
University of Coimbra

Department of Informatics Engineering
Faculty of Sciences and Technology

Master thesis

A programming language for parallel
event-driven development

Author
João Pedro Maia Rafael

jprafael@student.dei.uc.pt

Supervisor
Bruno Miguel Bras Cabral

bcabral@dei.uc.pt

September 5, 2013

Abstract

Recently, event-oriented programming frameworks have surfaced as a solution to highly scalable
network applications. This model as been adopted under many languages resulting in frameworks
such as Node.js, Gevent and EventMachine. These frameworks are capable of handling many
concurrent requests by using asynchronous IO. However, in order to make use all available cores,
parallelism is exploited by creating multiple instances of the same application. Under this solution
instances don’t share memory making synchronization mechanisms required. The same problem
applies when using the actor model for concurrency.

The EVE framework provides support for event-oriented programming under a shared-memory
model. It encompasses the EVE language definition, its compiler and a runtime system capable
of executing the resulting applications. Using our model, the programmer divides the applica-
tion logic into tasks and each task indicates what variables it can access. The runtime schedules
compatible tasks to multiple cores using a work-stealing algorithm for load balancing. In this
work, we present a formal description of the language and it’s runtime, including their opera-
tional semantics. Our benchmarks indicate that our solution delivers the best performance on IO
heavy problems when compared to existing of-the-shelf solutions and performance comparable
to the state-of-the-art architectures for CPU-bounded applications.

Keywords: parallel languages, event-driven programming, shared memory, runtime systems

Acknowledgments

I would like to express my gratitude to my supervisor at DEI, Bruno Cabral, for introducing me
to the AEminium research group. He also made this work possible by encouraging me to follow
my own research topics with much appreciated independence.

I would also like to thank my friends and colleagues with whom I endured many hard working
nights and shared many treasured moments. They provided me with much needed laughs, trust
and support.

Finally, I would also like to thank my beloved family, specially my parents and my sister who
provided me with time and means to proceed with my studies but who also taught me to always
strive for the best. Their support was truly invaluable.

This work was partially funded by the Foundation for Science and Technology grant Lugus 84769
under the AEminium - Freeing Programmers from the Shackles of Sequentiality project.

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Context . 9
1.3 Goals . 9
1.4 Contributions . 10
1.5 Methodology . 10
1.6 Structure . 11

2 State of the Art 12
2.1 Exploiting Parallelism . 12

2.1.1 Vectorization . 13
2.1.2 Multiprocessing . 14

2.2 Parallel Constructs . 21
2.2.1 Threads . 21
2.2.2 Futures . 21
2.2.3 Tasks . 21
2.2.4 Actors . 23

2.3 Event-Driven Languages and Libraries . 24
2.4 Overview . 24

3 EVE Language 27
3.1 Introduction . 27
3.2 Operational Semantics . 33

3.2.1 Syntax . 33
3.2.2 Utility Functions . 34
3.2.3 IDs . 34
3.2.4 Types . 35
3.2.5 Expressions . 38
3.2.6 Statements . 44

2

4 Implementation 57
4.1 Runtime . 57

4.1.1 Workers . 58
4.1.2 Spin-locks . 61
4.1.3 Monitors . 61
4.1.4 Events . 64
4.1.5 Shared Objects . 65

4.2 Compiler . 67
4.2.1 Lexer and Parser . 67
4.2.2 Type checking . 68
4.2.3 Code generation . 68
4.2.4 Optimizations . 69

5 Evaluation 70
5.1 Fibonacci . 72
5.2 Echo Server . 75
5.3 Atomic Counter . 80
5.4 Overview . 82

6 Conclusion 83
6.1 Overview . 83
6.2 Relevance . 83
6.3 Future Work . 84
6.4 Final Remarks . 85

3

List of Tables

2.1 Flynn’s taxonomy of computer architectures . 12

5.1 Hardware specification of benchmark hosts . 70
5.2 Sofware specification of benchmark hosts . 71
5.3 Lines of code of each implementation . 82

4

List of Programs

1 Loop without loop-carried dependencies . 15
2 Loop with uneven work per iteration . 15
3 Application of loop splitting . 16
4 Example usage of OpenMP . 16
5 Example usage of Cilk . 17
6 Advanced example usage of Cilk with inlets . 18
7 X10 implementation of the Monte Carlo method to approximate π 19
8 Ping-Pong server and client using Erlang . 20
9 Series approximation of π in parallel using Go . 20
10 Implementation of the recursive Fibonacci method using C++11’s futures 22
11 Qt’s signals and slots . 25
12 Simple Node.js HTTP server . 26
13 Hello World . 27
14 TCP broadcast server . 28
15 Variable access permissions . 29
16 Computing two prefix sums in parallel . 30
17 Task inversion with permissions . 30
18 Parallel Fibonacci method . 31
19 Parallel map . 32
20 Worker loop and steal . 60
21 Spinlock . 61
22 Monitor . 63

5

List of Figures

1.1 Evolution of processors’ characteristics . 8
1.2 Gantt diagram for the first semester’s development plan. 11
1.3 Gantt diagram for the second semester’s development plan. 11

4.1 Architecture of the EVE runtime . 57
4.2 Architecture of the EVE compiler . 67

5.1 Overhead each implementation of the Fibonacci program 72
5.2 Scalability of the Fibonacci implementations (Heuristics) 72
5.3 Scalability of the Fibonacci implementations (Wait) 73
5.4 Scalability of the Fibonacci implementations (No Wait) 73
5.5 Request throughput of the echo servers (localhost) 75
5.6 Reply latency of the echo servers (localhost) . 76
5.7 Request throughput of the echo servers (remote) 78
5.8 Reply latency of the echo servers (remote) . 79
5.9 Throughput of the atomic counter servers . 80

6

Chapter 1

Introduction

This chapter is organized into six sections. The first section explains the motivation and relevance
of this work. In the second section we introduce the AEminium project. The third section defines
the goals of this work. The fourth section states the contributions. The fifth section describes the
methodology used. Finally, the last section describes the structure of the remaining document.

1.1 Motivation

According to Moore’s law, CPU clock speed should double approximately every two years [22].
This however, has become generally accepted as obsolete due to existing limitations. Although
transistor counts continue to rise, clock speed has reached a plateu and has remained stable in
the last years. This is can be observed in figure 1.1.

Hardware developers such as Intel and AMD have shifted their research efforts towards other
ways to increase computing performance. Instead of increasing clock speed, the focus is now on
new means to execute more operations per clock. Parallelism is the capability of the computing
system to execute multiple operations at the same time. However, to tap the full performance
of architectures that make use of parallelism, the programmer must explicitly indicate what
operations can be executed simultaneously. This task becomes harder and error-prone as the size
of applications increase, largely due to the exponential growth of interactions between functions.
In order to achieve the best performance in these platforms, fine-tuning is required to adjust
the application to the machine, taking into account the number of processing cores, cache size,
instruction set, etc. However, due to the multitude of hardware with different characteristics this
becomes a cumbersome task.

To overcome this problem, new programming languages such as Cilk allow the programmer
to indicate available parallelism [10]. Whether or not this parallelism is used is determined
by the runtime system, depending on the available resources and their usage. Notably, these

7

Figure 1.1: Clock frequency, performance, clock speed, power consumption and number of cores per chip on
consumer level processors according to [27].

frameworks excel at solving embarrassingly parallel problems where mapping each sub-problem
to a thread would otherwise lead to a large overhead1. Furthermore, they also solve with ease
problems where the size of each sub-problem is not known apriori.

Alongside these developments, the interest for asynchronous programming as also increased.
One notable example of this is the adoption of JavaScript for the development of server-side
applications with Node.js. These applications often have to deal with large amounts of IO
operations. Using the procedural approach, a single thread would handle a conversation between
the server and a client, and would block on operations such as read() until data is available.
This solution scales poorly due to the large number of threads created under heavy loads. With
the asynchronous paradigm, instead of blocking on pending data the application registers a
callback function and proceeds to execute other work. When the data becomes available the
callback is invoked to handle the response. This solution enables the application to handle
multiple clients concurrently with a single thread. However, because only one thread is employed
the performance does not match the maximum throughput of multi-core platforms. Currently,
to maximize performance with these languages, parallelism must be created manually, usually
through the use of workers that don’t share state. This simple solution suffices for most common
cases but it presents two key disadvantages:

1Kernel Level Threads (KLT) require the creation of a dedicated stack space and are scheduled using expensive
preemptive and fair algorithms.

8

• Instead of focusing on the application logic the programmer must deal with the creation
of separate workers. Code refactoring is sometimes necessary to map application logic to
a worker, keeping in mind that there is an optimal number of workers for each machine.

• Because workers do not share memory, a consistent view of the application must be created
by using explicit messages or additional software that manages data synchronization (i.e:
a database). The overhead of this extra communication might overcome the benefit of
parallelization.

As such, it becomes desirable to conceive a language and runtime system that employs the
asynchronous paradigm with shared state to achieve true parallelism.

1.2 Context

This work was partially funded by the grant Lugus 84769 under the AEminium - Freeing Pro-
grammers from the Shackles of Sequentiality project. The team is currently composed by Alcides
Fonseca, Bruno Cabral, João Lourenço and João Rafael.

The AEminium project was part of the CMU|Portugal program and results from a partnership
between the universities of Carnegie Mellon, Coimbra, and Madeira and the R&D center of
Novabase. The project aimed to provide a practical framework for development of massively
concurrent applications.

1.3 Goals

The goal of this work is to ease the development of high-performance event-based applications.
For this purpose, a new programming language EVE was designed taking into account event
oriented programming as a first-order paradigm.

The language should provide an easy to use syntax, with minimal structure overhead, for
the definition of common event-related operations such as registering a callback function and
triggering an event.

EVE also aims to be a general purpose high performance language. Therefore, a strong
type system becomes desirable to allow for better compile-time optimizations. Furthermore, the
language definition should also contain statement types that concede easy parallelization without
boilerplate code. This parallelization should be managed by a specially crafted runtime system.
This runtime should provide three aspects when combined with event-handling capabilities: low
latency, low overhead, and high throughput.

Finally, the language should be put to practical use, demonstrating its features on common
showcase problems such as web servers, event stream processing, and soft real-time systems like
chat servers.

9

1.4 Contributions

• Analysis language-level support for event-driven programming model with native paral-
lelism.

• Definition of the EVE programing language and its semantics.

• Implementation of a compiler capable of translating the original program written in EVE
into machine code or some other intermediary language such as C. Development of a run-
time platform capable of executing the final binary. This runtime must use a scalable
approach to share work across all available CPU cores. It must also focus on high event
handling throughput, with low latency desirable. Creation of native libraries for low-
level OS operations regarding IO, file systems, sockets, processes, etc; and also user level
utilities such as timers and loggers. Whenever possible, reuse of existing libraries such as
the C++’s STL containers should be used as a back-end.

• Extensive performance analysis of the proposed framework and comparison with existing
solutions.

1.5 Methodology

Due to the unpredictable nature of the project’s evolution and work rate, a development process
based agile methodologies was adopted. The process consisted of a long term plan which under-
went revisions during weekly meetings of the entire team. In these meetings, the work executed
throughout the week was discussed and based on the obtained results a work plan for the upcom-
ing sprint was outlined. This iterative approach allows for timely deliverables while allowing the
developer to work on unplanned work items. The Redmine project management platform and
the GIT versioning control system were employed to validate our approach. These application
help producing deliverables such as activity logs, status overviews and Gantt diagrams.

The work was conducted over the course of two semesters. The student only exerted for half-
time during the first semester and full-time for the second semester. Figure 1.2 depicts the Gantt
diagram of the long-term plan executed during the first semester. Initially, work was dedicated
to research of the state of the art. This was followed by the formulation of scientific contributions
and architecture planning. A partial implementation was executed and some experiments con-
ducted. In conclusion, time was allocated for the execution of the preliminary report presented
at the end of the semester.

Figure 1.3 shows the long-term plan for the second semester. During the first weeks the
runtime system was completed. The implementation of the compiller scheduled for the following
two months followed. However due to unexpected difficulties indicated in 4.2 the conclusion of

10

Figure 1.2: Long-term development plan for the first semester.

Figure 1.3: Long-term development plan for the second semester.

this softwared took two aditional months. The next week was reserved for experimental analysis
and validation. Finally, the last month was allocated for the execution of this document.

1.6 Structure

The remaining document is structured as follows. Chapter two introduces the state of the art in
both parallel software methodologies and event-based processing. In chapter three the specifica-
tion of the EVE language is defined. Chapter four presents implementation details information
about the EVE runtime, and compiler. Chapter five presents the evaluation conducted. Finally,
chapter six indicates directions where improvement is possible for future work and concludes.

11

Chapter 2

State of the Art

This chapter presents the benefits and caveats of two distinct areas of research, the first being
the use of parallelism in applications and the second being event-oriented programming. It is
divided into four sections. The first section gives an introduction to parallelism and the multiple
forms in which it appears. Section two gives a brief overview of language constructs used for
parallelism found in both academic literature and production ready languages. Section three
enumerates some examples of event-driven programing both with, and without language level
support. Section four presents an overview of the current solutions to the problem and their
limitations.

2.1 Exploiting Parallelism

In [9], Flynn proposed the classification of computer architectures based on the number of parallel
instructions and the number of data streams processed by each instruction. This classification
is visible in table 2.1 and is still in use today.

Single Instruction Single Data Architectures that do not exploit parallelism at instruction
or data level.

Multiple Instruction Single Data Architectures capable of processing multiple operations
over the same data. This capability can be used to achieve some level of redundancy but

Single Instruction Multiple Instructions

Single Data SISD MISD
Multiple Data SIMD MIMD

Table 2.1: Flynn’s taxonomy of computer architectures.

12

is inappropriate for most parallelizable problems.

Single Instruction Multiple Data Architectures that can execute the same instruction over
different operands. This solution is often employed to achieve speedups on image manipu-
lation applications where each pixel must be processed the same way.

Multiple Instruction Multiple Data Architectures that can execute separate instructions
on separate operands. This is the most flexible architecture.

2.1.1 Vectorization

Vector operations became available on mainstream processors with the addition of the Streaming
SIMD Extension1 (SSE) to the x86 architecture. This extension added instructions that would
execute arithmetic operations simultaneously on 4 values, essentially becoming a Single Instruc-
tion, Multiple Data (SIMD) architecture. SSE2, SSE3, SSE4 and more recently Advanced Vector
Extensions (AVX) are additions that increase the number of possible simultaneous operations,
the size of each operand, and the available instruction set.

Efficient implementation of algorithms using vector operations requires data to be contigu-
ously aligned. This not only maximizes cache hits but also allows the SIMD registers to be
loaded with a single operation. To achieve this memory configuration, some refactoring might be
necessary to use arrays of native types instead of arrays of objects. One other problem arises from
the multitude of hardware specifications. In order to ensure retro-compatibility the programmer
is forced to implement one version for each target platform. In order to mitigate this problem,
libraries that support these operations are used to abstract the programmer from the actual im-
plementation. Intel’s The Math Kernel Library [15] is one example. Its interface provides several
common used math features such as BLAS 1 (vector-vector operations), BLAS 2 (vector-matrix
operations), BLAS 3 (matrix-matrix operations), FFTs, Statistics and Regression.

Auto-vectorization Auto-vectorization is a compiler technique used to transform groups of
scalar operations into vector operations. This technique uses loop dependency analysis to identify
sections where vectorization is advantageous while maintaining the same operational semantics.
In practice, this analysis searches for the following characteristics:

1. Loops with pre-determined number of iterations, either at compile time or at runtime;

2. No data-dependent jumps or branches;

3. No nested loops;

4. Without backward loop-carried dependencies within the stride of the vector size;

5. Data boundaries aligned to vector size.
1A successor of MMX

13

2.1.2 Multiprocessing

The second solution is to employ multiple processing units for the same system. This can be
achieved at various levels: multiple cores per die, multiple dies per package, multiple packages
per device and multiple devices per system. Unlike vectorization this approach uses a Multi-
ple Instruction, Multiple Data (MIMD) architecture allowing divergent instruction paths to be
executed in parallel.

