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Abstract

This paper addresses the optimization of batch polymerization systems, using a feasible path approach, with roots on Model
Predictive Control (MPC) theory. The approach allows the reuse of many concepts previously developed for nonlinear MPC of
continuous plants. It also provides an efficient and well-integrated methodology for the optimal supervision of discontinuous
chemical processes. The application of this technique to the optimization of the batch suspension polymerization of vinyl chloride
and the solution polymerization of methyl methacrylate is considered. Significant advantages associated to the use of this
methodology are demonstrated with both examples, in terms of productivity gains and the capability of manufacturing products
with pre-specified properties. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to their nonstationary nature, batch processes
present interesting challenges in their control and online
optimization, and create unique opportunities for the
development of advanced supervision strategies. In the
case of batch polymerization processes, optimal opera-
tion involves computing and accurately maintaining the
optimal temperature and initiator (or co-reactants) ad-
dition policies that can lead to a product with desired
properties (such as molecular weight average, polidis-
persivity, chain length distribution) and final conver-
sion, while minimizing the total operation time. In
many cases, batch operations are still carried according
to recipes based on heuristics and past experience.
However, the recent availability of detailed mechanistic
models, experimentally validated, provide a significant
incentive for a wider use of newly developed optimiza-
tion algorithms in batch systems operation.

Previous research on the determination of optimal
policies for batch polymerization processes concen-
trated on techniques for the solution of optimization

problems subject to algebraic and differential con-
straints. Several authors reported the use of the classi-
cal variational approach for the solution of specific
problems in this field (Hicks, Mohan, & Ray, 1969;
Sacks, Lee, & Biesenberger, 1972; Chen & Jeng, 1978;
Chen & Huang, 1981; Thomas & Kiparissides, 1984;
Ponnuswamy, Shah, & Kiparissides, 1987; Secchi,
Lima, & Pinto, 1990). To avoid the numerical
difficulties associated with the solution of the resulting
nonlinear two-point boundary value problem, various
methods based on the discretization of the differential
equations have been proposed (Cuthrell & Biegler,
1987). These rely on weighted residuals, orthogonal
collocation or finite differences schemes, using simulta-
neous solution of the differential equations and opti-
mization. The application of these techniques to
polymerization processes is considered by Jang and
Yang (1989), Jang and Lin (1991), Crowley and Choi
(1997, 1998), Gentric, Pla, Latifi, and Corriou (1999),
Pinto and Giudici (2001).

On the other hand, nonlinear Model Predictive Con-
trol (MPC) algorithms using a feasible path approach
have been tested with success on continuous processes,
featuring highly nonlinear behaviour and open-loop
instabilities, in the presence of general operating con-
straints (Oliveira & Biegler 1995; Santos, Oliveira, &
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Biegler, 1995). The method described in this paper
implements a feasible path approach and is able to
efficiently address a large number of optimization
problems in this area. In this method the differential
equations are solved in a separate phase from the
optimization, allowing an accurate solution of the dif-
ferential equations, by specialized numerical al-
gorithms. The integration of the solution and
optimization phases is performed similarly to the
Newton Control formulation for nonlinear MPC of
continuous chemical processes (Oliveira & Biegler).
As in the Newton control, the model and sensitivity
equations are integrated along a candidate path. The
values of the state variables are therefore obtained
simultaneously with the input and initial condition
sensitivities for a number of discrete time intervals
covering the operating horizon. When these sensitivi-
ties become available, they are used for the construc-
tion of a dynamic matrix, containing first order
information for the system, relative to the decision
variables of the problem.

The formulation is sufficiently flexible to accommo-
date objectives such as the direct minimization of the
operating time, or the deviations between a reference
molecular weight distribution and the one obtained,
subject to several constraints in the operating vari-
ables and specifications of the properties of the
product, instantaneously and/or at the end of the run.
An additional advantage of this approach is that if a
Newton algorithm is used for online control, most of
the program code and data structures can be reused
between the optimization and control layers. The use
of this methodology for general optimization of dis-
continuous processes is therefore investigated in this
paper.

