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Abstract

The increasing penetration of electric vehicles (EV) usage will require a control

system to manage their recharging process. This work proposes the development of a

locally decentralized EVs’ charging algorithm, which controls and optimizes the charging

process of a group of EVs, based on a binary sequence. In this work the proposed

method and the development of the charging algorithm are respectively explained.

Then, by simulating various scenarios the performance of the algorithm is assessed. The

algorithm controls the charging process in a coordinated way and it was designed to be

implemented in a local distribution grid, allowing to accommodate all the EVs without

needing to reinforce the grid infrastructure capacity. It considers users’ preferences,

such as their desire state of charge, while takes their electricity tariffs into account.

The optimization objective was set for the consumers, to minimize the deviation of the

actual charging cost from the minimum charging cost. The integration of different EVs’

charging patterns and various types of electricity tariffs, leads to a realistic approach. It

was concluded that, through the proposed method, charging a greater number of EVs is

feasible without needing to invest in increasing the capacity of the grid infrastructure,

while the charging cost for each and every user is kept close to the minimum one.

Keywords: electric vehicles; coordinated charging; decentralized control; optimization;

evolutionary algorithm

Resumo

O aumento crescente da utilização de véıculos elétricos (VE) vem exigir, num futuro

próximo, o uso de um sistema de controlo para gerir o seu recarregamento. Este trabalho

propõe o desenvolvimento de um algoritmo de carregamento de véıculos eléctricos,

localmente descentralizado, que controla e optimiza o processo de carregamento de

um grupo de EVs, baseando-se para tal numa sequência binária. Neste trabalho são

descritos o método proposto e o algoritmo desenvolvido. O desempenho do algoritmo

é avaliado através da simulação de vários cenários. O algoritmo controla o processo

de carregamento de uma forma coordenada, e foi desenvolvido para ser implementado

numa rede de distribuição local, permitindo acomodar todos os VEs sem a necessidade

de reforçar a infra-estrutura de rede elétrica. As preferências dos utilizadores, como

por exemplo, o estado de carga (state of charge) desejado, são tidas em consideração

pelo algoritmo, assim como as suas tarifas de eletricidade. Em relação à optimização,

a função objectivo foi definida para os consumidores, de modo a minimizar o desvio

entre o custo efetivo de carregamento e o custo mı́nimo de carregamento. A integração

de vários padrões de carregamento de VEs e de vários tipos de tarifas de eletricidade,

permitem uma abordagem realista. Concluiu-se que, através do método proposto, é

viável o carregamento de um número maior de VEs, sem a necessidade de investir

no aumento da capacidade da rede, ao mesmo tempo que o custo de carregamento

individual de cada VE é mantido próximo do valor mı́nimo.

Palavras-chave: véıculos eléctricos; carregamento coordenado; controlo descentralizado;

optimização; algoritmo evolutivo
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1 Introduction

The deployment of Electric vehicles (EVs) as an alternative to internal combustion engines,

which are also able to be recharged at home or workplace will pose new challenges to

electric power systems, grid operators, electricity suppliers and even consumers. According

to Eurostat (2011) 60% of the total electricity consumption in European Union is due to

buildings sector, which has already made the electricity demand in this sector a crucial issue.

On the other hand, EVs in the near future may manifest themselves as new end-use loads,

significantly contributing to pushing upwards the electricity demand in this sector.

The impacts of the increasing penetration of EVs, firstly will be felt at the level of the

local distribution in electric power grids. The lack of infrastructure capacity may hinder

the increasing number of EVs from simultaneously being charged. Therefore, the electric

power grids can be subjected to several changes caused by the simultaneous charging of EVs’

batteries, such as: i) creating undesirable peak demands; ii) overloading the distribution

grid; iii) increasing stress on grid infrastructure, and iv) increasing power losses (Monteiro

et al., 2012; Gan et al., 2013; Clement-nyns et al., 2010).

These problems are more of a concern when a large number of EVs are simultaneously

connected to the electric power grid. Dealing with these problems and responding to such

demand is more feasible and reliable, if a smart management system is employed. Therefore,

the increasing number of EVs may strongly benefit from a control system to manage their

recharging process.

Several studies demonstrate that ”smart” charging strategies can not only mitigate some

of the aforementioned problems but also stabilize the grid and defer new infrastructure in-

vestments, for instance, by scheduling EVs’ charging periods to fill the valleys in electric load

profile (Gan et al., 2013). However, due to lack of the capacity of local power transformers it

may become difficult to accommodate the increasing number of EVs. This study proposes

the development of a charging algorithm, which is able to control and optimize the charging

process of a group of plugged-in EVs;

i) in a locally coordinated way,

ii) considering supplying the power through a unique Distribution Power Transformer,

iii) following the approach of ”peak shaving”,

iv) while keeping the charging costs for all consumers close to the minimum.

Therefore charging a greater number of EVs will be feasible without needing to invest

in increasing the capacity of the grid infrastructure. To accomplish this, the algorithm

considers the users’ preferences, such as their desired state of charge (SOC), while takes every

user’s tariff scheme into consideration (i.e. different price structures/values and contracted

power). In this study the optimization objectives are set for the consumers, minimizing the

deviation from the minimum possible cost of charge, while considering the available power

(power transformer capacity) and the individual contracted power values as constraints.

It is worth mentioning that through presented method, by rationally using the available
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capacity of the grid, a greater number of EVs can be charged simultaneously. In other words,

improving the electricity market by selling it more. The main goal of this work is to develop a

flexible algorithm, which may be used in scenarios with different electric grid characteristics,

constraints and consumers’ load profiles. The consideration of different alternatives, such as

various charging patterns and dissimilar electricity tariffs leads to a more realistic simulation.

Smart grids are the key-enablers of future low-carbon electricity systems. They facili-

tate demand-side efficiency and enable the increasing number of renewable and distributed

generation shares, as well as EVs. Furthermore, smart grids allow for the development

of the internal energy market and security of networks, while maintaining availability for

non-renewable generation (European Commission, 2011).

