
FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMÁTICA
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Ensemble Learning for Keyword
Extraction

Masters’ Degree in Informatics Engineering
Dissertation

Final Report

Pedro Geadas

pmrg@student.dei.uc.pt

Advisors:

Ana Alves

Bernardete Ribeiro

Francisco Câmara Pereira

Date: 4 de Setembro de 2013

The personal selfishness, self-indulgence,

lack of generosity, small everyday cowardice,

all contribute to this pernicious form of mental blindness,

that is being in the world and not seeing the world,

or just seeing what, in each time, is likely to serve our interests.

O egoı́smo pessoal, o comodismo,

a falta de generosidade, as pequenas cobardias do quotidiano,

tudo isto contribui para essa perniciosa forma de cegueira mental,

que consiste em estar no mundo e não ver o mundo,

ou só ver dele o que, em cada momento, for susceptı́vel de servir os nossos interesses.

JOSÉ SARAMAGO

Acknowledgements

I would like to thank those that have been important during the process of com-

pleting this report. Without their support, I am sure that it would have not been

possible to accomplish.

I start to thank to my coordinator Bernardete Ribeiro and to my co-coordinator

Ana Alves for useful discussions and valuable support. I would also like to thank

to my (omnipresent) coordinator Francisco Câmara Pereira for being one of the

greatest teachers I had during my academic course.

In second place to my beloved parents, António José and Leopoldina, for

giving me the opportunity of being where I am now and for allowing me to

continue my studies, even if that has meant a lot of sacrifice from them, and also

to my family, especially to my aunt Bia and my uncle Isidro who were literally

like second parents to me, to my godmother São for being always present during

a good part of my growth process and for teaching me how to read and do

arithmetic when I was just a five years old man (¨̂). Also, I would like to thank,

not that much, to my older and only brother, for being such an annoying creature

during all my entire life.

In last but not least, to all my dear friends and colleagues, including all the new

ones from the AmILab, from which I would like to emphasize Filipe Rodrigues

for providing me his own implementation of one of the tools used in this work

and for giving me additional support when it was needed, and Marisa Figueiredo

for the ”holy water”and LATEX tips (¨̂).

I would like to give also a special thanks to Anette Hulth as well for pointing

me out to valuable datasets, since some were eventually used throughout the

experimentation phase of this work and to Su Nam Kim for maintaining the

on-line repository which contains these.

Finally, to the Portuguese Science and Technology Foundation (FCT) for the

financial support during this work.

Peace and ♥,

Pedro Geadas

Abstract

Nowadays, the most relevant events occurring in the city are advertised on-line,

generally through small textual descriptions. The exponential growth of the Web

often hampers the task of finding relevant information, turning the existence of

good information extraction and summarization methods in a necessity.

As such, the main goal of this dissertation is to develop an ensemble learning

application for automatically extracting keywords from those event textual descrip-

tions, since using human indexers is slow and expensive. Through rich information

on events, one should be able to understand its mobility implications and possibly

correlate both, allowing to foreseeing eventual repercussions that a specific event

may cause in the city’s normal behavior.

The proposed application intends to apply Supervised Machine Learning ap-

proaches, namely from known automatic keyword extraction systems, retrieving

a set of keywords as output from the event descriptions usually found in the Web.

Keywords: Keyword, Keyphrase, Automatic Keyword Extraction, Ensemble

learning, Artificial Intelligence, Machine Learning, Supervised Machine Learn-

ing, Information Extraction, Information Retrieval, Natural Language Processing,

Events, Event textual descriptions

Resumo

Hoje em dia, os eventos mais relevantes que ocorrem na cidade são anunciados

on-line, geralmente através de pequenas descrições textuais. O crescimento expo-

nencial da Web dificulta muitas vezes a tarefa de encontrar informações relevantes

acerca dos mesmos, tornando a existência de boas técnicas de extração de informação

e sumarização numa necessidade.

Como tal, o objetivo principal desta dissertação é desenvolver uma aplicação

de aprendizagem conjunta, i.e, uma aplicação que utiliza um grupo de aplicações, e

que desempenhe a tarefa de extração de palavras-chave a partir dessas descrições

textuais automaticamente, pois a utilização de indexadores humanos é uma tarefa

tanto lenta como cara. Para além do mais, através de um bom conjunto de

informações sobre esses eventos, devemos ser capazes de compreender melhor

as suas implicações a nı́vel de mobilidade e possivelmente correlacionar ambos,

permitindo assim prever eventuais repercussões que um determinado evento

possa ter no comportamento normal da cidade.

A aplicação proposta pretende aplicar técnicas de Aprendizagem de Máquina

Supervisionada, nomeadamente de sistemas de extração de palavras-chave au-

tomáticos já conhecidos, e deste modo obter um conjunto de palavras-chave a

partir das descrições textuais desses eventos, encontradas usualmente na Web.

Palavras-Chave: Palavra-Chave, Extracção Automática de Palavras-Chave, Aplicação

de Aprendizagem Conjunta, Inteligência Artificial, Aprendizagem de Máquina,

Aprendizagem de Máquina Supervisionada, Extracção de Informação, Processa-

mento de Linguagem Natural, Eventos, Descrições textuais de Eventos

Contents

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Objectives . 5

1.4 Project Contextualization . 6

1.5 Contributions . 7

1.6 Organization . 7

Chapter 2: Automatic Keyword Extraction 9

2.1 What is AKE? . 9

2.2 Related Work . 10

2.3 Analysed tools . 15

2.4 KEA . 19

2.5 KUSCO . 21

2.6 CRF - Conditional Random Fields 23

2.7 Conclusion . 26

Chapter 3: Ensemble Learning Methodologies 27

3.1 What is an Ensemble ? . 27

3.2 Related Work . 28

3.3 Approaches . 29

3.3.1 Bagging . 29

3.3.2 Boosting . 30

3.3.3 Stacking . 32

3.3.4 Bayesian Model Averaging 32

3.4 Combining label outputs . 34

3.4.1 Majority Voting . 34

3.4.2 Weighted Majority Voting . 35

3.5 Conclusion . 36

Chapter 4: Ensemble Learning for AKE from Event Descriptions 37

4.1 Application’s Architecture . 37

4.2 Preprocessing . 39

4.2.1 KEA . 39

4.2.2 KUSCO . 39

4.2.3 CRF . 40

4.3 Keyword Classifiers and Output Combination 41

4.4 Ensemble Learning Assemblage . 42

4.5 Conclusion . 43

Chapter 5: Experimental Setup . 45

5.1 Datasets . 45

5.1.1 Finding suitable datasets . 45

5.1.2 Dataset descriptions . 46

5.2 Evaluation Metrics . 48

5.3 Methodology . 52

Chapter 6: Experimental Results . 55

6.1 Preliminary Results . 55

6.1.1 Overall effectiveness . 56

6.1.2 Effect of training set size . 56

6.1.3 Effect of document length . 57

6.1.4 Discussion . 58

6.2 Final Results . 60

6.2.1 Hulth & Krap’s Datasets . 61

6.2.2 Events’ Dataset . 78

6.2.3 Discussion . 81

Chapter 7: Conclusions and Future Work . 85

7.1 Conclusions . 85

7.2 Summary . 86

7.3 Future Work . 86

Bibliography . 89

List of Tables

2.1 List of Features used to train CRF model. 25

5.1 Classification of each type of result from IR systems. 48

5.2 Performance metrics’ calculation example. 50

6.1 Article information for the overall test. 56

6.2 KEA’s overall effectiveness. 56

6.3 KEA’s detailed overall effectiveness. 56

6.4 Average correct keywords extracted per file, for full documents

and abstracts. 57

6.5 Article’s information (Krap’s dataset). 57

6.6 Results obtained with complete articles (Krap’s dataset). 58

6.7 Abstracts’ information (Hulth’s dataset). 58

6.8 Results obtained with abstracts (Hulth’s dataset). 59

6.9 Model weights used in the final ensemble application. 61

6.10 Final results: Abstract’s information (Hulth’s dataset). 63

6.11 Final results: Abstracts’ information (Krap’s dataset). 63

6.12 Test 1 (Original Hulth’s dataset) results. 64

6.13 Test 2 (Removing unseen Keywords - Hulth’s dataset) results. . . . 65

6.14 Test 3 (Structuring with OpenNLP Sentence Splitter - Hulth’s dataset)

results. 66

6.15 Test 4 (Stem-based labelling method - Hulth’s dataset) results. . . . 67

6.16 Test 5 (Using Porter Stemmer 2 - Hulth’s dataset) results. 69

6.17 Test 5 (Using Porter Stemmer 2 - Kraps’s dataset) results. 70

6.18 Test 6 (Filtering digits in true keywords - Hulth’s dataset) results. . 71

6.19 Test 6 (Filtering digits in true keywords - Kraps’s dataset) results. . 72

6.20 Test 7 (Filtering documents containing between 5 to 10 keywords -

Hulths’s dataset) results. 74

6.21 Test 7 (Filtering documents containing between 5 to 10 keywords -

Kraps’s dataset) results. 75

6.22 Test 8 - The SegmentEvaluator - a new method for evaluating the

results. 76

6.23 Document’s info (Events’ descriptions dataset). 78

6.24 Document’s info (Personalities’ descriptions dataset). 78

6.25 Test 9 - Validating results using Events’ descriptions. 79

6.26 Test 9 - Validating results using Personalities’ descriptions. 80

6.27 Test 10 - The SegmentEvaluator - a new method for evaluating

results - Event’s descriptions dataset. 81

6.28 Test 10 - The SegmentEvaluator - a new method for evaluating

results - Personalities’ descriptions dataset. 81

List of Figures

2.1 KEA training and extraction processes. 20

2.2 KUSCO’s generic model of Semantic Enrichment. 22

2.3 KUSCO’s Meaning Extraction module in detail. 23

2.4 Graphical Structure of a Chain-structured CRF for Sequences. . . . 24

3.1 Logical view of ensemble learning method. 28

3.2 The bagging algorithm. 30

3.3 Flowchart of the boosting algorithm. 31

3.4 Stacking algorithm. 31

3.5 Consensus patterns in a group of 10 decision makers: unanimity,

simple majority, and plurality. 35

4.1 Proposed system’s architecture. 38

4.2 An ensemble of linear classifiers. 42

Chapter 1

Introduction

This chapter comprises six sections and presents the main reasons which led to the

development of this work and its objectives. Section 1.1 presents its motivations

while Section 1.2 provides most of the terminology and concepts approached in

the remaining chapters. Section 1.3 summarizes the goals of this dissertation and

Section 1.4 contextualizes it. In Section 1.5 the contributions of this research are

depicted and finally Section 1.6 lays out the organization of the current report.

1.1 Motivation

Nowadays the most relevant events in the city are advertised on-line. However, it

often becomes difficult to know exactly what is happening in a place: information

is spread across too many websites, many times not easily understandable. The

result of the World Wide Web (WWW) exponential growth is an huge amount of

data chaotically organized, which turns out tasks like accessing, searching and

keeping information a lot harder. With so many data drifting in the Web, most

of the times not labelled nor categorized, searching for desired information is

generally a time-wasting task.

Consequently, the existence of automatic information extraction and summari-

sation methods has become a growing necessity. Because such knowledge is

mostly in Natural Language text, many different Information Extraction tech-

niques emerged over the last few years. Such techniques provide insight about

the content of a given document or article in a fast way, allowing one to quickly

understand what the subject is, while minimizing the effort and time that one

normally had to spend to perform the same task.

Contrary to what one might think, referring to keyword extraction is not exactly

2 Chapter 1. Introduction

the same as referring to automatic keyword extraction. While the former term refers

to the task of choosing keywords from a document by hand, the latter refers to

a way of doing that same task with minimal or no human intervention at all

[Hul04b]. Therefore, the goal of automatic extraction is to apply the power and

speed of computation to the problems of access and discoverability, adding value

to information organization and retrieval without significant costs and drawbacks

associated with human indexers, which are slow and expensive [Gia05].

In the context of this dissertation, the information consists on textual descrip-

tions (namely about events occurring in the city) that reside in websites rather than

in a document. Although one might say that textual descriptions are nothing less

than text documents, which is perfectly acceptable, it is worth noting that the

textual descriptions found in websites are usually a lot smaller than regular docu-

ments or articles. That fact may be significant when one pretends to automatically

extract meaning from them, like it is the case on this work.

Regardless of the name by which they are called, keywords provide a simple and

fast way to describe the main points present in textual sources in general, easily

giving the reader some clues about its content. Moreover, extraction techniques

are in fact very useful in a wide range of applications, such as retrieval engines,

clustering, question-answering, named entity recognition, thesaurus construction

and text mining applications [OPTJS10, SNG10, Gup10, Zha09], which portrays

its importance.

By extracting the right information from event descriptions (like, for example,

the type of the event or the specific place where it is going to happen), one

should be able to understand, among other aspects, its mobility implications and

possibly correlate both. This may be important for predicting which will be the

most bustling streets within the city or even in order to perceive which transport

means will most likely being used by that specific event audience, just to give a

couple of examples now more contextualized in the ambit of the work presented

here (see Section 1.4), which demonstrate the wide applicability arising for such

techniques and proving themselves to be a crescent value these days.

1.2 Background

In order to understand the work being presented throughout this dissertation, one

needs to get familiar with a set of background concepts first, such as keyword and

keyphrase, information extraction, or even the concept of ensemble learning. Terms

1.2. Background 3

defined in this section represent the basis of all the work presented ahead in this

dissertation, being then a prerequisite for further understanding the work here

depicted.

The retrieval of information from the Web (IR) consists in finding material (usu-

ally documents) of an unstructured nature (usually text) that satisfies an infor-

mation need from within large collections (usually stored on computers) [Alv11].

IR is often confused with the term of Information Extraction (IE). Despite related

and many times simultaneously used, IE, contrary to IR, refers to the process of

automatically extracting structured information such as entities, the relationships

between them and even their attributes from the unstructured sources (if applied

in a semantic context) or simply in extracting the most relevant set of terms of a

given document or textual source, that can be useful to describe it and for many

other different tasks, like summarisation.

Although, according to common sense, the terms keyword and keyphrase may

refer to an unique word or two or more words respectively, the majority of the authors

in the field consider them to be the same.

Ortiz et al [OPTJS10] says that a keyphrase may be considered as a sequence of

one or more words that capture the main topic of the document, representing one

of the key ideas expressed by the document author.

Similarly, Hulth [Hul04a] defines a keyword as being one or even a small set of

words or key segments from a document, aiming to describe the meaning of that

document, without the need of one to read it completely.

From now on, the preferred term will be keyword rather than keyphrase. How-

ever, because authors do not always use the same, both terms will be referring

to the same subject and are going to be used interchangeably, depending on the

author.

In the specific domain of keywords/keyphrases, there are two fundamentally

different approaches: keyword extraction and keyword assignment [WPF+99].

That a keyword is extracted means that it is present verbatim in the document

to which it is assigned, i.e., extracted keywords must exist in the document from

which they were extracted [Hul04a].

On the other hand, keyword assignment seeks to select the phrases from a con-

trolled vocabulary (in short, a controlled vocabulary represents a way to organize

knowledge for subsequent retrieval) that best describe a document [WPF+99].

4 Chapter 1. Introduction

This work aims using the former approach, that of extraction, further detailed

in Chapter 2.

The training data is a well known term in Machine Learning and depends of

the specific problem in hands. In the context of this work, it consists in a group

of documents with a set of human-chosen keywords previously assigned that

need to be presented to supervised systems a priori, so they can apply the gained

knowledge to find keywords from new unlabelled documents.

Machine Learning approaches can be roughly separated into two different cat-

egories: supervised (the one to be used throughout this work) and unsupervised

[WX08]. The main difference between them resides on the fact that supervised

learning methods require the use of training data, samples from the data source

with the correct classification already assigned, while unsupervised ones do not

require so [Oel09, Gup10]. The unsupervised approaches usually consists in rank-

ing each of the candidate keywords using multiple features and heuristics and

selecting the top rated ones [WX08]. One of the main contributions to the (super-

vised) field was KEA (Keyphrase Extraction Algorithm, described in Section 2.4),

presented by Frank et al [FPW+99].

Apart from the kind of approach used and even before any classification can

take place, a preprocessing phase is usually required. The objective of this phase is

cleaning the training/testing data as much as possible by eliminating unnecessary

words and characters, thus facilitating the classification phase itself.

For traditional text documents (no HTML tags), the tasks may include stop-

word removal, stemming and other operations like handling of digits, hyphens,

phrase punctuations and phrase case. For web-pages, additional tasks such as

HTML tag removal and identification of the main content blocks also require

careful attentions [Liu09].

Stop-words are frequent and meaningless words in a language. They belong

to closed morphological classes, such as articles, prepositions and conjunctions.

Stop-word removal is applied both in documents before indexing and storing,

and in the query as well.

Stemming refers to the process of reducing inflected words to their stem, i.e,

their base or root form. A stem is the portion of a word that is left after removing

its prefixes and suffixes (e.g. ”Study”, ”Students”, and ”Studying” are reduced

to ”Stud”).

1.3. Objectives 5

Most of the times, what distinguishes a system from another is the classifier in

which it relies on. The classifier is built during the training phase, i.e., when the

training data is presented to the learner algorithm. In order to surpass the state-

of-the-art methods, one basically intends to build a more accurate and precise

classifier, a classifier that can label correctly more potential terms as keywords.

A different approach, is to use multiple already existing classifiers and combine

their predictions, rather than developing a new one. That way, one expects to

infer better keywords than a single classifier would do alone. This approach is

addressed as ensemble learning and is depicted ahead in Chapter 3.

In the current paradigm, where the Internet growth leads to an increasing

number of existing documents and web-pages on-line, from where we want

to extract information, using human indexers becomes obviously impracticable.

Thereby, enhancing such automatic methods should be seen as a crucial task

not only presently but futurely as well, which is one of the motivations for the

development of this work.

1.3 Objectives

The aim of this work is to create an ensemble learning application for automatically

extracting keywords from textual sources in general and more specifically from

event textual descriptions. The main idea here is combining some of the already

existing solutions, aiming to refine system specific extracted keywords, instead of fully

developing a new extraction algorithm.

In short, after receiving as input a set of small textual descriptions (like those

usually found in web-pages), the application intends to apply Supervised Machine

Learning approaches to the results from known automatic keyword extraction

systems retrieving a set of keywords as output.

For the experimentation and validation of the intermediate and final applica-

tions, some widely known datasets1 were used, which had been previously cited

in many research work (e.g. [Hul03, MT04, SRC10]). These datasets are described

in detail in Section 5.1.

Below, the main objectives for this dissertation are then summarized:

1https://github.com/snkim/AutomaticKeyphraseExtraction#readme

6 Chapter 1. Introduction

• develop an ensemble learning application that combines some of the already

existing solutions, in order to obtain better keywords (from event textual

descriptions) than those obtained by such methods when performing indi-

vidually;

• test the chosen algorithms/systems separately with some widely known

datasets, previously used in the field of keyword extraction or related;

• test the ensemble learning application with the same datasets, comparing

the results obtained;

1.4 Project Contextualization

The work here presented is a part of a larger project, designated as CROWDS,

which consists on understanding urban land use from digital footprints of crowds.

One of the main goals of the CROWDS project is to understand how the events

occurring within or close to the city correlate with crowds’ mobility patterns around

that place. Through semantics information found on the event textual descrip-

tions discussed before (more specifically through keywords extracted from those

descriptions), one pretends to analyse the implications arising from those occur-

rences.

An application like the one described here can be of great utility, since it allows

foreseeing eventual repercussions that a specific event may cause in the city’s nor-

mal behaviour, such as for predicting which would be the most bustling streets in

the city, or even in order to perceive which transport means would most likely to

be used, and when, by that specific event audience. In fact, it can be the case that

an event occurring in a certain part of the city affects more than the surrounding

areas and, in the extreme case, it can have repercussions even to neighbour cities.

Accordingly to what has been said, one can easily realize that knowing this

kind of information in advance can certainly help the respective responsible en-

tities taking any compensatory actions in accordance, if needed. Yet using the

example of the transport means given above, a compensatory action could pass

by increasing the frequency of buses near the event location or even in forbidding

the use of private transport means in that same zone, thus allowing for a smoother

and quicker dispersion of the crowds and consequent faster normalization of daily

life in the city.

1.5. Contributions 7

1.5 Contributions

Below, the main contributions of the research presented in this dissertation are

summarized:

• A preprocessing tool for automatic keyword extraction from documents

using Conditional Random Fields (CRF) approach;

• An empirical investigation showing that document structure have major

impact in CRF learning;

• A base architecture for building an Ensemble Learning application;

• A methodology for combining Classifier Models of different already existing

applications;

• An empirical investigation showing that an application like the one pro-

posed can be successfully applied to the task of automatic keyword extrac-

tion both from scientific and non-scientific documents, the latter consisting

off Event textual descriptions, in this work.

