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Abstract

A 2.5D Boundary Element Method (BEM) formulation, applied in the frequency domain, is developed to compute the
scattering of waves by rigid inclusions buried in a semi-infinite solid under a fluid layer, when this system is excited by a
spatially-sinusoidal harmonic load.

The BEM algorithm includes Green'’s functions for a horizontal fluid layer over a semi-infinite solid, which avoids the
discretrization of the horizontal surfaces, and thus only the rigid inclusion needs to be discretized by boundary elements. The
model uses complex frequencies with a small imaginary part to avoid aliasing phenomena. Time domain responses are obtained
by applying an inverse Fourier Transform to the frequency results. The source is modeled as a Ricker pulse. The simulations
are performed for three different properties of the solid medium: a fast formation, a slow formation and a sediment formation.
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1. Introduction

Over the years, different techniques based on wave propagation have been developed to map buried cavities in solids and
submerged objects in fluids. They have been supported by a wide variety of analytical and numerical models, implemented to
tackle this problem. Some models have also been created to interpret experimental results.

Several studies have been performed using analytical solutions to study the wave scattering caused by cavities (Lee, 1977,
Datta and Shah, 1982; Lee, 1988; Lee and Karl, 1992). Recently, Davis et al. (2001) derived analytical solutions to investigate
the transverse response of underground cylindrical cavities to incident SV waves. The solutions are derived for unlined cavities
embedded in an elastic half space using Fourier—-Bessel series and a convex approximation of the half-space free surface. Thes
solutions were extended to formulate approximate solutions for assessing hoop stresses within cavity liners impinged by low-
frequency waves whose wavelengths are much longer than the cavity diameter. They improved the solution proposed by Lee
and Karl (1992) by eliminating unwanted reflections on the half-space free surface through a convex approximation.

Guzina and Fataa (2003) used a boundary integral equation method to investigate the problem of mapping three-dimensional
underground cavities from surface seismic measurements. The inverse analysis of elastic waves scattered by a three-dimensiona
void is formulated as a task of minimizing the discrepancy between experimental observations and theoretical predictions for
an assumed void geometry.
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A boundary integral equation method was formulated by Dawson and Fawcett (1990) to compute the sound scattered un-
derwater by compact deformations of an oceanic waveguide surface. The waveguide surfaces are taken to be flat except for
compact area of deformation where the acoustic scattering takes place. The interaction between the acoustic field and any plan:
portions of the waveguide are accounted for in the Green’s functions so the integrations required to implement the method are
restricted to the compact scattering areas.

The same method has been used by Fawcett and Dawson (1990) to compute the three-dimensional pressure field in
waveguide with scattering ridges by solving a sequence of two-dimensional problems. Later, Fawcett (1996a, 1996b) computed
the two-dimensional acoustic field scattered by objects embedded between two fluid half-spaces. The method combines the
form of the interior cylinder solution with the exterior half-space Green'’s functions.

Some studies have used methods based on a transition matrix. Kristensson and Strém (1978) presented a three-dimension
formulation using the transition matrix approach to determine the scattering from an inhomogeneity buried in a liquid half
space. Bostrém and Kristensson (1980) subsequently used the same formulation to compute the elastic wave scattering of
cavity buried in a solid half space.

Hackman and Sammelmann (1986) and Sammelmann and Hackman (1987) also used the transition matrix method to analyz
the acoustic scattering inside inhomogeneous and homogeneous waveguides in the presence of scatterers. The model requir
the host medium to be horizontally stratified and the layer containing the target to be homogeneous.

Lim et al. (1993) used a model based on a full-wave transition matrix implementation of the Helmoltz equation applied to
a layered structure to study the scattering of acoustic waves by objects buried in underwater sediments. An object is placed
within a thick, planar, homogeneous layer of sediment under deep water. The shear rigidity and the porosity of the sediment are
ignored. Lim (1998), also used a transition-matrix solution for the spectral scattering response of a bounded elastic body that
penetrates an arbitrary number of layers of a plane-stratified fluid.