The management of EVs’ charging process should be an automated process. Accordingly

these type of algorithms can have different optimization objectives, depending on the stake-

holders. Several entities might be interested in such autonomous management:

Distribution grid operator is interested in managing the charging actions to

incorporate the maximum number of EVs without massively reinforcing the grid

(Sundstrom and Binding, 2010);

Retailer is interested in balancing electricity purchase and sale in order to increase

its profit in the electricity trading context;

Consumers are interested in minimizing the cost of charging and increasing the

reliability of supply.

This work is structured as follows: the literature review is presented in the next chapter.

The proposed method is introduced in chapter III. The function of the algorithm is described

in chapter IV. In order to assess the proposed algorithm, different scenarios are simulated

and results are given in chapter V. Finally chapter VI discusses and concludes the work.

2



2 State-of-the-Art

In this chapter, firstly an overview about Demand Side Management is presented. Afterwards

the history of EVs from their invention to present is shortly described. And the last part,

Charging Algorithms, the literature review of various similar works is presented.

2.1 Demand Side Management

Traditionally, supply is adjusted in real time to match the demand. However, in order to

lower the energy use, consumers are encouraged to modify their demand through a strategy

known as Demand Side Management (DSM) (Torriti, 2012). Some objectives of DSM are

peak shaving, load shifting, and valley filling (Gellings and Smith, 1989). Demand response

programs are one of the tools to achieve the desirable demand pattern changes (Inage, 2010),

either by price-based programs, allowing consumers to voluntarily adjust their load based

on electricity prices, or by incentive based programs, offering consumers monetary bonus to

reduce their loads (Faria and Vale, 2011). DSM techniques have a wide range of benefits

which lead not only to direct energy and economic savings but also to indirect savings due

to an increased efficiency of the electric power system (Strbac, 2008).

Nevertheless, DSM tends to disturb the natural diversity of loads, and without some form

of coordination, it may create some undesirable effects. Such effects become worsen with

the presence of EVs. The electric power grid, hereafter simply designated by grid, can be

subjected to several changes caused by the simultaneous charging of EVs’ batteries, which

includes creating unwanted peak demands, overloading the distribution grid (possibly leading

to a blackout), exceeding stress on the grid infrastructure (reducing their lifespan), increasing

power losses (contributing to the degradation of the electrical power quality) (Monteiro et al.,

2012; Gan et al., 2013; Clement-nyns et al., 2010; Commission, 2000). Regular use of DSM

techniques requires the ability to control devices, rescheduling the operation or continuing it

during the interruptions.

The concept of smart grid brings new opportunities to DSM, allowing changing EVs’

charging loads. For example, it allows for the interruption of charging process for short peri-

ods of time, changing the parametrization of the charging power (voltage and/or current) and

turning several ongoing charging off or postponing their operation time (Hammerstrom et al.,

2007). The installation of smart meters allows electricity suppliers to create innovative pricing

schemes. This lets consumers, who typically tend to consume less when electricity prices

are high (The et al., 2006), manage their electricity consumption in line with price movements.

Over the last decade several pricing schemes have been proposed. The most notable

are i) real-time (RT) pricing, ii) time-of-use (TOU), and iii) in critical peak (CP). RT

pricing considers the day divided into contiguous blocks of hours. In this scheme, the price of

electricity varies among different blocks, reaching its highest point around peak hours. TOU

is similar to RT, but the day is divided into a relatively small number of blocks. In CP pricing,

the price may vary hourly as it is tied to the real electricity market cost and is not known in

advance, requiring price signals from the supplier to the smart meter (Newsham and Bowker,
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2010). Implementing a RT scheme would require the installation of automated metering

and a communication infrastructure, as well as regulatory changes. However, the potential

savings from peak reduction covers the installation costs (Ilic et al., 2002). On the other hand,

implementing a TOU scheme would not require a complex two-way communication system,

simplifying information and communication technologies (ICT) and data management issues.

2.2 Electric Vehicles

In this section a brief review about the history of EVs is presented, to clearly determine

where EVs took place in the past and why lots of attention have recently given to such

vehicles as a transport system.

2.2.1 Early Years

The history of EVs began in the mid-19th century, although it is uncertain who invented the

very first EV (Wikipedia, 2014). In 1828, Ányos Jedlik, created a small model car powered

by a type of electric motor that was earlier invented by him. In 1835, professor Sibrandus

Stratingh with his assistant Christopher Becker created a small-scale electric car, powered by

non-rechargeable battery (University of Groningen, 2013).

In 1859, a French physicist, Gaston Planté, invented a lead-acid battery. That battery was

the first generation of rechargeable batteries. Afterwards, in 1881, another French scientist,

Camille Alphonse Faure significantly improved the design of the battery. His improvements

greatly increased the capacity of such batteries. Since then, due to the invention of recharge-

able batteries, which had made the EVs possible, they became more popular in markets and

manufactures were persuaded to develop EV’s technologies.

In the United States of America, the first electric car, capable of reaching a speed of 23 km/h,

was built in 1890. By that point, Europeans had been using of electric tricycles, bicycles,

and cars for almost 15 years. France and the United Kingdom were the first nations to

support the widespread development of EV (Bellis, 2006). It is worth mentioning that at

the beginning of the 20th century, 38 percent of American automobiles were powered by

electricity, where 33,842 EV were registered in the United States at that moment. Amer-

ica became the country where EV had gained the most acceptance (Cromer and Foster, 2013).

By 1920, due to following reasons, EVs began to lose their position in markets:

i) at that point, countries had a better system of roads, bringing the need for vehicles with a

greater range than that offered by electric cars;

ii) worldwide discoveries led to the wide availability of affordable gasoline, making internal

combustion engine cars cheaper to operate over long distances (Wikipedia, 2014);

iii) The invention of the electric starter for starting a gasoline engine by Charles Kettering

in 1912, gas-powered vehicles became ever easier to operate;

iv) by the use of muffler, which had been invented by Hiram Percy Maxim in 1897, the noise

emitted by gas-powered vehicles became more bearable;

v) and finally, the mass production of combustion engine vehicles by Henry Ford with the
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price about half of the electric one. Due to these reasons, EVs declined their popularity so

that they had totally disappeared by 1935 (Bellis, 2006). The years following until the 1960s

the development of EVs had shut down.

