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Abstract

With the increasing use of wireless communications, came a growing concern for ob-
taining confidentiality in the transmission of data. Recently, methods for applying secrecy
at the physical layer have been in the focus of attention from the scientific community.
In this dissertation we provide secrecy metrics applicable to physical-layer coding tech-
niques with finite blocklengths. Our metrics go beyond some of the known practical
secrecy measures, so as to make lower bound probabilistic guarantees on error rates over
short blocklengths. These techniques are especially useful in cases where application of
traditional information-theoretic security measures is either impractical or simply not yet
understood. We also propose two coding for secrecy schemes based on the combination
of interleaving with systematic channel codes. The basic idea consists of generating a
random interleaving key that is used to shuffle/interleave information at the source. The
message and the interleaving key are then both encoded with a systematic code. On a
first approach a jamming signal is generated with the intent to degrade the eavesdrop-
per’s channel during the transmission of the key bits. Then we consider a different setup
where the part related to the interleaving key is removed/punctured before being sent to
the channel, hence operating as a hidden key for any receiver (legitimate or not) that needs
to deinterleave the message. Successfully obtaining the original message then depends on
determining the interleaving key, which can only be done through the parity bits that result
from jointly encoding the interleaving key and the message. Leveraging on the proposed
security metrics, we provide a method to determine the necessary signal-to-noise ratio
difference that enables successful reception at the legitimate receiver without the eaves-
dropper having access to the message. In addition, we provide evidence that this scheme
may also be used to turn a realistic channel into a discrete memoryless channel that can
be employed with a wiretap code to provide information-theoretic security guarantees.
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Resumo

O forte crescimento observado na última década, na presença das comunicações sem
fios no dia-a-dia, trouxe consigo a necessidade de assegurar a confidencialidade de da-
dos transmitidos. Neste contexto, no seio da comunidade cientı́fica têm vindo, recente-
mente, a serem propostos métodos que visam implementar segurança na camada fı́sica.
Nesta dissertação propomos métricas de segurança para avaliação/desenho de esquemas
de codificação na camada fı́sica, fazendo uso blocos de comprimento curto. As nos-
sas métricas são relevantes face a algumas das métricas de segurança práticas, visto que
avaliam a probabilidade de garantir taxas elevadas de erros em cada bloco. Estas métricas
são especialmente úteis para aplicação em esquemas onde seja impraticável efetuar uma
análise com base nas métricas baseadas em teoria da informação. Propomos também dois
esquemas de codificação com vista a obter segurança na camada fı́sica. A ideia base destes
esquemas consiste em gerar aleatoriamente uma chave de interleaving que é utilizada para
baralhar a mensagem. Após este baralhamento a mensagem é concatenada com a chave e
a palavra resultante é codificada com um código sistemático. Numa primeira abordagem é
gerado um sinal de interferência que visa degradar o canal de transmissão de um eventual
recetor ilegı́timo, durante a transmissão dos bits correspondente à chave. Numa segunda
abordagem, a secção da palavra de código referente à chave não é transmitida, sendo a
chave escondida para qualquer utilizador (ilegı́timo ou não). De modo a desembaralhar
corretamente a mensagem será necessário obter uma estimativa correta da chave através
dos bits de paridade da palavra de código. Com base nas métricas de segurança definidas,
a metodologia proposta permite determinar a diferença de relações sinal ruı́do necessária
para que o receptor legı́timo obtenha uma comunicação fiável e o receptor indesejado não
seja capaz de obter uma estimativa correta da mensagem. Por fim, é feita uma análise
e são tecidas considerações que visam mostrar que este esquema pode ser utilizado para
emular um canal discreto sem memória onde possa ser aplicado um código wiretap que
proporcione garantias de segurança baseadas em teoria de informação.
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1. Introduction

The steady growth on the usage of wireless communications, propelled by the impact
caused by the Internet, raises the necessity of having methods that grant confidentiality
during the transmission of data. To face this problem and obtain security on communica-
tions, cryptographic techniques are applied on the upper protocol layers [1].

Physical-layer security, which lately has been the focus of much attention, follows a
different approach by aiming to obtain secrecy at the physical layer, through the exploita-
tion of the physical characteristics and imperfections of communication channels [1]. The
objective of physical-layer security is not the substitution of cryptography protocols, but
rather to act as a complement, by adding an extra layer of security for communications.

This idea is not new and dates back to 1975, introduced by A. D. Wyner in [2], where a
coding method and a metric for evaluating secrecy known as weak secrecy were proposed.
Wyner’s propositions are based on information theory, and consider a system setup which
is referred as wiretap channel. On this setup, an eavesdropper is passively listening to the
communication between two legitimate users, through a degraded channel.

