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Abstract

The boundary element method (BEM) is used to evaluate the acoustic scattering of a three-
dimensional (3D) sound source by an infinitely long rigid barrier in the vicinity of tall buildings.
The barrier is assumed to be non-absorbing and the buildings are modeled as an infinite barrier.

The calculations are performed in the frequency domain and time signatures are obtained by
means of inverse Fourier transforms. The 3D solution is obtained bymeans of Fourier transform
in the direction in which the geometry does not vary. This requires solving a series of 2D problems

with different spatial wavenumbers, kz. The wavenumber transform in discrete form is obtained
by considering an infinite number of virtual point sources equally spaced along the z axis.
Complex frequencies are used to minimize the influence of these neighboring fictitious sour-

ces. Different geometric models, with barriers of varying sizes, are used. The reduction of sound
pressure in the vicinity of the buildings is evaluated and the creation of shadow zones by the
barriers is analyzed and compared with results provided by a simplified method. # 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the solutions most widely adopted by engineers for tackling the problem of
noise generated by road traffic is the use of acoustic barriers. Many researchers are
currently looking for ways to predict their efficiency correctly. Empirical methods
are often used to solve practical engineering problems, but they fail to give accurate
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scientific solutions for sound propagation near the barrier. Various numerical
methods have been developed to study this problem.
Many authors have used diffraction-based methods to analyze sound propagation

in the presence of obstacles. Lam [1] introduced one such method for the calculation
of the acoustic energy loss produced by the insertion of simple, finite length, three-
dimensional (3D) acoustic barriers. Muradali and Fyfe [2] later extended this work
to include the modeling of two-dimensional (2D) geometries. This work compares
2D and 3D models that take the presence of parallel barriers into account. Both
coherent and incoherent line-sources are simulated.
Engineering practice employs several simplified models to compute the insertion

loss of acoustic barriers (Beranek and Vèr [3], Barry and Reagan [4,5], Hanson et al
[6]), estimating the attenuation by considering the diffraction effect on the edge of
the barrier, in a simplified form.
Accuracy can be improved by using numerical methods like the boundary element

method (BEM) or the finite element method to solve the wave-equation for each fre-
quency to be considered. The major drawback of these methods is that they are very
computer intensive, and are thus difficult to apply to very high frequencies. Using the
theory of slender bodies, Filippi and Dumery [7] and Terai [8] developed a boundary
integral equation technique to analyze the scattering of sound waves by thin rigid
screens in unbounded regions. This method was subsequently extended by Kawai and
Terai [9] to allow the prediction of sound attenuation by rigid barriers over a totally
reflective ground surface. Duhamel [10] presented a numerical method which was
based on the boundary elements method. This made it possible to calculate the 3D
sound pressure around an acoustic barrier of constant but arbitrary cross-section
placed over a rigid ground, making use of a set of simpler 2D solutions. Duhamel
and Sergent [11] subsequently extended this work to accommodate absorption in the
ground, and to compare numerical results obtained with experimental data. The
influence of the shape and absorbent surface of railway noise barriers was assessed by
Morgan, Hothersall and Chandler-Wilde [12], using a 2D boundary element model.
Their work compares a boundary element prediction for simple barrier and vehicle
shapes with results given by the standard UK prediction method in the case of railway
noise barriers. Lacerda et al. [13] proposed a dual boundary element formulation for
analyzing the 2D sound propagation around acoustic barriers, over an infinite plane,
in which both the ground and the barrier were considered to be absorptive. The 3D
propagation of sound around an absorptive barrier has been studied by Lacerda et al.
[14], introducing a dual boundary element formulation that allowed the barrier to be
modeled as a simple surface. This method avoided the problems caused by near-sin-
gular integrals and near-degenerate equation systems. The Green’s function con-
sidered by the authors also took the properties of the ground into account, enabling
absorptive ground to be modeled. More recently, Jean, Defrance and Gabillet [15]
computed the efficiency of noise barriers in attenuating traffic noise, considering
different source types such as point sources, coherent and incoherent line sources.
They used a 2D boundary element method and obtained 3D responses by means of
a post treatment of the 2D results. In this model, both the acoustic barrier and the
ground surface are assumed to have absorbing properties.
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The BEM is possibly the tool best suited to analyze wave propagation in unbounded
media, because it automatically satisfies the far field radiation conditions. In addition, it
allows a compact description of the medium in terms of boundary elements at the
material discontinuities. Although the BEM leads to a fully populated system of equa-
tions, as opposed to the sparse system given by the finite difference and finite element
techniques, the technique is efficient because the system matrix size is reduced.
This work takes into account both the influence of the acoustic barrier and the

