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Abstract

Gesture spotting is an important factor in the ttgument of human-machine
interaction modalities, which can be improved bljalde motion segmentation methods.
This work uses a gesture segmentation method ier aoddistinguish dynamic from static
motions, using IMU and EMG sensor modalities. Therfgrmance of the sensors
individually as well as their combination was ea&d, with thresholds and window size
manually defined for each sensor modality, thro6@lsequences performed by 6 users. The
method which used the IMU alone obtained the besults in regards to the total
segmentation error (11.88%), in comparison to ttherotwo methods (EMG = 43.75% e
IMU+EMG= 12.92%). When considering gestures whialya@ontain arm movement, the
best error obtained was 1.11% by the IMU method @&58.89% e IMU+EMG= 7.22%).
However, when considering gestures which have bahd motion, the combination of the
2 sensors achieved the best performance, withran @i 10% (IMU = 30.83% e EMG=
17.5%). Results of the sensor fusion modality vhmgeatly depending on user, with
segmentation errors varying between 1.25% and 26.2#ere users with more training
obtained better results. Application of differeiitefing method to the EMG data as a
solution to the limb position resulted in an erfor the combination of sensors of 9.17%,
with all gestures performing similarly or betteaththe IMU method but with an increased
number of non-detected gestures.

Keywords EMG, gestures, IMU, human-machine interaction, motion,
segmentation
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Resumo

O reconhecimento de gestos € um fator importantelesznvolvimento de
modalidades para interacdo homem-maquina, que pselemelhoradas através de métodos
fiaveis de segmentacao de movimento. Esta tesewmsauétodo de segmentacdo de modo
a distinguir movimentos dinamicos de estaticogvas do uso de sensores IMU e EMG.
Foi avaliado o desempenho dos sensores individuddneeem combinacao, cahresholds
e tamanho de janela calculados manualmente paeamadalidade, através de 60 testes
realizados por 6 utilizadores. O método que usdMd isoladamente obteve melhores
resultados em relacdo ao erro total de segmen(ata&®B8%), comparativamente aos outros
dois métodos (EMG = 43,75% e IMU+EMG= 12,92%). Qimoonsideramos o0s gestos que
continham apenas movimento de brago, o melhorodtido foi de 1,11% para o método de
IMU (EMG = 58,89% e IMU+EMG= 7,22%). No entanto,aqao avaliamos os gestos
apenas com movimento da mao a combinacdo dos dosores atingiu o melhor
desempenho, com um erro de 10% (IMU = 30,83% e EM®G5%). Os resultados da
metodologia de combinacdo de sensores variaramidevagelmente dependendo do
utilizador, com erros de segmentacdo entre 1,25%,25%, em que os utilizadores com
maior treino obtiveram os melhores resultados. ilzatdo de um método de filtragem
diferente aos dados do sensor EMG, como soluc@ogparoblema da posicdo do membro,
resultou em um erro para a combinagao de senser@d @%, com todos os gestos a terem
um desempenho semelhante ou superior em compaaagéetodo que usou o IMU, mas

com um numero mais avultado de gestos nao detetados

Palavras-chave: EMG, gestos, IMU, interacdo homem-maquina,
movimento, segmentacdo
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Symbology and acronyms

SYMBOLOGY AND ACRONYMS

Symbology

ax, ay, 8z — Linear acceleration components

ar —Euclidian distance of the acceleration components
Ox Oy, - — Angular velocity

Ox, Oy, 0, — Euler orientation

Ox, Oy, Oz Qw — Quaternions

timu — IMU timestamp

teme — EMG timestamp

semg; — Original data from EMG sensor i

T - Threshold

w — Window size

k — Sensitivity factor

Rimu — Gestures which include arm motion
Reme — Gestures which include hand motion
Omu — Gestures which only include hand motion
Oemc — Gestures which only include arm motion
do — Variation of orientation

Timu — Threshold for IMU features

Teme — Threshold for EMG features

remg; — rectified data from EMG sensor i

femg; — filtered data from EMG sensor i

Fc — Sampling frequency

Fe — Cut-off frequency

N — Butterworth filter order

A, B — Butterworth filter function coefficients

val — Function for base values of EMG

sum.v — Function output for sum of EMG values
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wsum.v — Function output for weighted sum of EMG values
varsum — Function output for variance of sum of EMG value
var — Function output for variance of EMG values

Serror - Segmentation error

Acronyms

IMU — Inertial measurement unit
EMG — Electromyography

HMI — Human-machine interaction
FN — False negative

FP — False positive

SVM - Support Vector Machine
ANN - Artificial Neural Network
HMM — Hidden Markov Models
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1. INTRODUCTION

Human-machine interaction (HMI) is an increasinggmmon occurrence in
today’s technological society.

Flexible work stations rely on a joint collaboratibetween humans and robots.
One of the most intuitive methods for HMI is gestsgpotting: robots performing defined
movements based on gestures being performed byg. Udeese movements are generally
executed in sequence in order to perform compleksta

As such, there is the need for increasingly rediabkechanisms for a real-time
interaction between both participants.

Towards HMI, multiple solutions have been presefidedesture spotting, such
as gesture detection through body-worn sensorsing @omputer vision. In some cases, the
solution includes a combination of multiple moda#t

Methodologies for gesture segmentation have bagfiest. (Siméao, Neto, and
Gibaru 2016) has tackled this problem, using a Cija@a Glove in order to detect hand and
arm gestures performed by the user. However, thgewnt is not very practical, as it is
wired, uncomfortable to wear and expensive.

In the search for more accessible and comfortgitierss, a solution was found
in the MYO armband. This device, available to teaayal public, includes two sensors: the
IMU (inertial measurement unit) and the EMG (elentyography) sensor.

Following the work developed in (Siméo, Neto, antda®Bu 2016), this thesis
aims to evaluate the performance of IMU and EMGseen in regards to gesture
segmentation, aiming to distinguish dynamic motions

This work will start by a state of the art reviepgsteriorly analysing an
alternative method to motion detection to justifg usage of the sliding window method in
chapter 3. In chapter 4 the design of the algomstiion motion detection for the individual
sensors and their combination is discussed, witaraysis of the obtained results being

performed in chapter 5, based on types of err@stuges and participants.

Jodo Lopes 11
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2. STATE OF THE ART

2.1. IMU

Inertial measurements units (IMUs) are devices usedmeasure linear
acceleration and angular rate through the use of different types of inertial sensors,
accelerometers and gyroscopes. According to (Uremad Demirbas 2012), “an
accelerometer measures linear acceleration abseutsansitivity axis and integrated
acceleration measurements are used to calculatityeland position”, whereas “a
gyroscope measures angular rate about its sehsaixis and gyroscope outputs are used to
maintain orientation in space”. When using the IMU& tridimensional space, a total of 3
accelerometers and 3 gyroscopes are used, botlsthibgonally distributed axis as referred
by (King 1998).

More recently, IMU sensors have been integrateld magnetometers (Brunner
et al. 2015; Fourati et al. 2014) to measure tleallonagnetic field vector in sensor
coordinates and thus allow the determination ofrdgetion relative to the vertical axis as
mentioned by (Caruso 2000). (Brunner et al. 20X&gadh that if the magnetic field is not

disturbed, it corresponds to the Earth’'s magneégid f

2.1.1. Applications of IMU

(Unsal and Demirbas 2012) states that due to redeehnological advances,
associated with improved calibration algorithms anebr calibration models, inertial and
magnetic sensors have become available at low wo#t, small size and low energy
consumption. This allowed to build small-sized ameap IMU modules, comparable to
other commonplace devices, as suggested by (Véspld®96), which led to them being
used commonly, for example, in smartphones, whalreHMUs or 3-axis accelerometers
integrated as seen in (del Rosario, Redmond, amdIL2015).

IMU have been used as core tools in inertial naioegain conjunction with GPS
as studied by (King 1998). They have also beereasingly used for motion sensing in
applications involving relative motion, such as ¢hanting recognition, for example by

Jodo Lopes 12
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placing a sensor on the tip of a pen, or retriefalata on sports equipment, both referred
by (Verplaetse 1996).

Related to the present work, usage in the reptinatf human movements by
machines has become a common field of study. Soam@es of applications of IMU
devices on wearable body sensors include (Gan€sdiee, and Durairajah 2015), in which
an upper limb exoskeleton relying on both data frimMi and EMG sensors for the
rehabilitation of neurological or musculoskeletsedsed patients was studied.

(Junker et al. 2008) presents a study where Sahednsors were placed on the
upper body for the detection of sporadic occurantvities in a continuous signal stream.

(Jung et al. 2015) refers the use of IMU sensorROBIN-H1, a lower limb
exoskeleton which “was developed as a walking rigitetipn service for stroke patients”

and requires data from IMUs placed on the right leftdrunk segments.

2.1.2. IMU Benefits

According to (Fourati et al. 2014), IMUs have soassociated benefits in
comparison to other sensors. The main advantagesaned are that “there is no inherent
latency associated with this sensing technologyadihdelays are due to data transmission
and processing”. The authors also mention anoteefit to be “its lack of necessary source,
whereas electromagnetic, acoustic, and optic dewiequire emissions from a source to

track objects”, becoming a more advantageous otonon-controlled environments.

2.1.3. IMU Disadvantages

Inertial and magnetic sensors have shown to hasaicedrawbacks as well.
According to (Fourati et al. 2014), accelerometeesasure the sum of linear acceleration
and gravity. In quasi-static situations, where ¢hé& no linear acceleration present,
measuring the gravity in the sensor coordinate éraftfows for an accurate estimation of
orientation relative to the horizontal plane. Hoegevn a dynamic situation, it is not easy to
dissociate these two physical quantities, becordiffgcult to measure the orientation with
accuracy. A method for separating acceleration fiteergravity component has been studied
in (Neto, Pires, and Moreira 2013).

Another the major issue mentioned in IMU relatedlibgraphy is drift.
According to (Neto, Pires, and Moreira 2013), duthe sensor calculating its position based
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on previously calculated positions, any existinges in measurement, no matter how small,
are accumulated with every calculation, leadingamoincreasing difference between the
calculated position of the sensor and the actué#htmnot allowing for an accurate position
estimation for long periods. A major factor to tlegderived from the double integration of
acceleration data in order to obtain position @geated by (Neto, Pires, and Moreira 2013),
but gyroscopes have also been mentioned by (B8it2)1to be prone to drifting over time
due to the build-up of various errors when estingathanges in orientation.
Magnetometers are relatively drift-free and aredfre used to cancel out any
possible drift errors present in the previous senaccording to (Roetenberg, Luinge, and
Veltink 2003). However, the main problem with maigmeeters identified by the authors is
the influence of ferrous material in the surrougdirof the sensor, which disturb the

orientation measurement.

2.1.4. IMU Specific Errors

According to (Unsal and Demirbas 2012), errorsgmesn IMU sensors can be
defined under two categories: deterministic andtsstic errors. According to the authors,
deterministic errors are those that, given a aedafined input and known error, will always
provide the same output. They can be estimate@dtyratory calibration tests and can be
used as input for error compensation algorithmscl&istic errors, on the other hand, are
associated with random variations of bias or stzdt®r over time, as well as random sensor

noise.

2.1.4.1. Deterministic Errors

Bias is defined by (NovAtel 2014) as the offsetueabutput by the sensor
measurement for a given physical input. The biagh®e accelerometer or the gyroscope can
be calculated according to (Unsal and Demirbas P84 2he measured value when no input
acceleration or angular rate is applied to the@emrspectively. (NovAtel 2014) divides the
bias error into two components: bias repeatabiityich refers to different initial bias with
every power up of the IMU; and bias stability, asated with the change of the initial bias
over time.

Scale factor error is defined by (Titterton and Wes2004) as the error in the

ratio of a change in an output signal relative ehhange in the input signal, be it either linear
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acceleration or angular rate. The major parts mesipte for scale factor error suggested by
(Unsal and Demirbas 2012) are fixed terms and teatype induced variations.

Misalignment of sensors is associated by (UnsalRemirbas 2012) to a scale
factor error on measurements due to a non-orthdigpreetween the IMU axes, which
results from IMU mechanical components not beingdpced and mounted perfectly. As
such, any movement in an axis causes a change othibr axes depending on the magnitude
of the misalignment.