However, efficient parallelization is also a difficult task. Careful synchronization is required
to ensure the applications’ correctness and wrong implementations often lead to problems such
as race conditions, deadlocks, priority inversions and false sharing. Automatic detection of these
problems is possible, however the complexity grows exponentially large with the number of
concurrent instructions []. Furthermore, synchronization operations are particularly expensive
(performance wise). In order to minimize the use of these operations work is divided into units
that can be executed in parallel with minimal communication. Several patterns can be employed
for this task such as divide-and-conquer, map-reduce, and pipelining. The granularity of division
is also an issue programmers have to deal with. A coarse division may lead to under-usage of
the available resources. For instance, in cases where some operations take more time than others
or when the execution time is not known apriori, simple homogeneous division of work is not
enough. On the other hand, a fine grained approach may lose its benefits as the overhead of
resource creation (e.g.: threads, messages) and communication increases. For these reasons, a
wide range of approaches that flourish parallelization have emerged. They can be grouped into
three classifications: parallel libraries, parallelizing compilers and parallel languages.

Parallel Libraries

Perhaps the most widely deployed parallel library is JAVA’s java.util.concurrent package.
It was introduced in JAVA SE 5.0 and provides many components including concurrent data
structures such queues and hash maps, and utility abstractions such as semaphores, futures and
executors. Another example is Intel Threading Building Blocks (TBB), a C++ library that
implements almost the same set of components included in java.util.concurrent. It also
provides parallel algorithms such as parallel_sort and parallel_pipeline. Furthermore, a
task scheduler using work-stealing (as described in section 2.2.3) is also available.

Parallelizing Compilers

Parallelizing compilers analyze and transform sequential programs into parallel versions that
produce the same results. Focus is usually on parallelizing loop operations since in the majority
of applications this is where the most work is found. Initially, the program goes through a step
called data dependency analysis which produces a set of order constraints between statements.
The compiler makes use of these constraints to check whether or not its safe to parallelize the

14

code. An example of a loop without constraints between iterations can be found in program 1.
Because each iteration is independent the same result will be obtained regardless of the order of
their execution. This type of loop can be parallelized by computing different sets of iterations
on each available thread.

for (int i = 0; i < N; ++i)

a[i] = b[i] * b[i];

Program 1: Example of a loop that computes the point-wise square of a vector b and stores the result in a. This
loop can be parallelized efficiently using static allocation.

Multiple scheduling mechanisms are available to allocate iterations [19]. The scheduling can
be determined either staticly at compile time or dynamically at runtime. The static allocation
assigns to each processor a stride of iterations. Considering P processors, the first executes
iterations i = 0, P, 2P, Alternatively, a chunk of contiguous operations can be assigned to
the same processor. In this case, the first executes iterations i = 0, 1, ..., c−1, cP, cP +1, ..., cP +
c − 1, ... where c is the chunk size. If c = dN/P e the scheduler assigns a single chunk for each
processor.

for (int i = 0; i < N; ++i)

a[i] = pow(b[i], i);

Program 2: Loop with uneven work per iteration. Assuming the complexity of the pow() operation increases with
i, equally dividing the loop into P blocks would lead to the last processor taking longer to complete while the
remaining stay idle.

These scheduling algorithms work well when all iterations are equally complex. Consider
however program 2. In this example, the last iterations, where i is larger, are more complex than
the first ones. Using a single-chunk scheduling algorithm would produce unbalanced work loads
many processors would become idle. Instead, the compiler should opt for a dynamic scheduling
algorithm dispatching work as processors become available. A simple implementation maintains
a shared counter to indicate the next available iteration. Because this requires synchronization
between processors some overhead is unavoidable. However, it can be mitigated by increasing
the counter by c each time. A small c leads to good balancing at the cost of a larger overhead,
while a large c incurs in low overhead but may become unbalanced.

Guided self-scheduling uses a dynamic value for c. Using c = d(N − i)/P e the algorithm
starts with a large value for c which decreases over time to accommodate unbalanced work loads.

Loop-carried dependencies make this parallelization impossible as they impose an order be-
tween executions. In some cases however, they can be safely removed by use of loop transfor-
mations. Loop splitting is one of such transformations. Given a loop with multiple independent
statements, loop splitting creates two loops separating the statements with loop-carried depen-
dencies from those without. This allows for parallelization of the second loop. An example of

15

this transformation put in practice can be observed in program 3. Other available transforma-
tions include loop peeling, skewing, fission and tilling [13]. In addition, the polytope model is a
mathematical framework for analyzing loop-carried dependencies and generating the necessary
transformations to remove them [18].

for (int i = 0; i < N; ++i)

{

if (i > 0)

a[i] += a[i -1];

b[i] *= a[i];

}

for (int i = 1; i < N; ++i)

a[i] += a[i -1];

for (int i = 0; i < N; ++i)

b[i] *= a[i];

Program 3: Application of loop splitting. On the left, iteration i must be preceded by iteration i-1. On the
right, iterations of the second loop can execute in any order.

Although compilers are able to analyze and correctly parallelize some loops automatically,
the obtained performance is, in some cases, worse than the one obtained by manual paralleliza-
tion. The OpenMP standard presents a solution [5]. Through the use of pragma directives, the
programmer can indicate to the compiler what sections to parallelize. Thread creation, task
allocation, scheduling and synchronization are all handled by the compiler and a runtime envi-
ronment. Program 4 shows use of OpenMP to parallelize a loop that would not be parallelized
otherwise since work could be thread unsafe.

pragma omp for schedule (static)

for (int i = 0; i < n; ++i)

a[i] = work(i);

Program 4: This example makes use of the parallel for directive. Without this additional information the
compiler will not parallelize the loop. The schedule(static) clause is used to indicate static scheduling but the
implementation is free to choose any chunk size.

16

cilk int fib(int n)

{

if (n < 2)

return n;

int x, y;

x = spawn fib(n - 1);

y = spawn fib(n - 2);

sync;

return x + y;

}

Program 5: The recursive Fibonacci algorithm implemented in Cilk. Task spawning is much faster than creating
a thread and only happens when not all processors are working. For this reason the programmers can use the
spawn keyword to indicate available parallelism with minimal overhead.

Parallel Languages

Parallel languages are oriented distinctively at allowing the programmer easy development of
parallelized applications. They allow the programmer to express this parallelization either ex-
plicitly, through the use of well defined statements, or implicitly as a result of the structure the
language enforces.

Cilk is an extension to the popular ANSI C language that only defines a few extra keywords
[10]. Using the cilk modifier to a function declaration the programmer indicates that it
is a Cilk procedure. When the invocation of these procedures is preceded by the spawn
keyword, the runtime may execute it in parallel. The runtime system decides whether or
not to execute both functions simultaneously. To allow for synchronization the programmer
can use sync to define a local barrier. When this statement is encountered the execution
waits until the spawned children are completed. Program 5 is an implementation written
in cilk of the recursive Fibonacci algorithm.

Because the two spawned tasks don’t access the same variables no race condition is present.
However, this restriction is limiting on more complex problems. Consider the task of
searching a binary tree for the first element that matches a key. Ideally, when one element
is found, all parallel tasks can be stopped. This complex behavior can be achieved with
the use of an inlet function and the abort statement. Inlets are inner functions to a Cilk
procedure, and are executed atomically once a child task terminates. The abort statement
is only allowed inside an inlet function and indicates that already spawned sub-tasks can
be safely aborted. Example usage both features is visible in program 6.

X10 is language for parallel and distributed computing [3] It implements the Partitioned Global

17

cilk node_t * search (node_t * node , int key)

{

if (! node) return NULL;

if (node ->key == key) return node;

node_t * found = NULL;

inlet void match (node_t * n)

{

if (n)

{

found = n;

abort ;

}

}

match (spawn search (node ->left , key));

if (! found)

match (spawn search (node ->right , key));

sync;

return found ;

}

Program 6: Recursive search over a binary tree implemented with Cilk. When match is found in one of the
sub-trees, the search over the other branch is aborted if being processed in parallel. In the sequential case, the
second branch is only visited if the first did not return any match.

Address Space (PGAS) model where the computation is divided into a set of places (single
OS processes). Each place is capable of creating, aborting and waiting for activities either
locally or at a specified remote place. To create an activity the async keyword can be
perpended to any statement. After creation, the parent activity may resume execution
prior to the child being completed. Unless specified, the activities may execute in any
available place. The at(place) clause can be used to control the place where it executes.
One advantage over Cilk tasks is that they can be created from any statement instead
of just procedure invocations. Synchronization is handled by the finish block2. This
statement will block the execution until all children activities defined inside this block are
completed. Finally, the atomic statement provides mutual exclusion between all activities
in the same place. Program 7 shows usage of this features.

Erlang is a general purpose, strong typed, functional language built for scalable systems with
high availability requirements. An Erlang program follows the actor model, incorporating
several processes that communicate through message passing. Each process executes se-

2Technically a generic statement like async

18

public static def compute ()

{

var local_count : Long = 0;

/* multiple threads */

finish for (var t: Int = 0; t < THREADS ; t++)

{

val tt = t;

async {

val r = new Random (tt);

var thread_count : Long = 0;

for (var j: Long = 0; j < N; j++)

{

val x = r. nextDouble ();

val y = r. nextDouble ();

if (x * x + y * y <= 1.0)

thread_count ++;

}

atomic local_count += thread_count ;

}

}

return (4.0 * local_count) / (N * THREADS);

}

Program 7: X10 implementation of the Monte Carlo method for approximating π. This example uses resources
from a single place.

quentially, handling received messages one at a time. New processes can be created using
the spawn built-in function and execute in parallel. Because processes don’t share memory,
synchronization with locks is not required. Furthermore, message sending and receiving is
decoupled through the use of message queues. This enables one process to resume com-
putation without needing to wait for the receiver end. Program 8 shows three processes
communicating with messages to form two ping-pong patterns in parallel.

Go is a garbage collected, compiled language for concurrent programming. Concurrency is ob-
tained by launching multiple goroutines: function or statement that executes in parallel.
Like actors, goroutines do not shared memory. However, communication and synchro-
nization is managed with indirect message passing, by placing an additional entity called
channel between the goroutines. Although formaly equivalent, this allows multiple gorou-
tines to read and write to the same channel.

19

-module (pong_example).

-export ([start /0, pong /0, ping /3]).

pong () ->

receive

{ping , Name , Ping_PID } ->

io: format ("~s pong~n", [Name]),

Ping_PID ! pong ,

pong ()

end.

ping (0, Name , Pong_PID) ->

done;

ping(N, Name , Pong_PID) ->

io: format ("~s ping~n", [Name]),

Pong_PID ! { ping , Name , self () },

receive

pong -> ping(N - 1, Name , Pong_PID)

end.

start () ->

Pong_PID = spawn (pong_example , pong , []),

spawn (pong_example , ping , [5, ’A’, Pong_PID]),

spawn (pong_example , ping , [5, ’B’, Pong_PID]).

Program 8: An example in Erlang of a ping-pong server and client. The pong server replies with pong each time
a ping message is received. Ping clients, named A and B, send five ping messages each time waiting for the reply.

func pi(n int) float64 {

ch := make(chan float64)

for k := 0; k <= n; k++ {

go term(ch , float64 (k))

}

f := 0.0

for k := 0; k <= n; k++ {

f += <-ch

}

return f

}

func term(ch chan float64 , k float64) {

ch <- 4 * math.Pow (-1, k) / (2*k + 1)

}

Program 9: An example in Go of goroutines and channels to compute an approximation of π using n terms of
the Gregory-Leibniz series.

20

2.2 Parallel Constructs

This section describes language constructs from which parallelism can be extracted and discusses
the advantages and disadvantages of each approach.

2.2.1 Threads

Threads are a low level approach to parallelism. When using threads to develop an application,
the programmer defines exactly how the computation should be distributed by mapping to each
thread the work it must execute. For this purpose, the programmer can use directly the OS thread
interface (pthreads or otherwise). When doing so, the execution of the applications incurs in a
low overhead. For this reason threads are widely used on performance critical systems and as a
back-end of many other parallel constructs.

Threads are not implicitly synchronized. As such, instructions between two threads may occur
in any order, originating race conditions. To avoid this undesired behavior the programmer must
make use of additional mechanisms such as semaphores, barriers or atomic operations. This
primitives make it hard for the programmer to express his intents [20] often leading to software
bugs.

When using threads the programmer is responsible of sizing and partitioning of the problem.
A solution with poor quality will lead to bad runtime performance. On one hand, when using a
coarse sub-division one thread may become idle even though work is still available. On the other
hand, a fine-grained sub-division will lead to a higher scheduling and synchronization overhead
and a larger memory footprint. This process becomes more difficult when dealing with problems
with irregular structure or input dependent behavior.

2.2.2 Futures

A future, promise or delay is an object whose value is not yet known because its computation has
not completed yet. When a future is created, resolving its value is handled by another thread
(either created explicitly or obtained from a worker pool). It is assumed that this computation
does not modify values accessed by the creator (and vice-versa) therefore being race-free. When
the value is required by the caller the future is resolved. This operation returns the value of
the object immediately if it has been computed already or blocks until the value is available.
Program 10 shows the usage of futures in C++11.

2.2.3 Tasks

A task is similar concept to a future. Unlike futures however, tasks can access and modify
shared variables. For this reason a mechanism for synchronizing tasks is required. Programs
written with tasks form a Direct Acyclic Graph (DAG). Nodes identify tasks and edges their

21

int fib(int n)

{

if (n < 2)

return n;

future <int > a = async ([n] () { return fib(n - 1); });

future <int > b = async ([n] () { return fib(n - 2); });

return a.get () + b.get ();

}

Program 10: Implementation of the recursive Fibonacci method using C++11’s futures. Using the default options,
async may create a new worker thread or lazy evaluate the value only when the get() method is invoked.

dependencies. An edge from node A to node B indicates that task A precedes B. A task is
allowed to execute only when its in-degree (number of dependencies) is zero. Once it completes,
the corresponding node and all exit edges are removed from the DAG, allowing other tasks to
be executed. Because the graph is acyclic, deadlocks are impossible under the assumption that
every task eventually finishes.

Task creation is very efficient when compared against threads. For this reason the programmer
is capable of partitioning the problems into smaller work units. This allows a runtime task
scheduler to perform a better load-balancing.

Work-Stealing is a policy for efficient load-balancing. Each worker thread maintains a deque
of its ready-to-execute tasks. When new tasks become available they are inserted in the deque’s
head. Threads obtain work by removing items also from the head. When the deque is empty,
workers can can steal work from other deques. This operation attempts to remove one item from
another worker’s deque at its tail.

The original proposal of the work-stealing policy describes the THE protocol used in the
implementation of Cilk-5 [11]. This protocol assumes the high contention scenario is unlikely and
uses mutexes as primitives for synchronization. Improvements to this algorithm have since been
published. In [2], Arora, Blumofe and Plaxton present an algorithm for conducting work-stealing
using Compare-And-Swap primitives. This is commonly referred to as ABP work-stealing. In
[4], an extension to the ABP algorithm is described allowing for dynamic sized deques. In [26],
the termination detection problem is solved by introducing lifeline graphs. This solution is used
for global load balancing in X10. Finally, [16] introduces a new work-stealing model with lower
overhead based on thread suspension.

22

2.2.4 Actors

An actor is an isolated entity that communicates with the system (other actors) through message
passing. Each actor acts in response to messages received, being able to change its own behavior,
create new actors and asynchronously send new messages. Because actors don’t share memory
(isolation) the model is inherently concurrent and doesn’t require synchronization mechanisms
like locks. However, because no shared state is allowed messages must be sent back and forth be-
tween actors. As such, message creation, transferring, storing and parsing increases the pattern’s
overhead which might incur in parallel slowdown.

23

2.3 Event-Driven Languages and Libraries

In event-driven programming the flow of execution of an application is determined by the man-
ifestation of events and its handling. This pattern has been widely used to develop graphical
user interfaces. Recently, it has also been adopted as a model to develop highly scalable web
applications. In this section we present a list of some languages and libraries that follow this
model.

Qt is a cross-platform C++ framework used mostly for developing GUIs. Qt offers the pro-
grammer two mechanisms called signals and slots that are used together as communication
bridges between objects. Signal are special special method declarations with no return
type (e.g. void) and with arbitrary arguments. The method implementation must not be
defined by the programmer as it is created automatically by the Qt meta object compiler.
To trigger a signal, the programmer just needs to invoke the declared method with the
emit keyword. Slots are user defined functions containing the event-handling code. Slots
can be invoked manually but are most useful when connected to a signal. Signals and slots
offer an flexible interface that allows M-by-N relationships: triggering a signal can invoke
multiple slots and a slot can be invoked by multiple signals. A small example of Qt is
shown in program 11.

