PERGAMON

Computers and Structures 79 (2001) 2481-2490

Computers
& Structures

www.elsevier.com/locate/compstruc

Fuzzy optimization of structures by the two-phase method

L.M.C. Simoes

Department of Civil Engineering, University of Coimbra, 3030 Coimbra, Portugal
Received 8 February 2000; accepted 30 March 2001

Abstract

This work presents the two-phase method for fuzzy optimization of structures. In the first phase the fuzzy solution is
obtained by using the level cuts method and in the second phase the crisp solution, which maximizes the membership
function of fuzzy decision making, is found by using the bound search method. Illustrative numerical examples in-
volving skeletal structures and reinforced concrete slabs are solved. © 2001 Civil-Comp Ltd. and Elsevier Science Ltd.

All rights reserved.
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1. Introduction

In design and optimization problems material con-
stants, loading and structure geometry are usually con-
sidered as given data, but in real world assumed values
do not correspond with actual ones. Therefore there
may be differences between nominal and real geometry,
materials may behave in a different way than the as-
sumed one, constant loading may actually vary during
the structure lifetime. All of this is accounted by safety
factors, which amplify load magnitude, or reduce ma-
terial strength, leading in general to over-conservative
structures.

As an alternative to safety factors one may try to
describe the uncertain data and use this information
during the optimization, which in general leads to better
results in term of optimal design [1,2].

A probabilistic description is nowadays common,
and very simple up to very sophisticated PDFs can be
used to describe uncertain parameters. However these
procedures face serious difficulties when being im-
plemented in engineering applications. This leads to a
nonprobabilistic description of uncertainty, in particular
the fuzzy set based analysis and the worst condition
produced on the constraints by a certain load condition
also termed anti-optimization. The latter fixes bounds
for the uncertain variables instead of defining proba-
bility functions needing much less information than the

probabilistic approach [3]. The two-phase method for
fuzzy optimization of structures, based on the fuzzy-set
method first proposed by Zadeh in Ref. [4], is proposed
in this work. In the first phase, the sequential fuzzy so-
lution is obtained by using the level cuts method, in
which a fuzzy optimization problem is transformed into
a series of ordinary optimization problems using differ-
ent o-level cuts in the fuzzy constraints so as to deter-
mine a fuzzy optimization domain in the design space.
This procedure has been suggested in Refs. [5,6]. In the
second phase, the particular crisp solution is obtained by
the bound search method, in which having obtained the
supremum and the infimum of the sequential fuzzy so-
lution the particular optimum level o* is found using the
bound search so as to provide a crisp optimization so-
lution in the design space. This method differs from that
suggested in Ref. [6] on the basis of an alternative in-
terpretation of the Belman-Zadeh optimality criteria
[7] which does not require the use of an artificial fuzzy
objective. Finally, the two-phase method is illustrated by
numerical examples of the fuzzy plastic limit design of
frames and slabs.

2. Fuzziness in structural design

A fuzzy information problem of structures can be
stated as: Find the design vector x which minimizes the
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objective function W (x) subject to fuzzy constraints on
performance characteristics and dimensions. This is a
fuzzy mathematical programming problem, which can
be expressed in a standard form as follows (MP1):

min  W(x) (la)
st:g(x) by, j=12,...,m—1 (1b)
gf()ﬁ) Zb}a Jj=m,....,p (IC)

where the wave symbols indicate that the constraints
contain fuzzy information, and b}J, b} are allowable
upper and lower limits of the jth constraint respectively.

The membership function y;(x) of the fuzzy allow-
able interval may be characterized as shown in Fig. 1.
where b and b} are respectively the lower and upper
limits of the allowable interval for the highest (most
rigorous) design level. These may even be more strict
than the specifications codes (to be chosen by engi-
neering requirements). dL and d/U are lengths of tran-
sition stages, namely the permissible deviations or
tolerances for the lower and upper limits. Thus, MP1
can be rewritten in the following form (MP2):

min W (x) (2a)
st:g(x) <by +d, j=1,2,....m—1 (2b)
gx)=by—dy, j=m,....p (2¢)

A proper function may be selected for the transition
stage curves of the membership function in the light of
the character of the physical variable g;. Usually, in-
clined straight lines may be adopted for simplification.
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| T
elm-glm 0 glm+d'm
Fig. 1. Nonlinear membership function.
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Membership degree u,;(x) may be defined as “degree
of satisfaction” of the fuzzy constraint. When u;(x) = 1,
the constraint is satisfied completely: when y;(x) = 0 it is
not and when its value lies between 0 and 1, the con-
straint is satisfied to the relevant degree.