• An empirical investigation showing that the proposed ensemble application

achieve better performance than the individual applications that compose

it, up to a certain limit concerning the differences between the individual

classifiers’ reliability, and showing also better results than those reported in

recent Keyphrase Extraction Contests (SemEval 20102).

1.6 Organization

This report comprises six further chapters. Chapters 2 and 3 introduce two of

the main concepts of the dissertation, namely those of Keyword Extraction and

Ensemble Learning and respective related work. Additionally, several analysed

tools are described and those used in the final application are emphasised. In

Chapter 4 a detailed description of the project is given. The architecture of the ap-

plication is presented as well as a description of it’s most important components

and operation modules. In Chapter 5, the experimental setup is depicted, which

include a description about the datasets, the evaluation metrics and the method-

ology followed. Chapter 6 portrays the preliminary and final results obtained

during the respective experimentation phases. The former concerning the results

2http://semeval2.fbk.eu/semeval2.php?location=Rankings/ranking5.html

8 Chapter 1. Introduction

of one of the systems while used in separate, while the latter those obtained by the

final ensemble application itself. Finally, Chapter 7 concludes the work portrayed

through this dissertation and addresses additional work to be done in the future.

Chapter 2

Automatic Keyword Extraction

This chapter is divided in seven sections. Section 2.1 gives an insight about Au-

tomatic Keyword Extraction (AKE) and its objectives while in Section 2.2 related

work is presented. In Section 2.3 a description of some tested Information Extrac-

tion/Retrieval tools is given while Sections 2.4, 2.5 and 2.6 depict the algorithm-

s/applications to be used in the ensemble (KEA, KUSCO and CRF respectively).

Section 2.7 contains the conclusion of the chapter.

2.1 What is AKE?

AKE is the problem of automatically identifying the relevant words lying within

a document and has been researched for more than half a century [Luh58, LD59].

While some of such methods rely on statistical methods and linguistic knowledge

about the words in a document, recent works are focusing on Machine Learning

techniques that may use that knowledge, among other features, achieving more

interesting results than those methods individually.

AKE takes place mainly in two steps [Hul04b]:

• (a) - selecting candidate phrases in the document;

• (b) - filtering out the most significant ones to serve as keywords.

Nevertheless, a third step is typically performed as well (even before from those

enumerated above) and it constitutes a pre-requisite for many existing extraction

algorithms:

• (c) - the preprocessing phase.

10 Chapter 2. Automatic Keyword Extraction

The objective of this phase is then cleaning the input text as much as possible

by eliminating unnecessary words and characters or, as it happens in some cases,

just structuring the text, thus facilitating phases (a) and (b) listed above.

Despite being very useful for a wide range of tasks, extraction techniques may

not perform as expected in every single situation. One disadvantage of some

of these techniques concerns ill-formed and/or inappropriate phrases. Take as an

example the phrase ”presented research”. Although it could be extracted from a

document (because it is a commonly used phrase in scientific research papers,

like this one), this term is not meaningful to describe it [MW08], which underlines

the identified problem.

2.2 Related Work

Statistical

Pure statistics based methods are simple and there is no need of previous training,

once they rely only in the statistical information about the words, identifying

keywords present in a document using merely that information. The benefits of

purely statistical methods are their ease of use and relatively low computational

power needed [Gia05].

Examples of statistical methods include word frequency [Luh58], word co-

occurrence [MI04] and the TF*IDF (Term Frequency - Inverse Document Frequency)

term weighting model ([SY73]) [Rob04].

Much work has shown that TF*IDF is very effective in extracting keywords

for scientific journals (e.g., [FPW+99, Hul03, HKGM05]), [LPLL09]. TF*IDF-style

measures emerged from extensive empirical studies of combinations of weighting

factors, particularly by the Cornell group ([SY73]) [Rob04].

The Term-Frequency (TF) factor was originally presented by Luhn in 1958

[Luh58]. The author used the statistical information derived from word frequency

and distribution to compute a relative measure of significance, first for individual

words and then for sentences.

Later, in 1972, Sparck Jones [Jon72] presented a measure of term specificity, now

known as Inverse Document-Frequency (IDF), that is basically based on counting

the number of documents in the collection being searched, which contain (or are

2.2. Related Work 11

indexed by) the term in question. The intuition was that a query term which

occurs in many documents is not a good discriminator, and should be given less

weight than one which occurs in few documents [Rob04].

In short, one can refer to TF as simply being the number of times n a term Wk

occurs in a document d, and can be denoted by nWk,d. This value can be normalized

if the total number of candidate terms |T| is considered [Alv11, FPW+99], and can

be denoted by the equation:

TF(Wk) =
nWk,d

|T|
(2.1)

However, since the TF representation can bias the document vector towards

words with more occurrences, and coming in accordance with what was said in

the preceding paragraph, it can be modified by the significance or rarity with

which one occurs in all documents of the corpus [SR10]. That way, the Document-

Frequency (DF) of a word corresponds to the number of documents in the collection

in which the word Wk occurs and the Inverse-Document-Frequency (IDF) is then

given by equation 2.2,

IDF(Wk) =
|D|

DF(Wk)
(2.2)

where |D| is to be the total number of documents in the collection [SR10].

Usually, instead of the IDF(Wk) itself, to avoid amplifying the importance of

multiple occurrence of terms, some monotonous function such as the logarithm

or the square root is used. Thereby, we can define TF*IDF, for example, as follows

in equation 2.3, [SR10].

TFIDF(Wk) = TF(Wk) × log
(
IDF(Wk)

)
(2.3)

Another example of a statistical method was presented by Cohen [Coh95].

In is work he shows a fast statistical approach to highlight relevant terms from

documents. Using almost no linguistic information, once it is a language and

domain independent approach, the idea is to extract the resulting index terms

representing the text by its N-Gram counts, using that statistical information to

automatically index the terms in a document.

12 Chapter 2. Automatic Keyword Extraction

Linguistics

Another slope of automatic extraction methods focus on the linguistic features of

words present in the sources such as part-of-speech (PoS), syntactic structure and

semantic qualities. In fact, many of these methods combine linguistic features with

common statistical measures such as term-frequency (TF) and inverse document-

frequency (IDF) [Oel09], earlier discussed.

Plas et al [vdPPRG04] uses for evaluation two lexical resources: the EDR

electronic dictionary and Princeton University’s freely available WordNet. The

author showed that using lexical resources in such a task results in slightly higher

performances than using a purely statistically based method, while Hulth [Hul03]

examines a few different methods of incorporating linguistics into automatic key-

word extraction (such as syntactic features) to improve the quality of the results.

In particular she considers the part-of-speech tags as features to the classifier and

looks only tonoun phrases to be candidate phrases. Similar process is actually done

by KUSCO as well, which operation is detailed ahead in Section 2.5.

Supervised Machine Learning

As referenced before, supervised machine learning (that being used in this work)

consists of training the system previously with a set of documents having a

range of human-chosen keywords previously assigned, for applying the gained

knowledge to label keywords from new documents.

A wide range of methods have been proposed for tasks of automatic keyword

extraction, most of them being based on machine learning techniques [JHL09,

WPHZ06]. These methods tend to give better results than those that only use sta-

tistical or linguistics information about the words in the documents [vdPPRG04],

despite the fact that, in some cases, statistical or linguistic knowledge is used to

enhance such algorithms.

In 1999, Turney [Tur99b] approached the problem as a supervised learning

task, classifying words as positive or negative examples of keyphrases. In a

first set of experiments, he applied the C4.5 decision tree induction algorithm to

that task. Then, he used a custom-developed algorithm, GenEx, concluding that

incorporating specialized procedural domain knowledge could generate better

keyphrases than a general-purpose algorithm (C4.5). The GenEx algorithm has

two components: the Genitor genetic algorithm (Whitley, 1989) and the Extractor

2.2. Related Work 13

keyphrase extraction algorithm (Turney, 1997, 1999). The Extractor takes a doc-

ument as input and produces a list of keyphrases as output. The parameters of

Extractor are tuned by the Genitor genetic algorithm, to maximize performance

(fitness) on training data. Genitor is used to tune Extractor, but it is no longer

needed once the training process is complete. Thus, when the best parameter

values are known, Genitor can be discarded [Tur99b].

Perhaps one of the main contributions to the field, KEA (Keyphrase Extraction

Algorithm) was presented by Frank et al [FPW+99]. The author showed that it

generalizes as well as Turney’s GenEx across collections with no need to use a

special-purpose genetic algorithm (Genitor) for training and extracting like GenEx

does. Therefore, training is a much quicker task in KEA than it is in GenEx. Once

it will be used in the ensemble application proposed in this dissertation, a more

detailed description is given in Section 2.4.

An improvement of KEA [FPW+99], called KEA++, has been proposed by

Medelyan & Witten [MW06]. The main improvement over the first system is the

use of semantic information on terms and phrases gleaned from a domain-specific

thesaurus.

Other approach based on KEA [FPW+99], but relying on bagged decision trees

instead of Naive Bayes for classification was proposed in 2009 by Medelyan et

al [MFW09] and was called Maui. In addition to the new classification model,

Maui enhances KEA’s successful machine learning framework with semantic

knowledge retrieved from Wikipedia. The new features tested focus on exploring

the Wikipedia capabilities to further compute the semantic relatedness between

terms or the likelihood of a phrase being a link in the Wikipedia corpus.

Sarkar et al [SNG10] presented in 2010 an algorithm that outperformed KEA

in the experiences they conducted. This method, like the one proposed by Wang

et al [WPHZ06], make use of Neural Networks. Candidate phrases are classified,

either in keyphrases or not, based on features like phrase frequency, phrase links

to other phrases and inverse document frequency (IDF). This algorithm overcomes

the problem in [WPHZ06], once that the authors consider keyphrase extraction

to be a ranking problem rather than a classification problem, thus associating

probabilities to the classes and sorting them in increasing order of their class

probabilities. That way, if we want K+1 keyphrases, instead of K, we just have to

pick the one that has the next higher associated probability. It is however obvious

that, if we increase the number of desired keyphrases, the probabilities associated

with the last picked ones can be smaller than what might be desirable.

Later in 2011, H. Kian and M. Zahedi [KZ11] introduced a new method for Per-

14 Chapter 2. Automatic Keyword Extraction

sian language, that uses a genetic algorithm based on results of popular web search

engines to optimize the keyword extractor function. That way, they pretended

to choose the keywords that were more important to search engines ranking

algorithms, while achieving acceptable recall/precision scores at the same time.

Extracted terms are evaluated and sorted by score function which uses statistical

features of terms, and then top terms of the extracted keyword list are used to

construct a search query. The search query is then submitted to popular search

engines and the results obtained are analysed to rank query terms by a fitness

function. As the authors refer on their work, to the best of their knowledge, no

previous study has investigated similar method, so it can be the case that it works

well also when applied to other languages.

Conditional Random Fields (CRF), today considered the state-of-the-art se-

quence labelling method, was first proposed by Lafferty et al [LMP01] back in

2001 and since then many published works explored this technique. Peng and

McCallum [PM06] showed that CRFs outperform other methods at the task of

extracting structured information, like the authors and citations from research

papers. Zhang et al [Zha08] proposed the use of CRFs for the task of keyword

extraction from Chinese scientific papers, presenting very promising results. Last

year Feng et al [FYZ12] extracted keywords based on a combination of CRFs and

specific document structure. The results presented improved dramatically the

best published so far and were in fact the best results found meanwhile.

Similarly to KEA, CRF will also be used in the ensemble application proposed

here, hence further details about the algorithm are given in Section 2.6.

Unsupervised Machine Learning

Despite the fact that it is not the focus of this dissertation, it is worth referring

some of the most recently developed works under unsupervised learning. In a

recent past, those methods tended to focus on graph-mining techniques, showing

promising results.

In [MT04], Mihalcea and Tarau presented TextRank, a graph-based ranking

model based on the co-occurrence relation between words, demonstrating that

the approach outperformed the best published results so far.

Another example is the work presented by Grineva et al [GGL09]. The author

showed a novel method for key term extraction from text documents, which uses a

graph of semantic relationships to model the document, extracted from Wikipedia,

and an algorithm for detecting community structures of a network. Evaluations

done by the authors show that it outperforms existing methods, producing key

2.3. Analysed tools 15

terms with higher precision and recall.

Ortiz et al [OPTJS10] uses the combination of two techniques: maximal fre-

quent sequences and PageRank [PBMW99] (also a graph-based approach) for

selecting the most prominent terms of a given text.

By its turn, Rose et al [SRC10] presented RAKE, acronym for Rapid Automatic

Keyword Extraction, showing that RAKE is more computationally efficient than

TextRank while achieving higher precision and comparable recall scores. Also,

RAKE is domain and language-independent extracting keywords from individ-

ual documents.

In addition to the graph-mining techniques depicted, there are another unsu-

pervised approaches that are worth referring.

Yutaka Matsuo and Mitsuru Ishizuka [MI04] presented a new keyword ex-

traction algorithm that applies to a single document without using a corpus,

identifying the importance of a term in a document by the co-occurrence between

each term and the frequent terms. The two main advantages of this method are its

simplicity, once using a co-occurrence matrix instead of a corpus enables keyword

extraction using only the document itself, and its high performance comparable

to TF*IDF.

Liu et al [LCZS11] realizing that appropriate keyphrases are not always sta-

tistically significant or even maybe do not appear in the given document, pro-

pose to use word alignment models (WMA) in statistical machine translation to

learn translation probabilities between the words in documents and the words in

keyphrases. The results presented outperform existing unsupervised methods on

precision, recall and F-measure and the suggested keyphrases are not necessarily

statistically frequent in the document, which indicates that this method is more

flexible and reliable than previous ones.

2.3 Analysed tools

As described previously in this chapter, for creating an ensemble one needs to

combine several classifiers. Thereby, and having that in mind, several known IE

tools were analysed in order to exploring its capabilities and finding the tool best

suited for the job in question. Despite revealing also some interesting features, the

tools here addressed ended up not being used, either because they are proprietary

and one cannot freely access the source code of the same, or just because they

did not function as desired. However, this section presents a brief description on

16 Chapter 2. Automatic Keyword Extraction

several other tools that were also investigated.

OpenCalais

OpenCalais is a web service available through an API that accepts unstruc-

tured text (like news articles, blog postings, etc.), processes it using natural

language processing (NLP) and machine learning (ML) algorithms, returning

RDF-formatted entities, facts and events extracted from that text. OpenCalais la-

bels as entities things like people, places or companies. Facts can be relationships,

like Pedro Geadas is a student of Informatics Engineering. Likewise, events represent

things that happened, like there was a natural disaster of landslide in place Portugal.

Beyond this superficial explanation about how OpenCalais processes and returns

the processed information, there is not much more information available.

OpenCalais is an proprietary software, turning out impossible to find both

mechanisms and the respective algorithms in which it relies. Another disadvan-

tage, concerns its daily limited rate of transactions allowed. In fact, one can send

as much as four transactions per second and fifty thousand transactions per day

(for the free version), depending on how big are the documents sent.

ANNIE - A Nearly New IE system

ANNIE is an open-source tool designed for Information Extraction (IE), support-

ing many natural language processing tasks, like tokenising, sentence splitting, POS

tagging or named entity recognition (for more NLP tasks available, see 1). A live

demo showing ANNIE capabilities is available in 2.

The tokeniser simply splits text into simple tokens, such as numbers, punctua-

tion, symbols, and words of different types (e.g. with an initial capital, all upper

case, etc.). This enables greater flexibility by placing the burden of analysis on

subsequent tools, and it means that the tokeniser does not need to be modified

for different applications or text types. The sentence splitter segments the text into

sentences. This module is required for the tagger. Both the splitter and tagger

are domain and application-independent. The tagger is a modified version of the

Brill tagger, which produces a part-of-speech tag as an annotation on each word or

symbol. Neither the splitter nor the tagger are a mandatory part of the IE system,

1http://gate.ac.uk/sale/tao/splitch6.html#chap:annie
2http://services.gate.ac.uk/annie/

2.3. Analysed tools 17

but the extra linguistic information they produce increases the power and accu-

racy of Annie’s IE tools. The named entity recogniser (NER) recognizes entities like

person names, organizations, locations, money amounts, dates, percentages, and

some types of addresses as well.

Annie further supports multiple languages through Unicode and has been

adapted to do IE tasks in Bulgarian, Romanian, Bengali, Greek, Spanish, Swedish,

German, Italian, and French (support for other languages, like Chinese and Rus-

sian, are under current development as well) and can be used and customised in

GATE’s graphical development environment and integrated in other applications

through its API.

ANNIE function as follows: after choosing the type of term one pretends to

find within the textual source, it just underlines all the terms found, telling not

which ones are the most relevant. Thus, despite being able to recognize things

like persons, organizations and dates, this system is not suitable for the work in

question because it does not retrieve a set of N ranked terms, instead just high-

lighting the ones it finds from a list of preselected types.

TextWise

TextWise has recently developed Semantic Gist to provide intuitive semantic mod-

elling on a large number of samples, particularly vertical text documents that often

do not have classification schemes associated with them. These semantic models

will automatically adapt to rapidly changing content, ensuring a high level of

accuracy over time.

Semantic Gist represents a significant advance in the use of machine learning,

image and speech characterization, relying in neural networks to attack unsuper-

vised semantic modelling. Their patent-pending approach generates a compact

representation of any text by using advanced statistical language models to iden-

tify the significant features of a document.

About the algorithms used, the only information found was in their official

website 3, shortly describing how they process the information. In short, an auto-

encoder neural network encodes the features into a low-dimensionality semantic

representation, and then reconstructs an approximation of the original feature

vector from the semantic representation. The software highlights keywords that

3www.textwise.com

18 Chapter 2. Automatic Keyword Extraction

may be under-represented by the semantic representation and encodes these

separately as a complementary feature vector. Finally, the complementary feature

vector is combined with the semantic representation to produce a Semantic Gist

that can be used for document indexing, matching and other applications.

Additionally, their general web API services come free of charge, but are usage

limited daily, like OpenCalais (discussed above).

Maui

Maui was another tested tool that allows performing keyword extraction. As men-

tioned earlier in Section 2.2, this tool is based on KEA [FPW+99], enhancing KEA’s

successful machine learning framework with semantic knowledge retrieved from

Wikipedia.

Maui explores Wikipedia capabilities to further compute the semantic related-

ness between terms or the likelihood of a phrase being a link in the Wikipedia cor-

pus. Unfortunately, Wikipedia indexing features could not be tested due to some

problems related to the import of Wikipedia dump files into MySQL database.

Somehow, the 9GB SQL file could not be imported into the database (more than

24 hours later the import was not finished yet and the problem still persisted after

increasing memory limits and page table sizes), thus only the simpler version

could be tested.

Maui works in two stages: candidate selection and machine learning based fil-

tering. In the original paper, Maui was applied to automatic tagging, but keyword

extraction is also possible to be performed. In the candidate selection stage, Maui

first determines textual sequences defined by orthographic boundaries and splits

these sequences into tokens. Then all n-grams up to a maximum length of 3 words

that do not begin or end with a stopword are extracted as candidate tags. In the

filtering stage several features are computed for each candidate, which are then

input to a machine learning model to obtain the probability that the candidate is

indeed a tag.

Tests performed to Maui (without the Wikipedia indexing features), showed

results virtually equal to those obtained by KEA and that is why this application

was not used in the end.

2.4. KEA 19

2.4 KEA

As mentioned in Section 2.2, KEA [FPW+99] was one of the main contributions to

the field of keyword extraction.

KEA operation can be basically separated into three phases:

• First, because not all phrases in a document are equally likely to be keyphrases

a priori, there is a need to clean the input text according to phrase boundaries

(punctuation marks, dashes, brackets, and numbers). All the unneeded

characters and numbers are deleted. This is how candidate phrases are gen-

erated;

• Second, and because phrases by themselves are useless (it is their proper-

ties or attributes that matters), two specific attributes are used to discrimi-

nate between keyphrases and not-keyphrases: the TF*IDF score of a phrase

(earlier explained), and the distance into the document of the phrase’s first

appearance (the number of words that precede the first occurrence of the

term, divided by the number of words in the document). These were the

only two attributes that turned out to be useful in discriminating between

keyphrases and non-keyphrases in the author first set of experiments. A

Naive Bayes model [DP97] is then built from a set of training documents

for which keyphrases are known (typically because the author provided

them) and the model can then be applied to a new document from which

keyphrases are to be extracted;

• Finally, KEA computes the TF*IDF scores and distance values for all phrases

in the new document, using the procedure described above, taking the dis-

cretization obtained from the training documents. The naive Bayes model is

then applied to each phrase, computing the estimated probability of it being

a keyphrase. The result is a list of phrases ranked according to their asso-

ciated probabilities. Assuming that the user wants to extract r keyphrases,

KEA then outputs the r highest ranked phrases [FPW+99].