Section 2 describes the modifications required in
the previously developed Newton Control formulation
(Oliveira & Biegler, 1995), to accommodate more gen-
eral objectives in the optimization of discontinuous
processes, such as the direct minimization of the op-
erating time. Situations where the decision variables
correspond to inputs or initial conditions of the prob-
lem are considered. Simulation results are presented
in Sections 3 and 4. The application of this method-
ology to the batch suspension polymerization of vinyl
chloride is considered in detail in Section 3. Two
mechanistic models for this system are presented,
allowing a comparison of the optimization results and
their sensitivity to be established. A dynamical analy-
sis of the system is also described together with the
on-line implementation of the optimal trajectories
obtained. Section 4 demonstrates the of use of this
methodology to originate new products with pre-
specified final properties, in this case with the batch
solution polymerization of methyl methacrylate
(MMA).

2. Problem formulation and solution strategy

The dynamic optimization problems to be solved
can be formulated as:

min
u(t)�Hik

�(t, x(t), u(t))=G(x(tF))+
� tF

t 0

F(x(t), u(t), t) d�

(1)

s.t. x� = fp(x, u) (2)

y=gp(x) (3)

ul�u�uu (4)

xl�x�xu (5)

yl�y�yu (6)

where fp and gp are usually assumed continuous and
differentiable, except perhaps at a finite number of
switching points. Here x�R

ns is the state vector,
u�R

ni is the input vector, y�R
no is the output vector,

ul, xl and yl are lower bounds, while uu, xu and yu are
the corresponding upper bounds. G(x(tF)) is a func-
tion of the state variables at the end of the run, and
F is a functional of the state and input variables
along the operation path. Both are assumed to be
general nonlinear, and twice differentiable.

This formulation is sufficiently general to express
different objectives and constraints of various nature
such as:
� The direct minimization of the operation time :

�(·)= tF (7)

� The treatment of soft constraints, especially relative
to the end of the operation, that can be formulated
as:

�(·)= (y(tF)−ysp)TQ(y(tF)−ysp) (8)

where ysp represents the desired final values, y(tF) is
the value of a set of output variables at the end of
the run, and Q is a weighting matrix.

� Objectives related to regulation and tracking of an
arbitrary trajectory, for a set of properties expressed
in terms of the input, state and output variables,
similarly to the nonlinear MPC strategy (Oliveira &
Biegler, 1995),

�(·)=
� tk+ toh

tk

(y−ysp)TQy(t)(y−ysp)

+ (u−ur)TQu(t)(u−ur) d� (9)

where ur�R
ni and ysp�R

no are reference trajectories
for both the inputs and outputs. Qy�R

no×no and
Qu�R

ni×ni are adjustable weighting matrices in the
objective function. The length of the output predic-
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tive horizon is given by toh and tk is the present
sampling instant.
� Various rigid operational constraints written as alge-

braic or differential equalities and inequalities, that
can be expressed in terms of the input, state and
output variables of the model, in the form of Eqs. (2)
and (3).

� Optimal initial conditions for the model Eqs. (2) and
(3), e.g. optimal amounts of the initiators to be
added at the beginning of the operation, according
to the objective �(·) chosen.

� Multiple simultaneous objecti�es, that can be reduced
to a set of problems of the type above, by any of the
available techniques.
The decision variables for this problem can be either

input variables (e.g. temperature and initiator addition
policies), or initial conditions for the state variables
(e.g. quantities of each initiator to be added at the
beginning of the operation).

The solution and implementation of the optimal poli-

cies is simplified by assuming piecewise constant input
profiles u(t). The resulting nonlinear programming
problem can be solved using a successive quadratic
programming (SQP) approach, requiring the linear and
quadratic terms of the constraints and objective. To
simplify the notation, augmented vectors U, X and Y
are defined, containing all values of the corresponding
variables inside an operating horizon:

U�R
nim� [uk

T uk+1
T ··· uk+m−1

T ]T

X�R
nsp� [xk+1

T xk+2
T ··· xk+p

T ]T

Y�R
nop� [yk+1

T yk+2
T ··· yk+p

T ]T

Considering only input variables as decision variables,
an exact linearization of the model around a nominal
trajectory U� , that represents an estimate of the solution,
can be written as:

Y� �Y� +�Y
�U

�
U=U�

�U=Y� +Sm�U (10)

where �U=U−U� . The quantity Sm is the dynamic
matrix of the model, containing the first order informa-
tion for the system relative to its decision variables.
This matrix can be efficiently computed from the origi-
nal differential model through the use of appropriate
sensitivity equations. The entries of the dynamic matrix
can be expressed as:

Smij
=

�
�
�
�
�

0 if j� i
Sij if j�m

�l= j
i Sil otherwise

The terms Sij can be computed by different methods,
either by partial derivation with respect to the state
variables (Fig. 1), or by considering total derivatives
with respect to the input variables (Fig. 2). In the first
case one obtains:

Sij=

�
�
�
�
�

Ck+ i�k+ j−1 if i= j

Ck+ i
��m=1

i− j �k+ i−m
�

�k+ j−1 otherwise

These sensitivity coefficients are defined by,

�k=
�xk+1

�xk

, �k=
�xk+1

�uk

, Ck=
�g(x)

�x
�
x=xk

Each sensitivity matrix can be obtained through the
solution of the following system of differential equa-
tions (Oliveira, 1994):

��(t, tk)
�t

=
�fp(x, u)

�x
�
(·)

�(t, tk)

Initial conditions: �(tk, tk)=Ins.

Fig. 1. Computing the input derivatives using state and input sensitiv-
ities.

Fig. 2. Computing the input derivatives using only input sensitivities.



D.C.M. Sil�a, N.M.C. Oli�eira / Computers and Chemical Engineering 26 (2002) 649–658652

Fig. 3. Defining minimum time solutions.

final time is usually defined by a certain output vari-
able, which reaches a predefined value yF=y(tF) at the
end of the operation (Fig. 3). The end point can be
easily detected by modern integrators, when yF is spe-
cified as a limit value. We assume that this happens
during the nth discretization interval, from tn to tn+1,
inside a larger horizon defined as a maximum bound on
tF. Given the previous assumptions about the model, it
is possible to write tF as an implicit function of the
initial conditions and input variables during this
interval,

tF=h(xn, un) (11)

The first order information for tF can then be ob-
tained by writing a Taylor series in this interval:

tF= t� F+
�tF

�xn

�
x= x̄

(xn− x̄n)+
�tF

�un

�
u= ū

(un− ūn)

The derivatives (�tF/�xn)�x= x̄ and (�tF/�un)�u= ū are, in
some cases, difficult to obtain directly, by integration of
the sensitivity coefficients, since Eq. (11) is usually not
available in explicit form. However, since these coeffi-
cients are only needed for the last time interval, they
can also be approximated by finite differences, without
a significant penalty. Applying the previous concepts,
the linearization of tF with respect to the input variables
can be written as:

tF= t� F+S*�U

where

S*�R
ni p� [Sn,1* Sn,2* ··· Sn,p* ]

and

Sn, j* =

�
�
�
�
�

0 if j�n

(�tF/�xn)
��m=1

n− j �n−m
�

�j−1 if j�n

(�tF/�un)�u= ū if j=n

Constraints in the output variables can be imposed
during the time profile (at each discretization instant)
and/or at the end of the run, expressing either operating
limits or specifications of the final product. It is there-
fore convenient to form two groups: output variables
with restrictions along the operation (YO) and output
variables with restrictions at end of the run (YF). Eq.
(10) originates therefore,

Y� O=Y� O+Sm
O�U

Y� F=Y� F+Sm
F�U

with Sm
O and Sm

F calculated in a similar form, using the
corresponding Ck+ i output coefficients. This allows the
solution of minimum time problems to be formulated
as the SQP iteration of,

��(t, tk)
�t

=
�fp(x, u)

�x
�
(·)

�(t, tk)

+
�fp(x, u)

�u
�
(·)

[U(t− tk)−U(t− tk+1)]

Initial conditions: �(tk, tk)=0.
These equations can be solved together with Eq. (1)

inside each corresponding sampling interval in the oper-
ating horizon. A total of 2p sensitivity matrices, with
pns(ns+ni) entries is required to compute Sm by this
method. The second approach defines each term Sij as:

Sij=Ck+ i�(tk+ i, tk+ j−1)

This corresponds to the integration of only the input
sensitivities during several sampling intervals where
they are defined, resulting in a total of mp− (m−1)m/2
coefficients of size ns×ni. Since they originate similar
information, the most adequate method can be chosen
for each problem, taking into consideration the relative
size of the input and state vectors.

