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Abstract

This work analyzes the wave scattering by an elastic, fluid-filled, cylindrical shell structure submerged in a fluid medium
and subjected to the effect of a point pressure load placed inside or outside the cylindrical shell. The shell structures modeled
have constant cross-sections along their axis, corresponding to 2.5D problems. A Fourier transformation in the direction in
which the geometry does not vary is applied to find the 3D field as the summation of the 2D solutions for different spatial
wavenumbers.

The wave propagation patterns are analyzed for shell structures defined by two concentric or non-concentric cylindrical
circular surfaces. The boundary element method, formulated in the frequency domain, is used to calculate the dynamic response
of these systems when the shell is defined by non-concentric cylindrical circular surfaces, while analytical solutions are used
to compute the response when two concentric cylindrical circular surfaces define the shell structure. Different simulations are
performed for receivers placed at distinct positions, in order to study the normal modes excited at each load position within
each shell structure type. Both frequency and time solutions are obtained, in an attempt to obtain wave propagation features
that may be used as a basis for developing non-destructive testing techniques.
© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Wave propagation and vibration phenomena have interested researchers for many years. The particular case of
the vibration of thin or thick shell structures has been analyzed using many different approaches, ranging from
analytical to numerical methods. The latter are applicable to a wide range of situations, and allow the analysis of
physical systems with different configurations.

The propagation of guided transient waves in the circumferential direction of annular structural components was
addressed by Liu and Qu[1]. Their work used the eigenfunction expansion method to analyze a circular annulus
with null traction at the inner surface and subject to a time dependent transient excitation with different incidence
angles at the outer surface. This method allowed the contributions of the different eigenmodes to be separated,
making it possible to identify the ones making more important contributions to the response. Chung and Lee[2]
proposed a new conical ring element to be used in connection with the finite element method to analyze the free
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vibrations of nearly axisymmetric shell structures. The element proposed allowed the effect of a possible slight local
deviation from the pure axisymmetric form to be taken into account.

The free vibration of rings with profile variations in the circumferential direction was studied by Hwang et al.
[3]. Their methodology was based on expressing the inner and the outer profiles as Fourier series, using an it-
erative numerical procedure to determine the middle surface and thickness at each cross-section. Novozhilov’s
thin shell theory is then used to model the deformation mechanics of the ring, and eigenfrequencies are deter-
mined by the Rayleigh–Ritz method, together with a harmonic series description of the displacements. Several
cases were analyzed by Fox et al.[4] using this method, in which the inner and outer profiles are nominally
circular with various superimposed harmonic variations in radius. The most important causes of frequency split-
ting were identified and highlighted. Later, the same method was used[5] to assess the vibration of elliptical
rings with a constant or variable cross-section, examining the effect of the aspect ratio of the ellipse and the
influence of single harmonic perturbations of the ring profile on the frequency splitting of vibration modes.
These results compared well with previously published results for aspect ratios close to unity. However, for
aspect ratios significantly different from unity, the additional terms used by the authors increased the
accuracy.

When a fluid medium is present inside or outside the structure, more elaborate models that take into account the
coupling between the solid and the fluid should be used. Researchers proposed different models to solve problems
of this type. The wave scattering by submerged elastic circular cylindrical shells, filled with air, struck by plane
harmonic acoustic waves was analyzed by Veksler et al.[6]. They used the standard resonance scattering theory
to study the modal resonances, focusing their investigation on the generation of bending waves. They concluded
that these waves could be generated when the relative thickness of the shell is not too great, and that the dispersion
curves of their phase velocity were limited by the dispersion curves of the free bending modes, when the density of
the host fluid tends towards zero.

Bao et al.[7] addressed the existence of various types of circumferential waves and the repulsion of their dispersion
curves for the case of a submerged thin elastic circular fluid-filled cylindrical shell. Their study was based on an
analytical calculation of the partial-wave resonances in the acoustic scattering amplitude of a normally incident
plane wave.

Recent work by Maze et al.[8] presented a study on the various guided acoustic circumferential modes found in
a water-filled tube. This work showed, both theoretically and experimentally, that structure waves are present inside
a water-filled thin walled tube in vacuum. The group velocities for the first two coupled modes calculated by the
authors were in excellent agreement with experimental results.