The energy crises of the 70s and 80s, the environmental impact of the petroleum-based

transportation infrastructure, and the need to reduce the dependency on imported foreign

crude oil (in Oil-importer countries), all together brought a renewed attention to the electric

transportation infrastructure. Therefore, numerous experimenters began to work on EVs

and their batteries technologies (Cromer and Foster, 2013).

2.2.2 90s to present

Since 1995 several legislation and regulatory actions in the United States and worldwide

renewed the electric vehicle development efforts (Bellis, 2006). Moreover, the global economic

recession in the late 2000s led to increased requests from automakers to abandon fuel-inefficient

cars and instead focus on the development of hybrid and electric vehicles technologies.

Therefore, various known manufacturers such as Honda, Toyota, Nissan and General Motors

had started to develop related technology of such vehicles and improve their performance.

As a result Toyota RAV4, General Motors EV1 and Honda EV Plus were the products of

their efforts. At that point, EVs satisfied the driving requirements, however, in comparison

with gasoline-powered vehicles they were still expensive. The mass production and improve-

ments in the manufacturing process later reduced prices competitive to gasoline-powered

vehicles (Bellis, 2006). Tesla Motors, the pioneer American plug-in EV manufacturer had

released the Tesla Roadster in 2008. The Roadster was the first EV powered by a lithium-ion

battery, highway-capable all-electric along with a remarkable mileage about 320 km per charge.

2.3 Charging Algorithms

The impact of a high penetration of EVs on the grid is currently an active area of research.

In Clement-nyns et al. (2010), the power losses and voltage deviation are analysed for a local

distribution grid by considering an uncoordinated charging process which starts randomly,

either when EVs are plugged-in or after a fixed delay. The authors concluded that this

charging process can lead to grid problems and therefore they proposed a coordinated charg-

ing to minimize the power losses and maximize the main grid load factor, by considering

smart meters sending signals to each and every EV. They demonstrated that if a coordinated

charging system is used, less grid reinforcement is required, the maximum load is lower, while

the power losses are reduced, and the power quality is improved to a level similar to a case

where EVs are excluded. However, the implementation of such charging mechanism can be

costly for both the distribution system operator (DSO) and consumers.

Different approaches have been suggested to help dealing with these impacts, such as

controlling and/or coordinating the EVs’ charging process, or regulating the required power

according to the grid capabilities and constraints (Monteiro et al., 2012). Several studies

demonstrate that ”smart” charging strategies can not only mitigate some of the aforemen-
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tioned problems but also stabilize the grid and defer new infrastructure investments, for

instance, by scheduling EVs’ charging periods to fill the valleys in electric load profile (Gan

et al., 2013).

Coordination strategies can be divided into centralized and decentralized strategies (Deh-

Chang Wei and Nanming Chen, 1995). In centralized strategies, a central operator dictates

precisely the rate and length of charging to each and every EV. Decisions can be made

according to system-level consideration and/or vehicle-level preferences, as for instance the

desired charging periods (intervals) or the final state of charge (SOC). Decentralized strategies

are more flexible. For example, decisions can be made according to electricity prices (time

of use or critical peak pricing) or every user may be able to determine its own charging pattern.

Ahn et al. (2011) presented a sub-optimal decentralized charging control algorithm for the

EVs connected to a smart grid with the aim of reducing the power generation cost and the

carbon dioxide emissions. Their controller is a function of a number of factors, including the

estimated numbers of EVs and their plug-in and off times, the estimated SOC of their battery,

and the predicted total power demand to charge all the batteries within a specific period of

time. The method focuses on load shifting and valley filling: the charging process starts as

soon as the valley period begins, when the base demand curve decreases. The charging process

will be finished by the end of the valley period. In their approach, only one type of EV charg-

ing profile is considered, and user’s preferences are completely out of concern. The authors

concluded that the electricity generation cost can be reduced. However, the cost-effectiveness

of the charging process from the users’ point of view was not explained. Furthermore, due to

the fact that batteries with higher input power can be charged faster, the developed algorithm

probably does not fairly distribute the electricity among users, a key issue in these algorithms.

Ma et al. (2013) employed the concept of non-cooperative games in order to coordinate

the decentralized charging of a number of independent plugged-in EVs. The authors assumed

that the supply and base loads (non-plugged-in EVs’ load) are perfectly predictable, and

EVs are weakly coupled via a common electricity price which is determined by the average

charging strategy of the plugged-in EVs population. The goal of the optimization was to

minimize the total cost of charge. The authors only considered a fully charging criterion as

users’ preferences. They showed that, under certain mild conditions, the large population

charging games will converge to a unique Nash Equilibrium which is optimal only for homo-

geneous populations. Due do this fact, the method may not be flexible and applicable to a

heterogeneous population, where there are different types of EVs.

Several concepts have been proposed for charging management using price-based meth-

ods. Cao et al. (2012) proposed an optimized model for EV charging facilities (charger),

responding to a TOU electricity price, for charging a group of EVs, considering SOC curves.

The authors assumed that the starting time of charging obeys a daily Normal Distribution.

They concluded that, from the user’s point of view, the obtained charging pattern can bring

a significant reduction in the charging cost for each and every EV. However, they did not

explicitly present information about the communication process between the EVs’ charger

and the aggregated system operator in a case with not enough power responding to the
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demand side. Moreover, they did not consider a scenario in which there is not enough

available power to satisfy the requested SOC within low electricity rates moments, what

decision would be taken to plan the charging process.