This strategy can easily deal with model discontinu-
ities at a finite number of points, usually associated
with distinct operational phases, that occur frequently
in batch processes. However, these will have to occur at
the beginning (or end) of a sampling interval, whose
length can simply be adapted to match their occur-
rence. The derivative information of the model, prob-
lem constraints and objective function allows us to
formulate the dynamic optimization problem as a NLP,
and use a SQP-type method for its solution (Oliveira &
Biegler, 1995; Santos et al., 1995). For some types of
problems only the first order information of the objec-
tive is needed in a Gauss–Newton formulation, while
for other cases the use of second order information of
the Lagrangian in a full SQP-type method is beneficial.

2.1. Solution of minimum time problems

When the objective has the form of Eq. (8) or Eq. (9),
the algorithms described in Oliveira and Biegler (1995);
Santos et al. (1995) can be used directly. However,
some modifications in this formulation are required to
treat minimum time problems. In these problems, the
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min
�U

J2= t� F+S*�U+�UTH�U

s.t. Uld��U�Uud

Yld�Sm
O�U�Yud

Smn

F �U=�yF

where �yF=ysp−y(tF), and Smn

F is a submatrix of Sm
F,

whose rows are the rows of Sm
F referring to the end of

the run. H represents an approximation of the Hessian
of the Lagrangian of Eq. (1). This formulation is closely
similar to the one used in the nonlinear Newton control
law, making the algorithms developed for its solution
applicable for minimum time problems as well.

2.2. Optimization with respect to the initial conditions

When initial conditions are present as decision vari-
ables in the optimization problem, a similar approach
can be used to compute the derivatives of the model
with respect to them. For example, a linearization of tF

is given by

tF= t� F+S*�xo

with �xo=xo− x̄o, using a nominal initial condition x̄o

and first order information given by

S*=
�tF

�xn

�
n

m=1

�n−m.

Similarly, the model equations can be also written as

Y� =Y� + �Y
�xo

�
x= x̄

�xo=Y� +Sm�xo

with Sm�R
(nop)×no. In this case the row i of the dy-

namic matrix can be expressed by

Smi
=Ci �

i

m=1

�i−m.

Therefore, minimum time problems can be solved
through the SQP iteration of

min
�x o

J2= t� F+S*�xo+�xo
TH�xo

s.t. xold
��xo�xoud

Yld�Sm
O�xo�Yud

Smn

F �xo=�yF

Finally, when both the inputs and the initial conditions
of the state variables are decision variables, we can
write the decision vector as,

U*�R
nip+ns � [uk

T uk+1
T ··· uk+p−1

T xo
T]T

� [UT xo
T]T

and formulate the minimum time problem as,

min
�U,�x o

J2= t� F+S*�U*+�U*TH�U*

s.t. �U ld* ��U*��Uud*

Yld�Sm
O�U*�Yud

Smn

F �U*=�yF

where the first order information of the objective func-
tion is given by,

S*�R
nip+ns� [Sn,1* Sn,2* ··· Sn,p* Sn,p+1* ]

and

Sn, j* =

�
�
�
�
�
�
�
�
�

0 if n� j�p

(�tF/�xn)
��m=1

n− j �n−m
�
�j−1 if j�n

(�tF/�un)�u= ū if j=n

(�tF/�xn)�m=1
n �n−m if j=p+1

In this case, the linearized model equations can still be
expressed by,

Y� =Y� +Sm�U*

with the entries of the dynamic matrix Sm�R
(nop)× (nip+

ns) given by,

Sij=

�
�
�
�
�
�
�
�
�

Ci�j−1 if i= j

0 if j� i

Ci
��m=1

i− j �i−m
�

�j−1 if j� i

Ci �m=1
i �i−m if j=p+1

3. Application to the vinyl chloride suspension
polymerization

In this section we consider the application of the
previous strategy to the optimization and nonlinear
control of the batch suspension polymerization of vinyl
chloride (VCM). This system involves four phases
(monomer, polymer, aqueous and gas), and a heteroge-
neous reaction. Various kinetic models have been pro-
posed to describe the process, with significant
differences at the level of complexity and detail given to
various chemical and physical phenomena taking place.

