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Abstract

A mixed formulation that uses both the traction boundary element method (TBEM) and the boundary element method (BEM) is
proposed to compute the three-dimensional (3D) propagation of elastic waves scattered by two-dimensional (2D) thin rigid inclusions.
Although the conventional direct BEM has limitations when dealing with thin-body problems, this model overcomes that difficulty. It is
formulated in the frequency domain and, taking into account the 2-1/2D configuration of the problem, can be expressed in terms of
waves with varying wavenumbers in the z direction, kz. The elastic medium is homogeneous and unbounded and it should be noted that
no restrictions are imposed on the geometry and orientation of the internal crack.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The propagation of waves in the vicinity of elastic,
empty and rigid thin inclusions and screens has been a
topic of interest for many researchers for decades. Solu-
tions have been sought for non-destructive evaluation tech-
niques [1,2], and in seismology (e.g. [3–5]), fracture
mechanics [6] and acoustics [7,8].

Different scientific formulations have been developed to
study the elastic and acoustic wave scattering by inclusions
and thin heterogeneities. Some of the first analytical studies
on wave diffraction and scattering focused on the wave
motion and reverberations in alluvial basins of regular
shape [9,10]. Other work has examined the wave scattering
induced by cylindrical circular inclusions and single plane
cracks [11–16]. Since these analytical approaches are only
known for simple and regular geometries, most researchers
have concentrated on developing numerical schemes. The
application of purely numerical methods such as the finite
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elements and the finite differences have mostly been
restricted to cases where the response is needed only within
localised irregular domains, like soil–structure interaction
problems [17–19]. In addition, the boundary element
method, the strip element method and a number of hybrid
methods have been proposed. The hybrid methods are built
by combining several of the other numerical approaches
[20–28].

The boundary element method (BEM) is quite suitable,
particularly if the solution has to satisfy the far field condi-
tions when the inclusions are buried in an unbounded or
half-space elastic medium [29–31]. The BEM requires only
the discretization of the surface of the heterogeneities,
which is one advantage when compared to some of the
other numerical schemes. The classical BEM fails, how-
ever, when the body thickness approaches zero, as happens
for cracks or thin inclusions.

The modelling of the seismic wave field scattered from
an arbitrary number of fractures that are either empty, or
contain elastic or fluid material was described by Pointer
et al. [5], using an indirect boundary element formulation.
The traction boundary integral equation method, a formu-
lation developed from the fields of fracture mechanics and
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Fig. 1. Harmonic line load varying sinusoidally along the z direction.
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wave propagation, is capable of dealing with heterogene-
ities with small thickness [32–35]. Several authors have
addressed the problem of evaluating the hypersingular
integrals that appear in these formulations (see [36–39]).
Prosper [40] and Prosper and Kausel [41] simulated the
wave propagation in the vicinity of flat horizontal empty
cracks with no thickness in unbounded elastic media, mak-
ing use of the traction boundary element method (TBEM).
They proposed an indirect approach for the analytical
evaluation of integrals with hypersingular kernels for the
plane-strain cases in the two-dimensional (2D) problem.

In the work described in this paper, the three-dimen-
sional (3D) elastic wave field, scattered by 2D cylindrical
thin rigid inclusions or even null-thickness rigid cracks, is
evaluated. A frequency domain boundary element formula-
tion is initially outlined, where the displacement boundary
integral equation (BEM) is combined with the traction
boundary integral equation (TBEM). When the heteroge-
neity’s thickness approaches zero, the combined TBEM +
BEM model is employed. When the rigid crack presents
no thickness the same formulation is used, with the crack
being discretized by coincident lines: the upper part of
the crack surface uses one boundary integral equation
and the lower part uses the other boundary integral equa-
tion. This work follows the developments by Prosper and
Kausel [41], but the so called two-and-a-half-dimensional
(2-1/2D) problem is now addressed, and the proposed for-
mulations can be applied to rigid cracks of arbitrary shape
and orientation, when embedded in unbounded elastic
media that can be excited by different kinds of wave
sources. Thereafter, comparisons with analytical solutions
(for simple geometries and boundary conditions) and two
different numerical application cases are presented to dem-
onstrate how efficiently these tools model the elastic wave
scattering by rigid cracks.
2. 3D problem formulation