Developing codes (known as wiretap codes), for the coding method from [2], is not a
trivial problem. It took more than 30 years for the emergence of the first code construc-
tion that achieves weak secrecy [3], since then, further progress has been made [4] [5] [6].
However, such designs are based on simplified channel models (e.g. binary erasure chan-
nel (BEC) or binary symmetric channel (BSC) models) and often assume that the legiti-
mate users share a perfect channel, which means that the problem of assuring a reliable
communication is neglected. These assumptions are far from reality. Approaches for
attaining secrecy on more realistic channel models have been made and include punctur-
ing for secrecy [7] [8] or the use of scrambling techniques over blocks of concatenated
frames [9].

Information-theoretic metrics have been the chosen medium for evaluating physical-
layer security coding schemes [10]. However, analyzing realistic channel models with
such metrics is impractical for most cases. On the other hand, evaluating the bit error
rate (BER) can be done by simulation for various channel models, but it’s not regarded
as reliable in terms of security. These aspects motivate the need of new ways to evaluate
secrecy, when the objective is the construction of schemes for real world scenario uses,
that often require short blocklengths.

1.1 Objectives and Main Contributions

The investigation developed on the course of this dissertation took on physical-layer
security from a functional perspective. The main objective of this thesis is the proposal of
secrecy schemes for application to real world scenarios, that consider both the reliability

2



1.2 Dissertation Outline

and secrecy aspects of a communication. Our approach is based on using concatenated
coding schemes, where an outer coder (that may consist of any number of coding opera-
tions) is used to provide secrecy, and an inner coder to account for reliability.

The impracticability of applying information-theoretic secrecy metrics to realistic
channel models and the shortcomings of the BER as a way to evaluate security, led us
to the development of secrecy metrics that are based on the distribution of the number of
errors per block. Contrary to other secrecy metrics, these enable the evaluation of coding
schemes on the short blocklength regime, and can be used to identify operable regions
of signal-to-noise ratio (SNR) for which bit-error rates, even over a short number of bits,
are guaranteed to be near 0.5. Using these new metrics, we also aim to design coding
schemes that can produce an effective wiretap channel over which the code constructions
of wiretap codes can be applied to.

Summing up, the main contributions of this thesis are:

1. J. P. Vilela, M. Gomes, W. Harrison, D. Sarmento, F. Dias, “Interleaved Concate-
nated Coding for Secrecy in the Finite Blocklength Regime”, IEEE Signal Process-
ing Letters, submitted for publication, March 2015.

2. W. Harrison, D. Sarmento, J. P. Vilela, M. Gomes, “Analysis of Short Blocklength
Codes for Secrecy”, IEEE Transactions on Information Forensics and Security, sub-
mitted for publication, June 2015.

3. D. Sarmento, J. P. Vilela, W. Harrison, M. Gomes, “Interleaved Coding for Secrecy
with a Hidden Key”, IEEE GLOBECOM 2015 - Workshop on Trusted Communi-
cations with Physical Layer Security, submitted for publication, July 2015.

1.2 Dissertation Outline

This thesis is composed of six chapters. Following the Introduction, Chapter 2 in-
troduces concepts on information theory and conditions for reliable and secure transmis-
sions, that are necessary for the comprehension of the succeeding chapters. Chapter 3
details the current metrics for evaluating secrecy as well as their limitations, and contains
the description of the new proposed metrics. On chapter 4 a concatenated coding for se-
crecy scheme that uses interleaving to hide information, and where security is obtained
through the use of jamming is described. The analysis of its performance is executed
using the proposed metrics from chapter 3. Chapter 5 introduces a secrecy scheme that
shares similarities with the scheme from chapter 4, but where a hidden key is punctured
before transmission, and shows that such scheme may be used to emulate the necessary
conditions for applying code constructions made for the wiretap channel, on real world

3



1. Introduction

scenarios. Finally, Chapter 6 presents the main conclusions drawn from this thesis and
presents some suggestions for future work.
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2. Preliminary Concepts

In this chapter we will overview some theoretical concepts that will be important for
the comprehension of the work developed during the course of this dissertation. We’ll
start by introducing some notions on information theory, which will be relevant for the
understanding of the secrecy metrics presented on section 3.1.

The central focus of this dissertation is the evaluation/proposition of coding schemes
that achieve reliability for the legitimate user and secrecy against unintended eavesdrop-
pers. Therefore, on section 2.2, some aspects on how reliability can be achieved in digital
communications will be addressed and later on section 2.3, some concepts of physical
layer security will be introduced.

2.1 Information Theory Concepts

The scientific area of information theory was greatly developed by Claude E. Shannon
[11], with the publication of the paper The Mathematical Theory of Communication, in
1948.

