

methods described before. In chapter 5, it is introduced the different results as they are 

discussed in chapter 6. At last, the final remarks, conclusions and suggestions for future work 

are present in chapter 7.  
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2| Literature Review 

 In this chapter, it will be referenced and discussed the several researchs carried out 

using the primary sequence of a protein to create models that can predict their biochemical 

functions. 

2.1 | Chapter Introduction 

 There are several factors that can determine or influence the action of a protein in a 

cell, from its sequence, structure, cellular location, and or even to the presence of other 

proteins. Thus, several studies address the same problem in different ways: either by predicting 

subcellular location of a group of proteins or the enzymes subclasses. 

 So this subject can be divided into three sub problems: protein representation or 

feature extraction, feature selection and the prediction algorithms used. 

2.2 | Features Extraction 

 The representation of a protein sequence is one of the most important tasks as it may 

determine the success of any model. It is important that a protein is mathematically well 

represented in order to have the greatest number of critical information which can characterize 

it between a set of proteins that share the same function. However, we only have access to a 

sequence of amino acids, so it is necessary to implement methods to extract features from it. 

For this purpose, there are also different approaches:  methods based on AAC, subsequences, 

and N-terminal targeting. 
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 One of the most basic ways to represent a protein sequence is by counting the 20 amino 

acids in the sequence: AAC (Nishikawa, et al., 1983). Despite being a fairly simple and old 

method, it is still used quite successfully in several sets of proteins to predict their subcellular 

location or subfamily (Zhou & Doctor, 2003), or as a way to establish a performance threshold 

when proposed a new method with a new set of proteins (Yang, 2011).  However, the simplicity 

of AAC means that many important factors for a biochemical function are not represented. 

 Pse-AAC technique was developed by Kuo Chen Chou (Chou, 2001) and this method 

brought something new and unique to the approaches previously used (variations of AAC) to 

predict cell attributes. Chou showed a new representation of protein sequences, in which was 

still present in the frequency of the 20 amino acids, as well as their mass, hydrophobicity and 

hydrophilicity according to the order they appear in the same sequence. Thus, not could only a 

new interpretation for the first time took account of some chemical properties as well as the 

order in which the amino acids appeared in the sequence. In addition, using this method a 

protein sequence is analyzed as set of amino acid pairs (figure 2), because the terms 

determined to implement this method always needs the current and the immediately following 

amino acid. In his first work, Chou had used the Pse-AAC to predict cell locations, however this 

method of feature extraction has been used for other purposes such as prediction of protein 

structures (Sahu & Panda, 2010), potentially allergenic proteins (Mohabatkar et al., 2013), 

families of human enzymes (Wu, et al., 2016), among many other studies in various topics. 

 

Figure 2 – Schematic Representation of the first three tier sequence order correlation mode 

along a protein sequence on a Pse-AAC algorithm. 

 The Pse-AAC was also used in predicting 16 different oxygenase classes according to 

different target groups (Elrod & Chou, 2003). This work was important in the sense that it 

determined the homologies between the proteins of each class in order to understand how this 
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factor could be decisive when using methods based on the AAC. And it proved that despite low 

homology (30%) between proteins in the same class, with Pse-AAC was able to obtain an 

accuracy values above 70%, demonstrating that with only the primary sequence is possible to 

identify and predict a set of proteins with different sequences, whether by class families or their 

subcellular location. 

 After the initial proposal of Chou, different variations of his work appeared in order to 

complete the representation with more relevant biological information, it was the case of isno-

PseAAC (Xu et al., 2013), a new approach to Pse-AAC, allowing the incorporation of a factor 

called the propensity of the position of a specific amino acid to predict Cysteine S-nitrosylation 

Sites in Proteins. Basically, it is a 21x20 matrix in which each row and column represent the 20 

amino acids and the possibility of encoding not one, i.e. the existence of an element x in an 

amino acid sequence. Thus each element of the array can be translated in the interaction of 

two consecutive amino acids in the sequence, where is calculated the difference between the 

terms Pse-AAC for a pair of amino acids between the data set that contains peptide fragments 

and those that don’t. 

 Besides Pse-AAC, Chou also proposed Am-Pse-AAC to predict enzyme subclasses, in 

which the molecular weight is not considered and hydrophobicity and hydrophilicity are 

considered differently in the correlation coefficients, more detail in next chapter (Chou, 2004). 

The Am-Pse-AAC was also incorporated in different works related to the study of iterations 

between proteins (Huang, et al., 2014). 

 It is important to add that all these methods were used for feature extraction, due to 

the fact that is only based on an amino acid sequence, the same methods were transposed of 

different biological data, like for RNA sequences (Liu, et al. 2015), and DNA small sequences 

(Liu et al., 2015). 

 As for Pse-AAC, it proved to be an effective and simple method to represent a protein 

leading to the existence of many diverse research, as mentioned earlier.  However, it cannot 

be ignored some aspects that can make this an inadequate protein representation. 

 Firstly, the protein is observed as a set of pairs, so it is not taken in consideration the 

existence of protein domains, subsequences crucial to its structure as well as biochemical 

functionality. Another aspect, it is related to the use of hydrophilicity and hydrophobicity, 
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important parameters for intra and inter molecular interactions in the various activities of a 

protein, as another identification to an amino acid. But instead of having the designation of the 

single letter amino acid, it has a term that considerers its mass, hydrophilicity and 

hydrophobicity. Lastly, the protein is not fully analyzed, despite being present the total 

frequency of each amino acid sequence, the order is considered to a certain amino acid in the 

sequence, so possible vital information is not considered. 

 In addition to the above mentioned methods there is the analysis of amino acids 

sequences present in the protein primary structure through its presence and / or its frequency. 

Such subsequences can be different combinations of amino acids set (k-tuples), motifs 

sequences or N-terminal targeting sequences (small peptides present in the protein 

responsible for the migration of the protein into all specific organelle, such a mobile locator. 

(Hoglund et al., 2005) (A, et al., 2006). 

 The biggest problem in using motifs sequences or N-terminal targeting sequences is that 

it is limited because it is needed a prior knowledge of the type of proteins used and the 

laboratorial technique performed, and also exist many cellular events that can change or 

mutate these subsequences. 

 However, the use of k-tuples is positive in the sense that for the chosen data set is done 

a thorough search for subsequences that may be potential motifs, targeting sequences or 

domains. Though, given the existing amino acids and the number of all possible combinations, 

the number of the all possible subsequences leads to a very high number of potential attributes 

that can serve as feature to train a classifier. Not to mention that assessment of these same 

subsequences only by the presence or frequency continues to be insufficient in relation to the 

biological and chemical knowledge of the subject. It is not only the presence or frequency of a 

pattern that influence the structure and thereby the biochemical functionality of a protein. 

Because there are several intra and inter molecular interactions or structures of each amino 

acid set in the same sequence that can determine different biological purposes for a certain 

protein. 
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2.3 | Feature Selection 

 After the features extraction is set, how those features are going to be selected is also 

important, since any efficient prediction model depends on how well described is our study 

object. 

 And for proteins, it is even more difficult to choose a correct way of features selection 

because of the enormous number of biological variables that may contribute to its classification 

presence in a particular cellular location, or as belonging to a group of proteins that share the 

same chemical or functional characteristic. 

 In several researches, there are different methods for features selection, in which some 

used using the analysis of subsequences of amino acids (k-tuples). There are studies that select 

k-tuple more frequently, or with higher discriminative power or less independent, by 

calculating its frequency, Fisher's criterion, the quadratic chi respectively (Yang et al., 2006) 

(Yiming Yang, 1997). After, the attributes of each metric were evaluated separately in order to 

realize which is most efficient in the feature selection. 

 Another feature selection process is by homology analysis of these k-tuples with the 

proteins belonging to a particular class. In this process are chosen the subsequences that 

present the highest similarity with the referred proteins (Tian & Skolnick, 2003). 

 It is also important to note that many studies already used variations of the Particle 

Swarm Optimization (Kennedy & Eberhart, 1995) to select a set of attributes according to a 

chosen parameter as a fitness function, like with Chieh-Yuan´s work (Tsaia & Chena, 2015), in 

which the PSO was used to choose a set of k-tuples using as fitness function their similarity with 

positive proteins (proteins that belong to a class). 

 In others researches the PSO is used to find the attributes that lead to better an accuracy 

value when applied different types of predicting algorithms, having as features the terms of the 

Pse-AAC (Bagyamathi & Inbarani, 2015) (Mandal et al., 2015) (Bin Liu, 2015).  
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2.4 | Prediction Algorithms 

 The last factor that contributes to the success of a prediction model is the selection of 

a prediction algorithm. If is for the prediction of enzymes’ subclasses or for identifying 

subcellular locations different methods were applied. 

 The nearest-neighbor method is used in a wide variety of researches to predict enzymes 

or to predict the types of membrane proteins (Shena & Choua, 2005). 

 Another prediction algorithm used is SVM, in which from protein sequences and defined 

attributes can determine whether a protein belongs to a class by the characterization of a 

hyperplane that maximizes the margin that separate two types of data, in this a case is if a 

sequence belongs or not to a class of proteins (Zhou et al., 2007) (Annette Hoglund, 2006). 

 Other methods applied were mining association and Bayesian classification rules, in 

which it was possible to identify different classes of enzymes with rules associated with the 

protein domain composition (Guda, 2011). 