presence of very large buildings next to it. The pressure field generated by wave
scattering at both objects is calculated using a standard boundary element formula-
tion. Both the acoustic barrier and the building are assumed to be totally reflective.
The Green’s function used by the authors takes the presence of the tall building into
consideration by using the images’ method to simulate its presence, and therefore
only interior boundaries need to be discretized by boundary elements.
In our model, the acoustic barrier is assumed to be of infinite length, while the

acoustic source takes the form of a point load. This situation is usually referred to as
a two-and-a-half-dimensional problem, for which solutions can be obtained by means
of a spatial Fourier transform in the direction in which the geometry does not vary
(Duhamel [10], Tadeu and Godinho [16]). This Fourier transformation in discrete
form is obtained by considering an infinite number of virtual point sources equally
spaced along the z axis, and sufficiently distant from one another to avoid spatial
contamination of the response (Bouchon and Aki [17]). All the analyses are per-
formed using complex frequencies, shifting down the frequency axis, in the complex
plane. With this procedure, one can remove the singularities on (or near) the axis and
minimize the influence of the neighboring fictitious sources (Phinney [18]). The 3D
field in the time domain is then obtained by applying an inverse Fourier transform
to the calculated response.
The present paper is organized as follows: first, the 3D acoustic problem is

defined; then the BEM is formulated in the frequency domain, assuming the exis-
tence of a harmonic (steady state) line load whose amplitude varies sinusoidally in
the third dimension. A brief validation of the BEM formulation is presented using a
circular cylindrical rigid cavity placed inside an unbounded acoustic medium. The
BEM model is then used to compute the 3D pressure field generated by a point
pressure source in the vicinity of a rigid barrier placed between a source and a tall
building, which is treated as an infinite rigid vertical plane surface. Simulation ana-
lyses are performed to investigate wave propagation in the vicinity of such buildings
in the presence of neighboring acoustic barriers of varying sizes. Both frequency and
time domain responses are obtained to permit a quantitative study of the 3D effects
of the scattering. Finally, the results provided by the BEM model are compared with
those computed using a simplified model that is currently in use.

2. Problem definition

The pressure field generated by a harmonic point load in a spatially uniform fluid
medium is governed by
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in which ! is the oscillating frequency, x0; 0; 0ð Þ is the position of the load, the sub-
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in which the H 2ð Þ
n :::ð Þ are second Hankel functions of order n.

If one assumes the existence of an infinite set of evenly-spaced sources along the z
direction, the former incident field may be written as

pinc !; x; y; zð Þ ¼
2�

L

X1
m¼�1

p̂inc !;x; y; kzð Þe�ikzz ð3Þ

where L is the spatial source interval, and kz ¼
2�
L m. Thus, the 3D pressure field may

be obtained as the pressure irradiated by a sum of harmonic (steady-state) line loads
whose amplitude varies sinusoidally in the third dimension. This sum converges and
can be approximated by a finite number of terms.
The problem to be solved concerns a spatially uniform acoustic medium bounded

by two perpendicular flat surfaces: one simulates the horizontal flat surface, while
the other models the tall building. A vertical rectangular rigid obstacle (acoustic
barrier) is placed inside this medium. The pressure field defined by Eq. (3) needs to
be reformulated to satisfy the boundary conditions: null normal velocities at both
the horizontal flat surface and the rigid infinite vertical wall. These conditions can be
satisfied automatically by superposing the pressure field generated by the real source
plus three virtual sources (image sources), located in such a way that they constitute
mirrors in relation to the vertical and horizontal planes. The pressure field [Green’s
function G x; x0; !ð Þ] can then be computed by the following expression, when the
vertical plane and the horizontal plane are defined by x ¼ 0 and y ¼ 0, respectively:

G x; x0; !ð Þ ¼
XNS
j¼1

�i

4
H0ðk�rjÞ
� 	

ð4Þ

in which NS ¼ 4;
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3. Boundary element formulation

A standard BEM formulation is used to calculate the three-dimensional scattering
field generated by a rigid, vertical, rectangular, two-dimensional obstacle placed
inside an acoustic medium and illuminated by a pressure point load. As described
above, the resulting 2�1/2�D problem can be solved as a discrete summation of the
2D BEM solutions for different kz wavenumbers. In order to perform the wavenumber
transform in discrete form, an infinite number of virtual point sources, equally spaced
along the z axis, is considered. The spacing between the virtual sources is sufficiently
large to prevent the spatial contamination of the response (Bouchon and Aki [17]). The
3D field can then be obtained using the inverse spatial Fourier transform.
Given the extensive literature available, the details of the BEM formulation

required for the type of the scattering problem presented here are omitted (see, for
example, Manolis and Beskos [19]). It is nevertheless important to state that each
two-dimensional problem requires the evaluation of the integral

Hkl ¼

ð
Cl

Hðxk; xl; nlÞdCl ð5Þ

in which Hkl is the pressure velocity component at xk due to pressure load at xl and
nl is the unit outward normal for the lth boundary segment Cl. The required pres-
sure velocity function is obtained by differentiating Eq. (4) in relation to the unit
outward normal.
Application of Eq. (5) to a set of boundary elements used to discretize the

boundary of the acoustic barrier leads to a system of equations that relates the
pressure field to a set of nodal pressure values. The nodal pressure values are calcu-
lated after this system of equations has been mathematically manipulated and null
velocity along the outward normal direction of the boundary elements imposed. The
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required integrations in Eq. (5) are performed with Gauss–Legendre quadrature,
using six integration points. Since the acoustic barrier is modeled as a thick object,
numerical integrations on elements close to or directly facing each other are per-
formed using a higher order Gauss–Legendre quadrature.
The scattered pressure field at any point inside the acoustic medium can then be

calculated in relation to the nodal pressure values calculated previously:

pksca ¼
XN
l¼1

plHkl ð6Þ

In this equation, pksca is the scattered pressure field at receiver k, N is the total number
of boundary elements, and pl is the nodal pressure value at element l.

4. Pressure in time-space

Responses in the time domain are calculated by means of an inverse fast Fourier
transformation in !, using an acoustic source, with temporal variation given by a
Ricker pulse. Since it decays rapidly in both the time and frequency domains, this
type of pulse allows a convenient reduction in the computational effort and an easier
interpretation of the time signatures. The Ricker function can be expressed by:

uð�Þ ¼ Að1� 2�2Þe��2 ð7Þ

in which A is the amplitude, � ¼ ðt� tsÞ=t0 and t represents the time, with ts being
the time when the maximum occurs, while �t0 is the dominant wavelet period. By
applying a Fourier transformation to this function, one obtains:

U !ð Þ ¼ A 2
ffiffiffiffiffiffiffi
�t0

p
e�i!ts

� 	
�2e��2

ð8Þ

where � ¼ !t0=2.
The Fourier transformations required are achieved by adding together a finite

number of terms, expressed as either frequencies or wavenumbers. This is equivalent
to adding periodic sources at spatial intervals of L ¼ 2�=�kz and temporal intervals
of T ¼ 2�=�!. In these expressions, �kz and �! represent the wavenumber and
frequency increments, respectively. To prevent the contamination of the response by
the periodic sources, the spacing between them must be large enough to ensure that
their contribution arrives at times later than T. This is achieved by shifting the fre-
quency axis slightly downwards in the complex plane, using complex frequencies
with an imaginary part of the form !c ¼ !� i	 (with 	 ¼ 0:7�!). With this techni-
que, the contribution of the virtual sources is considerably diminished. When the
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response is calculated in the time domain, this change must be taken into account by
rescaling the response, applying an exponential window e	t, Kausel [20].

