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Abstract

This paper first presents the amplification or de-amplification in the three-dimensional wave scattering generated by
the half-space when subjected to a dilatational point load placed at some point in the medium, when the free surface is
changed to simulate a two-dimensional ridge or a valley deformation. This model is then extended to include the
presence of a long, circular, buried cavity. The solution is formulated using the boundary elements method for a wide
range of frequencies and spatially harmonic line loads, which are subsequently used to obtain time series by means of
(fast) inverse Fourier transforms into space-time.

Our simulation results indicate larger wave amplification and de-amplification in the time and frequency domains
when the topographic surface includes a smooth ridge and canyon deformations. The presence of a buried inclusion
further complicates the wave field displacement pattern, including additional reflections. © 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

The site effects produced by surface topographical
deformations have been reported as amplifications and
de-amplifications of the seismic signals, which can be
significant over large frequency domains [1-3]. Re-
searchers have long been interested in predicting ground
movement in the vicinity of different topographical de-
formations, developing a variety of analytical and nu-
merical approaches to tackle this problem. Some of the
first studies report the use of analytical solutions to
study the scattering and diffraction produced by alluvial
basins of regular shape [4-9] and the wave scattering
caused by cavities [10-13]. Semi-analytical methods have
been used to analyse the diffraction of waves by geo-
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logical inclusions with arbitrary cross-sections placed in
a homogeneous medium [14-16]. Numerical methods,
such as finite elements and differences, have been used to
determine the response within localized, irregular do-
mains, such as the study of soil structure interaction [17—
19]. In addition to these methods, other researchers have
devised techniques for modelling topographic effects,
using representation theorems: the direct boundary ele-
ment method (BEM) [20,21], the indirect boundary ele-
ment method (IBEM) [22-26]. Another refinement was
the development of combinations of integral represen-
tations and discrete wave number expansions of Green’s
functions [27-29]. Discrete methods have also occa-
sionally been used to model large alluvial basins, but
only in plane strain [30]. Finally, hybrid methods, which
use a combination of semi-analytical representations to
model the exterior domain of the inhomogeneities and
finite elements to model its interior domain, have also
been used [31]. A detailed review of all the methods
mentioned above can be found in Sanchez-Sesma [32].

0045-7949/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949(01)00098-0



1698 A. Tadeu et al. | Computers and Structures 79 (2001) 1697-1712

These methods have largely been employed model-
ling the real dynamic problem as a two-dimensional
(2D) solution. However, site observation appears to in-
dicate a higher and more broadband amplification than
can be predicted by numerical simulations [3,33]. So
efforts have been made to extend the 2D solution so that
it can be applied to more realistic, 3D, geological fea-
tures. The principal drawback of trying to evaluate the
whole scattering wave field that is propagated by 3D
media, prompted by locally placed sources, is the huge
cost of performing the numerical calculation in terms of
computer effort.

A two-and-a-half-dimensional (2.5D) problem, in
which the medium is 2D and the dynamic source 3D
(such as a point load), simplifies the solution. A se-
quence of two spatial Fourier transforms, in the direc-
tion for which the geometry does not vary, is used to
solve this type of problem. The first step in the solution
involves solving a series of 2D problems with different
spatial wave numbers, k., and then the inverse Fourier
transform, can be utilized to synthesize the 3D field.

The closed form solution can be known for inclusions
such as a circular cylinder because the (2.5D) wave
equation can be separated. If the inclusion has an irregu-
lar cross-section, the solution becomes much harder.
The BEM is probably the method best suited to solving
problems of this kind. It is almost certainly the best if
the inclusions are buried in an unbounded or half-space
elastic medium, with the solution thus having to satisfy
the far field conditions. The BEM has recently been
applied by Stamos and Beskos [34], to a problem where
long lined tunnels, with a uniform cross-section, were
buried in a half-space. These authors described the 3D
dynamic response to plane harmonic waves, propagated
in random directions, by treating it as a 2D problem.

Pedersen et al. [35] used the IBEM to analyse the 3D
seismic response of 2D topographic features to plane
waves, employing the Green’s functions for a harmonic
point force moving along the axis of the topography in a
full space. These authors present the results for studying
the scattering in the frequency and time domains when
topographical deformations with simple geometry, such
as a semi-circular canyon or a semi-circular ridge, were
subjected to incident plane waves. The required nu-
merical equations were derived assuming that the sur-
face topography was divided into a number of segments,
each with a constant force distribution. The number of
segments was variable with frequency, allowing the ex-
istence of five segments per wavelength.

The present work analyses the 3D seismic response of
a 2D smooth canyon or smooth ridge. The medium is
subjected to a dilatational point load and the wave field
in the zone around the surface deformations is evaluated
using the BEM. The surface is discretized along a finite
length with varying size elements. The changes caused to
the scattered field if a buried cylindrical cavity is present

were also studied. In these problems, the solution at
each frequency is given in terms of waves with varying
wave number, k., where z is the direction in which the
geometry does not vary. The result is then Fourier
transformed into the spatial domain.