Another interesting fact about KEA, is how its performance scales with the

amount of training data available. The experiments conducted by the author

regarding to this matter showed that no further performance improvement was

gained by increasing the number of documents used beyond fifty [FPW+99].

The author also shows that performance can be significantly boosted if KEA is

trained on documents that are from the same domain. Such enhancement was

20 Chapter 2. Automatic Keyword Extraction

Figure 2.1: KEA training and extraction processes ([WPF+99]).

achieved extending the original KEA model, by adding another feature called

keyphrase-frequency, which is the frequency of a phrase’s being keyphrase in all

the documents in the corpus [FPW+99, JHL09].

The Naive Bayes classifier

As previously referred, in supervised classification learning problems, the learner

is given a set of training examples and the corresponding class labels. From the

training examples it outputs a classifier, which then takes an unlabelled example

and assigns it to a class. Many classifiers can be viewed as computing a set

of discriminant functions of the example, one for each class, and assigning the

example to the class whose function is maximum [DH73]. If E is the example, and

fi(E) is the discriminant function corresponding to the ith class, the chosen class

Ck is the one for which

fk(E) > fi(E) ∀ i , k. (2.4)

Supposing that an example is a vector of a attributes, as is typically the case

in classification applications. Let v jk be the value of attribute A j in the example,

P(X) denote the probability of X, and P(Y j | X) denote the conditional probability

of Y given X. Then one possible set of discriminant functions is

fi(E) = P(Ci)
a∏

j=1

P(A j = v jk | Ci). (2.5)

The classifier obtained by using this set of discriminant functions, and esti-

mating the relevant probabilities from the training set, is then called the Naive

2.5. KUSCO 21

Bayes classifier (or Naive Bayesian classifier) [DP97]. If the naive assumption is

made that the attributes are independent given the class, this classifier can easily

be shown to be optimal, in the sense of minimizing the misclassification rate, or

zero-one loss, by a direct application of Bayes’ theorem, as follows: if P(Ci | E) is

the probability that example E is of class Ci, zero-one loss is minimized if, and

only if, E is assigned to the class Ck for which P(Ck | E) is maximum [DH73].

In other words, using P(Ci | E) as the discriminant functions fi(E) is the optimal

classification procedure. Accordingly to Bayes’ theorem,

P(Ci | E) =
P(Ci) P(E | Ci)

P(E)
. (2.6)

Nevertheless, P(E) can be ignored since it is the same for all classes and does not

affect the relative values of their probabilities. If the attributes are independent

given the class, P(E | Ci) can then be decomposed into the product P(A1 = v1k |

Ci) . . .P(Aa = vak | Ci), leading to P(Ci | E) = fi(E) as defined in equation 2.5,

Q.E.D. In practice attributes are seldom independent given the class, which is

why this assumption is naive and which explains the given name [DP97].

2.5 KUSCO

KUSCO (Knowledge Unsupervised Search for instantiating Concepts on lightweight

Ontologies, [Alv11]) is a tool that indexes a set of concepts with given Points of

Interest (POIs), semantically enriching them. It was developed by Ana Alves in

the ambit of her PhD thesis, at Coimbra’s University Informatics Department

AmILab4.

Figure 2.2 depicts KUSCOS’ generic Semantic Enrichment model. The most

important module for the work presented in this dissertation, however, is the

Meaning Extraction module, where term extraction from event descriptions is per-

formed. All the information presented in this section can be found in [Alv11].

KUSCO’s processing flow can then be synthesized as follows:

• A POI’s Source is specified as input for the system. In the present architec-

ture, the structure of this source (e.g. a collection of documents, a directory

Web site) is mapped to the POI entity on the conceptual data model in order

to automatically populate a database of POIs. This intensive extraction, or

4Ambient Intelligence Laboratory

22 Chapter 2. Automatic Keyword Extraction

Figure 2.2: KUSCO’s generic model of Semantic Enrichment ([Alv11]).

POI Mining, may be accomplished by simply invoking API (when available)

or by Web scraping.

• Information Retrieval on a Perspective module consists in finding docu-

ments about each POI from a given background collection. To achieve that,

the Wikipedia and the World Wide Web are explored, applying two differ-

ent approaches to each of the collections, called perspectives: using the Web

through the use of a search API, where one can find a perspective focused

specifically in the POI website, while there is an broader perspective that

covers documents of several websites; using Wikipedia and its API, one can

also find a more specific perspective, Yellow Wiki, and a broader one, Red

Wiki. While the former searches for the specific page of a POI, the latter

searches for pages related to POIs categories. These categories are normally

given from where the POI is extracted.

• Meaning Extraction module finds the bag of relevant concepts in a document

retrieved from a given source (Web or Wikipedia). In other words, hav-

ing a set of pages as input, it extracts a ranked list of terms. Instead of a

common bag of words, this set contains terms with meaning, since the dis-

ambiguation of each term is also performed in this module. Therefore, the

intermediate output of the Meaning Extraction module is called a Seman-

2.6. CRF - Conditional Random Fields 23

Figure 2.3: KUSCO’s Meaning Extraction module in detail ([Alv11]).

tic Index, where each concept is weighted using statistical relevance metrics.

For each POI, KUSCO extracts related information from the Web and executes

a sequence of Information Extraction and Natural Language Processing steps to

automatically extract the relevant related terms. Each term is contextualized in

lexical resources (WordNet and Wikipedia) which guide the extraction process by

validating common-sense terms and which are also used to infer the meaning of

each term. These terms are called concepts only after they are contextualized, and

their relevance is computed through an extended version of TF*IDF that considers

the semantics of each term.

In Figure 2.3, one can see a more detailed visualization of KUSCO’s Meaning

Extraction module.

2.6 CRF - Conditional Random Fields

Conditional Random Fields (CRF) [LMP01] is a state-of-the-art sequence labeling

method and has been successfully applied to many different problems, including

natural language processing, named-entity recognition (NER), feature induction

for NER, identifying protein names in biology abstracts, segmenting addresses

in Web pages, information integration word alignment in machine translation,

citation extraction from research papers, word segmentation and many others

[SM10]. As mentioned in Section 2.2, and just like KEA, CRF belongs to the

supervised field of machine learning.

24 Chapter 2. Automatic Keyword Extraction

Figure 2.4: Graphical Structure of a Chain-structured CRF for Sequences ([Zha08])

One of the first large-scale applications of CRFs was done by Sha and Pereira

[SP03], who matched state-of-the-art performance on segmenting noun phrases

in text. Since then, linear-chain CRFs have been applied also in natural language

processing, including named-entity recognition (NER), feature induction for NER,

identifying protein names in biology abstracts, segmenting addresses in Web

pages, information integration word alignment in machine translation, citation

extraction from research papers, word segmentation and many others [SM10].

Existing methods on keyword extraction can not use most of the features ex-

isting in a document. However, CRF can utilize most of those features for efficient

keyword extraction more sufficiently and effectively. Experimental results indi-

cate that the CRF model can enhance keyword extraction and it outperforms the

other machine learning methods [Zha08].

In short, CRF is an undirected graphical model that encodes a conditional proba-

bility distribution with a given set of features (Table 2.1 portrays the list of features

used to train CRF model used in this work).

For the given observation sequential data X(X1X2, . . . ,Xn), and their corre-

sponding status labels Y(Y1Y2, . . . , Yn), a linear chain structure CRF defines the

conditional probability as follows:

P(Y|X) =
1

Zx
exp

∑
i

∑
j

λ j f j(yi−1, yi,X, i) (2.7)

where Zx is a normalization and it makes the probability of all state sequences

sum equal to 1, f j(yi−1, yi,X, i) is a feature function and λ j is a learned weight

associated with feature f j.

The main advantage of CRF comes from that it can relax the assumption of con-

2.6. CRF - Conditional Random Fields 25

No Features Explanation Normalization
method

1 Word current token -
2 PoS Part-of-Speech of a token in the sen-

tence
{DT, VB,
NN, (. . .)}

3 First Position whether a token is the first token in
each sentence

{0, 1}

4 CAPITALIZED whether a token is capitalized {0, 1}
5 Initial CAP whether a token begins with a capital {0, 1}
6 Mixed CAPS whether a token contains both lower

and upper cases
{0, 1}

7 Contains Digits whether a token contains digits {0, 1}
8 All Digits whether a token is a number {0, 1}
9 Hyphenated whehter a token contains hyphens {0, 1}
10 Dollar Sign whether a token contains the $ sign {0, 1}
11 Ends In Dot whether a token ends with a dot {0, 1}
12 Lonely Initial whether the token is an initial (e.g.: P.) {0, 1}
13 Single Char whether the token is a single char (let-

ter, number, symbol)
{0, 1}

14 End Punctua-
tion

whether the token is sentence end
punctuation

{0, 1}

15 Apostrophe whether the token contains an apos-
trophe (’)

{0, 1}

16 E-mail whether the token matches a valid
email format

{0, 1}

17 Line Number the line number of the current sen-
tence in the document

{1, 2, (. . .),
N}

18 TF Term Frequency of a word in the doc-
ument

See equa-
tion 2.1

19 IDF Inverse Document Frequency of a
word in the document

See equa-
tion 2.2

20 TF*IDF the Term-Frequency * Inverse Docu-
ment Frequency of a term in the doc-
ument

See equa-
tion 2.3

21 Windowed Fea-
tures

the PoS and Word features of the first,
first and second and first, second and
third tokens before and after the cur-
rent token

-

Table 2.1: List of Features used to train CRF model in this work.

26 Chapter 2. Automatic Keyword Extraction

ditional independence of the observed data often used in generative approaches,

an assumption that might be too restrictive for a considerable number of object

classes and it also avoids the label bias problem. The interested reader can find

more information about this in respective literature ([LMP01]) once it is not ob-

jective for this dissertation exhaustively exploring the algorithm. Additionally,

Figure 2.4 shows the graphical structure of a chain-structured CRF.

The original CRF implementation used in this work was developed under the

MALLET5 framework, acronym for MAchine Learning for LanguagE Toolkit, and

it was kindly supplied by Filipe Rodrigues, a PhD student currently researching

at the AmILab as well.

2.7 Conclusion

Various works in the field of keyword/keyphrase extraction have been presented.

Those rely basically in three main types, namely statistics, linguistics and machine

learning, however most of them are a mixture of the former, which turns them

into hybrid approaches after all.

The most prominent methods so far rely on machine learning techniques, which

can be further divided into supervised and unsupervised, being the supervised ones

the focus for this work.

Semantic analysis tools, like the ones investigated in this chapter, allow for

powerful semantic modeling like text categorization and segmentation. These

tools are based on different approaches and generally do not merely rely in a

single algorithm, combining instead a set of different ones, which is in essence

also the paradigm that serve as base for the ensemble learning method.

KEA system represents one of the most valuable contributions to the supervised

field and it is one of the tools used in the proposed application. From the remaining

analyzed/tested systems, KUSCO and CRF were the ones that best fit into the

objectives proposed for this dissertation (as discussed earlier) and are used along

with KEA in the final ensemble system.

5MALLET (http://mallet.cs.umass.edu/) is a Java-based package for statistical natural language
processing, document classification, clustering, topic modeling, information extraction, and other
machine learning applications to text.

Chapter 3

Ensemble Learning Methodologies

This chapter is comprised of five sections. Section 3.1 gives some insight about

the concept of Ensemble applied to the field of Machine Learning. Section 3.2

presents related ensemble works applied to keyword extraction, while Section 3.3

introduces some widely used ensemble learning schemes. Section 3.4 concerns

two well known principles of combining classifier’s label outputs and finally

Section 3.5 summarizes and concludes the information introduced in this chapter.

3.1 What is an Ensemble ?

When wise people need to make critical decisions, they usually prefer to rely in

the opinions of several experts rather than on their own opinion or that of a single

adviser. Similarly in a boxing fight, it often happens that the combat ends up tied,

because none of the fighters knocks out the opponent in due time. In that specific

case, the decision of selecting the winner of the combat is then decided through

voting, by multiple referees. In either case, in order to find a final (and very likely

the right) choice, opinions of different experts are being combined.

In Machine Learning, like in real life, an obvious approach for making deci-

sions more reliable is to combine the output of different classifying models to form

the final prediction. Several techniques in the field achieve this by learning an

ensemble of models and using them in combination [WF05].

Ensembles, also known as committees, are justly receiving increasing attention

and accolade, generating a wealth of research [KR13]. Theoretical and empirical

studies have demonstrated that ensembles frequently increase predictive perfor-

mance over a single base classifier and can be applied to different kinds of prob-

lems, as numeric prediction (the output is a number between 0 and 1) problems

and classification (like binary classification: keyword and not-keyword) tasks as well

28 Chapter 3. Ensemble Learning Methodologies

Figure 3.1: Logical view of ensemble learning method ([Zha09]).

[Mel05, KR13].

Different methods for combining models exist, like bagging([Bre96]), boost-

ing([FS96]) and stacking([Wol92]), being the first two the most widely used[WF05,

Mel05, Sew11]. These combined models share sometimes however the disadvan-

tage of being difficult to analyse, once they can comprise dozens or even hundreds

of individual classifiers. Figure 3.1 illustrates the ensemble learning method.

Although ensembles perform well, it is not trivial to understand in an intuitive

way which factors are contributing to the improved decisions of such approaches.

That fact has been motivating researchers struggling in order to understand why

[WF05].

Additionally, another typical concern around ensembles relates to the output

combination rule to use, i.e., how should the results coming from the individual

applications be combined. Majority voting and it’s weighted version are the most

widespread choices when the individual classifiers give label outputs [Kun04],

and are detailed ahead in this chapter.

3.2 Related Work

In 2004, Hulth [Hul04a] presented an algorithm for automatic keyword extraction

combining statistical and linguistic methods, showing that the number of incorrect

assigned keywords could be highly reduced. That reduction was achieved by

combining then the predictions of several classifiers. Moreover, the classifiers are

trained on different representations of the data, where the difference lies in the

definition on what constitutes a candidate term in a written document.

Using an ensemble of Neural Networks (formerly Bagging and Boosting en-

3.3. Approaches 29

semble schemes, described in Section 3.3), Wang et.al [WPHZ06] show an ap-

proach where keyphrase extraction is viewed as a crisp binary classification task,

training the neural network ensemble to classify whether a phrase is keyphrase

or not. To determine whether a phrase is a keyphrase, the following features

(or attributes) of a phrase in a given document are adopted: its term frequency,

whether they appear in the title, abstract or headings (subheadings), and its frequency

appearing in the paragraphs of the given document, i.e., the distribution of a

phrase in a given document. However, due to the binary classification model

adopted, this model is not suitable when the number of phrases classified by the

classifier as positive is less than the desired number of keyphrases.

Later in 2009, Zhang [Zha09] combined several statistical machine learning

models to extract keywords from Chinese documents. His method selects key-

words through voting, from the multiples models created, and the experimental

results show that the proposed ensemble learning method outperforms other

methods, according to F1 measurement. Moreover, the extraction model using

weighted votes outperforms the model that does not use weighted voting.

3.3 Approaches

3.3.1 Bagging

Bagging, acronym formed from Bootstrap Aggregation, was first introduced by

Breiman [Bre96]. The idea behind this approach is building multiple classifiers

from the training set by using the bootstrap sampling, i.e., sampling with replace-

ment: instead of using a fresh and independent training dataset each time (which

in practice is obviously not feasible), the algorithm just alters the original training

data, Z = {z1, . . . , zN}, deleting some instances and replicating others, creating a

pseudo-new training set of the same size, L, each time. The hope is that the base

classifiers, generated from the different bootstrapped training sets, disagree often

enough that the ensemble performs better than the base classifier. The outputs

of these classifiers are then combined by averaging or voting to create the final

prediction.

To make use of the variations in the training set, bagging must be used with

unstable (i.e. a small change in the training set can cause a significant change in

the classifier output) non-linear classifiers [Oza00, WF05, Sew11, Kun04]. Oth-

erwise, the resultant ensemble will be a collection of almost identical classifiers,

therefore unlikely to improve on a single classifier’s performance, once they will

30 Chapter 3. Ensemble Learning Methodologies

Figure 3.2: The bagging algorithm ([Kun04]).

be specialized in the same part of Z. Examples of unstable classifiers are neural

networks and decision trees, while naive Bayes stands as an example of a stable

classifier. Figure 3.2 illustrates the training and operation of bagging.

3.3.2 Boosting

Boosting was originally proposed by Schapire and Freund [FS96]. Like bagging,

it is used to combine unstable models of the same type, however boosting does

that iteratively: whereas in bagging individual models are built in separate (i.e.,

equal weight is given to each one), in boosting each new model is influenced by

the performance of those built previously (i.e., models that label correctly more

examples are given more weight, being this weights directly proportional to each

model’s specific reliability). The hope is that subsequent base models correct

the mistakes of the previous, encouraging new models to become experts for

instances handled incorrectly by earlier ones [Oza00, WF05, Sew11]. Figure 3.3

shows the flowchart of the boosting algorithm.

3.3. Approaches 31

Figure 3.3: Flowchart of the boosting algorithm (adapted from [GW07]).

Figure 3.4: Stacking algorithm.

32 Chapter 3. Ensemble Learning Methodologies

3.3.3 Stacking

Stacked generalization, or stacking, was first presented by Wolpert [Wol92] and is

a different way of combining multiple models. Unlike bagging and boosting,

stacking is not normally used to combine models of the same type. Instead, it is

applied to models built by different learner algorithms.

Stacking introduces the concept of meta-learner, which replaces the voting pro-

cedure of the former algorithms. By using the meta-learner (that is basically

another learning algorithm), stacking tries to learn which classifiers are reliable

and to discover how best to combine the output of the base learners. Figure 3.4

tries to illustrate the mechanism described ahead.

In short, stacking basically splits the training set into two disjoint sets, training

several base learners, or level-0 models, on the first part. After that it tests the base

learners on the second part and trains a higher level learner (using the predictions

from the testing phase as the inputs and the correct responses as the outputs),

the level-1 model [Sew11]. In short, an instance is first fed into the level-0 models

and each one guesses a class value. These guesses are fed into the level-1 model,

which combines them into the final prediction [WF05].

Although developed some years ago, it is less used than bagging and boosting,

partly because it is difficult to analyze theoretically and to implement [WF05].

3.3.4 Bayesian Model Averaging

Ensemble learning can be further seen as a tractable approximation to full Bayesian

learning. In full Bayesian learning, the final learned model is a mixture of a very

large set of models (i.e., combinations of predictors), normally all possible models

in a given family, when making inferences about quantities of interest. If one

wants to predict a certain quantity δ, and has a set of models mk and a training

set T, then the final learned model is:

P(δ | T) =
∑

i

P(δ |mk) P(mk | T) =
∑

i

P(δ |mk)
P(T |mk) P(mk)

P(T)
(3.1)

Full Bayesian learning combines the explanatory power of all the models

(P(δ |mk)) weighted by the posterior probability of the models given the training

set (P(mk | T)). Ensembles can then be seen as an approximation to full Bayesian

learning by using a mixture of a small set of the models having the highest pos-

terior probabilities (P(mk | T)) or highest likelihoods (P(T |mk)) [Oza00].

3.3. Approaches 33

In [RMV94], the authors show that full Bayesian averaging provides optimal

predictive ability. However, full Bayesian learning is intractable because it uses a

very large (possibly infinite) set of models.

The tractable approximation to full Bayesian Model is called Bayesian Model

Averaging (BMA) [RHM97]. This solution leads with the problem of full Bayesian

Model, earlier discussed, and it was first introduced by Leamer [Lea78]. However,

because the implementation of the method proposed was difficult and contained

some flaws, Raftery et al [RHM97] proposed two approaches to solve the ad-

dressed problems in Leamer’s work:

• Occam’s window method;

• Markov Chain Monte Carlo model Composition (MC3) method.

The former involves averaging over a reduced set of models only. In the latter,

the idea is to directly approximate the complete solution by applying the MC3

approach of Madigan and York ([YL95]).

Additionally in [RHM97], it is also shown that both of these model averaging ap-

proaches provide better predictive ability than any single model approach, which

is a pretty good premise for developing committee applications over single model

ones.

BMA is the generally accepted method for applying Bayesian learning theory

to the task of model combination. Although the result of BMA is a combination of

models, this combination is actually just integrating out system’s uncertainty as to

which model is correct, assuming that one and only one of the models is indeed the

right one in each specific case. Thus, BMA is actually a model selection procedure

that deals with uncertainty about its selection using a combination [MCSM11].

Despite that BMA is theoretically the optimal method for combining learned

models, it has seen very little use in machine learning [Dom00]. Additionally,

the effectiveness of BMA seems to depend from the models used [Ali95]. In

[Ali95], Bayesian model averaging did poorly in domains in which the posterior

probability of one model dominated those of others. This is the same as saying

that BMA is not useful if one model significantly outperforms the other.