Some fuzzy information may also be contained in
the objective function W (x). For example, in objective
function

W(x) = C(x) + E(x) (3)

C(x) is the initial fabrication cost of the structure, E(x) is
the expected value of additional expenses during its
operation, such as maintenance cost, damage losses
under disaster and restoration cost.

3. Two-phase method
3.1. First phase (level cuts method)

For the sake of simplicity only the method of solving
problems with fuzzy constraints is discussed in this
work. If the membership function of inclined straight
lines may be adopted, as shown in Fig. 2, MP2 can be
transformed into a nonfuzzy mathematical program-
ming at o-level as follows (MP3):

min  W(x) (4a)
st:gj()ic)gb?—l—dy(l—u), j=12....m—1 (4b)
gi(x) = bjL - d}‘(] —a), j=m,...,p (4c)
xe0,1] (4d)

This is a parametric mathematical programming in
a € [0, 1], which can be solved by means of an algorithm
for optimization so as to determine the fuzzy optimiza-
tion solution x* (o) and W (x*(«)) with different o values.
It is noted that a fuzzy optimization problem may
have mixed fuzzy and crisp constraints. In this case we
shall accept tolerances only on the realization of fuzzy
constraints, but crisp ones will completely satisfied. As
shown in Fig. 3, the W(x*(a)) curve defines a fuzzy
solution to the fuzzy optimization problem of struc-
tures, which is a monotone increasing function of o.

M
1

blj-dly bl g

Fig. 2. Linear membership function.
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Fig. 3. Fuzzy solution.

3.2. Second phase (bound search method)

The Bellman—Zadeh criterion [7] of decision making
in a fuzzy environment gives the grade of membership of
a decision specified by variables x as

1y (x) = min g;(x) (5)

where i ranges over the complete set of constraints. The
fuzzy constraints C and the fuzzy goal G in MP3 are
defined as fuzzy sets in the space of alternatives, char-
acterized by their membership functions u- and up re-
spectively. Generally speaking, the fuzzy decision D
characterized by its membership function pp may be
viewed as the intersection of the fuzzy constraints and
the fuzzy goal.

The optimal decision is to select the best alternative
from those contained in the fuzzy decision space, which
maximizes the membership function of the fuzzy deci-
sion, i.e.

Hp(x") = maxn 1 (x) (6)

In order to illustrate the above principle, consider one
fuzzy goal G with one fuzzy constraint C. The mem-
bership functions f, uc and their intersection up, are
plotted for this case in Fig. 4. This figure also shows that
the point A represents the optimal decision which has

0

Fig. 4. Fuzzy decision making.

the maximum degree of membership in the fuzzy deci-
sion set.

From Eq. (6), as demonstrated in Ref. [7], the par-
ticular optimum level o* and the optimum point x* are
such that:

f(x") = max ug(x) (7)

xeCo

where ¢, is the o level cut of the fuzzy constraint set C.

Now it is necessary to establish the fuzzy goal ug(x) and
its upper and lower limits. It can be seen from Fig. 3 that
the supremum and the infimum in the sequential fuzzy
solution are given by

M = W(x(1)) = min 7 (x) (3a)
m = W (x"(0)) = min W (x) (8b)

where C;, C, are the level cuts of « =1 and 0 of the
fuzzy constraint set C.