The discrete form of the wave number transform is
found by means of the following procedure: an infinite
number of virtual point sources are assumed to be
spaced at equal intervals along the z-axis (the distance
between them must be large enough to prevent spatial
contamination [36]); complex frequencies, which move
down the frequency axis in the complex plane, are used
for the analyses to remove any singularities on or near
the axis, and so the fictitious sources in the vicinity have
only a very small influence [37].

This paper describes, first, the formulation and vali-
dation of the BEM through its application to a cylin-
drical circular cavity, buried in an infinite homogeneous
medium and subjected to a dilatational point load, for
which the closed form solution is known. The BEM
model is then applied to a flat half-space subjected to a
line blast load, for which the closed form solution is also
known (Green’s function [28]). This model is next used
for simulation analyses to investigate the three-dimen-
sional wave propagation alteration in the vicinity of a
flat half-space when a smooth canyon or a smooth ridge
is introduced. The amplifications and de-amplifications
of the seismic signals are again studied when a long
buried cavity with a circular cross-section is placed be-
low the topographical deformation. The quantitative
study of the 3D effects of scattering has been achieved by
obtaining results in the frequency and time domains,
paying particular heed to the different apparent wave
velocities along the z-axis.

2. Problem formulation for 2.5D
The incident field generated by a harmonic dilata-
tional point source in an elastic uniform medium can

be expressed by means of the classic dilatational po-
tential ¢

aexp (i¢ (o= s + -+ 2))

Vo) + -y +2

d)inc =

(1)

in which o is the oscillating frequency, (xo,,0) is the
position of the load, the subscript inc denotes the inci-
dent field, A4 is the wave amplitude, « is the compres-
sional wave velocity of the medium, and i= V-1.
Fourier-transforming Eq. (1) in the z direction, and
using the effective wave numbers, k, = /(w?/0?) — k?
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with Im &, < 0, where k. is the axial wave number, one
obtains

a5 = L1 (k=50 + =)
©)

in which the H®(---) are second Hankel functions of
order n.

If one assumes the existence of an infinite set of
evenly spaced sources along the z direction, the former
incident field may be written as

d)mc(o) X y7

Z 4)“1C U) X y7 Zm) lkz”’z (3)

m=—00

where L is the spatial source interval, and k,, = (2n/
L)m. Thus, the three-dimensional wave field may be
obtained as the wave irradiated by a sum of harmonic
(steady state) line loads whose amplitude varies sinu-
soidally in the third dimension. This sum converges and
can be approximated by a finite number of terms.

3. Boundary element formulation
3.1. Cylindrical irregular cavity

The BEM is used to compute the 3D field generated
by a cylindrical irregular cavity when illuminated by
spatially sinusoidal harmonic line loads, defined by Eq.
(2) (see Fig. 1). The required BEM equations are widely
known (see Refs. [38,39]), and only a brief explanation
of the method to be applied in the frequency domain,
is presented. The boundary integral equations can
be constructed using the dynamic reciprocal theorem,
through which, in the absence of distributed loads and in
the presence of virtual point loads, d(x — x,), the fol-
lowing equation is defined,

A 4

Solid
Fig. 1. Problem geometry.

cijuj(-x07w) = /ti(x7 v7w)Gij(x>x03w)dS
JC

- /CHij(x, v, Xg, 0)u;(x, w)ds (4)

In this equation #,j = 1,2 stands for the normal and
tangential directions relative to the cavity surface, re-
spectively, while i,j =3 refers to the z direction.
G (x,x9, w) and H;(x,v,x9, w) are the displacements and
tractions in the direction j at x (on the boundary C) as a
result of a unit point force in the direction 7 at xy (the
source). The vector v is the unit outward normal at the
boundary, while c;; is a constant, depending on the local
geometry of the boundary. For a smooth boundary, c;; is
equal to d;;/2, where 0;; is the Kronecker’s delta.

Expressions for the tensions can be computed from
the 2.5D Green’s functions, by taking partial derivatives
to deduce the strains and then applying Hooke’s law to
find the stresses. The displacement and stress functions,
in Cartesian co-ordinates, which apply to the present
problem, are listed in Appendix A. These stress fields are
conveniently transformed into the normal, tangential
and z local co-ordinate system at each element by
equilibrium relations. The boundary conditions at the
boundary of a cavity prescribe null tractions, leading to
the simplified form of Eq. (4),

Clj x07

/ (%, v, X0, 0)u;(x, ) ds (5)

The evaluation of this integral for an arbitrary cross-
section requires the discretization of both the boundary
and boundary values. If N boundary elements are used
and the nodal displacements are assumed to be constant
within each element, and equal to the value at the as-
sociated nodal point, Eq. (5) changes to

N

el =~ HE; ©

n=1

In this equation, k is the element number at the point
where the virtual load is applied, ] is the boundary
values in element 7, and H/!" is the element integrals

W:/%m%mmw @

in which v, is the unit outward normal for nth boundary
segment C,.