Shannon introduced the notion of entropy, which plays a central role in information
theory as a measure of information, choice and uncertainty [11]. The entropy H(X), of a
discrete random variable1 X with probability mass function (PMF) p(x), is defined by2:

H(X) =−∑
x

p(x) log p(x). (2.1)

Entropy corresponds to the average number of bits (binary digits) required to describe
a random variable [12]. Its value is maximum when p(x) is uniform. In that situation
H(X) = logq, where q is equal to the number of possible values X can take.

As in probabilities, where there are joint probabilities and conditional probabilities,
we can also define similar types of entropies. The joint entropy H(X ;Y ), of discrete
random variables X and Y with PMFs p(x) and p(y), respectively, and joint PMF p(x,y)
is defined by:

H(X ;Y ) =−∑
x

∑
y

p(x,y) log p(x,y). (2.2)

This definition can be extended to any number of random variables. The conditional

entropy H(X | Y ), also known as equivocation, can be defined as the uncertainty of X

conditional to the knowledge of Y , and is given by:

H(X | Y ) =−∑
x

∑
y

p(x | y) log p(x | y). (2.3)

1In the context of information theory, this random variable refers to probabilities that underlie in the
process of communication or data compression.

2For the formulas on this section, all the logarithms are to base 2.
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2.2 Error Control Coding

One important concept is the one of mutual information. Formerly known as transin-

formation, mutual information I(X ;Y ), refers to the reduction in uncertainty of X , due to
the knowledge of Y , and is defined by:

I(X ;Y ) = H(X)−H(X | Y ). (2.4)

or, alternatively:

I(X ;Y ) = ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
. (2.5)

Its value can never be negative and is equal to zero if and only if X and Y are independent.
Figure 2.1 illustrates de relations between the entropies H(X) and H(Y ), joint entropy

H(X ;Y ), conditional entropies H(X | Y ) and H(Y | X), and mutual information I(X ;Y ).

H(X) H(Y )

H(X; Y )

I(X; Y ) H(Y | X)H(X | Y )

Figure 2.1: Venn diagram with the relations between the mutual information and the
different types of entropies.

2.2 Error Control Coding

Most of the time, communication is done over noisy channels. This brings the neces-
sity of having methods for detection and correction of transmission errors. In this section
we are going to do a brief introduction on important aspects of error control coding.

Figure 2.2 illustrates a typical digital communication system. The channel code is
designed to perform error detection and/or correction, aiming to convert a noisy channel
into a reliable one. There are two types of systems involving this type of encoder:

• Automatic repeat request (ARQ): in this type of system, codes are designed to
detect the occurrence of transmission errors, and in that event, the receiver requests
the retransmission of the information received with error. It is required that the

7



2. Preliminary Concepts

source and the destination can communicate at the same time, and in a two way
mode [13].

• Forward error correction (FEC): in FEC systems, transmission errors are detected
and corrected at the receiver.

We’ll focus our attention on FEC systems. There are two main categories of codes
that can be used for this type of systems: block codes and convolution codes [13]. Along
this dissertation only block codes will be considered.

Source 
Encoder

Channel 
Encoder

Demodulator

Modulator

Source 
Decoder

Channel 
Decoder

CHANNEL

Transmitted
information

Received
information

Figure 2.2: Generic digital communication system

2.2.1 Block codes

When using a block code (n,k), the message to be transmitted (in binary format) is
divided into blocks of k bits. The encoder takes each of these blocks and converts it into
a block of a fixed size of n bits (n > k), named as the codeword. The added n− k bits,
known as parity bits, add redundancy to the message, which is used by the decoder in
the detection and correction of errors. A systematic code is such whose codewords are
composed by the unaltered message concatenated to the parity bits.

The code rate of a code, R = k/n, which corresponds to the ratio between the number
information bits and the number of bits that compose a codeword, is a measure on how
much redundancy is added to the message and serves as an indicator on the performance
of a code. Generally, the lower the code rate, the higher are the capabilities of error
detection and correction of the code (note that 0 < R < 1). This value is closely related to
the increased bandwidth needed in the transmission when coding is used [13].

For binary codes, there are a total of 2k codewords that belong to a code, however,
due to errors generated by the transmission through the channel, one of 2n possible words
can be received. The decoder’s task is to find the codeword that was most likely to be
transmitted, based on the received word. A decoder that makes a decision based on data

8



2.2 Error Control Coding

whose value is taken from a finite set, ({0,1} for binary codes), is classified as a hard-

decision decoder. Decoders can also be of the soft-decision type. These decoders receive
information from the demodulator about the certainty of its decisions and make use of
this knowledge when obtaining an estimation of the transmitted data.

An important concept that is related to the number of errors a code is guaranteed to
detect/correct is the one of minimum distance. For two codewords ca and cb the Hamming

distance corresponds to the number of positions for which ca is different from cb. The
minimum distance dmin of a code can then be defined as the minimum Hamming distance
between all possible distinct pairs of codewords. If a code can correct up all error patterns
up to t errors, then the minimum distance of that code is such that: dmin ≥ 2× t +1.