In many cases, the shell structure may not be perfectly circular, and the interior and exterior surfaces may be
defined by two non-concentric circumferences. This deviation from a pure circular form, with constant thickness,
introduces variations in the dynamic behavior of the structure. In the present paper, the authors analyze the 3D wave
propagation in the vicinity of a fluid-filled cylindrical shell structure, submerged in a continuous homogeneous fluid
medium. The full coupling between the external fluid, the elastic material and the internal fluid is taken into account.
Two cross-sections are studied, corresponding to shells defined by two concentric or non-concentric circumferences.
In both cases, the shell is assumed to be made of a homogeneous elastic material.

A 2.5D formulation was used, taking into account the full 3D nature of the problem. This formulation allowed
the authors to obtain 3D responses in the frequency domain as a discrete summation of the 2D solutions for different
axial wavenumbers[9]. Analytical solutions are used to solve each of the 2D problems when the thickness of the
shell wall is constant, and the boundary element method (BEM) is applied to obtain the response when the cylindrical
shell is not perfect. Pressure variations in the fluid medium that fills the shell and the dependence of the different
normal modes on the position of the source and geometry of the cross-section are analyzed. A better understanding
of the behavior of the dynamic system is gained from the time domain responses, which are obtained using inverse
Fourier transforms.

First, this work describes the 2.5D formulation of the scattering problem, the analytical and the BEM frequency
solutions. Then, the BEM solution is validated against the analytical solution. Next, the process used to compute
time domain results is described. Finally, a set of numerical applications is presented, showing how an infinite
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Fig. 1. Geometry of the problem.

cylindrical shell behaves when subjected to the effect of a point source, placed at different positions in the vicinity
of shell structures defined by two concentric or non-concentric circumferences.

2. 3D problem formulation

Consider an infinite, fluid-filled, shell structure with cylindrical geometry, as inFig. 1, submerged in a spatially
uniform fluid medium, aligned along thez-axis, and subjected to a harmonic dilatational point source, placed in
the exterior fluid medium, oscillating with a frequencyω. The incident field can be expressed by means of the
dilatational potentialφ:

φinc = Ae
i(ω/α1)

(
α1t−

√
(x−x0)

2+y2+z2
)

√
(x − x0)2 + y2 + z2

, (1)

where the subscript ‘inc’ denotes the incident field,A the wave amplitude,α1 the pressure wave velocity allowed in
the exterior fluid medium,(x0,0,0) defines the position of the source and i= √−1.

The geometry of this problem remains constant along thez-direction, which allows the incident field to be
expressed as a summation of 2D sources, with different spatial wavenumbers, by applying a Fourier transformation
along thez-direction:

φinc(ω, x, y, z) = 2π

L

∞∑
m=−∞

φ̂inc(ω, x, y, kzm) (2)

with φ̂inc(ω, x, y, kzm) = (−iA/2)H(2)
0 (kα1((x − x0)

2 + y2)1/2)e−ikzmz, kzm being the axial wavenumber given by

kzm = (2π/L)m, kα1 = ((ω2/α2
1)− k2

zm)
1/2 (Im kα1 < 0),H(2)

n (· · · ) the second Hankel functions of ordern, andL
the distance between virtual point sources equally spaced alongz. The distanceL must be sufficiently large to avoid
spatial contamination from the virtual sources[10].

3. Analytical solution

Consider a circular shell solid structure, defined by the internal and external radiirA andrB, respectively, and
submerged in a homogenous fluid medium, as illustrated inFig. 2. A harmonic dilatational source placed in the
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Fig. 2. Circular cylindrical shell structure submerged in a fluid medium.

exterior fluid medium is assumed to illuminate the system, generating waves that hit the surface of the submerged
structure. Part of the incident energy is then reflected back to the exterior fluid medium, with the rest being transmitted
into the solid material, as propagating body and guided waves. These waves continue to propagate and may eventually
hit the inner surface of the structure, where similar phenomena occur.