By successively applying the virtual load to each node
on the boundary, a system of linear equations relating
nodal forces and nodal displacements is obtained, and
these can be solved for the nodal displacements.

If an incident wave strikes the cavity, Eq. (5) changes
to
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(%o, ) = —/Hij(x7 0, X0, 0)u;(x, w)ds + u}“c(xo,w)
c
(8)

In this equation the incident field is obtained by
taking partial derivatives of Eq. (2) to deduce displace-
ments along x, y and z, and then applying equilibrium
relations to obtain the normal and tangential displace-
ments along the boundary.

If the displacements and tractions are allowed to vary
linearly within the boundary elements, the required in-
tegrals of Eq. (7) change to

I—[il;'n = C ¢}bj(xnvvn7xk7(u)ds (9)

where ¢ are the linear interpolation functions.

Within a boundary element, the displacement and
stress variations are defined in terms of the nodal values.
The traction discontinuity at the corner between two
boundary elements is handled by moving the nodes that
would meet at the corner, so that each is inside an ele-
ment [40], leading to discontinuous boundary elements.

This gives a system of equations that can be solved for
the nodal displacements, after combining the integral
equations and subjecting them to the continuity condi-
tions at the interface between the two media (null trac-
tions). The required integrations in Eq. (9) are performed
in closed form when the element to be integrated is the
loaded element [41,42], while numerical integration, us-
ing a Gaussian quadrature scheme, applies when the el-
ement to be integrated is not the loaded one.

The BEM algorithm was implemented and validated
by calculating the response of a cylindrical circular cav-
ity, placed in a homogeneous elastic medium, when
subjected to a dilatational point load, for which the
solution is known in closed form. Details of this vali-
dation can be found in Ref. [43] and they are not pre-
sented here for reasons of brevity.

3.2. Surface topography

The BEM model developed for the cylindrical cavity
can be used to calculate the response generated by a free
flat surface (half-space). In fact, the same equations ap-
ply over the boundary elements required to simulate the
free surface. The geometrical damping together with the
use of complex frequencies makes the full discretization
of the infinite surface unnecessary. If solutions are re-
quired in the time domain, the contribution to the re-
sponse that arrives behind the time window 7 = 2n/Aw
(where Aw is the frequency step of the analysis) does not
need to be taken into account. Hence, the free surface
needs to be discretized up to a spatial distance (Lgs;) from
the receivers, given by Ly = oT. This leads to a total
discretized surface with a length 2Ly + 2a, where 2a is
the length of the segment occupied by the receivers.

2a

(-109.2;110.9) f }

Fig. 2. Boundary elements distribution (f = 100 Hz; Af = 40
Hz).

Many schemes for distributing the boundary elements
along the discretized surface were tested to study how
varying the size of boundary elements affects the accu-
racy of the response. A better performance was found
when smaller elements were placed in the vicinity of the
receivers. The authors of this paper suggest placing dif-
ferently sized boundary elements along the discretized
surface, with the shorter elements being used nearer to
the centre of the surface discretization. The scheme used
in this work to define the size of the boundary elements is
illustrated in Fig. 2. The method comprises a geometrical
construction in which the ratio between the wavelength
of the dilatational waves and that of the boundary ele-
ments is first defined, and then used to divide an auxiliary
circular arc into equal segments. These segments are
projected vertically to define the boundary elements on
the topographic surface. The radius of the circular arc
required (R) is greater than (2Lgs + 2a)/2 and it is
placed at the boundary discretization end, tangent to the
topographic surface, avoiding the existence of unduly
small boundary elements. In this work R is assumed to be
[(2Lgist + 2a)/2]/cos10°.

The BEM algorithm was implemented and validated
by applying it to a flat half-space, subjected to a dila-
tational line load (Fig. 3a), for which the solution is
known in closed form [28].

Fig. 3 illustrates the computation of the vertical dis-
placement field over a fine vertical grid plane, which is
perpendicular to the z-axis, when a 100 Hz pressure line
load is excited. The response given by the closed form
solution is shown in Fig. 3b. Fig. 3 also displays the
difference, or error, given by the BEM when 122 bound-
ary elements are used and the ratio between the wave-
length of the dilatational waves and the boundary
elements is 10. Fig. 3¢ shows the error in the case where
boundary elements are spaced at equal distances from
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Fig. 3. Half-space problem validation.

one another along the surface boundary, while Fig. 3d
gives the error when the length of the boundary elements
changes in accordance with the method illustrated in
Fig. 2. The accuracy of the BEM is enhanced, as these
figures show, when shorter elements are used towards
the centre of the surface discretization, at no extra
computer cost.