5. Validation of the BEM algorithm

The BEM algorithm is validated by taking a cylindrical circular rigid pipe placed
inside an unbounded homogeneous acoustic medium (� ¼ 340m=s), illuminated by a
harmonic point pressure load applied at point O (Fig. 1), for which the solution is
known in closed form. The required Green’s function is obtained by setting the NS
parameter in Eq. (4) to 1.
The response is calculated for a single receiver placed at x ¼ 6:0 m and

y ¼ �6:0 m, for frequencies ranging from 4 to 512 Hz, taking a constant value for
kz ¼ 1:0rad=m. Fig. 2 displays the real and imaginary parts of the response for the
analytical solution and the numerical BEM error when 25 constant boundary ele-
ments were used to model the inclusion, calculated as the amplitude of the difference
between both solutions. Analysis of the results shows that the BEM approach for
low frequencies is extremely accurate, and reveals only slight differences at high
frequencies. This behaviour is due to the fact that the BEM performance improves
with the ratio of the wavelength of the incident waves to the length of the boundary
elements. In our example, this ratio decreases from 298 (4 Hz) to 3 (512 Hz).

6. Numerical examples

The method described above was used to study the influence of an acoustic barrier
placed between a point pressure load and a very tall building. In our examples, both
the ground surface and the building were considered to be non-absorbing, while the

Fig. 1. Geometry of the problem.
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host acoustic medium had a pressure wave velocity of 340 m/s. A point acoustic
source is placed 0.6 m above the ground and 25.0 m from the tall building. An
acoustic barrier of height h is placed in front of the building (with its plane of sym-
metry at x ¼ 20:0m), to reduce the sound level registered on its façade (Fig. 3).
The acoustic barrier is modeled as a body 0.2 m thick, and it is discretized using

an appropriate number of boundary elements, defined by the relation between the
wavelength and the length of the boundary elements, which was set at 8. The num-
ber of boundary elements used is never less than 32. To ensure accuracy, the
required numerical integrations [Eq. (6)] are performed using a Gauss–Legendre
quadrature integration scheme, where the number of sampling points increases as
the distance between the loaded element and the element to be integrated decreases.
To check that the correct number was being used, the performance of the solution
was tested using a very high number of integration points.
The rest of this section is divided into two parts. In the first part, the scattering

produced by a rigid barrier is analysed according to the results calculated using the
BEM. Simulation analyses are performed in the frequency and time domains, iden-
tifying the attenuation provided by the acoustic barrier. In the second part, these
results are compared with those provided by a simplified model.

Fig. 2. Validation results: (a) analytical solution; (b) BEM error.
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6.1. Scattering by rigid barriers via the BEM

The response was first evaluated over a vertical grid of receivers placed at
z ¼ 0:0m, for excitation frequencies of 125.0 and 1000.0 Hz. Calculations were per-
formed in the absence of acoustic barriers, and in the presence of barriers 2.0, 4.0
and 6.0 m high. Fig. 4 presents the sound pressure level calculated by the expression
10 log

�
p2= 2�10�5

� �2	
, where p refers to the pressure amplitude and 2�10�5 is the

pressure of reference. These plots use a gray scale, ranging from white to black as
the amplitude increases.
In the absence of an acoustic barrier (Fig. 4a), the pressure field results from the

direct incident field interacting with that reflected by the ground surface and the
building. Thus, the total field is given by the sum of waves with different phases
leading to a spatially variable sound pressure level, distinguishable in Fig. 4 as a
pattern of differently colored zones. This phenomenon becomes more complex as
the frequency increases.
Fig. 4b–d illustrate the sound pressure level when a barrier is inserted. Analysis of