The wavefield generated in the exterior fluid medium (fluid 1) depends both on the incident pressure waves and
those coming from the external surface of the shell. The latter propagate away from the cylindrical shell, and can
be defined using the following displacement potential when a cylindrical coordinate system is centered on the axis
of the circular shell:

φ̂1 =
∞∑
n=0

A1
nHn(kα1r) cos(nθ)e−ikzmz. (3)

Inside the solid material of the shell, two distinct groups of waves exist, corresponding to inward travelling waves,
generated at the external surface, and outward travelling waves, generated at the internal surface of the shell. Each
of these groups of waves can be represented using one dilatational and two shear potentials:

φ̂2 =
∞∑
n=0

A2
nJn(kα2r) cos(nθ)e−ikzmz, ψ̂2 =

∞∑
n=0

A3
nJn(kβ2r) sin(nθ)e−ikzmz,

χ̂2 =
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n=0

A4
nJn(kβ2r) cos(nθ)e−ikzmz, φ̂3 =

∞∑
n=0

A5
nHn(kα2r) cos(nθ)e−ikzmz,

ψ̂3 =
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n=0

A6
nHn(kβ2r) sin(nθ)e−ikzmz, χ̂3 =
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n=0

A7
nHn(kβ2r) cos(nθ)e−ikzmz, (4)

wherekα2 = ((ω2/α2
2)−k2

z )
1/2, kβ2 = ((ω2/β2

2)−k2
z )

1/2 andα2 andβ2 are, respectively, the dilatational and shear
wave velocities permitted in the solid formation.

In the fluid that fills the shell structure (fluid 2), only inward propagating waves are generated. For this case, the
relevant dilatational potential is given by

φ̂4 =
∞∑
n=0

A8
nJn(kα3r) cos(nθ)e−ikzmz, (5)
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wherekα3 = ((ω2/α2
3) − k2

z )
1/2 andα3 is the pressure wave velocity in the inner fluid. The termsA

j
n(j = 1,8)

for each potential of the expressions (3)–(5) are unknown coefficients to be determined by imposing the required
boundary conditions. For our case, these boundary conditions are the continuity of normal displacements and stresses
and null tangential stresses on the two solid–fluid interfaces.

In order to establish the appropriate equation system, the incident field must be expressed in terms of waves
centered on the axis of the circular cylindrical shell structure. This can be achieved with the aid of Graf’s addition
theorem, leading to the expression (in cylindrical coordinates):

φ̂inc = − i

2

∞∑
n=0

(−1)nεnHn(kα1r0)Jn(kα1r) cos(nθ)e−ikzmz, (6)

wherer0 is the distance from the source to the axis of the circular shell.
The solution of the equation system can then be used to compute the stresses in the solid medium as a summation

of solutions obtained for pairs of values ofn andkz. The final system of equations is presented inAppendix A.

4. Boundary element formulation

The BEM only requires the discretization of the internal and external boundaries of the shell. Detailed information
on the BEM formulation applicable to the present problem can be found in Beskos[11].

The system of equations required for the solution is arranged so as to impose the continuity of the normal
displacements, and normal stresses and null shear stresses along each interface between the fluid media and the
shell structure. This system of equations requires the evaluation of the following integrals along the appropriately
discretized boundaries:

H
(s)kl
ij =

∫
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H
(s)
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(f )kl
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in whichH(s)
ij (xk, xl, nl) andG(s)

ij (xk, xl) are the Green’s tensor for traction and displacement components, respec-
tively, in the elastic medium, at pointxl, in directionj, caused by a concentrated load acting at the source pointxk

in directioni; H(f )
f1(xk, xl, nl) are the components of the Green’s tensor for pressure in the fluid medium, at point

xl, caused by a pressure load acting at the source pointxk; G
(f )
f1(xk, xl) are the components of the Green’s tensor

for displacement in the fluid medium, at pointxl, in the normal direction, caused by a pressure load acting at the
source pointxk; nl is the unit outward normal for thelth boundary segmentCl; the subscriptsi, j = 1,2,3 denote
the normal, tangential andz-directions, respectively. These equations are conveniently transformed from thex, y, z

Cartesian coordinate system by means of standard vector transformation operators. The required 2.5D fundamental
solutions (Green’s functions) in Cartesian co-ordinates, for the elastic and fluid media, are given below:

• Elastic medium:

Gxx = A

[
k2
s H0β − 1

r
B1 + γ2

xB2

]
, Gyy = A

[
k2
s H0β − 1

r
B1 + γ2

yB2

]
,

Gzz = A[k2
s H0β − k2

zB0], Gxy = Gyx = γxγyAB2, Gxz = Gzx = ikzγxAB1,

Gyz = Gzy = ikzγyAB1, (8)

whereλ,µare the Lamé constants;ρ the mass density;α = ((λ+2µ)/ρ)1/2 the P wave velocity;β = (µ/ρ)1/2 the
S wave velocity;kp = ω/α, ks = ω/β the wave number;kα = (k2

p − k2
z )

1/2, kβ = (k2
s − k2

z )
1/2 the wave number;
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A = 1/4iρω2 the amplitude;γi = ∂r/∂xi = xi/r (i = 1,2) the direction cosines;Hnα = H
(2)
n (kαr),Hnβ =

H
(2)
n (kβr) the Hankel functions;Bn = knβHnβ − knαHnα theBn functions.

• Fluid media:

Gfx = −AfkαfH1αf γx, Gfy = −AfkαfH1αf γy, (9)

wherekαf = (k2
pf − k2

z )
1/2 is the wave number;Af = 1/4i the amplitude;Hnαf = H

(2)
n (kαf r) the Hankel

functions.

Fig. 3. Validation of the BEM algorithm: (a) geometry of the model; (b) response computed at receiver R.



L. Godinho et al. / Wave Motion 38 (2003) 131–149 137

The required integrations inEq. (7)are performed analytically for the loaded element, and by using a Gaussian
quadrature scheme when the element to be integrated is not the loaded element.

5. BEM validation

The results computed by the present BEM algorithm were compared with those obtained analytically using
the formulation described above.Fig. 3a illustrates the geometry of the model used in the validation, assuming
a cylindrical circular elastic shell structure, with an internal diameter of 0.8 m and an external diameter of 1.6 m,
inserted in an infinite fluid medium. The mechanical properties of the elastic medium and those of the two fluids
are listed in the same figure.

A spatially sinusoidal harmonic pressure line load is applied atx = −1.0 m andy = 0.0 m. Computations are
achieved in the frequency domain [2.50, 320.0 Hz] with a frequency increment of 2.5 Hz.

Fig. 3b displays the real and imaginary parts of the scattered pressure field recorded by the receiver placed at
x = 0.0 m andy = −1.0 m (labeled R), for a pressure line load withkz = 1.0 rad/m. The solid lines represent the
analytical solutions, while the marked line corresponds to the BEM solution. The square marks indicate the real
part of the response, while the round marks refer to the imaginary part.

The results computed at receiver R enable one to conclude that the two solutions are in very close agreement,
indicating that the BEM model is accurate. Equally good results were achieved from tests in which different loads
and receivers were situated at different points.

6. Time responses

After obtaining frequency domain responses, the pressure in the spatial–temporal domain is computed by a
numerical fast inverse Fourier transform inω. For this purpose, the pressure point source is assumed to have a
temporal variation defined by a Ricker pulse. In the frequency domain, this pulse is defined as

U(ω) = A
[
2
√
πt0 e−iωts

]
Ω2 e−Ω2

(10)

in whichΩ = ωt0/2, t denotes time andπt0 the characteristic (dominant) period of the wavelet.
This technique allows analyses for a total time window ofT = 2π/-ω, where-ω is the frequency step. Pulses

arriving at times later thanT will appear again in the beginning of this window, generating the so-called aliasing
phenomenon. To avoid the contribution of these pulses, complex frequencies of the formωc = ω − iη (with
η = 0.7-ω) are used (e.g.[12]). In the time domain, this shift is taken into account by applying an exponential
window eηt to the response[13].