JavaScript is a single-threaded, multi-paradigm language with first-class functions. It is the
de facto client-side application language for web browsers. JavaScript is based around an
event-loop which handles events one by one. For this reason, event handler can not block,
otherwise the application would become unresponsive. Instead, a non-blocking IO API is
used. Using this API, the programmer request some action (e.g.: read data from a socket)
by passing a callback function as an argument. When the action completes the callback is
pushed into the event-loop and is eventually executed. Node.js is a framework for building
scalable web servers with JavasSript. It uses Google’s V8 engine as the JavaScript Virtual
Machine and libUV to provide asynchronous IO over multiple platforms. Program 12 shows
a simple HTTP server replying with the Hello World message to every request.

2.4 Overview

This chapter described a transversal overview of the state of the art in three fields of study.
The first introduced parallelism and approaches to exploit it. The second analyzed language
constructs used to expose parallelism. Finally the third section addresses the event-oriented
programming model. Some elements have been purposefully kept out. For instance, GPU pro-
gramming provides alternative to achieve large speedups on arithmetic heavy problems. However,
event-driven programming is mainly used in other contexts where IO and flow-control operations

24

class Counter : public QObject

{

Q_OBJECT

int m_value ;

public :

Counter () { m_value = 0; }

public slots :

void set(int value)

{

if (value == this -> m_value)

return ;

this -> m_value = value ;

emit changed (value);

}

signals :

void changed (int new_value);

};

void main ()

{

Counter a, b;

QObject :: connect (

&a, SIGNAL (changed (int)),

&b, SLOT(set(int))

);

a.set (42);

}

Program 11: Usage of Qt’s signal and slots mechanism. Setting a counter to a new value triggers the changed

signal. This signal can be connected to any slot using the connect function. This example creates two Counter
objects the changed signal of a to the set slot of b. In practice, changing the value of a also changes b but not
the other way around.

are pervasive. Ports of Node.js such as python’s Twisted or ruby’s EventMachine present the
same basic functionality and add little theoretical value.

Current approaches to event-oriented frameworks rely on isolated memory. When developing
with Node.js the programmer spawns multiple processes to handle requests in parallel. This is
trivial for stateless applications. In the other case, the programmer must use some mechanism
to transfer data between processes or offload the synchronization to another application (e.g.
external database). Erlang’s actor model suffers the same limitation at a lower level. The
programmer is responsible for partitioning the application into actors. On one hand, using a
single actor for a centralized resource (e.g. a lookup table) might introduce a computation
bottleneck and sequentialize the execution. On the other hand, using many actors will lead to a
large communication overhead. Additionally, this model implies that ownership of data belongs
to a single actor while on the real world it can be shared across many entities (like a blackboard
can be used simultaneously by multiple persons).

25

var http = require (’http ’);

http. createServer (function (request , response)

{

response . writeHead (200 , {’Content -Type ’: ’text/ plain ’});

response .end(’Hello World \n’);

}). listen (8000) ;

console .log(’Server running at http :// localhost :8000/ ’);

Program 12: Node.js’ http libraries allow the simple creation of HTTP servers. By hiding all the protocol
implementation the programmer only needs to write the application logic inside the request handler callback.

26

Chapter 3

EVE Language

This chapter provides a description of EVE language. Section 1 contains an overall description of
language and its concepts. Section 2 starts with a brief introduction to the analysis of operational
semantics and introduces the syntax used. This section also provides a detailed analysis of each
of the language’s components, delivering documentation of its syntax and operational semantics.

3.1 Introduction

EVE is an event-based language targeted for scalable high performance under heavy IO loads.
For this purpose, EVE makes transparent use of multiple task-loops managed by worker-stealing
threads. Under EVE, tasks are procedures ready to execute. They can be created manually by
the programmer or automatically by the runtime system when a event is triggered. EVE tasks
do not form a graph with dependencies. Instead, synchronization is maintained at the data level:
each task defines the set of shared objects it reads and writes, and the runtime is responsible for
scheduling compatible tasks simultaneously. Program 13 shows the Hello World program written
in eve.

import io. stdout

main: [+ stdout] () void:

stdout . write (" Hello World \n")

Program 13: Hello World example with EVE. Line 1 imports the out object to the global name-space, line 3
defines the main function which returns no value and receives no arguments. Additionally, write permissions are
indicated for the object out. Line 4 writes the message to the output stream.

Correct programs cannot contain infinite loops inside a task as this could lead to live-locks.
Additionally, no blocking operation is allowed in EVE. Instead, an event-oriented approach is
used: any type enumerates the set of events it can trigger at its declaration. Events are named

27

types and can contain objects of any type. To trigger an event, the binary ! operator is used.
This operator takes the emitter object as the first operand and the event object as the second.
Subscriptions to events can be added to any object accessible in the current scope using the on
statement.

import io. socket .*

import util. tiemout

main: () void:

clients : set <socket@ >@

tcp_socket . listen (8080) :

connection = [+ clients] (c: connection &) bool:

client : socket@ = c()

clients . insert (client)

on client data [clients]:

message : vector <char >@ = client . read_buffer ()

@ for (c: socket@ in clients) [message , +c]:

c. write_buffer (message)

on client close [+ clients]:

clients . remove (client)

return true

error = [+ stderr] (e: error &) bool:

stderr . write (" Failed to start server : %s", error)

return true

Program 14: A TCP broadcast server that accepts connections on port 8080.

There are no guarantees that tasks are executed in a strict order. To maximize performance
worker threads consume tasks in a First-In Last-Out (FILO) fashion. This scheduling algorithm
improves locality and is space-bounded by the recursion depth of the program. Nevertheless,
older tasks can be executed first if they are stolen by another worker. Task starvation could
only occur if new tasks were added in front of existing tasks. For this reason, event-originated
tasks are only executed after all scheduled tasks have completed. This solution gives priority to
existing work.

Shared objects are heap allocated and garbage collected. Each of these objects is paired
with a control object which monitors concurrent accesses. Pointers to these objects can be
copied, however the underlying control structure remains the same. This solution, guarantees
that access synchronization, even conducted through different pointers, is managed by the same
control object, avoiding the aliasing problem.

28

When a worker obtains a task it tries to acquire the set of shared objects referred one at a
time. The order of acquisition is determined at runtime and is guaranteed to be the same for all
workers. If any acquisition fails, the worker backs out, releasing all objects in the inverse order,
and re-inserting the task at the bottom of its deque for later execution. This algorithm grows in
complexity when the set of objects is large. For this reason tasks with small variable sets should
be used. To avoid active starvation of tasks with large variable sets, tasks can only be re-inserted
a fixed number of times. When this number is reached, the worker acquires the set of shared
objects, waiting if necessary for other workers to release them. Although this solution may incur
in a large performance penalty, no deadlock is created because the task currently owning the
desired objects will eventually complete.

import io. stdout

data: vector <int >@ = [1, 2, 3]

print : [+ stdout] (list: vector <int >&) void:

for (i: int in list):

stdout . write (i)

main: [+ stdout , data] () void:

print (data)

Program 15: Another simple example of the eve language. Notice how the main function still defines write access
to the stdout object even though it is only used inside the print function. Additionally, read permissions to data

object are requested, allowing print function access it as if it by reference.

When defining a function the programmer indicates the set of permissions required over shared
objects. This set can reference any object belonging to the scope where the function is defined.
Read permissions allow a function to obtain a constant view of an object. The programmer can
request read permissions explicitly by adding the variable identifier to the permission set. Full
permissions allow the variable to be both read and modified. To request this permission type
the variable must be prepended with the plus sign (+). Attempting to modify a variable without
full permissions will yield a compile-time error. Example definition of access permissions can
be observed in program 15. Additionally, the programmer can also request Null permissions by
prepending the variable with a minus sign (-). This allows a function to receive bind a reference
to the variable without needing to have permissions to view or modify the object.

Parallel programs with EVE can be created by spawning new tasks. Tasks are created using
the @ statement. This statement is defined by an optional context definition and statement
containing the task body. A context definition is list of permission requests (like a function’s
permission set) but can also contain additional local variable captures. Using the same syntax
as C++ a variable can be captured by copy or by reference using the = and & prefixes respectively.
Program 16 shows how to use the @ statement to create new tasks.

29

import io.out

prefix_sum : (n: int) void:

sum: int = 0

for (i: int = 1; i <= n; i++):

sum += i

@ [+out , =n, =sum]: out. write (" prefix sum of %d = %d", n, sum)

main: () void:

@ prefix_sum (100)

@ prefix_sum (200)

Program 16: An example that computes two prefix sums in parallel and outputs the result to standart output.

Creating a task immediately schedules it for execution. However, it will only start after the
termination of tasks referring to the same shared objects. Additionally, creating a task does not
release the objects defined in the context definition. For this reason, if the child task accesses at
least one object referred by its parent, it will only execute after the parent has completed. This
can be observed in example 17.

print : [+ out] () void:

out. write ("This comes first ")

@[+ out]:

out. write ("This last")

out. write ("This one second ")

This comes first

This one second

This last

Program 17: On the left, a program in EVE that writes three messages to standard output. On the right, the
only possible result obtained by executing this code.

A finish block can be used to suspend a parent task until sub-task are terminated. Because
sub-tasks commonly require access to the same objects as the parent task, upon entering a finish
block, all shared objects are released. However, acquisition of these objects is only allowed by the
children tasks. This property allows the programmer to assume the views over shared objects
before and after the finish construct are consistent. Inside a finish block tasks can only
require a subset of the parent’s permission set. This guarantees that if a task enters a finish
block all sub-task are able to execute without blocking for access to additional shared objects
(although they might need synchronization between siblings). For this reason the inclusion of
finish statements does not introduce deadlocks. Program 18 shows an implementation of the
recursive Fibonacci method making use of finish for synchronization.

The finish statement allows the compiler many optimizations:

30

fib: (n: int) int:

if n < 2:

return n

a, b : int@

finish :

@ [+a, =n]: a = fib(n - 1)

@ [+b, =n]: b = fib(n - 2)

return a + b

Program 18: Parallel computation of the nth Fibonacci number using the finish block for synchronization. int@

defines a shared object of base type int.

• Because the life-span of children tasks is contained in the life-span of its parent, task objects
can be allocated directly on the stack instead of the heap;

• For the same reason, shared objects accessed only by the parent task and tasks spawned
inside finish statements can be stack allocated;

• If there is no intersection between the permission sets of each sub-task, object allocation
and deallocation can by omitted completely. On the other case, the allocation of the first
task can assume it will always succeed;

• The finish statement freezes execution of the parent task. For this reason local variables
can be accessed directly by reference. In this case, synchronization of tasks can be omitted
if read-only access is required by all tasks.

The EVE language also include parallel for loops using the @for statement. The behavior of
this construct is the same as if one task were created for each iteration, however the runtime might
choose to group iterations to improve performance. Example 19 shows usage of this feature.

31

map: <type X, type Y> (x: vector <X>&, f: <(X&) Y >& f) vector <Y>@:

y: vector <Y>@ (x. length ())

finish :

@ for (i: int = 0; i < x. length (); i++) [&x, &f]:

yi: Y = f(x[i])

@ [+y, =i, &yi]:

y[i] = yi

return y

Program 19: The map pattern implemented using a parallel for. Note that y is a shared object but the function
returns a normal vector<int>. This normally requires a copy operation but it can be bypassed using the same
semantics as Return Value Optimizations.

32

3.2 Operational Semantics

Operational semantic analysis is a mathematical tool used to describe the expected behaviour
of an application. This analysis is based on a precise description of each operation, focusing on
what it means instead of how it executes. This allows a consistent view of a language despite
the existence of distinct implementations, each with its unique sets of rules.

3.2.1 Syntax

Structured operational semantic rules define each operation as a transformation between an
initial environment, the state of the application before the execution, and a final environment
where its side-effects are visible [23]. In this document, each rule has the following format:

pre-conditions
environment ` operation⇒ result,new environment

Rule 1: An example of operational semantic rules.

For this section consider the following notation: Σ = {a, b, ...} is a set of known ids, Π =
{A,B, ...,Φ} is a set containing all available types, either built-in, user defined (Φ is the void
type), Γ = ({α, β, ...} ,+) is a group of locations where values can be stored, such as memory
addresses or registers, Ψ = {π, ψ, ..., φ} ∪ Γ is the set of all possible values a variable can have
(φ is the value of void).

In EVE, a local environment is defined as L : 〈T,V〉, where T : Σ→ Π is the type context, a
function that maps a variable id to its static type, V : Σ→ Γ is the variable context, a function
that maps a variable id to the location where it is stored. New contexts can be created using the
notation Y = X [a/X] which indicates Y(a) = X and Y(x) = X(x),∀x 6= a. For convenience Li
is implicitly defined as Li : 〈Ti,Vi〉 where Xi = Xi−1 unless otherwise specified.

An additional global environment is defined as G : 〈S,C,R〉, where S : Γ→ Ψ is the storage
context, a function that describes the current value stored at each location, C : Γ × Π → Γ∗

is the callback context, a function that identifies for each object-event pair the set of callback
functions and R is the set of existing runnable tasks. Keep in mind that, while multiple local
environments can co-exist, only one global environment is present in the system. For this reason,
global contexts are transformed (instead of created) using the notation X← X [a/X].

The result is a value-type pair identified as 〈π : A〉. Type inspection opens for observation
the attributes of a type using the notation A := 〈〈β,B〉 , 〈ζ, C〉 , ... ;x : 〈α,X〉 , y : 〈γ, Y 〉 , ...〉,
indicating that type A is a subtype of B and C, has attributes x, y of types X,Y with location
offsets α and γ. Using a similar notation, task inspection allows observation of the attributes of
a task r ∈ R := 〈α, {β : πβ , ζ : πζ , ...}〉, where α is the location of the task, β, ζ, the locations of
bound variables, and πβ , πζ the permissions requested . If multiple semantic rules are available

33

for one operation (e.g. all pre-conditions are met) the first is selected. If no rule is available,
then such operation is invalid and an error will be raised during static analysis.

3.2.2 Utility Functions

This section contains the description of three functions, which will aid the definition of EVE
semantics in the following parts of the document. The callable(Θ,Ω, stmt) function creates an
object which can be invoked using the n-ary parenthesis operator. This function receives three
arguments: Θ is the set of formal arguments, including identifiers, types and optional default
values, Ω is the permission set which identifies access permissions on shared variables, and stmt
is an executable operation. The call(A, f, [π1, π2, ...]) function is used to execute objects created
with callable(), where A identifies the type on which the f function will be invoked with π1, π2, ...

as arguments. If A is a function object, call() executes the stmt operation after ensuring that
the required access permissions are met. If A is not a function object, call() will lookup the f
object inside type A, and proceed to invoke call(f, (), [π1, π2, ...]). The third utility function is
offset(A, x). This function is hardware and implementation specific, and returns the memory
offset where the x object is located inside an object of type A.

3.2.3 IDs

id

: SIMPLE_ID

| qualified_id

;

qualified_id

: SIMPLE_ID ’.’ SIMPLE_ID

| qualified_id ’.’ SIMPLE_ID

;

Grammar 1: Rules for identifiers.

In EVE simple identifiers are strings containing letters, numbers or the _ (underscore) character,
provided they do not start with a number. Qualified identifiers are dot separated lists of simple
identifiers. Additionally the following strings are reserved as keywords: import, as, buitin,
type, def, var, self, operator, constructor, if, else, for, while, break, continue, return,
pass, in, on, switch, case, default, true, false. Rules for IDs can be observed in grammar
1.

34

3.2.4 Types

type

: id (’<’ type_params ’>’)?

| type ’@’

| type ’&’

| ’<’ ’(’ type_list ? ’)’ type ’>’

;

type_param

: constant

| type

| id

;

type_params

: type_param

| type_params ’,’ type_param

;

type_list

: type

| type_list ’,’ type

;

Grammar 2: Rules for types specifiers.

EVE accepts four type formats. The first format uses an identifier of a built-in or already
declared type with an optional argument list. Acceptable arguments, are constant literals or
other type specifiers. Additionally identifiers can also be used as type arguments if they can be
determined at compile time to be either a constant or another type specifier. The second format
identifies shared objects and use the normal specification with the @ (at) suffix. Likewise, using
the & (ampersand) suffix identifies the object reference type. Finally, the last format is used to
identify function types. Rules for type specifiers can be observed in grammar 2.

35

Built-ins and Literals

This section contains the specification for each built-in types in EVE.

Boolean values are of type bool and can be either true or false. Rules 2 identify the opera-
tional semantics of these two literals:

L,G ` true⇒ 〈true : bool〉,L,G

L,G ` false⇒ 〈false : bool〉,L,G

Rule 2: Semantic rules for boolean literals.