Ingenito (1987) proposed an expression for the acoustic field scattered by a rigid sphere in an isovelocity fluid layer overlying
a horizontally stratified medium. This is expressed in terms of normal modes and plane-wave scattering functions, and the resul
is valid when multiple scattering can be disregarded. This model fully accounts for waveguide propagation effects, such as
multiple reflections of the scattered field between waveguide boundaries, because it is based on the waveguide Green function

Makris (1998) described a spectral formulation for 3D object scattering in layered fluid media, valid for receivers and sources
placed far enough from the object so that the multiple scattering between the object and the waveguide can be ignored and the
scattered field can be written as a linear function of the object’s plane-wave scattering function.

Godinho et al. (2001) and Branco et al. (2002) used a boundary element formulation in the frequency domain to study the
pressure field generated by point sources placed inside a fluid channel with a rigid deformation on its floor. This model used
Green’s functions, based on the superposition of virtual sources, to simulate the boundary conditions of the free surface, the
rigid flat floor and the lateral walls confining the channel.

In the work described here a BEM formulation in the frequency domain is used to simulate the scattered field produced by a
system composed of a rigid inclusion buried in a solid half-space under a fluid channel, when excited by a spatially-sinusoidal
harmonic load.

In this problem the geometry is considered constant inztl&ection (2D), and so the 3D problem can be written as a
summation of 2D problems for varying wavenumbers along this direction.

This model uses Green'’s functions to simulate a horizontal fluid layer with a free top surface resting over a solid half-space.
These analytical solutions for the steady state response of such a formation subjected to a spatially sinusoidal harmonic line loac
avoid the discretization of the horizontal fluid free surface and the solid fluid interface. In this technique, solid displacement
potentials and pressure potentials are used to evaluate the Green’s functions for a harmonic (steady-state) line load, with
sinusoidally varying amplitude in the third dimension, in an unbounded medium.

All these displacement potentials are written as a superposition of plane waves, assuming the existence of an infinite numbe!
of sources equally spaced along thdirection.

Time domain responses when a rigid circular inclusion is buried in the solid half-space are calculated in the fluid medium
for the case where a spatially sinusoidal harmonic line load placed in the fluid medium excites the system.

2. Green'’s functions in a fluid layer over a semi-infinite solid medium

Take a fluid layer with thicknesk, over a semi-infinite solid medium excited by a spatially sinusoidal harmonic pressure
load along the direction, with frequencw, acting at the pointxg, yg) in the fluid or in the solid medium (see Fig. 1).

The Green’s functions for a fluid layer, with thickndsver a semi-infinite solid medium can be expressed as the sum of the
source terms equal to those in the full-space and the surface terms needed to satisfy the boundary conditions at the free surfac
of the fluid layer (surface — null pressures) and at the fluid—solid interface (surfaeecontinuity of normal displacements
and stresses, and null tangential stresses).
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Fig. 1. Scheme of the problem.

The source terms, equal to those in the full-space, are defir@ﬁ'ﬁ&vhen the source is placed in the fluid media (pressures
due to the incident field in the fluid media) aﬁiﬁ?" (i=x,y,z; j=x,y,z) when the source is acting in the solid medium
(displacements generated by the incident field in the solid medium). The Green'’s functions for a full space can be found in
Tadeu and Kausel (2000).

The surface terms are defined using solid displacement potentials and fluid pressure potentials, expressed as a superpositior
of plane waves with different wavenumbekg, along thex direction. This process adopts the technique used first by Lamb
(1904) for the two-dimensional case, and then by Bouchon (1979) and Kim and Papageorgiou (1993) to calculate the three-
space dimension field by means of a discrete wave number representation. The problem is formulated assuming the existence
of an infinite number of virtual loads distributed along thedirection, at equal intervalé ,, permitting the definition of
kn = (2 /Ly )n. The distancd.,, needs to be large enough to prevent the virtual loads contaminating the response.