7. Numerical examples

All the examples given here have a cylindrical shell structure defined by two circular cylindrical surfaces. The
inner surface has a diameter of 1.00 m while that of the outer surface is 1.40 m. Each surface is modeled using
150 boundary elements. This structure is submerged in a fluid medium, which allows a pressure wave propagation
velocity of 1500 m/s and exhibits a density ofρ = 1000 kg/m3. The fluid filling the shell is assumed to have the
same properties as the host medium, while the elastic material of the shell structure is concrete, with a Poisson ratio
of ν = 0.15, a density ofρ = 2500 kg/m3 and Young’s modulusE = 29.0 GPa, allowing propagation velocities for
the P and S waves of 3498.6 and 2245.0 m/s, respectively. Pressure responses are calculated at four sets of receivers
placed in the fluid filling the structure. Each set consists of a line of five receivers, placed along thez-direction and
with differentz-coordinates. Thez-coordinate of each receiver is indicated in the time responses.



138 L. Godinho et al. / Wave Motion 38 (2003) 131–149

Fig. 4. Geometry of the model: (a) case 1; (b) case 2.

Two distinct situations are simulated, as shown inFig. 4. The first corresponds to a cylindrical shell structure
defined by two concentric circumferences, with a constant wall thickness of 0.20 m (case 1,Fig. 4a). In the second
situation, the cylindrical shell structure is assumed to have a construction defect; thus, two non-concentric circum-
ferences define the structure, with their centers placed 0.05 m apart (case 2,Fig. 4b). For both cases, point pressure
loads, placed either inside (position O1) or outside (position O2) the structure, illuminate the dynamic system. The
3D response is given by a discrete summation of 2.5D responses, as described inSection 2.

All the computations were performed for frequencies in the range of 8–1024 Hz, with increments of 8 Hz. This
frequency step determines a maximum time analysis of 0.125 ms for the time domain responses. The time domain
responses presented are computed by means of an inverse Fourier transformation, assuming the source generates a
Ricker pulse with a central frequency of 350.0 Hz.

7.1. Case 1—cylindrical shell structure with cross-section defined by two concentric circumferences

Fig. 5a displays both the frequency vs. phase velocity and the time domain pressures responses computed at
receivers R1, when a point pressure load is excited at position O1, within the case 1 structure. The response in the
frequency vs. phase velocity domain is determined by computing the solution of the problem for different values
of the parameterkz = ω/c, with c being the apparent wave velocity alongz. For these figures to be understood
more easily, the frequency vs. phase velocity responses only represent phase velocities ranging from 800.0 to
1600.0 m/s. The response registered for higher phase velocities is omitted in these figures. However, time responses
are calculated for the full range of velocities, and thus they take into account the contribution of all waves involved.

The response registered at receivers R1 (Fig. 5a), placed over the geometric center of the system, reveals the
existence of different types of waves. In the frequency vs. phase velocity response, waves traveling in the fluid
with the pressure wave propagation velocity of 1500.0 m/s are clearly visible (labeled “F”). An additional excited
mode can also be seen (labeled as “A0”). This mode corresponds to dispersive guided waves, exhibiting phase
velocities below the fluid pressure wave velocity. It seems to exist in the full frequency range. Its mode shape was
computed over a fine grid of receivers placed inside the structure, for frequencies off = 200.0 Hz (c = 1200.0 m/s),
f = 350.0 Hz (c = 1132.0 m/s) andf = 1000.0 Hz (c = 996.0 m/s), illustrated inFig. 5b. In Fig. 5a, a pair of
numbers identifies the frequency position of each of these points (Aij ), the first number identifying the azimuthal
order of the mode and the second giving its relative position in the frequency domain. For this case, it clearly
indicates that this is an axisymmetric mode and its shape remains constant with the frequency variation.

The features described can also be identified in the time domain responses ofFig. 5a. A pulse can be detected
in the time responses, corresponding to waves traveling with the fluid velocity, and labeled as “PF”. There follows
a dense ring of pulses associated with the “A0” normal mode (labeled “PA0”). Since “A0” is a highly dispersive
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Fig. 5. Cylindrical shell structure defined by two concentric circumferences: (a) frequency vs. phase velocity and time responses at receivers R1
due to a point source located at O1; (b) pressure response across the fluid filling the structure along “A0”.

mode, its contribution appears in the time response as a sequence of pulses that start to arrive after the waves that
travel with the pressure wave velocity of the fluid. The time responses show that there is a third type of pulse, labeled
“PTP”, in this system. It exhibits higher propagation velocities and is associated with waves that exist in thin plates
and shells. These waves could not be identified in the frequency responses due to the range of phase velocities
shown. According to Graff[14], this “thin-plate velocity” is given by(E/(1− ν2)ρ)1/2. The mechanical properties
ascribed to the elastic medium allow the “thin-plate velocity” to be approximately 3445 m/s. The calculation using
this expression does not take into account the solid/fluid coupling, and thus there is a discrepancy between this
result and the group velocities registered in the time responses (≈3350 m/s).