the results shows the existence of a ‘‘shadow’’ zone, behind the barrier, where a
pronounced attenuation of the sound pressure field is registered. This ‘‘shadow’’
becomes more intense as the height of the barrier changes, increasing from 2.0 to 4.0
m and then to 6.0 m, at the same time as the frequency increases from 125.0 to
1000.0 Hz. This phenomenon was expected since the diffracted field increases as the
ratio between the wavelength of the incident field and the size of the illuminated
object decreases. Notice that this happens when the height of the barrier and the
excitation frequency both increase. A bigger ‘‘shadow’’ behind the barrier is asso-
ciated with an enhanced wave field being reflected back to the highway. It can fur-
ther be observed that the attenuation created by the barrier, provided by the
‘‘shadow’’ effect, decreases as the distance of the receivers from the ground surface

Fig. 3. Geometry of the problem.
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grows. It is also interesting to note the existence of a wave field created by diffraction
at the edge of the barrier, as revealed by the wave field patterns radiating from it.
The ‘‘shadow’’ effect behind the barrier is still detected at receivers placed further

away from the plane of the source, z 6¼ 0 (not illustrated). As the distance of the
receivers along the z direction increases, the sound pressure field becomes more uni-
form. At very large distances, the resulting field can even be treated as a plane wave.
To better illustrate the propagation of the sound pressure from its source to the

receivers, the time responses are presented for a barrier 4.0 m tall. At time t ¼ 0:0 ms
a spherical pulse is emitted from a point pressure source located at x ¼ 25:0 m, y ¼
0:6 m and z ¼ 0:0 m. The calculations were performed for frequencies ranging from

Fig. 4. Sound pressure level along an xy plane at z=0 for differently sized barriers: (a) h=0.0 m; (b)

h=2.0 m; (c) h=4.0 m; (d) h=6.0 m.
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2.5 to 320.0 Hz, with a frequency increment of 2.5 Hz, determining a total time
frame of 0.4 s. The amplitude of the source, A; in Eqs. (1) and (2) is set to the unit.
The source time dependence is assumed to be a Ricker wavelet, and time responses
were calculated for characteristic frequencies of 63 and 125 Hz.
In Fig. 5 a sequence of snapshots displays the pressure wave field along a grid of

receivers placed at z ¼ 0:0m. In these figures, the pressure amplitude is represented
by a gray scale ranging from white to black, as the amplitude increases.
As the pulse propagates away from the source, the wave energy spreads out. At

time t ¼ 14:4 ms the spherical incident pulse reaches the acoustic barrier, where it is
scattered by reflection, traveling back to the highway. As the time progresses the
incident pulse strikes the edges of the barrier, where it is diffracted, generating a
pulse that propagates in all directions, even along the vertical faces of the barrier.
The first plot, at t ¼ 31:3 ms (Fig. 5a), records the wave field generated when the

incident pulse has passed the acoustic barrier, and the diffracted pulses have already
reached the ground surface, where they are reflected. The ‘‘shadow’’ created behind
the barrier is well-defined, increasing as the characteristic frequency of the source
changes from 63 to 125 Hz.
At t ¼ 47:7 ms the incident pulse is further away from its origin (Fig. 5b). The

former diffracted pulse, travelling along the barrier, is already well developed, moving

Fig. 5. Time response over a vertical grid of receivers, placed perpendicularly to the building at z=0.0 m,

for a barrier of h=4.0 m. (a) t=31.3 ms; (b) t=47.7 ms; (c) t=88.3 ms.
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away from the barrier, after being reflected by the ground surface. The interaction of
the direct pulses diffracted from the edge of the barrier with those first reflected by the
ground, gives rise to an enhanced wave pulse that travels along the ground surface.
As time elapses, the wavefront hits the building, where is reflected, traveling back

as illustrated in the snapshot at t ¼ 88:3 ms (Fig. 5c). Later, part of these reflected
pulses strikes the rigid surface of the barrier again, and remains trapped between the
barrier and the building.
Fig. 6 presents the pressure wavefield when the above grid of receivers is posi-