G-dependency is related to the effect of accelmratn the output signal.
According to (NovAtel 2014), it is most commonlyeseon Micro Electrical Mechanical
Systems gyroscopes, when the mass undergoes aticglaalong its sensing axis. The g-
dependent bias coefficient is referred by (Unsdl@amirbas 2012) as the relation between

the acceleration magnitude and the gyroscope measuts.

2.1.4.2. Stochastic Errors

A random noise in the measurement is always preséein measuring a
constant signal (NovAtel 2014). The sources of éhegors are flicker noises in the
electronics or interference effects on signals.

To reduce the effect of sensor noise, (Unsal andifbas 2012) suggests either
applying a vast number of processes for modelltnghastic errors, or applying a filter to

the signal.

2.2. EMG

According to (Carpi and Rossi 2006), electromyobsefEMG) is a method for
recording and analysing electric signals resultmagn neuromuscular activity, also known
as electromyograms. (Raez et al. 2006) indicataistiie muscle tissue conducts electrical
potentials in similarity to nerves, which are nammdiscle action potentials, whose
information the EMG is used for recording. Accoglito (Alkan and Guinay 2012), since
each movement of the muscles corresponds to afisppattern of activation of several
muscle fibres, using multi-channel EMG recordings possible to identify the movement
being performed.

According to (Raez et al. 2006), two types of elmib¢s can be used to acquire

muscle signal: invasive and non-invasive electrotteasive EMG relies on using wire or
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needle electrodes placed directly in the muscléhdéncase of non-invasive electrodes, also
known as sEMG, the EMG signal is acquired from tetetes mounted directly on the
surface of the skin. As such, the signal is a caitpmf all muscle fibres’ action potentials
occurring in the muscles beneath the skin as stat¢Raez et al. 2006). Since these action
potentials occur at random intervals, the EMG digizen either be positive or negative

voltage.

===

pZ .

Figure 2.1 — EMG detector circuit with 3 electrodes placed on the forearm (Seeed Studio 2015)

2.2.1. Applications of EMG

While EMG is mainly used in clinical applications, the context of human
motion, cases where EMG sensors have been usediéen@hl-Angari et al. 2016), where
the classification performance of EMG featuresiHand and arm movements was studied
using data from 15 EMG sensors placed on the forear

(Kawasaki et al. 2014) presents a system for petisthand control which was

studied for forearm amputees based on EMG seralsmsplaced on the forearm.

2.2.2. Types of Error of EMG

2.2.2.1. Quality of signal

(Raez et al. 2006) has identified the two mainasdhat influence the quality of
the signal to be the signal to noise ratio anddibtortion of the signal.

According to (Raez et al. 2006), signal to noigenaefers to the ratio of energy
in the EMG signals to the energy in the noise dgyridoise are electrical signals that are not

part of the desired EMG signal. They can be thalresf inherent noise in electronics
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equipment, ambient noise due to electromagnetiatiad, motion artefact associated with
faulty design of electrode components such astteeface or cable, and inherent instability
of the signal, given how the EMG is random in natdrhe authors claim that, to obtain a
good EMG signal, the signal-to-noise ratio showdtain the highest amount of information
from EMG possible while keeping the amount of n@setamination to a minimum.

(Raez et al. 2006) also defines the distortiormefdignal means that the relative
contribution of any frequency component in the EM@al should not be altered. As such,
the distortion of the signal should be kept to bguired minimum, avoiding unnecessary
filtering and the distortion of signal peaks andchdilters.

2.2.2.2. Problems with muscle information extraction

In regards to issues pertaining the retrieve adrimfation from the musculature
by the EMG, (Scheme and Englehart 2011) identBiesajor issues.

Due to the region of muscle activity recorded bgirsgle EMG, the activity
measured by the EMG may include the contributiomofe than one muscle, an issue which
has been defined as EMG cross talk.

Similarly, muscle co-activation, related to the gaece of multiple EMGs,
occurs when a muscle registers activity due toatttevity of another, which “complicates
the task of resolving the intended force aboufra’jo

Limited muscle sampling depth limits the measurentgmrmuscle activity to

only those close to the surface of the skin.

2.2.2.3. Issues with EMG misuse

During the usage of EMG, one must be aware thai ictenditions do not exist
in practical use. Issues related to misuse of EM@traned by (Scheme and Englehart 2011)
include electrode shift, variation in force, vaioat in position of the limb, and transient
changes in EMG.

The electrode shift is associated with the possitiiat, whenever a user places
the device, “the electrodes will likely settle irskghtly different position, relative to the
underlying musculature” (Scheme and Englehart 2011)

Pattern recognition control “relies on clusterirepeatable patterns of EMG

activity into discernible classes. Contractiondgrned at different force levels may be very
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different from one another and therefore presahtadienge to a pattern classifier.” (Scheme
and Englehart 2011), challenge which the work ifiestas variation of force.

The variation of limb position, according to (RaddaScheme, and Englehart
2014), refers to “the degradation of myoelectrittgra recognition performance when the
classifier is trained with limb in one fixed positi but is tested or used with limb in other
positions. This degradation is due to the impactrai position variation on the muscular
activation pattern when performing activities”.this regard, (Liu et al. 2014) has studied
the effect of arm movements in EMG pattern recagmjtincluding both static and dynamic
arm motions, and concluded “that dynamic changarwof position had seriously adverse
impact on SEMG pattern recognition”

Transient changes are defined in (Scheme and Eagl2B11) as “additional
factors that confound the use of EMG and are dtregshort- and long- term variations in
the recording environment during use”. These chanigelude external interference,
electrode impedance changes, electrode shift, retietlift (loss of contact between

electrode and skin), and muscle fatigue.

2.2.2.4. Issue for amputees

According to (Scheme and Englehart 2011), anothejomissue which
complicates the task of obtaining information fr@&&vG for an appropriate dexterous
control occurs when the user is an amputee and midsave the appropriate musculature
to estimate the intended motion, with the issuendpanore severe the larger the limb
deficiency of the user is.

(Scheme and Englehart 2011) provides the exammé th the case of
transradial amputation, since many of the musaspansible for the control of the wrist
and the hand are present in the forearm, it wotilldbg possible for the user to obtain a
dexterous control of the hand. However, with a nsaeere deficiency, such task would be
far more difficult, as the functionality of the lthhecomes dependent on less physiologically

appropriate sites.

2.3. MYO Armband

The MYO armband, as described by (Thalmic Labs 20%& device, meant to
be worn on the forearm, whose purpose is to détaatl gestures and wrist and forearm
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movements by using 8 stainless steel SEMG musobosg combined with a nine-axis IMU,
containing a three-axis accelerometer, a three-ayysoscope and a three-axis
magnetometer. Developed by Thalmic Labs, the archbhases an ARM Cortex M4

Processor and communicates the data to the comiputergh Bluetooth Smart Wireless
technology.

As mentioned by (Thalmic Labs 2016), the MYO arnmtbarovides two kinds
of data to an application: spatial data and gektiata.

According to (Thalmic Labs 2016), spatial data [leg the application with
data regarding the orientation and movement otifez’s arm, obtained by IMU. This kind
of data includes orientation data which indicatésciv way the MYO armband is pointed,;
raw acceleration data which represents the acteertnie MYO armband is undergoing at
any given time, in the form of 3-dimensional vectamd angular velocity data provided by
the gyroscope, also in the format of a vector.

The raw data from the accelerometer measures ribarliacceleration of the
armband, with its units being in g, the gravitatiboonstant, of roughly 9.8 ni/saccording
to (Thalmic Labs 2016). The consequence of thissomegment is that, when the user is
stationary, a value of 1 should be noticed in tigal direction, due to Earth’s gravity. The
limit of this measurement has been indicated taroend 8 g by (Thalmic Labs 2016).

Gyroscope data measures the angular acceleratibe afmband. The data units
used aré’/s, degrees per second, and are limited at appet&iyn16 rad/s, according to
(Thalmic Labs 2016).

(Weili 2014) argues that, while each componenhefdata alone is not of great
use in most scenarios, their combined effect byctieulation of the square root of the sum
of the squares allows to obtain the magnitude®fitiear or angular acceleration of the arm,
which, as stated by the author, “are very effectnaicators of the intensity of the arm
movement, which in turn contains emotional or rinyittal information of the performance”.

The orientation data is presented in 2 differerghians: in the form of
quaternions and the Euler angles, which are yaeh jgind roll.

The orientation data is calculated using the rata ttam the accelerometer and
gyroscope of the IMU. However, (Thalmic Labs 20b&ntions that, in order to obtain
position data, double integration of the input datalld be required. Such a method is bound

to introduce a significant amount of error, and¢f@re the developers of the armband chose
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not to offer such data as a standard output, chegrthiat “the MYO armband is better suited
to getting the relative orientations of the arntheathan the absolute position”.

According to (Thalmic Labs 2016), gestural datavptes the data to the
application in order to recognize gestures perfarinethe users with their hands. The MYO
provides gestural data in the form of one of sd\@easet poses, which represent a particular
configuration of the user's hand. The pre-deterthigestures able to be detected by the
device mentioned by (Thalmic Labs 2016) are: &), f{i)) waving in, (iii) waving out, (iv)
fingers spread and (v) thumb to pinky, as well dseat” gesture, indicative of no other
gesture being detected.

The hand gesture data are provided by the propyi&MG muscle activity
sensors. The EMG data provided by the device isnela by (Thalmic Labs 2016) to be
“unitless”, representing activation, resulting fram unknown conversion from mV. This is
due to the fact that the actual EMG units in vadtage extremely small, in microvolt range,
with its limits ranging from -127 to 127 accorditm (Arief, Sulistijono, and Ardiansyah
2015). There are 8 EMG sensors mounted to the elewitose data obtained corresponds to

the sensors presented in figure 2.2.

Figure 2.2 - EMG channel assignments to each sensor (Thalmic Labs 2015)

The IMU data has a sampling frequency of 50 Hz &n@dEMG of 200 Hz.
However (Nyomen, Romarheim Haugen, and Jensenili) 2tas shown, when evaluating
the sensor data provided by the MYO, that the M¥atadtream had lower frame rate than
the specified 50 Hz. According to (Thalmic Labs @Q1lthis issue is due to noisy
environments which causes packet loss on tranghudtea through Bluetooth.

(Weili 2014) claims that the hand gesture dataotsas useful as it may appear.

First, given that “the hand gesture is calculatedhfthe EMG data measured on the skin of
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the forearm, which is a side effect of the musctevement”, there is a possibility that “the
calculated gesture may not loyally indicate theaualcgesture of the hand”. Second, when
exterior forces are applied to the muscles or tieseme other interference with the EMG
readings such as tight clothes, the accuracy ofrth@surement can be vastly degraded, to
the point where the gesture data may not be usalalig

The MYO armband has been in the centre of someiestuéfor example,
(Nyomen, Romarheim Haugen, and Jensenius 201%thdged the potential of the MYO
armband for the application on New Interfaces farsMal Expression, namely a MuMYO
prototype for the production and modification olusds with arm movements and hand

gestures.

2.4. Pattern recognition process

For pattern recognition from wearable sensor dagprocess includes several
different modules, here mentioned based on gestaagnition sequences from (Carpi and
Rossi 2006) and (Fida et al. 2015) and shown amrdi@.3:

1) Data acquisition from the sensors;

2) Pre-processing of the signal, which includes baoga dfiltering and
motion segmentation;

3) Feature extraction;

4) Pattern classification, in this case related togadsing gestures based on

chosen features;

- . Feature Pattern Recognised
Gesture Input [>[Data AcqunsmonJ @[Pre—processnng} [> [ Extraction } [>[ Classification J [> Gesture

Figure 2.3 - Sequence required for gesture recognition from the gesture being performed by the user to it
being recognised

2.4.1. Pre-processing

According to (Carpi and Rossi 2006), the purpostnhefpre-processing stage is
“to reduce noise artefacts and/or enhance spectmaponents that contain important
information for data analysis. Moreover, it detetis onset of the movement and activates

all the following modules”. The first concept memted refers to filtering, whereas the
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second refers to segmentation. According to (Atall. 2015), pre-processing also includes
the step of feature selection and extraction, listwill not be considered in this work as a

part of pre-processing.