In this specific problem, the free surface and the solid—fluid interface generate surface terms, which can be expressed in a
form similar to that of the source term.

2.1. Load in the solid formation acting in the direction of thaxis
The surface terms generated at the boundaries, when the load acts iditeetion, can be expressed through the following

potentials,
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a=+/(A+2r)/p andg = /uu/p are the velocities for P (pressure) waves and S (shear) waves, respeataetij. are the
Lamé constantsy is the mass density in the solid mediumﬁ = /k,z,f —kZ2 —k,% with Im(v,{) <0, kp, =w/ay, ay =

/Ly/py is the acoustic (dilatational) wave velocity of the fluid medium, is the fluid Lamé constant and is the mass
density of the fluid.

Ay, By, C;, D;; andE;; , are as yet unknown coefficients to be determined from the appropriate boundary conditions, so that

the field produced simultaneously by the source and surface terms should pdx;gue@, o}S,Z =0, a§y = afﬁid andug, = u§

aty=0 andoﬂfuid =0aty=—h.

Imposing the five stated boundary conditions for each value lefds to a system of five equations in the five unknown
constants. This procedure is quite straightforward, but the details are rather complex, and for this reason are not presented hert
The final system of equations is of the form

la};. i=1.5 j=15lc]. i=15]=[b} i=15] 3)

which is fully described in Appendix I.

Once the unknown coefficients have been calculated, the displacements and pressures associated with the surface tern
can be obtained using the equations relating the potentials to displacements and pressures. The Green'’s functions for a soli
formation are then obtained from the sum of the source terms and the surface terms originated at the solid—fluid interface. This
procedure produces the following expressions for the displacements in the solid formation:
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GE;?” @i, j =x,y,z) are the displacements for the full space.
The final expression for the pressure field in the fluid medium is then given by the sum of the surface terms for pressures
originated in the fluid layer boundaries
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The expressions for forces applied along ffendz directions can be derived in the same way.

Note that ifk; = 0 is used, the system of equations derived above is reduced to four unknowns, leading to the two-
dimensional Green'’s function for plane strain line-loads. This procedure is repedtee; @, for all the load cases described
next.

2.2. Load in the solid formation acting in the direction of thaxis

The surface terms generated at the two interfaces can be expressed through the following potentials,
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Fluid medium(y < 0)
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The imposition of the five stated boundary conditions for each valudexds to a system of five equations in the five unknown
constants,
la;, i=15 j=15llc;, i=15]=[p, i =15] ®)
which is fully described in Appendix II.
Once the amplitude of each potential has been calculated, the Green’s functions for the displacements in the solid formation
are then given by the sum of the source terms and the surface terms originated at the solid—fluid interface,
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The final expression for the pressure field in the fluid medium is then given by the sum of the surface terms originated in the
fluid interfaces: andb
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2.3. Load in the solid formation acting in the direction of thaxis
The surface terms generated at the two interfaces can be expressed using the following potentials, which have been derived

using the technique described above,
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The imposition of the five stated boundary conditions for each valuelefds to a system of five equations in the five
unknown constants,

[aizj, i=15 j=15]c, i=151=[b;, i=115] (13)
which is fully described in Appendix lIl.
Once the unknown amplitude of each potential has been calculated, the Green'’s functions for the solid formation are given

by the sum of the source terms and the surface terms originated at the fluid—solid interface, leading to the following expressions,
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The final expression for the pressure field in the fluid media is given by the sum of the surface terms originated in fluid layer
interfaces,
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2.4. Pressure load acting in the fluid layer

The surface terms produced at the horizontal interfaces can be expressed using the following potentials,
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After the five stated boundary conditions, for each value dfiave been imposed, a system of five equations in the five
unknown constants is built up,

la), i=15 j=15lc/, i=15=1b/, i=15] (18)

J

details of which are given in Appendix IV.
After the system of equations has been solved, the Green’s functions for the solid formation are given by the surface terms
originated at the fluid—solid interface, generating the following expressions,
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The final expression for the pressure field in the fluid medium is then given by the addition of the pressure source term and
the surface terms originated at the fluid layer interfaces,

i [r= Efo n=+N EI}O
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Ufflﬂluld = —i/2Ho(,/(kpf)2 — (k;)?) is the expression for pressure in the full space fluid medium. In this expre&gioris the
second Hankel function of order 0.