2.5 | Conclusion 

 For Feature Extraction exist effective methods from protein sequences, however there 

are always important chemical functionality factors of a protein being ignored or not shown. In 

Pse-AAC a protein is not fully analysed, while the others methods are based on similarity with 

known subsequences, therefore not successful for class proteins sets with low homology, 

mutated proteins or with lost motifs sequences. And some feature selection methods conduct 

an analysis based only on one factor or parameter. 

2.6 | Our Proposal 

 Based on what it was referred before, it was created a method that from all possible 

combinations of variable size subsequences are pre-selected (according to more than 24 

different metrics) to build a search space used in PSO to select some of them to increase the 

AUC (area under curve), creating a system capable of evaluating subsequences by different 

parameters simultaneously. 
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3|Methods 
 In this chapter, it will be discussed in detail the methods based on AAC which have been 

implemented in detail, and also it will be described all the components and different variables 

of the proposed method. 

3.1 | Chapter Introduction 

 It is necessary to find variables or parameters capable of identifying a certain set of 

proteins, in order to distinguish their different classes or subclasses to correctly identifying 

them, which makes it possible to establish some of the main protein functions. 

 The biggest obstacle lies in determining correctly these same variables solely with the 

protein sequence. Therefore, different methods were implemented to define diverse sets of 

variables. 

 First, each set of proteins was characterized by the number of each amino acid (AAC). 

Also, it was applied a method created by Kuo-Chen Chou (Pse-AAC) in which the amino acids’ 

arrangement on the protein sequence as well as their hydrophobicity, hydrophilicity, and mass 

are taken in to consideration. Furthermore, all possible combinations of subsequences were 

determined by a predefined number of amino acids present so they could be scored according 
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to their occurrence and other parameters in each protein sequence (Scoring), and then some 

of them selected through the highest scores. 

 Additionally, it was implemented the PSO on all variables previously referenced in order 

to select the variables best capable of characterizing a certain protein set. 

3.1 | Amino Acid Composition – AAC  

 The Amino Acid Composition is the simplest way to attempt to solve this problem and 

almost all the previous works made in this field are based on it, plus its results provided were 

used to show how well a new algorithm can improve them. 

 Therefore, considering a certain set with N proteins, each protein j (𝑃𝑗) can be 

represented as an array of L-amino acids (𝑏𝑚): 

𝑃𝑗(𝑛) =  𝑏𝑚
1…𝑏𝑚

𝑛𝑏𝑚
𝑛+1𝑏𝑚

𝑛+2… 𝑏𝑚
𝐿−2𝑏𝑚

𝐿−1𝑏𝑚
𝐿  (1) 

𝐿 > 0 , 1 < 𝑛 < 𝐿, 𝑚 > 0, 1 < 𝑗 ≤ 𝑁   

where n indicates the amino acid position in the protein sequence, and m identifies an element 

of b, assuming this contains all the coding possibilities, in a protein sequence, besides the 20 

native amino acids because unknown or ambiguous amino acids may also exist. 

 For AAC, each protein j was represented by a vector (𝑥𝑗⃗⃗  ⃗) with 20 elements, each 

corresponding to the number of occurrences of an amino acid in the same protein sequence 

(𝑓𝑖(𝑃𝑗)), since this amino acid was one of the 20 native amino acids. 

𝑥𝑗⃗⃗  ⃗ = [𝑓1(𝑃𝑗), 𝑓2(𝑃𝑗), … , 𝑓20(𝑃𝑗)]  (2) 

 As a result, to train a possible model each sample was a protein sequence represented 

by 20 features and labeled as 1 or 0, depending on whether they belong or not to a certain 

class of proteins. 
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Table 1 – List of all elements of b. Each one has a three letter code (3LC), one letter code(1LC) 

and the name of its chemical structure (Chemical Compound). The first 20 amino acids (from 
Alanine to Valine) are the 20 native amino acids (kegg, s.d.). 

3LC 1LC CHEMICAL COMPOUND 

Ala A Alanine 

Arg R Arginine 

Asn N Asparagine 

Asp D Aspartic acid 

Cys C Cysteine 

Gln Q Glutamine 

Glu E Glutamic acid 

Gly G Glycine 

His H Histidine 

Ile I Isoleucine 

Leu L Leucine 

Lys K Lysine 

Met M Methionine 

Phe F Phenylalanine 

Pro P Proline 

Ser S Serine 

Thr T Threonine 

Trp W Tryptophan 

Tyr Y Tyrosine 

Val V Valine 

Asx B Asn or Asp 

Glx Z Gln or Glu 

Xle J Leu or Ile 

Sec U Selenocysteine (UGA) 

Pyl O Pyrrolysine (UAG) 

Unk X Unknown 

 

 Several simulations were made with different preprocessing methods in order to find 

the best way to deal with this type of data, but better results were obtained without these 

methods. For example, different data standardization methods were implemented like feature 

scaling, although it is not required in this case, since all values are in same order of magnitude.   
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3.2 | Pseudo Amino Acid Composition – Pse-AAC 

The main purpose of this methodology is to include more significant information than the 

AAC by considering the physical and chemical properties of each amino acid present in a certain 

protein sequence. 

 According to this method and equation present in 1, the order-correlated factor was 

defined as: 

{
  
 

  
 𝜃1 = 

1

𝐿−1
∑ Θ(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 1)
𝐿−1
𝑛=1 )

𝜃2 =  
1

𝐿−2
∑ Θ(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 2)
𝐿−2
𝑛=1 )

𝜃3 =  
1

𝐿−3
∑ Θ(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 3))
𝐿−3
𝑛=1

…

𝜃𝜆 = 
1

𝐿−𝜆
∑ Θ(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 𝜆))
𝐿−𝜆
𝑛=1

(𝜆 < 𝐿)      (4) 

 Subsequently, the correlation factors are determined considering the sequence order 

correlation between continuous residues along the protein sequence. Therefore, the 

correlation function was determined by: 

Θ(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 𝜆)) =  
1

3
{[𝐻1(𝑃𝑗(𝑛 + 𝜆)) − 𝐻1(𝑃𝑗(𝑛))]

2
+ [𝐻2(𝑃𝑗(𝑛 + 𝜆)) −

𝐻2(𝑃𝑗(𝑛) =]
2
+[𝑀(𝑃𝑗(𝑛 + 𝜆)) −𝑀(𝑃𝑗(𝑛))]

2
}   (5) 

 In the prior mathematical expression,  𝐻1 is the amino acid hydrophobicity value, 𝐻2 is 

the amino acid hydrophilicity value and 𝑀 its side-chain mass. These parameters were 

converted by the following standardization: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐻1(𝑖) =  

𝐻1
0(𝑖)−∑

𝐻1
0(𝑖)

20
20
𝑖=1

√∑ [𝐻1
0(𝑖)−∑

𝐻1
0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖=1

20

𝐻2(𝑖) =  
𝐻2
0(𝑖)−∑

𝐻2
0(𝑖)

20
20
𝑖=1

√∑ [𝐻2
0(𝑖)−∑

𝐻2
0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖=1

20

 

𝑀(𝑖) =  
𝑀0(𝑖)−∑

𝑀0(𝑖)

20
20
𝑖=1

√∑ [𝑀0(𝑖)−∑
𝑀0(𝑖)
20

20
𝑖=1 ]

2
20
𝑖=1

20

    (6) 
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where 𝐻10 is the amino acid hydrophobicity value taken from Tanford research (C, 1962) , 𝐻20 is 

the amino acid hydrophilicity value acquired by Hoop and Woods’ work (Hopp TP, 1981) and 

𝑀0  the mass of an amino acid (biofor, s.d.). 

 Consequently, each protein was represented by the resulting vector: 

𝑥𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜃𝑗

𝜆
𝑗=1

 (1 ≤ 𝑢 ≤ 20)

𝑤𝜃𝑢−20

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜃𝑗

𝜆
𝑗=1

 (20 + 1 ≤ 𝑢 ≤ 20 + 𝜆
   (7) 

 In which 𝑓𝑢 is the normalized frequency of the 20 amino acid in a certain protein 

sequence, 𝜃𝑗   the j-tier sequence correlation and 𝑤  the weight factor for the amino acid 

arrangement effect. 