4. Transformation from frequency to time domain — use of
a Ricker wavelet

The responses in the time-space domains are ob-
tained by means of inverse Fourier transforms over both
the frequency and wave number domains. The dynamic
source is assumed to have a Ricker wavelet temporal
variation, and this decays rapidly in both the time and
frequency domains, reducing computational effort, and
allowing the computed synthetic waveforms to be in-
terpreted more easily.

The Ricker wavelet function in the frequency domain
is given by
Uw) = A2y/Ttoe ") Qe (10)
where A is the amplitude, Q = wt,/2, ¢, denotes the time

when the maximum occurs, while 77, is the characteristic
(dominant) period of the wavelet.

The required Fourier transformations are obtained
by discrete summations over wave numbers and fre-
quencies, which is mathematically the same as adding
periodic sources at spatial intervals L = 2rnt/Ak, (in the z-
axis), and temporal intervals 7 = 2n/Aw, with Ak, and
Aw being the wave number and frequency steps, re-
spectively [36]. The spatial separation L must be large
enough to ensure that there is no contamination of the
response by the periodic sources. In addition, the con-
tribution to the response by the fictitious sources must
occur at times later than 7. Analyses are therefore per-
formed using complex frequencies, with a small imagi-
nary part of the form w. = o — iy (with n = 0.7Aw), and
so the influence of the neighbouring fictitious sources is
practically non-existent [37]. In the time domain, this
shift is later taken into account by applying an expo-
nential window e to the response (see Ref. [44]).

5. Numerical applications

The BEM model is first used to calculate the three-
dimensional wave field generated by 2D smooth topo-
graphical deformations subjected to a dilatational point
load. The topographical surface is modelled with a
number of boundary elements, defined according to the
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Fig. 4. Geometry for numerical applications.

excitation frequency of the harmonic source, and in such
a way that the free surface can be discretized along a
distance that is sufficient to fully reproduce the responses
at the receivers in the time window considered (7 =
1/Af). Simulation analyses are performed to study the
alteration of the wave scattering generated by the half-
space, when the free surface is changed to simulate a
smooth ridge or a valley, defined with circular arcs of
constant radius, 2 m (see Fig. 4).

Next, the BEM model is further extended to include
the presence of a long, circular, buried cavity. The cavity
is placed below the topographical deformation, with its
axis positioned at x = 0 m and y = 5 m. Computations
are performed for two sizes of circular inclusions with
radiiR=2m and R =3 m.

The shear wave velocity (ff = 2656 m/s), the dilata-
tional wave velocity (o« = 4208 m/s) and density (p =
2140 Kg/m?) of the elastic medium remain constant in
all the analyses. Computations are performed in the
frequency range (40-1280 Hz), with a frequency incre-
ment of 40.0 Hz, which determines the total duration
(T =25.0 ms) of the analysis in the time domain. The
source time dependence is a Ricker wavelet with a
characteristic frequency of 450 Hz.

The propagating wave field is computed at 80 evenly
spaced (0.25 m) receivers, distributed along two lines:
one is placed horizontally at 0.5 m below the surface
(line 1), while the second is placed vertically at x = 5.0 m
(line 2). The horizontal line of receivers could be chosen
to coincide with the nodal boundary elements. However,
this procedure has been avoided for two reasons. First,
because the surface is not equally discretized along the
boundary, and second, the authors are trying to simulate
the placement of the geophones at some depth below the
surface to avoid (in practice) unwanted noise.

At time ¢ = 0, a point source placed 0.5 m below the
free surface, at x = —15 m and z=0 m, creates a
spherical dilatational pulse propagating away from it.

The free topographical surface and the cavities are
modelled with a number of boundary elements that
changes with the excitation frequency of the harmonic
load. Many simulations were performed to study how
varying the size of boundary elements affects the accu-
racy of the response. The ratio between the wavelength
of the incident waves and the length of the boundary
elements is kept to a minimum of 10. In all cases,
however, the number of the boundary elements used to
model each surface is never less than 40.

Responses are calculated following waves with dif-
ferent apparent wave velocities along the z-axis. This
apparent wave velocity (c¢) results from waves arriving at
the z-axis with a path inclination given by arccos(v/c),
where v is the true wave velocity (see Fig. 5). k. is taken
to be w/c in the BEM equations. Selected results are
presented for simulations with three apparent velocities
(¢): infinite ¢, ¢ = 4208 m/s and ¢ = 2656 m/s. Infinite ¢
corresponds to waves arriving at the receivers with a 90°
inclination in relation to the z-axis, which can be seen as

(x)‘ c z

Fig. 5. Apparent wave velocity.
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a pure 2D problem where the source is linear. As the
path inclination ranges from 90° to 0°, there is a lower
bound value for ¢ that corresponds to the slowest wave
velocities (Rayleigh waves). Below this value, there are
inhomogeneous waves which decay very quickly with
decreasing values of c.