The incident field generated by a harmonic dilatational
point source in an unbounded uniform elastic medium with
no intrinsic attenuation, can be expressed by means of the
classic dilatational potential, /,

/inc ¼
Aeixa at�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xsÞ2þðy�ysÞ2þðz�zsÞ2
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þ ðy � ysÞ

2 þ ðz� zsÞ2
q ; ð1Þ

in which x is the oscillating frequency, (xs,ys,zs) is the po-
sition of the load, the subscript inc denotes the incident
field, A is the wave amplitude, a is the compressional wave
velocity of the medium, and i ¼

ffiffiffiffiffiffiffi
�1
p

.
Take an infinite rigid inclusion, with cylindrical geome-

try, located in such a host elastic medium, and excited by
the 3D source given by Eq. (1). Fourier-transforming that
equation in the direction in which the geometry of the
inclusion remains constant (the z direction), and using
the effective wavenumbers, ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2 � k2
z

q
, with Im(ka) < 0,

where kz is the axial wavenumber, one obtains:

/̂incðx; x; y; kzÞ ¼
�iA

2
H0 ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xsÞ2 þ ðy � ysÞ

2
q� �

; ð2Þ

in which the Hn(� � �) are second kind Hankel functions of
the order n.

If an infinite set of evenly-spaced virtual sources along
the z direction is assumed, the above incident field may
be written as

/incðx; x; y; zÞ ¼
2p
Lvs

X1
m¼�1

/̂incðx; x; y; kzmÞe�ikzmz; ð3Þ

where Lvs is a spatial source interval large enough to avoid
spatial contamination [42], and kzm ¼ 2p

Lvs
m. Thus, the 3D

wave field may be obtained as the wave irradiated by a
sum of harmonic (steady-state) line loads whose amplitude
varies sinusoidally in the third dimension (see Fig. 1). This
sum converges and can be approximated by a finite number
of terms [43].
3. Boundary integral formulations

Three different boundary integral formulations are pro-
posed to model wave propagation in elastic media. First,
the classical BEM and the TBEM are presented, which allow
wave scattering in the neighbourhood of inclusions that are
not thin to be simulated. Afterwards, the combination of the
BEM and TBEM formulations is presented to model wave
propagation through elastic media containing thin rigid
inclusions that may even exhibit null-thickness.

3.1. Boundary element formulation (BEM formulation)

Consider a homogeneous elastic medium of infinite
extent, which contains a rigid inclusion bounded by a sur-
face S, and is subjected to spatially sinusoidal harmonic
line loads placed in the exterior solid medium at xs, with
spatial wavenumber kz. The displacement boundary inte-
gral equation can be derived by applying the reciprocity
theorem [44], which leads to:
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0 ¼
Z

S
tjðx; nn;xÞGijðx; x0;xÞdsþ uinc

i ðxs; x0;xÞ: ð4Þ

In the previous equation, i, j = 1,2 represent the normal and
tangential directions relative to the inclusion surface,
respectively, while i, j = 3 correspond to the z direction.
Gij(x,x0,x) defines the fundamental solutions for displace-
ments (Green’s functions) in the direction j on the boundary
S at x caused by a unit point force in the direction i applied
at the collocation point, x0. tj(x,nn,x) specifies the nodal
tractions in the direction j on the boundary at x.
uinc

i ðxs; x0;xÞ represents the displacement incident field at
x0 along the direction i. The unit outward normal on the
boundary at x is defined by the vector nn = (coshn, sinhn).

The Green’s functions for displacements along the x, y
and z directions, in the solid medium, are listed in the
Appendix, and their derivation can be found at [43].

To evaluate the displacement boundary integral equa-
tion, for a general cross-section, both the boundary and
boundary values are discretized. A system of linear equa-
tions that relates nodal displacements is obtained by suc-
cessively applying the virtual load to each node on the
boundary. Its resolution defines the nodal tractions.