Linear block codes form an important class of error correcting codes (ECCs). One
possible definition, is that a code is linear if the sum (using modulo-2 arithmetic) of two
or more arbitrary codewords, results on a codeword. The parity check matrix H, with
dimensions (n− k)× n, of a linear block code describes the linear relations that the bits
of a codeword must satisfy. Each line of H, hi, contains the coefficients (hi1,hi2, ...,hin)

of a parity check equation. A restriction of this type is satisfied by an arbitrary codeword
c=(c1,c2, ...,cn) if3:

c1 •hi1⊕ c2 •hi2⊕ ...⊕ cn •hin = 0. (2.6)

Given that there are n− k independent equations with n variables, there’s a total of 2k

binary vectors of size n, the codewords, that are possible solutions to the system formed
by the parity check equations of a parity check matrix. Therefore, for every codeword c
of a code with a parity check matrix H:

c×HT = 0. (2.7)

Lets now consider a received word ĉ = c+ e, where e represents an error vector of
length n:

ĉ×HT = c×HT + e×HT = 0+ e×HT = s. (2.8)

The (n− k) length vector s is called the syndrome and corresponds to the sum of the
columns of H given by the positions of the 1s in the vector e. There are 2k different error
vectors that can produce the same syndrome, and the subset formed by these vectors is
called a coset of the code. Syndrome decoding works by calculating the syndrome of the
received word and assuming that the error vector that occurred is the one with the least
number of 1s, from the coset corresponding to the obtained syndrome [13].

A codeword c and its respective message m = (m1,m2, ...,mk) are related by the fol-
lowing expression:

m×G = c, (2.9)
3The ⊕ and • operators refer to a modulo-2 arithmetic sum and product, respectively.

9



2. Preliminary Concepts

where the matrix G is known as the generator matrix. For systematic codes the generator
matrix is of the form G= [P | Ik], and the equivalent parity check matrix is H= [In−k |PT ],
where P is known as the parity matrix and Ii represents the identity matrix of dimensions
i× i.

We’ll follow now with a brief description on a couple important classes of block codes
which will be relevant on later chapters:

• Bose-Chaudhuri-Hocquenghem (BCH):
Invented by R. C. Bose, D. K. Ray-Chaudhuri [14], and A. Hocquenghem [15],
these are codes with well defined error correcting capabilities. BCH are cyclic
codes, which is a special class of linear codes. Cyclic codes are such that cyclically
shifted versions of codewords are also codewords. For any positive integer i ≥ 3
and t < 2i−1, there exists a binary BCH code with the following properties [13]:

– Codeword length: n = 2i−1

– Number of parity bits: n− k ≤ i× t

– dmin ≥ 2× t +1

– Error-correction capability: t errors on a codeword

• Low-Density Parity-Check (LDPC):
These are powerful linear codes characterized by a sparse, (i.e. with low density of
1s), parity check matrix [16]. The decoding uses soft information and follows an
iterative process. These type of channel codes will be utilized on coding schemes
on chapters 4 and 5. Among the various decoding algorithms [17], the Logarithmic
Sum Product Algorithm (LSPA) [18] will be employed. The utilized codes are from
the WiMAX standard [19].

2.2.2 Interleaving and concatenated schemes

Some ECCs are designed to correct a limited number errors, assumed to be uncorre-
lated and randomly distributed [20]. However, because of the physical nature of wireless
channels, bursts of correlated errors might occur. A technique known as interleaving can
be applied to deal with this issue.

Interleaving works on the following principal:

1. An interleaver is placed after the channel encoder, and randomizes the order of
encoder bits before passing them to the modulator. Note that this randomization
can be done with bits from 1 or more codewords.
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2.2 Error Control Coding

2. In the receiver, a deinterleaver that performs the reverse operation of the inter-
leaver is placed before the channel decoder, spreading eventual bursts of errors and
increasing the likelihood of obtaining correctable received codewords.

Interleaving is also applied on concatenated schemes. In this type of schemes, the
channel encoder from figure 2.2 may consist on an inner and an outer encoder separated
by an interleaver, as depicted on figure 2.3. The inner code is typically a powerful code,
therefore, decoder failure usually implies a great amount of errors on the message bits.
The interleaver is used to spread the burst of errors caused by a potencial failure of the
inner decoder, so that the outer decoder (usually a code with a well defined error correcting
capability) is able to correct them.

Interleaver Outer 
Encoder 

Inner 
Encoder 

Channel 
Encoder

Figure 2.3: Channel encoder of a concatenated scheme using two ECCs and an interleaver.

There are different techniques of implementing interleaving:

• Block interleaving: bits are written on a buffer array of dimensions R×C, column-
wise. After the array is full they are transmitted row-wise. Note that a delay pro-
portional to the buffer size is introduced.