Domingos [Dom00] studied its application to combining rule sets, comparing

it with methods as bagging and partitioning and, surprisingly or not, BMA’s

34 Chapter 3. Ensemble Learning Methodologies

error rates were consistently higher than the other methods’. In the same work

the author concluded that BMA does not obviate the over-fitting problem in

classification, contradicting previous beliefs that it solves (or avoids) it, and may

in fact aggravate the problem.

Recently, Monteith et al [MCSM11] proposed that, in order to more effectively

access the benefits inherent to ensembles, Bayesian strategies should therefore be

directed more towards model combination rather than the model selection implicit in

BMA. Their work provides empirical verification for that hypothesis using sev-

eral different Bayesian model combination (BMC) approaches, tested on a wide

variety of classification problems. Empirical results shown on that paper reveal

that even the most simplistic BMC strategy outperforms the traditional ad hoc

techniques of bagging and boosting, as well as outperforming BMA over a wide

variety of cases, suggesting that the power of ensembles does not come from their

ability to account for model uncertainty, but instead comes from the changes in

representational and preferential bias inherent in the process of combining several

different models.

As cited above BMA is not quite understood nowadays and, even currently,

researchers struggle to understand the concepts behind Bayesian theories. Despite

being not the focus of this dissertation, the interested reader can further explore the

concepts in dedicated literature ([Lea78], [RMV94], [YL95], [RHM97], [Dom00],

[MCSM11]).

3.4 Combining label outputs

3.4.1 Majority Voting

Figure 3.5 portrays different ways of reaching a consensus about which results

should be considered being the relevant ones. If we assume that black, gray,

and white correspond to class labels, and the decision makers are the individual

classifiers in the ensemble, the final label will be black, for all three patterns.

To better understand how the voting procedure takes place, assume that

the label outputs of the classifiers are given as c-dimensional binary vectors,

[di,1, . . . , di,c]T ∈ {0, 1}c, i = 1, . . . , L, where di,1 = 1 if Di labels x in ω j, and 0

3.4. Combining label outputs 35

Figure 3.5: Consensus patterns in a group of 10 decision makers: unanimity, simple
majority, and plurality. In all three cases the final decision of the group is
black. ([Kun04]).

otherwise. The plurality vote will result in an ensemble decision for class ωk if

L∑
i=1

di,k =
c

max
j=1

L∑
i=1

di, j (3.2)

The plurality vote of Equation 3.2, is called in a wide sense the majority vote,

and is the most often used rule from the majority vote group. Various studies are

devoted to the majority vote for classifier combination [Kun04].

Ties are resolved arbitrarily, or following some pre-set rule. In fact, to solve

this question Xu et al [XKS92] suggest a thresholded plurality vote. They augment

the set of class labels Ω with one more class, ωc+1, for all objects for which the

ensemble either fails to determine a class label with a sufficient confidence or

produces a tie. Thus the decision is ωk, if
L∑

i=1
di,k ≥ α.L,

ωc+1, otherwise,
(3.3)

where 0 < α < 1. For the simple majority, we can pick α to be 1
2 + ε, where

0 < ε < 1/L. When α = 1, Equation 3.3 becomes the unanimity vote rule: a

decision is made for some class label if all decision makers agree on that label;

otherwise the ensemble refuses to decide and assigns label ωc+1 to x.

3.4.2 Weighted Majority Voting

If the classifiers in the ensemble are not of identical accuracy, then it is reasonable

to attempt to give the more competent classifiers more power in making the final

36 Chapter 3. Ensemble Learning Methodologies

decision.

The label outputs can be represented as degrees of support for the classes in

the following way:

di, j =

 1, if Di labels x in ω j,

0, otherwise.
(3.4)

The discriminant function for class ω j obtained through weighted voting is

g j(x) =

L∑
i=1

bidi, j, (3.5)

where bi is a coefficient for classifier Di, which corresponds to the weight of

that classifier. Thus the value of the discriminant Function 3.5 will be the sum

of the coefficients for these members of the ensemble whose output for x is ω j

[Kun04].

3.5 Conclusion

Ensemble learning lies between traditional learning with single models and full

Bayesian learning since it uses an intermediate number of models.

Bagging and boosting are the most widely ensemble schemes used but they

derive the individual models differently. The former gives equal weight to each

model, whereas in the latter weighting is used to give more influence to the

most successful ones. This actually portrays what happens in the real world, just

as an executive might place different values on the advice of different experts,

depending on how experienced they are. Nevertheless, these are not suitable

when using different or stable classifiers, as it happens in this work.

Ensembles normally achieve better results than individual classifiers. One way

of explaining its superior performance, is that the former have greater expressive

power than the latter.

Two of the simplest and most widely used techniques applied to combine the

results obtained by the classifiers that compose the ensemble are those of simple

majority and weighted majority voting, which normally use a plurality consensus

rather than a simple majority one.

Chapter 4

Ensemble Learning for AKE from

Event Descriptions

This chapter is composed by four sections. In Section 4.1 the architecture of

the proposed system is depicted and a description of its main modules is given.

Section 4.2 and Section 4.3 describe and detail the main stages identified in the

previous section: the preprocessing phase (stage one) and how the classifying

process and label output combination are done after candidate words being se-

lected (stage two and three). Relevant aspects and decisions made during the

assemblage of the ensemble application are addressed in Section 4.4.

4.1 Application’s Architecture

Following what has been introduced over the last few chapters, it soon became

evident that the spectrum of existing keyword extraction algorithms is already

somehow substantial. The raising interest in the field in question, conduced to

the development of different solutions, each one pretending to be more effective

than the former. Usually, each of these applications rely on a classifier and most

of the improvement process passes by enhancing the success rate of that classifier,

however, the main idea for this dissertation is slightly different, once it concerns

ensembling a set of already existing classifiers to solve the problem, instead of

adding some new features to an existing one, which is what is normally done.

The premise in doing so, is that a set of applications/algorithms working together

is better than all when working alone, as once someone pointed out.

The architecture of the proposed system is represented in Figure 4.1. It de-

38 Chapter 4. Ensemble Learning for AKE from Event Descriptions

Figure 4.1: System’s architecture. (Input): Any suitable textual source (e.g.: textual de-
scriptions from events); (1): In this stage, the input is preprocessed in order to
be ready for classification; (2): The Keyword classifiers (Kc) from the currently
chosen existing systems, that will classify the preprocessed input; (3): The last
stage, combining the results from the individual classifiers; (Final Output): a set
of keywords extracted from the input.

picts the different components of the application and it also reveals the system’s

processing flow, since the moment an input text is passed to the application (i.e.,

after being retrieved from the Web and stored as a text file), until the moment that

it produces the desired output. The main stages identified there are then listed

above:

• The first stage consists in preprocessing the input text (see Section 1.2). KEA

and KUSCO preprocessing is already implemented within the applications,

however, for the CRF system, further preprocessing was needed, as depicted

in the next section;

• The second stage is composed by a set of trained classifiers or models gener-

ated by the individual applications listed before, that are now able to classify

new unseen instances of documents and find the keywords among them.

These individual predictions are then passed to the third and last stage;

• In the third stage, the individual predictions of the classifiers are interpreted

and combined in order to make a final decision. This decision will tell

which candidate terms are in fact keywords and make part of the final set

of keywords, that probably best describe that document.

4.2. Preprocessing 39

4.2 Preprocessing

As already referred before, preprocessing tasks are usually a prerequisite to text

classification. The objective of the preprocessing stage is cleaning the input text as

much as possible by eliminating unnecessary words and characters (e.g. KUSCO,

KEA) or, as it happens with other methods (e.g. CRF), just structuring the text in

some manner for further classification. Thus, this section details the preprocessing

phase of each application, which corresponds to the stage 1 identified in Figure

4.1.

4.2.1 KEA

KEA preprocessing works as follows:

• The input text is split up according to phrase boundaries (punctuation

marks, dashes, brackets, and numbers) and non-alphanumeric characters

(apart from internal periods) and numbers are deleted. KEA takes then all

the sub-sequences of these initial phrases (up to length three by default, but

it can be changed), as candidate phrases;

• In the next step, it eliminates the phrases that begin or end with a stop-

word or phrases that are a proper noun. The stop-word list used by KEA

contains 425 words in nine syntactic classes (conjunctions, articles, particles,

prepositions, pro-nouns, anomalous verbs, adjectives, and adverbs);

• Finally, all words are case-folded and stemmed using a stemmer (originally

the iterated Lovins’ Stemmer was used [Lov68], but any suitable stemming

algorithm can be used). Stemmed phrases that occur only once in the

document are also removed (by default, also configurable) for large texts,

while for small documents it is not recommended to do so [WPF+99].

4.2.2 KUSCO

Like KEA, KUSCO needs to separate candidate terms from irrelevant ones a

priori, so it can extract keywords more efficiently. KUSCO’s preprocessing phase

is depicted below [Alv11]:

• Starting at the Meaning Extraction module (described in Section 2.5 and

portrayed in Figure 2.3) with Noun Phrase (NP) chunking and Named Entity

Recognition (NER), using available Natural Language Processing (NLP)

40 Chapter 4. Ensemble Learning for AKE from Event Descriptions

tools, KUSCO brakes up the received texts into paragraphs, paragraphs into

sentences, and sentences into words;

• After that, a sentence analyser identifies the boundaries of sentences in a

document and a tokeniser decomposes each sentence into tokens. Tokens

are then obtained by splitting a sentence also according to predefined phrase

boundaries. Words in a sentence are then labelled as a noun, verb, adjective,

etc., according to its PoS;

• Furthermore, a Noun Phrase chunker is then applied in order to identify

every group of words with a head noun which functions together just as

a single term and, at the same time, the original text is also processed by

a Named Entity recognizer to identify proper names in the text, labelling

them accordingly (person, organization, location);

• Finally, and similarly to what happens with KEA, a widely used stop-word

list is consulted to filter future concept candidates. Besides this, some heuris-

tics are used to determine the validity of each term before the next phase,

that of information integration, begins.

4.2.3 CRF

CRF required extra/different preprocessing operations than those needed by the

other two applications and it revealed to be a very important step, once a slight

modification in the text being passed to the system resulted in major differences

in the results obtained.

In order to effectively extract keywords using CRF method, the text needed

to be well structured and a set of features correctly tagged, enumerated below,

contrary to what was needed by the other two applications.

Two major aspects were then considered, during this phase:

Structural issues:

• separating each phrase of the text, one per line;

• keeping the punctuations present in each phrase (except quote marks, which

actually produced better results when removed);

• keeping the stop-words present in each phrase;

4.3. Keyword Classifiers and Output Combination 41

• each token of each phrase separated by a space.

Feature and keyword’s automatic tagging:

• tagging the true keywords of each document within brackets1 (E.g.: [cor-

rectly tagged keyword]);

• identifying a set of features present in the text, namely those described in

Table 2.1.

4.3 Keyword Classifiers and Output Combination

When a new document is to be classified arriving from the preprocessing phase,

it is presented to the respective application classifier (Kc). Based on previous

training, that ended up generating a model for each application, the individual

systems are now able to make predictions for the new examples given. Ideally

these models should complement one another, each being specialized in a part of

the domain where the others do not perform so well (just as human executives

seek advisers whose skills and experience complement, rather than those whose

skills are based in the same domain). Thus, models that are capable of doing

predictions as uncorrelated as possible (i.e. they differ much on the examples

they can label as positive or negative) are preferable, once they will be further re-

stricting the result space and the ensemble will then probably perform better than

the base models individually. However, this optimal scenario cannot be entirely

controlled by hand or otherwise we would have the problem here approached

solved already.

Figure 4.2 illustrates what have been said and portrays the expected behaviour

of the several classifiers working together. A, B and C represent a set of three

classifiers, which are identified by Kc in Figure 4.1. Note yet that this example

depicts a classification task (examples are classified as positive (+) or negative

(-) only) rather than a regression task (in which a real value is to be predicted,

normally representing the likelihood of a given word being a keyword).

The models represented by Kc could be any suitable machine learning classi-

fier, but in this specific case one corresponds to the Naive Bayes classifier used by

KEA (see Chapter 2.4), other to KUSCO’s Meaning Extractor module (see Chapter

1For the other applications, the keywords were just identified in separated files (.key), as
mentioned previously.

42 Chapter 4. Ensemble Learning for AKE from Event Descriptions

Figure 4.2: An ensemble of linear classifiers. Each line A, B, and C is a linear classifier.
The boldface line is the ensemble that classifies new examples by returning
the majority vote of the classifiers ([Oza00]).

2.5), which consists on pure statistical and linguistics methods, and the last one

concerning a CRF model (see Chapter 2.6).

After the document has been labelled by all the classifiers, the results must be

gathered and combined, which is then the final stage of the ensemble application

here presented. For that, both voting scheme procedures depicted in Section 3.4,

namely those of simple and weighted majority voting, were used.

4.4 Ensemble Learning Assemblage

The first step forward creating the application here proposed was selecting the

set of different tools/algorithms combine thereafter. KEA because it is one of the

most widely known keyword extraction systems and because it is an open-source

tool available on-line for download. Additionally, it is considered one of the main

contributions to the area and many subsequent works used it as a baseline for

comparisons. KUSCO, because it was developed in the AmILab (the lab where

this work is being developed as well) and in addition of showing decent results,

all the documentation, code and support are easy accessible. The last one, CRF,

because it is the state-of-the-art sequence labelling method and is showing the

best current results in the field.

4.5. Conclusion 43

Second, finding a way for combining the models produced by the applications

chosen before. As mentioned in Section 3.2, the most widely known (and used)

ensemble schemes are those of bagging and boosting, that apply on models of the

same type, but that is not the case in here. Once we are already using different

models for predicting, using this techniques was not quite necessary. In fact,

once Naive Bayes is a stable algorithm and KUSCO does not even needs training

for extracting the important terms from a document, the models produced by

applying those techniques would not differ much from each other from training

set to another, as both of those methods exploit the instability (slight changes to

the training data result on quite different models being produced) inherent of

learning algorithms to produce different models. However, if we were using an

ensemble purely composed by CRF models, it would be worth considering using

such techniques once the empirical tests carried out indicated that CRF model is

dependent of the given training data.

Stacking and Bayesian model averaging (also introduced in Section 3.2) were

the other ensemble schemes investigated. While Bayesian Model Averaging

seemed to be the most promising approach to be used, which is an approximation

to the optimal result, this technique only works well theoretically and empirical

studies performed by other authors showed that it tends to produce worse results

than bagging and boosting, as described in that same chapter. Stacking, in the

other hand, showed to be a technique that is hard to implement. In addition

to the fact that very little work in the field use this technique, it also needs to

account for two crucial issues: the type of generalizer that is suitable to derive

the higher-level model, and the kind of attributes that should be used as its input

[TW99], so that is why it was not tested and used in this work.

Third, as also referred in the previous section, the last step was choosing some

technique to combine the output of the individual classifiers. The ones presented

here are the most widely used ones, namely those of simple and weighted ma-

jority voting (see Section 3.4), and that using weights achieved better results than

that not using, once the degree of confidence inherent to each model was quite

different.

4.5 Conclusion

This chapter presented the architecture of the application, as well as a description

of its main modules, and resumed and justified why some options were taken, in

44 Chapter 4. Ensemble Learning for AKE from Event Descriptions

detriment of others.

Summarizing what have been said, because the classifier models used here

are already different from each other, the approach taken is simply using a single

model (per application) generated through training (once they use supervised

machine learning) and combining their outputs using a majority voting scheme

(simple and weighted versions), filtering the keywords in which those models

agreed the most and thus amalgamating their individual outputs into a single

final prediction.

Chapter 5

Experimental Setup

This chapter introduces the reader to the setup employed in the experiments and

it is composed by three sections. Section 5.1 reveals some recursive difficulties

about finding suitable datasets and describes those actually used in this project.

Section 5.2 gives the metrics utilized to evaluate the applications’ performance

and finally Section 5.3 depicts the adopted methodology.

5.1 Datasets

5.1.1 Finding suitable datasets

Reproducibility is and has always been the main problem of most of the datasets

considered in the state of the art. It is really hard to compare new algorithms and

methodologies with previous works in the field mainly because results may vary

from dataset to dataset drastically, even when papers from the same storage and

nearly the same domain are used. A simple change in the dataset used can result

on an huge difference in the obtained results, depending on the machine learning

method [KAM08].

Peter Tourney [Tur99a, Tur99b] was one of the pioneers in the field of auto-

matic keyword extraction. Additionally to proposing a detailed investigation on

decision trees based algorithms, he also published several links to freely available

datasets [Tur99a], which are no longer available on-line (his work was more than

one decade ago and those links do not work any more).

Although KEA is freely available for download through KEA website 1, it

does not bring any standard datasets along with the download package and the

1http://www.nzdl.org/Kea/

46 Chapter 5. Experimental Setup

datasets reported in [WPF+99] were unfindable as well. KEA authors mention that

they obtained Tourney dataset directly from Tourney himself, however Nguen et

al [NyK07] pointed out to the impossibility to find that or any proper datasets

and used its own dataset [KAM08].

Unable to find the original dataset used to test KEA, which one intended to

use during the experimentation phase, the solution passed by using other two

datasets, each one composed by documents varying in length (the size in char-

acters or words), once it was intended to test how well the algorithms performs

given not only document’s source but also its size. As the final application is to

be used on textual descriptions (as mentioned before), that are commonly much

shorter than average documents, this test needed to be done mandatorily.

5.1.2 Dataset descriptions

A description of the datasets used to evaluate the applications is given above.

Notwithstanding, the general configurations of the tests made like the number of

documents used for training and testing, will only be provided in Section 6, since

they will vary according to the experiment in question.

Krapivin’s Dataset

The first dataset used, from now on designated by Krap’s dataset, consists of 2304

full papers from Computer Science domain, which were published by ACM in the

period from 2003 to 2005. All these papers are written in English and stored in

UTF-8 text encoding. Each document has clearly indicated its title, abstract, body

and references.

This dataset is composed of two types of files: [id].txt, which refers to the text

itself and [id].key, which refers to the keyword’s list of the document identified by

[id], one per line [KAM08].

Hulth’s Dataset

The second dataset, from now on addressed as Hulth’s dataset, consists of 2000

scientific journal paper abstracts with their corresponding title, from the Inspec2

database, and are also written in English. Hulth’s documents were obtained from

2http://www.iee.org/publish/inspec/

5.1. Datasets 47

Computers and Control and Information Technology and have been widely used in

previous researches (e.g. [MT04, Hul03]), have being published in the period

from 1998 to 2002 [Hul04a].

There are three types of files on this dataset: [id].abstr, containing the title

and the abstract; [id].contr, containing the controlled manually assigned key-

words (keywords restricted to the Inspec thesaurus), separated with semicolon;

[id].uncontr, containing the uncontrolled manually assigned keywords (keywords

that can actually be any suitable term), also separated with semicolon.

Before being possible testing the applications using this dataset, two slight

modifications needed to be performed. In first place, file extensions were mod-

ified: [id].abstr files were converted to [id].txt files and the [id].abstr files were

also modified and converted to [id].key files. In second place, because keywords

were separated with a semicolon instead of being one per line as expected, it was

necessary to change that as well.

Yet about this dataset, an inherent problem taken in account was the percentage

of true keywords (i.e, the author preassigned keywords) that were in fact present

in the abstracts. Since the proposed task for this work is extraction, i.e, terms

must exist in the text source (as mentioned in Chapter 1), some refinements were

preformed during the preprocessing phase to guarantee that 100% of the terms

could be found in the text after all. The problem had already been pointed out

previously by Hulth in [Hul04a], as she stated that only 76.2% of the terms for

the uncontrolled and 18.1% for the controlled terms were really present in the

abstracts (note that this happened because the assigners had access to the full

articles and some of the keywords only occurred there).

Events’ Dataset

To validate the results obtained from the previous scientific datasets, another

two groups of documents were used: one composed by 420 descriptions about

events in general, like theatre plays and music concerts, retrieved from web-

pages, while the other comprising 112 personalities’ descriptions extracted from

Wikipedia. Independently of the datasets used, [id] identifies and distinguishes

one document from another.

48 Chapter 5. Experimental Setup

Relevant Non-relevant

Retrieved true positives (tp) false positives (fp)
(items correctly extracted) (items extracted that are not

correct)

Not retrieved false negatives (fn) true negatives (tn)
(items not extracted that
should have been)

(items correctly not extracted)

Table 5.1: Classification of each type of result from IR systems.

5.2 Evaluation Metrics

In the evaluations performed during this work, three already traditional metrics

were used to evaluate applications’ performance: Precision, Recall and F-measure,

the latter calculated by combining the former. Additionally, in Table 5.2 a couple

of examples illustrate the theoretical definitions given below.

