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Abstract

A fixed cylindrical circular cavity and a cylindrical circular column of fluid of infinite length submerged in a homogeneous fluid medium,
and subjected to a pressure point source, for which closed form solutions are known, are used to assess the performance of constant, linear
and quadratic boundary elements in the analysis of acoustic scattering.

This aim is accomplished by evaluating the error committed by the boundary element method (BEM) for a wide range of frequencies and
wave numbers. First, the position of dominant BEM errors in the frequency versus spatial wave number domains are identified and related to
the natural modes of vibration of the cylindrical circular inclusion. Then, the errors that occur by using constant, linear and quadratic
elements are compared when the inclusion is modelled with the same number of nodes (i.e. maintaining computational cost). Finally, the
importance of the position of the nodal points inside discontinuous boundary elements is analysed. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Over the years, many researchers have found their atten-
tion drawn to the behaviour of waves propagating in a semi-
finite medium with discontinuities. Some of the earliest
analytical studies on wave diffraction and scattering dealt
with the problems of wave motion and reverberations in
alluvial basins of regular shape [1], and of wave scattering
induced by cavities [2,3]. More recently, semi-analytical
methods have been used to analyse wave diffraction caused
by geological irregularities of arbitrary shape within glob-
ally homogeneous media [4]. The application of purely
numerical methods (i.e. finite elements or finite differences)
has generally been restricted to situations where the
response is required only within localised irregular domains,
such as soil-structure interaction problems [5]. Discrete
methods have also occasionally been used to model large
alluvial basins, under plane-strain conditions [6].

The 2D acoustic scattering field caused by deformations
of an oceanic waveguide’s surfaces and by objects
embedded between two half-spaces of different densities
has been computed using a boundary integral equation
method [7-9]. More recently, a boundary integral formula-
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tion to analyse acoustic barriers over an impedance plane as
infinitely thin structures has been presented [10].

Hybrid methods involving a combination of finite elements
to model the interior domain containing the inhomogeneities
and semi-analytical representations for the exterior domain
have also been employed [11], and a transitional matrix
solution for the spectral scattering response of a partially
buried 3D elastic obstacle in a plane stratified fluid media
has been formulated [12].

Most of the above-mentioned numerical methods have
only been applied in situations where the solution is
required within 2D domains. Computationally demanding
numerical schemes are required to evaluate the full scatter-
ing wave field generated by sources placed in the presence
of 3D propagation media.

With a two-dimensional (2D) medium, the solution is
much simpler, even if the dynamic source remains three-
dimensional (3D) (e.g. a point load). Such a situation is
frequently referred to as a two-and-a-half-dimensional
problem (or 2-1/2D for short), and solutions can be obtained
for this by means of a 2 spatial Fourier transform in the
direction in which the geometry does not vary. To do this,
a sequence of 2D problems with different spatial wave
numbers k, must be solved, after which the 3D field is
synthesised using the inverse Fourier transform.

Although this solution is known in closed form for inclu-
sions with simple geometry, such as a circular cylinder, for
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which the wave equation is separable, the solution is more
difficult to obtain if the inclusion has an irregular
cross-section. The boundary element method (BEM) may
be the best tool to analyse wave propagation in unbounded
media, as it satisfies the far-field radiation conditions auto-
matically and permits a compact description of the medium
in terms of boundary elements placed at the material’s
discontinuities [13—16].

The accuracy of the BEM solution depends on the
number of boundary elements used to discretize the material
discontinuities and on the nodes inside each element
[17,18]. The BEM solution improves as the order of the
element increases and its size decreases. However, the
improvement in accuracy and efficiency that can be
obtained by using a higher order entails a greater cost of
CPU time. Thus, although the response improves with the
number of nodes per element, this is not necessarily useful,
as these more accurate models cost considerably more in
terms of computational effort.

The present work assesses the benefit of using constant,
linear and quadratic elements to analyse the 3D acoustic
scattering. It does this by calculating the pressure in the
vicinity of a circular cylindrical inclusion buried inside an
acoustic medium, for which the solution is known in closed
form. Simulations for both a fixed cylindrical cavity and a
cylindrical column of fluid are conducted.