• Convolutional interleaving: A convolutional interleaver consists of a set of shift
registers, each with a different delay (usually for the first shift register the delay is
0, for the second is D, for the third is 2D, etc). Each new bit from the input stream
is shifted into the next shift register and the oldest bit in that register is shifted out.

• Random interleaving: a block of N input bits is written into the interleaver, and then
the bits from the block are read out in a random manner. Typically, the permutation
of the input bits is defined by a uniform distribution [20].

Figure 2.4 portrays an example on how interleaving can spread a burst of errors along
a bit sequence. Note that for the depicted example, block interleaving with a buffer of
dimensions 5×4 was utilized.

11



2. Preliminary Concepts

A2A1 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D4D1 D2 D3 D5

A2A1 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D4D1 D2 D3 D5

A4 B4 C4 D4A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A5 B5 C5 D5

Original Sequence

Interleaved sequence with errors

De-interleaved sequence

Figure 2.4: Example of block interleaving and on how the use of interleaving spreads
bursts of errors. The grey blocks represent bit errors

2.3 Coding for Secrecy

On the previous section we gave some insight on how coding techniques can be used
to face the issue of having errors during a transmission. We’ll now consider the problem
on how to keep the information transmitted during a communication secret for undesirable
parties, on the context of physical-layer security [10].

Security in communications is usually achieved through the use of cryptographic
methods applied on upper layers [1]. These methods are based on the unscalability of
computing mathematical operations such as the prime factorization of large numbers.
The efforts made to accomplish secrecy at the physical layer follow a different approach.
Secrecy is attained through the utilization of signal processing and coding techniques that
aim to explore inherent characteristics of the communication such as the errors introduced
by a noisy channel.

On this dissertation we will only regard the case where the eavesdroppers are passive
listeners of the communication. For that we will consider the wiretap channel model,
introduced in 1975 by Aaron Wyner [2].

2.3.1 Wiretap Channel

The wiretap channel model considers two legitimate communicators, Alice and Bob,
and a passive eavesdropper Eve4. The channel that separates Alice and Bob is often re-
ferred as main channel, and the channel through where Eve observes Alice’s transmission

4Throughout this dissertation we’ll continue to use the names Alice, Bob and Eve when referring to a
legitimate transmitter, receiver and adversary eavesdropper, respectively.
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is known as wiretapper channel or eavesdropper’s channel. A system for this model is
depicted on figure 2.5.

Decoder

BOB

Eavesdropper's 
Channel

Main channel

EVE

Encoder

ALICE

M M̂
Xn Yn

Zn

Figure 2.5: The wiretap channel

Alice wants to send a message M composed of k bits to Bob, so she encodes M into a
codeword Xn of length n and transmits it onto the main channel from where Bob receives
an estimated version Y n. Eve observes through the eavesdropper’s channel an estimation
Zn of the sent codeword, which is assumed to be more degraded than the one received
by Bob. Alice and Bob can decide the encoding and decoding processes, however Eve
has full knowledge on these mechanisms and is assumed to not possess computational
restraints. This model introduces the problem on how to explore the difference of qual-
ity between the main and eavesdropper’s channels to assure that secrecy and reliability
constraints are fulfilled.

The original model proposed by Wyner considered that both the main and eavesdrop-
per’s channels were discrete memoryless channels (DMCs) and introduced the notion of
secrecy capacity, which corresponds to the maximum achievable information rate k/n

that can guarantee secrecy and reliability, as a function of the channels’ parameters.

Many variations of wiretap channels have been considered. For example the authors
of [3] and [4] treated the main channel as a perfect channel and the eavesdropper’s channel
as a BEC. On [21] the main channel was also considered as perfect but on the other
hand the eavesdropper’s channel was treated as a BSC. Finally the authors of [9] and [7]
considered both channels as additive white Gaussian noise (AWGN) channels.

Constructing a code that fulfills a secrecy constraint proves to be a different challenge
than constructing an ECC. On the next subsection we will introduce a coding method
for the wiretap channel which was also presented in [2]. Many codes were developed for
application to this coding method [3] [4] [5], that satisfy secrecy constraints. Such codes
are commonly known as wiretap codes.
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2.3.2 Nested coding method

To understand how this coding method works, let’s take a look at the original example
from [2].

Consider that the main channel is perfect and that the eavesdropper’s channel is a BEC
with erasure probability ε . Alice wants to transmit a message M ∈ {0,1} (k = 1) so she
encodes it into a codeword Xn. Suppose that the encoder works in such a way that when
M = 0, Xn is chosen at random among all the binary sequences of length n with even
parity, i.e. with an even number of 1s. On a similar fashion when M = 1, Xn is chosen
at random among all the binary sequences of length n with odd parity. Since the main
channel is perfect, Bob could easily decode by checking the parity of the received word.
Eve however would have an average number of n× ε erasures and only 1 erasure would
be sufficient for preventing Eve to know for sure the parity of the sent codeword.