2.4.1.1. Filtering

The purpose of filtering is, according to (Carpil&ossi 2006), “to reduce noise
artefacts and/or enhance spectral components ¢méin important information for data
analysis”.

Filters can be applied to both IMU and EMG datathe case of EMG data,
(Zecca et al. 2002) shows us an example of theepsitg of an EMG signal with data
recorded from a biceps brachial muscle, in the upp®, with data being treated through
rectification of the EMG signal, removal of noisedugh low pass filter and then a process
of segmentation with threshold-based detection @fement. Other filter possibilities can
also be considered, such as in (Yang et al. 20%9re a band pass filter was additionally
applied to the EMG signal.

In regards to IMU data, (Fida et al. 2015) presests study where the impact
on classification by IMU data pre-processing isleated. The author mentions 2 common
pre-processing steps: inclination correction, agdad filtering, with a low pass filter being
applied. The study concludes however that thesgqmeessing stages have little to no

impact on the average classification of the per&mractivities.

2.4.1.2. Segmentation

According to (Attal et al. 2015), segmentation iseahnique used to extract
features from input data which consists of dividgagnsor signals into small time segments
or windows, to which are then applied classificatidgorithms for gesture recognition.

There are 3 types of windowing techniques genetsgd according to (Attal et
al. 2015): “sliding window where signals are divddmto fixed-length windows; event-
defined windows, where pre-processing is necessafgcate specific events, which are
further used to define successive data partitioaimg) activity-defined windows where data
partitioning is based on the detection of acticityanges”. The authors claim that the sliding
window approach is well-suited to real-time apgiimas since it does not require any pre-

processing treatments.
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The sliding window method to be used on this werkased on the approach by
(Siméo, Neto, and Gibaru 2016), where a gesturmeetation process using the sliding
window method was used to segment continuous dati@ined from a data glove and
magnetic tracking device. (Simédo, Neto, and Gib20d6) also includes references of
existing gesture recognition techniques, with ote&amples of different windowing
techniques being listed in (Fida et al. 2015).

The overview of the sliding window method presenitedSiméao, Neto, and
Gibaru 2016) considers that “there is motion ifréhare motion features above the defined
thresholds”, with the thresholds being calculated €ach motion feature using a genetic
algorithm”. A sliding window is composed @V consecutive frames, wittv being the
window size, and with each instant, the windowedi€brward one frame and is updated and
evaluated. According to the authors, “a static #asmonly acknowledged as such if none of
the motion features exceed the threshold withirstiteng window”.

A major issue mentioned in (Siméo, Neto, and Gil2816) to segmentation is
the existence of false positives and false negatikecording to the authors, false positives
are false gestures, which may occur if the sysgetaa sensitive to motion, and which hold
no actual meaning. False negatives are associdtiethe identification of a motion as static
when in truth it is not. This can result in data@sated with a dynamic gesture being split
into two different segments, which can lead to asegmentation and a gesture losing its

meaning.

2.4.2. Feature Extraction

The goal of feature extraction has been define(Dyla, Hart, and Stork 1999)
as “characterize an object to be recognized by nneasents whose values are very similar
for objects in the same category, and very diffefenobjects in different categories”. As
such, the authors affirm that the task of the feataxtraction process is “seeking
distinguishing features that are invariant to event transformations of the input”.

2.4.2.1. Types of features

(Phinyomark, Phukpattaranont, and Limsakul 2012) pexformed a listing of
possible EMG features, which the author has redeiode divided into 3 main groups: time
domain features, frequency domain features and-fiegeiency domain features. This
classification is applicable to IMU features aslwelentioned by (Dargie 2009).
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According to (Phinyomark, Phukpattaranont, and lakes 2012), time domain
features refers to features which are calculatsgdan the variation of amplitude of the
signal with time. They are generally quickly cakeld since they do not require
transformations. Major disadvantages are that tior@ain features assume the data as a
stationary signal, when it is in fact non-statignavhich may cause variations of time-
domain features when recording through dynamic mm&rgs, as well as issues regarding
the interference acquired through the recordingnmiealuating features extracted from
energy property. However, time-domain features hgoad classification performances in
low-noise environments and they have lower compmirtat requirements.

Frequency domain features relates to features wdmelyse the system based
on the frequency of occurring events. They are Inested to study fatigue of the muscle
and motor unit recruitment analysis according tdirflfomark, Phukpattaranont, and
Limsakul 2012).

According to (Zecca et al. 2002), “time—frequenepresentation can localize
the energy of the signal both in time and in fregye thus allowing a more accurate
description of the physical phenomenon. On therdthed, time—frequency representation
(TFR) generally requires a transformation that ddag¢ computationally heavy”.

2.4.2.2. List of features

(Phinyomark, Phukpattaranont, and Limsakul 2012luitkes a list of time and
frequency-domain features for EMG sensor data ifieestson, whereas (Dargie 2009) has a
list for features which can be obtained from aawetester sensors.

Mean absolute value is one of the most populaufeatin both EMG signal
analysis (Phinyomark, Phukpattaranont, and Lims&Qd2) and accelerometer signal
analysis (Dargie 2009). The mean absolute valueifeashown aslAV in equation 2.1
obtained from (Phinyomark, Phukpattaranont, andslaikal 2012), is a time-domain feature
defined by (Phinyomark, Phukpattaranont, and Lirab&K12) as an average of absolute

value of the signal amplitude in a segment.

1 N (2.1)
MAV = NZ 1]
=1
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Useful to analyse measurements affected by ndisezdro-crossing rate stands
for the number of samples per second that croszehe reference line (Dargie 2009),
reported being used for both EMG (Phinyomark, Plttigpanont, and Limsakul 2012) and
IMU sensors (Dargie 2009). To avoid random noisehsas low-voltage fluctuations or
background noises, a threshold condition is implgegt according to (Phinyomark,
Phukpattaranont, and Limsakul 2012), which is esged aZC in equation 2.2 found in
(Phinyomark, Phukpattaranont, and Limsakul 2012).

N-1 (2.2)
ZC = Z [sgn(x; * x;41) N |x; — x;41| = threshold]
i=1
sgn(x) = {1, if x = threshold (2.3)
0, otherwise

Waveform length is a measure of complexity of tHdGe signal, which is
defined by (Phinyomark, Phukpattaranont, and Limakak12) as cumulative length of the
EMG waveform over the time segment, shown in equad.3 as WL from (Phinyomark,
Phukpattaranont, and Limsakul 2012).

N-1 (2.4)
WL = Z | %41 — %
i=1

The usage of plane acceleration in the study of $teke was made by (Lee et
al. 2015), in which 3-axis accelerations were ade®d, calculated using the Pythagorean
theorem in each combination of two axes, in additto the singular acceleration
components. This resulted in 3 different plane radons, in the horizontady plane, in
the sagittakz plane and the corong plane.

The Fast Fourier Transform is a frequency-domaatuie for the IMU signal
which, according to (Laudanski, Brouwer, and Li 2))is a faster version of the Discrete
Fourier Transform, which transforms a discrete aligm the time domain into its frequency
domain representation. (Dargie 2009) refers alsmham frequency feature, the Short Time
Fourier Transform, which is indicated to be thetlpsforming amongst a set of selected

features.
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2.4.3. Classification

In the context of wearable sensors, the purposeaskification is to assign
features retrieved from a segment of motion datdassify a pattern in order to recognize a
gesture. (Duda, Hart, and Stork 1999) refers thatause perfect classification performance
is often impossible, a more general task is tordate the probability for each of the

possible categories”.

2.4.3.1. Classification Techniques

For the task of pattern recognition, a classifmatinethod is required. Amongst
many other developed techniques, three popular Imbdee been identified: support vector
machines (SVM), artificial neural networks (ANNndahidden Markov models (HMM).
Other classification methods include k-Nearest Neayrs, Random Forests, Gaussian
Mixture Models and K-Means, identified in (Attal &t 2015).

An example of the application of the SVM was shawr{Alkan and Gunay
2012), where SVM was used to classify data fronr fhfferent arm movements obtained
by EMG sensors. Similarly, (Fida et al. 2015) uges SVM method to classify selected
features to evaluate the performance of activigogaition depending on different pre-
processing operations, by analysing the data freriMdJ sensor placed on the lower limb
as subjects performed a predefined route.

The HMM is shown to be used in (Aoki, Venture, aldli¢ 2013), which
suggested an approach for the online segmentatibaman body movements using IMU,
where the segmented motions are then recognizad 1M models. Another example is
in (Taborri et al. 2014), where a HMM-based classivas studied for the purpose of gait
detection, based on data from 3 IMU sensors placettie lower limb.

The ANN, according to (Kriesel 2007), is a method pattern classification
whose development was motivated by the “similatdysuccessful working biological
systems”, namely the nervous system. Examples icagpion of this method can be seen
in (Neto et al. 2013), a paper which suggests gnoagh at real-time hand gesture spotting
which utilized the ANN classifier to recognize gess made using a Data Glove. (Jung et
al. 2015) also proposed 2 neural network-baseditis for the classification of gait phases

for lower limb exoskeletons.
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2.5. Sensor Fusion

According to (Novak and Riener 2015), “multimodahsor fusion combines
information from different sensor modalities to mx@me the shortcomings of each sensor”,
with the fusion of EMG and IMU sensors, presenthis work, the most explored. An
example of this application can be seen in (Gedkgima, and Schultz 2015), where a
system for recognizing hand and finger gesturpsasented, and the achieved conclusion is
that the system benefits from the combination ehls@nsor modalities. An example of this
application can also be seen in (Fougner et allR04here an accelerometer is used in
conjunction with EMG in order to improve classifiicen results of arm movements.

The author in (Novak and Riener 2015) mentions fferint approaches to
performing the fusion of sensors: single fusioroatym; unimodal switching; multimodal

switching; and mixing.
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3. INPUT DATA PRE-ANALYSIS

In a first approach to the problem, the abilitidstee MYO armband were
evaluated, by analysing the output data obtainée. purpose of this first evaluation is to
detect the existence of motion using no segmemtatiethod, analysing solely the
performance of the data from the sensors on thectieh of dynamic movements. The two

sensors were studied separately.

3.1. IMU

A sequence of movements was determined and repedduearing the MYO
armband. That sequence combination was selectédtiaet purpose of triggering all the
possible signals associated with the IMU, nameigdr acceleration, angular velocity and
orientation. The sequence was performed, with til®wWing stages observable in the
sequence data:

1°) Sequence of undefined movements, associatbdhatsetup of the planned
sequence;

2°) Static gesture, with the arm resting in thezwootal direction and the palm
facing downwards, for approximately 20 seconds;

3°) 5 consecutive horizontal movements, turningaima around 90° degrees,
rotating in the yaw angle;

4°) 5 consecutive movements with rotation of thacharound 90° degrees,
rotating in the roll angle;

59 5 consecutive vertical movements, rotatingiGhe pitch angle from the
pose described in th8%step to a pose with the arm pointed upwards inéinical direction;

6°) 5 consecutive vertical movements, rotating 1i8Ghe pitch angle, from a
pose with the arm pointed upwards to a pose wetatim pointed downwards;

7°) Static gesture similar to th&'atep;

8°) Sequence of undefined movements, associatad tvé ending of the

sequence.
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Note that the purpose and placement of the stasittiges was not only to include
static rest in the sequence but to distinguishreétevant from the irrelevant data obtained in
the first and eighth steps. The ideal output te isiquence would be uninterrupted dynamic
motion detected between the two static gesturds, twe undefined movements related to
setup not being considered.

From this sequence, data pertaining to both IMUENG sensors was obtained,
with the IMU data having a sampling rate averagélHz and EMG data of 200 Hz.

The graphic described in figure 3.1 representdémaviour of the 3 components
of linear acceleration throughout the sequencs. duite distinguishable the various steps
in the analysis of the graphic. However, it is gisgsible to notice the random natural noise

in the static poses, resulting from human shaking.