First, the equations required to solve the BEM problem
are presented, and its analytical solution is given. Then, the
BEM errors committed in the scattering analysis of an inclu-
sion are identified in the frequency domain and related to the
natural vibration modes. Different numbers of constant,
linear and quadratic elements are used in these analyses,
according to the differing ratio of the incident wave wave-
length to the length of the boundary elements. To keep the
computational cost essentially constant, comparisons are
made between results computed with a similar number of
nodal points. Finally, the performance of discontinuous
linear and quadratic elements is analysed when the positions
of the nodal points inside the boundary elements are moved
around in the vicinity of those used in the Gauss—Legendre
numerical integration.

2. Problem statement

Consider a cylindrical irregular inclusion of infinite
extent, submerged in a spatially uniform fluid medium
(Fig. 1), subjected to a harmonic point pressure source at
position (xg, 0, 0), oscillating with a frequency

A exp[ i(w/oz)(ozt - \/(x —x)* + 3y + Zz)]
Vo =30 + )7 + 2

Pinc = 5 (1)

where the subscript inc denotes the incident field, A the
wave amplitude, o the pressure wave velocity of the
medium, and i = +/—1.

0,00Y

Fig. 1. Geometry of the problem.

Defining the effective wave numbers
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by means of the axial wave number k,, and Fourier-trans-
forming Eq. (1) in the z direction, we obtain

. —iA
ooy = S HP (ke 202 +2) )

where H,(,z) (...) are second Hankel functions of order n.

If an infinite set of periodically placed sources along the z
direction at equal intervals, L, is considered, the incident
field may be written as

Imk, <0 2)

2T B
pinc(w, X, Y, Z) = T Z pinc(ws X, Y, kz) e ik,nz (4)

m=— oo

with k,, = (2@/L)m, that converges and can be approxi-
mated by a finite sum of terms.

3. Boundary element formulation

The BEM is used to obtain the 3D field generated by a
cylindrical inclusion that may be of irregular shape. In the
case of an acoustic medium, the 2-1/2D problem can be
solved as a discrete summation of 2D BEM problems for
different k, wave numbers. It is then possible to synthesise
the 3D field using the inverse Fourier transform. As
explained above, we can obtain the wave number transform
in discrete form, by considering an infinite number of virtual
point sources equally spaced along the z axis and sufficiently
distant from each other to avoid spatial contamination [19].
In addition, the analyses are done using complex frequen-
cies, shifting down the frequency axis, in the complex plane,
in order to minimise the influence of the neighbouring ficti-
tious sources [20].

Given the literature currently available on the BEM, it is
unnecessary to describe the formulation needed for the type
of scattering problem presented here in detail (see for example,
Ref. [21]). It is enough to state that each 2D BEM solution
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requires the evaluation of the integrals

V= JC dG(xy, x;) dCy, = JC bH (xi, 1, 17) AC,
1 1

&)

where G and H" are, respectively, the components of the
Green’s tensor for pressure and the pressure velocity
component at x; due to a pressure load at x;, n; is the unit
outward normal for the /th boundary segment C}, and ¢ is an
interpolation function. In the present case, the required pres-
sure and pressure velocity functions are

Gl 21.m) = = 7 H ko),

" 5 (6)
Hoxim) = — P (har) 5 -
In this equation p is the mass density, r the source-receiver
distance on the plane xy, and i = V1.

If the integral equations are mathematically manipulated,
combined and subjected to the continuity conditions at the
interface between the two media, and appropriately discre-
tized, a system of equations which can be solved for the
nodal pressures and pressure velocities is obtained. The
required integrations in Eq. (6) are performed by means of
Gauss—Legendre quadrature, using four integration points,
when the element to be integrated is not the loaded element.
For the loaded element, the existing singular integrands are
carried out in closed form [22].

The scattered pressure and velocity pressure fields in the
fluid are then defined as a function of the nodal values. As
the system of equations obtained is fully populated and
generally asymmetrical, most of the global computational
cost of the BEM represents the time needed to solve the
system of equations. In this paper, boundary elements of
different types are used. To evaluate the performance of
the different solutions, the results obtained for similar

Discontinuous BEM elements

Table 1
Relations A/L used in the calculations

Interpolation function R, R, R;
Constant 6 12 18
Linear 3 6 9
Quadratic 2 4 6

computational cost, that is involving equation systems of
the same size (i.e. using similar number of nodal points),
are compared. Three different relations (R, R,, R3) between
the wavelength (A) of the pressure waves and the length of
the boundary elements (L) were considered, as shown in
Table 1. A higher number of elements per wavelength
would improve the accuracy of the results. This paper,
however, does not aim to define optimal (or practical)
computational strategies, but to evaluate the behaviour of
different types of boundary elements, at the cost of similar
computational effort.