In the problem of finding x which maximizes the
objective function W (x) subject to fuzzy constraints, the
fuzzy goal is: pg(x) = W(x)/M. Similarly, in a fuzzy
optimization problem of structures to find x which
minimizes the objective function W (x) subject to fuzzy
constraints, the fuzzy goal can be established as follows:

1 (x) = m/W(x) )

As expected, this fuzzy goal shows that full mem-
bership (pg = 1) is obtained when W reaches its infi-
mum m; as W increases [g approaches nonmembership
(¢t = 0). Clearly, the upper and lower limits of the fuzzy
goal are given by:

e =1 (10a)

= m/M (10b)

As mentioned in Ref. [8], the optimum level can be
derived from Eq. (7) as:

o = g (x" (o)) (1D

4. Structural relations
4.1. Frames

For the plastic limit design of a steel frame, the
simplest class of problems is when (i) the geometry and
topology are fixed; (ii) a single loading state is consid-
ered; (iii) the constitutive relations are those of perfect
plasticity; (iv) the plasticity is controlled by a single
stress resultant.
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The mesh primal LP takes the following form:

min z=[[" 0] Lﬂ (12a)
AL e
d=0 (12¢)

where d are the design variables and / are the lengths of
the members associated with the corresponding design
variables. The mesh actions (indeterminacies) are de-
noted by p and B is the mesh static matrix. The matrix J
describes the incidence of the design variables with re-
spect to the critical sections and my is the vector of the
particular solution stress resultant at the ith critical
section. If the stipulations of the constraint set are
fuzzified the problem becomes the parametric linear
program:

min z=[/" O]Li} (13a)
StV | e e
d =20 (13c)

The solution gives a deterministic design d together
with a level of acceptability o in the face of fuzziness of
the load and plastic moment capacities.

4.2. Reinforced concrete slabs

For the class of problems indicated before, the primal
LP for plastic limit synthesis in the nodal description
using a linearized yield condition incorporating finite
elements are:

min  z=[c 0]{‘1} (14a)
m
J =U* = |0
st: |0 —E' [ = |r (14b)
I 0 = | d

The program seeks the “best” yield-line pattern that
can be attained when the yield lines are confined to the
F.E. boundaries. As for skeletal structure problems, the
constraints represent the static admissibility. For any
selected F.E. pattern, the plastic flexural deformations
are confined to the element boundaries whilst the inte-
riors of the elements remain undeformed plastically.
Such deformations correspond to the collapse mode.
This method automates the yield-line search within the
selected F.E. system.

The vector c is defined by,

d=latt Jt at J] (15)

N

X

Fig. 5. Yield lines.

where J* and J~ are the incidence matrices relating the
plastic moment capacity of the finite elements m**, m*’ to
the design variables d for positive and negative bending
moments respectively. a*(or a~) are vectors of known
constants S;/(f,/}) and S;/(f,k!) for positive (or nega-
tive) bending where S; is the area of element i, f, the yield
stress of the reinforcement and A%, i are the lever arms:

J:
' { J;} 1o
where J =[4 B]J' and J_ =[4 B] J . The ele-
ments of matrices 4 and B are /;sin>0; and /;cos’0;,
respectively where 0, is the angle between the interele-
ment side of length /; and the x-axis (Fig. 5).

Matrix U is defined by,

U=[1 1 —I —I] (17)

where 7 is the identity matrix.

The matrix 7 relates the vector of applied nodal for-
ces ry to the vector of total bending moments m across
the FE boundaries in the static equation:

ro=E'm (18)

d is the lower bound on the design variables d. The ele-
ments of the matrices J* and J~ are fixed a priori by
the designer while the elements of the matrices E, 4 and
B are determined from the slab geometry.

In general, the overall geometry of the slab and the
reinforcement strength are known deterministically,
whilst the magnitudes of the applied loading and the
lower bound on d can only be stated imprecisely. Thus
the primal LP becomes one in which the stipulations are
imprecise and can be readily tackled by the techniques of
FLP. At the ith node, the deterministic equilibrium
conditions can be written as

(i) Z ejim; < 1y; (19a)
j

J

The vertical nodal forces r, are now considered to be
fuzzy numbers. By combining the above conditions with
the fuzziness indicated in Fig. 6, the following inequali-
ties result:
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Fig. 6. Membership function for the applied nodal force.

Fig. 7. Membership function for the lower bound on design
variable d.