Integer values are of type int<N>, where N identifies the number of bits used to store the value.
If omitted, N is assumed to be of the CPU word size of the target platform. By default
integer literals can be written in base 10. Literals that start with 0 (zero) are considered
to be in base 8. Literals that start with 0x are parsed as in base 16. Rule 3 identifies the
operational semantics of integer literals:

π is a int literal
L,G ` π ⇒ 〈π : int<dlog2(π)e>〉,L,G

Rule 3: Semantic rules for integer literals.

Floating Point values are of type float<N>, where N identifies the number of bits used to
store the value. Float literals are stored as specified by the IEEE 754 standard. If N is
omitted, it is assumed to be the maximum provided by the target platform such that built-
in operations such as sin and cos are available. Rule 4 identifies the semantics for floating
point literals.

π is a float literal
ψ is the maximum float size

L,G ` f ⇒ 〈π : float<ψ>〉,L,G

Rule 4: Semantic rules for floating point literals.

Character values are of type char. Character literals are enclosed in '' (single-quotes), and
can be normal characters such as letters 'a', or special, backslash escaped characters such
as '\n' or '\011'. Rule 5 displays the semantics for character literals.

c is a char literal
L,G ` c⇒ 〈c : char〉,L,G

Rule 5: Semantic rules for character literals.

36

String values are of type string. String literals are enclosed in “” (double-quotes), and can
contain any character used in a char type. Rule 6 displays the semantics for string literals.

c is a string literal
n is the length of c

L,G ` c⇒ 〈(c, n) : string〉,L,G

Rule 6: Semantic rules for string literals.

Function values are of type <(...) R> where R is the type of the returned value. Function
definitions and function literals will be described in sections 3.2.5 and 3.2.6.

Type conversion

EVE allows for implicit cast and conversion of variables to different types. Rules 7 and 8 describe
the semantics of these operation, where convert identifies conversion where temporary variables
may be allocated and cast means emplace conversion where they are not required. The identity
operation, id, requires no transformation, deref1 retrieves the value from an object reference,
deref2 obtains an object reference from a shared object, the subclass rule transforms a reference
to a sub-class to one of its parent classes, and construct creates a new object of the desired type.
Additionally, transitive rules allow for successive casts and conversions between types.

id
L,G ` cast(π,A,A)⇒ 〈π : A〉,L,G

deref1
L,G ` cast(π,A&, A)⇒ 〈S(π) : A〉,L,G

deref2

T ` A@ := 〈..., object : 〈δ : A&〉, ...〉
G ` S(π + δ) = ψ

L,G ` cast(π,A@, A&)⇒ 〈ψ : A&〉,L,G

subclass

T ` A < B
T ` A := 〈..., 〈β,B〉 , ...; ...〉

ψ = π + β

L,G ` cast(π,A&, B&)⇒ 〈ψ : B&〉,L,G

transitive

L,G ` cast(π,A,B)⇒ 〈ψ : B〉,L,G
L,G ` cast(ψ,B,C)⇒ 〈τ : C〉,L,G
L,G ` cast(π,A,C)⇒ 〈τ : C〉,L,G

Rule 7: Semantic rules for type casting.

37

cast
L,G ` cast(π,A,B)⇒ 〈ψ : B〉,L,G

L,G ` convert(π,A,B)⇒ 〈ψ : B〉,L,G

construct

T ` B := 〈... ; ..., constructor : 〈λ : <(B&, A′)B&>〉, ...〉
L,G ` new(V, B)⇒ 〈ψ,B&〉,L,G

L,G ` convert(π,A,A′)⇒ 〈π′ : A′〉,L,G
L,G ` λ(ψ, π′)⇒ 〈τ : B&〉,L,G

L,G ` convert(π,A,B)⇒ 〈S(τ) : B〉,L,G

transitive

L,G ` convert(π,A,B)⇒ 〈ψ : B〉,L,G
L,G ` convert(ψ,B,C)⇒ 〈τ : C〉,L,G
L,G ` convert(π,A,C)⇒ 〈τ : C〉,L,G

Rule 8: Semantic rules for type conversion.

3.2.5 Expressions

expr

: expr_inline

| expr_block

;

expr_block

: expr_block_unary

| expr_block_binary

| expr_block_n_ary

| expr_block_lambda

;

expr_inline

: CONSTANT

| SELF

| SIMPLE_ID

| expr_inline ’.’ SIMPLE_ID

| ’(’ expr_inline ’)’

| expr_inline_unary

| expr_inline_binary

| expr_inline_n_ary

| expr_inline_lambda

;

Grammar 3: Grammar rules for expressions.

Expressions are operations that return a meaningful values. They do not modify the local envi-
ronment, but may modify the global environment. In EVE, nine types of expressions are covered:
constants, self, variable access, field access, unary, binary, n-ary, parentheses and lambda. The
syntax for expressions is described in grammar 3. Expressions are syntactically divided into two
groups: inline and block. While inline expressions do not use any delimiter, block expressions
must be terminated with a new line. The syntax and semantics for each expression type are
detailed in the following section.

38

Constant

Constant expressions take the value from a constant literal, without modifying the context.
Semantics for these expressions are described in rule 9.

lit is a constant literal
lit = 〈π : A〉

L,G ` lit⇒ 〈π : A〉,L,G

Rule 9: Semantic rules for constant expressions.

Self

The self expression returns a reference to a variable of the enclosing type. Semantics for this
expression is described in rule 10.

V ` V(self) = α
T ` T(self) = A@

L,G ` self⇒ 〈α : A@〉,L,G

Rule 10: Semantic rules for the self expression.

Variable

The variable expression returns a reference to a previously declared variable. Semantics for this
expression is described in rule 11.

V ` V(v) = α
T ` T(v) = A@

L,G ` v ⇒ 〈α : A@〉,L,G

Rule 11: Semantic rules for variable expression.

Field Access

The field access expressions enable access to inner declarations of a type or variable reference.
The semantic description of these expressions is available in rule 12.

39

type-type

T ` T(a) = A
T ` A := 〈... ; ..., x : 〈ψ,X〉 , ...〉
L,G ` a.x⇒ 〈ψ : X〉,L,G

type-ref

T ` T(a) = A
T ` A := 〈... ; ..., x : 〈π,X&〉 , ...〉
L,G ` a.x⇒ 〈π : X&〉,L,G

ref-ref

T ` A := 〈... ; ..., x : 〈δ,X&〉 , ...〉
L,G ` expr ⇒ 〈π : A&〉,L,G

ψ = π + δ

L,G ` expr.x⇒ 〈ψ : X&〉,L,G

ref-cast-ref

T ` A < B
T ` B := 〈... ; ..., x : 〈δ,X&〉 , ...〉
L,G ` expr ⇒ 〈π : A&〉,L,G

L,G ` cast(π,A&, B&)⇒ 〈ψ : B&〉,L,G
τ = ψ + δ

L,G ` expr.x⇒ 〈τ : X&〉,L,G

Rule 12: Semantic rules for field access expressions.

Parentheses

Parentheses expressions are syntactic only elements. For this reason the semantic value of these
expressions is deferred to the wrapped expression, as indicated in rule 13.

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` (expr)⇒ 〈π : A〉,L,G

Rule 13: Semantic rules for parentheses expressions.

Unary

expr_inline_unary

: prefix_op expr_inline

| incr_op expr_inline

| expr_inline incr_op

;

expr_block_unary

: prefix_op expr_block

: incr_op expr_block

;

incr_op

: "++"

| "--"

;

prefix_op

: ’+’

| ’-’

| ’~’

| ’!’

;

Grammar 4: Grammar rules for unary expressions.

40

Unary expressions apply transformations to a single operand. Prefix operations are one of the
two types of unary expressions. These operations modify the returned value of the argument
expression. Increment and decrement operations are the second type of unary expressions. These
operations receive an object reference and modify the stored value. Syntax rules for these ex-
pressions are available in grammar 4 and their semantic descriptions in rules 14.

prefix

op ∈ {+, -, ~, !}
L,G ` expr ⇒ 〈π : A〉,L,G

L,G ` call(〈π : A〉, op)⇒ 〈ψ : B〉,L,G
L,G ` op expr ⇒ 〈ψ : B〉,L,G

pre-incr

op ∈ {++, --}
L,G ` expr ⇒ 〈π : A〉,L,G

L,G ` call(〈π : A〉, op)⇒ 〈ψ : B〉,L,G
L,G ` op expr ⇒ 〈ψ : B〉,L,G

post-incr

op ∈ {++, --}
L,G ` expr ⇒ 〈π : A〉,L,G

L,G ` call(〈π : A〉, op, [〈1 : int〉])⇒ 〈ψ : B〉,L,G
L,G ` expr op⇒ 〈ψ : B〉,L,G

Rule 14: Semantic rules for unary expressions.

Binary

expr_inline_binary

: expr_inline binary_op ’=’ expr_inline

| expr_inline binary_op expr_inline

| expr_inline comp_op expr_inline

;

expr_block_binary

: expr_inline binary_op ’=’ expr_block

| expr_inline binary_op expr_block

| expr_inline comp_op expr_block

;

binary_op:

: ’+’

| ’-’

| ’*’

| ’/’

| ’^’

| ’&’

| ’|’

| ’%’

| "<<"

| ">>"

| "**"

;

comp_op

: ’<’

| ’>’

| " <="

| " >="

| "=="

| "!="

| "==="

| "!=="

;

Grammar 5: Grammar rules for binary expressions.

Binary expressions apply transformations to two operands. Three types of operators are avail-
able, including arithmetic (+, -, *, ...), boolean (<, >, <=, >=, ...), and assignment (=). Assignment
expressions are a subtype of binary expressions, and can be combined with any arithmetic op-
erator into a single operation-assignment expression. Syntax rules for binary expressions are

41

available in grammar 5 and their semantic descriptions in rules 15.

op

op ∈ {+, -, *, !, ⁄, ^, &, |, %, <<, >>, **, <, >, <=, >=, ==, !=, ===, !==}
L,G ` expr1 ⇒ 〈π : A〉,L,G
L,G ` expr2 ⇒ 〈ψ : B〉,L,G

L,G ` call(〈π : A〉, op, [〈ψ : B〉])⇒ 〈τ : C〉,L,G
L,G ` expr1 op expr2 ⇒ 〈τ : C〉,L,G

assignop

L,G ` call(〈π : A&〉, =, [〈ψ : B〉])⇒ 〈π : A&〉,L,G
L,G ` assign(〈π : A&〉, 〈ψ : B〉)⇒ 〈π : A&〉,L,G

assigndef

L,G ` convert(ψ,B,A)⇒ 〈τ : A〉,L,G
G ` S← S [τ/π]

L,G ` assign(〈π : A&〉, 〈ψ : B〉)⇒ 〈π : A&〉,L,G

assign

L,G ` expr1 ⇒ 〈π : A&〉,L,G
L,G ` expr2 ⇒ 〈ψ : B〉,L,G

L,G ` assign(〈π : A&〉, 〈ψ : B〉)⇒ 〈π : A&〉,L,G
L,G ` expr1 = expr2 ⇒ 〈π : A&〉,L,G

op-assignop

op ∈ {+=, -=, *=, !=, ⁄=, ^=, &=, |=, %=, <<=, >>=, **=}
L,G ` expr1 ⇒ 〈π : A&〉,L,G
L,G ` expr2 ⇒ 〈ψ : B〉,L,G

L,G ` call(〈π : A&〉, op, [〈ψ : B〉])⇒ 〈π : A&〉,L,G
L,G ` expr1 op expr2 ⇒ 〈π : A&〉,L,G

op-assigndef

op ∈ {+, -, *, !, ⁄, ^, &, |, %, <<, >>, **}
L,G ` expr1 ⇒ 〈π : A&〉,L,G
L,G ` expr2 ⇒ 〈ψ : B〉,L,G

L,G ` call(〈π : A〉, op, [〈ψ : B〉])⇒ 〈τ : C〉,L,G
L,G ` assign(〈π : A&〉, 〈τ : C〉)⇒ 〈π : A&〉,L,G
L,G ` expr1 op = expr2 ⇒ 〈π : A&〉,L,G

Rule 15: Semantic rules for binary expressions.

42

N-ary

expr_inline_n_ary

: expr_inline ’[’ expr_inline_list ? ’]’

| expr_inline ’(’ expr_inline_list ? ’)’

;

expr_block_n_ary

: expr_inline ’[’ expr_inline_list ? ’]’ ’:’ EOL INDENT argument_named + DEDENT

| expr_inline ’(’ expr_inline_list ? ’)’ ’:’ EOL INDENT argument_named + DEDENT

;

argument_named

: SIMPLE_ID ’=’ expr_inline EOL

| SIMPLE_ID ’=’ expr_block

;

Grammar 6: Grammar rules for n-ary expressions.

N-ary expressions apply transformations to any positive number of operands. These expressions
include the invoke operator (), and the indexing operator []. Syntax rules for n-ary expressions
are available in grammar 6 and their semantic descriptions in rules 16.

op

L,G ` exprb ⇒ 〈π : B&〉,L,G
L,G ` expr1 ⇒ 〈ψ1 : A1〉,L,G

...
L,G ` exprn ⇒ 〈ψn : An〉,L,G

L,G ` call(〈π : B&〉, (), [〈ψ1 : A1〉, 〈ψ2 : A2〉, ..., 〈ψn : An〉])⇒ 〈τ : C〉,L,G
L,G ` exprb(expr1, expr2, ...)⇒ 〈τ : C〉,L,G

Rule 16: Semantic rules for n-ary expressions.

Lambda

expr_inline_lambda

: perms ’(’ parameters ? ’)’ type? ’:’ expr_inline

;

expr_block_lambda

: perms ’(’ parameters ? ’)’ type? ’:’ EOL stmt_block

;

Grammar 7: Grammar rules for lambda expressions.

Lambda expressions are used to create function literals. The syntax rules for these expressions
are available in grammar 7 and their semantics in rules 17.

43

L,G ` expr1 → 〈π1, : X ′1〉,L,G
L,G ` expr2 → 〈π2, : X ′2〉,L,G

...
L,G ` convert(π1, X

′
1, X1)→ 〈ψ1, : X1〉,L,G

L,G ` convert(π2, X
′
2, X2)→ 〈ψ2, : X2〉,L,G
...

T ` T′ = {a : T(a), b : T(b), ...}
V ` V′ = {a→ V(a), b→ V(b), ...}

Θ = {〈x1 : X1 = ψ1〉, 〈x2 : X2 = ψ2〉, ...}
Ω = {ηa : V(a), ηb : V(b), ...}

L,G ` callable(Θ,Ω, stmt)⇒ 〈α : <(X1, X2, ...)R>&〉,L,G
L,G ` [ηaa, ηbb, ...] (x1 : X1 = expr1, x2 : X2 = expr2, ...)R: stmt⇒ 〈α : <(X1, X2, ...)R>&〉,L,G

Rule 17: Semantic rules for lambda expressions.

3.2.6 Statements

stmt

: PASS EOL

| stmt_expr

| stmt_while

| stmt_for

| stmt_for_in

| stmt_return

| stmt_par

| stmt_on

| stmt_finish

| definition

;

Grammar 8: Grammar rules for statements.

Statements are operations that do not meaningful values. Instead, their execution modifies either
the local environment, the global environment, or both. In EVE, twelve types of statements are
covered: block, pass, expression, while, for, for-in, return, par, finish, on, function definition,
variable definition and type definition. The syntax for statements is described in grammar 8.
The syntax and semantics for each statement type is covered in the following section.

Block Statement

The block statement is a list of sub-statements that are executed in order. The semantics of
block statements are described in rule 18.

44

L1,G ` stmt1 ⇒ 〈φ : Φ〉,L2,G
L2,G ` stmt2 ⇒ 〈φ : Φ〉,L3,G

...
Ln−1,G ` stmtn ⇒ 〈φ : Φ〉,Ln,G

L1,G ` stmt1 stmt2 ... stmtn ⇒ 〈φ : Φ〉,Ln,G

Rule 18: Semantic rule for block statements.

Pass Statement

The pass statement is used when a statement is syntacticly necessary but no operation is desired.
This statement does not modify any environment and can be ignored during execution, as can
be observed in rule 19.

L,G ` pass EOL⇒ 〈φ : Φ〉,L,G

Rule 19: Semantic rule for the pass statement.

Expression Statement

stmt_expr

: expr_inline EOL

| expr_block

;

Grammar 9: Grammar rules for expression statements.

The expression statement executes a single expression and ignores its return value. The semantics
of this operation can be observed in rule 20.