In another work (Sundstrom and Binding, 2010), a method with the focus on proposing

a novel algorithm to perform the charging process of a large EV fleets is described. The

algorithm is called grid-aware price-based algorithm, where the grid constraints (i.e. trans-

former capacity) were taken into consideration. It was assumed that there was a centralized

EV aggregator that can act on the power market and use financial instruments to, for

example, minimize the cost of charging the EVs. The electricity grid was simulated using a

conventional load flow simulation and the grid model was based on the grid on the Danish

island of Bornholm. The algorithm was applied to plan the charging of an EV fleet with

3500 commuter vehicles driving over the simulated grid. The authors assumed that EVs

could be charged at workplace and also at home. It was shown that through the proposed

algorithm the overloading in the grid was significantly reduced (due to grid constraints).

However, from the users’ point of view they did not demonstrate, results about the total

charging cost, whether the charging cost for each and every user were reduced or not, or if

the overall charging cost was decreased or not. Only one type of EV with unclear battery

capacity was used and also only one type of electricity tariff was considered for all the users.

Mareels et al. (2014) proposed a method to manage the EVs charging process. Charging

decisions are made individually for every household, without any access to full network state.

The decision is taken in real time, using both instantaneous and historical local voltage

measurements to estimate the present network load. The main goal was to maximally use of

the grid capacity at any time, while ensuring about the fairness of charging for all the users

(fairly demand responds for all the users).

As earlier mentioned there are two approaches in terms of charging problems from the

demand side. One is to manage the EVs’ charging process in a centralized way, where

an aggregator communicates with every EV and dictates a suitable charging profile for

every vehicle based on global information (Richardson et al., 2012). The other, which also

Mareels et al. employed in their work, is the decentralized approach, in which every EV

charger can calculate its own charging profile in a distributed manner. The centralized

approach requires all agents to participate in decision making process and this requires a

large communication and computational cost where the network size is also large. The second

approach is less-complex and less costly, but also less effective if limited information is used

in the procedure.

Mareels et al. (2014) assumed that each EV’s charger has a digital controller installed able

to read local voltages, battery SOC and performs calculations to give charging instructions.

The authors presented three different scenarios: i) the aggregator with no control over the

grid; ii) an implementation of their algorithm where an aggregator has perfect knowledge

about how much spare capacity the grid has and how many EVs are plugged-in; iii) and

implementation of their algorithm where only local information are available for every EV. By

simulating an actual distribution network they had shown that, for the third scenario, even
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with a high penetration rate of EV, the algorithm successfully mitigates the peak demand

and fairly satisfies the users’ requested SOC without breaking any grid constraint. Even

though, as they also mentioned, the performance was not as efficient as a centralized solution.

They did not explicitly present information about the EV’s battery capacity and it was not

clear whether they had used only one type of EV or more. Furthermore, they only assumed

the power transformer capacity as a constraint and they did not talk about the charging

cost. However, their main goal was to maximally use the grid capacity at any time, slightly

different from this project.

In another work (Ahmad and Othman, 2014) an optimal charging strategy for plugged-in

hybrid EV using Evolutionary Algorithm is presented. The paper describes three methods to

charge the plugged-in hybrid EVs: price-based charging, load-based charging and SOC-based

charging. Evolutionary programming (EP) is used to optimize the charging rate and SOC,

thus minimizing the charging cost. The charging cost is calculated based on real time

electricity price (i.e. the day ahead information).

Only one type of EV is considered while no constraints is taken into account. The authors

assumed a scenario in which it is possible to change the battery charging input power while it

is undercharge. They did not mention what would be the effect of changing the charging rate

on the battery performance or on its lifespan. They had shown for load-based and price-based

charging methods, when the base load or electricity price is high the given charging rate is

low and vice-versa. They showed 20 different possibilities of daily charging rate (different

charging profiles).

However, they did not explicitly present what is the minimum cost and how much is the

charging cost in scenario in which the proposed algorithm is not employed. Moreover, accord-

ing to the available information, the charging duration that can be done in dump-charging

scenario is 7 hours, whereas through their proposed method it takes about 12 hours that is

too long from users’ point of view.

Table 2.1 briefly describes the reviewed works of this chapter.
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Table 2.1: Summary of the reviewed works: Clemente-nyns et al., 2010 (a); Ahn et al., 2011
(b); Ma et al., 2013 (c); Sundstrom and Binding, 2010 (d); Mareels et al., 2014, (e); Ahmad
and Othman, 2014, (f)

Ref. Method Goal Constraints Results Disadvantages

a)

Coordinated charg-
ing, centralized,
considering smart
meters, charging at
home

Minimizing the
power losses and
maximizing the
main grid load
factor

Not men-
tioned

Less grid reinforce-
ment was required,
the maximum load
and the power losses
were decreased and
the power quality
was improved

High cost of implemen-
tation, electricity tar-
iff was not considered
in corresponding the
charging’s cost

b)

Decentralized charg-
ing control, consid-
ering a smart grid,
load shifting, valley
filling

Reducing the
power genera-
tion cost and
carbon dioxide
emissions

Was con-
sidered

It was shown that
the electricity gener-
ation cost can be re-
duced

The electricity was
not fairly distributed
among all the users,
the users’ preferences
were not taken into
consideration

c)

Coordinated charg-
ing, decentralized,
EVs are weakly
coupled via the elec-
tricity price signals,
non-cooperative
game based

Minimizing the
total charging
cost

Was con-
sidered

The charging cost
was decreased for
the case homoge-
neous population

The method may not
be applicable to a
heterogeneous popula-
tion (various type of
EV), different electric-
ity structures were not
considered, one type of
EV was assumed, it is
not flexible to use in dif-
ferent scenarios

d)

Coordinated charg-
ing via a central-
ized EV aggregator,
charging at home
and workplace

Performing the
charging process
of a large EV
fleets, reducing
the charging
cost

Power
Trans-
former
Capacity

Reducing the over-
loading in the grid

Only one type of EV
was considered, it is
not clear if the charging
cost was reduced or not,
and one type of electric-
ity tariff was considered
for all the users

e)

An aggregator was
assumed, decentral-
ized, instant deci-
sion is taken for ev-
ery user separately,
less demand of com-
munication

Maximally using
the grid capacity
at any time, to
satisfy the users’
request

The Power
Trans-
former
Capacity

Preventing over-
loading in the
grid

It was not mentioned
if the charging cost was
reduced or not, it is not
flexible to use in differ-
ent scenarios and one
type of EV was consid-
ered

f)

Coordinated decen-
tralized charging,
regulating the
power of the
charger, evolution-
ary programming

Reducing the
charging cost

The avail-
able power
at every
moment
of the
charging
process

At pick moments
and high electricity
rates the charging
rate was low, the
cost of charge was
reduced

Long duration of the
charging process (12
hours), it was not
shown how much the
charging cost was re-
duced, only one type
of electricity structure
and EV were consid-
ered
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3 Methodology

As earlier mentioned, the goal of this work was to develop a locally centralized algorithm

which is able to control and optimize the charging process of a group of independent EVs.