(i) Y eim;<roi+ (1 — ) (20a)
7

(i) Y eim; = ro—1}(1 - ) (20b)
7

Similarly, the lower bounds on the design variables
may be fuzzified as indicated in Fig. 7.

The designer might accept a design variable of value diL
but would much prefer it to be equal to or greater than d;

d,‘ = di — l‘d,‘(l — OC)

5. Numerical examples
5.1. Prismatic beam

The fixed-end beam of Fig. 8 is to be designed so it
resists the single applied loading without collapsing
plastically. The design process consists of fixing the
cross-sectional properties and the single design variable
is the plastic moment capacity of beam d. The designer

N
NN

3 ] 1 ]

——
—

Fig. 8. Fixed-ended beam.
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Fig. 9. Membership function for load.

may prefer the structure to resist a load 4 of 80 while he
would accept a lower collapse load with diminishing
support as indicated in Fig. 9.

The particular solution bending moment diagram
and the complementarity solution diagrams are shown
in Fig. 10.

According to MP3 the fuzzy optimization problem
can be formulated as follows

Min 4d
st:d—p; =0
d—p, =0

d+0.25 py +0.75 py = 0.75°80 [1 — 0.25(1 — )]
o€ [0;1]

mo
3
e
b
pi=1 |1 -4 !
b
374 1 pr=l

Fig. 10. Basic diagrams for fixed-ended beam.
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where p; and p, are the bending moments at the sup-
ports.

The first phase constraints in this problem are always
in the o interval of variation so that:

d=p =p =225+75q

In the second phase the process to find the crisp so-
lution using the bound search method is as follows:
m=W[d(1)]=90; M = w[d(0)] = 120;

Ug(d) =075 «€0.75;1]; wug(d)=3/(3+a)

In this case there is an analytical expression for the fuzzy
solution. The optimum level can be derived from Eq.
(11) and the crisp solution is:

o' =0.791; p=p=d=2843; Wld(«")]=113.73

5.2. Fuzzy material properties

Alternatively if one considers uncertainty in the me-
chanical properties of the design variable d represented
in Fig. 11 together with the uncertainty of the loading,
the fuzzy optimization problem becomes:
min 4d
st:d[1+0.15(1 —a)]—p =0

d14+0.15(1-a)] —p, =0

d[1 +0.15(1 — a)] + 0.25p1 + 0.75p,

>0.75%x 80 [1 —0.25(1 — o")]

a € [0;1]

Constraints are always critical when o € [0, 1] so that:

22.5+7.5¢

=P =P =175 0154

In the second phase bound search method leads to
o € [0.652,1] the crisp solution is

0 =0728; p=pr=d=2687; Wld(a)]=107.47

wd

1 1.15 d

Fig. 11. Membership function for design variable d.

5.3. Portal frame

The three story three bay frame represented in Fig. 12
is designed to resist horizontal and vertical loads with-
out collapsing plastically. The moment capacities of the
beams and columns are the four design variables in-
volved.

The particular solution and complementarity solu-
tion bending moments are shown in Fig. 13. If the loads
are fuzzified as shown in Fig. 14, the first phase corre-
sponds to solving the LP with the maximum and mini-
mum o values:

o dl dz d} d4 W(OC)

0.0 0324 0865 0.135 0.622 10.757
1.0 0.924 1.874  0.571 1.143  24.084

In the general case the active set of constraints
changes with «. The limits of the « value are:

m=10.7568; M = 24.0840; o € [0.4466; 1]

It can be seen from Table 1 that the crisp solution
obtained by the bound search method is:

o =0.5813; d; =0.673; d, =1.452;
dy =0.388; dy =0.925 W' =18.504

5.4. Reinforced concrete slab

Consider the square slab with four edges clamped in
Fig. 15 which is to be designed to resist the uniformly
distributed load without collapsing plastically.

The top and bottom reinforcements will be allowed
to be different, but within each slab region equal rein-
forcement is imposed a priori (Fig. 16). The symmetric
features of the slab geometry and loading enables rein-
forcements in the x and y axes to be assumed equal
hence only one eighth of the slab need be considered.