When the element to be integrated is the loaded element,
the necessary integrations are performed in closed form
[45,46], while numerical integration, performed using a
Gaussian quadrature scheme, is used when the element to
be integrated is not the loaded one.
3.2. Traction boundary element formulation (TBEM
formulation)

However, when modelling rigid inclusions whose thick-
ness approaches zero, the conventional direct boundary
element formulation described previously leads to mathe-
matical degenerations. To overcome this difficulty the
TBEM can be formulated [40,41] leading to the following
traction equation:

cijtjðx0; nn;xÞ ¼
Z

S
tjðx; nn;xÞGijðx; nn; x0;xÞds

þ �uinc
i ðxs; x0; nn;xÞ: ð5Þ

In this equation, i, j = 1,2 refer to the normal and tangen-
tial directions relative to the inclusion surface, in that
order, and i, j = 3 stand to the z direction. This traction
equation can be interpreted as resulting from the applica-
tion of dipole loads or dynamic doublets. The coefficient
cij attains dij/2, with dij the Kronecker delta, when the
boundary is smooth. Gijðx; nn; x0;xÞ are obtained by apply-
ing the traction operator to the displacement Green’s func-
tions Gij(x,x0,x). This procedure can be taken as the
combination of the derivatives of Eq. (4), in order to x, y

and z, in such a way as to obtain stresses Gijðx; nn; x0;xÞ.
At point x on the boundary element, where the unit out-
ward normal is represented by nn = (coshn, sinhn), and after
performing the equilibrium of stresses, applying loads
along the x, y and z directions yields the following equa-
tions obtained along x, y and z:

Gxr ¼ 2l
a2

2b2

oGxr

ox
þ a2

2b2
� 1

� �
oGyr

oy
þ oGzr

oz

� �� �
cos h0

þ l
oGyr

ox
þ oGxr

oy

� �
sin h0;

Gyr ¼ 2l
a2

2b2
� 1

� �
oGxr

ox
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oz

� �
þ a2

2b2

oGyr

oy

� �
sin h0

þ l
oGyr

ox
þ oGxr

oy

� �
cos h0;

Gzr ¼ l
oGxr

oz
þ oGzr

ox

� �
cos h0 þ l

oGyr

oz
þ oGzr

oy

� �
sin h0;

ð6Þ

with n0 = (cosh0, sinh0) defining the unit outward normal at
the collocation point x0, Gtr ¼ Gtrðx; nn; x0;xÞ, Gtr =
Gtr(x, x0,x) and r, t = x,y,z.

The incident field components in terms of tractions is
given by expressions similar to those for Gtr:

�uinc
x ¼ 2l

a2

2b2

ouinc
x

ox
þ a2

2b2
� 1

� �
ouinc

y
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þ ouinc

z

oz

 !" #
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x

oy

" #
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� 1
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" #
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ouinc
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ox
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x

oy
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ouinc
x

oz
þ ouinc
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ox
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" #
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ð7Þ

with �uinc
r ¼ �uinc

r ðxs; x0; nn;xÞ, uinc
r ¼ uinc

r ðxs; x0;xÞ and r =
x, y, z.

These expressions can be combined so as to express
Gijðx; nn; x0;xÞ and �uinc

i ðxs; x0; nn;xÞ along the normal
and tangential directions.

The solutions of the traction boundary integral equation
are determined, as in the BEM formulation, by discretizing
the boundary into N straight boundary elements, with one
nodal point in the middle of each element. This procedure
leads to the evaluation of a set of integrals, which are eval-
uated using a Gaussian quadrature scheme when the ele-
ment to be integrated is not the loaded element. When
the element for which the integration is to be performed
is the loaded one, the integration is computed analytically
following [45,46].

3.3. TBEM + BEM formulation

The displacement and traction formulations can be com-
bined on opposite collocation points so as to solve the same
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Fig. 2. BEM verification against analytical solution when the medium is excited by a 3D source with kz = 25 rad/m: (a) 2D diagram with problem
definition at xy plane; (b) x-displacement component at R; (c) y-displacement component at R; (d) z-displacement component at R.
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Fig. 3. Geometry of horizontal rigid crack and position of the source (O)
and receivers.
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problems and the cases of thin rigid or even null-thickness
inclusions. Part of the boundary surface is loaded with
monopole loads (formulation in displacements, using
boundary integral equation (4)), while the remaining part
is loaded with dipoles (formulation in tractions, using
boundary integral equation (5)). In this case, the thin
bodies can be solved using a closed surface and the null-
thickness rigid heterogeneities are modelled by coincident
lines.