3. BEM formulation

Consider that the horizontal fluid layer with a free top surface, bounded by a semi-infinite solid elastic medium, defined
above, contains now a rigid inclusion. This system is subjected to the 3D wavefield generated by a spatially sinusoidal harmonic
line load located in the fluid medium.

The Boundary Element Method (BEM) is suitable for solving this problem. The use of Green'’s functions for an unbounded
medium would require the discretization of all interfaces, which would lead to a very demanding computing effort.

The BEM formulation used here employs the Green’s functions derived above, for a horizontal fluid layer over a semi-
infinite solid medium. Thus, only the rigid boundary of the inclusion, requiring null displacement boundary conditions, needs
to be discretized. In these conditions the integral equation to be applied to the rigid boundary in the presence of an incident
wave is

-/tj (x,v, a))Gl.fl.S (x,x0, ) ds + G];f(inc) (xg,w)=0 (22)
C

where,i, j =1, 2 are the normal and tangential directions in relation to the boundary sutfgce;3 indicates the direction;
Glf]:’ (x, xq, w), are the Green'’s function displacements in directicat x, on boundanC, originated by a unit sinusoidal line

load acting at the source poindg, in directioni; vectorv is the unit outward normal at the boundagy,x, v, w) are the tractions
to be determined in the boundary. The incident field in this equation is given analytically as the surface terms originated on both
horizontal surfaceé;?f('nc) (x0, w) (see Eq. (19)).

The boundary needs to be discretized before this integral can be evaluated for an arbitrary cross-section. The boundary is
discretized intaV straight boundary elements, with constant interpolation functions and one nodal point in the middle of each
element.

To verify the accuracy of the results provided by this model, a BEM model which uses Green'’s functions for unbounded
medium was built. Three different boundaries need to be discretized: the top of the fluid layer where the required boundary
conditions are null pressures; the solid—fluid interface where continuity of normal tractions and normal displacements, and null
tangential stresses, need to be established; and the boundary of the rigid inclusion for which null displacements are required.
Thus, the following boundary integral equations are required:

(a) along the bottom surface of the fluid layer

cp(x,v,w)zfp(x,w)GfUIl (x,x0, w) ds — /Hf“” (x, v, X0, @)ug(x, v, w)ds + p"C(x, ), (22)
C

where Gf}‘” (x,x0,w) and H}U” (x,v,xq,w) are the Green’s functions for displacements and for pressures respectively;

u1(x, v, w) and p(x, w) are normal displacements and pressures on the boundang constant depending on the bound-

ary geometryp"®(x, w) = ffltj'l'd is the incident pressure field.



964 J. Anténio et al. / European Journal of Mechanics A/Solids 24 (2005) 957-973

(b) Along the top surface of the fluid layer

cp(x, v, @) = — f HY (x,v, x0, 0)u1(x, v, @) ds + p"°(x, ). (23)
c
(c) Along the solid horizontal interface
cijui(xg, ) :/tj(x, v,w)GE?" (x,x0,w)ds — / Hl.f;’” (x, v, x0, 0)u;(x, w) ds, (24)
c c

whereG‘:.‘jJ.” (x,x0,w) and H’.fj‘.J” (x, v, xq, w) are Green’s functions for displacements and tractions in an unbounded medium,
respectively.
(d) Along the boundary of the rigid inclusion

/tj (x,v, a))Gg” (x,xq,w)ds =0. (25)
C

The unlimited discretization of the top and bottom fluid layer surfaces in this BEM model is accomplished by using complex
frequencies with a small imaginary part of the fowpn= w — in (with n = 7.5(27/ T)), which introduces a damping effect.