With reference to the presented contingency table (Table 5.1) that classifies each

type of result, P and R are formally denoted by equations 5.1 and 5.2 respectively.

Precision is denoted as the number of true positives (i.e. the number of items

correctly labelled as belonging to the positive class) divided by the total number

of elements extracted by the application, while Recall is denoted as the number of

true positives divided by the total number of elements that actually belong to the

positive class (i.e. the sum of true positives and false negatives, which are items

which were not labelled as belonging to the positive class but should have been)

[MRS08, Alv11]. Precision can thus be seen as a measure of exactness or fidelity,

whereas Recall is a measure of completeness.

In other words, precision (P) represents the proportion of automatic selected

keywords that are also manually assigned keywords, while recall (R) is the pro-

portion of manually assigned keywords found by the automatic method.

Following what has been told, precision and recall can be defined namely by

equations 5.3 and 5.4, which are equivalent to equations 5.1 and 5.2 respectively.

Precision =
tp

(tp + fp)
(5.1)

Recall =
tp

(tp + fn)
(5.2)

5.2. Evaluation Metrics 49

Precision =
of manual keywords automatically selected

Total # of automatically selected terms
(5.3)

Recall =
of manual keywords automatically selected

of manual keywords in document
(5.4)

Precision and recall can yet be combined in the F-measure, another standard

information retrieval metric. F-measure (also known as F1 score) is the harmonic

mean between precision and recall, and is denoted by equation 5.5. In the great

majority of the experiments, there is no particular reason to favour precision or

recall (despite being one of the arguments given by the authors in [WPF+99] for

using not these metrics in their work), so most researchers use equal weight of

precision and recall to compute F-measure [Alv11].

F − measure = 2 ×
Recall × Precision
Recall + Precision

(5.5)

An alternative metric used to evaluate this kind of solutions is known as Accu-

racy, which corresponds to the fraction of IR system classifications that are correct.

Accuracy can be denoted by equation 5.6, representing then the proportion of true

results (both true positives and true negatives) in the population [Alv11].

Accuracy =
tp + tn

(tp + fp + tn + fn)
(5.6)

Another important aspect about the evaluation metrics, concerns the calcu-

lation of these measures, which can be achieved using two averaging operations,

called macro-averaging and micro-averaging [Yan99].

There is an important distinction between macro-averaging and micro-averaging:

while micro-average performance scores gives equal weight to every document, and

is therefore considered a per-document average (more precisely, an average over all

the document/category pairs), macro-average performance scores give equal weight

to every category, regardless of its frequency, and is therefore a per-category average

50 Chapter 5. Experimental Setup

Example 1 #

Document true keywords US dollar, exchange rate 2

Retrieved US dollar, market share, profit 3
tp US dollar 1
fp Market share, profit 2

Not retrieved Exchange rate 1
tn - 0
fn Exchange rate 1

Precision 1 / (1 + 2) = 1 / 3 -

Recall 1 / (1 + 1) = 1 / 2 -

Example 2 #

Document true keywords US dollar, exchange rate 2

Retrieved US dollar 1
tp US dollar 1
fp - 0

Not retrieved Exchange rate 1
tn - 0
fn Exchange rate 1

Precision 1 / (1 + 0) = 1 -

Recall 1 / (1 + 1) = 1 / 2 -

Table 5.2: Performance metrics’ calculation example.

5.2. Evaluation Metrics 51

[TKV10]. Thus, if we have a collection of files and their respective keywords, like

it is the case in this dissertation, and we want to calculate precision and recall for

all the documents in that collection, a micro-averaged approach consists in calcu-

lating these metrics individually for each document, while in a macro-averaged

approach we count all the matches of all documents together, dividing the ob-

tained result by the total number of files in both cases.

Consider a binary evaluation measure B(tp, tn, fp, fn) that is calculated based

on the number of true positives (tp), true negatives (tn), false positives (fp) and

false negatives (fn) (see Table 5.1). Let tpλ, fpλ, tnλ and fnλ be the number

of true positives, false positives, true negatives and false negatives after binary

evaluation for a label λ (keyword and not-keyword in this case) [TKV10]. The

macro-averaged and micro-averaged versions of B, are then calculated as follows:

Bmicro = B

 q∑
λ=1

tpλ,
q∑
λ=1

fpλ,
q∑
λ=1

tnλ,
q∑
λ=1

fnλ

 (5.7)

Bmacro =
1
q

q∑
λ=1

B
(
tp, tn, fp, fn

)
(5.8)

Note that micro-averaging has the same result as macro-averaging for some

measures, such as accuracy, while it differs for other measures, such as precision

and recall.

As referred in [WPF+99], there are also several disadvantages in using au-

thor keyphrases as a gold standard, primarily because authors do not always

choose keyphrases that best describe the content of their paper and also because

keyphrases are often chosen hastily, usually just before a document is finalized.

The variance in author’s selected keyphrases makes it obviously more difficult

for an automatic extraction scheme to perform well, once that sometimes words

that are not necessarily poor keyphrases are considered incorrect, just because

they did not match an author’s choice.

In [Hul04a], Hulth refers that the performance of state-of-the-art keyword ex-

traction is much lower than for many other NLP-tasks, such as tagging and pars-

52 Chapter 5. Experimental Setup

ing, and there is plenty room for improvement. Looking at the results obtained in

recent Keyphrase Extraction Contests [Por11], which was devoted specifically to

the extraction of keywords from scientific articles, one should note that, although

the precision and recall of most current keyphrase extractors is still much lower

compared with other NLP tasks (in the range of [0:05; 0:31]), this does not nec-

essarily indicate poor performance [Alv11, WPF+99]. As described in [WX08],

when two human annotators were asked to label keyphrases on 308 documents,

the kappa value (value that measures the agreement between human judges) for

inter-agreement among them was only 0.70 [Alv11], which supports what have

been said.

5.3 Methodology

This section presents and explains all the main steps followed during the practical

phase of this work, i.e., during the elaboration and testing of the applications. The

steps taken followed an logical order that are also roughly portrayed in Figure

4.1, from left to right, and are itemized above.

• (T1) The first task performed consisted in finding suitable datasets to test

the applications with (the input);

• (T2) The second, focused the preprocessing of these datasets so they could in

fact be understood by the applications and used in the most efficient possible

way. While KEA and KUSCO already do their preprocessing internally,

CRF tool does not. This task was of great value, once it enhanced the results

significantly and it was gradually and systematically improved with new

small ideas and corrections almost every day until its final version;

• (T3) The third step was to fully test all the individual applications, using the

standard n-fold cross-validation testing method. This was a very important

step because, beyond evaluating the performance of the systems, it served

to get even more familiar and also for better understanding their operation

mode (and how they were coded), so it would become easier to change them

as needed.

• (T4) After getting that first version of the evaluation phase done (from now

on designated by Evaluator), it was time to check the results obtained and try

to improve them even more. This step consisted in the correction of errors in

5.3. Methodology 53

the Evaluator and further refinements were performed in the preprocessing

method (from now on designated as Preprocessor).

• (T5) With a stable version of the Evaluator in hands, that simply accounted

for full key matches and performed an macro-averaged evaluation, it was

time to extend it. Thus being, the Evaluator was extended in MacroTer-

mEvaluator and MacroTermStemEvaluator. While the first remained the

same as the Evaluator itself, the TermStemEvaluator was now account-

ing key matches based on the stems of the words, rather than the words

themselves. As expected, this improved the results. Not satisfied yet, the

MicroTermEvaluator and MicroTermStemEvaluator were also added, but

performing a micro-averaging evaluation, obtaining better results than the

macro-averaged ones.

• (T6a) This step consisted in putting all the applications working together,

i.e., a beta-version of the ensemble. This was achieved using a multi-

threaded environment, one thread per application.

• (T6b) This step is an extension of the previous and comprises several mod-

ifications made to the original applications, so they could actually work

together efficiently. As an example, to avoid reading the same documents

three times (one time per application), a time-consuming task, it soon be-

came evident that this needed to be done only once, before each individual

system could start its job. Thus, when the application starts, the documents

are immediately read and saved into memory. After that, they are split into

N equal sized folds (this number is configurable and the default chosen is

ten), and pointed out to each application, so the Cross-Validation test can

take place. After all applications finished their training/testing phases, the

results are sent to the main thread, which is in charge of combining and

printing the results.

In order to make everything running smoothly, and obtaining the expected

behaviour from the final application, several methods were modified and

created, which required a great comprehension about the operation of each

tool.

• (T7) The final task was then combining the results of each individual appli-

cation. This was done using two different voting schemes: simple majority

and weighted majority, both based on a plurality consensus.

Chapter 6

Experimental Results

This chapter presents the results and respective discussion of several experiences

performed during the course of this dissertation which were obtained through

10-fold-cross-validation and is divided into two main sections. Namely, Section 6.1

shows the preliminary tests carried out with one of the applications during an

early phase of the work, while Section 6.2 depicts the final results of both the

individual and ensemble applications.

6.1 Preliminary Results

Before the development of the ensemble application itself, this work comprised

a preliminary test phase of a well known system in the field, actually considered

one of its main contributions: the Keyphrase Extraction Algorithm or KEA.

The results drawn ahead show different analysed traits about KEA (based on

the experiments reported in [WPF+99]):

• Its overall efficiency when extracting up to twenty keywords;

• The impact of changing the number of training files;

• The effect of varying document’s length.

As discussed before (see Chapter 5.1), it was not possible to use the original

dataset used then by the author. Notwithstanding, to validate the results reported

there, two different datasets were used in the preliminary experiments below:

Krap’s and Hulth’s dataset (also described in Chapter 5.1). The former was

intended to be as close as possible to the original dataset (in ways that it is

composed by full articles only, like the original dataset was) while the latter

56 Chapter 6. Experimental Results

Training-set size Average author
assigned keywords
per article

Average number of
words per article

50 6.28 9455

Table 6.1: Article information for the overall test.

Keywords extracted Average matches with author assigned keywords
Author reported results Obtained results

5 0.93 0.82
10 1.39 1.31
15 1.68 1.67
20 1.88 1.90

Table 6.2: KEA’s overall effectiveness (average key matches per file) using Krap’s dataset.

aimed simulating the usage of small textual descriptions, closer to those to which

the final application pretends being applied to.

6.1.1 Overall effectiveness

The first experiment assessed KEA’s overall effectiveness when extracting be-

tween 5 and 20 keywords per test document. These tests used 50 documents to

train the model and a set of 500 document to test it. Table 6.2 draws the results

obtained and compares them with those reported by the author, while in Table

6.3 the same results are now shown in terms of Precision, Recall and F-measure

scores. Information about the documents used is displayed in Table 6.1.

6.1.2 Effect of training set size

In this experiment, the main interest resided in the practical problem of how many

training documents are necessary for achieving good results. Thus being, the size

of the training set was varied from 1 to 150 documents and KEA’s performance

Keywords extracted Detailed results
A P R F1

5 0.820 0.164 0.131 0.145
10 1.310 0.131 0.209 0.161
15 1.668 0.111 0.266 0.157
20 1.898 0.095 0.302 0.144

Table 6.3: KEA’s detailed overall effectiveness (Krap’s dataset). (A): Avg. matches/file;
(P): Precision ; (R): Recall; (F1): F-measure.

6.1. Preliminary Results 57

Keywords extracted
5 15

Full texts 0.778 1.545
Abstracts 0.525 1.435

Table 6.4: Average keywords extracted per file, for full text and abstracts.

Test ID Training-set size Average author
assigned keywords
per article

Average number of
words per article

1 1 6 8758
2 5 5.4 8996
3 10 5.7 9518
4 20 6.6 9382
5 30 6.5 9581
6 50 6.0 9331
7 100 6.2 9258
8 130 6.3 9299
9 150 6.2 9236

Table 6.5: Article’s information for each test (Krap’s dataset).

was tested with each set. The test set was composed by the same standard 500

documents. Table 6.6 shows the number of keywords correctly identified when 5

and 15 phrases are extracted against the number of documents used for training

and Table 6.5 displays the information about each of the tests made.

6.1.3 Effect of document length

This experiment verified if KEA’s performance is affected when applied to docu-

ments are differing in length, which is actually an important aspect to be checked,

moreover because these documents are much likely to be similar (at least in length)

with the textual descriptions that will be used futurely, from where one pretends

extracting information.

Thus, the results shown in the next two tables can be compared with those

presented above as follows: Tables 6.6 and 6.8, denoting full articles or abstracts,

respectively; Tables 6.5 and 6.7, contrasting the information about the content of

the documents used in the respective tests.

The training set size was varied like in the previous one and the test set used

was composed with the standard 500 test documents for each dataset tested.

58 Chapter 6. Experimental Results

Test ID Number of keywords extracted
5 15

A P R F1 A P R F1

1 0.412 0.082 0.069 0.075 0.942 0.063 0.157 0.090
2 0.624 0.125 0.116 0.120 1.468 0.098 0.272 0.144
3 0.784 0.157 0.138 0.147 1.502 0.100 0.264 0.145
4 0.812 0.162 0.123 0.140 1.614 0.108 0.245 0.149
5 0.805 0.156 0.120 0.136 1.602 0.107 0.246 0.149
6 0.838 0.168 0.139 0.152 1.674 0.112 0.277 0.159
7 0.894 0.179 0.144 0.160 1.684 0.112 0.271 0.159
8 0.912 0.182 0.146 0.162 1.716 0.114 0.274 0.161
9 0.922 0.184 0.148 0.164 1.706 0.114 0.274 0.161

Table 6.6: Results obtained with complete documents (Krap’s dataset). (A): Avg. match-
es/file; (P): Precision ; (R): Recall; (F1): F-measure.

Test ID Training-set size Average author
assigned keywords
per article

Average number of
words per article

1 1 5.0 71
2 5 6.6 143
3 10 7.5 124
4 20 7.2 102
5 30 6.9 99
6 50 7.1 107
7 100 7.0 107
8 130 7.0 106
9 150 7.1 106

Table 6.7: Abstracts’ information (Hulth’s dataset).

6.1.4 Discussion

The overall results of the preliminary experimentations made, portrayed in Table

6.4, are in concordance with those presented by the author. The average number

of keywords that were chosen by KEA and also by the document’s author, when

a fixed number of keywords are extracted, was practically the same as reported

in [WPF+99]. However, the values for the other metrics tested are not very high,

which does not necessarily indicates bad performance, as explained in Section 5.2.

In second place, results depicted in Tables 6.6 and 6.8 demonstrate that per-

formance improved proportionally to the size of the training set, for both tests

made (full text and abstracts). When more than 50 documents are used to train

the algorithm, the gains obtained are consecutively smaller. These results are

6.1. Preliminary Results 59

Test ID Number of keywords extracted
5 15

A P R F1 A P R F1

1 0.412 0.082 0.082 0.082 1.282 0.085 0.256 0.128
2 0.458 0.092 0.069 0.079 1.360 0.091 0.206 0.126
3 0.476 0.095 0.063 0.076 1.394 0.093 0.186 0.124
4 0.518 0.104 0.071 0.085 1.430 0.095 0.197 0.129
5 0.512 0.102 0.074 0.086 1.432 0.095 0.207 0.131
6 0.584 0.117 0.082 0.096 1.472 0.098 0.206 0.133
7 0.604 0.121 0.086 0.100 1.518 0.101 0.216 0.138
8 0.576 0.115 0.082 0.096 1.506 0.100 0.214 0.137
9 0.590 0.118 0.083 0.097 1.522 0.101 0.214 0.138

Table 6.8: Results obtained with abstracts (Hulth’s dataset). (A): Avg. matches/file; (P):
Precision ; (R): Recall; (F1): F-measure.

an indicator that good extraction performance can be acquired with a relatively

small set of training documents, but the gathered data clearly indicates that the

more training files, the better the achieved performance. Despite that, if one had a

collection without any keywords assigned to be processed, human experts would

only need reading and assigning keywords to a minimum of 20 documents, in

order to extract reasonably keywords from the rest of the collection. If less than

20 documents are used, however, one can see that KEA does not perform as good

as expected.

The last test made showed that better performance is achieved for large doc-

uments rather than for small documents (Tables 6.6 and 6.8).

Nevertheless, while results obtained with abstracts (for 5 keywords) are a lot

lower than those with large documents, the differences in performance between

both cases seems to decrease as more keywords are extracted. The average values

shown in Table 6.4 seem to support that.

Another pertinent observation has to do with the standard deviation in the

results obtained (whether KEA is applied to full texts or abstracts). It seems that

as the size of documents increase, the higher the deviation between the initial and

final corresponding tests (test no1 and no9).

Having that said, two possible conclusions arise when comparing the results

obtained. First, from the larger documents point of view, because these documents

have an higher word average, one can conclude that KEA struggles in identifying

the words that are actually important within the document in question, those

representing true keywords, in cases where the training files are scarce (less than

60 Chapter 6. Experimental Results

20, as discussed in 6.1.2). Second, from the smaller documents point of view, because

these documents have such a small number of words compared with full text

documents above, consequently giving less useful information for the algorithm

to perform well.

Concluding, the preliminary results here shown that the source of dataset does

not significantly affects the performance of the tested algorithm. In fact, looking

at the overall test, Table 6.2, it is visible that a very similar performance was

achieved here and in author’s experiments.

It is also notorious that the number of training documents influences consid-

erably the performance of the system and that fact is even more visible when the

size of the documents increases. Also, the results shown here clearly indicate that

the number of training documents and document length is correlated, and better

results were achieved when using full documents rather than abstracts.

Additionally, it is expected that the quality and number of labelled keywords

in both datasets is influencing the results obtained (as seen in Section 5.1, only

76.2% of the terms labelled as keywords in Hulth’s dataset is in fact present in the

abstracts).

6.2 Final Results

For the final results presented here it is worth noting that, contrary to what

happened in the preliminary experimental phase where both full articles and

abstracts were used, it was not possible testing with the former basically due to

the time (very long time indeed) that it takes training the CRF classifier model

using large documents, which is the main problem of this application. Instead,

from the full articles dataset (Krap’s dataset), only the title and abstract were

considered, turning both dataset’s documents very similar in terms of length.

That fact can be justified not only because the number of features being ap-

plied to the texts (twenty-one, as depicted in Figure 2.1), but also because of its

own nature (imagine calculating TF*IDF scores and tagging the PoS for all the

terms in the documents...), which is directly proportional to the time it take to

train the model. So, the longer the text, the longer it takes the preprocessing and

consequently the training and testing phases. Just to give an overall idea of the

time it takes, even for the 2000 small abstracts containing roughly between 5 and

15 lines, the training time of the 10-fold-cross-validation was roughly between

2-3 hours per run. Testing the ensemble with full documents containing roughly

6.2. Final Results 61

Weighted version CRF weight KUSCO weight KEA weight
WMV 1 (CRF F1 < 0.48) 54% 36% 10%
WMV 2 (CRF F1 > 0.48) 62% 30% 8%

Table 6.9: Model weights used in the final ensemble application.

between 500 and 1000 lines would take in the best of the scenarios at least 100

times more, thus turning out impossible performing all tests that were actually

made, in due time.

Beyond what has already been said, two concerns about the tests here pre-

sented need yet to be discussed:

• The number of keywords extracted by each application:

- from the applications used here, only KEA allows to define the concrete

number of keywords to be extracted; KUSCO and CRF do not and they only

extract as much keywords as they can. So, instead of defining a specific

number, the approach taken was to set a limit of keywords that can be

extracted. For example, rather than saying Extract five keywords, we say

Extract a maximum of five keywords. Best results were achieved when setting

a maximum of thirty keywords per application (although the average being

actually lower);

• The weights given to each application classifier, in the weighted version of

the majority voting:

- here two different weight combinations were used: the first one (WMV 1)

when the reliability of the CRF system (measured as F1 score) is approxi-

mately lower than 0.48 and the second one (WMV 2) when it is higher, values

that came from the empirical results performed, depicted in Table 6.9.

Further details are given ahead in this chapter.

6.2.1 Hulth & Krap’s Datasets

The idea for the final experimentation phase was testing the application using

both abstracts and full articles, before validating the results with event datasets.

However, as mentioned earlier, the latter test could not be done due to time con-

straints, namely of CRF application. Thus, both datasets here tested ended up

being very similar in terms of document’s length and that is why both results are

62 Chapter 6. Experimental Results

shown grouped in the same section.