15
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Figure 3.1 - Behaviour of components of linear acceleration thorughout the sequence

Obtained the behaviour of the acceleration compisnéme Euclidian distance

is calculated, as described in equation 3.1, foh¢iane frame.

(3.1)
a, = |ai+a3+az

From this results the graphic in figure 3.2, whigr@ behaviour of the resulting

acceleration can be viewed:
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Figure 3.2 - Resulting acceleration throughout the sequence

In graphic 3.2 it is noticeable the presence oWigyathroughout the entire
sequence, which is responsible for an approximeteage of 1 on the acceleration value.
Using functionVAR.A in Excel, the variance of the resulting accelerator each time frame
var is obtained, allowing for a comparison betweenseontive values of acceleration In
this case only 2 consecutive values of acceleratiene compared for variance.

In order to distinguish between static and dynamaments, the valuegr
obtained in the variance graph shown in figurev@e8e compared with a threshold That
threshold was obtained through approximations @ &and error and the value which

allowed for a fine distinction between rest and iprotvas estimated to be around 0,0015.

0.2
0.15
0.1

0.05

Variance of acceleration

Time Frame

Figure 3.3 - Variance of acceleration

Following the functions in equation 3.2, a graphic describing the frames

associated with hand motion is shown in figure 3.4.

_ {1, if variance > T (3.2)
=, if variance < T
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|H |

Figure 3.4 — Dynamic motion frames in the sequence based on linear acceleration

Detection of motion

N 1 |l

Time Frame

Through analysis of figure 3.4 and comparison Wghnput data, one can see
that there are no motions detected during stastwéh the acceleration feature, however
there are multiple static motions detected througitbe dynamic part of the gesture
sequence, which results in a multitude of falseatiggs when evaluating gestures. Such
false negatives can be attributed to multiple cswuse

Moments where the movement was being performedthec was no
significant change of velocity during the intergdltime frames, even though a noticeable
movement is being performed. This leads back tm&8i Neto, and Gibaru 2016), where
the inverse occurs: in the cases of steady velottigre are no variations of acceleration,
which can trigger false negatives.

Transitions between different movements, wherdlgmases might occur.

The graphic in figure 3.4 shows that linear acegien feature by itself is not a
valid solution, therefore other features shouldnwestigated. The same procedure can be
applied towards the other features of the IMU.

In the case of angular velocity, the same procsed tor the linear acceleration
feature was applied. The threshold value usedfgular velocity was 25. Similarly to linear
acceleration, angular velocity appears to show s wamber of false negatives in its

sequence, shown in figure 3.5.
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Detection of motion

[ 1

Time Frame
Figure 3.5 - Motion frames on the sequence based on angular velocity

Orientation can also be evaluated as a featuren@dion detection. While it is
generally not used as a feature in literaturepet$ormance for motion detection was tested
in this case, using the same process as for |axaleration.

The major difference from the other features cofras the fact that orientation
itself represents position. As such, to considendation for motion detection, one must
analyse the differences between consecutive valat®r than the values themselves.

The obtained graphic in figure 3.6 appears to lvg gkective in the discerning
of motion, with fewer false negatives during thenawic phase of the motion when
compared to other features. However, using a tbtdsbf 0.01, the number of false

Time Frame

negatives is still high.

Detection of motion

0

Figure 3.6 - Motion frames on the sequence based on variation of orientation

While the 3 different features may not be effec@ene, using the 3 together
for motion detection may present better resultse Bhobtained motion evaluations are
merged together, as to analyse the presence efrielgatives in the dynamic segment, as

shown in figure 3.7. While this method allows tduee the number of false negatives in the
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sequence, it can however add the false positiees the individual graphics, increasing the

error in the static phase.

Detection of motion

Time Frame

O” 1l

H linear acceleration W angular velocity orientation

Figure 3.7 - Motion frames on the sequence based on all 3 IMU features

Even after merging the 3 graphics, some false haggatan still be seen in the
dynamic phase in figure 3.7. Coupled with the pne$alse positives, it is concluded that
this method is not effective in dealing with motmetection of the IMU sensor, and therefore

a sliding window algorithm is recommended.

3.2. EMG

To study EMG signals, 8 graphics were createdhier® different EMG signals,
in order to attempt to identify motion. Howeveringsthe data from the previous sequence,
consistent values throughout the sequence for M6& ESignals were obtained on all 8
graphics, with some exceptions due to random mom&srend noise. This is due to the fact
that, throughout the entire sequence, the handigeperformed was always a stretched
palm. As such, the values obtained from the EM@algyrefer to the muscle activations
required to maintain that gesture, as well as theahe strength required to counter both
gravity and the inertia resulting from the arm moeats performed in the sequence.

Given such, a new trial was performed. The armdsina horizontal position,
as to consider the noise read by the EMG from theraecessary to counter gravity and
inertia.

The hand gestures performed in the sequence were:

1°) 5 successive movements of opening and clogitigedist

2°) 5 successive motions of stretching apart amihjg the fingers
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3°) 5 successive motions of waving up and down

In figure 3.8 the data output from EMG sensor 1n d¢e observed with

noticeably higher values during dynamic motion.

150
100
50
0
-50

Detetion of motion

-100

-150

Time Frame

Figure 3.8 - Behaviour of EMG data during the sequence for EMG sensor 1

Using the same method as for other features, thanae of the EMG signal
from each of the 8 sensors was analysed and, asishdigure 3.9, a frame was considered
to show dynamic motion if any of the 8 sensorsiarace data showed dynamic motion. A
manually defined threshold of 10000 was used fisr¢hse.

1
0

Time Frame

Detection of motion

Figure 3.9 - Motion frames for variance of EMG data

As it can be observed in figure 3.9, the EMG semmethod appears to be
capable of distinguishing dynamic gestures, howdkliey are too over segmented for
gestures to be recognized. The data in figure 3%t be merged with data from figure

3.7 since the sampling rates are not similar.
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Given this, a method to compensate for the varialse negatives must be used
if gestures are to be successfully segmented, antlition for this issue can be found in the

sliding window method.
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4. SLIDING WINDOW METHOD

The sliding window method is based in (Siméao, Neatad Gibaru 2016). The
sliding window method relies on input data from M&O armband as well as calculated
thresholds in order to output:

1) A motion vector, which detects in each timeframesthiler the movement is

identified as dynamic or static.

2) A feature vector, which provides the data on tlauiees for the classifier to

recognize gestures.

The input data available for the sliding functioonnh the IMU sensor in the
MYO armband are the linear acceleration componantise angular velocity components
0, the sensor orientation, both in quaternignand Euler angles, and the timestamp
associated with the time occurrence of the fratmes The 8 EMG signalsemg are obtained
by the EMG sensors, as well as the timestamp agsdcwith the EMG data framdsyc,

different from the IMU timestamp.

InputIMU = [axl ay: Az, Gx gy: 9z Ox» Oyl 0z, qx, Qy' qz Qw> tIMU]

Inputgye = [semg,, semg,, semgs, semg,, semgs.semgeg, semg-, semgs, teyel

Additional information must be acquired for the hat as described in (Siméo,
Neto, and Gibaru 2016): the thresholds for eactufed; the sensitivity factok; and the
window sizew.

In an initial attempt, a sliding window function igh merged both input data
from IMU and EMG was attempted. However, this sboosught in some issues:

The gestures evaluated by the sensors are diffeWhtle this would be
beneficial in evaluating the existence of any kifdgesture, issues before mentioned
regarding high EMG values during static gesturagccaompromise the detection of arm

movements.
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The sampling rates for both sensors are also diitewith values of IMU and
EMG sampling being of 50 Hz and 200 Hz respectivelyich would require a method to
correlate.

Considering the present issues, the solution wastaa by studying the
performance of the sensors individually, by buigdansliding window function for each of

the sensors.

4.1. Sequence for motion detection

In order to study both arm movements detected by Bd hand movements
detected by EMG, a sequence containing both wadeded he motion sequence shown in
figure 4.1 and performed in (Simé&o, Neto, and Gili2016) was chosen, given its variety

of movements, as well as to allow a comparison eetnwboth works.

I.]] Motion
|:| No-Motion

gpause
=
A 9 2

Figure 4.1 - Performed gesture sequence (Simdo, Neto, and Gibaru 2016)

The sequence is composed of 8 different dynamicements, including both
arm and hand movements, which are signalled innghaéhile some are clearly identified
by numbers — #2, #4, #5, #7 and #8 — the othen8 haen identified in (Siméo, Neto, and
Gibaru 2016) as movement epenthesis. They willutinout the work be identified with a
number according to their position in the sequert@5, #2.5 and #5.5.

An important note to take from this sequence ig that all gestures are
guaranteed to be detected by both the sensor® @rthband, as some correspond to only
arm gestures and some to only hand gestures, d@tbther sensor being an auxiliary source

of information in those cases.
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Out of the 8 gestures, the ones which are expé¢ctied detected by the IMU are
gesture #0.5, which includes the lifting of the agasture #2, with a clockwise motion of
the arm; gesture #4 which includes the rotatiothefarm to aid in performing the hand
gesture; gesture #5 includes a small arm rotaiimresa rotation of the wrist is performed
during the transition from gesture #4 to #5; anstges #7 and #8, which include motion of
the arm to the side. However, the other gestuegsemding how they are performed, may be
detected as well, since gestures #2.5 and #5.5imclyde additional small movements of
the arm, as the arm is likely to shake when periiogrthe gesture.

Regarding EMG data, the ones expected to be ddtactegesture #2.5, which
includes the clenching of 4 fingers; gesture #4nelaetransition gesture from the hand pose
from #3 to #4 is performed; gesture #5 which inekidboth the transition from #4 to the
initial pose in #5 and the clenching of the fisesture #5.5, where the index finger is
stretched; and gesture #7, which includes theitrandgrom the pose in #6 to the gesture in
#7. It is important to notice that, similarly to Wdetection, all other gestures may include
involuntary hand movements when performed or muszlactivation when performing arm
gestures, as well as detecting the force requaethé hand to maintain a similar pose during
the gestures.

In summary, the group of relevant gestures to Ipgucad by the IMU sensor is
Rimu = [#0.5, #2, #4, #5, #7, #8] and the group ofvaie gestures which are to be captured
by the EMG sensor isdrc = [#2.5, #4, #5, #5.5, #7]. Gestures which only @ arm
gesture are Mu = [#0.5, #2, #8] and those which only rely on hamavement are €uc =
[#2.5, #5.5].

4.2. Sliding Window for IMU

4.2.1. IMU features for motion detection

In regards to the features for motion detectioa,ittitial choice for features of
the IMU data were the features which are direciyamed from the data, namely linear
acceleration, angular velocity and orientation.

While acceleration and velocity indicate by themssl the existence of
movement, orientation is a variable which repres@oaisition. As such, similar to the case

in (Simao, Neto, and Gibaru 2016) where the featare joint angles, for orientation to be
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used as indicator of movement, the differences éetvirames of the feature would have to
be considered. As such, the feature to be usedriatson of orientatiordo, presented in

equation 4.1, as in the difference between consecualues of orientation.

do(i) =0(i) —o(i—1) (4.1)

Since each of the features is composed of 3 differedividual values,
dependent on their respective axis, we reach ae isentioned in (Siméo, Neto, and Gibaru
2016), where “a motion pattern with a directionigbé to an axis would have lower
coordinate differences compared to a pattern mdrdl an axis with similar speed, thus
producing different results.” As such, a similalusion will be used, with the 3 coordinate
components replaced by the respective Euclidiatante, for all 3 features, equal to what
was used in the initial analysis.

Another issue faced was that the Euclidian distafiocelinear acceleration
included also the gravity component. A method fmoving the gravity component is
discussed in (Neto, Pires, and Moreira 2013), uiegrientation data to build the rotation
matrix. A solution found was to build the rotatidata based on quaternion data available
from the sensor, but that proved to be an unrdiatethod as the quaternion use as origin
not the Earth frame but the origin frame when théJarmband is connected. No other
solutions were found to calibrate the initial fraared as such, this method was abandoned.
The linear acceleration feature was therefore mahged, with its gravity component always

present.