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` expr EOL⇒ 〈π : A〉,L,G

Rule 20: Semantic rule for the expression statement.

If Statement

stmt_if

: IF expr_inline ’:’ stmt_or_block

| IF expr_inline ’:’ EOL stmt_block ELSE ’:’ EOL stmt_block

;

Grammar 10: Grammar rules for if statements.

45

The if statement evaluates the boolean value of expr and if equals to true executes stmt1
otherwise executes stmt2. The syntax rules for the if statement are available in grammar 10
and their semantics in rules 21.

true

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` convert(π,A, bool)⇒ 〈true : bool〉,L,G

L,G ` stmt1 ⇒ 〈φ : Φ〉,L′,G
L,G ` if expr: stmt1 else: stmt2 ⇒ 〈φ : Φ〉,L,G

false

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` convert(π,A, bool)⇒ 〈false : bool〉,L,G

L,G ` stmt2 ⇒ 〈φ : Φ〉,L′,G
L,G ` if expr: stmt1 else: stmt2 ⇒ 〈φ : Φ〉,L,G

Rule 21: Semantic rules for the if statement.

46

While Statement

stmt_while

: WHILE expr_inline ’:’ stmt_or_block

;

Grammar 11: Grammar rules for while statements.

The while statement evaluates the boolean value of expr and if it equals to true executes stmt
and repeats. The syntax rules for the while statement are available in grammar 11 and their
semantics in rules 22.

true

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` convert(π,A, bool)⇒ 〈true : bool〉,L,G

L,G ` stmt⇒ 〈φ : Φ〉,L′,G
L,G ` while expr: stmt⇒ L,G ` while expr: stmt

false

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` convert(π,A, bool)⇒ 〈false : bool〉,L,G

L,G ` while expr: stmt⇒ 〈φ : Φ〉,L,G

Rule 22: Semantic rules for the while statement.

For Statement

stmt_for

: FOR ’(’ for_init ’;’ for_cond ’;’ for_incr ’)’ ’:’ stmt_or_block

| ’@’ FOR ’(’ for_init ’;’ for_cond ’;’ for_incr ’)’ perms ? ’:’ stmt_or_block

;

stmt_for_in

: FOR ’(’ SIMPLE_ID IN expr_inline ’)’ ’:’ stmt_or_block

| ’@’ FOR ’(’ SIMPLE_ID IN expr_inline ’)’ perms ? ’:’ stmt_or_block

;

for_init

: /* EMPTY */

| expr_inline

| definition_variable

;

for_cond

: /* EMPTY */

| expr_inline

;

for_incr

: /* EMPTY */

| expr_inline

;

Grammar 12: Grammar rules for for statements.

The for statement creates a new local environment where init is executed. After this first step,
the boolean value of cond is evaluated. If it is equal to true, stmt is executed proceeded by

47

incr. This process repeats until cond evaluates to false. The parallel version of this statement
is semantically equivalent to executing all stmt instances in parallel. However, a specific imple-
mentation may choose different parallelization mechanisms or even a sequential implementation.
The syntax rules for the for statement are available in grammar 12 and their semantics in rules
23.

sequential

L,G ` init⇒ 〈φ : Φ〉,L′,G
L′,G ` loop(cond, incr, stmt)⇒ 〈φ : Φ〉,L′,G

L,G ` for (init; cond; incr): stmt⇒ 〈φ : Φ〉,L,G

parallel

L,G ` init⇒ 〈φ : Φ〉,L′,G
L′,G ` loop(cond, incr, @[ηaa, ηbb, ...]:stmt)⇒ 〈φ : Φ〉,L′,G

L ` @ for (init; cond; incr)[ηaa, ηbb, ...]: stmt⇒ 〈φ : Φ〉,L,G

true

L′,G ` cond⇒ 〈π : A〉,L′,G
L′,G ` convert(π,A, bool)⇒ 〈true : bool〉,L′,G

L′,G ` stmt⇒ 〈φ : Φ〉,L′′,G
L′,G ` incr ⇒ 〈ψ : B〉,L′,G

L′,G ` loop(cond, incr, stmt)⇒ L′,G ` loop(cond, incr, stmt)

false

L′,G ` cond⇒ 〈π : A〉,L′,G
L′,G ` convert(π,A, bool)⇒ 〈false : bool〉,L′,G
L′,G ` loop(cond, incr, stmt)⇒ L′,G ` 〈φ : Φ〉,L′,G

Rule 23: Semantic rules for the for statement.

For-in Statement

The for-in statement executes stmt once for each element inside an iterable object. The se-
mantics for this statement are described using the regular for in rule 24.

sequential

L,G ` e :=expr ⇒ 〈π : A&〉,L,G
T ` A < iterable<X>

L,G ` for (it := e.begin(); it != e.end(); ++it):
a := *it, stmt⇒ 〈φ : Φ〉,L,G

L,G ` for (a in expr): stmt⇒ 〈φ : Φ〉,L,G

parallel

L,G ` e :=expr ⇒ 〈π : A&〉,L,G
T ` A < iterable<X>

L,G ` @ for (it := e.begin(); it != e.end(); ++it):
a := *it, stmt⇒ 〈φ : Φ〉,L,G

L,G ` @ for (a in expr): stmt⇒ 〈φ : Φ〉,L,G

Rule 24: Semantic rules for the for-in statement.

48

Return Statement

stmt_return

: RETURN expr_inline EOL

| RETURN expr_block

;

Grammar 13: Grammar rules for return statements.

The return statement evaluates the result of expr and sets that value as return value of the
executing function. This operation is executed by assigning to reference variable created by call()
indicating the location where to store the result.

V ` V(return) = α
T ` T(return) = R&

L,G ` expr ⇒ 〈π : A〉,L,G
L,G ` assign(〈α : R&〉, 〈π : A〉)⇒ 〈α,R&〉,L,G

L,G ` return expr ⇒ 〈φ : Φ〉,L,G

Rule 25: Semantic rule for the return statement.

Par Statement

stmt_par

: ’@’ perms ? ’:’ stmt_or_block

;

perm_list

: perm

| perm_list ’,’ perm

;

perms

: ’[’ perm_list ? ’]’

;

perm

: id

| ’&’ id

| ’=’ id

| ’-’ id

| ’+’ id

;

Grammar 14: Grammar rules for par statements.

The par statement schedules for parallel execution another statement by creating a callable

object and adding it to the set of runnable tasks. The local execution environment for this new
statement is a subset of the current environment, described using the permission set ηaa, ηbb, ...
where a, b are variable identifiers and ηa, ηb are the required access permissions which can be the
default read-only permission, the full permission (+) or none (-). Additionally, variables can be
passed by value (=) or by reference (&). The syntax rules for the par statement are available in
grammar 14 and their semantics in rule 26.

49

L ` V(finish) = π
T ` T′ = {a : T(a), b : T(b), ...}

V ` V′ = {a→ V(a), b→ V(b), ...}
Ω = {ηa : V(a), ηb : V(b), ...}

L′,G ` callable(∅,Ω, stmt)⇒ 〈α : <() void>&〉,L′,G
G ` R← R ∪ {α}

G ` S← S[π/S(π) + 1]
L,G ` @[ηaa, ηbb, ...]: stmt⇒ 〈φ : Φ〉,L,G

Rule 26: Semantic rule for the par statement.

50

Finish Statement

stmt_finish

: FINISH ’:’ stmt_or_block

;

Grammar 15: Grammar rules for finish statements.

The finish statement enables synchronization with parallel tasks by executing other work until
their are complete. This statement creates a local variable which is incremented each time a task
is created (with the par statement or the parallel versions of for / for-in). When leaving a
finish block, the execution of the remaining statements is postponed until this variable reaches
zero. The syntax rules for the finish statement are available in grammar 15 and their semantics
in rule 26.

wait

G ` S(π) > 0
G ` execute other runnable task or sleep

L,G ` wait(π)⇒ L,G ` wait(π)

no-wait
G ` S(π) = 0

L,G ` wait(π)⇒ 〈φ : Φ〉,L,G

L,G ` new(V, int)⇒ 〈π, int&〉,L,G
G ` S← S[π/0]

V ` V′ = V[finish/π]
L′,G ` stmt⇒ 〈φ : Φ〉,L′′,G
L,G ` wait(π)⇒ 〈φ : Φ〉,L,G

L,G ` finish: stmt⇒ 〈φ : Φ〉,L,G

Rule 27: Semantic rule for the finish statement.

51

On Statement

stmt_on

: ON expr_inline SIMPLE_ID ’=’ expr_inline EOL

| ON expr_inline SIMPLE_ID ’=’ expr_block

| ON expr_inline SIMPLE_ID SIMPLE_ID ? perms ? ’:’ stmt_or_block

;

Grammar 16: Grammar rules for on statements.

The on statement enables the programmer to set up callbacks for events. This statement can be
used with either a function literal or a statement, in which case a function literal will be created
implicitly receiving a single argument (the event). The syntax rules for the on statement are
available in grammar 16 and their semantics in rule 28.

T ` X < emitter<A>
L,G ` expr1 ⇒ 〈α : X&〉,L,G

L,G ` expr2 ⇒ 〈β : <(A&) bool>&〉,L,G
G ` R[α×A/R(α×A) ∪ β]

L,G ` on expr1 A = expr2 ⇒ 〈φ : Φ〉,L,G

T ` X < emitter<A>
L,G ` expr1 ⇒ 〈α : X&〉,L,G
T ` T′ = {a : T(a), b : T(b), ...}

V ` V′ = {a→ V(a), b→ V(b), ...}
Θ = {〈x : A&〉}

Ω = {ηa : V(a), ηb : V(b), ...}
L′,G ` callable(Θ,Ω, stmt)⇒ 〈β : <(A&) bool>&〉,L′,G

G ` R[α×A/R(α×A) ∪ β]
L,G ` on expr1 Ax [ηaa, ηbb, ...]: stmt⇒ 〈φ : Φ〉,L,G

Rule 28: Semantic rule for the on statement.

52

Function Definition

definition_function

: func_name ’:’ templates ? perms ? ’(’ parameters ? ’)’ type? ’:’ stmt_or_block

;

templates

: ’<’ template_list ’>’

;

template_list

: template

| template_list ’,’ template

;

template

: (VAR|TYPE) SIMPLE_ID ELIPSIS ?

| VAR SIMPLE_ID ’=’ CONSTANT

| TYPE SIMPLE_ID ’=’ type

;

func_name

: CONSTRUCTOR

| SIMPLE_ID

| operator

;

operator

: incr_op

| prefix_op

| comp_op

| binary_op

| binary_op ’=’

| ’[’ ’]’

| ’(’ ’)’

;

parameters

: parameter

| parameters ’,’ parameter

;

parameter

: SIMPLE_ID ’:’ type (’=’ expr_inline)?

| SELF

;

Grammar 17: Grammar rules for function definitions.

The function definition statement is the second method of creating callable objects. The syntax
rules for these statements are available in grammar 17 and their semantics in rules 29.

53

L,G ` expr1 → 〈π1, : X ′1〉,L,G
L,G ` expr2 → 〈π2, : X ′2〉,L,G

...
L,G ` convert(π1, X

′
1, X1)→ 〈ψ1, : X1〉,L,G

L,G ` convert(π2, X
′
2, X2)→ 〈ψ2, : X2〉,L,G
...

T ` T′ = {a : T(a), b : T(b), ...}
V ` V′ = {a→ V(a), b→ V(b), ...}

Θ = {〈x1 : X1 = ψ1〉, 〈x2 : X2 = ψ2〉, ...}
Ω = {ηa : V(a), ηb : V(b), ...}

L,G ` callable(Θ,Ω, stmt)⇒ 〈α : <(X1, X2, ...)R>&〉,L,G
V∗ = V[f/α]

T∗ = T[f/<(X1, X2, ...)R>&]
L,G ` f:[ηaa, ηbb, ...] (x1 : X1 = expr1, x2 : X2 = expr2, ...)R: stmt⇒ 〈φ : Φ〉,L∗,G

Rule 29: Semantic rules for function definitions.

Type Definition

definition_type

: TYPE SIMPLE_ID templates ? parents ? ’:’ EOL INDENT definition + DEDENT

| TYPE SIMPLE_ID templates ? parents ? ’:’ EOL INDENT PASS EOL DEDENT

;

parents

: ’(’ type_list ’)’

;

Grammar 18: Grammar rules for type definitions.

Type definitions enable the creation of new types either by extending existing types using multiple
inheritance, by composite creation with other previously defined types or both. The syntax rules
for variable definitions are available in grammar 18 and their semantics in rules 30.

T ` T (p1) = P1, T (p2) = P2, ...
T ` α1 = offset(A, p1), α1 = offset(A, p2), ...

A = 〈〈α1, P1〉 , 〈α2, P2〉 , ...;∅〉
L ` T′1 = T[a/A, self/A]

L′1,G ` def1 ⇒ 〈π1 : X1〉,L′2,G
L′2,G ` def2 ⇒ 〈π2 : X1〉,L′3,G

...
A′ = 〈〈α1, P1〉 , 〈α2, P2〉 , ...; label(def1) : 〈π1 : X1〉, label(def2) : 〈π2 : X2〉, ...〉

L ` T∗ = T[a/A′]
L,G ` type a (p1, p2, ...):def1 def2 def3 ⇒ 〈φ : Φ〉,L∗,G

Rule 30: Semantic rules for type definitions.

54

Variable Definition

definition_variable

: SIMPLE_ID ’:’ type EOL

| SIMPLE_ID ’:’ type ’(’ expr_inline_list ? ’)’ EOL

| SIMPLE_ID ’:’ type ’(’ expr_inline_list ? ’)’ ’:’ EOL INDENT argument_named +

| SIMPLE_ID ’:’ type ’=’ expr_inline EOL

| SIMPLE_ID ’:’ type ’=’ expr_block

;

Grammar 19: Grammar rules for variable definitions.

Finally, The variable definition statement a new object of the specified type, and adds it to the
local environment. The object initialization method is the default constructor if no arguments are
supplied, otherwise the appropriate constructed is invoked. When using the assignment variant,
the object is first constructed using the default operator, then the assign operator is invoked.
Additionally, variable definitions can be used to define variable fields inside type definitions. In
this case, the initialization of the variables is conducted by call() when executing the appropriate
constructor. The syntax rules for variable definitions are available in grammar 19 and their
semantics in rules 31.

55

field

T ` T(self) = X
T ` T(type) = A

T ` A := 〈... ; ..., constructor : 〈λ : <() A&>〉, ...〉
L,G ` α = offset(X, a)
L ` V∗ ← V[a/α]
L ` T∗ ← T[a/A&]

L,G ` a:type⇒ 〈φ : Φ〉,L∗,G

default

T ` T(type) = A
T ` A := 〈... ; ..., constructor : 〈λ : <() A&>〉, ...〉

L,G ` new(V, A)⇒ 〈α : A&,L,G
L,G ` call(〈α : A&〉, constructor)⇒ 〈α : A&〉,L,G

L ` V∗ ← V[a/α]
L ` T∗ ← T[a/A&]

L,G ` a:type⇒ 〈φ : Φ〉,L∗,G

arguments

L,G ` new(V, A)⇒ 〈α : A&,L,G
T ` A := 〈... ; ..., constructor : 〈λ : <(X1, X2, ...) A&>〉, ...〉

L,G ` expr1 ⇒ 〈π1, X
′
1〉,L,G

L,G ` expr1 ⇒ 〈π1, X
′
1〉,L,G

...
L,G ` convert(π1, X

′
1, X1)→ 〈ψ1, : X1〉,L,G

L,G ` convert(π2, X
′
2, X2)→ 〈ψ2, : X2〉,L,G
...

L,G ` call(〈α : A&〉, constructor, [〈ψ1, : X1〉, 〈ψ2, : X2〉, ...])⇒ 〈α : A&〉,L,G
L ` V∗ ← V[a/α]
L ` T∗ ← T[a/A&]

L,G ` a:A(expr1, expr2, ...)⇒ 〈φ : Φ〉,L∗,G

assign

L,G ` a:A⇒ 〈φ : Φ〉,L∗,G
L,G ` a = expr ⇒ 〈α : A&〉,L∗,G
L,G ` a:A = expr ⇒ 〈φ : Φ〉,L∗,G

Rule 31: Semantic rules for variable definitions.

56

Chapter 4

Implementation

Linux Kernel

socket timer proc

epoll() API

Core

...

epoll

EVE
Libraries

io util event

Figure 4.1: Architecture of the EVE run-
time, and its connection with the Linux
kernel using the epoll interface.