In Tables 6.10 and 6.11 information about the documents used for testing and

about the tests themselves is given. Some relevant concerns taken during the

experimentation are itemized and explained below as well:

• The tables showing the results contain four types of Evaluators, depending on

the method used to compare the matches. The names are quite elucidative

themselves, but to avoid any misunderstanding they are detailed here:

– MacroTermEvaluator: evaluation performed based on full matches

only, macro-averaged;

– MacroTermStemEvaluator: evaluation performed based on stem matches,

macro-averaged;

– MicroTermEvaluator: evaluation performed based on full matches

only, micro-averaged;

– MicroTermStemEvaluator: evaluation performed based on stem matches.

micro-averaged;

• Tests ranging from 1 to 5 (Hulth’s dataset) and Test 5 (Krap’s dataset) used

all the documents in that collection; For Krap’s dataset, tests 1, 2, 3 and

4 were not performed because as we extracted the title and abstract from

the full documents, all the possible miss-indentations, miss-structuring and

missing keywords were immediately corrected and the labelling method

already used merely the stems, rather than the full keywords;

• Test 6 was performed removing all the documents whose keywords con-

tained digits;

• Test 7, additionally to the previous constraint used in Test 6, was performed

using only documents that had between 5 and 10 keywords;

• Test 8 exploits another method of accounting for matches, which it is detailed

in its respective sub-section, called SegmentEvaluator.

Test 1 - Original Dataset

This test can be seen as the baseline test. It was performed knowing in advance

that only about 76% of the keywords were in fact present in the abstracts (as

6.2. Final Results 63

Test Number Documents used Average author
assigned keywords
per document

Average number of
words per document

1 1990 9.6 161.1
2-5 1990 7.3 161.1
6 1080 7.4 158.3

7-8 976 7.4 158.2

Table 6.10: Abstract’s information (Hulth’s dataset).

Test Number Documents used Average author
assigned keywords
per document
(abstract and title
only)

Average number of
words per document
(abstract and title
only)

5 2304 3 188.4
6 2270 3 188.3

7-8 293 6.1 205.5

Table 6.11: Abstracts’ information (Krap’s dataset).

referenced in Section 5.1). This fact will negatively impact the results because no

extraction-based tool can extract something that is simply not there. Beyond that,

this first test was also conducted without any kind of preprocessing being applied

to the text files. Results are shown in Table 6.12.

Test 2 - Removing unseen Keywords

This second test is almost identical to the first one, but with one big difference:

keywords that did not exist in the abstracts were removed from the respective

file’s true keywords. At this point, it is guaranteed that 100% of the keywords can

be in fact found in the document they pertain which, as one can see in Table 6.13,

improved the results, as expected.

Test 3 - Document structuring using OpenNLP Sentence Splitter

Another relevant fact noticed, was the way that documents were structured and

written, containing multiple spaces, tabs and even line breaks in the middle of

sentences. Thus, the third test consisted in separating the lines of the documents

correctly, using the OpenNLP Sentence Splitter for the task. Despite no further

enhancement being expected in KEA and KUSCO, once they do not have docu-

ment structure in account, having the documents correctly organized improved

the learning of the CRF system, generating considerably better results.

64 Chapter 6. Experimental Results

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.5 - - - -
MacroTermEvaluator −→ 3.682 0.124 0.383 0.182

MacroTermStemEvaluator −→ 3.819 0.129 0.397 0.19
MicroTermEvaluator −→ 3.682 0.125 0.439 0.19

MicroTermStemEvaluator −→ 3.819 0.129 0.456 0.198
******* KUSCO ******* 13.9 - - - -
MacroTermEvaluator −→ 1.45 0.104 0.151 0.11

MacroTermStemEvaluator −→ 1.745 0.126 0.181 0.148
MicroTermEvaluator −→ 1.45 0.112 0.166 0.133

MicroTermStemEvaluator −→ 1.745 0.134 0.198 0.16
******* CRF ******* 4.5 - - - -

MacroTermEvaluator −→ 2.022 0.447 0.21 0.284
MacroTermStemEvaluator −→ 2.09 0.462 0.217 0.294

MicroTermEvaluator −→ 2.022 0.438 0.219 0.29
MicroTermStemEvaluator −→ 2.09 0.452 0.227 0.301

******* ENSEMBLE ******* (MV) 6.3 - - - -
MacroTermEvaluator −→ 2.276 0.362 0.236 0.286

MacroTermStemEvaluator −→ 2.338 0.372 0.243 0.294
MicroTermEvaluator −→ 2.276 0.38 0.257 0.307

MicroTermStemEvaluator −→ 2.338 0.39 0.265 0.315
******* ENSEMBLE ******* (WMV 1) 6.8 - - - -

MacroTermEvaluator −→ 2.586 0.381 0.269 0.315
MacroTermStemEvaluator −→ 2.711 0.4 0.282 0.33

MicroTermEvaluator −→ 2.586 0.401 0.289 0.335
MicroTermStemEvaluator −→ 2.711 0.421 0.304 0.352

******* ENSEMBLE ******* (WMV 2) 5.6 - - - -
MacroTermEvaluator −→ 2.349 0.417 0.244 0.307

MacroTermStemEvaluator −→ 2.469 0.439 0.256 0.322
MicroTermEvaluator −→ 2.349 0.43 0.262 0.324

MicroTermStemEvaluator −→ 2.469 0.454 0.276 0.342

Table 6.12: Test 1 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

6.2. Final Results 65

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.6 - - - -
MacroTermEvaluator −→ 3.382 0.114 0.519 0.187

MacroTermStemEvaluator −→ 3.453 0.117 0.529 0.191
MicroTermEvaluator −→ 3.382 0.114 0.581 0.191

MicroTermStemEvaluator −→ 3.453 0.117 0.593 0.195
******* KUSCO ******* 14.1 - - - -

TermEvaluator −→ 1.445 0.102 0.199 0.135
TermStemEvaluator −→ 1.701 0.12 0.234 0.159
MicroTermEvaluator −→ 1.445 0.112 0.2 0.143

MicroTermStemEvaluator −→ 1.701 0.133 0.237 0.17
******* CRF ******* 4.5 - - - -

MacroTermEvaluator −→ 2.027 0.448 0.31 0.364
MacroTermStemEvaluator −→ 2.075 0.459 0.318 0.373

MicroTermEvaluator −→ 2.027 0.438 0.316 0.365
MicroTermStemEvaluator −→ 2.075 0.449 0.324 0.374

******* ENSEMBLE ******* (MV) 6.3 - - - -
MacroTermEvaluator −→ 2.171 0.345 0.333 0.338

MacroTermStemEvaluator −→ 2.207 0.351 0.338 0.344
MicroTermEvaluator −→ 2.171 0.363 0.355 0.359

MicroTermStemEvaluator −→ 2.207 0.369 0.362 0.365
******* ENSEMBLE ******* (WMV 1) 6.8 - - - -

MacroTermEvaluator −→ 2.484 0.366 0.38 0.372
MacroTermStemEvaluator −→ 2.583 0.381 0.395 0.387

MicroTermEvaluator −→ 2.484 0.384 0.404 0.393
MicroTermStemEvaluator −→ 2.583 0.401 0.42 0.41

******* ENSEMBLE ******* (WMV 2) 6.1 - - - -
MacroTermEvaluator −→ 2.395 0.391 0.367 0.378

MacroTermStemEvaluator −→ 2.493 0.407 0.382 0.393
MicroTermEvaluator −→ 2.395 0.409 0.389 0.398

MicroTermStemEvaluator −→ 2.493 0.428 0.406 0.416

Table 6.13: Test 2 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

66 Chapter 6. Experimental Results

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.9 - - - -
MacroTermEvaluator −→ 4.088 0.137 0.562 0.22

MacroTermStemEvaluator −→ 4.12 0.138 0.566 0.222
MicroTermEvaluator −→ 4.088 0.137 0.577 0.221

MicroTermStemEvaluator −→ 4.12 0.138 0.581 0.223
******* KUSCO ******* 13.9 - - - -
MacroTermEvaluator −→ 1.377 0.099 0.211 0.135

MacroTermStemEvaluator −→ 1.659 0.119 0.254 0.162
MicroTermEvaluator −→ 1.377 0.108 0.256 0.151

MicroTermStemEvaluator −→ 1.659 0.129 0.302 0.18
******* CRF ******* 6.5 - - - -

MacroTermEvaluator −→ 3.036 0.474 0.417 0.442
MacroTermStemEvaluator −→ 3.131 0.489 0.43 0.456

MicroTermEvaluator −→ 3.036 0.502 0.42 0.456
MicroTermStemEvaluator −→ 3.131 0.517 0.434 0.471

******* ENSEMBLE ******* (MV) 7.7 - - - -
MacroTermEvaluator −→ 3.086 0.402 0.423 0.412

MacroTermStemEvaluator −→ 3.145 0.41 0.431 0.42
MicroTermEvaluator −→ 3.086 0.433 0.431 0.431

MicroTermStemEvaluator −→ 3.145 0.443 0.439 0.44
******* ENSEMBLE ******* (WMV 1) 7.9 - - - -

MacroTermEvaluator −→ 3.377 0.43 0.463 0.445
MacroTermStemEvaluator −→ 3.497 0.445 0.48 0.461

MicroTermEvaluator −→ 3.377 0.466 0.468 0.466
MicroTermStemEvaluator −→ 3.497 0.486 0.485 0.485

******* ENSEMBLE ******* (WMV 2) 7.5 - - - -
MacroTermEvaluator −→ 3.289 0.444 0.451 0.446

MacroTermStemEvaluator −→ 3.405 0.46 0.467 0.462
MicroTermEvaluator −→ 3.289 0.477 0.455 0.465

MicroTermStemEvaluator −→ 3.405 0.496 0.473 0.483

Table 6.14: Test 3 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

6.2. Final Results 67

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.9 - - - -
MacroTermEvaluator −→ 4.114 0.137 0.564 0.221

MacroTermStemEvaluator −→ 4.148 0.139 0.569 0.223
MicroTermEvaluator −→ 4.114 0.138 0.58 0.222

MicroTermStemEvaluator −→ 4.148 0.139 0.585 0.224
******* KUSCO ******* 14.1 - - - -
MacroTermEvaluator −→ 1.427 0.102 0.196 0.134

MacroTermStemEvaluator −→ 1.708 0.122 0.234 0.16
MicroTermEvaluator −→ 1.427 0.109 0.197 0.14

MicroTermStemEvaluator −→ 1.708 0.131 0.237 0.169
******* CRF ******* 6.2 - - - -

MacroTermEvaluator −→ 3.088 0.502 0.423 0.456
MacroTermStemEvaluator −→ 3.176 0.516 0.435 0.469

MicroTermEvaluator −→ 3.088 0.528 0.426 0.469
MicroTermStemEvaluator −→ 3.176 0.542 0.439 0.483

******* ENSEMBLE ******* (MV) 7.6 - - - -
MacroTermEvaluator −→ 3.13 0.414 0.429 0.42

MacroTermStemEvaluator −→ 3.175 0.42 0.435 0.426
MicroTermEvaluator −→ 3.13 0.446 0.436 0.44

MicroTermStemEvaluator −→ 3.175 0.453 0.443 0.447
******* ENSEMBLE ******* (WMV 1) 7.6 - - - -

MacroTermEvaluator −→ 3.402 0.449 0.466 0.455
MacroTermStemEvaluator −→ 3.515 0.464 0.482 0.47

MicroTermEvaluator −→ 3.402 0.482 0.471 0.474
MicroTermStemEvaluator −→ 3.515 0.501 0.487 0.492

******* ENSEMBLE ******* (WMV 2) 7.2 - - - -
MacroTermEvaluator −→ 3.335 0.466 0.457 0.459

MacroTermStemEvaluator −→ 3.447 0.482 0.472 0.475
MicroTermEvaluator −→ 3.335 0.496 0.461 0.476

MicroTermStemEvaluator −→ 3.447 0.516 0.478 0.494

Table 6.15: Test 4 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

This concern had already been mentioned in Section 4.2, but here tests’ results

are depicted in Table 6.14.

Test 4 - Stem-based keyword labelling method

As already referenced before, CRF application required true keywords being

labelled directly in text files, rather than having them in a separate file as it

happens with KEA. To achieve that, the first approach taken was tagging them in

68 Chapter 6. Experimental Results

documents exactly as they appeared in their respective .key files. That process,

however, led to unwanted miss-labellings because some keywords were written

in plural and only its singular form appeared in text and vice-versa. Instead of

searching for full matches only, the solution passed by doing the labelling based

on keyword’s stems. This solved the problem of plural/singulars and, of course,

also identified words in text that had the same base stem then the given keyword

and were passing without being labelled. Results obtained after this change are

presented in Table 6.15.

Test 5 - The new Porter Stemmer

Although the previous cited method for labelling has improved the applications’

performances, a closer look at the keywords being compared in the evaluation

phase showed that the stemmer used (the English Porter Stemmer) was not per-

forming as expected for some cases. It is known that stemmers are not 100%

accurate but, after a quick search on the Internet, a version of the same stemmer

with several bugs corrected, was in fact available for download. After changing

the stemmer a new test was performed and results are portrayed in Table 6.16

(Hulth’s dataset) and in Table 6.17.

Test 6 - Document filtering: digits in true keywords

During the development of this work, soon became evident that the structure of

the documents was influencing a lot the results obtained and that became even

more visible with CRF, once this system can utilize most of the characteristics

present in the text.

As referenced before, the preprocessing phase was constantly improved while

errors were being found or the results of the experiments were not as expected.

One example of this is depicted below and it actually led to a future work idea

(namely that of applying clustering to the datasets before the training of the

models): After finding that decimal numbers were being split, when they should

not be (E.g: 1.5 MB was split in 1 . 5 MB), the error was quickly corrected but,

contrary to what was initially expected, the results obtained did not only not

improve but they were in fact a little worse. The fact that numbers being not split

(i.e., correctly preprocessed) were causing worse results was a little strange, but

after a couple of additional tests the source of the problem was found. Because

there were documents whose true keywords contained digits, when the numbers

in the text were actually split caused those keywords to be obviously not found

6.2. Final Results 69

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.9 - - - -
MacroTermEvaluator −→ 4.146 0.139 0.573 0.223

MacroTermStemEvaluator −→ 4.179 0.14 0.578 0.225
MicroTermEvaluator −→ 4.146 0.139 0.59 0.225

MicroTermStemEvaluator −→ 4.179 0.14 0.595 0.226
******* KUSCO ******* 14.1 - - - -
MacroTermEvaluator −→ 1.451 0.103 0.201 0.136

MacroTermStemEvaluator −→ 1.745 0.124 0.241 0.163
MicroTermEvaluator −→ 1.451 0.11 0.201 0.142

MicroTermStemEvaluator −→ 1.745 0.134 0.243 0.172
******* CRF ******* 6.4 - - - -

MacroTermEvaluator −→ 3.139 0.494 0.434 0.462
MacroTermStemEvaluator −→ 3.236 0.509 0.447 0.476

MicroTermEvaluator −→ 3.139 0.524 0.436 0.476
MicroTermStemEvaluator −→ 3.236 0.54 0.451 0.491

******* ENSEMBLE ******* (MV) 7.7 - - - -
MacroTermEvaluator −→ 3.173 0.415 0.439 0.426

MacroTermStemEvaluator −→ 3.223 0.421 0.446 0.433
MicroTermEvaluator −→ 3.173 0.447 0.446 0.446

MicroTermStemEvaluator −→ 3.223 0.454 0.453 0.453
******* ENSEMBLE ******* (WMV 1) 7.7 - - - -

MacroTermEvaluator −→ 3.441 0.446 0.476 0.46
MacroTermStemEvaluator −→ 3.555 0.46 0.491 0.475

MicroTermEvaluator −→ 3.441 0.479 0.48 0.479
MicroTermStemEvaluator −→ 3.555 0.497 0.497 0.497

******* ENSEMBLE ******* (WMV 2) 7.3 - - - -
MacroTermEvaluator −→ 3.373 0.461 0.466 0.463

MacroTermStemEvaluator −→ 3.487 0.476 0.482 0.479
MicroTermEvaluator −→ 3.373 0.492 0.47 0.48

MicroTermStemEvaluator −→ 3.487 0.511 0.487 0.498

Table 6.16: Test 5 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

70 Chapter 6. Experimental Results

Application Average
keys
extracted

A P R F1

******* KEA ******* 28.6 - - - -
MacroTermEvaluator −→ 2.751 0.096 0.746 0.171

MacroTermStemEvaluator −→ 2.772 0.097 0.752 0.172
MicroTermEvaluator −→ 2.751 0.099 0.76 0.175

MicroTermStemEvaluator −→ 2.772 0.099 0.765 0.176
******* KUSCO ******* 9.8 - - - -
MacroTermEvaluator −→ 0.964 0.098 0.262 0.143

MacroTermStemEvaluator −→ 1.174 0.119 0.319 0.174
MicroTermEvaluator −→ 0.964 0.119 0.268 0.165

MicroTermStemEvaluator −→ 1.174 0.144 0.325 0.199
******* CRF ******* 2.8 - - - -

MacroTermEvaluator −→ 1.242 0.449 0.337 0.384
MacroTermStemEvaluator −→ 1.289 0.466 0.349 0.399

MicroTermEvaluator −→ 1.242 0.448 0.341 0.387
MicroTermStemEvaluator −→ 1.289 0.462 0.356 0.401

******* ENSEMBLE ******* (MV) 4.8 - - - -
MacroTermEvaluator −→ 1.546 0.324 0.42 0.366

MacroTermStemEvaluator −→ 1.575 0.33 0.427 0.372
MicroTermEvaluator −→ 1.546 0.361 0.429 0.392

MicroTermStemEvaluator −→ 1.575 0.367 0.438 0.399
******* ENSEMBLE ******* (WMV 1) 4.3 - - - -

MacroTermEvaluator −→ 1.601 0.371 0.434 0.4
MacroTermStemEvaluator −→ 1.696 0.393 0.46 0.424

MicroTermEvaluator −→ 1.601 0.403 0.443 0.422
MicroTermStemEvaluator −→ 1.696 0.427 0.469 0.447

******* ENSEMBLE ******* (WMV 2) 3.9 - - - -
MacroTermEvaluator −→ 1.531 0.392 0.415 0.403

MacroTermStemEvaluator −→ 1.626 0.417 0.441 0.428
MicroTermEvaluator −→ 1.531 0.415 0.423 0.419

MicroTermStemEvaluator −→ 1.626 0.441 0.449 0.445

Table 6.17: Test 5 results - Kraps’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

6.2. Final Results 71

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.5 - - - -
MacroTermEvaluator −→ 3.949 0.134 0.536 0.214

MacroTermStemEvaluator −→ 3.98 0.135 0.54 0.216
MicroTermEvaluator −→ 3.949 0.134 0.606 0.219

MicroTermStemEvaluator −→ 3.98 0.135 0.61 0.221
******* KUSCO ******* 13.8 - - - -
MacroTermEvaluator −→ 1.473 0.107 0.2 0.139

MacroTermStemEvaluator −→ 1.784 0.129 0.242 0.169
MicroTermEvaluator −→ 1.473 0.116 0.245 0.157

MicroTermStemEvaluator −→ 1.784 0.14 0.289 0.188
******* CRF ******* 6.5 - - - -

MacroTermEvaluator −→ 3.268 0.505 0.444 0.472
MacroTermStemEvaluator −→ 3.36 0.519 0.456 0.485

MicroTermEvaluator −→ 3.268 0.514 0.454 0.481
MicroTermStemEvaluator −→ 3.36 0.527 0.469 0.496

******* ENSEMBLE ******* (MV) 7.6 - - - -
MacroTermEvaluator −→ 3.165 0.417 0.43 0.423

MacroTermStemEvaluator −→ 3.211 0.423 0.436 0.429
MicroTermEvaluator −→ 3.165 0.435 0.458 0.446

MicroTermStemEvaluator −→ 3.211 0.441 0.465 0.453
******* ENSEMBLE ******* (WMV 1) 7.8 - - - -

MacroTermEvaluator −→ 3.558 0.454 0.483 0.468
MacroTermStemEvaluator −→ 3.669 0.468 0.498 0.482

MicroTermEvaluator −→ 3.558 0.47 0.504 0.486
MicroTermStemEvaluator −→ 3.669 0.486 0.522 0.503

******* ENSEMBLE ******* (WMV 2) 7.4 - - - -
MacroTermEvaluator −→ 3.496 0.471 0.475 0.472

MacroTermStemEvaluator −→ 3.605 0.486 0.49 0.487
MicroTermEvaluator −→ 3.496 0.483 0.493 0.488

MicroTermStemEvaluator −→ 3.605 0.5 0.511 0.505

Table 6.18: Test 6 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

72 Chapter 6. Experimental Results

Application Average
keys
extracted

A P R F1

******* KEA ******* 28.6 - - - -
MacroTermEvaluator −→ 2.786 0.098 0.754 0.173

MacroTermStemEvaluator −→ 2.808 0.098 0.76 0.174
MicroTermEvaluator −→ 2.786 0.1 0.767 0.177

MicroTermStemEvaluator −→ 2.808 0.101 0.772 0.178
******* KUSCO ******* 9.9 - - - -
MacroTermEvaluator −→ 0.98 0.098 0.265 0.143

MacroTermStemEvaluator −→ 1.185 0.119 0.321 0.174
MicroTermEvaluator −→ 0.98 0.121 0.27 0.167

MicroTermStemEvaluator −→ 1.185 0.146 0.326 0.201
******* CRF ******* 2.7 - - - -

MacroTermEvaluator −→ 1.23 0.452 0.333 0.383
MacroTermStemEvaluator −→ 1.282 0.471 0.347 0.399

MicroTermEvaluator −→ 1.23 0.452 0.341 0.388
MicroTermStemEvaluator −→ 1.282 0.467 0.357 0.404

******* ENSEMBLE ******* (MV) 4.7 - - - -
MacroTermEvaluator −→ 1.549 0.33 0.419 0.369

MacroTermStemEvaluator −→ 1.577 0.335 0.426 0.375
MicroTermEvaluator −→ 1.549 0.365 0.43 0.394

MicroTermStemEvaluator −→ 1.577 0.371 0.438 0.401
******* ENSEMBLE ******* (WMV 1) 4.3 - - - -

MacroTermEvaluator −→ 1.606 0.374 0.434 0.402
MacroTermStemEvaluator −→ 1.701 0.397 0.46 0.426

MicroTermEvaluator −→ 1.606 0.409 0.442 0.424
MicroTermStemEvaluator −→ 1.701 0.431 0.469 0.449

******* ENSEMBLE ******* (WMV 2) 3.9 - - - -
MacroTermEvaluator −→ 1.537 0.396 0.416 0.405

MacroTermStemEvaluator −→ 1.632 0.421 0.442 0.431
MicroTermEvaluator −→ 1.537 0.423 0.424 0.424

MicroTermStemEvaluator −→ 1.632 0.449 0.451 0.45

Table 6.19: Test 6 results - Kraps’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

6.2. Final Results 73

and consequently being not labelled as well. The results were suggesting that

these documents were then the cause of the decrease in the systems’ performance.