The pressure and pressure velocity variations within a
boundary element are defined as a function of the nodal
values. The velocity discontinuity existing at the corner
between two boundary elements is dealt with using discon-
tinuous boundary elements, which entails moving the nodes
that would meet at the corner [23] to the inside. The inter-
polation functions used to model the inclusions used in the
simulation analysis are presented in Fig. 2.

4. Performance of the BEM solution

The method used to evaluate the benefit of using higher
order elements is the calculation of the pressure field around
a cylindrical circular inclusion buried in a homogeneous
fluid medium, for which analytical solutions are known.
Two inclusions are taken to be submerged in a fluid medium
that allows a pressure wave velocity of a; = 1500 m/s, a
fixed cavity and a fluid column cylinder that allows a pressure

Continuous BEM elements
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Fig. 2. Interpolation functions and position of the nodal points.
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Outside Fluid

o, =1500m/s

p, =1000kg / m?
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o, =2000m/s

p, =1000kg / m*

Fig. 3. Circular cylindrical inclusion in an unbounded fluid medium. Medium properties.

wave velocity of a, = 2000 m/s. Both are illuminated by
pressure waves elicited by a point pressure load applied at
point O, as in Fig. 3.

4.1. Analytical solution

The scattering field produced by a circular cylindrical
column of fluid or a fixed cavity, placed in a homogeneous
fluid medium, subjected to a point dilatational load can be
defined in a circular cylindrical coordinate system (7, 6, z)
and evaluated by using the separation of variables [24].

The frequency and spatial wave number position of the
natural modes are found to influence the performance of the
BEM. The position of these natural modes, in the systems
defined above, can be evaluated, assuming that they include
both incoming and outgoing cylindrical waves propagating
to and from the cylinder. When the adequate boundary
conditions are imposed (null pressure at r = a) in the
presence of this standing field, the response is other than
zero if the resulting equation is set to be zero

‘]n(kalr) =0 (7)

in which J,(-) are the Bessel functions of the first kind and
order n, and k,; = Vw*/a} — k2. The solution of the result-
ing equation gives the required position of the natural
modes.

4.2. Identification of the BEM errors

Simulation analyses have been performed for a broad
range of frequencies and inclusions. However, as it is not
possible to present all the results, a restricted number of
simulations are used to illustrate the main findings.

Fig. 4 gives the scattering results obtained at one receiver
placed at x = 3.5 m and y = 7.0 m, hereafter referred to as
receiver 1. The results are computed for 1000 frequencies,
in the range 1.0—1000 Hz. Both the analytical analysis and
the BEM solution were used to calculate the response,

discretizing the boundary with constant, linear and quadratic
discontinuous elements, as shown in Fig. 2. The positions of
the nodal points are the same as those used in Gauss—
Legendre numerical integration (Fig. 2). Pressures were
computed for a wide range of wave numbers k, which
were then used to obtain the 3D solution by means of
(fast) inverse Fourier transform into space. Only the pres-
sure for k, = 0.0 rad/(m/s) and k, = 1.0 rad/(m/s) are given
here, to illustrate the results. The exact values of the pres-
sure are given in Fig. 4a, while Fig. 4b shows the error
occurring with the BEM solution when constant, linear
and quadratic elements are used. A logarithmic scale is
used to show the error, as this enhances the difference in
the responses. The relation between the wavelength (A) of
the pressure waves and the length of the boundary elements
(L) was considered to be R, as listed in Table 1. In no case is
the number of nodal points less than 24. The positions of the
lower natural modes, given by solving Eq. (7), are also
displayed.

Analysis of the results shows that the BEM is consider-
ably less accurate at frequencies in the vicinity of the natural
modes, where large peaks of error are found. This is a well-
known behaviour that results from the lack of solution
uniqueness of the surface Helmholtz integral formulation
[25,26], for which different integral formulations have
been proposed to improve the results.