This chapter contains information concerning the design
and implementation of the EVE environment, including
choices, trade-offs and difficulties that came to be during
both semesters. Section 4.1 describes the details related to
the implementation of the EVE runtime, including a global
description of the architecture, and details of several com-
ponents such as workers, spin-locks, monitors and event
handlers. Section 4.2, embodies information related to the
EVE compiler, such as the choice of lexer and parser tools,
type-checking and code-generation.

4.1 Runtime

The layout of the EVE runtime is depicted in figure 4.1.
It composed by two major packages. The core package is
responsible for the creation, manipulation and execution
of tasks, by worker instances. It is also responsible for the
synchronization of workers, ensuring proper load balancing
and preventing conflicting access to shared variables. Ad-
ditionally, it also provides a simple wrapper library for the
epoll() system calls, enabling the transition between ker-
nel triggered events and the EVE event API. The libraries
package makes use of this interface to provide an API for
common system tasks such as socket operations and ex-
ecution termination. It also contains the event handling

57

routines for callback registration and event triggers. For
the implementation of this system, the C++11 language was selected. This choice was primarily
due to the control of low-level details such as atomic operations and memory layouts. Addition-
ally, the author was proficient with this language, having already developed similar concurrent
software.

4.1.1 Workers

A worker is an entity capable of executing tasks in its own thread. By default a worker is created
for each processor thread available. Each worker contains a local double-ended queue of tasks.
The initial implementation was heavily based on the THE work-stealing algorithm presented in
[10]. In this algorithm, each worker can insert and remove tasks from the deque from one of
the sides. When a worker completes all local tasks, it can steal tasks from the queue of other
workers, using the other end. This solution minimizes contention, under the assumption that
the steal operation is uncommon. However, when the queue only contains one element, the
victim worker must be careful not to attempt to remove the same task that was already stolen
by another worker. This verification adds a large overhead to the remove operation, even in the
uncontended case. To overcome this bottleneck, the suspend-steal method proposed in [16] was
implemented. With this method, each worker assumes it has complete access to its own queue,
thus not requiring the verification step. The thief thread must ensure that it causes no conflict
by performing the steal operation. To achieve this, the victim thread is first pooled to check if it
has tasks to be stolen. This is a read-only operation and requires no synchronization. If this test
is positive, the victim thread is briefly suspended, allowing the stealer to observe the state of the
queue. This observation is only partially-consistent because the victim could be in the middle
of performing remove operations. However, because the these operations only remove a single
task from one end, if the queue has at least two tasks, it is safe to assume that the task at the
other end can be stolen. After this process the victim thread can be resumed. Unfortunately,
the current Linux implementation of POSIX threads does not implement the pthread_suspend
function. To emulate this behavior we made use of signals and semaphores. The thief thread
first sends a signal to the victim and waits on a semaphore A. Upon receiving the signal, the
victim starts executing signal handler, which immediately posts on lock A, resuming the thief
thread, and waits on lock B. In this state the victim thread is blocked and the stealer thread
can continue the steal operation. After finishing this procedure the thief thread posts on lock B,
resuming the victim thread.

During the execution of an EVE program, the number of tasks inside worker queues can
vary greatly. A conservative approach can reserve a large enough queue so that it never reaches
its size limit. A dynamic solution, that grows and shrinks the queues is preferable because it
avoids having a large memory footprint unless necessary, while still being capable of handling an

58

arbitrary number of tasks. The implementation of these queues was based on [4].
Robust implementations of work-stealing schedulers must be able to handle a large number of

tasks. However, it is also necessary to set processors to idle, when no work is available. To achieve
this, an sleep function is used to deschedule the worker thread from a processor. The thread is
later rescheduled after a timeout occurs. An alternate, and more efficient solution, uses an active
approach, where workers with surplus tasks can wake-up sleeping threads [26]. In EVE however,
new tasks can originate from outside the work-stealing environment with kernel triggered events.
For this reason, instead of using the sleep function, the blocking epoll_wait() function is
employed. The function is only called when a thread has no available tasks. This conceives the
runtime a desirable property: tasks already scheduled for execution have higher priority than
incoming tasks, preventing the system to overwhelm itself and become increasingly slower due
to cache misses and page faults. This operation is also invoked once before attempting to steal
tasks, minimizing conflicts between workers. The algorithm for the worker loop, implementing
the already mentioned modifications, is represented in program 20.

59

procedure loop

begin

repeat

while !queue . empty ()

t = queue .pop ()

execute t

end while

if epoll . process ()

failed = 0

continue

end if

steal ()

until shutting down

end procedure

procedure steal

blocking = true

begin

victim = next_victim

next_victim = (victim + 1) % N

lock thief .l

if blocking && failed > N

unlock lock

if shutting down

return

end if

if (epoll . process (timeout) > 0)

timeout = MIN_T

else

timeout = min(timeout * 2, MAX_T)

end if

failed = 0

return

end if

if victim . queue .size () < 2 or

!trylock victim .l

failed = failed + 1

unlock thief .l

end if

if shutting down

failed = failed +1

unlock victim .l

unlock thief .l

return

end if

suspend victim

if victim . queue .size () < 2

resume victim

unlock victim . local

unlock thief . local

return

end if

t = victim . tasks . pop_bottom ()

failed = 0

resume victim

unlock victim .l

unlock thief .l

execute t

end procedure

Program 20: Pseudo-code for the worker loop and steal operations in the EVE runtime.

60

4.1.2 Spin-locks

Spin-locks are used in performance critical sections where kernel (blocking) locks provide an
unnecessary overhead. One downside of this usage, is that in the contended case the blocked
processor keeps consuming CPU cycles. The second downside, is the lack of order guarantee
between two or more contending processors. Our implementation implements the spin-on-read
lock [1], and makes use of the available GCC lock built-in operations. Pseudo-code for the lock,
trylock and unlock operations is available in program 21.

procedure lock

begin

while lock_test_and_set (l, true)

while l

yield

end while

end while

end procedure

procedure trylock

begin

return !lock_test_and_set (l, true)

end procedure

procedure unlock

begin

lock_release (l)

end procedure

Program 21: Pseudo-code for the three spin-lock operations.

4.1.3 Monitors

Monitors are synchronization primitives that enable safe concurrent access to one resource. On
top of allowing only one processor to execute with unique access to the underlying resource
(equivalent to locks), it can also provide shared access to multiple processors if they only execute
read operations. Our implementation makes use of atomic instructions to avoid expensive system
calls. For this implementation a single variable bitmap is used with the size of the processor
word (usually 32 or 64 bits). The left significant bit indicates that a processor has locked, or is
attempting to lock the resource with unique permissions. The remaining bits form an unsigned
integer representing the number of processors currently owning shared access. Pseudo-code for
monitor operations is available in program 22. The lock_unique operation attempts to set the
unique bit to true. If it was already set, then another processor has previously requested unique
permissions. In this case, the processor is yielded until this bit is unset, and the operation is
repeated. If the bit was previously false, then unique permissions were correctly locked to this
process. All that remains, is to wait for all shared accesses currently executing to terminate.
The try_lock_unique operation implements the same logic, but does not repeat the operation
in case of failure. The lock_shared is constructed using the try_lock_shared operation. This

61

operation first begins with an heuristic check to avoid atomic operations if possible. If this
heuristic is accepted, the number of shared processors is increased by one, keeping in mind
that incrementing this number is the same as adding two to the entire bitmap variable. If the
atomic operation returns an odd number, indicating that the unique bit was set, the operation
fails and immediately decreases the number of shared processors. Using this approach, write
operations (requiring unique access) have higher priority: once a unique permission is required,
all incoming shared operations are suspended. Nevertheless, it is not assured that two scheduled
unique accesses are carried out consecutively (timing circumstances may allow shared accesses
in-between). Additionally, there is no execution order guarantee among two or more unique tasks
once the unique bit has been cleared.

62

procedure lock_unique

begin

loop

if fetch_and_or (bitmap , 1) & 1

while bitmap & 1

yield

end while

continue

end if

while bitmap != 1

yield

end while

return

end loop

end procedure

procedure unlock_unique

begin

fetch_and_and (bitmap , ~1)

end procedure

procedure try_lock_unique

begin

if fetch_and_or (bitmap , 1) & 1

return false

end if

while bitmap != 1

yield

end while

return true

end procedure

procedure lock_shared

begin

while !try_lock_shared ()

yield

end while

end procedure

procedure try_lock_shared

begin

if bitmap & 1

return false

end if

if fetch_and_add (bitmap , 2) & 1

fetch_and_sub (bitmap , 2)

return false

end if

return true

end procedure

procedure unlock_shared

begin

fetch_and_sub (bitmap , 2)

end procedure

Program 22: Pseudo-code for the six monitor operations.

63

4.1.4 Events

Events in EVE are instances of any class. Event emitters on the other hand, extend the
emitter<T> class, indicating that it is an origin of events of type T. Each instance of the class
stores callbacks for this event on this object. This allows for a distributed callback table, effec-
tively avoiding unnecessary contention with global table locks.

For kernel originated events, the epoll() interface was selected among the alternatives. The
select() and poll() interfaces have poor scalability [12]. Kqueue is not currently implemented
in Linux. Additionally, frameworks such as libev, libevent and Boost.ASIO can be used in multi-
threaded environments, but the underlying event loop is executed in only one thread. This is
a limitation of the platforms, epoll() system call is, by itself, thread safe. However, using
epoll() to develop a race-condition-free runtime is not trivial. Special care must be taken into
account to ensure that 1) each event is processed by only one thread, 2) that they are processed
in the correct order and 3) that there is no conflicts between different types of operations.

For problem 1, consider the situation where a read operation on a socket is requested. Inter-
nally, a read callback is created and registered with epoll_ctl(). Later, when such operation is
feasible, incoming epoll_wait() calls return this event. With a naïve solution, multiple threads
would receive this event and wrongfully process it. The EPOLLONESHOT mode is used to prevent
this error. In this mode, when one event is triggered, the associated file descriptor is disabled
from the epoll set. Until it has been reactivated, other invocations to epoll_wait() will not
return events referring to this file descriptor.

Problem 2 emerges when multiple operations of the same type are scheduled (i.e.: sending two
objects over a socket). Order between the operations is important, and it is necessary to avoid
interleaving operations where a partial write is interrupted by the other. Our implementation
solves this problem by using an ordered list of callbacks. When an event is triggered, the first
callback is executed, writing all possible data to the socket. If only a partial write is possible at
the time, the event is not propagated to other callbacks. Later, when the event is re-triggered,
the operation resumes from the new position. If the operation completes, the callback is removed
from the list, and the event is propagated to the next callback in the list.

Problems 3 surfaces when operations of multiple types are scheduled. Consider a read and
two write operations. After each event, the file descriptor must be reactivated by indicating the
new set of events to be monitored. After a partial read on the first instruction, the monitored set
must include both the read and write events. Likewise, after completing the first write operation,
the write event must still be present. For these reasons, the rearm() function, computes the
monitored set, taking into account the presence of callbacks for each event. This verification is
thread-safe since it is always invoked when unique access permissions to the emitter object are
given.

64

4.1.5 Shared Objects

Shared objects are heap allocated, automatically managed objects whose access is controlled by
a monitor. The first attempt at implementing these object used the available implementation
of the Boehm-Demers-Weiser Garbage Collector [8]. This GC implements the mark-and-sweep
algorithm which transverses memory from root nodes (i.e.: thread stacks and registers) to find
pointers to all currently used memory. Unreachable nodes are identified and freed automatically.
This solution makes the assumption that at any time, a pointer to the memory page must exist
for the object to remain active. This is not true in EVE. By registering callback functions
using epoll() the pointer is stored inside kernel memory (not reachable by the GC). When
garbage collection is triggered, the object is marked as inactive and destroyed prematurely.
Although it could be possible to mark these objects as root nodes, the Boehm-GC API does
not allow this operation to be performed on already allocated objects. Additionally, the C++
layer is reportedly unstable and very platform dependent. Furthermore, the mark-and-sweep
step requires all threads to be paused which creates undesirable for jitter in response times.

The second attempt made use of the STL smart pointers. In particular, std::shared_-
ptr<T> which is a pointer to an object of type T. This structure contains not only a pointer to
the memory location where the object is stored but also to a control block which is used for
reference counting: each time a pointer is created the reference is increased and when pointers
are destroyed, the reference is decreased. When it reaches zero, the object is destructed. Because
the emitter objects store the pointers to callbacks and vice-versa, they would not be destructed
(notice that this requirement is easier than a pointer being reachable from a root note). How-
ever, the implementation of std::shared_ptr added other unpredicted restrictions. Our shared
object implementation is shared<T>, containing the underlying resource T and a monitor object.
Assume two classes A and B, where B is a subclass of A (e.g.: A is a file descriptor, and B is a
socket). Even though A and B are related, and a pointer of B can be converted to a pointer of A,
shared<A> and shared are not related. This makes the use of std::shared_ptr<shared<T»
impossible, since type conversion would lead to compile type errors. Making shared<A> and
shared related is also impossible due to the nature of template instantiation1. The use of
two pointers, one for the object, and one for the monitor, was an option. However, this would
lead to double the overhead of construction, copying and moving of pointers (which is already
significant).

Our solution was to develop a replacement for std::shared_ptr<T> available inside the
package eve::rt. This enabled us to move the monitor object to the control block. Therefore,
eve::rt::shared_control contains a monitor object, an integer containing the number of active
references and a pointer to the heap allocated object. Initially this pointer, was of void* type.

1It would require a function that expands to a list of subclasses of a type, which is inexistent in the C++11
specification,

65

Accessing it through a std::shared_ptr<A> pointer would make use of a std::static_cast to
A*. However, this solution is also not correct: when used with a class hierarchy with multiple
inheritance, the std::static_cast fails to recognize the necessary memory offsets and creates
a corrupted pointer. In this case a std::dynamic_cast is required. However, the C++11
specification forbids the use of std::dynamic_cast with void* simply because it does not store
runtime type information. To overcome this inconvenience, an virtual class shareable was
created, and all objects that were used inside eve::rt::shared_ptr would have it as a parent
class. This in turn, allows the pointer to be of type shareable* and std::dynamic_cast to work
correctly. However, native objects (e.g.: int, string, ...) can not be modified to extend this
class. For this reason, they are automatically wrapped inside a shared_wrapper which contains
the native object and extends shareable.

66

GCC

binary

runtime

.h

.cpp

output

.eve

input

EVE

lexer parser
code

generation
semantics

type
checker

optimization

Figure 4.2: Architecture of the EVE compiler, and the compilation proccess of EVE programs.

4.2 Compiler

The EVE compiler, is a compiler implementation for the EVE language. It translate .eve
source files into a single output file containing a c++ equivalent of the application. This file, in
conjunction with the EVE runtime, can be parsed using a standard C++11 compliant compiler
such as GCC or Clang to deliver a executable binary. The architecture of the EVE compiler forms
a pipeline of five stages, as can be observed in figure 4.2. The initial step is the lexical analysis,
where a stream of characters (the input file) is transformed into a sequence of tokens (e.g. a
reserved keyword, an operator, an id, etc.). A parser then analyses the token sequence using
the rules defined by a deterministic context-free grammar and creates an Abstract Syntax Tree
(AST) representation of the program. This tree is processed by a semantic pass, where additional
information is deduced and stored. The optimization step modifies the AST without changing
its semantics in a way that allows for the resulting application to perform better. Finally, the
code generation step uses the AST and all associated information to create a representation of
the program in the target format.

4.2.1 Lexer and Parser

For the implementation of the parser phase, several alternative were studied. The first being
GNU Bison. This software analyses a LR(1) grammar using a LALR(1) parser and produces a
fast, recursive implementation written in C++. This solution has the downside of encountering
reduce/reduce conflicts which require the grammar to be modified2. It can also be instructed
to produce a slower GLR parser that does not have this limitation. The second alternative was
ANTLR (ANother Tool for Language Recognition). This solution includes a GUI development
environment called ANTLRWorks, which enables easy development and analysis of grammars.
ANTLR grammars are LL(*), which unlike LR(1) do not include all deterministic context-free
languages [25]. By default, ANTLRv3 creates a target implementation in Java. To generate
a C++ parser, the older ANTLRv2 version needed to be used, which is not compatible with

2LALR(1) grammars have additional restrictions that are not present in LR(1) grammars.

67

ANTLRWorks3. The third alternative was to use the Elkhound GLR parser generator [21]. This
parser analyses context-free grammars even if they are non-deterministic. However, this project
looks neglected since 2005-08-22 (release date of the last version). Ultimately, the Bison parser
was selected due to previous experience with the software and the target C++ language. The
Flex++ software was used to create the Lexer to be used with Bison.