In order to compare the optimization results, and to
better assess their sensitivity, two mechanistic models
for this process were built, based on the kinetics infor-
mation provided by Xie, Hamielec, Wood, and Woods
(1991), Kiparissides, Daskalatis, Achilias, and Sidiro-
poulou (1997). Both of these models consider diffusion
controlled reactions. The monomer distribution in the
different phases is computed as a function of the con-
version and the reactor operation conditions. In Xie’s
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model, the rate constants are modelled using the free
volume theory, while in Kiparissides’s model the termi-
nation and propagation rates are expressed in terms of
reaction and diffusion limiting terms; the later term
depends on an effective reaction radius and on the
diffusion coefficients, calculated from the extended free
volume theory (Kiparissides et al., 1997). The state
variables introduced by Xie’s model are the monomer
conversion, the first and second moments of the dead
polymer distribution in the polymer phase, number and
weight accumulated molecular weight averages, and
quantities of the initiator. In Kiparissides’s model we
have as state variables the conversion, zero, first and

second moments of the dead polymer distribution, and
quantities of the initiators.

The predictions from both models are compared in
Fig. 4, using a constant polymerization temperature of
55 °C, with an equimolar mixture of initiators: (A)
tert-amyl peroxyneodecanoate; and (B) tert-amyl per-
oxypivalate (Akzo Nobel Chemicals BV, 2000). As can
be observed, the conversion profiles are close until a
conversion of 70% is reached. Their divergence after
this point can be attributed to the fact that in Kiparis-
sides’s model the initiation efficiency after the critical
conversion is not considered diffusionaly controlled, as
is in the Xie’s model. With respect to average molecular
weights, we can observe in Fig. 5 that for the same
temperature the models predict polymers with slightly
different properties at the end of the operation. These
differences can be due to the values of the kinetic
parameters used in each model, especially the chain
transfer to monomer that controls the molecular weight
of the polymer, as well as other considerations made in
their development.

3.1. Dynamic analysis of the model

To develop a better understanding of the difficulties
associated with the implementation of arbitrary optimal
trajectories in this system, we studied the dynamic
behaviour of a batch reactor of this type, including its
jacket cooling system. This analysis was based on a
constant polymerization temperature profile (T=
55 °C), which can be commonly found in current in-
dustrial practice. The complete dynamic model was
linearized around this output reference trajectory, using
the corresponding (variable) input reference profile. The
eigenvalues of this model, using Kiparissides’s kinetics
information are plotted in Figs. 6 and 7. This dynamic
model has a total of eight state variables (six state
variables previously described, with energy balances for
the reactor and jacket). Two distinct eigenvalue clusters
are visible, before the critical conversion is reached. The
first cluster, on the left, has only one negative eigen-
value, with position practically constant along the en-
tire operation. The other cluster of dominant
eigenvalues, located closer to the origin, has one null,
three positive and three negative eigenvalues. In this
group, two of the negative eigenvalues have an imagi-
nary component. After the critical conversion (Fig. 7),
two positive eigenvalues in this group become negative,
with complex conjugated components. This analysis
shows that the reactor is locally open-loop unstable
around the nominal constant trajectory. Similar conclu-
sions were obtained when the Xie’s kinetic model was
used with the same physical configuration (Silva, 2002).
The state controllability matrix, obtained for the lin-
earized model along the same operating points, dis-
played a numerical condition ranging from 1024 to 1032,

Fig. 4. Conversion profile for isothermal operation (—, Xie’s model;
—··, Kiparissides’s model).

Fig. 5. Conversion dependence of number and weight average molec-
ular weights (PMn and PMw, respectively) (—, Xie’s model; —··,
Kiparissides’s model).

Fig. 6. Root locus of the linearized batch reactor, with a constant
output profile, before the critical conversion is reached.
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Fig. 7. A closer look at the root locus of the linearized model, after the critical conversion.

Fig. 8. Normalized optimal reactor temperature policy (—, Xie’s model; —··, Kiparissides’s model).

indicating that the arbitrary specification of all state
variables can be difficult for this model (although not
impossible).