4. Verification of the solution

The two models were compared computing the results for a water layer (L000 kg'm3, a ¢ = 1500 nys), 10.0 m thick,
over a slow formation 4 = 2250 kgm3, « = 2630 nys, 8 = 1416 nys) solid medium in which a circular rigid inclusion
with radius 3.0 m is buried, centered.at= 0.0 m andy = 8.0 m. The calculations are performed in the frequency domain
[2.0, 320.0 Hz] with a frequency increment of 2.0 Hz. The response is computed for a single vdluéot= 0.4 rad/m). The
BEM model using Green’s functions for an unbounded medium required the use of 560 boundary elements distributed along
the boundaries. The limitation of the discretized horizontal boundaries (220 m) was achieved using complex frequencies with a
large amount of damping. Only 50 boundary elements were used to model the inclusion when the BEM model incorporated the
proposed Green’s functions.

To illustrate the agreement between the two solutions, only the pressures are displayed at receiver R1.ptacd at
andy = —2.0 m (in the fluid), and displacements along thdirection at R2 placed at=2.0 m andy = 3.0 m (in the solid),
when the source is acting in the fluid at£ 0.0 m andy = —1.0 m) or when the source is acting in the solid medium along the
y direction.

Fig. 2(a) presents the real and imaginary parts of the scattered pressure field recorded at a receiver R1 while Fig. 2(b) show:
the scattered displacements in thdirection recorded at a receiver R2 when the source is placed in the fluid.

Fig. 3(a) shows the real and imaginary parts of the scattered pressure field recorded at a receiver R1 and Fig. 3(b) exhibits
the scattered displacements in thdirection recorded at a receiver R2 when the source is placed in the solid medium.

0.3
2x107
o 1x107
g =
S Q
o «
[o%
0
° 0
0.2 “1x107
0 100 200 300 a0, 100 200 300
Frequency (Hz) Frequency (Hz)

(a) (b)

Fig. 2. Load in the fluid medium: (a) pressures at receiver R1; (b) displacements alondithetion at receiver R2.
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Fig. 3. Load in the solid medium acting along thdirection: (a) pressures at receiver R1; (b) displacements alongdinection at receiver R2.

Table 1
Properties of the solid formations

Compressional wave velocity (fg) Shear wave velocity (ys) Density (kgm3)
Fast formation o =4208 B = 2656 p=2140
Slow formation o =2630 B=1416 o =2250
Sediment o =1643 B =526 p =1590

The solid lines represent the results calculated using the BEM model, which includes the Green’s functions presented in this
paper, while the marked points represent the BEM solution using Green'’s functions for an unbounded medium. The triangular
marks correspond to the real part of the response, while the round marks represent the imaginary part. The results reveal an
excellent agreement between the two solutions.

It should be noted that in the vicinity of the eigenfrequencies of the system, the BEM solution may not be so accurate.
A sufficiently fine boundary discretization and the use of damping reduces the probability of observing that behaviour.

5. Numerical applications

The model described above was used to compute the pressure field in a fluid layer over a semi-infinite solid formation
where arigid circular inclusion is buried. The numerical applications are performed assuming a water layei00 kg’m3,
o r = 1500 nys), 20.0 m thick, over different elastic solid formations with properties (listed at Table 1) corresponding to a fast
formation 8 < « ¢), a slow formation g > « ¢) or a sediment formation.

The rigid inclusion is centered at= 0.0 m andy = 5.0 m (see Fig. 4) with a radius of 2.0 m. The boundary of the inclusion
is discretized using a number of constant boundary elements defined according to the excitation frequency of the harmonic
source. The ratio between the wavelength of the incident waves and the length of the boundary elements is kept to a minimum
of 6. However, the number of boundary elements used to model the inclusion was never less than 30.