3.3 | Amphiphilic Pseudo Amino Acid Composition – Am-Pse-AAC 

 This method is very similar to Pse-AAC, so the order-correlated factor was defined as: 

{
 
 
 
 

 
 
 
 𝜃1 = 

1

𝐿−1
∑ H1(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 1)
𝐿−1
𝑛=1 )

𝜃2 =  
1

𝐿−1
∑ H2(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 1)
𝐿−1
𝑛=1 )

𝜃3 =  
1

𝐿−2
∑ H1(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 2)
𝐿−2
𝑛=1 )

𝜃3 =  
1

𝐿−2
∑ H2(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 2)
𝐿−2
𝑛=1 )

…

𝜃2𝜆−1 = 
1

𝐿−𝜆
∑ H1(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 𝜆))
𝐿−𝜆
𝑛=1

𝜃2𝜆 = 
1

𝐿−𝜆
∑ H2(𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 𝜆))
𝐿−𝜆
𝑛=1

(𝜆 < 𝐿)    (8) 

where H1  and H2 were the hydrophobicity and hydrophilicity correlation functions given by: 

H1 (𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 𝜆)) =  ℎ
1(𝑃(𝑛)) .  ℎ1 (𝑃𝑗(𝑛 + 𝜆))    (9) 

H2 (𝑃𝑗(𝑛), 𝑃𝑗(𝑛 + 𝜆)) =  ℎ
2(𝑃(𝑛)) .  ℎ2 (𝑃𝑗(𝑛 + 𝜆))    (10) 

 where,  ℎ1 is the amino acid hydrophobicity value and  ℎ2 is the amino acid 

hydrophilicity value. Like for Pse-AAC, these parameters were converted by the following 

standardization: 
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{
 
 
 
 

 
 
 
 𝐻1(𝑖) =  

ℎ1
0(𝑖)−∑

ℎ1
0(𝑖)

20
20
𝑖=1

√∑ [ℎ1
0(𝑖)−∑

ℎ1
0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖=1

20

𝐻2(𝑖) =  
ℎ2
0(𝑖)−∑

ℎ2
0(𝑖)

20
20
𝑖=1

√∑ [ℎ2
0(𝑖)−∑

ℎ2
0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖=1

20

 

 

    (11) 

where ℎ10 is the amino acid hydrophobicity value taken from Tanford research (C, 1962)  and 

ℎ2
0 is the amino acid hydrophilicity value acquired by Hoop and Woods’ work (Hopp TP, 1981). 

 Consequently, each protein was represented by the resulting vector: 

𝑥𝑢 = {

𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜃𝑗

𝜆
𝑗=1

 (1 ≤ 𝑢 ≤ 20)

𝑤𝜃𝑢

∑ 𝑓𝑖
20
𝑖=1 +𝑤∑ 𝜃𝑗

𝜆
𝑗=1

 (20 + 1 ≤ 𝑢 ≤ 20 + 2𝜆
   (12) 

 In which 𝑓𝑢 is the normalized frequency of the 20 amino acid in a certain protein 

sequence, 𝜃𝑗   the j-tier sequence correlation and 𝑤  the weight factor for the amino acid 

arrangement effect. 

3.3 | Scoring 

 As referred in the last chapter, in this process different subsequences (k-tuples) were 

designated as possible variables capable of specifying a protein’s a class. However, considering 

all the possible combinations of subsequences, this process can lead to many computational 

problems. One of the ways found to overcome this difficulty is to assign statistical significance 

to each of the variables created. In order to do so, different metrics (scores) were determined 

to specify several degrees of importance in the same variable on a sample or set, each sample 

being a protein and each variable a k-tuple.  

 There were several types of scores already applied in previous studies, such as the 

frequency of a k-tuple on a set of proteins, the linear Fisher discriminant or  𝜒2 statistics. 

 Nevertheless, considering the different forms of chemical interactions that may occur 

in a protein in different sections of its primary structure, other basic metrics can lead to the 

selection of other k-tuples essential to the correct class prediction. For example, proteins 
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belonging to different classes may differ by the presence or absence of a certain subsequence, 

the number of copies of it, as well as its subsequence position in the sequence. 

 As a result, different scores were defined to approach the problem, so the variables may 

be selected to assess which factor weighs more in the deference between the proteins 

belonging or not to a class, and to reduce the space search of all possible variables. 

3.3.1 | k-tuples 

 So, one way to extract potential features from the protein sequence is through k-tuples, 

smaller subsequences with k-amino acids. Basically by defining a k, all possible combinations 

from 2 to k with the 20 native amino acids were found computationally to proceed to scoring.   

 Thus, considering a space with all k-tuples variables as 𝑉(𝑖), which its dimension is equal 

to ∑ 20𝑛𝑘
𝑛=1 , each element is 𝑆𝑘𝑖, an amino acid subsequence with k-amino acids (𝑎𝑚) was 

exemplified as: 

𝑆𝑘𝑖(𝑛) = 𝑎𝑚
1𝑎𝑚

2…  𝑎𝑚
𝑛  … 𝑎𝑚

𝑘     (13) 

𝑎𝑚  ∈ 𝑎 =  {20 𝑛𝑎𝑡𝑖𝑣𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠
∗} 

2 ≤ 𝑘 ≤ 5 , 𝑖 ∈ ℕ+, 1 < 𝑛 < 5 

where n indicates the amino acid position the subsequence, and m identifies an element of a, 

supposing it has all native 20 amino acids. 

3.3.2 | Frequency 

 In order to define different scores, initially two distinct subsequence frequencies were 

formulated: frequency of elements arranged consecutively and frequency of elements 

arranged non consecutively.  

 This distinction was made because a specific subsequence 𝑆𝑘𝑖 may be crucial to identify 

the protein function (first frequency), given that a protein sequence may have unknown or 

ambiguous amino acids and in the different protein structures can occur several chemical 

interactions between distant groups of amino acids (second frequency). 



3|Methods 
 

20 
 

3.3.2.1 | Frequency of Elements Arranged Consecutively - FC 

 Thus, the frequency of a k-tuple variable 𝑆𝑘𝑖 with n elements arranged consecutively on 

a protein 𝑃𝑗 was defined by: 

𝐹𝐶(𝑃𝑗 , 𝑆𝑘𝑖) =  ∑ [𝑓𝑐(𝑃𝑗[𝑛: 𝑛 + 𝑘], 𝑆𝑘𝑖), 𝑎𝑚
1 = 𝑏𝑚

𝑛]𝐿−𝑘+1
𝑛=1   (14) 

𝑓𝑐(𝑃𝑗[𝑛: 𝑛 + 𝑘], 𝑆𝑘𝑖) =  {
1, ∃𝑎𝑚

𝑑 = 𝑏𝑚
𝑐   

0, ∃ 𝑎𝑚
𝑑 ≠ 𝑏𝑚

𝑐 
𝑑 = 𝑐 − 𝑛, ∀ (𝑃𝑗[𝑛: 𝑛 + 𝑘], 𝑆𝑘𝑖)(10) 

 The frequency of n elements arranged consecutively is the number of events that all the 

amino acids of 𝑆𝑘𝑖 are disposed in the designated order and consecutively in the protein 

sequence 𝑃𝑗.  By analyzing 𝑃𝑗, when an amino acid (𝑏𝑚
𝑛) in n positon is equal to the first amino 

acid (𝑎𝑚1)  of 𝑆𝑘𝑖, it is checked whether the immediately remaining subsequent amino acids of 

𝑃𝑗  match the same order to the last amino acid of the 𝑆𝑘𝑖. In this case, it must be beaded 1 to 

the current frequency and the next the amino acid to analyze in 𝑃𝑗 is located at n + k + 1. If not, 

the next amino acid to be evaluated has n+1 position. 

3.3.2.1 | Frequency of elements arranged non consecutively - FNC 

 Given the previous principles, for a protein 𝑃𝑗 it is possible to determine the frequency 

of elements arranged non consecutively in the following: 

𝐹𝑁𝐶(𝑃𝑗 , 𝑆𝑘𝑖) =  ∑ [𝑓𝑛𝑐(𝑃𝑗[𝑛: 𝐿], 𝑆𝑘𝑖), 𝑎𝑚
1 = 𝑏𝑚

𝑛]𝐿−𝑘+1
𝑛=1   (15) 

𝑓𝑛𝑐(𝑃𝑗[𝑛: 𝐿], 𝑆𝑘𝑖) =  {
1, ∃ 𝑎𝑚

𝑑 = 𝑏𝑚
𝑐  

0, ∄ 𝑎𝑚
𝑑 = 𝑏𝑚

𝑐 , 𝑑 ≤ 𝑐 − 𝑛 , ∀ 𝑆𝑘𝑖   (16) 

 So, in 𝑃𝑗 when an n amino acid (𝑏𝑚
𝑛) is equal to the first amino acid (𝑎𝑚1) of 𝑆𝑘𝑖, it 

continues to search for the second amino acid 𝑎𝑚2 in 𝑃𝑗  located after  𝑏𝑚
𝑛 regardless the 

position of the same amino acid may occupy. The current frequency will increase by one when 

all 𝑆𝑘𝑖’s amino acids are found on the sequence protein in the same order they are presented. 

After, the search for 𝑎𝑚1 in 𝑃𝑗 begins again at the amino acid following the first one found 

before, and all the amino acids once considered are ignored on the succeeding searches. 

 The way this frequency is defined, the elements of 𝑆𝑘𝑖 arranged consecutively in the 

protein sequence are also being considered, but in less number. 
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3.3.3 | Data Sets   

 To correctly evaluate the k-tuples found, and select the best representative features, 

three sets were created in which each subsequence is evaluated: The set of proteins that will 

be used to train a model (data_all), the set with the proteins which in the previous set belong 

to the class (data_pos) and another set with proteins which are not part of it (dara_neg). By 

doing so, it is possible to review the different k-tuples without the scores being excessively 

influenced by the unbalance between the number of proteins from the class and the number 

which do not belong. There isalso a possible way to clearly find the features that best 

characterize each case.  

3.3.4 | Scores 

 Diverse categories of scores were created in order to analyze each subsequence (𝑆𝑘𝑖) 

considering different characteristics, such as its number of elements (𝑎𝑚), its frequency in a 

defined protein set, how discriminant it is for different types of proteins, among others.  

3.3.4.1 | Absolute Set Frequency – ASF  

 This score is the simplest way to evaluate the significance of a subsequence on a certain 

protein set. Basically, it determines how important a subsequence is by measuring its frequency 

on each protein. Some repeated subsequences can be important in a protein structure and 

consequently in its metabolic function. 