4. Verification of the BEM solutions

The wave scattering field generated by a circular rigid
cylindrical inclusion, buried in a homogeneous elastic med-
ium, subjected to a point dilatational load can be formu-
lated in a circular cylindrical coordinate system (r,h,z)
and solved by using the separation of variables method
[15,47]. This problem was used to corroborate the successful
implementation in the frequency domain of the boundary
element formulations proposed above. The host elastic
medium is unbounded and homogeneous, and is character-
ized by a mass density q = 2140 kg/m3, a dilatational wave
speed a = 2696.5 m/s and a shear wave speed b = 1451.7 m/s.
The 3D point harmonic load exciting the medium is
applied at the source point, O (0.0 m,�0.125 m,0.0 m),
and a receiver is positioned at point R (0.0 m,�0.075 m,
0.0 m), in accordance with Fig. 2a.

Displacements along the x, y and z directions were com-
puted for receiver R in the frequency range from 2000 Hz
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to 64,000 Hz, for an axial wavenumber kz = 25 rad/m. The
numerical responses in terms of those displacements,
obtained by the three boundary element formulations
(BEM, TBEM and TBEM + BEM), are plotted against
the analytical results in Fig. 2b–d. Both the real and imag-
inary parts of the responses are shown, and the analytical
Fig. 4. 2D elastic scattering by a null-thickness horizontal rigid crack in an unb
time instants.
solution is indicated by solid and dashed lines, respectively,
while the marked points refer to the different boundary ele-
ment models. It can be seen that the agreement between the
analytical and numerical results is very good. Also note the
agreement between the different boundary element models
and that, since the vertical plane corresponding to
ounded medium. x- and y-displacement components (ux and uy) at different
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x = 0.0 m is a plane of symmetry for loads applied over the
y axis, the x-component of displacement at R is null.
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5. Responses in time–space

The computations of the boundary element results are
performed in the frequency domain for different spatial
wavenumbers in the z direction. To obtain time responses
for a point harmonic source, the application of discrete
Fourier transformations is required in both the wavenum-
ber (kz) and the frequency (x) domains. These transforma-
tions correspond to the addition of equally spaced virtual
contributions at spatial source intervals of Lvs = 2p/Dkz

and time intervals of T = 2p/Dx (with Dkz and Dx repre-
senting the wavenumber and the frequency increments,
respectively).

The time evolution of the dynamic excitation source fol-
lows a Ricker pulse, which declines quickly both in time
and in frequency. Less computational effort is therefore
needed, and it also facilitates the interpretation of the
responses in the time–space. The temporal variation of
the Ricker function is written as

uðsÞ ¼ Að1� 2s2Þe�s2

; ð8Þ

where A corresponds to the amplitude; and s = (t � ts)/t0,
with t representing the time, ts the time when the wavelet
attains its peak value, and pt0 the characteristic wavelet
period.

After applying a Fourier transformation, this pulse can
be expressed in the frequency domain by

UðxÞ ¼ A½2t0

ffiffiffi
p
p

e�ixts �X2e�X2 ð9Þ

with X = xt0/2.
The contamination of the response by the periodic vir-

tual sources (i.e. aliasing phenomena) is avoided by setting
intervals between them large enough to guarantee that each
contribution arrives later than the time interval T. This is
accomplished by introducing complex frequencies with a
small imaginary part of the form xc = x � ig (with
g = 0.7Dx), which shifts the frequency axis slightly down-
wards in the complex plane. This procedure also results
in the reduction or elimination of the contribution of the
virtual sources. When the time responses are finally evalu-
ated, the effect of using complex frequencies must be taken
into account by rescaling the responses with an exponential
factor egt [48].
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Fig. 5. Geometry of S-shaped rigid crack and position of the source (O)
and receivers (2D view at vertical plane z = 0.0 m).
6. Numerical examples

The combined TBEM + BEM formulation is applied to
solve two numerical examples to show its efficiency when
dealing with wave propagation in the vicinity of very thin
rigid inclusions embedded in elastic unbounded media.
First, the evaluation of the 2D wavefield scattered by a
horizontal flat rigid crack is presented and analyzed. Then,
the 3D wave field generated by a spherical point source in
the presence of an S-shaped rigid crack, whose geometry
remains constant along the z direction, is computed and
discussed.