The R1 receivers only register the influence of the “A0” normal mode. However, other guided modes may be
excited in this system, some of them exhibiting an azimuthal variation. We have referred to them as “An”, wheren
indicates the variation of the mode with azimuth. The response computed at receiver R2 (Fig. 6a), reveals one of
these modes. It is highly dispersive, and the mode shape computed at frequenciesf = 200.0 Hz (c = 1490.0 m/s),
f = 350.0 Hz (c = 934.0 m/s) andf = 1000.0 Hz (c = 1074.0 m/s) (seeFig. 6b) shows that it is a normal mode
with azimuthal variation of second order, corresponding to screw waves (identified as “A2”). It was not recorded
at receivers R1 since these receivers were placed over its nodal line. Time responses reveal the existence of these
identified wave types, with the additional contribution of pulses traveling with the so-called “thin-plate velocity”
(labeled “PTP”). The presence of pulses related to the “A2” normal mode are harder to identify, since they appear
as being superimposed on those related to the “A0” mode, which dominates the response.
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Fig. 6. Cylindrical shell structure defined by two concentric circumferences: (a) frequency vs. phase velocity and time responses at receivers R2
due to a point source located at O1; (b) pressure response across the fluid filling the structure along “A2”.

The response computed at receivers R3 is represented inFig. 7. One axisymmetric mode (labeled “A0”) and
two normal modes with azimuthal variation are registered at this position (labeled “A1” and “A3”), while the
“A2” mode noted earlier is not visible. Observing the mode shapes A1 computed for frequenciesf = 200.0 Hz
(c = 894.0 m/s),f = 350.0 Hz (c = 986.0 m/s) andf = 1000.0 Hz (c = 1014.0 m/s), and mode shapes calculated
for A3 atf = 704.0 Hz (c = 1368.0 m/s),f = 850.0 Hz (c = 1288.0 m/s) andf = 1000.0 Hz (c = 1264.0 m/s)
(Fig. 7b), it may be concluded that these “A1” and “A3” modes could not be seen at receivers R1 and R2 since the
receivers were over the nodal line of these modes. The absence of “A2” waves is similarly explained, since they
make null contribution for receivers placed over lines that pass through the center of the structure and form an angle
of 45◦ with the horizontal axis. Notice that, as before, the shape of the A1 and A3 modes remained constant as the
frequency varies. The time responses allow the identification of some of the features described for the frequency
response. The arrival times of the waves traveling with the “thin-plate velocity” and with the fluid pressure wave
velocity can be identified. It is then possible to observe the arrival of a sequence of waves that correspond to the
normal modes excited. The time responses register a significant pressure variation after the arrival of the waves
associated with the “A0”, “A1” modes, which is generated by the mode “A3”, given its low group velocity. This
mode also exhibits a clear cutoff frequency aroundf = 500.0 Hz.

All the modes described above (“A0”, “A1”, “A2” and “A3”) are visible at receivers R4, as shown in the frequency
vs. phase velocity and time responses inFig. 8. The amplitude of the non-axisymmetric modes seems to increase,
since the “A1”, “A2” and “A3” modes reach all maximum amplitudes at this position. The time domain response
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Fig. 7. Cylindrical shell structure defined by two concentric circumferences: (a) frequency vs. phase velocity and time responses at receivers R3
due to a point source located at O1; (b) pressure response across the fluid filling the structure along “A1”; (c) pressure response across the fluid
filling the structure along “A3”.

reveals all the features identified before, with the arrival of the “PTP” and “PF” pulses followed by a sequence of
waves corresponding to normal modes. This time domain response is very similar to that obtained at receivers R1,
R2 and R3. However, this happens because the amplitude of the “A0” mode, visible at all receivers, appears to
dominate the overall amplitude of the response.