For each and every user, the electricity price scheme and their requested SOC are taken into

consideration. This process is subject to two constraints: i) the available power at level of

the distribution grid (the local power transformer capacity); and ii) the contracted power of

every consumer which depends on the supplier’s services. In this chapter the mathematical

model and the fundamental principles of the work are described.

Theoretically, in an uncoordinated charging system, the probability of all the EVs being

charged at the same time may be higher, in comparison to a coordinated system. Indeed,

due to taking advantage of electricity price during off-peak periods, consumers plug-in their

EVs at the same time where there is no controller to adjust them. However, due to grid

constraints (i.e. the distribution power transformer available capacity) it is not possible

to simultaneously charge all the EVs at the maximum power rate. Therefore, this section

introduces a framework to simultaneously charge a group of EVs in a coordinated system.

In such coordinated system, an aggregator controls the charging process, taking into

consideration the periods of lowest electricity price of every consumer while avoiding to

overload the transformer capacity. As a consequence, a higher number of EVs can be charged

during the periods in which electricity rate is low. Therefore, the optimization objectives

in this work are set for consumers, minimizing the deviation from the minimum possible

charging cost of all the members in a coordinated charging system. Moreover, indirectly, for

the Distribution Grid Operator, maximizing the number of EVs being charged simultaneously.

In the following paragraphs assumptions and the foundation of the method are presented.

Nowadays, most of the embedded batteries in EVs are advanced Lithium-ion, Lead-Acid

or Nickel-Metal hydride. Fortunately, EVs are controllable loads and therefore their charging

process can be interrupted without any memory effects on some types of them (Clement-nyns

et al., 2010). This flexibility makes it possible to manipulate EV’s charging process. In this

study two different types of EVs, with different demand characteristics are considered. This

involves different battery capacities and EV’s mileages (the consumed energy to drive one

kilometre). For simplicity, it is considered that Lead-Acid batteries have also no memory

effects caused by interrupting the charging process. Figure 3.1 illustrates the charging profile

of these two EVs: Nissan is equipped with Lithium-ion battery (29 kWh capacity) and GM1

with Lead-Acid (27 kWh capacity) (Madrid et al., 1999; Mendoza and Argueta, 2000).

For both, it is remarkable that the charging rates steep rise in power demand in the

beginning of the process and a sharp decline for Nissan at the end. The charging profile

of these two EVs, from empty state to fully charged, were obtained by fitting curves to ex-

perimental data, available in the literature (Madrid et al., 1999; Mendoza and Argueta, 2000).

The total charging length of every EV is split into time-slots of one minute, t , (e.g., if a

fully charging process takes 5 hours, the number of intervals of charge are 300, (t = 300)).

For instance, the charging function for an EV equipped with a Lithium-ion battery (Nissan)

10



Figure 3.1: The charging profile for two different EVs, starting from empty state to fully charged

is written according to equation (1).

Pi(t) =


−7.80× e0.06t 0 < t ≤ 30

6.60 30 < t ≤ 270

−0.22× t+ 66.26 270 < t < 300

(1)

Through equation (1) the demanding power to charge the embedded battery in Nissan, Pi(t),

is known at every moment, t, for each and every user i. Equation (2) also demonstrates

the demanding power to charge the GM1’s battery, Pi(t), for every minute of its charging

process from empty state to fully charged.

Pi(t) =



1.140× t+ 0.013 0 < t ≤ 5

0.005× t+ 5.700 5 < t ≤ 150

−0.098× t+ 21.2 150 < t ≤ 165

5 165 < t ≤ 200

60.270× e−0.012×t 200 < t ≤ 300

1.5 300 < t ≤ 390

−0.049× t+ 20.990 390 < t < 420

(2)

The general charging period is considered to be from 18:00 to 0‘9:00 of the next day

(15 hours). This period is also split in one minute intervals, j, meaning when the charging

process is started at 18:00, j = 1, and when the process is finished at 8:59, j = 900. For every

user, i, at interval, j, according to their charging patterns a constant input power, Pi(t), or

zero will be assigned. To accomplish this, a decision variable, λ(i,j), is defined, indicating

whether the charger must be connected (assigned with the value 1) or disconnected (assigned

with the value 0).

The total charging time of an EV depends on its initial SOC. The relation between the

batteries’ cycle charging time (t) and the planning time (j) is as follows:

ts is the period of the time corresponding to the initial SOC of the battery, meaning that

for an EV at the beginning of its charging process t = ts. When the battery is charging, t

increases and its charging’s time can be computed as t = ts +
∑j

k=1 λ(i,k).

To generate the charging plan (i.e a matrix containing 0’s and 1’s) for all the members
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(EVs), the decisions are taken according to the following aspects:

• The Total Available Power, the available power at interval j, TAPj ;

• The user’s Available Power, at the moment j, regarding it’s contracted power, APi,j ;

• The users’ Electricity Cost rates, ECi,j ;

• The requested Power at the moment j from the EVi according to its battery charging’s

profile, Pi(t).

In following, equations from (3) to (6) translate the described method into its mathematical

form. Equation (3) shows the total available power for every instant j of the charging process:

TAPj = PTC −
n∑

i=1

BLj (3)

The total available power, TAPj , at every moment j equals the power transformer

capacity, PTC, minus the summation of all the base loads,
∑n

i=1BLj , at the moment j.