 For the subsequence 𝑆𝑘𝑖 and certain set with N proteins, this score was the sum of the 

subsequence frequency in each protein as it is defined next. 

3.3.4.1.1 | Absolute Set Frequency of Elements Arranged Consecutively – ASFC 

𝐴𝑆𝐹𝐶(𝑆𝑘𝑖) =  ∑ 𝐹𝐶(𝑃𝑗 , 𝑆𝑘𝑖)
𝑁
𝑗=1    (17) 

3.3.4.1.2 | Absolute Set Frequency of Elements Arranged Non Consecutively – ASFN 

𝐴𝑆𝐹𝑁(𝑆𝑘𝑖) =  ∑ 𝐹𝑁𝐶(𝑃𝑗 , 𝑆𝑘𝑖)
𝑁
𝑗=1    (18) 
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3.3.4.2 | Absolute Frequency by Presence – AFP  

 This score evaluates whether a certain subsequence is present or not in a protein 

sequence, rather than its frequency. Consequently, the score will be higher the more proteins 

has the subsequence in question. This score was defined this way because a certain k-tuple can 

be very common in some proteins, however, it is not expressed significantly throughout the 

defined set or by its frequency in the sequence. 

 So, for a set with N proteins, a subsequence (𝑆𝑘𝑖) will have as a score the number of 

proteins in which it had a frequency higher than 0. This score was used in order to take into 

consideration the two types of frequency. 

3.3.4.2.1 | Absolute Frequency by Presence of Elements Arranged Consecutively – AFPC 

 For a certain subsequence 𝑆𝑘𝑖 the Absolute Frequency by Presence of Elements 

Arranged Consecutively is determined by: 

𝐴𝐹𝑃𝐶𝑖(𝑆𝑘𝑖) =  ∑ 𝐸𝑐𝑁
𝑗=1 (𝑃𝑗 , 𝑆𝑘𝑖)    (19) 

𝐸𝑐(𝑃𝑗 , 𝑆𝑘𝑖) =  {
 1 , 𝑖𝑓 𝐹𝐶(𝑃𝑗 , 𝑆𝑘𝑖) > 0

0 , 𝑖𝑓 𝐹𝐶(𝑃𝑗 , 𝑆𝑘𝑖) = 0
   (20) 

In which N represents the total number of proteins in a defined set, 𝑃𝑗 is one of those proteins. 

3.3.4.2.2 | Absolute Frequency by Presence of Elements Arranged Non Consecutively – AFPN 

 The AFPN is defined by: 

𝐴𝐹𝑃𝑁(𝑆𝑘𝑖) =  ∑ 𝐸𝑛𝑐𝑁
𝑗=1 (𝑃𝑗 , 𝑆𝑘𝑖)    (21) 

𝐸𝑛𝑐(𝑃𝑗 , 𝑆𝑘𝑖) =  {
 1, 𝑖𝑓 𝐹𝑁𝐶(𝑃𝑗 , 𝑆𝑘𝑖) > 0

0, 𝑖𝑓 𝐹𝑁𝐶(𝑃𝑗 , 𝑆𝑘𝑖) = 0
   (22) 

3.3.4.3 | Relative Frequency by Presence – RFP  

 This score is similar to the last one, the difference is that RFP takes into account the 

number of proteins in the defined set. Of course, in MaxScoring the previous score and RFP will 

lead to the selection of the same sequences in data_all. However, this score was not created 
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to be used in data_all, but rather to create a different selection for the remaining sets, which 

shall be addressed in the next section with a more detailed description of MaxScoring. 

Also the two types of frequency were considered, therefore the two types of scores shall be 

described next. 

3.3.4.3.1 | Relative Frequency by Presence of Elements Arranged Consecutively – RFPC  

𝑅𝐹𝑃𝐶(𝑆𝑘𝑖) =  
1

𝑁
∑ 𝐸𝑐𝑁
𝑗=1 (𝑃𝑗 , 𝑆𝑘𝑖)   (23) 

𝐸𝑐(𝑃𝑗 , 𝑆𝑘𝑖) =  {
 1 , 𝑖𝑓 𝐹𝐶(𝑃𝑗 , 𝑆𝑘𝑖) > 0

0 , 𝑖𝑓 𝐹𝐶(𝑃𝑗 , 𝑆𝑘𝑖) = 0
   (24) 

3.3.4.3.2 | Relative Frequency by Presence of Elements Arranged Non Consecutively – RFPN 

𝑅𝐹𝑃𝑁(𝑆𝑘𝑖) =  
1

𝑁
∑ 𝐸𝑛𝑐𝑁
𝑗=1 (𝑃𝑗 , 𝑆𝑘𝑖)   (25) 

𝐸𝑛𝑐𝑗(𝑆𝑘𝑖) =  {
 1, 𝑖𝑓 𝐹𝑁𝐶𝑗(𝑆𝑘𝑖) > 0

0, 𝑖𝑓 𝐹𝑁𝐶𝑗(𝑆𝑘𝑖) = 0
   (26) 

3.3.4.4 | k-Frequency – KF 

 It would be incorrect to evaluate the frequency of the variables disregarding the length 

of each one. The more amino acids the variable has, the lower its frequency is comparing to 

the features of AAC. In this sense, to try a solution, this score was created, which attempts to 

benefit variables with more elements, or at least to enable their evaluation more evenly. 

 Therefore, KF is the ratio between the sum of a subsequence frequency in each protein 

and k, variable defined when all k-tuples were defined. [see 3.1 k-tuples]  

 In this score, both frequencies were used like it is shown below. 

3.3.4.4.1 | K-Frequency of elements arranged consequently – KFC 

𝐾𝐹𝐶(𝑆𝑘𝑖) =  ∑
𝐹𝐶(𝑃𝑗,𝑆𝑘𝑖)

k

𝑁
𝑗=1     (27) 

3.3.4.4.2 | K-Frequency of elements arranged non consequently – KFN 

𝐾𝐹𝑁(𝑆𝑘𝑖) =  ∑
𝐹𝑁𝐶(𝑃𝑗,𝑆𝑘𝑖)

k

𝑁
𝑗=1     (28) 
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3.3.4.5 | Fisher Score – FS  

 This score is based on the Fisher linear discriminant analysis, a method used in pattern 

recognition, machine learning, and other fields of expertise, to find a linear combination of 

features that characterizes and/or separates two or more classes of objects or events. 

Considering a class of proteins, it was defined that the two events assessed would be if the 

protein belongs (labeled as 1) or not to the same class (labeled as 0). 

 In previous works, the same score was used in order to find the discriminating variables 

between different protein classes with extended formulas, but in this case the way that all sets 

and classes are defined is not possible to do the same, and also before knowing what features 

separate different classes, it is more important to know what subsequences can characterize a 

protein in a way to show if it belongs or not to a certain class, since, proteins share similar 

characteristics when it comes to their functionality: some have multiple functions, and 

therefore, multiple classes.  

 Accordingly, for a certain set of N protein, FS of a certain subsequence 𝑆𝑘𝑖 is a ratio in 

which the numerator is the square of the difference between the mean frequency of 𝑆𝑘𝑖 in 

proteins labeled as 1 and 0, and the denominator is the sum of the variances of those 

frequencies. 

3.3.4.5.1 | Fisher Score of elements arranged consequently – FSC 

𝐹𝑆𝐶(𝑆𝑘𝑖) =  
|𝐹𝐶(𝑃𝑗,𝑆𝑘𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑙=1
− 𝐹𝐶(𝑃𝑗,𝑆𝑘𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑙=0
|
2

𝑠𝑐
2|
𝑙=1

+𝑠𝑐
2|
𝑙=0

    (29) 

3.3.4.5.2 | Fisher Score of elements arranged non consequently – FSN 

𝐹𝑆𝑁(𝑆𝑘𝑖) =  
|𝐹𝐶𝑁(𝑃𝑗,𝑆𝑘𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑙=1
− 𝐹𝐶(𝑃𝑗,𝑆𝑘𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑙=0
|
2

𝑠𝑛
2|
𝑙=1

+𝑠𝑛
2|
𝑙=0

   (30) 

3.3.4.5 | Term frequency–inverse document frequency – TF-idf 

 The concept around this score is often used in information retrieval and text mining. 

Basically, Tf-idf is a statistical measure that shows how important a word is in one or more 

documents by evaluating how infrequently the word is across them.  
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 In a protein sequence, rare subsequences are also important to predicts its classes. The 

presence of one or few rare subsequences can be crucial to define a particular functionality, 

and all the scores before aren’t able to evaluate that, therefore the less frequent subsequence 

is the higher the score is. 

 The tf-idf of a term t in a document d is defined as the product of the term frequency 

(tf) with the term inverse document Frequency (idf). The tf is the quotient between the number 

of times t appears in d and the total number of terms or words present in the same document. 

As for idf, it is determined by the logarithm of the total number of documents divided by the 

number of documents with the same term in it. Consequently, the tf-idf of t in several 

documents is the sum of the operation explained above for each document. 

 In this case, the documents are the protein sequences and the words or terms are the 

subsequences. Therefore, for a certain subsequence 𝑆𝑘𝑖 and for the protein sequence j the 

term frequency can be defined by: 

𝑡𝑓 =  
𝑓(𝑃𝑗,𝑆𝑘𝑖)

𝐿𝑗
𝑘𝑖     (31) 

where f is one of the type of frequencies previous defined, 𝑘𝑖  is the number of amino acids 

present on 𝑆𝑘𝑖 and 𝐿𝑗 is the subsequence length.  