The general idea that can be taken from the previous example is that in the presence
of a noisy channel, secrecy might be obtained by randomly selecting for transmission one
of several possible codewords related to the message. The random factor of selecting a
codeword coupled with the fact that the code is constructed in such a way that different
messages possess similar associated codewords, makes it almost impossible to guess the
message in the presence of a noisy channel. Therefore, on a wiretap code, each individual
message M j, j ∈ {0,1, ...,2k−1} is associated to a fixed number of codewords of length
n, (n > k), that form a subcodebook C j of the code5. The nested code structure of a
wiretap code is illustrated on figure 2.6.

Codebook

2k − 1

0

1

2

Subcodebook 
associated with 
message M1

...

Figure 2.6: Nested structure of a wiretap code. Each block represents a distinct codeword.

On [22] Ozarow proposed the use of linear block codes for the nested coding scheme.
This implementation of the nested coding scheme is sometimes referred as coset coding

5Note that C j is a vector subset from {0,1}n and that the two subsets corresponding to any pair of
arbitrary messages must be disjoint.
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scheme and consists on the following steps:

1. A linear block code C (n,n− k) with parity check matrix H is selected.

2. Alice encodes a message m of k bits into X, by randomly selecting a word from the
coset correspondent to the syndrome equal to m.

3. Bob receives X (it is assumed he possesses a perfect channel) and obtains the mes-
sage by calculating the syndrome of the received word, i.e, X×HT = s = m.

The only way for Eve to obtain the correct message is if the received word Z belongs
to the coset from where X was randomly chosen. For that to happen the error vector
generated by the channel would have to be a codeword of C , since every pair of arbitrary
words that belong to the same coset differ on a codeword.

2.3.3 Other approaches for attaining secrecy

An obvious issue with the coding method presented on the previous subsection is that
only the secrecy aspect of the communication is considered. If Bob doesn’t possess a
perfect channel then he would also be unable to obtain the information sent by Alice. We
will return to this problem on chapter 5 where we suggest a possible solution. Anyway,
different methods have been proposed for obtaining secrecy at the physical layer. For
example, the authors of [23] investigated on how to protect a communication against
passive eavesdroppers by generating artificial noise. In [8] the random puncturing of
information bits using LDPC codes was proposed. The use of scramblers has also been
considered while ARQ techniques provide reliability for Bob [9].

The approach we take on this dissertation aims to take into account both the reliability
and secrecy facets of a communication. To do so, along the following chapters we will
consider the concatenated scheme of figure 2.7. The outer code is there to provide secrecy
and may consist on any number of coding operations (scrambling, puncturing, interleav-
ing, etc...), while the inner code is an ECC, considering that on most real scenarios, Bob
doesn’t possess a perfect channel. These two codes must be matched in such a way that
the difference in qualities between Bob and Eve’s channels is explored so that Bob has a
reliable transmission and a desirable level of security is obtained against Eve. One ques-
tion that might arise, is how to quantify the secrecy level of a system, and which metrics
are used to do so. On the next chapter we will provide answers for such questions.
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Coder
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DecoderM̃

Zn
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or Puncturing
or Interleaving

Systematic or 
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Figure 2.7: Wiretap channel model assuming a concatenated coding scheme, where the
outer code is for secrecy and the inner for reliability. The outer coder may consist on any
set of encodings.
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Metrics that evaluate security are necessary when constructing a code for secrecy or
developing a system with this purpose. In this section we will overview the current secrecy
metrics as well as the limitations they present. In the last two sections, we will propose
new methods for evaluating security, which can be applicable to specific physical-layer
coding techniques over realistic channel models such as the Gaussian or fading wiretap
channel models.

3.1 State of the Art

Proposed by Claude Shannon in 1949 the first secrecy metric was perfect secrecy

[24]. For a coding system to achieve perfect secrecy, the mutual information between the
message M and it’s correspondent encoder output Xn must be exactly zero, i.e.,

I(M;Xn) = 0. (3.1)

Perfect secrecy indicates that M and Xn are statistically independent which means that the
knowledge of Xn doesn’t provide any extra information to an attacker about M. Shannon
concluded that to achieve perfect secrecy a secret key at least as long as the message
would be required, highly limiting the use of this metric.

Aaron Wyner proposed in 1975 the use of a weaker requirement for secrecy [2]. This
metric known as weak secrecy requires that the rate of the mutual information between M

and the eavesdropper’s observed codeword Zn vanishes as the codeword length n goes to
infinity, i.e.,

lim
n→∞

1
n

I(M;Zn) = 0. (3.2)

Instead of imposing that the codeword Xn doesn’t leak any information about M, this
criterion requires that the amount of information about M leaked by Zn is sufficiently
small such that the 1/n factor can still drive the quantity to zero. Note that it’s implied
that the legitimate user has some sort of advantage over the eavesdropper.