tioned at z ¼ 30:0 m. Fig. 6a registers the arrival of the first pulses at this plane of
receivers (t ¼ 88:3 ms). The amplitude of the wave field at receivers placed before
the barrier (x > 20:1 m) shows a high concentration of energy as the result of the
almost simultaneous arrival of the incident pulse and the different reflected pulses on
the barrier and ground surface. For larger z distances the wave field produced can
even be seen as a plane incident wave.
At t ¼ 100:8 ms (Fig. 6b) the ‘‘shadow’’ effect produced by the presence of the

barrier is easily visible. The effect of the interaction of the direct pulses diffracted
from the edge of the barrier with those first reflected at the ground surface can now
be observed as a significant effect over a larger spatial domain at receivers placed
closer to the ground surface. This effect decreases as the frequency increases from 63
to 125 Hz.
The response was then evaluated at a grid of receivers placed along a vertical

plane 0.5 m away from the rigid wall, and equally spaced at 1.0 and 4.0 m apart
along the vertical and longitudinal directions, respectively. The source time depen-
dence is assumed to be a Ricker wavelet with a characteristic frequency of 125 Hz.
Fig. 7 presents the sound pressure level computed by the expression 10 log�
p2= 2�10�5

� �2	
, where p refers to the maximum amplitude of the time responses

Fig. 6. Time response over a vertical grid of receivers, placed perpendicularly to the building at z=30.0

m, for a barrier of h=4.0 m. (a) t=88.3 ms; (b) t=100.8 ms.
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calculated for each receiver, ascribing A ¼ 1 in Eqs. (1) and (2), obtained when there
is no barrier. The results show that the maximum sound pressure level field is not
obtained at z ¼ 0:0 m. The interaction of the directly incident pulses with those
reflected by the building explains this behaviour, which does not occur if the grid of
receivers is moved to x ¼ 0:0 m (not illustrated). A general reduction in the sound
pressure level is noted as the distance between the receiver and the source increases.
Fig. 8 displays the sound pressure level, calculated as described above, and its

attenuation when a barrier is inserted between the source and the building. The
results obtained for a barrier 2:0 m tall indicate that the barrier performs less well
for receivers placed closer to the ground, owing to the interaction of the direct field
diffracted by the barrier with that reflected by the ground surface. The characteristic
frequency of the pulse of 125 Hz defines a wavelet with sufficient length to promote

Fig. 7. Sound pressure level along a vertical plane 0.5 m away from the building.

Fig. 8. Sound pressure level and attenuation along a vertical plane 0.5 m away from the building, for

barriers (a) 2, (b) 4 and (c) 6 m tall.
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the interference between these waves for receivers placed closer to the ground sur-
face. The performance of the barrier improves as receivers are placed further away
from the ground surface, reaching maximum efficiency at approximately 8 m above
the ground for z ¼ 0:0 m. Above this value the barrier loses efficiency, even being
outperformed by the case where there is no barrier, at greater distances from the
ground. The performance of the acoustic barrier is not constant along the z axis. A
line following the points of maximum efficiency, for consecutive vertical z planes, is
inclined, indicating better performances at receivers placed further above the ground
surface as z increases. It appears that the reflections from the ground close to the
building, mentioned above, become more important as z increases, as the time
responses show.
As the height of the barrier increases from 2.0, to 4.0 m and then to 6.0 m, the

sound pressure level attenuation increases for the full domain of receivers. The
above-defined line of maximum efficiency is closer to the ground surface and less
inclined. It seems that the waves reflected from the ground close to the building and
the direct field diffracted by the barrier lose importance relative to the receivers clo-
ser to the ground surface as the barrier increases in height.