4.2.2 Type checking

The implementation of a type checker is arguably, the hardest part of developing a compiler.
In particular, languages with multiple-inheritance, template types, variadic functions (and tem-
plates) and overloaded operators offer significant complications. Although the EVE compiler
supports all of these, the implementation is still in alpha stage and lacks in robustness. We
found that our algorithm for evaluating templated code fails under some conditions. In particu-
lar, functions which receive arguments with arbitrary types fail to validate, simply because the
operations on those variables are unknown until the actual types are fixed. This is a problem
inherent to the implemented bottom-up validation. Section 6.3 includes a brief description of
what must be rectified do correcly execute this validation.

4.2.3 Code generation

The primary goal of a compiler is the generation of a binary executable. Ideally, this is carried
out by a compiler back-end which processes an intermediate representation and creates the
binary. This architecture enables the front-end compiler to reuse existing back-ends which are
thoroughly tested and already implement many optimizations. The first attempted solution
was the GCC back-end. This choice was selected with the intention of creating a monolithic
compiler: the GCC front-end would parse the runtime code, the EVE front-end would parse
the program code and the GCC back-end would merge the two and create the binary in a
single pass. However, GCC has a very complex architecture (the result of its long development
time and existing legacy code). For this reason, the option of using the LLVM back-end was
explored. LLVM is a modern compiler infrastructure written in C++. The major selling point
of LLVM is its simple, human readable intermediate representation which promotes its use as a
back-end compiler. Using the LLVM system, the compiler would make use of the Clang front-
end to parse the runtime code and create its LLVM IR. This IR would be merged with the
IR generated by the EVE compiler and used to create the final binary. However, the runtime
implementation makes extensive use of C++ templates which are only translated by Clang to IR
if an instantiation is found. Because this instantiations are only expected in the EVE program,
the IR for the runtime would contain missing parts. Attempts were made to manually create

3The C++ target was latter ported to ANTLRv3.4 which was not available during the development of the
compiler.

68

the template instantiations using the Clang API. Nevertheless, this API is poorly documented
(unlike the remaining LLVM infrastructure) and the desired result was not achieved. To overcome
this problems, the monolithic solution was abandoned and a two step compilation process was
selected. With this solution the EVE compiler translates EVE programs into a single C++
source file. This file makes use of preprocessor directives to include the runtime code when it
is parsed by a C++11 compatible compiler (e.g.: GCC or Clang). This approach enables the
implementation of the EVE compiler to be easier while still making use of the optimizations
available in production ready back-ends. To avoid compile errors originated by redefinitions of
existing C++ symbols (e.g. the program defines a function that part of the C++ language) all
generated symbols are prefixed with eve_.

4.2.4 Optimizations

Two optimizations related to the finish statement where developed. The first optimization
attempts to minimize parallel slowdown, by creating fewer tasks depending if there is enough
parallelism available. If this option is enabled, the generated code first invokes an heuristic op-
eration parallelize(). When the returned value is true, indicating more tasks are necessary,
the proceeding par statements are handled as usual. However, if the return is false, the par
statements are executed immediately avoiding the creation of new tasks. This optimization is
only possible in the presence of the finish statement where it is guaranteed that par statements
are readily executable. The second optimization was made to the finish synchronization rou-
tines. Under default conditions, the finish block contains an atomic integer counter which is
incremented each time a task is created, and decremented each time its execution is completed.
However, there are instances where the number of created tasks can be determined during static
analysis. If this is the case, the increment operations can be removed in by initializing the counter
to the correct value. Additionally, if the finish block contains a single parallel task, the integer
counter is replaced by a faster boolean counter.

69

Chapter 5

Evaluation

In this section we compare the performance of the EVE platform with other off-the-shelf solutions.
Each experiment was repeated 30 times and we report the average values and associated standard
deviations. Additionally, a each experiment was executed once before the mesurements to avoid
interference of JIT compilation and caching mechanisms. Single host benchmarks where executed
in the Astrid machine. For communication tests, the same machine was used for the server
implementation and Ingrid was used for the client. The two hosts where connected directly with
a crossover to prevent external interference. The specifications for both machines are described
in table 5.1. Additionally, information regarding external software is present in table 5.2.

Ingrid Astrid

Motherboard Dell Inc. 0CRH6C SuperMicro X9DAi

Processor 2x Intel(R) Xeon(R) X5660
2.80GHz, 24 hardware threads

2x Intel(R) Xeon(R) E5-2650
2.00GHz, 32 hardware threads

Memory 24 GB DDR3 1333 MHz 32 GB DDR3 1600 MHz

Connectivity
Broadcom Corporation

NetXtreme BCM5761 Gigabit
Ethernet PCIe

Intel Corporation I350 Gigabit
Network Connection

Table 5.1: Hardware specification of benchmark hosts.

70

Version Flags

GCC 4.7.2
-std=c++11 -pthread -ffast-math
-march=native -O4 -DNDEBUG -lrt

Erlang R15B01
erlc -smp-enabled -S16

erl -noshell -s -smp-enabled -S16
Go 1.0.2 export GOMAXPROCS=16
GHC 7.4.2 ghc -O3 -threaded –make
node.js 0.6.19
Ruby 1.9.3p194
Python 2.7.3

Java
1.7.0-25

OpenJDK 23.7-b01

libev 1.4-2 -lev
Intel TBB 4.0+r233-1 -ltbb
gevent 0.13.7
REV 0.3.2

Table 5.2: Software versions and usage flags used for the benchmarks.

71

0s

20s

40s

60s

80s

100s

to
ta

l t
im

e

-5%
0%
5%

10%
15%
20%
25%
30%

%
 o

f o
ve

rh
ea

d

C++
TBB

Fork/Join
EVE (sequential)

EVE (parallel)
EVE (parallel shared)

Figure 5.1: Overhead of each implementation of the
Fibonacci program relative to the fastest single-core
implementation.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 290

5

10

15

20

sp
ee

du
p

C++
TBB

Fork/Join
EVE (sequential)

EVE (parallel)
EVE (parallel shared)

Figure 5.2: Scalability test of the Fibonacci implemen-
tations using heuristic parallelization.

5.1 Fibonacci

The Fibonacci test is benchmark on the capabilities of the EVE as a platform for parallel pro-
gramming. The test consists of computing the 50th Fibonacci number using the recursive defi-
nition:

Fn =
{

n n < 2
Fn−1 + Fn−2 n ≥ 2

For this benchmark EVE was compared against JAVA Fork/Join framework and Intel’s TBB
implementation of the work-stealing model. Additionally, a sequential version using C++ was
used since it serves as a base line for all C++ supported implementations. Figure 5.1 shows the
measured times of each implementation, and its relative overhead when compared to the fastest
single-core solution (Fork/Join). In this graph, three implementations with EVE are compared.
EVE (sequential) is a direct translation of the recursive formula with no par statements. EVE
(parallel) makes use of one par statement and one finish statement. In this solution local
variables are passed by reference. In EVE (parallel shared) the implementation of shared objects
and access permissions is used.

The Fork/Join solution is the fastest implementation using a single-core. This is a result
of JAVA’s Just In Time Compilation technique that enable runtime information such as code
branching to be analyzed and used for optimizing the execution. Achieving similar performance
with the other statically compiled solutions would require profile-guided compilation, which is
outside the scope of this work.

72

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 390

5

10

15

20
sp

ee
du

p

C++
TBB

Fork/Join
EVE (sequential)

EVE (parallel)
EVE (parallel shared)

Figure 5.3: Scalability test of the Fibonacci implemen-
tations without heuristic parallelization.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 390

5

10

15

20

sp
ee

du
p

C++
TBB

Fork/Join
EVE (sequential)

EVE (parallel)
EVE (parallel shared)

Figure 5.4: Scalability test of the Fibonacci implemen-
tations without waiting operations.

It can also be observed that two EVE implementations are also faster than simple C++.
Although this is unexpected, our hypothesis is that the additional complexity present in the EVE
runtime forces the GCC optimizer to be executed more often, resulting in better performing code
for the Fibonacci function. The performance difference of the sequential version of EVE and its
parallel implementation is only 2.33%, which indicates a very low overhead in execution time.
However, difference between the use of shared and native objects is rather noticeable (15.01%),
even in the presence of no parallelism. In this test, the EVE runtime also outperforms the Intel
TBB implementation by a very small amount (2.28%).

Figure 5.2 indicates how each implementation performed when additional parallelism is avail-
able. Not surprisingly, the performance of both sequential solutions was constant. In this plot,
the EVE implementation shows sever limitations, only achieving half the performance of that
obtained with TBB. However, the performance of the Fork/Join implementation was even more
unexpected. In particular, the staircase-like curve, with minimal standard deviation, lead us
to believe there was a problem with our implementation. After analysis, we discovered that
the culprit was the use of Fork/Join’s getSurplusQueuedTaskCount function as an heuristic to
reduce the number of parallel tasks. To analyze the influence of the heuristics, the benchmark
was re-executed without this functions (both in Fork/Join and in EVE). Figure 5.3 shows the
obtained result.

Without the problem of under parallelization created by bad heuristics, the Fork/Join solution
now outperforms TBB by a small amount. Nevertheless, the performance of EVE with this
implementation is still lacking. As it can be observed, the speedup obtained with EVE grows
continuously with the number of threads until it reaches a breaking point at 32, where it falls
significantly. The growth, until this point, does not show the expected fall-off around 16 threads
(the number of processor cores). Additionally, the observed standard deviation is one to three

73

orders of magnitude higher than the remaining solutions. These observations lead us to believe
that worker threads could be inadvertently sleeping, even in the presence of tasks. Timing
circumstances would then explain the large standard deviation observed. In fact, the runtime
uses a blocking call to epoll_wait() to avoid busy waiting for new tasks. This is only used
when each worker has repeatedly failed to steal tasks from the others (because their deque also
contains no tasks). This occurs frequently, between the successive invocations to fibonacci()
(one for each of the thirty runs). Even though the timeout used is dynamically updated it
creates a large decrease in performance. For this reason we decided to test the application with a
maximum timeout of 0, effectively creating a non blocking call. The results obtained are depicted
in figure 5.4. Under this conditions the EVE runtime shows very good performance, reaching
peak speedups of 14.99 with reference passing and 13.11 with shared objects. This indicates that
the current solution for power saving is suboptimal and should be improved. Details on this task
are described in section 6.3. Nevertheless, the EVE runtime shows very good scalability and
performance, comparable to the selected solutions.

74

0K

50K

100K

150K

200K

250K

300K

350K

400K

m
es

sa
ge

s/
s

eve
erlang

cluster
libev

epoll
go

rev
nodejs

haskell
gevent

x (req/s) σ (req/s)

eve 362.368K 775
erlang 227.249K 1099
cluster 227.264K 4670
libev 194.133K 24208
epoll 175.217K 19081
go 64.075K 143
rev 62.225K 4210
node 50.866K 2972
haskell 45.210K 3799
gevent 31.864K 1243

Figure 5.5: Request throughput of the echo servers (localhost).

5.2 Echo Server

Facilitating the developing high-performance web applications is one of the goals of EVE. This
benchmark compares EVE to other languages and frameworks used for this purpose. The test
consists of creating a server that accepts TCP connections and re-emits the received data until
the socket is closed. Although very simple, this test enables the comparison of key features of
web servers. The first measured attribute is the request throughput. This indicates the number
of requests per second the server can handle. The second measured attribute is latency. Low
latency times are critical for soft real-time applications. Additionally, even for other applications,
latency higher than 100ms is noticeable and has been linked to lower user dissatisfaction, higher
bounce rates and overall lower revenue [14].

For this benchmark, the following solutions were tested: eve, erlang, haskell, go and
nodejs are implementations of an echo server using the respective languages, rev is an imple-
mentation using the Ruby Event Machine platform, gevent and libev make use of the homony-
mous libraries (for python and C++ respectively), and finally cluster is a nodejs application
that uses the cluster library for parallelism. The source code for each application was selected
from an existing benchmark, publicly available at https://github.com/methane/echoserver.
However, this benchmark suite does contain the cluster implementation. Additionally, the client
software used the thread-per-connection model which delivered low performance. A new imple-
mentation based on this code was created using the EVE runtime. For each test, 150 concurrent
connections were created, each sending 10000 sixteen byte messages.

Figures 5.5 and 5.6 indicate the performance obtained using these solutions when the server
and client applications are executed in the same host. The gevent implementation is the slowest
of all alternatives. This is most likely because the entire framework is executed by the python

75

10us 100us 1ms 10ms0%
2%
4%
6%
8%

10%
12%
14%

%
 o

f m
es

sa
ge

s

10us 100us 1ms 10ms0%

20%

40%

60%

80%

100%

c.
 %

 o
f m

es
sa

ge
s

eve
erlang

cluster
libev

epoll
go

rev
nodejs

haskell
gevent

Q1 (µs) Q2 (µs) Q3 (µs)

eve 100 140 210
erlang 260 310 390
cluster 120 190 300
libev 360 390 460
epoll 410 450 510
go 1280 1460 1650
rev 1250 1350 1560
node 1750 1840 1970
haskell 1940 2070 2270
gevent 2910 3050 3130

Figure 5.6: Reply latency of the echo servers (localhost).

interpreter which is inherently slower than a native implementation. This is also true for nodejs
and rev, although not to the same extent (the event loop is implemented in native code). Ad-
ditionally, gevent uses the libevent library while nodejs uses libuv1 and rev uses a custom
implementation. According to [17], libev outperforms libevent/libevent2 which also reinforces the
poor performance of gevent. The epoll implementation makes direct access to the epoll() sys-
tem call using C++ while libev uses the wrapper library which uses epoll() on UNIX systems.
As expected, their performance is much better than the already mentioned solutions. In fact,
libev alone is 3.88 times faster than nodejs. However, in our case, the epoll implementation
is slightly worse than libev. This is because the benchmarked epoll code is poorly optimized,
making use of unnecessary memory allocations that are not present in libev.

All the remaining solutions make use of multi-threaded runtime environments and were ex-
pected to outperform the single-threaded implementations. This is not true for haskell and
go. Regarding the first case, the haskell runtime has known IO scalability issues. According
to [29] this has been fixed in GHC version 7.8.1, which has not yet been released. The reason
behind go’s poor performance is more obscure since documentation of its runtime architecture is
not available. Both the erlang runtime and cluster implementation show good performance.
Nonetheless, the eve framework surpasses both with a 35.5% increase in throughput. One inter-
pretation of this value is that the EVE runtime is more optimized and/or requires less operations.
In fact, the erlang language was designed for real-time systems and each actor is scheduled using

1The libuv implementation was initially a wrapper arround libev.

76

a preemptive fair algorithm. Even if no preemption occurs, this algorithm is more expensive than
the execution of eve tasks. Regardless, even though the EVE runtime provides less guarantees
on the response time, the obtained latency and jitter are comparable if not better than erlang’s.
The second interpretation is that the Erlang runtime architecture does not scale well with IO. In
fact, the current version of this runtime only allows one scheduler to check for IO at a time [6].
The EVE runtime does not have this limitation. Regarding the remaining systems a pattern can
be observed: the latency curve for parallel architectures resemble Gaussian distributions while
with single-threaded architectures the curve is noisy. This seems to be an implication of the
Central Limit Theorem2 considering that the response times of one thread can be modeled as
an independent random variable such that the global performance is constructed from the set of
all variables.

2Given certain conditions, the arithmetic mean of a large number of iterations of independent random variables,
each with a well-defined expected value and well-defined variance, will be approximately normally distributed [24].

77

0K

50K

100K

150K

200K

250K

m
es

sa
ge

s/
s

eve
erlang

cluster
libev

epoll
go

rev
nodejs

haskell
gevent

x (req/s) σ (req/s)

eve 239.753K 5393
erlang 230.569K 11407
cluster 222.000K 11604
libev 177.409K 10332
epoll 153.470K 12119
go 48.063K 1680
rev 51.304K 2406
node 40.996K 3043
haskell 22.029K 139
gevent 23.603K 1076

Figure 5.7: Throughput of the echo servers (remote).