In addition, through equation (4) the available power of user i regarding its contracted

power, CPi, is known for every moment j:

APi,j = CPi −BLi,j (4)

Moreover, as earlier mentioned the decision variable, λi,j , for user i at the moment j, can

be either 1 or 0. Equation (5) shows the amount of input power of charge, Pi,j , for user i at

the moment j. It can be a positive number, Pi,t, or zero.

Pi,j = λi,j × Pi,t (5)

According to the aforementioned statements, the pattern of the charging process for each

and every EV will be separately generated, meaning that for each EV will be assigned a

vector of charging plan consisting of time slots j, containing the binary sequence of 0’s and

1’s, λi,j . These binary sequences show at the moment j, what decision was taken, then what

is the input power of charger of the EVi, Pi,j .

In short, the algorithm for every EV spreads the binary sequence out in such a way that

the load’s intervals of all the EVs are adjusted to fill the valleys of their base load profiles.

It must be mentioned that the scheduling will be updated each time an EV is added to or

subtracted from the group.

Two different electricity pricing schemes are considered for each user: real time pricing

with three different prices (blocks of hours) and Time of Use scheme varying hourly. These

schemes are one of the most significant factors affecting the results of the study. In figure

3.2 two different tariffs are illustrated from 06:00 pm to 09:00 am. It is assumed that the

households’ base load are perfectly predictable and the algorithm will be implemented in low

voltage distribution grids with different characteristics. Different values of contracted power,

as individual constraint, are considered for every household.

In terms of optimization, as highlighted earlier, the objectives are set to minimize the

deviation of the actual charging cost from the minimum charging cost (MinCost), for all n
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Figure 3.2: Two different Electricity rates cost, from 18:00 to 09:00 of the next day(15 hours)

users, as well as to minimize the maximum individual cost deviation, according to equation

(6):

min

[
α

( n∑
i=1

[ 900∑
j=1

ECi,j×Pi,j×∆t
]
−MinCost

)
+β

(
max∀i

(( 900∑
j=1

ECi,j×Pi,j×∆t

)
−cost(i)

)))]
(6)

Where ∆t is equal to 1
60hour (one minute), ECi,j is the electricity rate of user i at the

moment j regarding its tariff scheme, and cost(i) is the minimum possible cost of charge for

the user i. In addition, α and β are weighting factors, allowing to compare the two different

objective functions. Moreover, they allow users to change the level of importance of each one

of two objective functions, depending on the decision maker’s goal.
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4 Charging Algorithm Design

In this chapter the implemented algorithm is briefly presented. Due to the combinatorial

nature of the problem and the size of the search space, an Evolutionary Algorithm (EA) is

implemented to resolve the optimization problem. Figure 4.1 represents the flowchart of the

algorithm. The process is started by generating a population with a certain size (parents)

and in every iteration the algorithm searches among the search space to find the best possible

solution. Below the different parts of the algorithm are briefly described.

Figure 4.1: Flowchart of the algorithm

a) Evaluation and Sorting: the initial population is generated randomly, containing 0’s and

1’s. Like other EAs, the algorithm is characterized by competition among individuals, so

that some of them are selected based on their fitness for contributing to the next generation.

The fitness represents the quality of each element in the population and thus the selection of

offspring which are going to contribute to the next generation is also done according to it. In

this problem the fitness addresses both the total and individual charging costs.

b) Selection and Mutation: a mutation operator is used as a way to discover new solutions.

In order to improve the efficacy of the algorithm and to avoid random walk through the search

space, the mutation operator works with available information about the environment, such as

the users’ electricity tariffs. The dynamic behaviour of this operator, allows the algorithm to

search in regions of the search space in which more interesting solutions can be found. As the

alphabet used in the construction of the chromosomes is a binary one, two kinds of mutation

are considered:

m 0 −→ 1 : value ”1” indicates that the EV is being charged (mutation from 0 to 1)

m 1 −→ 0 : value ”0” means that the EV’s charger is off (mutation from 1 to 0).

c) Repairing: after creating the new generation, the genetic material of individuals will

be repaired according to the considered constraints. In this work, as earlier mentioned,
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due to limited power transformer capacity, the aggregated load at every time slot j,

must be equal or less than the transformer capacity. The constraints are applied in such

a way that when at a given time j there is not enough available power, the algorithm

chooses one or more users to shut its/their charging process off until the total load

becomes equal or less than the transformer capacity.

Since all the users could fairly benefit from charging their EVs at times when the

electricity rates are low, the decision to turn the EVs’ charging operation off is taken

according to the difference between users’ requested SOC and the instant SOC. In this

way, the operations with a lower difference will be chosen to be turned off. Therefore, by

turning off some chargers at some moments, the EVs’ charging profiles will be affected

by this change. To overcome this undesirable effect, another action, called repairing

phase, is considered. The algorithm tries to find EVs, which are not fully charged and

identifies, among the total available profile, moments in which both, the electricity rate

is low and there is enough available capacity to respond to the requested power by

the EVs’ charger at that moments. This operation may also change the EVs’ charging

profiles. Therefore all charging profiles will be arranged at the end of this phase. After

applying the constraints, individuals will be evaluated and sorted according to their

fitness. This process continues until the optimum answer is achieved.

d) Stopping condition: two stop conditions are defined. The process of searching among

the search space will stop either when the optimum answer is reached or the maximum

number of iterations has been completed.

5 Simulation, Results & Analysis

To asses the described method and the performance of the algorithm, in this chapter different

scenarios are described and then compared. It is assumed that the households’ base load

are perfectly predictable. Moreover, as earlier mentioned, different electricity tariff schemes

(i.e. different price structures/values and contracted power) for each user is considered. Due

to the maximum chargers output (6.5 kW), it is considered that for houses equipped with

the EV’s charger, 8.05 kW or 9.20 kW are the contracted power. These values have been

chosen since: i) it had been considered that the method can be employed in other regions

and countries, with various base load profiles and policies; ii) and to have a harder case from

the algorithm’s point of view, regarding the individual constraint. In following, different

scenarios are described and an analysis for each one is presented. All simulations have been

done using the MATLAB software through the Windows 7 Professional, Service Pack 1,

installed in a computer with the following specifications: 32 GB installed memory (RAM)

and Intell(R) core(TM) i7 - 3.20 GHz as processor.