Weak secrecy was not deemed completely satisfactory. In fact, some code construc-
tions that achieve weak secrecy show evident flaws in terms of security [10]. Being so,
Ueli Maurer [25] introduced the concept of Strong Secrecy where secrecy is achieved if
the mutual information between M and Zn is asymptotically zero in n, i.e.,

lim
n→∞

I(M;Zn) = 0. (3.3)

The list of information-theoretic metrics presented above proved to be impracticable
for application to realistic channel models such as Gaussian or fading channels. There-
fore, some authors evaluated the performance of code constructions through the BER at
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the output of the decoder [7], [9]. This analysis is practical and can be done by simulation
the same way ECC are evaluated.

The authors of [7] introduced the concept of security gap. Target values of BER are
chosen for Eve and Bob, and the respective operation points in terms of SNR are identi-
fied. The security gap corresponds to the difference in dB between these two values of
SNR. This metric is useful for code/system design since it evaluates the required advan-
tage the legitimate user needs over the eavesdropper as well as the threshold operation
points for reliability and security.

3.2 Shortcomings

The metrics introduced in the previous section provide many tools for evaluating spe-
cific coding schemes security wise. Yet, the applicability of these metrics is very depen-
dent on the type of channel models in question.

When considering more practical wiretap channel models, performing the security
analysis with information-theoretic metrics is an unmanageable task for most cases. For
example, some authors managed to construct codes for the nested coding scheme de-
scribed in section 2.3.2, that achieve strong secrecy [6]. However, these codes were con-
structed for the erasure wiretap channel model which considers a perfect channel for the
legitimate user, an assumption which is not suitable for most real-world scenarios. One
could be misguided and think that by concatenating an ECC to the security code in ques-
tion, a perfect channel would be achieved for Bob and the system would provide both
reliability and security. This doesn’t work because the ECC also reduces the noise on
Eve’s channel so, when constructing a code for a realistic scenario, both reliability and
secrecy factors must be considered together.

Another limitation on using information-theoretic metrics is that the code is designed
to fulfill a secrecy condition as the codeword length goes to infinity. This shows to be
a shortcoming when the designer wants to work in real-world systems that require short
blocklength codes. Nonetheless, information-theoretic metrics are still the most desirable
when possible to apply.

Using only the BER to perform security analysis is not always advisable because high
error rates don’t strictly imply that no information has been leaked to the eavesdropper. A
BER analysis is performed through simulation. The best known decoder/attack assumed
to be used by the eavesdropper is emulated, and the value for the BER is obtained by
averaging the outcome of a large amount of independent runs. Since the result is an
average, the reliability of this metric is uncertain when working with short blocklengths.

Motivated by these shortcomings and in order to evade some of them, in the next two
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sections we will introduce new methods for security evaluation. These are for application
on security schemes that follow the model depicted in figure 2.7, with the purpose of
providing practical tools to aid in the construction of models that achieve secrecy and
reliability in realistic scenarios.

The following methods are based on the BER but instead of focusing on the average
value of error rates, an approximation of the PMF of the number of errors is obtained
by simulation. The knowledge of the CDF of errors can then be used to comprehend
how the system behaves and to provide thresholds of operation. The main interest of
these methods is that, contrary to the ones presented on the previous section, they can
be used to evaluate the performance of systems on the short blocklength regime. While
the security bounds provided by information-theoretic metrics are still the most reliable
ones, the following methods continue to be relevant since the ease of simulation-based
characterization of security allows them to be applied to realistic channel models where
it’s not always known how to perform an information-theoretic analysis.

3.3 The Bit Error Cumulative Distribution Function

Let’s consider the model illustrated on figure 2.7, where the outer decoder is meant
to provide secrecy. The failure of this decoder is a determinant factor to prevent the
eavesdropper from obtaining a good estimate of the message, M̃. In a similar fashion,
the legitimate user should reliably succeed the decoding. The first proposed metric is
the Bit Error Cumulative Distribution Function. It evaluates the system by measuring the
likelihood of decoding success, when the outer coder is a t-error correcting code (i.e. a
code with minimum distance t×2+1).

Definition 1 (Bit Error Cumulative Distribution Function). The bit error cumulative dis-
tribution function, BE-CDFbc(t, SNR, Sm, Ci), gives the probability of having t or less
errors, Pr(E ≤ t), as a function of the SNR for a message of size Sm, encoded with a code
Ci (refers to the optional inner code).

Being able to predict the rate at which the secrecy decoder fails or succeeds is of
crucial importance when constructing a system for providing both reliability and secrecy.