 This tf was considered in this way because a protein sequence doesn’t have a total 

number of terms or words, it’s a sequence, thus considering a potential term as an amino acid 

set with equal size as the subsequence involved, the total number of terms could be the 

number of times that the protein can contain the subsequence, taking into account how its 

frequency has been set. As a result, the total number of terms in a protein is the ratio between 

its total number of amino acids, and the total number of amino acids in a subsequence. 

More detailed formulas are showed next, considering a set with N proteins and a certain 

subsequence, using both types of frequencies. 

3.3.4.5.1 | Term frequency–inverse document frequency of Elements Arranged Consecutively – 

tfc-idf 

𝑡𝑓𝑐 − 𝑖𝑑𝑓(𝑆𝑘𝑖) = ∑
𝐹𝐶(𝑃𝑗,𝑆𝑘𝑖)

𝐿𝑗
𝑘𝑖

𝑁
𝑗=1 × log10 (

𝑁

𝐹𝐴𝑃𝐶(𝑆𝑘𝑖)
)   (32) 
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3.3.4.5.2 | Term frequency–inverse document frequency of Elements Arranged Non 

Consecutively – tfn-idf  

𝑡𝑓𝑛 − 𝑖𝑑𝑓(𝑆𝑘𝑖) = ∑
𝐹𝑁𝐶(𝑃𝑗,𝑆𝑘𝑖)

𝐿𝑗
𝑘𝑖

𝑁
𝑗=1 × log10 (

𝑁

𝐹𝐴𝑃𝑁(𝑆𝑘𝑖)
)  (33) 

3.3.4.6 | 𝓧𝟐 𝒔𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄𝒔 – XS 

 This score is based on 𝒳2 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠, which is basically used to evaluate if the 

distribution of two categorical variables differ from each other in a single population.  

Essentially, this can be used to determine if there is a significant correlation between the two 

variables.  In this case the two categorical variables are whether a protein belongs or not to a 

class and if it contains a certain subsequence or not. 

 So, by using the two-way contingency table it was defined as a score: 

𝑋𝑆 (𝑆𝑘𝑖) =  
𝑁×(𝐴𝐷−𝐶𝐵)2

(𝐴+𝐶)×(𝐵+𝐷)×(𝐴+𝐵)×(𝐶+𝐷)
    (34) 

where A is the number of positive proteins with 𝑆𝑘𝑖, B is the number of negative proteins that 

have the it, C stands for the number of positives proteins that not contain it, D is the number 

of negative proteins without the subsequence in theirs sequences and N is the number of 

proteins involved (positive and negative). 

 It is important to add that this score has a natural value of zero if both variables are 

independent, so it will be used only if appear subsequences scored above 0.  

 This score also was used for both defined frequencies. 

3.3.5 |MaxScoring 

 Once the scoring is complete, the next step is the selection of a number of 

subsequences for each score. So, depending on the chosen set of protein, it is defined the 

number of variables for each score (M). The M variables with the highest score in each category 

previous defined will be selected, and after those subsequences it will became features of the 

same set to construct a potential model through SVM classifiers. This is only for data_all, for 
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the data_neg and the data_pos sets of M/2 variables will be selected for each score, and then 

the combined features of both will became the features to a model. 

 For the score RFP, this process works a little different. For the data_neg and the 

data_pos sets, the variables are compared in both sets, and they are selected for each set if the 

score was higher in it. For example, during the search for the most significant variables, if “aa” 

has a high score, it would only be chosen for the set where it showed a higher score. 

 In addition, MaxScoring was executed in two different ways. The first one the variables 

were selected only by the score they presented (MaxScoring Normal – MS-N). As for the second 

one, besides the score it is important the variables shared similarities. Basically when searching 

for variables with the high scores if it is found two variables that distinguish in length but the 

larger contains the smaller, the last one is eliminated from the search (MaxScoring without 

parent subsequences – MS-WPS).  

3.4 |Particle Swarm Optimization – PSO 

 The Particle Swarm optimization algorithm (PSO) is a computational method that 

optimizes a given problem by iteratively measuring the quality of the various solutions. 

 In this context, PSO is used to select the best features to characterize each class by using 

as fitness function the AUC (area under the curve) obtained. 
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 As shown in Figure 3, the PSO consists in the initialization of a group de particles and 

search for best solution/particle by updating theirs positions (𝑥𝑖,𝑑) and velocities. In each 

iteration, each particle is updated by the following two best values. The best solution achieved 

during a iteration is pbi, and gbd is the best value obtained by any particle in the population S 

in any iteration. The particle updates its velocity and positions with the equations expressed in 

the figure where vi,d is the particle velocity,  Rnd () is a random number, C1 and C2 are learning 

factors.  

3.4.1 |Hybrid Features – Initialization of the particles 

 Comparing to previous studies, in this context, the PSO was used differently for feature 

selection. From the prior sections, it is clear that are different types of variables as potential 

features for a class classifier, each different type of variable concerning different aspects that 

needed to be evidenced at a given dataset. 

 Accordingly, it was decided to use the PSO to group all these variables so it can be 

considered all the chemical and biological indications discussed before, and also all can be fairly 

Figure 3 - Pseudo Code of the Particle Swarm Optimization Algorithm used for feature 

Selection (ist, s.d.) 
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part of a possible model at the same time. This means a distinct particles initialization and the 

presence of features with different backgrounds - Hybrid features. 

 So we have two different sets of variables: AAC and k-tuples variables selected by 

MaxScoring. The variables involving AAC were always present in each particle, as well as the k-

tuples.  

 So, for a given dataset was created a number of particles same as the number of the 

existing scores for the three types of sets. [See section 3.3]. Thus, with all scores it existed 12 

scores for data_all and 12 scores from other sets, making a total of 24 particles. Although it 

may be less if the score XS is not relevant, that is if in MaxScoring the maximum values always 

found were 0.  This means that each particle represents a score for a determined set. Each 

particle dimension will be 20 (AAC) plus the number of all k-tuples found in all considered 

scores.  

 The Initialization of each particle was done accordingly to each score, where each 

element of 𝑥𝑖  (a specified particle) was 1 in the positions relative to variables from AAC to the 

k-tuples variables that belong to the score, the remaining elements are 0. For example, 

considering the particle representative of a FSC for data_all, all elements corresponding to the 

k-tuples selected by Max Scoring for that score and that set, as well as to the AAC have the 

value of 1, while the others will be equal to 0. 

 The particles initialization was defined in a way to reduce the search-space without 

ignoring all possible combinations of different variables as best features. 

3.4.2 |Different Uses of Particle position to perform Feature Selection 

 The Feature Selection is performed through the values defining the position particle (𝑥𝑖) 

by three different ways. 

 The first one, every feature chosen as input for the PSO algorithm is used to construct 

a possible model but the vector with the frequencies of each one was multiplied by the 

corresponding position vector of a certain particle – PSO-W.  This way, the position components 

of a particle were viewed as weights, because it was correct to assume some features could be 
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more important than others and this could be a solution to find how important each one can 

be. 

 Another method is removing features if its corresponding position component from the 

particle was less than 0 – PSO-F. 

 And lastly, the two previous approaches are considered, so the features in which the 

position components of particle vector position are negative are ignored and for the remaining 

features their frequencies will be multiplied by the corresponding weights – PSO-WF 

3.4.3 |Fitness Function – Data Structure 

 For each interaction, each particle consists of a defined data structure to construct a 

model through SVM, so then could be used in a test set to obtain the AUC. 

 After defining which PSO will be used to deal with the chosen features in each particle, 

for each protein it will be determined the variable frequency, depending on the nature of the 

hybrid feature. If is a k-tuple three situation could occur. 

 The first two was being able to choose how to determine a k-tuple frequency in a 

protein sequence, if FC or FNC, because they are related and performing different types of 

frequency in different k-tuples even if they were chosen by a score with other type of frequency 

is not completely wrong. And also because k is set for 5 so the variables are small enough to be 

significant for both types of frequency. It was decided to do this also to see how both 

frequencies can influence the classifiers’ performance as well as to begin the implementation 

with simpler tests to see the improvement as the work progresses. 

 The other scenario was the definition of each subsequence frequency according to its 

provided score. If a k-tuple is present in different scores influenced by different frequencies, 

then a duplicate is created for that k-tuple, resulting into two representative vectors. One with 

the FC of that variable and the another with the absolute difference between FC and FNC. This 

way, the type of score will be considered not only by selecting which k-tuple will be in the 

algorithm but also how the data will be constructed for the respective class classifier. 
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4|Practical Applications 
 In this chapter, it was described two essential tools that were created to enable the use 

of the referred methods easily by any user. Thus, it was created a graphical interface in C # and 

a website, in order to complement the research with a practical component. 

4.1 |C# Application 

 A C# Application that handles all necessary scripts was created in order to the methods 

could be implemented properly by any user not familiar with the covered procedures or with 

no experience in manipulating the different scripts created, or even who is interested in 

performing experiments with other datasets.  

 At first the user can see the project name, and two buttons one of which directs the 

user to a task menu (figure 4), and the other opens a window that allows the user to verify all 

python necessary libraries in order to run any command. 