5.1. 2D topographical deformations free of any buried
inclusion

Fig. 6 displays the synthetic seismograms in the time
and frequency domains for the horizontal (x) displace-

(a) Flat surface
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ment, recorded at receivers placed along line 1, for the
three topographical surfaces. Solid lines placed on the
limits of the topographical deformations and on their
inflection points (locating the change of curvature from
convex to concave) are added to facilitate interpretation
of the results.

Fig. 6a shows the response obtained for infinite c.
When the surface is flat, the first set of pulses recorded at
the receivers corresponds to the incident P field and P
waves reflected from the surface, while second arrivals
are S mode converted waves resulting from the P wave
incidence on the surface. The S waves are followed by

Smooth canyon

600 800 1000 1200

800 1000 1200 200 400
Frequency (Hz)

Amplitude

X(m)
°

600 800 1000
Frequency (Hz)

Alm?lltude

!
o

Time (ms)

Time (ms) X(m) 5 o

Fig. 6. Total horizontal displacement time and frequency responses recorded at the receivers placed along line 1: (a) Infinite ¢, (b)

¢ =4208 m/s and (c) ¢ = 2656 m/s.
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Fig. 6 (continued)

the guided waves (R), but they do not fully separate as
two pulses, given the small difference in velocities. Tags
are added in these plots indicating the arrivals of the
various pulses. It can easily be demonstrated that the
arrival times obtained for the different pulses in these
plots are consistent with the predictions given by ray
acoustics.

When the topographical surface is irregular, the re-
sponses show an increased interference, which grows
with frequency. In the case of the smooth ridge, the in-
terference is caused mainly by reverberations within the
concave part of the surface. A more pronounced fre-
quency wave field difference amplitude response is ob-
servable at receivers placed below the central part of the
deformation, agreeing with this interpretation. It can be
further observed that the synthetic seismograms show
signal amplification and de-amplification at those same
receivers. In the case of the smooth canyon, amplifica-
tion of the signal occurs, but here it is for receivers close
to the extreme of the deformation, again within the
concave parts of the free surface. As expected, higher
responses occur at the edge nearer to the dynamic
source. The presence of the ridge and the canyon causes
a “shadow” after the deformations, which is more pro-
nounced in the case of a canyon.

As the apparent velocity decreases the arrival times
of the different pulses decrease (see Fig. 6b and c). A
pulse with an arrival time 7 in these plots relates to
waves that travel from the source to a reflector and then
to the receiver, along a constant ray path inclination in
relation to the z-axis, arccos(v/c). The travel distance (L)
in this domain corresponds to the projection of the ini-
tial vertical path (d) relative to the inclined path,

L = dsin[arccos(v/c)]. In this way, when the apparent
velocity reaches the velocity of the P waves (see Fig. 6b),
the pulses travelling at this velocity arrive at the various
receivers at + = 0 ms, and only the waves travelling at
lower velocity, the S and guided waves, survive in these
time plots. Furthermore, when the apparent velocity
equals ¢ = 2656 m/s, only the guided waves (Rayleigh
waves) survive.

Analysis of the results shows that the main features
of the wave patterns described for ¢ = oo m/s are main-
tained as the apparent velocity decreases. The concave
parts of the surface are still defining the position of the
amplification and de-amplification of the former signals
obtained for the flat half-space. However, the wave field
interference originating on the topographic deforma-
tions becomes less significant as the apparent wave ve-
locity decreases.

Fig. 7 illustrates the vertical displacement at the re-
ceivers, again placed along line 1 for infinite ¢. The P
pulses decrease in importance, because their displace-
ment is mostly polarized along the horizontal direction,
given the position of both the source and the receivers,
placed just below the free surface. The scattered field
exhibits wave features similar to those found for the
horizontal wave displaced by the amplification of the
signal in the vicinity of the concave parts of the topo-
graphical surfaces. As the apparent velocity decreases,
the interference from the different topographical defor-
mations rapidly loses its importance (not illustrated).
The z displacements, null for infinite ¢, denote similar
features (not illustrated).

Fig. 8 displays the synthetic seismograms recorded at
the receivers placed along line 2. The time of flight of
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Fig. 7. Total vertical displacement time and frequency responses recorded at the receivers placed along line 1 for infinite c.
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Fig. 8. Total horizontal displacement time responses recorded at the receivers placed along line 2: (a) Infinite ¢ and (b) ¢ = 4208 m/s.

each of these pulses agrees with the ray analyses. Fig. 8a
depicts the horizontal (x) displacement when the ap-
parent velocity is infinite c.

The reverberations within the topographical surface
deformations leads to more complicated wave patterns,
with the presence of additional pulses. The pulse that
reflects on the surface topographical deformation as an
S pulse is identified as S, in these plots. The pulses di-
rectly incident on the canyon deformation are readily
reflected into the formation, creating a shadow behind
the surface deformation, as the fall in amplitude of the
pulses recorded at receivers placed at an intermediate
depth indicates. At the receivers placed close to the
surface, the pulses resulting from the guided modes
dominate the response. The results further show that
these guided waves, which decay very rapidly with

depth, are more pronounced in the presence of the
canyon than in the presence of the ridge. When the ap-
parent velocity is ¢ = 4208 m/s (Fig. 8b), the wave field
still shows the effect of the shadow phenomenon, but
now significantly reduced.