Both top and bottom reinforcement will have two
design variables. The selected one eighth (ABC in Fig. 15)

V\_% LM 1,7\3

M
—_— Y @y @y @ .
I L R R ¥ L
—’ ——
& L
d ;11 1 dy
777 7 7. 777

ls-
E SR, VQ_‘
e

L L L L L L
Fig. 12. Portal frame.
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2 2 2
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777 777 77 77
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Fig. 13. Particular solution bending moments.
ui ‘P u2 'P
177 2 | I p
ol/ : s O ; S
2 4 n 2 4 6 o
u3 uq
L A
3 1
0 ; S >
2 4 6 A3 a
Fig. 14. Fuzzy loading.
Table 1
Bound search procedure
k a® Wk e
1 0.7233 20.396 0.5274
2 0.6253 19.090 0.5635
3 0.5943 18.677 0.5759
4 0.5851 18.555 0.5797

is discretized with four finite elements in such a way that
each element will be located in only one design region so
as to have a constant design variable, Fig. 17.

The constraint on deflection requires for a continu-
ous span of 10 m and reinforcement (mild steel, f, = 250
N/mm?) ratio of 0.5, the total depth 4, of the slab to be
at least 218.5 mm. Here 4, = 230 mm will be used.

With a characteristic live load g = 5 kN/m? and unit
weight of reinforced concrete 24 kN/m?, the ultimate
load on the slab is 1.4¢; + 1.6g; = 15.728 kN/m?. The
nodal load vector ry can be obtained easily for the three
free nodes as

ro=[16.3833 49.15 49.15]

From the static equation (18), the transformation matrix
E is given by

10m

NV

|
| 10m !

Fig. 15. Uniformly loaded square RC slab with four edges
clamped.

2.5m S5m 2.5m 2.5m S5m 2.5m
—

| sl ] | 2m
!lz | d! afl || &) ||| fus )
ST | 25m

Bottom Reinforcement  Top Reinforcement

Fig. 16. Arrangement of design variable d; in design regions
identical for both x and y directions.

2.5m 8 A\ s

Fig. 17. Discretization of one-eighth (ABC) of the square RC
slab.
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0 0 02828 -04 0 0 0
E=1|04 0 —-05657 04 02828 —-04 —-04
—-04 0 02828 04 -0.5657 O 0.4

Matrix Jt (or J7) relates the positive (or negative)
plastic moment capacity of the four elements m,, m/,,
m}, and m}, (or my;, m,, mZ; and m7,) to the two design
variables d| and d, (or ds and d,).

Matrix 4; (or B;) relates plastic moment capacity m
across the interelement sides to the plastic moment ca-
pacity in the x—(y) direction, m; (or m;) of one of their
connected elements whilst 4, (or B,) relates m to m} (or
m;) of the elements on the other side. 4; (or 4,) has ele-
ments of /;sin’ 0, and B, (or B,) has /;cos® 0;.

0 0
0 0
0.2828 —0.4

Similar detection will be performed on the matrix U for
consistency.

107 0 07
0 1 00
0 1 00
0 1 ~ o1
TT=11 0 S =10 o
10 10
1 0 1 0
L0 1] L0 1]
ro2.5 0 0 0
0 25 0 0
1.7678 0 0 0
0 0 0 0
A= 0 17678 0 0
0 0 0 0
0 0 25 0
0 0 0 1.7678
L 0 0 0 0 |
r0 0 0 0 7
0 0 0 0
17678 0 0 0
25 0 0 0
Bi=| 0 17678 0 0
0 25 0 0
0 0 0 0
0 0 0 1.7678
L 0 0 0 25 |

The sizes of the matrices 4, and B, will be reduced
by deleting those rows associated with boundary sides
which are connected to the clamped edge.