The boundary element results were obtained by the
combined model, with part of the inclusion’s surface dis-
cretizing the traction boundary integral equation and the
opposite part discretizing the displacement boundary inte-
gral equation. The selection of the number of boundary ele-
ments needed was defined at each calculation frequency by
the relation between the wavelength and the length of the
boundary elements, and set at 10.

The host elastic medium is the same for both simula-
tions, permitting a dilatational wave velocity of a =
2696.5 m/s, and a shear wave velocity of b = 1451.7 m/s.
The results were obtained by performing the computations
in the frequency domain, in the frequency range from
2000 Hz to 256,000 Hz, and time signatures were then
evaluated by applying an inverse Fourier transformation
with the source temporal variation reproducing a Ricker
pulse with a characteristic frequency of 75,000 Hz. Since
a frequency increment of 2000 Hz is used in the calcula-
tions, the limit for the total time window is 0.5 ms.

6.1. 2D example – horizontal flat null-thickness

rigid crack

The 2D wave propagation example simulates a horizon-
tal null-thickness rigid crack, embedded in the elastic med-
ium described above. The host medium is excited by a
cylindrical source emitting at point O (0.0 m, 0.0 m) as in
Fig. 3. The crack is 0.15 m long, located 0.15 m above
the source point and the excitation source is centred rela-
tive to the y axis. This rigid inclusion is modelled by two
coincident horizontal lines with the minimum total bound-
ary elements set to 200, at an initial frequency of 2000 Hz.
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Time responses in terms of x- and y-displacement com-
ponents (ux and uy) were computed in a fine grid of receiv-
ers evenly spaced along the x and y directions at intervals
of 0.003 m and placed around the heterogeneity. The
numerical results are presented by time sequential contour
plots of the displacement component fields when the waves
propagate in the vicinity of the rigid crack (see Figs. 3 and
4). These displacement fields correspond to the incident
field generated by the 2D source plus the scattered field
by the thin rigid inclusion in the unbounded medium.
Fig. 6. 3D elastic scattering by a null-thickness S-shaped rigid crack in an unb
different time instants.
In the first two plots, at t = 0.03 ms, the waves excited
by the dilatational source are propagating in the host med-
ium but they have not yet reached the rigid crack. When
the waves hit the thin rigid inclusion, they are totally
reflected back as P- and S-waves, but at t = 0.07 ms these
waves are still undistinguishable as they overlap. At this
time instant, the diffracted wave field around the crack is
still in its initial development.

The snapshots at t = 0.09 ms show very well-developed
reflected and diffracted wave fields propagating outwards
ounded medium. x-, y- and z-displacement components (ux, uy and uz) at
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from the crack as P- and S-waves. Those waves can be
observed propagating at different velocities through the
unbounded elastic medium in the last snapshots in Fig. 4.

6.2. 3D example – S-shaped null-thickness rigid crack

The 3D scattered wave field produced by an S-shaped
rigid crack, embedded in the unbounded host medium
described above, is modelled by means of the combined
TBEM + BEM formulation. The elastic medium is excited
by a 3D harmonic point load located near the 2-1/2D geo-
metry inclusion. Fig. 5 illustrates the geometry of the
S-shaped crack, and the positions of the source point, O
(0.0 m, 0.0 m,0.0 m), and a grid of receivers corresponding
to the vertical plane z = 0.0 m. The rigid heterogeneity is
modelled as a very thin rigid body with zero thickness, dis-
cretized by coincident lines with the minimum total bound-
ary elements set to 300, at the first frequency of 2000 Hz.

Numerical responses in the time domain were computed
in three fine grids of receivers placed in the host medium
along orthogonal planes corresponding to x = �0.20 m,
y = 0.30 m and z = 0 m. The receivers are equally spaced
at 0.004 m along the x and y directions and at 0.006 m
along the longitudinal z direction.

Fig. 6 presents the time evolution of the three displace-
ment component fields (ux, uy and uz) after the source starts
exciting the medium at t = 0.0 ms. In these plots, the total
displacement field is displayed at each receiver, correspond-
ing to the summation of the direct incident field arriving
from the point source with the scattered field generated
by the rigid inclusion in the unbounded medium. In these
3D snapshots, a gray scale is adopted, where lighter and
darker shades are ascribed to higher and lower values of
displacement components, respectively.