4.2.2. Selection of threshold for IMU

The threshold used in the sliding window methodnsimportant factor for a
correct segmentation of the motion sequence. W8iendo, Neto, and Gibaru 2016)
proposes an automatic optimization of thresholdsgua genetic algorithm, this work opts
for a simpler solution.

A static motion sequence has obtained, in whichuez was sat down, with the
arm at rest and supported by the chair. A sma# sample from the sequence was extracted,

in which there was no clear intention of motion.eThme sample has a length of
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approximately 3 seconds, as completely static paseebard to maintain for long periods of
time without unwanted motions.

It is taken into account that the ideal mean vatua perfectly static stance for
linear acceleration should be 1 g, due to the stersi effect of gravity, and O for both
angular velocity and variation of orientation sindeally these values remain unchanged.
As such, the threshold calculation consisted adlitfigthe value which resulted in the largest
difference between the ideal value and itself enéhtire static sequence.

Using this method, the obtained values for thestho&ls of linear acceleration,

angular velocity and variation of orientation weespectively shown in equation 4.2.

Ty = [0,00075 3,165364 0.001802] (4.2)

However,the obtained thresholds showed to not be veryhielim later stages.
This was concluded to be due mainly to the fadt dlu@ing the rest position defined in the
sequence, the arm had no support as above, dordshold values did not take into account
the arm shaking necessary to counter gravity. Neesholds values were obtained using
the above method but this time with the arm stagptiorizontally with its user standing up.

As such, new threshold values were obtained intemud.3.

Timy = [0,037140 9.029033 0.044568] (4.3)

4.2.3. Orientation: a redundant feature

While the study of orientation as a feature hasbgerformed in the initial
analysis, according to MYO developers, the orieoias derived from angular velocity and
liner acceleration data. As such, despite beind uséhe initial analysis, its redundancy has
always been questionable, since in no other knaticlais orientation used as a feature.

Variation of orientation was compared to anguldoeiy and linear acceleration
in figure 4.2 and it was confirmed that, due to Wast similarities between the data, that
variation of orientation is indeed derived from alag velocity and therefore the information

provided by this feature is redundant, with no liemeapplying it to motion detection.
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Figure 4.2 - Representation of motion features - linear acceleration, angular velocity and variation of
orientation - from a sample of the sequence

4.2.4. Window Size

To find the ideal window size, analysis was madegiglifferent sensitivity
factors for motion. Initially using a sensitivitadtor of 3, same as in (Simé&o, Neto, and
Gibaru 2016), the minimum window size necessarynirfalse negatives to occur was
calculated to be of 9 frames, with a false negativeurring when the window size was
lower. When increasing the window size above 9,ahly noticeable difference was an
increase in the sizes of the windows up to 39 fsamdren the window became too large
and different gestures, specifically gestures #7#8) were no longer discernible.

To confirm results, two other sensitivity factorene used, with values 2 and 5.
In these cases, the minimum window size requird@isn light of these results, the window
size of 10 was defined as the minimum ideal vabrettie IMU sensor. This represents a
window size with a time length of 200 millisecondssen the 50 Hz sampling rate of the
IMU.

4.2.5. Sensitivity Factor

Using the previously defined window size of 10,id®al sensitivity factor was
also sought after, by analysing the evolution efdknsitivity factor as it increased which is
shown in table 4.1. Starting with a sensitivityttacof 1, which included far too many false
positives, the value was gradually increased ufp.20 where a clear distinction between

different gestures was capable of being made, dredenall gestures were being detected.
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As can be seen in table 4.1, as it further increbafsdse positives in between
gestures were gradually eliminated, but as thefaetached a value of 1.6, the IMU sensor
was shown to no longer being able of detectingugest5.5. Since this is a gesture which
relies mainly on hand movement, this non-deteasarot problematic. With a factor of 1.7,

all clear false positives were eliminated.

Table 4.1 - Result of segmentation method depending on sensitivity factor k for the IMU method, with w
of 10 at 50 Hz sampling rate

k Observations

<12 Far too many errors

1.2 FP before #2, FP after #4
1.3 FP before #2 deleted

16 No longer detects #5.5
17 FP after #4 deleted

21 No longer detects #2.5, FN #5
2.2 FN in #5 deleted

35 FN in #5

3.8 FN in #5 deleted

5.4 FN in #4

The possible acceptable values for the sensitfaityor varied on a range from
1.7 to 5.4 according to table 4.1. Since the IMWwaly able to detect the gesture #5.5 up
to a value of 1.6 and gesture #2.5 up to 2.1,abiscluded that the IMU sensor may not be
reliable for reading the motion generated from handvement and therefore the

methodology may rely on additional assistancelfesé movements to be successfully read.

4.2.6. Sliding Window Algorithm Design

By studying the code provided in (Simao, Neto, &iloru 2016), an algorithm
for the extraction of motion features and applyiimg sliding window method was designed
for the IMU sensor data. The code is mostly simildbeit adaptations had to be done,
including the data treatment to obtain the chosetian features.

One of the most noticeable changes is in the casgarof the linear
acceleration feature to its defined threshold. /il features obtain positive values at all
times due to Euclidian distance calculation, siheelinear acceleration values can be either
superior or inferior to 1, a modification of thabpess had to be performed, starting with the
threshold value, which is shown in the segmenbakdn figure 4.3. After being multiplied
by the sensitivity factdtin lines 1-3, a value of 1 is added to the lireeareleration threshold

in line 4, in order to consider the persistentaftd gravity. In line 9, an additional condition
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is added for the motion condition not only to déteeceleration values above the sum of
threshold and unitary value but also below the eadgual to 1 minus the acceleration
threshold.

Al gorithnm Slidi ngWndow MJn, T, k,w, O
| nput s: n timestanp
T threshold vector
k threshold sensitivity factor
w W ndow si ze
O observation matrix

Cut put : M sliding w ndow notion function

1. for i € [1, LENGTH(T)] do » Apply sensitivity factor

2: t(i) « k - t(i)

3: end for

4: T(1) -~ T(1) + 1 » Add gravity to acceleration threshold

T(1)

5. F « GetFeatures(O » Calculate features using equation
of eclidian distance shown in equation 3.1

6: for i € [1, LENGTH(n)] do » Obtain the notion binary

function

7: mi) <0

8: for j € [1, LENGTH(T)] do

9: mi) « (F(i,j) 2T(i)) V(F(i,1) <(2- T(1)) V
(i)

10: end for

11: end for

12: for i € [w, LENGTH(n)] do » Apply sliding w ndow func-
tion for notion detection

13: for j € [1, wl1] do

14: Mi) « m(i) Vi +j)
15: end for

16: end for

Figure 4.3 — Pseudocode for sliding window motion function for the IMU method
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4.3. Sliding Window for EMG

Similar to the algorithm for IMU data, the EMG sensglata algorithm was also
based on (Siméo, Neto, and Gibaru 2016).

4.3.1. EMG Data Filtering

In the treatment of data, rectification of the dfntan the 8 EMG sensors was
applied using theabs function. This was followed by a low-pass Butterthdfilter using
function butter in order to obtain the filtering coefficients, whiare then applied to a zero
phase digital filter using the functidtfilt. The parameters used in thgter function were
a sampling frequency of 200 Hz, in accordance ® EMG data frequency; a cut-off
frequency of 3 Hz, and a filter order of 4, bothiethwere compared with different values
and provided a decent signal which avoided sigaificsignal peaks due to noise while
avoiding excessive smoothing of the data.

In the code shown in figure 4.4emyg refers to the original datagmg refers to

data after rectification anfémg refers to filtered data.

2 remgl = abs(emgl'):

3

4 at t

5 Fe=Z00

[ Fe=3;

7 N=4; % Filter order

8 [B, A] = butter (M,Fc*2/Fe, 'low"):; % Filter's parameters
9

10 ¥ Zero-lag filcter for coff-line treatment

11 femgl = filcfilc (B, A, remgl);

Figure 4.4 - Matlab code segment for design of low pass filter

The application of the EMG filter can be seen gufe 4.5, with the data from
EMG sensor number 1 (identified according to fig@r2) retrieved from a sample of the

gesture sequence.
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Figure 4.5 - Treatment of EMG signal data obtained from EMG sensor 1 in the initial sample: Original data
is rectified and then filtered

A comparison between the filtered signal and thgimal one is generally
required, to take into account possible lag thay mecur from the filtering process and
compensate for the error if necessary. Analyziggré 4.6, it is visible that the data shows

no significant delay error, due to the applicatdrthefiltfilt function.

rectified data
filtered data | |
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EMG Unit

Figure 4.6 - Comparison of rectified data and filtered data from EMG sensor 1 data

4.3.2. EMG feature for motion detection
Multiple parameters were tested to detect and disdgnamic from static hand
motion. The main objectives in looking for a go@tgmeter were:
1) A method which did not discern the relevance diedént EMG signals. The
analysis of different EMG sensors with differenetholds is an issue given
the fact that these sensors do not have fixediposjtwhich can shift with

every new usage of the armband.
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2) A method which allowed for a clear distinction betm static and dynamic
gestures even when performing hand poses. Even wiatic, a certain
muscle strength is required to maintain the gesAseuch, some EMG data
values may be consistently high depending on tetuge being performed.

For this end, multiple parameters were tested anddch parameter, a threshold
was manually defined through trial and error.

For this analysis, a new sequence was performet, miltiple stages which
involved doing hand poses followed by small pausesl with the arm always standing
horizontally. The sequences is as follows:

1°) Start with hand stretched

2°) Clench fist

3°) Stretch index finger

4°) Stretch hand

59) Stretch fingers apart from each other

6°) Clench fist again

7°) Raise thumb

8°) Relax hand

4.3.2.1. Base Values of EMG
This feature, presented on equation 4.4, reliediggctly analysing the EMG
values obtained from the filtering stage, wiidentifying the respective EMG sensor and

the time frame for equations 4.4 to 4.10.

val;(n) = femg;,(n); i =1,...,8 (4.4)

However, this feature did not allow for an indisaimate distinction between
different EMG values, with weak overall performantising the same threshold value, it
has to be adjusted towards sensors which outpgerd&MG signal values, which makes
sensors with weaker signals irrelevant, whereasgudifferent threshold values results in

issues due to EMG not having fixed positions.
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4.3.2.2. Sum of values
This feature consists on adding the 8 EMG sigmdtsa single feature, as shown

in equation 4.5.

(4.5)

8
sum.v(n) = Zfemgi(n)

It did provide good results with the sequence,ibthe cases where the fingers
were stretched both together and apart, it faikedistinguish the dynamic from the static
gesture without selecting a threshold which wowddindetection of other gestures.

Yet some sensors’ values showed clear increas@sgddiynamic gestures but
their exhibited values were overshadowed by otbasars, whose values were significant

in comparison even when performing static poses.

4.3.2.3. Weighted sum of values
This feature is a modification of the previous teat but different signals were
given values based on a comparison to the maxinalnewbtained throughout the sequence

for that sensor, as shown in equation 4.6.

N _femgi(w) -
wsum.v(n) = Z (W)

It presented results similar to the sum of valeadure in terms of performance,
however it faced an issue when analysing a datglsawith no dynamic gestures or very

strong movements, as the method no longer hadfiareet value for comparison.

4.3.2.4. Variance of the sum of EMG signal
The variance method did not perform well in théi@hianalysis, but with filtered
data the results were different. The variancee@tum of the 8 EMG signals were analysed,

as described in equation 4.7.
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8 Z g 2 (4.7)
varsum(n) = (Z femg,(n) — femg, (n)) (Z femg;(n —1) — femg, (n))
i=1 i=1

femg,(n) = 8  femg;(n) + Y&, femg;(n— 1) @)
Ja = >

However, variance of the sum faced a similar igsuthe sum of values, with

multiple values being deemed insignificant in congzm.

4.3.2.5. Variance of the individual EMG signals
This feature studied the variance of each sigrthlidually, as seen in equation

4.9, resulting in 8 different features.
var;(n) = (femgi(n) - femga(n))z(femgi(n -1) - femg,(n))% i=1,..8 (4.9)

femgi(n) + femg(n— 1) (.10
femga(n) = >

It showed the best performance of all studied festand was therefore chosen
as the feature for motion detection.
The threshold chosen for the used sample when tisséeature was 0.01, as it

provided the most accurate solution for distingmgldynamic and static motions.