6.2. Barrier insertion loss via the BEM vs. simplified models

Several simplified models are currently used to estimate the insertion loss of
acoustic barriers. One such method (Beranek and Vèr [3], Barry and Reagan [4],
Hanson et al. [5]) considers that this attenuation can be estimated by taking into
account the diffraction effect on the edge of the barrier. If the barrier is considered
to be thin and infinitely long, and the acoustic waves are emitted by a point source,
this attenuation can be calculated by

20 log

ffiffiffi
2

p
�N

tanð
ffiffiffi
2

p
�NÞ

þ 550 outside shadow

20 log

ffiffiffi
2

p
�N

tanhð
ffiffiffi
2

p
�NÞ

þ 5420 inside shadow

8>>><
>>>:

ð9Þ

In these equations, N represents the Fresnel number given by 2ðr�dÞ
l , where r is the

length of the travel path for the diffracted acoustic ray, d is the length of the travel
path for the incident ray when there is no obstacle, and l is the wavelength in
meters. Analysis of Eqs. (9) shows that the attenuation is bounded by an upper value
of 20 dB.
This simplified model has been used to estimate the barrier attenuation at a grid of

receivers placed along a vertical plane at x ¼ 0:0 m, equally spaced 1.0 and 4.0 m
apart along the vertical and longitudinal directions, respectively. This method can be
applied to our specific scenario (a barrier in the vicinity of a tall building), because
absorption is absent at the façade of the building, and the grid of receivers is coincident
with the rigid wall (x ¼ 0:0 m). Indeed, in our scenario the pressure level increases by 6
dB at x ¼ 0:0 m, given the presence of the building, but the attenuation provided by
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the acoustic barrier is still the same. Notice that the insertion loss is calculated here
as the difference between the pressure levels, 10 log

�
p2= 2�10�5

� �2	
, where p is the

maximum amplitude of the time responses calculated for each receiver, obtained
with and without the acoustic barrier. Thus, the later pulses arriving at the grid of
receivers, originated by the multiple reverberations between the rigid wall and the
barrier, do not contribute to the final value for the insertion loss, as they have a
pronounced amplitude decay.
The barrier insertion loss has been calculated using both the BEM and the sim-

plified method presented above, for barriers 2, 4 and 6 m tall. Figs. 9 and 10 give the
individual insertion losses and their difference, calculated by both the BEM and the
simplified model for excitation frequencies of 63 and 125 Hz, respectively.
Fig. 9a illustrates the response when a barrier 2 m tall is inserted. Analysis of the

results shows that the attenuation difference is low when the receivers are placed on a
z plane at small distances from the source. As the distance increases, the attenuation
for receivers placed in the vicinity of the ground surface, predicted by the simplified
model, is markedly larger than that calculated by the BEM. The effect of the interac-
tion of the direct field diffracted by the barrier with that reflected by the ground sur-
face explains the observed worse performance of the barriers close to the ground. This
factor is not taken into account when the calculations are performed by the simplified
diffraction model. These features are even more evident for receivers placed further
away along z, where the simplified model predicts higher attenuation levels closer to
the ground than the BEM, for receivers placed further away from the ground sur-
face. The BEM results indicate an improvement in the performance of the acoustic
barrier for receivers placed above the spatial zone controlled by the reflections at the
ground surface. As explained above, the y position of the receivers (distance from
the ground surface), where the results are better, is not constant along the z axis, but
tends to increase with a simultaneous decrease of attenuation. The simplified model
only predicts an attenuation that decreases as both z and y increase.
As the height of the barrier changes from 2 to 4 m and then to 6 m, the BEM solution

predicts an acoustic attenuation with a markedly better performance for those receivers
placed at an intermediate distance from the ground surface. The negative effect of the
reflections at the ground surface is further limited at smaller distances from the ground
surface, as the height of the barrier increases. Very close to the ground, however, the
performance of the barrier decreases even for taller barriers. The simplified model does
not allow the results to improve as the distance of the receivers to the ground surface
increases. Thus, the simplified models predict a better performance by the barrier at
receivers placed closer to the ground, and does not accommodate a better performance
of the barriers for receivers placed at intermediate distances from the ground sur-
face, as envisaged by the BEM. This difference in behaviour is even more evident as
the receivers are placed further away from the z plane of the source, where the BEM
results show a steady drop in performance for receivers placed in the vicinity of the
ground at greater distances from the ground, as z increases.
As the excitation frequency of the incident pulse increases to 125 Hz, the responses

exhibit similar features (see Fig. 10). Calculations performed using the BEM model
predict a poorer interaction of the direct field diffracted by the barrier with that
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reflected by the ground surface, as shown by the bigger attenuation levels at recei-
vers closer to the ground. The attenuation patterns for the simplified model are
similar to the ones found for 63 Hz: it predicts a better performance by the barrier at