 The task menu (figure 5) consists in 5 different buttons and each of them shows a 

different type of task: date set settings, algorithms based on AAC, tasks related to the Scoring, 

the application of PSO, and finally the view of excel files containing results. 
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Figure 4 – Initial C# Application window 

 To perform any task, first the user must choose which data set he wants to use if any 

was previously saved, or he has the option to add data set by choosing the files present on the 

computer. When choosing a dataset is allowed to the user to execute AAC, Pse-AAC or Am-Pse-

AAC (figure 6) and the results can be viewed by clicking on files button. 

 If the user selects a dataset and a number of range of classes, the user can start the 

Scoring, MaxScoring, and he can also choose a score or more and try to predict proteins classes 

without using PSO. 

 After having performed the scoring and MaxScoring to a certain data set at least once, 

the user can use to the PSO according to the settings. 

 In Files Manager (last button), the user as access to all files with results of the chosen 

dataset. The user can visualize and perform basic operations like determining the mean, the 

minimum and maximum of a group of values. 
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Figure 5 – Task Menu Panel 

 The control of python scripts as well as of files that are being created is done by 

executing intermediate python scripts (created on purpose for this interface) through the 

computer command line. This leads to the command prompt window appear when starting a 

task, or doing the implementation of a method, to inform the different stages of the running 

method. 

 It is important to point out that the application warns the user about the minimal 

requisites needed to perform all this methods, as well as the high execution time. Also to run 

this application is needed a great number of files and scripts. 
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Figure 6 – Scoring and MaxScoring Panel 

4.2 |Web Page 

 In addition to the application it was created a Web Page in which the user has 

information about the project (figures 7 and 8). It is also where is available the application as 

well as recommendations on how to use is. Similarly has a sector in case a possible user does 

not want to use the application, but wants test the proposed methods, he can submit files and 

the application of the methods is performed with the resources available at the moment, user 

only receives the results or the associated notifications. 
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Figure 7 – Initial Menu Shown at the created Web Page 

 

Figure 8 – The available information about the used methods at the created Web Page 
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5|Results 
 In this chapter, it was discussed the main characteristics of the chosen data sets, in what 

way the proposed method was executed, all the different testes performed, as well as the 

results obtained in order to be properly discussed in the next chapter. 

5.1 |Materials  

 In order to verify the explained methods efficiency two well-known sets of proteins 

were chosen. These sets of proteins were used to implement various algorithms that are based 

only on primary sequence or other attributes. 

 One of the chosen proteins sets is present at Protein Classification Benchmark 

Collection (Paolo Sonego, 2006) and It is referred as SCOP40mini. This set has 1357 proteins 

belonging to a protein superfamily named SCOP95, in which each protein, considering its 

biological chemical characteristics may or may not belong to one of the 55 different groups (55 

classification tasks). 

 The protein sequences and the definition of the train and test sets are provided for the 

same database.  As shown in table 9 in Appendix, the train and test sets have a low percentage 

of positives (proteins belonging to the class), when compared to the negatives number present 

(proteins which are not part of the class), which makes the classification task more difficult but 

also realistic in a possible scenario where the methods referred above can be used as future 

research tools. 
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 The second set was created by Kuo-Chein Chou and David W.Elrod in order to predict 

the enzymes family classes (Chou & Elrod, 2003). From ENZYME database, it was selected a set 

of oxidoreductases whose sequences were obtained through SWISS-PROT. This protein set, 

which will be referred to as Chou and Elrod 2003, it contains 2640 proteins distributed by 16 

classes of different enzymes families (table2).  

 In this set, it was defined two different subsets of proteins: Train set to create a possible 

classifier and a test set to obtain a AUC in order to estimate the classifier performance. The 

proteins of each subset were chosen randomly and the negatives are in the same number as 

the positives, in order to have a more balanced data set.  It was only used 85% samples of each 

class, and then it is divided into 15% and 75% for test and train sets.  

Table 2 - Number of Proteins (positives) in each Subset for each class of Chou and 

Elrod 2003. 

Class Train Set Test Set 

1 177 89 

2 122 61 

3 109 55 

4 73 37 

5 63 32 

6 172 87 

7 36 18 

8 33 17 

9 143 72 

10 52 27 

11 86 44 

12 52 27 

13 145 73 

14 87 44 

15 47 24 

16 86 44 

 For this set of proteins, one of the problem encountered is the number of proteins 

present in some classes, in which the size of the train size is very small, like classes 7, 8 or 15. 

 The selection of each of these data sets was made with different objectives. First in a 

research like this, it is necessary to prove that the method is effective and better than any other 

applied in the same data set, for this was chosen Chou and Elrod 2003, because it was used 

before by other methods and it is a balanced data set, created to use methods based on AAC. 
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Second, it is also important to show that the method works with other data set with different 

characteristics, and for this was chosen SCOP40 mini, a data set with classes with a very low 

percentage of negatives. And finally, it is necessary analyze the proposed method in order to 

understand what are the key variables or attributes that can influence its performance, as well 

as what its main limitations, for that SCOP40mini was also used. 

5.2 |Experiments 

 In order to understand all work performed is important to explain how the different 

methods were implemented, the applications used or created, all the defined variables, as well 

as the different experiments conducted to demonstrate the efficiency of the proposed method. 

5.2.1 |Execution Scripts and Files 

 All methods were implemented in Python along with tools present in scikit-learn 

(developers, s.d.), Openpyxl (OpenPyxl, s.d.), numpy and scipy. 

 The methods implementation from the C# application has already been addressed in 

Chapter 4, but it is necessary to refer the files and folders created and involved in the execution 

of the main python scripts, in order to demonstrate the structure used for an easy 

understanding if in need to check or change a specific file. 

 So, three principal python scripts were created: one is responsible for implementing all 

the methods related to feature extraction and selection (FeatureGeneration.py), another for 

the creation and application of SVM classifiers (Classifiers.py) and the last one creates the 

necessary structures to serve as input to train classifiers (processData.py). 

 For each data set is created a folder that contains subfolders for each class, other for 

materials and other for results. For each class, the subfolder contains all the files created from 

scoring (text files with a simple table in which each row is a subsequence and each column one 

score), and MaxScoring (text files with the chosen subsequences). In materials folder are all 

files containing the protein sequences as well as files with the information necessary to identify 

the train and test sets. As for the results folder, subfolders are created according to different 

tests with different chosen variables, if PSO is used for each class the created classifiers are 

stored, as well as the particle’s components and subsequences for best results. 
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5.2.2 |Variables  

 The results as well as the research were carried out according to two distinct stages: the 

study of the different variables involved and the search for the best combination of them. The 

first step involves performing tests in which only one variable is changed in order to realize how 

it influences the average AUC obtained, and the second stage is finding the best combination 

of variables that provides the best average AUC for a chosen dataset. 

 The variables in question are k, type of MaxScoring, M, type of PSO, type of frequency 

and the number of iterations, in order to obtain the best average AUC value with the lowest 

number of iterations (lowest running time required). 

 For SCOP40mini, the proposed algorithm was tested with M values from 6 to 20, but 

only the results obtained with M equal to 10 and 20 are been illustrated. Regarding the k used, 

the PSO was only implemented with k equal to 3 and 5, since when trying to predict the families’ 

classes only using MaxScoring, it was concluded that these values were the most significant 

(higher average AUC). As for the other dataset, M values used were never higher than 10 to 

avoid overfitting.  

 For PSO, the different parameters were defined based on previous researches, 

therefore, the inertial constant is 0.5 plus a random value between 0 and 1 divided by 2, the 

sum between the cognitive and social parameters (C1 e C2) must be less or equal to 4, so both 

are considered 2. The maximum velocity of particles was set as 2.5 and the stopping criterion 

was the number of iterations that the global best value remains the same, and it can be decided 

by the user. In the experiments, it was defined 100, 200, 500 iterations. 

 The performance of each method was evaluated according to the average AUC 

obtained, as well as the accuracy in order to compare with results from other papers. The 

experiments were performed to compare the AAC, Pse-AAC, Am-Pse-AAC, each individual 

score, and then all scores in combination and finally with all the features from AAC and the 

scores selected by the PSO. 
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5.2.3 |SVM training 

 For each class was created a classifier in which will only identify whether a given protein 

belongs or not to the same class, so for each test study were created 55 independent classifiers 

to SCOP40mini, and 16 independent classifiers to Chou and Elrod 2003. 

 In the first phase of the results, the classifiers were created according to the default 

settings in scikit-learn for a linear kernel, because it was necessary analyze quickly each of the 

variables that can influence the proposed method. 

 As for the second phase, the SVM classifiers were defined according to the best 

parameters obtained by performing a search grid for each class, which was performed for the 

gaussian kernel with the gamma values between 0.001 and 0.0001, and C values between 1 

and 100, and for the linear kernel with the same C values referred above.  

5.3 |New Method Analysis – Variables Study 

 In this section, it is demonstrated the different results obtained from the different 

possible combinations that led to the best results. 

 Due to the high number of subsequences as variables, and given that the proposed 

method has a high runtime, that is why it was first performed an analysis without search grid 

in order to understand what would be the definitions that could lead to better results. At this 

stage the tests were performed only with Scop40mini data set.  It is worth mentioning that in 

some results are illustrated only values obtained for some classes, because the statistical 

tendencies observed in the showed classes are the same for the remaining classes. 
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Figure 9 –  Distribution of AUC values for some classes using different types of MaxScoring 

with PSO-W, M equals to 10, k equals to 5, 100 iterations and with FC. 