4.3.3. Sensitivity Factor

To find the ideal sensitivity factor for the EMGréishold, in this approach we
used the window size defined for the IMU sensoresirthe ratio between the EMG signal
frequency and the IMU signal frequency. This re=iilin an initial window size of 40.
Similarly to the approach for the IMU, the evolutiof the sensitivity factor was studied in

table 4.2. The iteration here was with increment3.s.
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Table 4.2 - Result of segmentation method depending on sensitivity factor k for the EMG method, with w
of 40 at 200 Hz sampling rate

~

Observations

Too many errors

FP after #2, FN in #2.5, FN in #7, FP after #8
FP after #8 deleted

Another FN in #7

FP after #2 deleted

#0.5 no longer detected

#5.5 not detected

(€]

B ©o~NOOUO A
o1

N

Analysing table 4.2, it was concluded that EMGas as reliable as IMU data at
first sight, with far more errors and with no seingly factor which provides an error free
solution. In fact, some errors, namely in gest@&7#and #7, persist even after relevant hand
motion data from gesture #5.5 is no longer detéetab

The values for the sensitivity factor must be imderto 9, according to the
sequence, but it is also shown that a minimum vafue5 should be imposed, as it avoids

a false positive after gesture #8.

4.3.4. Window Size
For the study of the window size, two sensitivigtors were used based on the

previous calculations, with values 6 and 8, shogapectively in tables 4.3 and 4.4.

Table 4.3 - Result of segmentation method depending on window size w for the EMG method, with k of 6
at 50 Hz sampling rate

W Observations

10 Too many errors

30 FP after #2, FN in #2.5, FN in #4, FN in #5.5, FIN#i7, FN in #8
35 Deleted FN #4, FN #5.5, and FN #8

45 FN #7 deleted

50 Deleted FN #2.5, and FN #7

80 FP after #2 merged with #2

95 Fusion of #7 and #8

Table 4.4 - Result of segmentation method depending on window size w for the EMG method, with k of 8

at 50 Hz sampling rate

W Observations
35 FN in #2.5, FN in #4, two FN in #7
40 FN in #4 deleted
60 FN in #2.5 and one of FN in #7 deleted
85 Second FN in #7 deleted
100 Fusion of #7 and #8
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According to the results, the minimum window siZieew using a factor of 6 is
50, and when using a factor of 8 is 60 to avoidrsrm #2.5. Errors in #7 can be ignored as
limits since it is mostly an arm movement, with thi¢éial transition of the arm detected, and
these errors are likely to be solved when merduegsensors together.

In the light of these results, the chosen sensgytfaictor for the EMG sensor was
7, as it represents an intermediate value betweeimposed limits. In regards to the window
size to be used for this sensitivity factor, thesdn value was 50. Albeit it still showed
errors, these are expected to be deleted whenagwajuhe combination of sensors and also

takes into account the erratic nature of EMG.

4.4. Sliding Window for both sensors

As before mentioned, due to connection issues whemsmitting data by
Bluetooth from the armband to the computer, itasdhfor the MYO armband to have a
steady sampling rate for any of the sensors. Howyévis error was ignored, since it depends
on environment conditions and noise, and it wasefbee assumed for the IMU to have a
steady 50 Hz sampling frequency and the EMG to lamwensistent 200 Hz sampling
frequency.

Data was also aligned according to the timestanpegaWhen analysing data,
it was concluded that, when using the MYO data wapsoftware provided by Thalmic
Labs, the initial timestamps of IMU and EMG datawlebnot match, with IMU occurring
first, but when the data capture was terminatexy, Would be terminated in the same instant,
with never a time difference in the final framepeatior to 1 milliseconds in the 4 samples
analysed.

Assuming that the data provided steady sampliregrathich is not always true
according to (Nyomen, Romarheim Haugen, and Jens@@15), the data from the sensors
was adjusted in order to end in the same final é&carbwever, the initial frames always
included a certain difference. By analysing 4 sawpthe time difference found between
sensors’ initial frame varied between 22 to 38iseltonds, which is the equivalent of 4,4 to
7,6 frames, with EMG data length being the shoiitesill cases. This is explained due to

packet loss in the communications between the cten@nd the armband, which causes
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some frames of the EMG signal to drop and not lwerded in the data, causing the
misalignment when considering steady sampling rates

When using both sensors, a sensor fusion modadised on a single fusion
algorithm was used. As such, should one of themsnaresent a false negative in their
motion sequence, this error can be covered by ¢kection of motion by the other sensor.
Some false negatives are expected to be eliminatéte middle of gestures, but errors

associated with false positives outside of gestaredikely to pile up.

4.4.1. Parameters for the EXP method

When performing the sliding window method, valuefobe calculated df and
w had to be chosen for IMU and EMG sensors. Alberiadow size of 10 at a 50Hz
sampling rate was defined as ideal for IMU, whicbuwd correspond to 40 Hz at 200 Hz
sampling rate to maintain the equal time lengtl2@® milliseconds, the 50 Hz minimum
required by the EMG sensor was chosen as the wisdmeaused for the method, with a time
length of 250 milliseconds.

Sensitivity factors, on the other hand, could beselm separately, withof 2 for
the IMU features anld of 7 for the EMG features.

4.4.2. Choice of sampling rate

In order to relate data from the two sensors wischrovided with differing
sampling rates, two different methods for senssiofuwere designed.

The first function was labellegkpand, whose duty was to obtain an IMU signal
which repeats 4 times to match EMG signal rates Would assume the timestamp to use a
sampling rate of 200 Hz.

The other function, namealinimize, did the inverse oéxpand: obtaining an
EMG signal for the 50 Hz rate with each frame baangesult of the average of 4 distinct
signals, merged to adjust to the smaller rate. Hewehere is a risk that the EMG signals
might lose significance.

For the sensor fusion, the above mentioned funstgpand andminimize had

to be analysed.
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Expand function provided good results, allowing to reptethe results obtained
from the tests with the sensors individually. Usiradues obtained in previous tests allows
for a successful segmentation process with no®mwben combining the sensors.

Minimize function however required new calculation for EMénsitivity factor,
but at first sight provided a good solution as well

Expand function appears to be more heavy computationsé wiowever that is
not an issue in an offline approach. On an onlp@@ach, where response time is crucial,
it might be relevantMinimize function, while it appeared to show a good sohtiwas not
seen as reliable as the averaging of EMG signts @dta having already been filtered could
cause the EMG data to lose a lot of significance.

Expand function was therefore chosen for this offline m@ezh, as it avoids
distortion of the EMG data and allows to use vakmsulated before and therefore the EXP
method was designed, resulting from the combinatiboth IMU and EMG methods

previously designed.

4.4.3. Analysis of features on the EXP method

The features used in the method were analysed angared with the motion
segment output. In figures 4.7 and 4.8 it is eassee its importance of the IMU sensor for
the detection of all Ru gestures. In the case of gestures #2.5 and #& 8U features are
less noticeable, with the angular velocity featomeely surpassing the threshold in gesture
#2.5 and detecting a motion frame.

In the case of EMG features, it is possible to iseBgure 4.9 that the most
significant values are obtained at the beginningesftures, with transitions in gestures #4
and #7 showing to be more significant than hantuges#2.5 and #5.5, and start of gestures
which only include arm motion being detected asl.weésture #5 seems to be the most
easily recognised, with multiple EMG sensors’ dathues surpassing the defined threshold
throughout the gesture.

Note that there is a false positive present inlibginning of the sequence,
originated due to setup and is not related to astuge. Another trait visible from this
analysis is that, in various gestures, there isdhaotion detected before arm motion,
referring to transitions between gestures, in gmeof gestures #4 and #7, but also noise,
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noticeable in the case of gesture #2, which maypeanthe gesture classification and

recognition.
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Figure 4.7 - Linear acceleration feature in motion segmentation
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Figure 4.8 - Angular velocity feature in motion segmentation

#0.5 #2 #2.5 #4 #5 #5.5 #7 #8

1 T T T T

(O}

S

w

k]

o 05

o 1

= I

8 (|

g i

> poal W an it
0 X S UWAN AR AT, T VROTLIEVAREG RN
0 500 1000 1500 2000 3000 3500 4000

Time Frame

Figure 4.9 - Variance of EMG signals in motion segmentation. Features from signals of EMG sensors 1 to 8
included

4.5. Motion Dataset and analysis

The analysis was made by observing the motion éouiptained by the EXP
method, which is the combination of EMG and IMUrsits, and the EMG and IMU methods
alone. The purpose of this process is to bettercti@hich motion segments correspond to
each gesture, as the sequences were executedeatrtifpaces and with the presence of
errors, it is often difficult to discern betweensgges, as well as to achieve conclusions
regarding the overall performance of each method.
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4.5.1. Subject Recording

For the validation of the proposed segmentationhotkt the sequence was
performed 10 times by 6 different participantsuigsg in 60 test sequences, with a total of
480 gestures being evaluated.

The participants were requested to perform the esezpiin figure 4.1 after a
session of training, and pauses between testsdoerin order to avoid the deterioration of
data due to arm fatigue. Some participants didoperfmore than 10 sequences, but those
tests included obvious errors when performing thguence or had the user in a state of
fatigue, which severely harmed the quality of théad

4.5.2. Analysis of segmentation accuracy

In order to analyse the accuracy performance of niethod, the chosen
parameter for evaluation is segmentation errornfegation error is, according to (Siméo,
Neto, and Gibaru 2016), “the fraction between thmber of segmentation errors (the sum
of the number of times a gesture is over splitfagk segments of motion) and the number

of samples”. It is expressed in percentage in éouat1l.

number of segmentation errors
Serror =

(4.11)

100 [9
number of samples * (%]

Other parameters used in (Siméo, Neto, and Gibaté)2were average start
delay, average end delay, and extend level. Howéwey will not be evaluated in this work
due to this study not being performed in real-timeh no method of comparing tests with

ground truth.
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5. RESULT ANALYSIS

5.1. Analysis of the sliding window methods

5.1.1. Approach to data analysis

An important factor to take into account is theleation of individual EMG or
IMU data performance when considering non-releggstures. In the data analysis in this
work, should a single segment be detected in th&Hidta alone within a gesture period,
regardless of whether it supposedly contained maoton or not, it was assumed that the
EMG had detected that gesture. The same procesedsfor the analysis of IMU data.

However, there is a clear difference in EMG segs@mam different samples
for gestures which include arm movement. In thevgla of gesture #7, while in some cases
the EMG segment would only include the initial marmehere the hand transitions from
gesture #5.5 to #7, in other cases it includesethiirety of the gesture, with length
comparable to IMU, since there is noise from thedhlaeing detected as the arm motion is
performed. While this factor can be either benafieciEMG sensor noise which nullifies
IMU false negatives - or harmful - larger EMG segisewhich go beyond the gesture - in
the combination of sensors, in the case of theviddal EMG sensor this can greatly affect

results in gesture recognition.

5.1.2. Types of Errors found
Multiple errors were found throughout the analydiglata by the 6 participants,

with the following described errors found for then®dalities.

5.1.2.1. False positives due to setup

In the moments the recording of the sequence begieads, it was commonly
registered for one or more false positives to acthese were related to random movements
performed by the users in preparation for the secgier after the sequence was performed.
Out of the 60 sequences analysed for testing, 4vesth setup errors, most commonly

associated with random hand noise detected by M@ EBensors in the beginning of the
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sequence. For example, figures 5.1, 5.2, 5.4 @dlbinclude a false positive due to a setup
error.

They can be identified as errors related to therding rather than the actual
gesture sequence, and analysis of segmentationvaitrde performed both ignoring and

taking into account this type of error due to aw Irelevance.

5.1.2.2. False negatives due to differing arm and hand motion

With the combination of sensors, for gestures ###f in the beginning of the
gesture there is a transition motion of the hand abanges its pose from the previous
gesture, which is included within the gesture. éntain cases, this motion was performed
before the arm movement, distant enough for therbet a discernible separation in the
gesture. This error is therefore classified adsefaegative.