Scenario 1 : A neighbourhood with 120 houses is considered. It is assumed that 40

households, each one, drive an EV (Nissan or GM1). It is considered that these 120 houses

are fed via a unique power transformer with the maximum capacity of 250 kW. It is assumed

that all the EVs’ batteries are completely empty and 100% of SOC requested. Figure 5.1

illustrates the base load of 120 houses along with 40 EVs’ charging profiles in case there is

no controller. It was assumed that users tried to take advantage of low electricity rates’ time
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and charged their EVs at these moments.

Figure 5.1: Integrated load profile (120 houses + 40 EVs), not applying the algorithm, Scenario1

According to figure 5.1, the EVs’ charging profile took place at moments where the

electricity rates are low (regarding users’ electricity tariffs) however, a higher transformer

capacity is necessary to respond to the demand, maximum load = 295 kW (overloading

transformer capacity). In this scenario the total charging cost is about 92 BC.

In the second situation, all the parameters are kept constant, but the algorithm is employed to

accommodate the EVs’ charging loads. Figure 5.2 illustrates the result of the implementation.

Figure 5.2: Integrated load profile (120 houses + 40 EVs), Scenario1

According to figure 5.2, the EVs’ charging loads took place at moments where: i) the

electricity rates are low (regarding users’ electricity tariffs); ii) there are available capacity

in terms of power transformer capacity; and iii) where there are also enough available power

regarding the every user’s contracted power and their base load. In this case the total

charging cost is calculated 93BC, while the integrated load never exceed the power transformer

capacity. 5 iterations have been done to obtain the best solution, where it took 748 seconds

corresponding the computational time.

Figure 5.3 shows the individual load profile of user23, without applying the algorithm.

As it is shown, around 01:00 am, the total load can exceed the contracted power.

Figure 5.4 illustrates the load profile of user23 when the algorithm is employed to ac-
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Figure 5.3: Integrated load profile of user23, not applying the algorithm

.

Figure 5.4: Integrated load profile of user23

.

commodate the EVs’ charging load. The algorithm generated the charging plan, avoiding to

exceed the individual constraint (i.e contracted power). The charging process took place at

moments when the electricity rates is low and there is enough available power to charge the

battery regarding its demand.

Scenario 2 : In this scenario a neighbourhood with 120 houses is considered. This time

it is assumed that 50 households are EVs’ users (Nissan or GM1). It is considered that these

houses are fed via a unique power transformer with the maximum capacity of 250 kW, the

EVs’ batteries are completely empty and 100% of SOC were requested. Figure 5.5 illustrates

the base load of 120 houses plus 50 EVs’ charging profiles when the control algorithm is not

applied.

Figure 5.5: Integrated load profile (120 houses + 50 EVs), not applying the algorithm, Scenario2
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According to figure 5.5, the EVs’ charging profile took place at moments where electric-

ity rates are low (regarding users’ electricity tariffs), but a higher transformer capacity is

necessary, since the maximum load is 350 kW (overloading transformer capacity). In this

scenario the total charging cost is calculated about 117 BC.

In the second situation, all the parameters are kept constant, but the algorithm is

employed to accommodate the EVs’ charging loads. Figure 5.6 illustrates the result of the

implementation the algorithm in this scenario.

Figure 5.6: Integrated load profile (120 houses + 50 EVs), Scenario2

According to figure 5.6, the EVs’ charging loads took place at moments where: i) the

electricity rates are low (regarding users’ electricity tariffs); and ii) there is available capacity

in terms of power transformer capacity. In this case the total charging cost is calculated 128

BC. The integrated load never exceed the power transformer capacity.

Scenario 3 : It is assumed that 60 households are EVs’ users (Nissan or GM1). The

power transformer capacity is 250 kW. All the batteries are completely empty and 100% of

SOC are requested. Figure 5.7 illustrates the base load of 120 houses plus 60 EVs’ charging

profiles for the case without the implementation of the algorithm.

Figure 5.7: Integrated load profile (120 houses + 60 EVs), not applying the algorithm, Scenario3

According to figure 5.7, the EVs’ charging profile took place at moments where the

electricity rates are low (regarding users’ electricity tariffs), but a higher transformer capacity
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is necessary, since the maximum load is 405 kW (overloading transformer capacity). In this

scenario the total charging cost is about 143BC.

Regarding the second situation, in which the algorithm is employed to accommodate the

EVs’ charging loads, figure 5.8 illustrates the result of the implementation.

Figure 5.8: Integrated load profile (120 houses + 60 EVs), Scenario3

According to figure 5.8, the EVs’ charging loads took place at moments: i) when the

electricity rates are low (regarding users’ electricity tariffs); ii) and where there are available

capacity in terms of power transformer capacity. In this case the total charging cost is

calculated 155 BC and the integrated load never exceeded the power transformer capacity.

The results for this scenario were obtained after 10 iterations and the total computational

time was 5536 seconds. It is worth mentioning that around 90% of this time was taken by

the repairing part of the algorithm. As earlier was highlighted, in chapter 4, one way to deal

with none feasible solutions, in EAs, is repairing them.

It has been shown that, in the cases where there are no controller, the peak load increases

with the number of EVs to be charged. Moreover, it can be concluded that by increasing

the number of EVs to the grid the computational time also increase. For the considered

scenarios, table 5.1 compares the total charging cost for the cases where the algorithm was

and was not employed to plan the charging process of the EVs.