The vertical and z displacements, not illustrated here,
exhibit similar wave features.

5.2. Presence of a buried cavity below 2D topographical
deformations

This section presents the results obtained when a
cylindrical circular cavity is placed below the topo-
graphical deformations. The medium is again excited by
a point source placed 0.5 m below the free surface, at
x=—15 m and z =0 m, creating a spherical pressure
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pulse propagating away from it. The field generated is
computed at the same two lines of receivers.

Fig. 9 displays the horizontal (x) displacement in the
time and space-frequency domains recorded at the re-
ceivers placed at line 1, for the flat free surface, the
smooth ridge and the smooth canyon, in the presence of
a cavity with a radius of R = 3 m. Analysis of the results
reveals that the presence of this inclusion leads to a more
complicated wave field displacement pattern, including
additional reflections by the cavity (see Fig. 6). The
results continue to exhibit amplification and de-ampli-
fication close to the concave part of the surface defor-
mations.

(@) Flat surface
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As waves impinge on both the cavity and the free
surface they scatter back into the medium as P and S
waves (the latter as the result of P—S conversion). The
presence of the ridge permits higher order reflections
between the surface and the top of the inclusion, sus-
taining more energy there, for a longer time. This phe-
nomenon gives rise to additional pulses, owing to the
interference between these reflections. The receivers
placed in the vicinity of the canyon show smaller am-
plitudes than do the receivers that are further away. This
phenomenon is explained by the reflective power of the
convex shape of the surface and of the cavity, which
enables energy to be reflected to the sides, away from the

Smooth canyon

1000 1200

0 600 800 1000 1200 200 400 600 800
Frequency (Hz) Frequency (Hz)

Amplitude

Time (ms)

0.02

0.015

800 1000 1200 200 400 600 800 1000 1200
(Hz) Frequency (Hz)

Amplitude
dom

IS

Time (ms) X(m) 57 Time (ms)

Fig. 9. Total horizontal displacement time and frequency responses recorded at the receivers placed along linel when a cylindrical
circular cavity of R = 3 m is present: (a) Infinite ¢, (b) ¢ = 4208 m/s and (c) ¢ = 2656 m/s.
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Fig. 9 (continued)

central zone. However, the wave field generated is not
symmetric in relation to the central part of the surface
deformation, but is more pronounced at the side where
the dynamic source is located. The ridge and canyon
again produce a shadow behind the deformations, which
it is more pronounced in the case of a canyon.

As the apparent velocity decreases, the amplitude of
the displacement decreases, and the waves that travel at
a velocity higher than the assumed apparent velocity
vanish. Our results indicate the existence of signal am-
plifications and de-amplifications in the vicinity of the
concave parts of the deformations (see Fig. 9b), with
amplifications bigger than the ones found for the me-
dium with no buried cavity, a homogeneous medium
(see Fig. 6b). As found before, the importance of the
guided waves decreases as the distance of the receivers
from the source increases (see Fig. 9¢). It can be further
observed, that the guided waves now have higher am-
plitudes than were observed for them in the homoge-
neous medium (see Fig. 6¢). This is caused by the
additional presence of guided waves that travel around
the surface cavity.

Flat surface

)
o
2

E
<

2

Smooth ridge

Fig. 10 illustrates the vertical displacement (y) for the
same receivers (infinite ¢). It can be seen that the dis-
placement in the vertical direction gives amplitudes
higher than those given by displacement in the hori-
zontal direction, especially at the receivers closer to the
source. Once again the importance of the P waves
decreases. As the frequency increases, the wave signal
exhibits amplification patterns in the vicinity of the
concave parts of the topographical surfaces similar to
the ones found for the horizontal wave displacement
(not illustrated). The presence of a ridge allows a longer
dynamic event, as explained before. As the apparent
velocity decreases, the interference of the different to-
pographical deformations rapidly loses its importance
(not illustrated). As for the horizontal displacements, the
Rayleigh waves increase their relative importance, owing
to the presence of the cavity.