The constant elements are noticeably poorer in these
localised frequency domains. All the responses outside
these domains improve with the increase of the number of
nodal points, as expected, because a BEM model with a
large number of nodes can model variations in pressure
and/or pressure velocity much more realistically. It was
also observed that the error peaks shift their position
towards the values of the frequencies satisfying Eq. (7) as
the relation between the wavelength (A) of the pressure
waves and the length of the boundary elements (L) increased
(not illustrated here). The fact that increasing the number of
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Fig. 4. Scattering response at receiver 1 (k, = 0.0 rad/(m/s) and k, = 1.0 rad/(m/s)): (a) analytical solution; (b) BEM error.

elements allows the BEM model to approach the definition
of the circular cylinder better, with respect to its dynamic
behaviour, explains this.

Furthermore, for higher relations of A/L (such as R,), the
BEM errors obtained using linear and quadratic elements are
seen to have a global tendency to decrease as the frequency
increases. In other words, as more boundary elements are
required for the higher excitation frequencies than for the
lower ones to satisfy a specific relation of A/L, one can expect
a higher degree of accuracy for those frequencies because
the number of elements is itself an important factor.

To get a better picture of the effect of the influence of the
natural modes on the BEM solution, the scattering response
was subsequently calculated over a fine grid. In the example
below, the inclusion is illuminated by a pulsating source
vibrating at a single frequency at k, = 1.0 rad/(m/s), which
is either 473.3 Hz or 420 Hz. The former frequency corre-
sponds to one of the natural modes of the real system
(Eq. (7)) and the latter to a frequency outside the vicinity
of any eigenfrequency. The inclusion is modelled with
discontinuous elements, using constant, linear and quadratic
interpolation functions.

The number of elements was chosen so that results eval-
uated at similar computational cost (i.e. the same number of

nodal points) could be compared. In these calculations, three
different ratios between the wavelength of the dilatational
waves and the length of the boundary elements were consid-
ered, as listed in Table 1.

Fig. 5 shows the analytical response and the modulus of
the error occurring with the BEM solution for a frequency of
473.3 Hz, when different relations A/L are used (R}, R,, and
R3). They show that the use of constant elements to model
the inclusion gives poor agreement between the BEM and
the analytical solution (see Fig. 5b). Notice that the BEM
error appears to be significant when compared with the
analytical solution. It can further be observed that refining
the boundary elements (i.e. changing their number) does not
lead to significant improvement in the BEM solution.
Indeed, as Fig. 5b shows, the use of 107 constant elements
to model the inclusion results in an error similar to that
given when the inclusion is modelled with 71 elements.
The quadratic elements seem to perform poorly in the vici-
nity of the inclusion for a low number of nodal points (33)
(see Fig. 5d). As the number of elements is increased, there
is a rapid improvement in the quadratic elements, and a
response calculated with 105 nodal points yields a perfor-
mance approaching that of the linear elements (see Fig. 5¢
and d).
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Fig. 5. Scattered pressure in the presence of a cylindrical column of fluid (k, = 1.0 rad/(m/s)). Frequency of excitation — 473.3 Hz: (a) analytical solution;
(b) modulus of the BEM error — constant elements; (c) modulus of the BEM error — discontinuous linear elements; (d) modulus of the BEM error —

discontinuous quadratic elements.

Fig. 6a shows the analytical response and the BEM
error when the vibrating source is excited with a
frequency of 420 Hz, while Fig. 6b—d shows the BEM
error when the number of the boundary elements used
to model the inclusion satisfies the relation A/L set to R;
(see Table 1). Again, each plot is the result of compu-
tations performed with a similar number of nodal points,
which is assumed to require similar computational cost.
These results, which are very different from the previous
ones (i.e. those evaluated for a frequency of 473.3 Hz),

contain a number of interesting features. We now have a
much-improved performance from the constant elements,
giving better results than the linear and quadratic interpolat-
ing functions.

The scattered response was subsequently evaluated
around a fixed cavity over the same grid, in the presence
of the same harmonic vibrating sources (473.3 or 420 Hz).
At the nodal points the unknowns are limited to the pres-
sures, and so the use of continuous elements is allowed.
Fig. 7a presents the analytical solution for the pressure
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Fig. 6. Scattered pressure in the presence of a cylindrical column of fluid (k, = 1.0 rad/(m/s)). Frequency of excitation — 420.0 Hz: (a) analytical solution;
(b) modulus of the BEM error — constant elements; (c) modulus of the BEM error — discontinuous linear elements; (d) modulus of the BEM error —

discontinuous quadratic elements.