The system is perturbed by a pressure line ldad=f 0.0 rad/m) placed in the water medium at= —20.0 m and
y=—1.0 m. The pressure variations in the fluid are registered at a grid of 61 by 40 receivers placed aloagdhelirection
respectively. The receivers are separated by 0.5 m in either direction and are placed=frerf5.0 m andy = —0.25 m to
x =15.0 m andy = —19.75 m (see Fig. 4).

All the computations are carried out in the frequency domain using complex frequencies of thefetmw — in (with
n = 0.7Aw) to prevent aliasing phenomena. The frequency range used is [10 Hz, 1280 Hz] with a frequency increment of
10 Hz. This increment defines the total time duration of 100 ms. An inverse Fourier transform is then applied to the frequency
results in order to obtain time domain responses. The source is modeled as a Ricker pulse with a characteristic frequency of
350 Hz.

The time pressure amplitude registered along the lower line of receivers is presented in order to identify the different type
of waves. A sequence of snapshots that displays the pressure wave field along the grid of receivers at different times is also
displayed. The pressure amplitude is plotted in a gray scale ranging from black to white, as the amplitude increases.
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Fig. 4. Geometry of the model.

Fig. 5 presents the time results when the solid elastic medium has the properties of the fast formatiof.0%4 the source
emits a pulse that propagates away, giving rise to a spread of energy. As time elapses the incident pulse hits the fluid solid
interface and the water free surface leading to a complex wavefield. However, it is possible to identify waves reflecting back
from the free surface, waves propagating along the fluid—solid interface with the velocity of the S waves in the solid/€656 m
and waves transmitted to the solid medium that are then reflected back by the rigid cavity.

Fig. 5(a) gives the time pressures registered along the lower line of receivers, while Figs. 5(b)—(e) show snapshots computec
over the grid of receivers at different times. In Fig. 5(a) different types of pulses are distinguishable. The first pulse (FPF), with
a weak amplitude, corresponds to waves which, once they reach the fluid—solid interface, propagate along it with the velocity
of the P waves in the solid (4208/s). On a different plot scale this pulse would be visible in the snapshotat.5 ms,
atx = 5.0 m. A pulse with higher amplitude follows, labelled FSF. This pulse corresponds to waves which, after hitting the
fluid-solid interface, propagate with the velocity of the S waves in the solid (265.Mhe direct incident pulse (I) appears
later, since it propagates at lower velocity (velocity of the fluid, 1508)xiThis pulse is visible in the snapshotsfet 7.5 ms,

t =125 ms and = 20 ms (Figs. 5(b)—(d)). Reflections from the cavity are also present. One of the most evident corresponds to
waves that are transmitted to the solid medium and are reflected by the rigid boundary of the inclusion. It propagates in the solid
medium with the velocity of the S waves (FSSF). This pulse is also visible in the snapshet 1&5 ms. As time elapses, the

wave front hits the free water surface, where is reflected back. These waves reach the fluid—solid interface where they are agai
reflected back, and this process continues. These reflections are identified in Fig. 5(a) by FF and FFFF. Figs. 5(d) and 5(e) shov
the FF pulse being reflected at the top and bottom interfaces.

Fig. 6 presents the pressure field obtained for the case of a slow formation. Fig. 6(a) shows the time results obtained for the
lower line of receivers (at = 0.25 m), while Figs. 6(b)—(e) display the pressure responses registered at the grid of receivers at
specific times.