As so, this test was performed after removing all the documents having key-

words containing numbers, which represented about 10% of the total for Hulth’s

dataset and even less than that for Krap’s dataset. Although this document re-

moval may seem a bit like ”cheating”, after observing the removed documents’

keywords one could see that those were in fact bad ones, which could be causing

the algorithm to struggle when faced with that kind of files. Keywords like 30

MB, 1.5 MB (are we talking about the speed of an Internet connection, about the

capacity of an hard disk?) or 5 HZ (we can also be talking about the frequency of

many different things...) are not meaningful to describe any document once they

do not actually give any valuable information about the topics discussed there.

The results obtained after this filtering are shown in Table 6.18 (Hulth’s dataset)

and in Table 6.19 (Krap’s dataset).

Test 7 - Document filtering: number of true keywords

As mentioned earlier, this test used only documents having between five and ten

keywords and whose keywords did not contain digits. The objective of this test

was verifying if document type (like the number and type of keywords, etc.) was

in fact influencing the results.

The idea to applying this filter came because while some documents only had

one assigned keyword, others had more than fifteen, i.e., the difference between

minimum and maximum number of keywords was to big, causing some train-

ing groups to have considerably different average of keywords per file, making

it difficult to understand and compare the differences caused by changing the

number of documents used in the cross-validation and to interpret the respective

results. This was in fact the last of the standard tests that were performed and

results obtained are shown in Table 6.20 (Hulth’s dataset) and in Table 6.21 (Krap’s

dataset).

Test 8 - The MicroSegmentEvaluator

During the experimentation phase, a problem that can actually be considered

serious (because it largely affected the results obtained) was detected and is re-

lated with traditional ways that predicted keywords are compared to their gold

standard ones: the full matching and stem matching method. Despite the latter

improved the results over the former, it only mitigated part of the problem. An

74 Chapter 6. Experimental Results

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.9 - - - -
MacroTermEvaluator −→ 4.399 0.147 0.602 0.236

MacroTermStemEvaluator −→ 4.469 0.149 0.612 0.24
MicroTermEvaluator −→ 4.399 0.147 0.618 0.238

MicroTermStemEvaluator −→ 4.469 0.15 0.628 0.242
******* KUSCO ******* 13.7 - - - -
MacroTermEvaluator −→ 1.614 0.118 0.221 0.154

MacroTermStemEvaluator −→ 1.957 0.143 0.268 0.186
MicroTermEvaluator −→ 1.614 0.126 0.221 0.161

MicroTermStemEvaluator −→ 1.957 0.155 0.27 0.196
******* CRF ******* 6.5 - - - -

MacroTermEvaluator −→ 3.304 0.506 0.452 0.477
MacroTermStemEvaluator −→ 3.417 0.523 0.468 0.493

MicroTermEvaluator −→ 3.304 0.536 0.458 0.493
MicroTermStemEvaluator −→ 3.417 0.552 0.474 0.509

******* ENSEMBLE ******* (MV) 7.8 - - - -
MacroTermEvaluator −→ 3.37 0.432 0.461 0.446

MacroTermStemEvaluator −→ 3.419 0.439 0.468 0.452
MicroTermEvaluator −→ 3.37 0.463 0.469 0.465

MicroTermStemEvaluator −→ 3.419 0.47 0.476 0.472
******* ENSEMBLE ******* (WMV 1) 7.9 - - - -

MacroTermEvaluator −→ 3.627 0.463 0.497 0.479
MacroTermStemEvaluator −→ 3.76 0.48 0.515 0.496

MicroTermEvaluator −→ 3.627 0.495 0.503 0.498
MicroTermStemEvaluator −→ 3.76 0.515 0.522 0.518

******* ENSEMBLE ******* (WMV 2) 7.5 - - - -
MacroTermEvaluator −→ 3.559 0.478 0.487 0.482

MacroTermStemEvaluator −→ 3.69 0.496 0.505 0.5
MicroTermEvaluator −→ 3.559 0.507 0.493 0.5

MicroTermStemEvaluator −→ 3.69 0.528 0.512 0.519

Table 6.20: Test 7 results - Hulth’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

6.2. Final Results 75

Application Average
keys
extracted

A P R F1

******* KEA ******* 29,6 - - - -
MacroTermEvaluator −→ 3,909 0,132 0,656 0,22

MacroTermStemEvaluator −→ 3,975 0,134 0,667 0,224
MicroTermEvaluator −→ 3,909 0,133 0,672 0,223

MicroTermStemEvaluator −→ 3,975 0,136 0,683 0,226
******* KUSCO ******* 12,1 - - - -
MacroTermEvaluator −→ 1,231 0,102 0,206 0,136

MacroTermStemEvaluator −→ 1,467 0,122 0,246 0,163
MicroTermEvaluator −→ 1,231 0,118 0,205 0,149

MicroTermStemEvaluator −→ 1,467 0,14 0,246 0,178
******* CRF ******* 4,8 - - - -

MacroTermEvaluator −→ 2,332 0,483 0,392 0,433
MacroTermStemEvaluator −→ 2,397 0,497 0,403 0,445

MicroTermEvaluator −→ 2,332 0,491 0,401 0,441
MicroTermStemEvaluator −→ 2,397 0,505 0,412 0,453

******* ENSEMBLE ******* (MV) 6,5 - - - -
MacroTermEvaluator −→ 2,659 0,413 0,447 0,429

MacroTermStemEvaluator −→ 2,686 0,417 0,451 0,433
MicroTermEvaluator −→ 2,659 0,428 0,455 0,44

MicroTermStemEvaluator −→ 2,686 0,431 0,46 0,444
******* ENSEMBLE ******* (WMV 1) 6,3 - - - -

MacroTermEvaluator −→ 2,755 0,438 0,463 0,45
MacroTermStemEvaluator −→ 2,851 0,453 0,479 0,466

MicroTermEvaluator −→ 2,755 0,453 0,472 0,462
MicroTermStemEvaluator −→ 2,851 0,471 0,489 0,479

******* ENSEMBLE ******* (WMV 2) 5,9 - - - -
MacroTermEvaluator −→ 2,663 0,451 0,447 0,449

MacroTermStemEvaluator −→ 2,759 0,467 0,464 0,465
MicroTermEvaluator −→ 2,663 0,462 0,456 0,458

MicroTermStemEvaluator −→ 2,759 0,48 0,473 0,476

Table 6.21: Test 7 results - Kraps’s dataset. (MV): Majority Vote; (WMV 1 & 2): Weighted
Majority Vote versions; (A): Average correct keys/file; (P): Precision ; (R):
Recall; (F1): F-measure.

76 Chapter 6. Experimental Results

Application Average
number of
keywords
extracted

P R F1

******* KEA ******* 29.9 - - -
MicroSegmentStemEvaluator −→ 0.169 0.4475 0.2453

******* KUSCO ******* 13.7 - - -
MicroSegmentStemEvaluator −→ 0.155 0.27 0.196

******* CRF ******* 6.5 - - -
MicroSegmentStemEvaluator −→ 0.7361 0.5743 0.6444

******* ENSEMBLE ******* (WMV 2) 7.5 - - -
MicroSegmentStemEvaluator −→ 0.6943 0.6081 0.6478

Table 6.22: Test 8 results (Hulth’s dataset). (WMV 2): Weighted Majority Vote version ;
(P): Precision ; (R): Recall; (F1): F-measure.

example is given in the next paragraph, demonstrating what have been said and

showing that these two methods are not the most indicated to evaluate CRF’s

truly power.

During the experimentation phase, it was noticed that Document X, one of the

documents in this dataset, had the following true keywords:

1. US dollar ;

2. Exchange rate;

Nevertheless, because both words appear following each other in the text

and due to CRF inner characteristics that can use most of the features present

in the documents for extraction, it happened that the predicted keyword for

that document actually contained both of the gold standard ones, i.e.:

3. US dollar exchange rate ;

thus, when the evaluation phase starts and the matches are accounted, it

resulted that true keywords 1 and 2 were compared directly and integrally

with predicted keyword 3, finding 0 matches (only full matches or full

stem matches are accounted) when both keywords were in fact found, but

extracted as a single one.

In short, what we are saying is that the system found 0 keywords, when a

closer look shows that both were extracted, i.e., 2 matches! This reveals a

limitation inherent in the current adopted evaluation method by the com-

munity and it is severely decreasing Precision, Recall and F1 scores of the

6.2. Final Results 77

CRF system and consequently of the ensemble as well (for the other systems

the problem is not observed, due to the nature of the keywords extracted

by these systems and the results obtained remained practically unchanged,

which seems to support the validity of the proposed evaluation method).

To mitigate this problem and to realize how it was affecting the applications,

another way of comparing the results was exploited which, instead of com-

paring if both keywords are exactly equal, checks if the predicted keyword

contains the true keyword (i.e., predictedKey.contains(trueKey) and not the

inverse!). This way, because both true keywords (1 and 2) are contained

within the predicted one (3), we will count 2 matches instead of 0, which

represents a more accurate result.

Despite the problem seemed solved, another situation had been taken into

account: the opposite case, when more than one predicted keyword contains

a true keyword. In this case, rather than degrading the performance, it will

over-inflating the results (as a matter of fact, in the example given ahead it

would result in a Precision greater than 1, which is obviously impossible,

as 1 is the maximum possible). To avoid that, only 1 match is accounted in

these situations, i.e, only 1 match per true keyword is considered, although

both of the predicted keywords could be considered correct (because they

are just more specific than that given by the author).

True keyword:

4. boolean ;

Predicted keywords:

5. boolean function ;

6. boolean method;

To test this method for accounting matches between true and predicted key-

words, the test (from the previous) that achieved best results was used (Test 7,

Hulth’s dataset) and the results are portrayed in Table 6.22. As one can see, this

method only influenced significantly CRF system and consequently the ensemble,

which suggests that this system is extracting keywords that are even more specific

than those given as gold standard. Its worth noting that only the best results for

each application and the best weighted setup used are illustrated.

78 Chapter 6. Experimental Results

Test Number Number of docu-
ments

Average author
assigned keywords
per document

Average number of
words per document

9-10 419 3.1 118

Table 6.23: Document’s info (Events’ descriptions dataset).

Test Number Number of docu-
ments

Average author
assigned keywords
per document

Average number of
words per document

9-10 112 6.8 85.1

Table 6.24: Document’s info (Personalities’ descriptions dataset).

6.2.2 Events’ Dataset

In this section the objective was validating the results obtained with the scientific

datasets previously tested, using for that both Events and Personalities datasets,

where the application is being used in the future. The results obtained are very

promising and, for one of these datasets (namely that of Personalities’ descrip-

tions), surpassed those achieved with the previous ones. For the other dataset

(Events’ descriptions) the results were not bad at all, but it was labelled by a

single (not professional) assigner and the keywords lacked quality, being one of

the reasons for a poorer performance when compared with the other datasets.

Another reason is the number of keywords labelled, considerably less than the

setups that actually produced the best results. Tables 6.23 and 6.24 portray the

information about the Events’ and Personalities’ descriptions datasets.

It is also worth referring that the results presented in this section are divided

in two:

• Test 9, using the version of the ensemble that achieved the best performance

from the previous set of tests (that of Test 7) ;

• Test 10, using also the new Evaluator presented in a previous test (Test 8).

Test 9 - Validating the results using events and personalities’ descriptions

Results displayed in Table 6.25 concerns the usage of Events’ descriptions, as

mentioned earlier. Those that used Personalities’ descriptions are shown in Table

6.26.

6.2. Final Results 79

Application Average
keys
extracted

A P R F1

******* KEA ******* 29.3 - - - -
MacroTermEvaluator −→ 3.607 0.123 0.595 0.204

MacroTermStemEvaluator −→ 3.677 0.125 0.606 0.208
MicroTermEvaluator −→ 3.607 0.124 0.614 0.206

MicroTermStemEvaluator −→ 3.677 0.126 0.626 0.21
******* KUSCO ******* 13.9 - - - -
MacroTermEvaluator −→ 1.566 0.113 0.258 0.157

MacroTermStemEvaluator −→ 1.866 0.134 0.308 0.187
MicroTermEvaluator −→ 1.566 0.127 0.297 0.178

MicroTermStemEvaluator −→ 1.866 0.152 0.347 0.211
******* CRF ******* 4.9 - - - -

MacroTermEvaluator −→ 2.323 0.475 0.383 0.424
MacroTermStemEvaluator −→ 2.422 0.496 0.399 0.442

MicroTermEvaluator −→ 2.323 0.468 0.381 0.42
MicroTermStemEvaluator −→ 2.422 0.485 0.397 0.437

******* ENSEMBLE ******* (MV) 6.6 - - - -
MacroTermEvaluator −→ 2.472 0.376 0.408 0.391

MacroTermStemEvaluator −→ 2.521 0.383 0.416 0.399
MicroTermEvaluator −→ 2.472 0.392 0.413 0.401

MicroTermStemEvaluator −→ 2.521 0.399 0.421 0.409
******* ENSEMBLE ******* (WMV 1) 6,5 - - - -

MacroTermEvaluator −→ 2,68 0,413 0,442 0,427
MacroTermStemEvaluator −→ 2,806 0,433 0,463 0,447

MicroTermEvaluator −→ 2,68 0,425 0,446 0,435
MicroTermStemEvaluator −→ 2,806 0,447 0,467 0,456

******* ENSEMBLE ******* (WMV 2) 6.1 - - - -
MacroTermEvaluator −→ 2.609 0.43 0.43 0.43

MacroTermStemEvaluator −→ 2.732 0.45 0.45 0.45
MicroTermEvaluator −→ 2.609 0.438 0.434 0.436

MicroTermStemEvaluator −→ 2.732 0.459 0.454 0.457

Table 6.25: Test 9 results - Events’ descriptions dataset. (MV): Majority Vote; (WMV 1
& 2): Weighted Majority Vote versions; (A): Average correct keys/file; (P):
Precision ; (R): Recall; (F1): F-measure.

80 Chapter 6. Experimental Results

Application Average
keys
extracted

A P R F1

******* KEA ******* 24.8 - - - -
MacroTermEvaluator −→ 3.523 0.144 0.524 0.226

MacroTermStemEvaluator −→ 3.542 0.145 0.527 0.227
MicroTermEvaluator −→ 3.523 0.151 0.643 0.244

MicroTermStemEvaluator −→ 3.542 0.152 0.643 0.245
******* KUSCO ******* 11.4 - - - -
MacroTermEvaluator −→ 3.011 0.268 0.445 0.334

MacroTermStemEvaluator −→ 3.191 0.285 0.472 0.355
MicroTermEvaluator −→ 3.011 0.293 0.426 0.345

MicroTermStemEvaluator −→ 3.191 0.309 0.447 0.363
******* CRF ******* 4.9 - - - -

MacroTermEvaluator −→ 3.111 0.64 0.455 0.529
MacroTermStemEvaluator −→ 3.111 0.64 0.455 0.529

MicroTermEvaluator −→ 3.111 0.65 0.532 0.584
MicroTermStemEvaluator −→ 3.111 0.65 0.532 0.584

******* ENSEMBLE ******* (MV) 7.6 - - - -
MacroTermEvaluator −→ 3.196 0.426 0.471 0.445

MacroTermStemEvaluator −→ 3.196 0.426 0.471 0.445
MicroTermEvaluator −→ 3.196 0.441 0.576 0.497

MicroTermStemEvaluator −→ 3.196 0.441 0.576 0.497
******* ENSEMBLE ******* (WMV 1) 7,7 - - - -

MacroTermEvaluator −→ 3,683 0,485 0,54 0,509
MacroTermStemEvaluator −→ 3,692 0,486 0,541 0,51

MicroTermEvaluator −→ 3,683 0,487 0,617 0,543
MicroTermStemEvaluator −→ 3,692 0,49 0,622 0,547

******* ENSEMBLE ******* (WMV 2) 5.4 - - - -
MacroTermEvaluator −→ 3.174 0.592 0.464 0.518

MacroTermStemEvaluator −→ 3.174 0.592 0.464 0.518
MicroTermEvaluator −→ 3.174 0.62 0.545 0.579

MicroTermStemEvaluator −→ 3.174 0.62 0.545 0.579

Table 6.26: Test 9 results - Personalities’ descriptions dataset. (MV): Majority Vote; (WMV
1 & 2): Weighted Majority Vote versions; (A): Average correct keys/file; (P):
Precision ; (R): Recall; (F1): F-measure.

6.2. Final Results 81

Application Average
keys
extracted

P R F1

******* CRF ******* 4.9 - - -
MicroSegmentStemEvaluator −→ 0.6517 0.4873 0.5574

******* ENSEMBLE ******* (WMV 2) 6.1 - - -
MicroSegmentStemEvaluator −→ 0.5979 0.5394 0.5669

Table 6.27: Test 10 results (Events’ descriptions dataset). (WMV 2): Weighted Majority
Vote version; (P): Precision ; (R): Recall; (F1): F-measure.

Application Average
keys
extracted

P R F1

******* CRF ******* 4.9 - - -
MicroSegmentStemEvaluator −→ 0.8522 0.6649 0.7449

******* ENSEMBLE ******* (WMV 2) 5.4 - - -
MicroSegmentStemEvaluator −→ 0.6306 0.7244 0.6726

Table 6.28: Test 10 results (Personalities’ descriptions dataset). (WMV 2): Weighted Ma-
jority Vote version; (P): Precision ; (R): Recall; (F1): F-measure.

Test 10 - MicroSegmentEvaluator revisited

Similarly to those presented in the previous section, results depicted in Table 6.27

and Table 6.28 used the events’ and personalities’ descriptions respectively.

Its yet worth noting that only the best results from those obtained are depicted

(i.e., the best individual application and the best ensemble weighted setup).

6.2.3 Discussion

Several decisions were taken during the experimentation phase and, while some

were already discussed in their respective test’s sub-section for the sake of under-

standing, others did not and will be explained here.

Starting by the weights given to each classifier, two different combinations

achieved best results, depending on the individual performance of CRF, as illus-

trated in Table 6.9. Nevertheless, attentive reader will notice that, despite KEA is

achieving better F1 scores than KUSCO in some of the tests shown, it is always

given less vote weight. This can be explained due to the extracted keywords’

type: KUSCO guarantees that each term it extracts is different from each other;

with KEA, the same is not guaranteed. In fact, many of the terms extracted by

KEA contain each other (e.g.: [example keyword extracted], [keyword extracted],

[example keyword]), which gives an undesired focus to the same keyword when

82 Chapter 6. Experimental Results

the voting phase happens. To control that, the weight of a vote coming from KEA

had to be lower than a vote coming from KUSCO. Yet, a question arises: why not

just extracting less keywords with KEA and giving more weight to each of those?

The answer is simple: because the best classifier, that of CRF, achieves more Pre-

cision (the keywords actually found) rather than Recall (the number of keywords

found), the improvement that we see in the final results obtained come from en-

hancing this lack of keywords that the system can extract for some documents,

so, the most keywords extracted by the applications, the better. Summarizing,

because the keywords extracted by CRF are usually correct but are generally not

many, the other two applications compensate that fact and this is one of the rea-

sons why the ensemble achieves better results.