0 0
1.7678 0};

0 0
2.5 0
1.7678 0 }

0 2.5

S
[
Il
| —
o
coc oo oo

J¥=[4 BlJY  J=[4d BlJ
[ 2.5 0 [0 0
0 2.5 0 0
3.5355 0 0 0
2.5 0 0 0
1.7678 1.7678 1.7678 0
2.5 0 2.5 0
= 0 2.5 = 0 2.5
0 3.5355 0 3.5355
0 2.5 0 2.5
2.5 0 2.5 0
1.7678 1.7678 1.7678 0
0 2.5 | 0 2.5
Jt e
=0

If the thickness 4, of the slab is assumed uniform and
if the lever arms A", hf, h;" and h;’ are assumed to be
all equal to 4 = 0.85h,, the total reinforcement can be
determined as

v="085"f[ST ST ST ST]| * (21)

where ST = [Sl Sz S3 S4}

Since the areas of the four elements are equal to
S =3.125m? and f, = 2.5 x 10° kN/m? is used, Eq. (21)
becomes:

v=16.39 x 107 (c e m")
which can be expressed in terms of design variables (d)
as
1=639x 107 (ceJ) d
=12788x107%2 2 1 1]d
where e is a row vector, all of whose elements are unity.

The objective function z in LP (14) will be expressed
as



L.M.C. Simoes | Computers and Structures 79 (2001) 2481-2490 2489

z=[2 2 1 1ld=V/p

where p = 1.2788 x 10~
If the amount of main tensile reinforcement in a slab
should be at least 0.25% bh,. Hence

min 4, = 5.75 x 107* m? per m length

The equivalent plastic moment capacity can be
evaluated as
min m, = 28.1031 kNm/m
=d

Now let the characteristic live load g; be the fuzzy
quantity shown in Fig. 18.

The ULD on the slab will then be the fuzzy quantity in
Fig. 19 and the vertical nodal forces can be shown to be
the fuzzy quantities in Fig. 20. For simplicity, assume no
fuzziness in the value of the lower bound of d.

The additional matrices for the data are the vector
for the softness of the nodal forces,

(" = ()" =[3.33 10 10]

and the vector for the nodal forces,
(ro)" = [16.383 49.15 49.15]
The optimal solutions with & =0 and 1 are respec-
tively:
di =d5 =d; =d; =28.1031 kNm
' =1v"/p =321.2503 m*
di =d; =d; =28.1031 kNm, d; =46.7697 kNm
z =v"/p =374.5703 m*
Therefore, the limits of the « value are [0.858; 1] and the

crisp solution obtained by the iterative bound search
method described before is:

i

gK(kN/m2)

3 I's 7

2 2

Fig. 18. Membership function of the characteristic live load.

i
1+
Ultimate UDL
(kKN/m2)
|
0 12.528 15728 18.928

32 32
Fig. 19. Membership function of the ultimate UDL.

o =0913 dj =d; =d; =28.1031 kNm,
d; =44423 kNm, 2 =uv"/p=369.877 m’

It will be noticed the same trends displayed by the
frame examples are demonstrated in this RC slab

A A
1T 1T
fr,f3
0 f1(kN) (kN)
| [
13.0500 ¥ 197167 3915 ' 59.15
16.3833 49.15

—t—
3.33 3.33

—t
10 10

Fig. 20. Membership function of the applied nodal forces on the discretized slab.



2490 L.M.C. Simoes | Computers and Structures 79 (2001) 2481-2490

example. The optimal weight for the deterministic cal-
culation (374.5703) was reduced to a smaller number
(369.877) for the first fuzzy calculation which corre-
sponds to an acceptability measure of 0.913.

6. Conclusions

It is pointed out that fuzzy optimization has the ad-
vantage of ordinary optimization with a more realistic
model of fuzzy constraints taken into account. Hence
the structural design should be more reasonable and
beneficial. The illustrative numerical examples given
here show that the two-phase method based on fuzzy set
theory seems to be a rational and effective approach
for the fuzzy optimization of structures with plastic or
elastic material behavior. The fuzzy solution is obtained
in the first phase in accordance with the Ralescu point of
view that a fuzzy problem should have a fuzzy solution
[9]. The crisp solution which maximizes the membership
function of fuzzy decision-making can then be found
from the fuzzy solution in the second phase. As a result,
the proposed approach provides favorable condition
for selection of structural design schemes so as to have
a higher o-level and to save materials.
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