Fig. 9. Comparison between insertion losses calculated by the BEM and by a simplified model for a fre-

quency of 63 HZ. (a) h=2.0 m; (b) h=4.0 m; (c) h=6.0 m.
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receivers closer to the ground than the BEM does, and does not allow a better per-
formance of the barrier at receivers placed at some distance above the ground sur-
face. It should be noted that, when the receivers are placed closer to the rigid ground

Fig. 10. Comparison between insertion losses calculated by the BEM and by a simplified model for a

frequency of 125 Hz. (a) h=2.0 m; (b) h=4.0 m; (c) h=6.0 m.
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surface and the z distances are larger, the attenuation levels predicted by the sim-
plified method can be 7 dB higher than those predicted by BEM.
In engineering practice, the type of noise source may differ from the simpler

wavelet used here, a Ricker pulse. These sources would require calculation to be
done over a different frequency domain. The BEM solutions would still be possible,
but the computational cost for larger frequency domains would be higher. Never-
theless, the results described above would still be valid in relation to other types of
source. For any source type, the importance of the reflected field at the ground, closer
to a barrier (building), heralds a poorer performance by an acoustic barrier, not pre-
dicted by the simplified model used. The BEM results would have approached the
simplified model solution if the ground surface had been modeled with high
absorption properties.

7. Conclusions

The 2�1/2 BEM formulated was found to be suitable for studying the influence of
an acoustic barrier placed between a point sound pressure load and a very tall
building.
Results obtained in the frequency domain show that the performance of a low

barrier is poorer at receivers placed closer to the ground surface when the frequency
is low. For higher frequencies, the barrier creates a ‘‘shadow’’ zone behind it, leading
to a pronounced attenuation of the sound pressure field at the lower receivers. The
efficiency of the barrier improves further if its height increases, creating a more
intense ‘‘shadow’’ zone behind it.
Analysis of the sound pressure level obtained over a plane of receivers placed

parallel to the building indicates a non-uniform performance by the acoustic barrier.
Receivers close to the ground show that the interaction between the direct field dif-
fracted by the edge of the barrier with that first reflected on the ground leads to the
barrier performing less well. Thus, improved behaviour is found at receivers placed
at some distance from the ground. As z increases, the maximum efficiency is
observed at receivers placed further away from the ground surface. As the barrier
becomes taller the sound pressure level attenuation increases, for the full spatial
domain of receivers, and a maximum efficiency is found at receivers placed closer to
the ground.
Time–domain analysis was also performed to better understand the influence of

the acoustic barrier on the propagation of a spherical pulse. This analysis confirmed
that interaction occurred between pulses diffracted directly at the edge of the barrier
and pulses first reflected on the rigid ground, generating an enhanced field in the
direct vicinity of the ground.
Important differences between the BEM results and those provided by a simplified

model emerged. The simplified model predicts higher attenuation levels at receivers
in the close vicinity of the ground and does not indicate improved performance by
the barrier at receivers placed further away from the ground surface. This is even
true for receivers placed away from the z plane of the source. The simplified model
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does not appear to take full account of the poorer performance of the acoustic bar-
rier for receivers in the vicinity of the ground, as the BEM does. Furthermore, the
BEM tends to predict higher attenuation values for receivers placed further from the
ground. These differences are even more important as z increases, when the simpli-
fied model predicts higher attenuation levels close to the ground than the BEM does.
In spite of the general validity of the results presented here, it is important to bear

in mind that they have been calculated assuming the existence of an homogeneous
atmosphere and rigid surfaces, which may not match real outdoor conditions. Also,
only lower frequency results, less than 1000 Hz, have been computed. Higher fre-
quency responses that approach the upper bound of the domain of frequencies
produced by traffic noise, would maintain the main features found in this work.
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