The same model has been subjected to a point load placed at position O2, outside the shell structure.Fig. 9
illustrates the frequency and time domain responses computed at receivers R4. The main features found for the point
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Fig. 8. Frequency vs. phase velocity and time responses at receivers R4 due to a point source located at O1 in the vicinity of a cylindrical shell
structure defined by two concentric circumferences.

source located at O1 can still be identified. However, there is a global decrease in the amplitude of the response,
mainly due to the diminished importance of the “A0” mode. The time responses further confirm this behavior, by
exhibiting lower amplitude after the arrival of the pulses associated with waves traveling at the “thin-plate velocity”
(PTP) and at the pressure wave velocity (PF).

7.2. Case 2—cylindrical shell structure with cross-section defined by two non-concentric circumferences

In order to understand the effect of a construction defect on the final dynamic response of the system, simulation
analyses were performed using the case 2 model.

The pressures in the frequency vs. phase velocity and in the time domain computed at receivers R1 when the
surfaces defining the shell are not concentric and the source is at position O1 are given inFig. 10a. In the frequency

Fig. 9. Frequency vs. phase velocity and time responses at receivers R4 due to a point source located at O2 in the vicinity of a cylindrical shell
structure defined by two concentric circumferences.
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vs. phase velocity domain, the presence of waves associated with the pressure velocity of the fluid (F) can still be
easily identified. The response registered at the same receivers also exhibits, as before, different dispersive guided
waves that generate an enhancement of the response along well-defined lines in the frequency vs. phase velocity
plots. Four lines are visible and labeled “Li” ( i = 0,3).Fig. 10b–e plot the pressure at a fine grid of receivers placed

Fig. 10. Cylindrical shell structure defined by two non-concentric circumferences: (a) frequency vs. phase velocity and time responses at receivers
R4 due to a point source located at O1; (b) pressure response across the fluid filling the structure along line L0; (c) pressure response across the
fluid filling the structure along line L1; (d) pressure response across the fluid filling the structure along line L2; (e) pressure response across the
fluid filling the structure along line L3.
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Fig. 10. (continued).

in the inner fluid along each of those lines (Li) for different frequencies. A pair of numbers identifies each plot: the
first number identifies the line while the second gives the relative position in the frequency domain. Analysis of
these plots shows that along each line, the shape of the response does not remain constant as the frequency changes.
At low frequencies, the response appears to behave like the modes defined for case 1. Indeed, at low frequencies, it
is possible to detect the mode shapes defined by the A0, A1 and A2 modes. Meanwhile, the plots defining the L3
response appear to keep the mode shape of A3 in the vicinity of its cutoff frequency. As the frequency increases, the
shape of the computed pressure responses changes significantly, apparently as a result of a combination of different
behaviors corresponding to the previously computed “Ai” modes.

Analyzing the responses registered at the different lines, “Li”, it can be confirmed that the guided waves associated
with “L0” exhibit higher amplitudes. The response associated with this line is seen to be less dispersive than the
“A0” line of case 1. The time response corroborates this behavior, as the ring of pulses associated with larger
amplitude guided waves stops arriving earlier than before.

Frequency vs. phase velocity and time domain responses have also been computed at receivers R1, R2 and R3, as
illustrated inFig. 11. The frequency response at receivers R1 (Fig. 11a) clearly shows that the “L0” line dominates
the response. At low frequencies, lines “L1” and “L2” register only low amplitude responses. It should be noted that,
at these frequencies, the case 1 model exhibited null contribution of the corresponding normal modes (“A1” and
“A2”). However, in case 2 the receiver R1 is no longer placed over an axis of axisymmetry, and thus may register
a small contribution of non-axisymmetric wave modes. It is also possible to observe that the response related to
line “L3” is now very low, especially near its cutoff frequency. In the time domain, pulses arriving at the end of the
time window, observed at receivers R4, are no longer visible at this receiver, due to the small contribution of waves
traveling with very low velocities and associated with line “L3”.