An example of this error can be seen in figure Where in gesture #7 the
segment detected by the EMG ends before the stdre dMU detected segment, resulting

in a false negative for gesture 7.

#0.5 #2 #2.5 #4 #5 #5.5 #7 #8

EXP

0 500 1000 1500 2000 2500 3000 3500 4000

IMU
T

1000 1500 2000 2500 3000 3500 4000

EMG
|

1 | 1 |
0
0 500 1000 1500 2000 2500 3000 3500 4000

Figure 5.1 - Sample from participant [B] of the segmentation with the 3 methods: EXP (top), IMU (middle)
and EMG (bottom)

5.1.2.3. False negatives mid-motion
In motion #4, #7 and #8, false negatives were foduntng the performing of
gestures. This error occurs due to these gestahl@ag on inversions of the direction of

movement, which resulted in the decrease of velogtien performing the gesture, with
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possibly even small pauses when inverting moverftgrgsome cases. This conclusion was
reached since the false negatives are easily dibtewhen analysing the IMU signal data
alone.

This type of error can be observed when analydiegsequence in figure 5.2,
where a false negative in the middle of gesturecdd be seen in both the IMU sensor
segmentation and the combined segmentation. Slyitgesture #4 shows a false negative
with the EMG method.

#0.5 #2 #2.5 #4 #5 #5.5 #7 #8
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Figure 5.2 - Sample from participant [C] for the segmentation with the 3 methods

5.1.2.4. False positives in between gestures

In between gestures, some dynamic segments weeetegtby the sliding
window function. These motions were concluded todmelom natural shaking which was
detected due to muscle fatigue or due to certaelldrand gestures which were performed
unconsciously by the participants in preparatiaritie different gestures.

In figure 5.3, a segment was detected by the EMG@ein between gestures

#2.5 and #4, which is identified as a false positiv
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Figure 5.3 - Sample from participant [E] for the segmentation with the 3 methods

5.1.2.1. Undersegmentation

Certain gesture segments have no breaks betweemrmtber, with motion
being continuously detected. Undersegmentation, kalewn as segment fusion throughout
this work, can be seen as a false positive whiclirscin between two segments. This error
is assumed to not affect the first gesture perfdirammce its start can still be detected through
pattern classification. However, the following gest included in the fusion error cannot
be discerned.

Many IMU data samples show that some gestures raapd proximate with
one another, revealing that in some cases therenotdyave been a decent pause period in
between gestures, due to the proximity of some satgnbut yet only a single IMU sample
shows two continuous gestures, shown in figure 5.2.

EMG data shows to be more frequent in this regaitth, a total of 8 occurrences
of fusion when analysing EMG sensors alone. Thidus to a combined effect of small
pauses in between gestures with noise, which egbuitfalse positives which could not be
discerned from the real gesture segment due twithgow size.

However, when combining both sensors, the pilindaif from both has also in
some situations led to gestures being indiscernidesides the factors mentioned above, the
fact that motions from hand and arm can start férént times can further contribute for

this error.
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In figure 5.4, gestures #4 and #5 have merged wisarg the EXP method,
despite being separated in each of the sensor dgetfdis occurs since there is motion
associated with gesture #5 detected by the EMGosée$ore gesture #4 is completed in the
IMU method. In this case, it is suspected thatEMG segment of gesture #5 is extended
due to random noise occurring before the gesture #5
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Figure 5.4 - Sample from participant [A] for the segmentation with the 3 methods
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5.1.2.2. Gestures not being detected

In five sequence samples, the gesture #2.5 wadetetted at all using the initial
parameters with the combination of sensors. Thasée explained as cases where the users
not only did not perform an arm motion swift enodglbe detected by the IMU but neither
did apply sufficient strength to the fist grip fibrto be well recognized by the EMG. The
non-detection of gestures is considered a falsativey

In the case of the individual sensors, the nondlieie of gestures was more
usual, with it occurring for each sensor often wlstempting to detect non-relevant
gestures, as it was expected. However, EMG sblhsta fair number of non-detection errors
when considering EMG relevant gestures.

Figure 5.5 shows a clear example of this. Gestbre i# undetected by the IMU
but the EMG does detect it; whereas both gestufesé #8 are undetected by the EMG but
the IMU sensor is capable of detecting them. Gest@r5 however is not detected by either
sensor, and as such is unrecognized in the condmnatt sensors.
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Figure 5.5 — Another sample from participant [B] for the segmentation with the 3 methods
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5.2. Comparison between methods

After analysing the sequences, the overall perfoceaf the sensors was
concluded to be as shown in table 5.1, with the liMéthod being the best performing

regardless of setup errors.

Tabela 5.1 - Overall segmentation error (%) of methods non-including and including setup errors

M ethod SERROR Serror With setup errors
EXP 12.91 27.08
IMU 11.88 16.67
EMG 43.75 57.92

5.2.1. EXP method

In the end, the resulting segmentation error ferabmbination of both sensors,
assuming both false positives, false negativesnamddetection, is 12.92%. If setup errors
were to be included, the segmentation error wauldeiase to 27.08%.

The total number of errors present in the studynwnging the combination of
sensors is 62. The most frequent type of error micguis undersegmentation, responsible

for 40,3% of the existing errors.

Jodo Lopes 60



Gesture Spotting from IMU and EMG Data for Human-Robot Interaction Result Analysis

While this error could be justified by gestures hawing significant pauses
between each other, the main issue stands thtieinase of EMG, many segments often
include some noise before and after the actuatigesthich, due to the size of the window
of 250 milliseconds, are not detected as falsetipesibut instead are identified as part of
the gesture.

8.1%

= FN
= FP
40.3% Fusion
= Non-detection

Figure 5.6 - Occurrence of each type of error for all gestures when considering combination of IMU and
EMG sensors

5.2.2. Individual IMU

Evaluating IMU sensor alone, the segmentation domoall gestures is 11.88%,
slightly lower than the total error. Including seterrors, the segmentation error is increased
to 16.67%.

The number of errors that occurred using only IMUbY, with a vast majority
due to non-detection of gestures (59,6%). Notahky,only two gestures the IMU failed to
detect were gestures #2.5 and #5.5, which are balydgestures and explains the big decline
in the segmentation error when considering onlguaht gestures.

Important notes to take are that the only falsetpesdetected by the IMU
sensor was the one that resulted in the fusiohetegments of gestures #0.5 and #2, and
which can be explained by not enough time in betwggstures. No false positives occurred,

which indicates good distinction by the IMU methafddynamic gestures.
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Figure 5.7 - Occurrence of each type of error when considering only IMU sensors for all gestures (left) and
for Rimu gestures (right)

5.2.3. Individual EMG

Evaluating EMG sensor alone, the segmentation etvtained for all gestures
Is 43.75%, even without including setup errors,chincreases the error to 57.92%.

The total number of errors that occurred usingBNES sensor data, excluding
setup errors, were 233. There is a large numbeirofs due to non-detection of gestures. In
fact, should only Ruc gestures be considered, the number of non-detsdbevers from 91
to 20. Yet, the issue is that in 11 different dituas, the EMG was unable to detect either
hand-only gesture #2.5 or #5.5.

19.2%
= FN
43.3% 44.8%  5.8% ; uFP
= Fusion
58.7%
16.3% = Non-detection
. (]

3.8%  8.1%

Figure 5.8 - Occurrence of each type of error when considering only EMG sensors for all gestures (left) and
for Remc gestures (right)

5.3. Gesture Comparison

When analysing performance based on gesturegastsble to observe through
table 5.2 that EXP obtained better results forgest#2.5, #4, #5.5; IMU for gestures #0.5,
#2, #7, #8 ; and EMG for gestures #5.
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Table 5.2 - Segmentation error (%) based on gesture

M ethod #0.5 #2 #2.5 #4 #5 #5.5 #7 #8 FP Total

EXP 1.67 6.67 10.0 5.0 16.67 100 13.33 13.33 3.81 12.92
IMU 0.0 1.67 16.67 13.33 10.0 45 6.67 1.67 0 11.88
EMG 51.67 55.0 20.0 56.67 833 15.0 45.0 70.0 4.05 43.75

Similarly, performance of the methods was alsouatad in table 5.3 based on

the groups of gestures defined in chapter 4.1.

Table 5.3 - Segmentation error (%) based on group of gestures

Method Rimu Remec Oimu Oewmc

EXP 9.44 11 7.22 10
IMU 5.56 18.33 1.11 30.83
EMG 47.78 29 58.89 17.5

In the case of the IMU method, it is possible te #&t gestures which featured

arm motion performed better, with the segmentagioar values for (hu being the lowest

amongst all gesture errors, with only 1.67% fortgees #2 and #8 and no error for gesture

#0.5, resulting in a &or of 1.11% when consideringnw, and a Sror 0f 5.56% when

considering R gestures, lower than thens of 11.88% achieved for the IMU method

when considering all gestures.

Gesture #7 did perform better using the IMU metbatlthe drawback being

that the initial hand movement responsible forlithad pose in #7 was not recorded in this

case, with the false negatives due to discernimgaard hand motion not being represented.

Depending on the gesture intent, this can mearthlkeatcorded segment may not represent

truthfully the gesture if only using the IMU senstm the case of the EXP method, the

existence of discerning segments of hand and artiomoas seen in figure 5.1, was

responsible for half the existing errors in all #aemples of gesture #7.

In the case of EMG, it was not the best solutiarQevc gestures, with an error

of 17.5% compared to the 10% obtained with the EXd®hod. The vast segmentation error

on Omu and Rvu gestures by the EMG method can be explained bydmedetection of

the gestures by the EMG.
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The only best performing gesture was #5, which astudes arm rotation.
According to the error count, both EMG and EXP preed 3 different false negatives on
gesture #5 on all samples, with the major causedter performance of the EMG method
being due to fusion errors. Fusion errors for tbéPEnethod included the fusion errors
present in the analysis of the individual EMG, &l as the segment fusion due to discerning
motion of arm and hand.

The lacklustre performance of the EMG method whamsitering gestures #4
and #7 versus #5, all which contain hand and artmomowas concluded to be due to limb
position effect, in which significant dynamic matmof the arm have been reported to affect
pattern recognition using EMG data. As #5 includesnall motion of the wrist rather than
the entire arm, it is less likely to be damaged tuarm inertia. IMU errors for gesture #5,
on the other hand, have been noted to occur sims®mme cases, the gesture did not only
include an arm rotation but as a small loweringh& arm well as the hand motion was
performed. This resulted in multiple segments bealetpcted by the IMU sensor which,
while undiscernible from hand motion in the EXP huet, when analysing IMU sensor they
were identified as errors. This is also an erroicivldepends on user, as only participants
[C] and [D] registered this error.

In the case of the EXP method, thev@ and Rme gestures performed best for
this method. When a hand gesture was not detegtdtelEMG sensor, it could be in some
situations compensated in the EXP method by IM@ déditen it registered an arm movement
from the gestures. The EXP method did perform arelDvu gestures with aesor of 7.22%,
even achieving an error of 1.67% on gesture #Qith, segment fusion being the main factor
for the difference in performance compared to ME imethod.

In the case of gesture #4, in the cases whereseomurred using the IMU
method due to false negatives mid-motion, in soil@tsons the detection of motion by the
EMG sensor, associated with hand contractions durinvement inversions, would cover
errors from the IMU, and therefore obtain an efree gesture segment in the EXP method.

The overall better performance of the IMU methocewlcompared to the EXP
method can be explained also due to the factlleat¢tare 3 gestures which include only arm
motion, that present very good performances withan IMU method, versus 2 gestures
which only include hand motion, where the IMU methegisters a large number of non-

detections.
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5.4. Comparison between participants

The amount and types of errors were greatly depgnde the participant
performing them. The segmentation error for comthisensors, when setup errors are not
considered, varied from a range of 1.25%, obtabygohrticipant [E] which includes a single
non-setup error, to 26.25%, by participant [D]shewn in table 5.4.