At the initial time instants, as can be observed at
t = 0.025 ms in Fig. 6, the propagation of the spherical
waves in the elastic medium, diverging away from the
source, is still only visible along the vertical plane
z = 0.0 m. Since the planes x = 0.0 m and y = 0.0 m corre-
spond to planes of symmetry, the displacement compo-
nents ux and uy are symmetrical before the waves reach
the inclusion. Similarly, the displacements uz are symmetri-
cal in relation to plane z = 0.0 m, being null throughout the
simulation at the plane of the source. When the elastic
waves strike the rigid S-shaped inclusion, at approximately
t = 0.041 ms on the nearest part of the inclusion to the
source point O, the entire wave field is reflected back as
P- and S-waves. This is already perceptible at t =
0.070 ms, but it is not easy to distinguish the two types of
waves since they are almost coincident at this early stage.
The wave propagation along the longitudinal direction is
also visible from about this time instant onwards along
the vertical plane x = �0.2 m. At t = 0.100 ms, the re-
flected P- and S-waves are very well developed as they
diverge away from the inclusion. The wave energy trapped
in the concave part of the inclusion facing the source point
generates a complex wave field due to the multiple reflec-
tions of the incident waves, which are mostly visible at
the vertical plane z = 0.0 m. Also note the diffracted wave
field getting around the rigid heterogeneity, once the inci-
dent pulses reach its extremities. At time t = 0.135 ms,
the diffracted waves are clearly visible at the horizontal
plane y = 0.3 m, and a shadow zone has been created,
mainly due to the 2-1/2D geometry of the inclusion. Along
the plane x = �0.2 m the undisturbed incident pulses are
followed by the first reflected P-wave pulses for the x-dis-
placement component and reflected P- and S-wave pulses
for the y-displacement component. In the last snapshots,
the 3D behavior of the scattered wave field by the 2D rigid
inclusion is still displayed for all displacement components
in the orthogonal grids of receivers.

7. Conclusions

The classical BEM is derived by discretizing the dis-
placement boundary integral equation. When this formula-
tion is applied to problems involving very thin rigid bodies
or cracks, it leads to mathematical degenerations and is no
longer a valid numerical basis for modelling the wave field
scattered by rigid inclusions embedded in unbounded elas-
tic media. In this work, the equation referred to above has
been successfully combined with the traction boundary
integral equation, and a combined boundary element for-
mulation (TBEM + BEM), that overcomes the thin body
difficulty, has been obtained.

The scattering of 3D elastic waves produced by thin
rigid inclusions, placed in unbounded 2D media, has there-
fore been computed numerically using that combined for-
mulation. All integrals with singular kernels are evaluated
analytically and no limitation is placed on the geometry
and orientation of the heterogeneity, which is discretized
with piecewise, straight, constant elements. This model is
formulated in the frequency domain and it is expressed as
a summation of waves with different spatial wavenumbers
in the z direction, since the geometry of these problems is
characterised as 2-1/2D. Time signatures are calculated
by applying inverse Fourier transforms in both the wave-
number and frequency domains, following the temporal
evolution of a Ricker pulse.

The verification of the proposed model was performed
by comparing its displacement field, scattered by a circular
cylindrical rigid inclusion, with analytical known solutions
for this simple geometry and boundary conditions case.
For this situation, the results from the displacement
boundary integral formulation, from the traction boundary
integral formulation and from the combined formulation
were in very close agreement with the analytical ones.
Two numerical examples, where the elastic wave field scat-
tered by very thin rigid inclusions is numerically evaluated,
were used to demonstrate the proposed model’s efficiency.
The examples were formulated as, first, a horizontal null-
thickness rigid inclusion, placed in a two-dimensional
unbounded elastic medium that is excited by cylindrical
waves, and, second, an S-shaped rigid inclusion, with
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constant geometry in the longitudinal direction, embedded
in an elastic unbounded medium and excited by a 3D point
dilatational source.

Appendix. 2-1/2D Green’s functions for unbounded medium

Definitions

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
� k2

z

r
; with ImðkaÞ < 0;

kb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

b2
� k2

z

s
; with ImðkbÞ < 0;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q

;

H na ¼ HnðkarÞ; H nb ¼ HnðkbrÞ; Hankel functions;

Bn ¼ kn
bHnb � kn

aH na; Bn functions:

Green’s functions for displacements
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1
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x2

b2
H 0b �

1
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2

B2

� �
;
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1
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2
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