Table 5.1: Comparison of the different scenarios

Scenario
The Num-

ber of EVs

Peak Load

(kW)

Total Cost of

Charge (BC)
x̄ σ

Scenario 1, no controller 40 295 92 − −
Scenario 1, method employed 40 250 93 0.020 0.019

Scenario 2, no controller 50 350 117 − −
Scenario 2, method employed 50 250 128 0.24 0.11

Scenario 3, no controller 60 405 143 − −
Scenario 3, method employed 60 250 156 0.24 0.13

Table 5.1 shows in scenario 1, when the method was employed, the peak load is 250 kW.

Moreover, by adding EVs into the network, in scenarios 2 and 3, the peak load never exceeded

the power transformer capacity (250 kW), while the users’ desire SOC were satisfied. In the
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cases where the method were employed, due to the constraints (i.e power transformer and

contracted power), all the vehicles could not be satisfied within periods when the electricity

rates is lowest. Due to this fact, their charging process had to be started earlier and taken into

moments when the electricity rates are high (regarding the users electricity tariff schemes).

In these cases the total charging costs are slightly higher than those, in which there were no

controller. For example in scenario 3 the total charging costs are 156 BC and 143 BC respectively

for the cases with and without controller. Moreover, x̄ shows the average of the extra costs

of all the users and σ is the standard deviation. Since the value of the standard devia-

tion is not high, it can be concluded that most of the users pay a reasonable enough extra cost.

The algorithm adjusts the EVs’ charging plan in a fairly way, meaning that for each

and every user, the deviation of the actual charging cost from the minimum charging cost

are close to each other, not significantly varying. However, it also depends on the total

requested SOC. This deviation (the extra cost) must be paid by the users, who live in such

neighbourhood with the described grid capacity. If such management not to be employed, it

might be happened that, all the EVs can not be charged (blackout), or may some users pay

the minimum cost and the others pay a much higher extra cost. Regarding the total available

power at moments when the electricity rates are low, the algorithm tries to distribute the

available energy in such a way that all the users equally benefit from low electricity rates.

For the EVs which were not satisfied at these moments, their charging plan take place into

periods, when the electricity rates are higher. Therefore their charging cost become higher

than a case that there is no constraints. Figure 5.9 demonstrates the minimum charging cost

plus the extra cost, for 25 users. These users were randomly chosen from scenario 3, in the

case where the algorithm was employed to plan 60 EVs’ charging process.

Figure 5.9: Deviation of the actual charging cost from the minimum charging cost

From figure 5.9, it is possible to conclude that the charging cost for all the users are

slightly higher when the algorithm is employed. If the extra cost of each user is compared to

the average deviation (i.e. the sum of the extra costs divided by the number of the users)

small deferences are observed. Figure 5.10 illustrates these differences, for the users referred

in figure 5.9.

Regarding the total actual cost (156 BC) and the minimum charging cost (143 BC), in this

case, for every user, the value of the average deviation was calculated 0.24 BC. For every
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Figure 5.10: Comparison of the actual deviations with the average of extra cost deviations

user, the deviation of the actual charging cost from the minimum cost (obtained when the

algorithm was not employed, exceeding the power transformer capacity) varies, depending

on: i) the total requested energy by the users, regarding the available grid capacity ii) users’

base load profiles; iii) the individually requested SOC and iv) the time of charge.

6 Conclusion and Future Work

An electric vehicle’s battery capacity is measured in kilowatt-hours, the same unit that an

electric meter records to determine the monthly electric bill. Charging comes down to two

familiar resources: time and money. The duration of charging an EV depends on its battery

size and chargers’ power. The cost of charging depends on where and when the EV is charged.

Basically, owners should recharge their EVs when the electricity rates is the lowest. This can

usually be during night, when the vehicle is least likely to be needed. This work presented a

method to accommodate the recharging process of a group of EVs in a local neighbourhood,

with the aim to help the users to take full advantage of off-peak rates, while preventing the

power transformer overloading.

It was shown that the algorithm is able to be implemented in different scenarios in which

there are different electricity tariffs and constraints. Moreover, it is compatible with various

batteries’ charging profiles and it can also support different load profiles, as for example from

different regions with various consumption patterns. Due to the optimization objective, every

user pays a reasonable cost of charge, close to the minimum cost. It is worth mentioning that

if some users pay more than that, it is due to the fact that there was not enough individual

available power for that user, to response the EV’s demand at moments when, electricity

rate is low, as can be seen in figure 5.4 (contracted power constraint). The minimum cost of

charge is achievable in scenarios in which there are no constraints on grid and all the EVs

can take full advantage from low electricity price periods.

In addition, through the proposed method, charging a greater number of EVs is feasible

(maximizing the number of EVs being charged) without needing to invest in increasing the

capacity of the grid infrastructure, while the charging costs for each and every user is kept

close to the minimum. The algorithm can be employed to plan the charging process of
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group of independent EVs, weakly coupled through electricity price signals. In this way,

due to less demand for communication infrastructures, the implementation of the proposed

method will potentially be cost-effective. Moreover, various entities may be interested in

such management. For instance, the distribution grid operator is interested in managing

the charging process to incorporate the maximum number of EVs without massively re-

inforcing the grid. The retailer is interested in balancing electricity purchase and sale in

order to increase its profit in the electricity trading context, whereas the consumers are

interested in minimizing the cost of charge of their EVs and increasing the reliability of supply.

Future work arising from this topic, is related to the integration of other aspects in

the algorithm, besides to the ones considered, which reproduce as realistic as possible the

lifestyle of EVs’ users. In this context, one important aspect should be included in future

developments of the algorithm, is adding the next EV’s usage time as an additional preference

of the users (defining the charging termination time separately for every user). Another

crucial aspect for the future developments is the consideration of EVs’ users who refuse

to participate in the integrated charging control. These type of users would not have any

charging plan and would be seen as additional uncontrollable loads connected to the grid.

Finally, for safety and comfort reasons, it should be established a minimum emergency level

of SOC. In this way, all the EVs would be charged at least up to the minimum SOC level, for

instance, by considering a priority criterion. Moreover, integrating other controllable loads

into the algorithm, allows increasing the number of EVs being charged simultaneously, or

may decrease the extra cost of charge.
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