3.2. Optimization results

Our optimization methodology was applied to the
kinetic models described in Section 3.1, to determine
the best operating profiles that lead to a product with
desired properties in minimum time. Differently from
the previous dynamic model, the reaction temperature
and the concentrations of the initiators at the beginning
of the operation were chosen here as main decision
variables, in order to make the results applicable to
reactors of different sizes and configurations. In this
paper, we report only the effects of using each of these
decision variables separately. Their combined effect is
studied elsewhere (Silva, 2002).

Even when each decision variable is used separately,
the occurrence of multiple local optima is possible, due
to the general nonconvexity of the objective and the
model equations. This depends on the particular nature
of the objective function used and additional con-
straints that might be added to the formulation. The

optimal profiles obtained in these examples were tested
for the presence of multiple solutions by recomputing
them from distinct initial estimates. No evidence of the
existence of multiple local optima was found with the
examples considered here.

3.2.1. Effect of the reaction temperature
Fig. 8 shows the results obtained for the optimal

temperature profile that minimizes the batch time, when
a product with identical properties to the polymer
obtained using a constant temperature profile is desired
(as described in Section 3.1). This is guaranteed by
including in the formulation Eqs. (1)–(6) restrictions in
the polidispersivity and molecular weight averages.
Also, due to operational constraints, bounds of �5 °C
relatively to the nominal temperature were imposed. As
can be observed, when compared with isothermal oper-
ation, the profiles obtained with Kiparissides’s and
Xie’s models are able to achie�e reductions of 8.7 and
23% in the reaction time, respectively. Xie’s model
shows more sensitivity to the reaction temperature and
therefore has lower deviations relatively to the nominal
trajectory. After the critical conversion, the reaction
temperature increases up to the maximum imposed,
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Table 1
Optimization of the initial quantities of the initiators

Isothermal case Xie’s model Kiparissides’s model

19.4Total amount (mol) 22.118.0
Initiator A (%) 5350 53

47 4750Initiator B (%)
7.2Reduction in the cycle time (%) 14.4

since in this phase of operation the majority of the
polymer is already produced and this increase will not
significantly affect the average properties of the
polymer, while still contributing to reduce the total
batch time.

3.2.2. Effect of the initiator quantities
The composition of the initiator, and the best

amount that should be added at the beginning of the
isothermal operation, in order to produce a polymer
with desired properties (weight average molecular
weight and polidispersivity) in minimum time, were also
the subject of optimization; due to physical constraints,
these quantities must be positive.

The results obtained are described in Table 1. As can
be observed, both models also allow important reduc-
tions in the cycle time, compared to the base case, while
suggesting a similar optimal initiator composition. The
reduction obtained with the Xie model is smaller, be-
cause the initiation efficiency becomes diffusionaly con-
trolled after the critical conversion.

3.3. Control results

The feasibility of implementing the optimal profiles
previously determined was tested, using both a linear
controller and a nonlinear Newton control strategy. A
simple linear PI controller was selected, as representa-
tive of current industrial practice. Since the process was
found to be open-loop unstable, the linear controller
was tuned with the Ziegler–Nichols criteria, followed
by manual retuning to avoid the appearance of oscilla-
tions at the beginning or end of the operation. Both the
linear controller and the Newton predictive controller
were initially tested with constant polymerization tem-
perature profiles, and were able to effectively eliminate
unknown disturbances, such as mismatches in the
amount of initiators effectively added, or variations in
the cooling flowrate and temperatures (Silva, 2002).

Here we consider their application in the implemen-
tation of the temperature profile that corresponds to
the minimum time solution obtained using the dynamic
model described in Section 3.1, and Kiparissides’s ki-
netic information. This is illustrated in Figs. 9 and 10,
using kc=20 and �I=1500 s, with a sampling interval
of 100 s for the linear controller, and Q1=I, Q2=

10−3I with a sampling time of 200 s for the Newton
controller. To avoid the appearance of oscillations,
while simultaneously providing good tracking proper-
ties, the linear controller needs to be carefully tuned for
each reference profile, while the Newton controller is
much less sensitive to the choice of adjustable parame-
ters, and is able to operate with smaller amplitude
changes in the manipulated variables and smaller re-
sponse overshoots.