Considering the libev implementation as a baseline for a single-threaded runtime, one would
expect the performance of parallel implementations to achieve better speedups. Two reasons were
found that can explain this fact. The first is the very nature of the problem. Unlike the Fibonacci
test, which is CPU intensive, the echo server test is IO intensive. In particular, read/write()
operations require large memory bandwidth, which unfortunately does not scale with added
worker threads. To mitigate this bottleneck zero-copy operations could be implemented [28].
The second has to deal with normal parallel slowdown causes. Problems such as cache misses
aggravate the memory bandwidth bottleneck and are more common in parallel architectures due
to inter-process invalidation [7]. Additionally, synchronization is required to maintain a coherent
application state. This synchronization is employed by the EVE runtime (using spinlocks, mon-
itors and atomic operations), but also by the Linux kernel3. Even in the absence of concurrent
accesses, these primitives incur in additional overhead that is not present in single threaded ar-
chitectures. Additionally, this overhead may increase when used simultaneously by more threads.
Possible solutions for these problems are described in section 6.3.

Figures 5.7 and 5.8 indicate the results obtained for the same benchmark, except that the
client and the server applications where deployed to distinct hosts. With this setup, interference
between the client and server applications is no longer possible. However, the presence of network
interference introduces new variables that must be accounted for. Our measurements reported an
average round trip time of 189±9.5 microseconds. This indicates that mean reply latency should
increase by at least this amount. In fact, the latency increment is higher than this value for all
servers. This is because additional work is conducted by the Linux kernel and is transparent for
the programmer4. Nonetheless, the performance of each server deteriorates even further. This

3Spinlocks and mutexes are used in epoll functions to prevent race-conditions
4The network device driver must be used instead of the faster loopback device pseudo-driver.

78

10us 100us 1ms 10ms0%

2%

4%

6%

8%

10%

12%
%

 o
f m

es
sa

ge
s

10us 100us 1ms 10ms0%

20%

40%

60%

80%

100%

c.
 %

 o
f m

es
sa

ge
s

eve
erlang

cluster
libev

epoll
go

rev
nodejs

haskell
gevent

Q1 (µs) Q2 (µs) Q3 (µs)

eve 410 460 510
erlang 510 570 660
cluster 400 470 590
libev 770 840 880
epoll 860 960 1000
go 2910 3010 3170
rev 2390 2600 3580
node 3460 3560 3900
haskell 5770 7460 7870
gevent 6160 6230 6570

Figure 5.8: Reply latency of the echo servers (remote).

suggests that the network latency influences the application processing and increases latency at
this level. The request throughput also suffers from decreased performance. Whether or not
this is a result of increased latency or the reverse was not verified, even though both hypothesis
are possible. On one hand, if the network latency is high it is more likely that the application
stalls with no work to be processed, resulting in decreased throughput. On the other hand, if the
bottleneck is the application processing then incoming requests will be stored longer in queues,
which increases latency.

Implementations that had low performance in the first benchmark suffer a small downgrade
from the change of environment (17% to 24%). This is most likely because the execution is already
CPU bounded. The haskell implementation is an exception achieving even worse results with
a 48.8% decrease in throughput. Faster implementations such as erlang and cluster do not
encounter significant performance loss. EVE however, suffers a drop in 122.61K requests per
second (33.84%). Our hypothesis is that using networked communications the IO bound was
tightened to a level that is superior to erlang’s processing capabilities but lower than eve’s.
Despite this performance loss, EVE still remains the best solution, both in request throughput
and in reply latency.

79

0% 25% 50% 75% 100%
read ratio

0K

50K

100K

150K

200K

250K

m
es

sa
ge

s/
s

eve erlang cluster node

0% σ 25% σ 50% σ 75% σ 100% σ

eve 104.362 2.927 159.060 2.086 196.891 2.370 212.036 5.340 217.039 3.168

erlang 160.622 35.288 169.999 40.847 159.863 43.042 162.829 34.917 172.819 37.139

cluster 65.123 4.800 63.631 5.071 64.482 5.132 65.402 5.409 61.589 5.308

node 11.602 1.595 10.600 1.033 11.830 0.142 10.834 1.088 11.115 0.694

Figure 5.9: Throughput of the atomic counter servers subject to the percentage of read operations.

5.3 Atomic Counter

The echo test described in the previous section exemplifies an embarrassingly parallel problem.
There is no shared state between clients, which allows them to be handled separately without
synchronization. The atomic counter test is a modification to this example, where shared state
is maintained. In particular, a single variable counter is accessed by all clients. Two types of
operations are permitted: read which allows each client to retrieve the value stored in counter
and increment which atomically reads and increases stored value by one and returns the new
value. These operations are transmitted through the network using a single byte 00 and 01
respectively. Because both operations require a response packet, this application has similar
IO patterns to the echo server, allowing the previous results to estimate an upper limit on
performance.

Ideally, read operations can execute in parallel but each increment operation must be ex-
ecuted in mutual exclusion. The EVE implementation makes use of the language’s access per-
missions to achieve this semantics. Erlang however, does not have this feature. For this reason,
the counter is maintained by a single actor, using message passing for synchronization. This
solution sequentializes all accesses, including read operations. The remaining actions are still

80

executed in parallel (e.g.: IO, parsing). With nodejs cluster library, each worker executes in a
new process. For this reason, shared memory solutions are not possible. For testing purposes we
decided to approach this limitation with a commonly used alternative: in-memory databases. In
particular we selected mongodb which suports the required atomic operations. Figure 5.9 shows
the throughput obtained for each server. A sequential node implementation was also included
for observation. It’s performance is inferior than the other solutions. This is a consequence of its
single threaded runtime, but also because the native support for binary packets is limited5. Us-
ing cluster to parallelize IO yields better results. However, the throughput obtained with this
solution is still low, most likely due to the extra overhead off communication with the mongodb
database. In fact, only 28.8% of the previously achieved throughput is reached. The erlang im-
plementation also suffers from performance loss, averaging at 74%. The large standard deviation
observed for this test is very high, ranging from 20.99% to 27.04%.

The proportion of read operations are key to the performance of the EVE runtime. On one
end, with 100% read operations the counter value is constant and complete parallelization is
possible. The performance obtained for this case is around 90% of the expected value, indicating
that the overhead of additional synchronization is low. For this ratio, EVE outperforms the erlang
by 25%. On the other end, with 0% read operations, each action must wait for its predecessor
to relinquish access to the shared variable. In this case, the performance drops to 43.5%, being
slower than erlang by 35%. The other implementations do not suffer significantly from this ratio:
erlang’s implementation sequentializes every operation and mongodb uses atomic operations
instead.

5The binary library used for this purpose is not implemented using native code.

81

Program LOC

Fibonacci C++ 30
TBB 73
Fork/Join 41
EVE (sequential) 10
EVE (parallel) 18
EVE (parallel shared) 18

Echo Server EVE 16
Cluster 12
Erlang 26
Libev 99
Epoll 195
Go 15
REV 14
Node.js 3
Haskell 27
Gevent 17

Counter EVE 27
Erlang 42
Cluster 32
Node 13

Table 5.3: Lines of code of each implementation.

5.4 Overview

Previous tests shown that the EVE runtime achieves a good performance both on CPU and IO
bounded applications. However, the success of a framework also is determined by other metrics.
In particular, the easiness of use is one of the features that programmers look at when selecting a
framework for development. Lines of Code (LOC) are hardly a precise description of a program’s
complexity. Nevertheless, this measurement can be used as an indicator of the expressiveness of
a language. Table 5.3 contains the LOC of every implementation used in our benchmarks. In
this metric, EVE bests every low-level framework (e.g.: libev, TBB, Fork/Join). It also performs
fairly well against higher-level frameworks such as gevent and REV despite achieving much
better performance. For this reason we believe that EVE facilitates the development of high-
performance applications, without relinquishing the easiness of use found in other frameworks.

82

Chapter 6

Conclusion

This chapter draws the conclusions of the document by summarizing the work that has been
done, reviewing its importance and indicating how it can be improved.

6.1 Overview

EVE is a framework for the development of high-performance parallel applications. It encom-
passes the EVE language definition, complete with its operational semantics, the EVE compiler
and a runtime system. The framework is heavily based on the event-oriented programming
paradigm. However, unlike other event-oriented solutions it enables the use of multi-core hard-
ware using a shared-memory model.

The runtime system uses a task based approach and a fast work-stealing algorithm for load-
balancing. Our benchmarks indicate that it achieves not only good single-core performance but
also presents good scalability. Using the epoll() system call right in the work loop, our system
achieves an architecture that handles IO in parallel. This solution also performs better than the
alternatives presented by existing frameworks.

We also created the EVE compiler that closes the gap between the theoretical language
definition and the runtime implementation, allowing practitioners immediate access to these new
tools.

6.2 Relevance

Existing programming languages either provide good solutions for CPU-bounded applications
(by using parallelism) or provide good IO handling (using event-oriented programming). The
few solutions that attempt to do both (e.g.: erlang and cluster for node.js) convey additional
restrictions to the programming task. To circumvent this restrictions the programmer is faced

83

with the trade-off of sequentializing accesses using the actor-model or to offload the complexity
to another application that synchronizes data accesses.

To the best of our knowledge, EVE is the first framework that couples event-oriented pro-
gramming with a shared-memory model for concurrency. This framework is novel in this sense
and proves that the two models are compatible. In fact, our benchmarks suggest that they work
well together, achieving a good stand point between CPU-bounded and IO-bounded performance,
as well as development complexity.

EVE is targeted mainly at the development of web applications where it excels. Nonetheless,
due to its characteristics (e.g.: event-oriented architecture, typed variables, managed shared
memory and automatic parallelism) it has practical applicability to several fields such as system
tools and high-performance computing. The introduction of new user-level libraries could also
introduce new possibilities to the realm of EVE like graphical user interfaces, machine learning,
signal processing, and others.

6.3 Future Work

Throughout this document, items that expressed sub-par performance or that could otherwise
be improved were elicited. This section contains a synopsis of the problems that were identified
and possible solutions that could be implemented in future work.

The benchmarks on runtime system demonstrated its good performance and scalability. How-
ever a problem was identified where workers could inadvertently sleep even in the presence of
executable tasks. This was associated with the algorithm used to reduce power consumption
when the available parallelism is insufficient for all workers. The current solution makes use
of dynamically updated timeouts that increase exponentially up to a maximum of five seconds.
This timeout is local to each worker, and is reset each time new work is encountered (i.e.: stolen
from other workers or received from the IO system). The problem with this solution is en-
countered when applications without significant IO have considerable fluctuations in parallelism
level. When the parallelism is low, workers begin to wait with the specified timeout for IO. In
this time, new tasks generated by other workers are not observed. A solution is to explicitly
wake up workers when such tasks arrive. To do so, a new algorithm for global balancing should
be implemented, such as the one described in [26].

The runtime system is able to scale well on the available 16-core hardware due to its architec-
ture. However, in the current system, a single epoll set is shared by all workers. Even though
workers are capable of executing simultaneous operations on this set, we believe that unneces-
sary contention is managed at kernel level (where various locks are implemented to maintain
coherency). Using an epoll set for each worker could reduce the overhead of synchronization.
Additionally, having an extra global set that contains all epoll instances would enable correct
distribution of IO across the many available workers.

84

The compiler implementation is still in alpha stage. All major features have been imple-
mented. Nevertheless, some syntactic sugar components are missing (e.g.: optional types in
variable declarations). Additionally, the type checker implementation is still lacking in robust-
ness and fails under some conditions. This is an inherent consequence of the chosen architecture.
In particular, the type checker attempts to validate all functions using a bottom-up approach,
starting at the expression levels. With this approach, functions that receive template type pa-
rameters fail passing the semantic analysis since operations on such types are undefined. A
correct solution is to delay the parsing of these functions to a posterior phase. In particular,
when an invocation of such functions is encountered, the appropriate implementation can be
parsed because, at that location, type parameters are known.

The value of a development framework is tightly bound to the amount of users it influences.
The dissemination of EVE is a task that we expect to achieve in the near future. For this purpose,
a paper on the architecture of EVE, the implementation of its runtime and the performance
obtained will be submitted for acceptance to the 35th conference on Programming Language
Design and Implementation (June 2014). PLDI is one of the top peer-reviewed conferences
in its field, and a publication in this event will surely attract interest in both researchers and
practitioners. The deadline for the submission of abstracts ends 8th November 2013. Due to the
immediate usability of our framework, on-line availability is also recommended. For this reason,
all deliverables were made accessible to the public at http://githib.com/jprafael/eve. We
hope this encourages the hacker and tinkerer community to explore and improve on our research.

6.4 Final Remarks

Taking into account the objectives that were defined at the beginning of this work (see section
1.3) we can conclude that the goals set for this work were all successfully accomplished. The EVE
framework was designed and implemented, evidencing good results. Efforts for dissemination of
our work are in progress.

85

Bibliography

[1] T.E. Anderson. The performance of spin lock alternatives for shared-money multiprocessors.
Parallel and Distributed Systems, IEEE Transactions on, 1(1):6–16, 1990.

[2] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multi-
programmed multiprocessors. In In Proceedings of the Tenth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), Puerto Vallarta, pages 119–129, 1998.

[3] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. SIGPLAN Not., 40(10):519–538, October 2005.

[4] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the
seventeenth annual ACM symposium on Parallelism in algorithms and architectures, SPAA
’05, pages 21–28, New York, NY, USA, 2005. ACM.

[5] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory program-
ming. Computational Science Engineering, IEEE, 5(1):46 –55, jan-mar 1998.

[6] Erisa Dervishi. Evaluate the benefits of SMP support for IO-intensive Erlang applications.
PhD thesis, KTH, 2012.

[7] S. J. Eggers and R. H. Katz. The effect of sharing on the cache and bus performance of
parallel programs. SIGARCH Comput. Archit. News, 17(2):257–270, April 1989.

[8] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep garbage collec-
tor on large-scale shared-memory machines. In Supercomputing, ACM/IEEE 1997 Confer-
ence, pages 48–48. IEEE, 1997.

[9] Michael J. Flynn. Some computer organizations and their effectiveness. Computers, IEEE
Transactions on, C-21(9):948 –960, sept. 1972.

[10] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5
multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

86

[11] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5
multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

[12] Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag. Comparing and evaluating
epoll, select, and poll event mechanisms. In In Proceedings of 6th Annual Linux Symposium,
2004.

[13] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler,
and Olivier Temam. Semi-automatic composition of loop transformations for deep paral-
lelism and memory hierarchies. International Journal of Parallel Programming, 34(3):261–
317, 2006.

[14] James Hamilton. The cost of latency. URL: http://perspectives. mvdirona.
com/2009/10/31/TheCostOfLatency. asp, 2009.

[15] Intel. Intel Math Kernel Library. http://software.intel.com/en-us/intel-mkl, 2003.
[Online; accessed 4-Jan-2013].

[16] Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu.
Work-stealing without the baggage. SIGPLAN Not., 47(10):297–314, October 2012.

[17] Marc Alexander Lehmann. Benchmarking libevent against libev. http://libev.schmorp.
de/bench.html/, 2011. [Online; accessed 31-Aug-2013].

[18] Christian Lengauer. Loop parallelization in the polytope model. In Eike Best, editor,
CONCUR’93, volume 715 of Lecture Notes in Computer Science, pages 398–416. Springer
Berlin Heidelberg, 1993.

[19] David Lilja. The impact of parallel loop scheduling strategies on prefetching in a shared-
memory multiprocessor. IEEE Trans. on Parallel and Distributed Systems, 5:573–584, 1994.

[20] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a compre-
hensive study on real world concurrency bug characteristics. SIGPLAN Not., 43(3):329–339,
March 2008.

[21] Scott McPeak and George C Necula. Elkhound: A fast, practical glr parser generator. In
Compiler Construction, pages 73–88. Springer, 2004.

[22] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
April 1965.

[23] Gordon D Plotkin. A structural approach to operational semantics. 1981.

[24] John A Rice. Mathematical statistics and data analysis. Cengage Learning, 2007.

87

[25] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top down grammars. In
Proceedings of the first annual ACM symposium on Theory of computing, STOC ’69, pages
165–180, New York, NY, USA, 1969. ACM.

[26] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and Sriram
Krishnamoorthy. Lifeline-based global load balancing. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming, PPoPP ’11, pages 201–212,
New York, NY, USA, 2011. ACM.

[27] Stephen Shankland. What would happen if Moore’s Law did fizzle? http://news.cnet.
com/8301-11386_3-57526583-76/what-would-happen-if-moores-law-did-fizzle/,
2012. [Online; accessed 4-Jan-2013].

[28] Moti N Thadani and Yousef A Khalidi. An efficient zero-copy I/O framework for UNIX.
Citeseer, 1995.

[29] Andreas Voellmy, Junchang Wang, Paul Hudak, and Kazuhiko Yamamoto. Mio: A high-
performance multicore io manager for ghc.

88