In the response registered at receiver R2 (Fig. 11b) it is possible to observe that the contribution of waves associated
with the line “L2” is now significant at low frequencies. In fact, at these frequencies the computed mode shape of
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Fig. 11. Frequency and time domain response computed for case 2 due to a point source located at O1: (a) receivers R1; (b) receivers R2; (c)
receivers R3.
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“L2” is very similar to the “A2” mode of case 1, reaching maximum amplitude at this receiver. Furthermore, the
contribution of waves associated with the response line “L3” is now more evident, in particular at frequencies closer
to the cutoff frequency of this line. The time response is very similar to that observed at R1, with pulses arriving at
later times, associated with the “L3” line having a slight amplitude increase.

At receivers R3 (Fig. 11c), it can be seen that the line “L2” shows very low amplitudes at low frequencies, while
the importance of the “L1” line seems to increase. Again, this behavior was expected, since for low frequencies
these lines approach the case 1 mode shape of the “A2” and “A1” modes, respectively. The amplitude of the “L3”
response line is also greatly enhanced at this receiver. The time response further confirms this behavior, with pulses
arriving at later times appearing with higher amplitudes.

Simulations were also performed for the same model, assuming the excitation source to be placed at position
O2 (not shown). As in case 1, the main features described when the point source was located at O1 can still be
identified. Both frequency and time responses reveal a global fall in amplitude, which is even more evident than in
case 1. In the time domain, the pulses associated with waves traveling with the “thin-plate velocity” (PTP), with the
pressure wave velocity (PF) and with the normal modes excited (Li) can be identified.

8. Conclusions

The pressure inside an infinite cylindrical shell structure, submerged in a homogeneous fluid medium, and
subjected to the incidence of waves generated by a point pressure load, has been computed. The structure was
modeled as an elastic material, and the full interaction between the two fluids and the structure was taken into
account. Two different models were analyzed, corresponding to shell structures defined by two concentric or
non-concentric circumferences. Results were obtained in both the frequency and time domains, allowing the main
features of the wave propagation to be identified.

The results obtained when the inner and outer surfaces are defined by two concentric circumferences reveal that
multiple normal modes are excited and their contribution to the response depends on the position of the receiver. The
different normal modes excited were clearly identified and their mode shape was computed, revealing a constant
behavior with the frequency variation.

When the structure is defined by non-concentric circular surfaces, the pressure response in the frequency vs. phase
velocity domain allowed the identification of well defined lines where the response exhibits higher amplitudes. At
low frequencies and near the cutoff frequencies of these lines, the behavior of the response seems to approach
that of the normal modes identified when the circumferences defining the inner and outer surfaces of the shell are
concentric. However, as the frequency increases, the mode shapes computed indicate that the pressure response
results from a combination of the different types of guided waves generated when the structure is defined by two
concentric circumferences. This can be seen in both the frequency and time domains, and for the different receivers
and source positions analyzed.

Appendix A

The eight potentials defined before allow the definition of a system of eight equations for eight unknowns, to
yield the coefficientsAi

n (i = 1, . . . ,8). The equation system is built so as to allow the establishment of boundary
conditions of null tangential stresses and the continuity of normal displacements and stresses in the solid–fluid
interfaces:


a11 . . . a18
...

...

a81 . . . a88





A1
n

...

A8
n


 =



b1
...

b8


 .
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Assuming the outer and inner fluids to have Lamé constantsλ1 andλ2, respectively, and the solid medium to have
a shear modulusµ2, the termsaij are defined as

Outer boundary:
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2
α1 + k2

z )H
(2)
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[(
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Inner boundary:
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For a pressure source located in the outer fluid, the termsbj are defined as

b1 = i

2
εn(−1)nH(2)

n (kα1r0)λf1
ω2

α2
1

Jn(kα1rB), b2 = 0, b3 = 0,

b4 = − i

2
εn(−1)nH(2)

n (kα1r0)

[
n

rB
Jn(kα1rB) − kα1Jn+1(kα1rB)

]
,

b5 = 0, b6 = 0, b7 = 0, b8 = 0.

If the source is placed in the inner fluid, the termsbj are defined as
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