field when the source is excited with a frequency of
473.3 Hz at k, = 1.0 rad/(m/s), while Fig. 7b—f shows the
modulus of the BEM error when the fixed cavity is modelled
with a number of elements that verifies the relation A/L set to
R; (see Table 1). Analysis of the results reveals that the

Amplitude

50 y(m)

x(m) x(m)

Analytical a)

107 elements

continuous linear and constant elements do not perform
well when the source is excited with a frequency of
473.3 Hz. Again, for a low number of nodal points the
continuous and discontinuous quadratic elements perform
poorly (not displayed), especially in the vicinity of the

yim) w50 y(m)

b) 53 elements c)

x(m) x(m)

107 elements d)

35 elements

y(m) x(m) 50 y(m)

e) 53 elements f)

Fig. 7. Scattered pressure in the presence of a fixed cylindrical cavity (k, = 1.0 rad/(m/s)). Frequency of excitation — 473.3 Hz: (a) analytical solution;
(b) modulus of the BEM error — constant elements; (c) modulus of the BEM error — discontinuous linear elements; (d) modulus of the BEM error —
continuous linear elements; (e) modulus of the BEM error — discontinuous quadratic elements; (f) modulus of the BEM error — continuous quadratic

elements.
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Fig. 8. Scattered pressure in the presence of a fixed cylindrical cavity (k, = 1.0 rad/(m/s)). Frequency of excitation — 420.0 Hz: (a) analytical solution;
(b) modulus of the BEM error — constant elements; (c) modulus of the BEM error — discontinuous linear elements; (d) modulus of the BEM error —
continuous linear elements; (e¢) modulus of the BEM error — discontinuous quadratic elements; (f) modulus of the BEM error — continuous quadratic

elements.

inclusion, improving rapidly as the number of the elements
increases. When the number of elements verifies the relation
ML set to R;, the continuous quadratic elements are found to
be better, even at points in the vicinity of the fixed cavity
surface. Fig. 8 presents the modulus of the error for a
frequency of 420.0 Hz. As was found for the column of
fluid inclusion, the results differ markedly from those eval-
uated for a frequency of 473.3 Hz. The quadratic elements
show greater divergence from the analytical solution, while
the constant and continuous linear elements now give good
results.

The examples described focus on how the BEM
behaves when a source with a specific frequency and
wave number is excited. Indeed, as shown previously,
the 3D solution in frequency demands that a broad
range of wave numbers be calculated (see Eq. (4)),
while the time solution also requires the response for
a set of frequencies. To illustrate the performance of the
BEM in the resolution of this problem, simulation
analyses are next performed to calculate the full 3D
response at receiver 1. Computations are performed in
the frequency range (10,750 Hz), with a frequency
increment of 10 Hz. The spatial period considered in
the analysis is L =2Ta =300 m. A number of bound-
ary elements, changing with the frequency of excitation
of the harmonic load satisfying the ratios R; and R;, are
used to model the cavity (see Table 1). The minimum

number of nodal points is never less than 24. Fig. 9a
shows the amplitude of the analytical pressure in the
frequency vs wave number domain at receiver 1. Notice
that values of k, in excess of w/a correspond to hetero-
geneous, evanescent waves, which decay rapidly in
space. When the relation A/L assumes the values R,
and R;, respectively, the BEM errors, illustrated in
Fig. 9b—f have features similar to those observed in
the previous cases. When the number of boundary
elements is increased, the position of the peak errors
in these plots agrees with the solutions given by
Eq. (7). The discontinuous quadratic elements perform
poorly when the number of elements is defined by the
ratio R; (see Fig. 9e). At lower frequencies and wave
numbers, the number of elements used to define the
inclusion is an important factor. Indeed, at lower
frequencies the constant elements uses 24 elements,
while the discontinuous linear and discontinuous quad-
ratic elements use 12 and 8 boundary elements, respec-
tively, thus there is a better definition of the inclusion
when it is modelled by constant elements. As the
frequency increases, a higher number of elements is
required to satisfy a specific A/L relation, leading to
an improvement in the linear and quadratic elements.
Again, constant boundary elements are outperformed
by the discontinuous linear elements in the vicinity of
the natural modes. Fig. 9b and d exhibits a peak valley

Fig. 9. Scattered pressure in the presence of a fixed cylindrical cavity at receiver 1 in the frequency versus wave number domain; (a) analytical solution;
(b) modulus of the BEM error (R, and R;) — constant elements; (¢) modulus of the BEM error (R, and R;) — discontinuous linear elements; (d) modulus of
the BEM error (R, and R;) — continuous linear elements; (e) modulus of the BEM error (R, and R;) — discontinuous quadratic elements; (f) modulus of the

BEM error (R, and R;) — continuous quadratic elements.
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structure error that follows the position of the natural
modes.