 One of the variables to be considered is the type of MaxScoring used, as shown in Figure 

9, all classes using MS-N leads to lower AUC values than when using MS-WPS. The average 

difference between the values obtained by different types of MaxScoring is approximately 0.08, 

in which it was registered a maximum difference of 0.22 for Class 9. 

 As for different types of PSO (Figure 10), it was observed higher AUC values for classes 

like 11, 19, 22, 34 and 39 with PSO-W, while for classes 2, 4, 6, 7, 8, 10, 12, 14, 20, 21, 24, 25, 

26, 33, 38, 41, 45 and 55, the best results were obtained when using PSO-WF. About the 

remaining classes the best values were documented using PSO-F. Thus, PSO-F was the type of 

PSO with the best results in a larger number of classes. The average AUC obtained for PSO- W 

was 0.749, for PSO-F 0.82 and 0.77 for PSO-WF. This tendency repeats itself for the other data 

set as well.  
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Figure 10 - Distribution of AUC values for classes using different types of PSO, with MS-WPS, 

M equals to 10, k equals to 5, 100 iterations and with FC.  

 As for the M values, all the experiments were performed with M equal to 10, however 

it was decided to test with other M values in order to realize if AUC is affected. 

 According to Figure 11, approximately 26 classes obtained better AUC values with 

higher M, however the impact of the M increase on average AUC values was insignificant, 

having registered an average AUC value of 0.823 for M equal to 10 and 0.811 for M as 20. Other 

tests were performed with M values less than 10, but it was always obtained an average AUC 

value slightly lower than with M equal to 10 (about 0.04 less). 
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Figure 11 - Distribution of AUC values for each class using different M values, with MS-WPS, 
PSO-F, k equals to 5 and with FC. 

 About the type of PSO used with each type of frequency, observing Table 3, there were 

better results when used FC. However, when used both frequencies the average AUC value 

improves slightly in some tests, providing the best results shown in the next section. 

 Regarding the number of iterations required to obtain the best results, it was possible 

to observe during the tests that with higher number of samples in the train sets more iterations 

are necessary. The number of iterations was also influenced by the value of k, the higher it was 

more iterations were needed. For k equal to 5 only with more than 100 iterations it was possible 

to obtain a mean AUC over 0.8 but with k equal to 3 was possible to obtain acceptable AUC 

values with more than 50 iterations. The use of search grid also led to being necessary to 

increase the number of iterations, since each iteration a new selection of features meant 

another set of parameters to train a SVM classifier. 
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Table 3 – The increase in the average AUC value when used PSO-F, M equals to 10, k equals to 

5, 100 iterations and with two different frequencies (and FC FNC) for 20 classes. 

Class FC FNC 

1 0,233483 0,158408 

2 0,320504 0,257898 

3 0,246956 0,245434 

4 0,143836 0,118287 

5 0,074159 0,120413 

6 0,096942 0,204587 

7 0,367482 0,219164 

8 0,19356 0,160297 

9 0,024344 0,06000 

10 0,101499 0,129862 

11 0,199975 0,148064 

12 0,358346 0,195423 

13 0,477099 0,38855 

14 0,467939 0,467176 

15 0,370102 0,146819 

16 0,366739 0,11385 

17 0,30528 0,123602 

18 0,420807 0,289907 

19 0,363742 0,301501 

20 0,230901 0,279814 

Average 0,268185 0,206453 

 

5.4 |Results with best average AUC value 

 In this section, it is present the main results required a short analysis of the best results 

obtained, as well as a comparison between the proposed method and methods based on AAC. 
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Figure 12 - AUC Values obtained in each class with different approaches using Chou and 
Elrod 2003. For Pse-AAC λ was 10, Am-Pse-AAC λ was 9, and for the proposed method 

was used PSO-F with M equal to 10, k equal to 5, MS-WSP and 200 iterations. 

 

 As For Figure 12, it was observed that the proposed method achieved better results 

than Pse-AAC, Am-Pse-AAC and AAC in all classes for Chou and Elrod 2003, also that the AAC 

and Pse-AAC with the training sets created, had similar AUC values. It should be emphasized 

that the classes in the AAC based methods have a worse performance (class 5, 7 and 8), and 

the proposed method achieved values above 0.80. 

 Referring to figure 13, the implementation of Pse-AAC and Am-Pse-AAC led to very low 

AUC values, most classes obtained 0.5. Despite the failure of the methods based one AAC, witj 

the proposed method was obtained AUC values above 0.70. 
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Figure 13 - AUC Values obtain in each class with different approaches using SCOP40mini. For 
Pse-AAC λ was 10, and Am-Pse-AAC λ was 9, for the proposed method was used PSO-F with M 

equal to 10, k equals to 5, MS-WSP, and 200 iterations without search grid. 
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Table 4 – Average AUC Values and Average Accuracy values obtained with different 

approaches using Chou and Elrod 2003. For Pse-AAC λ was 10, Am-Pse-AAC λ was 9, and for 
the proposed method was used PSO-F with M equal to 10, k equal to 5, MS-WSP, and 100 

iterations. Also it is present the improvement determined comparing to AAC and Am-Pse-

AAC.  

 Chou and Elrod 2003 

     

Methods Average AUC Average Accuracy Improvement (%) 

Implemented     

AAC 0,849 0,848 - - 

Pse-AAC 0,759 0.756 -10,603 - 

Am-Pse-AAC 0,759 0,756 -10,603 - 

MaxScoring - All Scores 0,573 0,515 -51,352 -24,506 

Proposed Method 0,919 0,920 8, 245 21,080 

Previous Studies     

Am-Pse-AAC and SVM (Chou, 2004) - 0,809   

Am-Pse-AAC with Covariant-Discriminant Algorithm (Chou, 2004) - 0,766   

Covariant-Discriminant Algorithm (Chou, 2001) - 0,755   

 

 Based on the Table 4, it can be affirmed that the proposed method can improve any of 

the others known methods, because it was obtained an average AUC value of 0.919 and 

average Accuracy value of 0.92, higher than any of the other methods implemented, and higher 

than any other values registered in other researches with the same data set. 

Table 5 - Average AUC Values and Average Accuracy values obtained with different 

approaches using SCOP40mini. For Pse-AAC λ was 10, Am-Pse-AAC λ was 9, and for the 

proposed method was used PSO-F with M equal to 10, k equal to 5, MS-WSP, and 500 
iterations. Also it is present the improvement determined comparing to AAC and Am-Pse-

AAC. 

 
SCOP40mini 

   

Methods Average AUC Improvement (%) 

Implemented   

AAC 0,537 - 

Pse-AAC 0,500 -6,890 

Am-Pse-AAC and SVM 0,534 -0,554 

MaxScoring - All Scores 0,646 20,298 

Proposed Method 0,888 65,363 
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 Regarding Table 5, with the proposed method achieved an improvement of 65% 

compared to AAC, and without search grid reached better results than with SVM classifiers 

using as features the distance matrixes Lempel-Ziv-Welch and by Partial Match (Gaspari, sd), 

whose average AUC values are respectively 0.8288 and 0.8551 (pongor, s.d.) 

Table 6 – Principal SVM Classifiers parameters found in Search grid for Chou and Elrod 2003 

set. 

Kernel c gama 

rgb 

10 0,0001 

100 0,0001 

10 0,001 

1 0,001 

 

 Considering classifiers’ parameters for the dataset Chou and Elrod 2003, it was possible 

to determine that the best parameters were set to a Gaussian kernel, and C ranges from 1.10 

to 100 and gamma the range was between 0.0001 and 0.001. 

 About the subsequences chosen by PSO, it can be established that are present 

subsequences with different k and some amino acids weren’t selected in both datasets. 

Observing Table 7, the score with a larger number of selected features is the XSN_ALL, the score 

XSN with data_all, and the less influential was RFPN_Pos (because in some classes this score 

didn’t have any selected features). It is important to add that in each class the number of 

features selected by each score is different, each class had its unique combination of number 

of features per score.   
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Table 7 – The average number of features selected in each score in each class and set for 

Chou and Elrod 2003 

 

 

 

 

 

 

  

Scores Average of number features 

AFPC_All 5,67 

AFPC_Neg 2,67 

AFPC_Pos 2,60 

AFPN_All 6,20 

AFPN_Neg 3,47 

AFPN_Pos 3,53 

ASFC_All 5,33 

ASFC_Neg 2,67 

ASFC_Pos 2,27 

ASFN_All 5,67 

ASFN_Neg 2,93 

ASFN_Pos 2,93 

FSC_All 5,53 

FSN_All 5,07 

KFC_All 5,33 

KFC_Neg 2,67 

KFC_Pos 2,27 

KFN_All 5,67 

KFN_Neg 2,93 

KFN_Pos 2,93 

RFPC_Neg 2,13 

RFPC_Pos 2,60 

RFPN_Neg 3,40 

RFPN_Pos 2,00 

TFC-idf_All 5,60 

TFC-idf_Neg 2,27 

TFC-idf_Pos 3,00 

TFN-idf_All 5,00 

TFN-idf_Neg 3,00 

TFN-idf_Pos 2,80 

XSC_All 6,00 

XSN_All 6,47 
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  Table 8 – Estimated running time (hour) for each step method per class. 