In regards to tables 5.4, 5.5 and 5.6, which indicasults from the EXP, IMU
and EMG method respectively, the colours identifg group in which each gesture is
included in, with light blue representingu9 gestures, light orangeefads gestures and grey
the other gestures which include contributions flmyth sensor sources. The data regarding

FP and total error segmentation does not inclutigoserors.

Table 5.4 - Segmentation error (%) based on gesture and participant for the EXP method

User #0.5 #2 #2.5 #4 #5 #5.5 #7 #8 FP Total
A 10 0 0 0 30 20 0 0 10 16.25
B 0 0 40 0 0 0 20 10 0 8.75
C 0 10 10 20 10 10 20 10 4.29 15
D 0 30 0 10 30 20 20 50 7.14 26.25
E 0 0 0 0 0 0 0 0 143 1.25
F 0 0 10 0 30 10 20 10 0 10
Total 1.67 6.67 10.00 5.00 16.67 10.00 133 133 381 12.92
3 3

Table 5.5 - Segmentation error (%) based on gesture and participant for the IMU method

User #0.5 #2 #2.5 #4 #5 #5.5 #7 #8 FP Total

A 0 0 10 0 0 30 0 0 0 5
B 0 0 50 0 30 70 0 10 0 20
C 0 10 40 20 30 90 0 0 0 23.75
D 0 0 0 60 0 70 40 0 0 21.25
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 10 0 0 0 1.25
Total 0.0 1.67 16.67 13.33 10.0 45 6.67 1.67 0 11.88
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Table 5.6 - Segmentation error (%) based on gesture and participant for the EMG method

User #0.5 #2 #2.5 #4 #5 #5.5 #7 #3 FP Total

A 30 50 0 20 20 20 20 50 10 35
B 80 60 70 80 0 0 40 70 0 50
C 90 70 20 90 0 20 50 50 4.29 52.5
D 30 50 10 10 20 20 90 80 8.57 46.25
E 60 70 10 50 0 20 10 100 1.43 41.25
F 20 30 10 90 10 10 60 70 0 37.5
Total 51.67 55.0 20.0 56.67 8.33 15.0 450 70.0 4.05 43.75

Information regarding the time duration of the satpes was also obtained in
table 5.7, with the time being counted from theiahiframe of the first gesture to the last
frame of the eighth gesture. The average time auraff the sequence based on all samples
IS 16 seconds.

Table 5.7 - Average time duration for each participant

User A B C D E F Total

Time(s) 15.4 15.41 18.2 19.09 15.59 12.32 16

Depending on the participant, the EXP or the IMUthnd showed the best
performance, with EXP being the better choice fantipipants [B] and [C] and IMU for
others according to tables 5.4 and 5.5. Analydegetrrors of all users based on method, it
can be seen that the EMG method is underperforfomgvery user according to table 5.6.

The best performing participant for the EXP metisofE], who registered only
a false positive during #3, originated from the ENEhsor, besides 2 setup errors, resulting
in a 1.25% segmentation error. The IMU sensor astrosvs no errors performed at all, with
all gestures detected.

On the other hand, participant [D] obtained thgést non-setup segmentation
error, of 26.25% for the EXP method, with an equahber of false negatives, mid motion
false positives and fusion errors.

Participant [A], who was responsible for the idis@ample through which the
function parameters were calibrated, showed thesbv\wwegmentation error for the EMG
method, with 35%, and a 5% segmentation error WiehIMU method. However, when

merging the data, the error was 16.25%. This stank contrast with participant [B], who
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showed higher errors with the individual sensorhuods - 20% for IMU method and 50%
for EMG method - but with the EXP method obtainadcearor of only 8.75%. This is due to
participant [B] presenting a large number of notedgon errors, 20 in the IMU method and
30 in the EMG method, which were reduced in the EXé&hod to only 4.

It is important to notice that the conditions undsich the tests were performed
and the quantity of training were different for theers. The tests were performed in different
days, with multiple external conditions which coblave affected the state of the user and
partially explain the difference in results’ quglit

In the same way, the amount of training done by emser was also different.
Participants [E] and [F] had more training thaneothsers, having performed the sequence
for (Simé&o, Neto, and Gibaru 2016) but with a Datave instead. Participants [A] and [B]
had worn the armband prior to the training sessging the MYO armband, and participants
[C] and [D] were using the armband for the firghéi. While not clearly, the segmentation
error shows a tendency for users who show morgiighior more comfort to have better
results.

Also associated with the amount of training dore focus given to each
sequence could have been a factor in some usemsghperformed better or worse, by
avoiding certain unwanted movements in betweerugestvhich can be the source of false
positives, especially undersegmentation in the@er@mmbination case.

The musculature for all individuals was not simikand therefore the ability for
a consistently reliable contact between the armBasensors and the skin could have
decreased for individuals with thinner arms, hagrtiee EMG signal.

While the position of the armband along the arm #n&dposition of the IMU
sensor relative to the arm were mostly similartaterdifferences between users may have
occurred, resulting in electrode shift in betweeantipipants. The MYO armband has a
mechanism which invalidates the test in the caselasftrode shift or lift within the same
gesture sequence. However, when comparing diffex@miples, whether the armband was
located closer to the hand or the position of #reser was different are likely scenarios.
These different positions would result in EMG crtek differing between users or between
sequences from the same user, resulting in differeiscular situations being evaluated by

the sensors.
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The variation of force between users may have alsen a factor in the
performance. When considering hand gestures, tt&tioam in speed at which gestures were
performed as well as the strength used could heswlted in variations of force between
users. This is exemplified by participant [C] amal,[who performed the sequence at a
slower speed according to notes taken from thedaup sessions, but also according to the
average time length of the sequences of these wbensn in table 5.7, which were
substantially higher than others’, and obtained highest segmentation errors when
evaluating the IMU method according to table 5.5.

Similarly, the gestures performed may be diffetersome extent depending on
user. From notes taken regarding participants’qoerance, user [F] has been noted to
perform noticeable arm motion when performingv© gestures, which could explain the
good results obtained by the IMU sensor in detgctive user’'s gestures, with no non-

detection errors.

5.5. Application of different filter for EMG data

Given the low performance of the EMG signal, neerprocessing options
were studied. One of the solutions found was tipieadion of a bandpass filter prior to
the application of the already existing filter,an attempt to remove motion artefact which
causes errors related to limb position. The apfiinaof the filter can be seen in figure 5.9,
in which 2 stages of filtering can be observed:rémilting data from the application of the
bandpass filter and rectification, and the daterafie filtering process.

150
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Figure 5.9 - Data treated with bandpass filter, rectification, and with lowpass filter, from EMG sensor 1

In the analysis of this filter, using the initisquence, it was noted that the new
method using both sensors could not detect gegtube but presented smaller segments

than in the former method, as seen in figure S/Ben altering the sensitivity factor, the
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detection of the gesture could not be made witdamaging the remaining gestures. The

defined parameters in chapter 4.4.1 were usedsragiproach.

1

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 5.10 - Resulting sequence segmentation from the application of the modified EXP method

The filter was then applied to the sequences fitwertt participants, in order to
obtain a comparison between performances of filgifter the process, results were
obtained regarding comparison of gestures betwesthads in table 5.8 and comparison
between participants in table 5.9.

As observed in table 5.8, the EXP method improvit thie new filter, with a
new total segmentation error of 9.17%, compardatieainchanged segmentation error of
the IMU sensor of 11.88%. The noticeable changleatall gestures, with the exception of
gesture #8, obtained the same of better resultsthet EXP method compared to the IMU
method. This is due to a decline in the numbehé&rtumber of undersegmentation errors
in the sequences from 24 to 4, due to the remdJalwefrequency noise from EMG
sensor.

However, the visible drawback of this filter is ttiecline in performance of the
Oewmc gestures’ detection in comparison to the previdies, with 19 non-detections, as
the EMG filter had more difficulty identifying theand gestures. The EMG filter is still
capable to detect a majority of the hand gestuvbssh can be seen since the EXP method
presents better results than the IMU method whesidering hand gestures. However, the
results are still worse than the ones presentimotd filter, with errors of 10% for both
gestures as seen in table 5.2.

The EMG shows an increase in the segmentation #aor43.75%, shown in
table 5.1, to 55.63% observed in table 5.8, ma#ily to increased non-detection ai®
gestures. Other gestures however also show inctess®'s, especially gesture #5.5.
When considering the EMG method, the non-deteafddemc gestures increased from 11

to 40, a third of all @uc gestures.
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Table 5.8 - Segmentation error based on gesture with modified filter

#0.5 w2 w5  # #5 #5547 #8 FP Total
EXP 0 167 133 10 3.33 21. 6.67 3.33 190 09.17
3 67
IMU 0.0 1.67 16.6 13.3 100 45 6.67 167 O 11.88
7 3

EMG 70 75 333 616 116 41. 516 88.33 1.67 55.63
3 7 7 67 7

When comparing participants, in table 5.9 it carséen that the EXP method
performed best for users [A], [B], and [C], but ealewas an improvement compared to
the values in table 5.5. The only exception wa# wdérticipant [B], as the detection of

hand gestures for this user was mainly dependetiteoBEMG sensor.

Table 5.9 - Segmentation error based on participant

A B C D E F Total
EXP 2.5 10 13.75 22.5 1.25 5 9.17
IMU 5 20 23.75 21.25 0 1.25 11.88
EMG 47.5 70 68.75 56.25 57.5 33.75 55.63

Overall, the performance of the sensor fusion neeties improved with the
application of a different pre-processing methadd$ into other filtering options could
further improve the segmentation, as well as ttieneson of new parameters for
segmentation, possibly using different methods siscthe genetic algorithm suggested in
(Siméo, Neto, & Gibaru, 2016), since the currenthod uses values defined for the

previous method.

5.6. Comparison to the previous work

When comparing with the results obtained in (Simdeto, and Gibaru 2016),

itis possible to see that the combination of IMd MG sensors is not as effective as using
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a data glove. The average oversegmentation ertaingol in the other work of 2.70% is
inferior to segmentation errors achieved any methdtlis work. It is therefore concluded
that the use of IMU and EMG sensors within a MY@land, while a more accessible

option, does not provide a motion segmentatiorcaesrate as the one obtained with a Cyber
Data Glove.
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6. CONCLUSION

The sliding window method is a necessary methodwateempting to identify
segments for gesture recognition. Three slidingdavm methods were used to analyse data
from a number of sequences, one relying on data fhe IMU, one on data from the EMG
and a third one relying on data from both send@asameters such as the thresholds and
window sizes were manually calculated and apphetthé¢ segmentation methods.

In a first approach, IMU is the best option of theee methods using the defined
sequence, mainly when considering a segmentation ef 1.11% for arm only gestures,
with the segmentation error for this method forgdktures being 11.88%. However, the
combination of sensors appears to show bettertsethdn the individual sensor if hand
motion is included in the gesture, depending onrtensity of arm motion.

Segmentation based on EMG, on the other hand, ptov@t be a very effective
method using the planned methodology, with a vagimentation error percentage of
43.75% when used alone. When considering gestuteshwcontain hand movement
however, it is still an important tool to improveetdetection of gestures alongside IMU.

With a second approach aimed at solving the ermm flimb position using a
different filter, the combination of sensors acleid\a lower segmentation error of 9,17%,
with the drawback of fewer gesture detections leyEMG sensor.

Future work with this solution will be dedicated itdegrating the proposed
solution using IMU and EMG sensors to an onlinelysig This work was performed
offline, and could not be verified online, with tgeound truth not being recorded. As such,
errors like start delay, end delay and extend ecauld not be evaluated and a full
comparison to (Simao, Neto, and Gibaru 2016) cabaahade.

No classification was performed, however features dlassification were
studied. Classification is an important processvaluate the quality of the segments
obtained to later be correctly identified and used HMI scenatrio.

Additional efforts to this work could be dedicatedfurther improving EMG
motion segmentation by exploring other pre-procgssnethods. Similarly, an adaptive

threshold for gesture segmentation was not usédisnwork. Quality of motion detection
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for both IMU and EMG methods could possibly be ioyad by studying the application of

a genetic algorithm as done in (Siméo, Neto, arzhfsi2016).
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