Following what have been said, the second configuration tested was the actual

maximum number of keywords being extracted by each application that would

give best results and trying to understand why. This second question was actually

answered in the above paragraph already. The first question raised, concerning

the maximum number of extracted keywords, the answer was thirty, to be precise.

Note that the average of keywords extracted is actually lower than this limit for

all the applications (even for KEA, although just for a small percentage), meaning

that, for some documents, the applications could not extract as many keywords

as desired. As referenced before, we cannot control the number of keys retrieved

from KUSCO and CRF systems, those extract as many as they can.

Document structure was another factor influencing the results obtained. As

one can see by the results shown, after using the OpenNLP Sentence Splitter to

split the sentences of each document correctly, great improvement was observed.

Yet concerning structural issues, the number of true keywords present in the

files seem to affect the performance of the applications, as well as the type (pre-

cisely in this case, if they contained digits) of keywords given as gold standard.

Thus, removing unseen keywords and those which contain numbers resulted in

better performances observed.

It can also be stated from the results obtained, since Test 2, that the Simple

Majority Voting no longer improves the results of the best individual application

(CRF). This can be explained due to the huge differences in the classifiers’ reliabil-

ity, turning some predictions way better than others. Thus being, attributing the

same weight to all of them was obviously not the right thing to do. As so, giving

6.2. Final Results 83

the appropriate weights to each of those predictions based on each classifier’s

individual performances, improved the results obtained as desired and expected.

Another objective for this dissertation was validating the results obtained with

scientific datasets, with the non-scientific ones. From the results depicted in Table

6.25, concerning those of the Event descriptions, a performance improvement is

still visible, similarly to what happened with the scientific datasets. Nevertheless,

for the second non-scientific dataset here tested, that consisting in Personalities

descriptions, the results using the ensemble did not improved those obtained by

the CRF itself, despite the different configuration used for the Weighted Majority

Vote. This can be explained because the superb performance that CRF system

achieved with this dataset (depicted in Table 6.26) and indicates that above a cer-

tain limit, no further gains can be achieved: the difference between the classifiers’

performances is to large, causing any keyword coming from the lower classifiers

(KUSCO and KEA) being not good enough to improve the performance of the

higher one (CRF).

The results presented here also seem to indicate something that had already

been stated before: CRF is highly dependent on the document structure given.

A closer look to each of these datasets (Events and Personalities), show that all

the documents in the latter are very similar among each other, which seems to

be the reason why CRF achieve even better performance in this case. These

results are even more astonishing if we consider the new evaluation method here

proposed. Comparing SegmentEvaluator with the other standard four Evaluators

used, the results still the same: the ensemble achieves better performance than the

individual applications for the Events’ dataset, but it cannot surpass CRF system

in the case of Personalities’ dataset.

Chapter 7

Conclusions and Future Work

This last chapter of the dissertation consists of three sections. Section 7.1 presents

concluding remarks. Section 7.2 summarizes the operation of the application here

presented. Section 7.3 describes concrete ideas to be applied in the future.

7.1 Conclusions

The work presented in this dissertation concerns automatic keyword extraction

from textual sources in general, once it was successfully applied to scientific and

non-scientific domains.

The approach taken was that of supervised machine learning, that is, predic-

tion models were obtained by training a priori the applications with pre-labelled

documents and using an ensemble learning method to improve results, a method

being recently focused by researchers, showing to be very effective in improving

the results of single classifiers.

For combine the results of the individual models, two methods of majority

voting are used: simple majority and weighted majority. While the former gives

equal weight to all predictive models, the latter gives more weight to those who

present better predictive performance.

The performance of the individual and ensemble applications is evaluated

by the traditional metrics of Precision, Recall and F-measure, the latter being a

combination of the formers. Equal weight is given to both Precision and Recall

to compute the F-measure. Additionally, micro and macro-averaged versions of

the results are also presented.

This dissertation has shown that combining models of different existing ap-

plications, instead of using a more traditional method (like bagging or boosting)

to generate different models of an algorithm, is also a viable method to create an

86 Chapter 7. Conclusions and Future Work

ensemble application and the empirical results here obtained, which improved

those of each the individual systems, attest that.

7.2 Summary

The keyword extraction application here proposed is developed for the English

language, but the same principles should be valid for other languages as well. It

was not however the focus of this dissertation to test that.

The main phases identified in the application’s operation are listed below:

• Preprocessing the input;

• Training the models of the individual applications;

• Applying the gained knowledge from the models for extracting keywords

from new documents;

• Combining the results of the individual applications using different majority

voting schemes.

7.3 Future Work

During the development of this work, some ideas that could not be tested due to

time constraints and should lead to performance improvements became evident.

• The preprocessing plays a crucial role in this kind of work, being of great

importance for a more efficient operation by the applications. Thus, it is

worth keep improving this part with new ideas that might enhance the

results;

• Document structure and type clearly influenced the final output. Knowing

this, an idea worth to be tested is applying a clustering algorithm that can

find and group the documents that share common characteristics among

them, training different models for each cluster found. That way, the ob-

tained classifiers will become specialists in that type of document, possibly

minimizing the labelling error and resulting in better performance;

• For this work, the applications were used as we got them. However, the

CRF application can be further improved with new unused features. So, it

may also be worth improving the CRF itself, adding new features that were

7.3. Future Work 87

not present yet, but were considered important according to the empirical

studies made by other researchers, like DEP (position of first appearance of

the word) feature. Improving the CRF is then one of the paths to be taken

in the future and very likely to improve the results as well;

• The great discrepancy between the individual applications’ performance

seems also to be a limiting factor to the results obtained. As observed,

the ensemble gains were considerably higher when the individual perfor-

mances were more alike (E.g. Test 1) and smaller gains were observed when

one application achieved considerably better results than the others (Test

8). Another idea that can boost the application results is to use systems

that share a closer performance. Three ideas can than be further explored:

1) adding one or more CRF models to the current application; 2) using a

combination of CRF models and other existing algorithms that have bet-

ter predictive performance than those used here; 3) using an ensemble of

pure CRF models (the application that obtained the best individual results

and is currently the state-of-the-art labelling method); each of these three

approaches should also result in improvements.

Bibliography

[Ali95] Kamal M. Ali. A comparison of methods for learning and combining

evidence from multiple models, 1995.

[Alv11] Ana Alves. Semantic Enrichment of Places - Understanding the Meaning

of Public Places from Natural Language Texts. PhD thesis, Faculty of

Sciences and Technology of the University of Coimbra, Coimbra,

Portugal, 2011.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140,

1996.

[Coh95] Jonathan D. Cohen. Highlights: Language- and domain-

independent automatic indexing terms for abstracting. Journal of

the American Society for Information Science, page 114, 1995.

[DH73] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis.

Wiley-Interscience publication. John Wiley & Sons, 1973.

[Dom00] Pedro Domingos. Bayesian averaging of classifiers and the over-

fitting problem. In IN PROC. 17TH INTERNATIONAL CONF. ON

MACHINE LEARNING, pages 223–230. Morgan Kaufmann, 2000.

[DP97] Pedro Domingos and Michael Pazzani. On the optimality of the

simple bayesian classifier under zero-one loss. Mach. Learn., 29(2-

3):103–130, November 1997.

[FPW+99] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and

Craig G. Nevill-Manning. Domain-specific keyphrase extraction. In

IJCAI, pages 668–673, 1999.

[FS96] Yoav Freund and Robert E. Schapire. Experiments with a new boost-

ing algorithm, 1996.

90 Bibliography

[FYZ12] Hong-Wei Xuan Feng Yu and De-Quan Zheng. Key-phrase extrac-

tion based on a combination of crf model with document structure.

2012 Eighth International Conference on Computational Intelligence and

Security, 0:406–410, 2012.

[GGL09] Maria P. Grineva, Maxim N. Grinev, and Dmitry Lizorkin. Extracting

key terms from noisy and multitheme documents. In WWW, pages

661–670, 2009.

[Gia05] Michael J. Giarlo. A comparative analysis of keyword extraction

techniques, 2005.

[Gup10] Jasmeen Kaur; Vishal Gupta. Effective approaches for extraction of

keywords. International Journal of Computer Science Issues, 7:144–148,

2010.

[GW07] G.R. Guile and Wenjia Wang. Enhancing boosting by feature non-

replacement for microarray data analysis. In Neural Networks, 2007.

IJCNN 2007. International Joint Conference on, pages 430 –435, aug.

2007.

[HKGM05] Yaakov HaCohen-Kerner, Zuriel Gross, and Asaf Masa. Automatic

extraction and learning of keyphrases from scientific articles. In Pro-

ceedings of the 6th international conference on Computational Linguistics

and Intelligent Text Processing, CICLing’05, pages 657–669, Berlin,

Heidelberg, 2005. Springer-Verlag.

[Hul03] Anette Hulth. Improved automatic keyword extraction given more

linguistic knowledge. In Proc. of the 2003 Conf. on Empirical Methods

in NLP, pages 216–223, 2003.

[Hul04a] A. Hulth. Combining Machine Learning and Natural Language Process-

ing for Automatic Keyword Extraction. Report series / Department of

Computer & Systems Sciences. Department of Computer and Sys-

tems Sciences [Institutionen för Data- och systemvetenskap], Univ.,

2004.

[Hul04b] Anette Hulth. Enhancing linguistically oriented automatic keyword

extraction. In Proceedings of HLT-NAACL 2004: Short Papers, HLT-

NAACL-Short ’04, pages 17–20, Stroudsburg, PA, USA, 2004. Asso-

ciation for Computational Linguistics.

Bibliography 91

[JHL09] Xin Jiang, Yunhua Hu, and Hang Li. A ranking approach to

keyphrase extraction. In Proceedings of the 32nd international ACM

SIGIR conference on Research and development in information retrieval,

SIGIR ’09, pages 756–757, New York, NY, USA, 2009. ACM.

[Jon72] Karen Spärck Jones. A statistical interpretation of term specificity

and its application in retrieval. Journal of Documentation, 28:11–21,

1972.

[KAM08] Mikalai Krapivin, Aliaksandr Autayeu, and Maurizio

Marchese. Large dataset for keyphrases extraction. Tech-

nical Report DISI-09-055, DISI, Trento, Italy, May 2008.

http://eprints.biblio.unitn.it/archive/00001671/01/disi09055-

krapivin-autayeu-marchese.pdf.

[KR13] L. I. Kuncheva and J. J. Rodrı́guez. A weighted voting framework

for classifiers ensembles. Knowledge and Information Systems, 2013.

(in press).

[Kun04] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and

Algorithms. Wiley-Interscience, 2004.

[KZ11] H. H. Kian and M. Zahedi. An efficient approach for keyword

selection; improving accessibility of web contents by general search

engines, 2011.

[LCZS11] Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and Maosong Sun. Au-

tomatic keyphrase extraction by bridging vocabulary gap, 2011.

[LD59] H.P. Luhn and International Business Machines Corporation. Ad-

vanced Systems Development Division. Keyword-in-context index for

technical literature (KWIC index). ASDD report. International Busi-

ness Machines Corp., Advanced Systems Development Division,

1959.

[Lea78] E.E. Leamer. Specification searches: ad hoc inference with nonexperi-

mental data. Wiley series in probability and mathematical statistics.

Wiley, 1978.

[Liu09] B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage

Data (Data-Centric Systems and Applications). Springer, 1st ed. 2007.

corr. 2nd printing edition 2009, 2007-2009.

92 Bibliography

[LMP01] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

Conditional random fields: Probabilistic models for segmenting

and labeling sequence data. In Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning, ICML ’01, pages 282–289, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[Lov68] Julie B. Lovins. Development of a stemming algorithm. June 1968.

[LPLL09] Feifan Liu, Deana Pennell, Fei Liu, and Yang Liu. Unsupervised

approaches for automatic keyword extraction using meeting tran-

scripts. In HLT-NAACL, pages 620–628, 2009.

[Luh58] H. P. Luhn. The automatic creation of literature abstracts. IBM J.

Res. Dev., 2(2):159–165, April 1958.

[MCSM11] Kristine Monteith, James L. Carroll, Kevin D. Seppi, and Tony R.

Martinez. Turning bayesian model averaging into bayesian model

combination. In IJCNN, pages 2657–2663. IEEE, 2011.

[Mel05] Prem Noel Melville. Creating diverse ensemble classifiers to reduce

supervision. PhD thesis, Austin, TX, USA, 2005. AAI3217133.

[MFW09] Olena Medelyan, Eibe Frank, and Ian H. Witten. Human-

competitive tagging using automatic keyphrase extraction. In

EMNLP, pages 1318–1327, 2009.

[MI04] Yutaka Matsuo and Mitsuru Ishizuka. Keyword extraction from a

single document using word co-occurrence statistical information.

International Journal on Artificial Intelligence Tools, 13(1):157–169, 2004.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze.

Introduction to Information Retrieval. Cambridge University Press,

New York, NY, USA, 2008.

[MT04] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text.

In EMNLP, pages 404–411, 2004.

[MW06] Olena Medelyan and Ian H. Witten. Thesaurus based automatic

keyphrase indexing. In Proceedings of the 6th ACM/IEEE-CS joint

conference on Digital libraries, JCDL ’06, pages 296–297, New York,

NY, USA, 2006. ACM.

Bibliography 93

[MW08] Olena Medelyan and Ian H. Witten. Domain-independent automatic

keyphrase indexing with small training sets. J. Am. Soc. Inf. Sci.

Technol., 59(7):1026–1040, May 2008.

[NyK07] Thuy Dung Nguyen and Min yen Kan. Keyphrase extraction in

scientific publications. In In Proc. of International Conference on Asian

Digital Libraries (ICADL ?07, pages 317–326. Springer, 2007.

[Oel09] Iryna Oelze. Automatic keyword extraction for database search,

2009.

[OPTJS10] Roberto Ortiz, David Pinto, Mireya Tovar, and Héctor Jiménez-

Salazar. Buap: An unsupervised approach to automatic keyphrase

extraction from scientific articles. In Proceedings of the 5th Interna-

tional Workshop on Semantic Evaluation, SemEval ’10, pages 174–177,

Stroudsburg, PA, USA, 2010. Association for Computational Lin-

guistics.

[Oza00] Nikunj C. Oza. Online ensemble learning. In AAAI/IAAI, page 1109,

2000.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: Bringing order to the web, 1999.

[PM06] Fuchun Peng and Andrew McCallum. Information extraction from

research papers using conditional random fields. Inf. Process. Man-

age., 42(4):963–979, July 2006.

[Por11] SemEval Portal. http://aclweb.org/aclwiki/index.php?title=

SemEval_Portal, 2011. In ACLwiki.

[RHM97] Adrian E. Raftery, Jennifer A. Hoeting, and David Madigan.

Bayesian model averaging for linear regression models. Journal of

the American Statistical Association, 92:179–191, 1997.

[RMV94] Adrian Raftery, David Madigan, and Chris T. Volinsky. Account-

ing for model uncertainty in survival analysis improves predictive

performance. In In Bayesian Statistics 5, pages 323–349. University

Press, 1994.

[Rob04] Stephen Robertson. Understanding inverse document frequency:

On theoretical arguments for idf. Journal of Documentation, 60:2004,

2004.

http://aclweb.org/aclwiki/index.php?title=SemEval_Portal
http://aclweb.org/aclwiki/index.php?title=SemEval_Portal

94 Bibliography

[Sew11] Martin Sewell. Ensemble learning. Research Note, January 2011.

[SM10] Charles Sutton and Andrew McCallum. An introduction to condi-

tional random fields, 2010. cite arxiv:1011.4088Comment: 90 pages.

[SNG10] Kamal Sarkar, Mita Nasipuri, and Suranjan Ghose. A new ap-

proach to keyphrase extraction using neural networks. CoRR,

abs/1004.3274, 2010.

[SP03] Fei Sha and Fernando Pereira. Shallow parsing with conditional

random fields. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on

Human Language Technology - Volume 1, NAACL ’03, pages 134–

141, Stroudsburg, PA, USA, 2003. Association for Computational

Linguistics.

[SR10] Catarina Silva and Bernardete Ribeiro. Inductive Inference for Large

Scale Text Classification: Kernel Approaches and Techniques, volume 255

of Studies in Computational Intelligence. Springer, 2010.

[SRC10] Nick Cramer Stuart Rose, Dave Engel and Wendy Cowley. Automatic

keyword extraction from individual documents. John Wiley & Sons, Ltd,

2010.

[SY73] Gerard Salton and Chu-Sing Yang. On the Specification of Term

Values in Automatic Indexing. Journal of Documentation, 29:351–372,

1973.

[TKV10] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Min-

ing multi-label data. In In Data Mining and Knowledge Discovery

Handbook, pages 667–685, 2010.

[Tur99a] Peter Turney. Learning to extract keyphrases from text, 1999.

[Tur99b] Peter D. Turney. Learning algorithms for keyphrase extraction. IN-

FORMATION RETRIEVAL, 2:303–336, 1999.

[TW99] Kai Ming Ting and Ian H. Witten. Issues in stacked generalization.

Journal of Artificial Intelligence Research, 10:271–289, 1999.

[vdPPRG04] Lonneke van der Plas, Vincenzo Pallotta, Martin Rajman, and Hatem

Ghorbel. Automatic keyword extraction from spoken text. a com-

Bibliography 95

parison of two lexical resources: the edr and wordnet. CoRR,

cs.CL/0410062, 2004.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn-

ing Tools and Techniques, Second Edition (Morgan Kaufmann Series in

Data Management Systems). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2005.

[Wol92] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–

259, 1992.

[WPF+99] Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and

Craig G. Nevill-Manning. Kea: practical automatic keyphrase ex-

traction. In Proceedings of the fourth ACM conference on Digital libraries,

DL ’99, pages 254–255, New York, NY, USA, 1999. ACM.

[WPHZ06] Jiabing Wang, Hong Peng, Jing-song Hu, and Jun Zhang. Ensem-

ble learning for keyphrases extraction from scientific document. In

Proceedings of the Third international conference on Advances in Neural

Networks - Volume Part I, ISNN’06, pages 1267–1272, Berlin, Heidel-

berg, 2006. Springer-Verlag.

[WX08] Jun Wan and Jianguo Xiao. Single document keyphrase extraction

using neighborhood knowledge. In Proceedings of the 23rd national

conference on Artificial intelligence - Volume 2, AAAI’08, pages 855–

860. AAAI Press, 2008.

[XKS92] L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple

classifiers and their applications to handwriting recognition. IEEE

Transactions on Systems, Man, and Cybernetics, 22(3):418–435, May

1992.

[Yan99] Yiming Yang. An evaluation of statistical approaches to text catego-

rization. Information Retrieval, 1:69–90, 1999.

[YL95] Madigan D. Heuch I. York, J. and R.T. Lie. Estimation of the propor-

tion of congenital malformations using double sampling: Incorpo-

rating covariates and accounting for model uncertainty. In Applied

Statistics, volume 44, page 227?242, 1995.

[Zha08] Chengzhi Zhang. Automatic keyword extraction from documents

using conditional random fields, 2008.

96 Bibliography

[Zha09] Chengzhi Zhang. Combining statistical machine learning models

to extract keywords from chinese documents. In Ronghuai Huang,

Qiang Yang, Jian Pei, João Gama, Xiaofeng Meng, and Xue Li, edi-

tors, Advanced Data Mining and Applications, volume 5678 of Lecture

Notes in Computer Science, pages 745–754. Springer Berlin Heidel-

berg, 2009.

	Chapter 1: Introduction
	Motivation
	Background
	Objectives
	Project Contextualization
	Contributions
	Organization

	Chapter 2: Automatic Keyword Extraction
	What is AKE?
	Related Work
	Analysed tools
	KEA
	KUSCO
	CRF - Conditional Random Fields
	Conclusion

	Chapter 3: Ensemble Learning Methodologies
	What is an Ensemble ?
	Related Work
	Approaches
	Bagging
	Boosting
	Stacking
	Bayesian Model Averaging

	Combining label outputs
	Majority Voting
	Weighted Majority Voting

	Conclusion

	Chapter 4: Ensemble Learning for AKE from Event Descriptions
	Application's Architecture
	Preprocessing
	KEA
	KUSCO
	CRF

	Keyword Classifiers and Output Combination
	Ensemble Learning Assemblage
	Conclusion

	Chapter 5: Experimental Setup
	Datasets
	Finding suitable datasets
	Dataset descriptions

	Evaluation Metrics
	Methodology

	Chapter 6: Experimental Results
	Preliminary Results
	Overall effectiveness
	Effect of training set size
	Effect of document length
	Discussion

	Final Results
	Hulth & Krap's Datasets
	Events' Dataset
	Discussion

	Chapter 7: Conclusions and Future Work
	Conclusions
	Summary
	Future Work

	Bibliography