Data set  Scoring Max Scoring PSO PSO with search grid 

Scop40mini 50 5 360 600 

Chou and 
Elrod 2003 

37 3 200 
475 

 

 Finally, it should be distinguished in Table 8, the running time required for SCOP40mini 

was higher for the Chou and Elrod 2003, and the process with higher execution time was the 

PSO with search grid. The estimate was based on files created during the process. 
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6|Discussion 
 In this chapter, it will be discussed the results presented in the previous chapter, 

including how the proposed method can be influenced, its effectiveness in predicting proteins’ 

class families in both datasets, as well as its major limitations. 

6.1 |Proposed Method and its Variables 

 As for the variables that can influence the proposed method, the obtained results are 

quite interesting. 

 Regarding the type of PSO used, PSO-F had better results, meaning in a space of possible 

features, they were selected with equal weight to best characterize a class. The PSO-W and 

PSO-WF were created on the idea that each score can assign features that can hold different 

types of interactions in a protein, and therefore some interactions can be more important than 

others. But in the results was expressed that every iteration present in each feature must have 

the same weight as the others. 

 Regarding the type of MaxScoring, MS-WPS led to better results, in which allows to 

conclude that the shorter subsequences that are contained in subsequences with higher length 

will be ignored, so in most cases the longer subsequence has a score value higher than the 

other subsequences but lower than its parent subsequence (shorter sequence). 

 So for example a subsequence “aaa” and the subsequence “aaaa”, the one with more 

amino acids is more important despite the score being smaller, which makes sense because the 

more specific a subsequence is, more information as feature has. 
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 As for different values of M, the best value to be used is 10, since with higher M values 

can exceed the number of selected features recommended to not occur overfitting. M values 

lower than 10 can lead to use PSO on the scores in an insignificant way, because by giving 

reduced search spaces within each score, the PSO will be choosing between sequences and not 

scores, and what it is desired is selection of the best subsequence in each score obtaining a 

multi parameter representation of a protein. 

 About the types frequently used, when comparing both, FC led to better results, making 

possible to conclude that the interactions between consecutive amino acids are more relevant 

than those more distant. However, the best results are found when using the FC and the 

difference between the two frequencies. For some classes was necessary both frequencies in 

particulars features, and this is similar to what happens in some proteins. 

 Regarding the number of iterations, this increases when there is more information 

available, if k or the number of samples in the training set is higher or the search grid is used. 

And with more necessary iterations more run time is needed, making the method too time 

consuming. However, the need to increase the number of iterations is normal with the increase 

of information or more variables present in order to converge to a solution. 

 These statements are true for most classes but not for all, so it would be interesting to 

analyze why, and what dataset characteristics that leads to other types of PSO or frequency.  

6.2 |Performance 

 As can be seen in the results, with the proposed method the average AUC value was 

always higher than the value obtained by other methods based on AAC for the two different 

data sets. With the proposed method, It was achieved good results regardless of the data set 

characteristics, such as the percentage of positives in SCOP40mini which is extremely reduced. 

The other methods on an unbalanced data set failed to attain reasonable results (about 0.5 

AUC). 
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6.3 |Limitations 

 Despite the favorable results obtained with the proposed method, there are certain 

characteristics that lead to its disadvantage, and one of them is the scoring, it is the first step 

and requires a value k. In this work as mentioned above, it was used k equal to 5, which already 

leads to the calculation of scores for over 3 million combinations for only one class. This leads 

that chosen number k is conditional to the computing power it is available, and the domains 

and motifs have more than 5 amino acids. 

 The biggest limitation is the implementation of the method with the PSO, which needs 

high computing power because it is a very time consuming iterative method and uses as fitness 

functions the AUC obtained by training new SVM classifiers each iteration. Because of it, the 

high M number, or a high number of samples used could lead to a higher running time needed. 
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7|Conclusion 
 In this chapter, it will be discussed the main achievements of this thesis as well as reflect 

on the possible applications of this method. 

7.1 |Proposed Method 

 Given the results and their discussion the main objective of this thesis was achieved. It 

has created a new method for extraction and selection of features from the primary structure 

of a protein that led to better results than many of the methods mentioned, and also it was 

successful when applied to two different datasets. Unlike methods based on AAC, this method 

continued to show good results with date set with a low percentage of positives.  

 With this method was accomplished a representation of proteins that takes into 

account various aspects and events that other methods so far had not done, also using the AUC 

as fitness function and the combination of multiple scores, it was something never done before. 

7.2 |Practical Applications 

 Another positive aspect of this work is that it was not only created a new method, as it 

was also created an C # application and a website that make all this research practical and able 

to performed by any user, so the method can be applied easily and appropriately. And also, by 

having created these tools and making then available it may contribute to validate even better 

the proposed method because it allows the user to handle all variables adjacent to the method 

and test it in any dataset. 
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7.3 |Future Work 

 Despite the many positive aspects of this thesis, there is still much work to be done so 

that the using this method can have a significant impact on several areas of interest (medicine, 

pharmaceutical industry, etc.). This is because this method still has some limitations that can 

be eliminated. 

One of these limitations is the running time of the method. It is crucial to form and plan 

different options to significantly reduce this execution time without affecting the method 

performance, in order to properly be used as a research pool. 

Another limiting aspect is the definition of the number of iterations that the AUC 

remains unchanged to stop the iterative PSO, because this is not able to lead to the true 

convergence of different particles for the best possible AUC value, since this can be obtained 

before or after the number of iterations set. 

Furthermore, it is also necessary to validate this proposed method in different biological 

data whose structure is also a sequence of coding elements (letters), such as RNA and DNA. 

This highlights the advantages in using the proposed method, because it does not require 

anything other than a set with samples consisting of a sequence of letters, and it can be used 

for different purposes, like the prediction of classes, cell locations, molecular targets, etc., 

depending of the set objective. 

Also in the future, after the resolution of the method’s limitations and the search and 

storage of different optimized SVM classifiers, this research has the objective of building a 

Multiclass classifier to have a structure that predicts what class a protein belongs and not only 

if it is part or not of a single set. 

 In conclusion, all existing sub-sequences in the protein sequence are analyzed by 

different statistical importance: by their rarity, size, discriminatory power, independence and 

others. Then they are selected according to these different scores, leading to a significant 

reduction in the search space as well as a different particle initialization for Particle Swarm 

Optimization. 

 This method primes a different analysis of a protein sequence, along with a minor loss of 

information since this analysis is not only supported with one or two factors. By having such 
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promising results this method brings new ideas to improve even a better solution to the problem 

in hands. 
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Appendix 

Table 9 - The number and percentage (Rate) of positives in train and test sets for each class 

considering the number of negatives in SCOP40mini dataset. 

Class Train Set Test Set 

Positives Negatives Rate (%) Positives Negatives Rate (%) 

1 21 664 3,07 6 666 0,89 

2 18 661 2,65 17 661 2,51 

3 38 656 5,48 6 657 0,90 

4 23 656 3,39 21 657 3,10 

5 39 652 5,64 12 654 1,80 

6 46 652 6,59 5 654 0,76 

7 42 652 6,05 9 654 1,36 

8 92 628 12,78 9 628 1,41 

9 100 615 13,99 25 617 3,89 

10 117 615 15,98 8 617 1,28 

11 73 615 10,61 52 617 7,77 

12 34 652 4,96 18 653 2,68 

13 43 654 6,17 5 655 0,76 

14 43 654 6,17 5 655 0,76 

15 42 654 6,03 6 655 0,91 

16 41 654 5,90 7 655 1,06 

17 51 642 7,36 20 644 3,01 

18 66 642 9,32 5 644 0,77 

19 47 642 6,82 24 644 3,59 

20 66 642 9,32 5 644 0,77 

21 27 660 3,93 10 660 1,49 

22 34 656 4,93 10 657 1,50 

23 18 656 2,67 26 657 3,81 

24 53 639 7,66 25 640 3,76 

25 65 639 9,23 13 640 1,99 

26 10 670 1,47 6 671 0,89 

27 103 604 14,57 46 604 7,08 

28 124 604 17,03 25 604 3,97 

29 140 604 18,82 9 604 1,47 

30 137 604 18,49 12 604 1,95 

31 134 604 18,16 15 604 2,42 

32 134 604 18,16 15 604 2,42 

33 16 667 2,34 5 669 0,74 

34 11 668 1,62 8 670 1,18 

35 51 650 7,28 5 651 0,76 

36 25 650 3,70 31 651 4,55 
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37 161 592 21,38 12 592 1,99 

38 159 592 21,17 14 592 2,31 

39 159 592 21,17 14 592 2,31 

40 155 592 20,75 18 592 2,95 

41 151 592 20,32 22 592 3,58 

42 166 592 21,90 7 592 1,17 

43 168 592 22,11 5 592 0,84 

44 142 592 19,35 31 592 4,98 

45 166 592 21,90 7 592 1,17 

46 53 644 7,60 16 644 2,42 

47 55 644 7,87 14 644 2,13 

48 63 644 8,91 6 644 0,92 

49 53 644 7,60 16 644 2,42 

50 19 663 2,79 11 664 1,63 

51 32 654 4,66 16 655 2,38 

52 34 654 4,94 14 655 2,09 

53 13 668 1,91 7 669 1,04 

54 13 667 1,91 10 667 1,48 

55 15 668 2,20 5 669 0,74 

Average 70,93    635,62    9,80    14,02    636,44    2,15 
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