3.4. Computational aspects

The optimal operating profiles and the predictive
control problems were solved using a prototype numer-
ical implementation. This is composed by three mod-
ules, each corresponding to an independent process
running on a Unix workstation. The modules for the
simulation and solution of the quadratic optimization

Fig. 9. Implementation of the optimal temperature policy for the
PVC reactor (…, PI; —, MPC).

Fig. 10. Normalized inlet jacket temperature profile, for the optimal
profile of Fig. 9 (…, PI; —, MPC).
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Fig. 11. Initial and final MMA polymer chain length distributions (--,
desired; �, obtained; —, initial).

this study is based on Crowley and Choi (1997) and
includes mass balances on the monomer, polymer and
solvent (ethyl acetate). Number and weight average
molecular weights are calculated from the moments of
the dead polymer molecular weight distribution. The
state variables are monomer conversion (X), weight
fraction of polymer (xp), weight fraction of solvent (xs),
zero, first and second order moments of the dead
polymer molecular weight distribution (�0, �1, �2), and
f(m, n) which corresponds to the weight fraction of
polymer in the chain length interval from m to n. In
order to obtain a good compromise between the quality
of the results and the dimension of the optimization
problem, we used 15 intervals for the discretization of
the chain length distribution, resulting in a model with
21 state variables.

The main goal for this example is the following: gi�en
that we are able to manufacture a product with the
distribution represented by the solid line in Fig. 11 (e.g.
using isothermal operation), we wish to find a tempera-
ture profile that enables us to produce a polymer with the
chain length distribution represented by the dashed line in
the same figure. A sampling interval of 4 min, with
horizons of length 90 was used in this case. We en-
forced a temperature constraint of 40�T�70 °C. Af-
ter some trials, the tuning parameters in the objective
function were chosen as Q1={10, …, 10, 1, 1, 1, 0.1,
0.1, 0.1}I, in order to produce a good fit of the desired
response. Fig. 12 shows the optimal profile obtained.
As can be observed from Fig. 11 the distribution ob-
tained closely matches the desired one. After knowing
that these product specifications are feasible, the direct
minimization of the final time can be performed simi-
larly to the previous example.

5. Conclusions

A nonlinear feasible path optimization strategy was
considered in this paper, for the determination of opti-
mal policies of batch processes. The formulation was
demonstrated to be flexible, requiring only simple mod-
ifications in its basic structure in order to be able to
address a large number of problems in this area.

This technique was illustrated with two batch poly-
merization systems. The suspension polymerization of
vinyl chloride was considered by using two sources of
kinetic information for this system, and comparing the
optimal results predicted by these models. In each case,
significant productivity improvements were demon-
strated to be feasible, compared to the common indus-
trial practice of isothermal operation. The
implementation of the optimal solutions obtained can
also be helpful in the validation of the currently avail-
able process models for this system. The online imple-
mentation of the optimal profiles obtained was

Fig. 12. Optimal MMA reactor temperature policy.

subproblems were written in Fortran, while the main
part of the optimization algorithm itself was coded in
the Mathematica language. To converge the optimal
profiles within a tolerance of 5×10−4, the number of
iterations of the SQP algorithm ranged usually between
5 and 15. Typical CPU times for determining optimal
profiles with Xie’s model are 72 min for the model
solution and sensitivity calculation, 2 min for the non-
linear optimization, and 6 s for the solution of the
quadratic subproblems. The relatively high CPU times
needed for the solution of the differential equations are
in part due to the use of small integration stepsizes, in
order to avoid jumps over large regions of operation,
and the numerical difficulties associated. Further im-
provements in this efficiency of this phase are being
considered presently.

4. Application to the solution polymerization of MMA

This section considers the application of the previous
strategy to the optimization of the batch solution poly-
merization MMA, in order to demonstrate the ability
of the method to originate products with pre-specified
final properties.

The kinetics of free radical solution polymerization
of MMA is relatively well known. The model used in
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considered, showing that the use of advanced control
strategies, such as a similar Newton predictive formula-
tion, can be advantageous in terms of better perfor-
mance and flexibility in the choice of the tuning
parameters.

Finally, an example of using this optimization ap-
proach to manufacture new products with pre-specified
final properties was illustrated with the MMA system.
These application examples clearly demonstrate the
possible advantages that a more generalized use of
these methodologies can bring to the area of batch
systems operation.
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