Fig. 11 displays the z displacement at receivers placed
again at line 1, when the apparent velocity is ¢ = 4208
m/s. The presence of a buried cavity causes a more
pronounced interference. As before, the space-frequency
domain maintains higher amplitude scattered responses
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Fig. 10. Total vertical displacement time responses recorded at the receivers placed along line 1 when a cylindrical circular cavity of
R =3 m is present — infinite c.
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Fig. 11. Total z displacement time responses recorded at the receivers placed along line 1 when a cylindrical circular cavity of R =3 m

is present for ¢ = 4208 m/s.

in the vicinity of the concave part of the surface defor-
mations, as the frequency increases (not illustrated).
Fig. 12 illustrates the horizontal response for differ-
ent apparent wave velocities. When infinite ¢, the first
wave arrivals observed correspond to the incident waves
followed by wave trains that are directly reflected by the
surface and the cavity. The cavity causes a so-called
“shadow effect”” when illuminated by the first incident P
body waves, placing smaller amplitude pulses behind the
cavity (see also Fig. 8). However for the slower waves,
such as the Rayleigh waves, the presence of the cavity
further amplifies the signal. Indeed, it appears that it is
the presence of the cavity that mostly determines the
dynamic behaviour of the full system at this line of re-
ceivers. Therefore, the influence of the surface defor-
mation diminishes with the presence of this cavity for

()
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Amplitude
Amplitude
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Time (ms)
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o N
Amplitude

Y(m) o Time (ms) Y(m)

Smooth ridge
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receivers placed along line 2. This behaviour was ex-
pected, given the greater dimension of the cavity relative
to the size of the surface deformation, and the position
of the line of receivers.

As we move to a lower apparent wave velocity, the
time responses illustrate the importance of the Rayleigh
waves, placing pulses with higher amplitude at receivers
closer to the cavity surface, located at the medium depth
of the second line of receivers (see Fig. 12b). These
guided modes are mostly polarized along the direction
normal to the cavity surface. So, the tangential compo-
nent is less important. The vertical displacement, not
displayed, confirms that the main field comes from
Rayleigh waves that travel along the surface. We can
conclude that the presence of the cavity itself dominates
the behaviour of the wave field at these receivers.

Smooth canyon

Time (ms)

Y(m) 0

Fig. 12. Total horizontal displacement time responses recorded at the receivers placed along line 2 when a cylindrical circular cavity of

R =3 m is present: (a) Infinite ¢ and (b) ¢ = 4208 m/s.
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Fig. 13. Total horizontal displacement time responses recorded at the receivers placed along line 1 when a cylindrical circular cavity of

R =2 m is present for ¢ = 4208 m/s.

Fig. 13 depicts the total horizontal time displace-
ments when the cavity assumes a radius of R = 2 m, for
the receivers placed at line 1. Analysis of the results re-
veals features similar to the ones observed when the
radius of the cavity is R = 3 m. However, it can easily be
seen that the amplitude of the S and Rayleigh waves
decreases when we move to an inclusion with a radius of
R =2 m (see Figs. 9b and 13). The loss of importance of
the cavity can also be observed from the vertical time
displacement results (not illustrated), with smaller but
manifest multiple reflections between the topographical
surface and the surface of the cavity. The calculated z
displacement field shows a similar tendency (not illus-
trated).

The disturbance caused by the presence of the cavity
in the incident wave field, noticed as a shadow effect, is
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less apparent for a cavity with a lower radius at the
second line of receivers. Fig. 14 illustrates this behaviour
by displaying the horizontal displacements (see also Fig.
12), where higher amplitudes of the response occur at
receivers placed outside the shadow zone.

It can also be observed that the importance of the
amplitude of the guided waves is reduced when the ra-
dius of the cavity changes from R =3 m to R = 2 m (see
Figs. 12 and 14). The increased distance from the re-
ceivers to the cavity and its smaller size explain this
behaviour, a tendency that is followed by the vertical
and z displacements (not illustrated).

From an engineering point of view, it is useful to
know how an explosion may affect a tunnel such as
subway or a railway tunnel. The answer to this question
would require a new series of studies. However, the
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Fig. 14. Total horizontal displacement time responses recorded at the receivers placed along line 2 when a cylindrical circular cavity of
R =2 m is present: (a) Infinite ¢ and (b) ¢ = 4208 m/s.
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results obtained in this paper indicate that amplification
and de-amplification of the signals will occur in the close
vicinity of the tunnel, generated by guided waves that
will travel along its surface, giving rise to higher stress
and deformation fields. This behaviour becomes in-
creasingly important for tunnels placed closer to the
surface of the ground, where the interaction with the
surface waves produced will increase the complexity of
the response and give rise to further amplification and
de-amplifications of the signals.

6. Conclusions

The boundary element formulation developed was
used to calculate the alteration of the 3D scattered field
generated by a dilatational point load illuminating a half-
space, when the free surface is changed to model a
smooth ridge or a valley with the presence or in the ab-
sence of a cylindrical circular cavity. The frequency and
synthetic seismograms were first built when the elastic
medium was free of any inclusion, following waves with
different apparent wave velocities along the z-axis. The
time responses appear complicated but were consistent
with the predictions calculated by ray acoustics. Simu-
lation analyses utilizing this idealized model were used by
the authors to allow the recognition, identification, and
physical interpretation of the variation of the wave field
in the vicinity of these topographical deformations.