5. Importance of the nodal points position

In the above examples the nodal points placed along the
discontinuous elements were chosen to coincide with those
in a Gauss—Legendre numerical integration. The results
given by simulations performed using different positions
of the nodal points seem to indicate that this is a good
choice. To demonstrate this assertion, consider the same
wave propagation problem described earlier. Once again,
the scattered field is computed for a cylindrical circular
fixed cavity over a fine grid placed around the inclusion.
Fig. 10 shows the BEM error for the pressure for a

a)
x(m) 50 y(m)
E=+0.7
X(m) 50 y(m)
£=+0.57735
x(m) 50 y(m)
E=+0.5

frequency of 473.3 Hz, and a relation of A/L set to R; (see
Table 1), for different locations of nodal points around those
given by the Gauss—Legendre numerical integration and
also when the inclusion is modelled with linear and quad-
ratic elements. The interior nodal point of the quadratic
elements is placed at the centre of the boundary segment
in all the analyses. The position of the nodal points has a
considerable influence on the accuracy obtained with the
linear elements. It can be seen that moving the nodal points
to the positions used in the Gauss—Legendre integration
improves the solution. Moving the nodal points around the
vicinity of the Gauss—Legendre numerical integration
points does not seem to significantly affect the results
from the quadratic elements. Nevertheless, the BEM
solution clearly loses accuracy as the nodal points are
moved closer to the extremity of the boundary element.

b)

E=+0.85

E=+0.77459

£=+0.7

Fig. 10. Scattered pressure in the presence of a fixed cylindrical cavity (k, = 1.0 rad/(m/s)) when the nodal points are placed at different positions inside each
element. Frequency of excitation — 473.3 Hz: (a) modulus of the BEM error (R;) — discontinuous linear elements; (b) modulus of the BEM error (R;) —

discontinuous quadratic elements.
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Near singular integrals would occur when integrating over
neighbouring elements, if the nodal points were placed very
close to the extremity of the elements. Notice, that the
correctness of the required integrals has been checked by
testing the performance of the solution for a higher number
of integration points, confirming that the appropriate
number of Gaussian integrating points was used. Analytical
solutions were used when the element to be integrated was
the loaded element.

Simulation analysis performed when the source vibrates
at 420.0 Hz (not illustrated here) show similar behaviour.
The BEM error was subsequently tested for cylindrical
circular cavities of differing sizes, for a broad range of
frequencies and spatial wave numbers, and these showed
similar conduct.

6. Conclusions

This paper has assessed the benefits of using constant,
linear and quadratic interpolation functions to model 3D
fluid environments. Circular cylindrical models submerged
in a fluid medium, namely a fixed cavity and a column of
fluid, were used to conduct simulation analyses. The number
of boundary elements used changed according to the differ-
ent relations between the wavelength (A) of the incident
waves and the length of the boundary elements (L).

Comparison of the BEM results with those obtained by
analytical solution showed that it is important to use linear
discontinuous elements rather than constant and linear
continuous elements to calculate the pressure field. The
discontinuous linear boundary elements have been shown
to outperform the constant elements, especially at frequen-
cies in the vicinity of natural modes. The number of bound-
ary elements used to model an inclusion appears to be an
important factor, as well as the relation between the wave-
length and the boundary elements size (A/L). The quadratic
elements use a lower number of elements to verify a specific
number of nodal points than the other types of elements do.
At lower frequencies this number of elements is too low
when the relation A/L is small, leading to a poor perfor-
mance. As the frequency increases, the performance of the
quadratic elements improves rapidly, because more bound-
ary elements are required, and it even surpasses that yielded
by other types of elements.

The position of the nodal points inside the discontinuous
linear elements was also observed to have a considerable
influence on the accuracy of the solution at frequencies in
the vicinity of the natural modes of vibration. It was found
that locating the nodal points to coincide with the Gauss—
Legendre numerical integration points yielded good results.
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