The faster pulse (FPF) is associated with waves which, after the incident pulse has reached the solid—fluid interface, prop-
agate along it with the velocity of P waves (263Qshin the solid. This pulse is visible in the snapshots at7.5 ms and
t =125 ms (Figs. 6(b) and 6(c) respectively). A pulse that is transmitted to the solid with the velocity of the P waves and prop-
agates with the velocity of the S waves after being reflected back by the rigid inclusion is identified by FPSF (see Figs. 6(a),
6(c)). A well-developed pulse follows, related to the direct incident waves travelling with the velocity of the fluid (590 m
Another high-amplitude pulse can be seen in Fig. 6(a). This pulse corresponds to guided waves (G) travelling along the interface
with velocities lower than the S wave velocity. As can be seen in Figs. 6(c)—(e), this pulse is only registered at receivers near
the interface. As the wave propagation progresses additional reflections arise, such as waves propagating in the solid with the
velocity of the S waves that are scattered by the rigid inclusion (FSSF). Additional reflections are visible, corresponding to
waves propagating back and forth in the fluid medium between the free surface and the solid—fluid interface (FF, FFFF). High
order reflections at the boundary of the rigid cavity are also present.

Next, we give some results when the solid medium under the fluid layer is sediment. Fig. 7 shows the pressure field registered
at the line of receivers in the time domain, and snapshots of the pressure field registered at the grid of receivers for different
times.

As before, the pressure field is made up of different types of waves. It is possible to observe the direct incident waves (l)
which, once they reach the solid fluid interface, propagate along it with the velocity of the P waves (43 tine solid (FPF)

(see Fig. 7(a)). These two pulses are not easily distinguishable since the velocity in the fluid medium (4p8f8maches the
velocity of the P waves in the solid. A well-developed pulse (FPPF), corresponding to the first reflections by the rigid inclusion
of waves propagating in the solid medium with the velocity of the P waves, is also visible.
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Fig. 5. Time pressure responses for a characteristic frequency of 350 Hz, when the solid is a fast formation, registered: (a) at the lower line of
receivers; over the grid of receivers at: (b} 7.5 ms; (c)t = 125 ms; (d)t = 20 ms; (ey = 30 ms.
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Fig. 6. Time pressure responses for a characteristic frequency of 350 Hz, when the solid is a slow formation, registered: (a) at the lower line of
receivers; over the grid of receivers at: (¥ 7.5 ms; (c)r = 125 ms; (d)r = 20 ms; (ey = 30 ms.
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Fig. 7. Time pressure responses for a characteristic frequency of 350 Hz, when the solid is a sediment formation, registered: (a) at the lower
line of receivers; over the grid of receivers at: {b} 7.5 ms; (c)r = 125 ms; (d)r = 20 ms; (e} = 30 ms.
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A pulse with a slight amplitude appearsrat 10 ms corresponding to guided waves (G) travelling along the solid—fluid
interface with velocities lower than the S wave velocity. Some waves propagating in the fluid medium are reflected between the
top and bottom of the fluid layer. The first reflection in the top has a high amplitude and is labelled FF in the plots. High order
reflections in the boundary of the rigid inclusion buried in the solid medium are also visible in Fig. 7(a).

6. Conclusions

The analytical functions presented in this paper can be used by themselves to compute the wave field generated by a spatiall
sinusoidal harmonic load in a formation composed of a fluid layer over a semi-infinite solid.

In this paper, they were also found to be useful when incorporated in a BEM formulation to compute the wavefield produced
by rigid inclusions buried in a semi-infinite solid under a fluid layer.

The verification of the solutions against those provided by a BEM model using Green’s functions for an unbounded medium
showed a very good agreement between the two solutions. However, the proposed model can overcome the computer limitation:
of the former model, given that it is only necessary to discretize the boundary of the inclusions.

A fluid layer over a semi-infinite solid formation, where a rigid circular inclusion is buried, is used to illustrate the applica-
bility of the proposed BEM models.

In all the simulations it was possible to detect different pulses resulting from reflections in the horizontal boundaries, reflec-
tions in the boundary of the inclusion and also guided waves travelling along the solid—fluid interface.

When the solid is a sediment the reflections have lower amplitude than in the other cases. This is due to the fact that much
more energy is transmitted to the solid medium.

The interpretation of the results agrees with the findings obtained when the travel paths are calculated, following a ray in the
wave front. It can thus be confirmed that the wave scattering produced by buried rigid inclusions in a seabed formation can be
identified by sources placed in the fluid medium.
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