Larger wave field alterations, with the amplification
and de-amplification of the signal in the time and fre-
quency domains, occur when we move from the flat
half-space and include the smooth ridge and canyon
deformations. These originate within the concave parts
of the surface deformations. As the apparent velocity
decreases, the amplitude of the response decreases, in-
dicating that the scattering energy is mainly concen-
trated in the vertical z plane containing the dynamic
source. It can further be observed that the canyon de-
formation creates a significant shadow after the surface
deformation because the direct incident pulses are easily
reflected onto the formation, leading to a zone where the
responses decrease in amplitude.

Our simulations also included the evaluation of the
response field in the presence of differently-sized cylin-
drical cavities, buried below the topographical surface
deformation. The presence of an inclusion leads to a
more complicated wave field displacement pattern, in-
cluding additional reflections. However, the results con-
tinue to exhibit amplification and de-amplification
differences close to the concave part of the surface de-
formations, for receivers just below the ground surface.
The presence of the ridge allows higher order reflections
to exist between the ground surface and the top of the
inclusion, sustaining more energy there, for a longer
time. The receivers placed in the vicinity of the canyon

show smaller amplitudes than do the receivers that are
further away. This phenomenon is explained in the light
of the reflective power of the convex shape of the surface
and of the cavity, which enables energy to be reflected to
the sides, away from the central zone. It was found that
the guided waves now have higher amplitudes than were
observed for the homogeneous medium, because of the
additional presence of guided waves that travel around
the surface cavity.

The cavity gives rise to a so-called shadow effect at
receivers behind the cavity when illuminated by the first
incident P body waves. However for the slower waves,
such as the Rayleigh waves, the presence of the cavity
further amplifies the signal. The influence of the surface
deformation type diminishes at these receivers when a
cavity is present. When the size of the inclusion de-
creases, the amplitude of the S and Rayleigh waves de-
creases. Indeed, even though the presence of the cavity
becomes less important, multiple reflections between the
topographical surface and the surface of the cavity are
still present.

Appendix A
A.1. Definitions

A 1 Lamé constants
o mass density
o

=/(A+2uw)/p P wave velocity
p=+/un/p S wave velocity
k=00 k=o/f
k, = 1/k;sz2 ky = \/k? — k?
A4 =1/(4ipw?) amplitude
y; =0r/0x; =x;/r i=1,2 direction cosines
H,, = H®(k,r) H,; = H{® (kgr) Hankel functions
B, = kj}Hn/; — klH,, B, functions

A.2. Green's functions

1
Gxx =4 |:ka0/; — ;B] + "/332:| (Al)
1
G”, =4 |:ka0/; - ;Bl + 'J/'%sz| (AZ)
G.. = A[klHoy — k2Bo| (A.3)
GX)’ = GW = VX"/},.ABZ (A4)
ze = sz = ik:’yxABl (AS)
Gy = Gy = k.9, 4B, (A.6)
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A.3. Volumetric strain (super-index=direction of

load)

!
8\/01 = le,x + le,y + Gsz

0
=4 {a—xl (kszHoﬁ) + Boix + Boyiy + BO.zlz:|

0
& [kSZHO/)’ + BOA,xx + BOA,yy + BO.zz}
!
0 [
g [k Hop+V Bo] (A7)
Note: H()/;J = *kﬁ%H}ﬁ, H()ﬁ)z = *ikZH()[;

A.4. Strain components (tensor definition, not en-
gineering)

Sfj = l(G[lJ + Gjli)
zA( zszoﬁ] +9 zk Hopi + Boisj +BOjll)
= %kszA (5,'1H0[]_j + 5le0ﬁ,i) +AB()‘,']'1 (Ag)
A.5. Strains for loads in the plane, | = x,y

4
tvor = 714 ( — klkgHyp + KBy + ~B2— B3> (A9)

2 1
S)Ia = "/IA ((;Bz — kszkﬁHlﬁ) 5xl + ;Bz — '))383) (AlO)

2
}y =74

1
_ kszk/;Hl/;) 5y[ + ;Bz — V‘Z)B3) (All)

o= s (12
! 1 1 2

&, =4 ;Bz - Eks kpHp (5xl“/y + 5y’y)c) I

(A.13)

. 11

b = kAl ( ~B1— Eks Hop |0 — 7,7,B2 (A.14)
L 11,

e, = ik.A ;Bl - EkSHO[X Sy = 7,71B2 (A.15)

A.6. Strain for axial loads, | = z

. . 2 2 2

& = kA ( — K} Hoy + KBy + By — Bz) (A.16)

&, = ikA (1 - /XBz) (A.17)
r

. 1 R

S.W =1k.A ;Bl — “/yBQ (Alg)
&, = ik, A(—k2Hop + k2 By) (A.19)
&y, = —ik:y,7,4B; (A.20)
z 1 2 2

be = | —SkkpHip + KBy (A.21)

1
&, = «,},A( 3 KkyHyg + k2B ) (A.22)

A.7. Stresses

o = b, + 2 (A.23)
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