Working with the distribution of the number of errors allows us to overcome the short-
comings of the BER, when evaluating the performance of t-error correcting codes. As-
suming uniform error distribution and using the BER measured before the outer decoder
to evaluate the likelihood of decoder failure is not a reliable method because, when the
blocklength is short, errors are not guaranteed to occur so uniformly.

The BE-CDFbc provides useful information when choosing possible SNR operation
points for the legitimate user and the eavesdropper, by evaluating the effect of the channel
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and inner code. One the other hand, if Bob and Eve are expected to operate at given SNR
values, this metric can also be used to provide information about which t-error correcting
codes (of the BCH class for example) could be used as an outer code, to fit the given
restraints.

For example, let’s consider a simplified system without an inner code, that uses BPSK
modulation over an AWGN channel. The BER at the output of the channel is given by [26]

Pb =
1√
π

∫
∞

√
SNR

e−t2
dt (3.4)

Using blocks of size n and assuming that the bits transmitted are independent, the prob-
ability of having t or less independent errors in a word, Pr(E ≤ t), can be modelled as a
binomial distribution and is given by:

Pr(E ≤ t) =
t

∑
i=0

(
n
i

)
Pb

i(1−Pb)
n−i. (3.5)

Let’s now consider that we intend to use as an outer code, a t-error correcting code of
length 127 that is able to correct up to 10 errors. Figure (3.1) shows the behave of func-
tions (3.4) and (3.5) for this set of parameters.
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Figure 3.1: Bit error probability and probability of having 10 or fewer errors on a word of
length 127, for an AWGN channel with BPSK modulation.

We can now evaluate the range of values of SNR where Bob should operate to achieve
a reliable communication. For example, if we consider the communication reliable if Bob
successfully decodes at least 99,9% of the blocks, i.e. Pr(E ≤ 10) ≥ 0.999, Bob’s SNR
should be over 2.6 dB as indicated in figure 3.1. On the other hand, if we consider the
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communication secure if Eve fails the decoding 99,9% of the time, i.e. Pr(E ≤ 10)≤ 0.001,
Eve would need to operate at SNR below −3.78 dB. Note that this simple example is not
suggested to be used as a possible coding scheme for secrecy, it simply illustrates how the
BE-CDFbc can be used to evaluate a system.

This metric uses the probability of successful decoding of the outer coder to measure
the reliability and security aspects of the system. However, decoder failure doesn’t neces-
sarily imply that the eavesdropper can’t obtain most of the message bits. To address this
issue, a new metric is presented in the next section.

3.4 The Bit Error Rate Cumulative Distribution Func-
tion

As stated in the previous section, decoder failure doesn’t necessarily guarantee that
most of the bits aren’t leaked to the eavesdropper. The new metric we propose in this
section, named Bit Error Rate Cumulative Distribution Function, fortifies the security
guarantee by measuring the probability of having a decoder failure that generates a BER
close to 0.5 in the estimated message bits. Let P̂b be the proportion of errors measured
over Sb message bits at the output of the outer decoder, the metric introduced in this
section evaluates the probability that P̂b > 0.5−δ for any δ specified.

Definition 2 (Bit Error Rate Cumulative Distribution Function). The Bit Error Rate Cu-
mulative Distribution Function, BER-CDFac(δ , Eb/N0, Sb, C ) is the quantity

Pr(P̂b > 0.5−δ ) (3.6)

calculated over Sb estimated message bits for a code C as a function of Eb/N0, where C

may be the concatenation of an (optional) inner code Ci and an outer code Co.

The BER-CDFac measures secrecy by evaluating the probability of the eavesdropper
being kept from obtaining useful information on a block. The security guarantees obtained
from this method are much stronger than just considering the BER.

Similarly to the BE-CDFbc, for this metric the user must specify a required level of
security. For example, the designer could consider a system secure if Pr(P̂b > 0.4) ≥
0.999, and design it with the purpose to fulfill this restriction while keeping the required
Eb/N0 on the range of levels expected by the eavesdropper.

Note that the BER-CDFac is actually the complement of the CDF, being the chosen
nomenclature consistent with that of BE-CDFbc. Also, because we are calculating this
metric after the decoder, it makes sense to use Eb/N0, rather than SNR, although the
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conversion can be made if desired. The superscripts bc and ac indicate that the metrics
are measure respectively before and after the outer decoder, as depicted in figure 3.2.

Wiretap
Channel

Inner
Decoder

Outer
Decoder M̂

BE-CDF bc

Inner
Decoder

Outer
Decoder M̃

Bob

Eve

BER-CDF ac

Xn

Y n

Zn

Figure 3.2: Wiretap channel model assuming a concatenated coding scheme, where the
outer code is for secrecy and the inner for reliability. The application points of the pro-
posed new metrics are illustrated.

The two methods introduced can be applied as a pair to help in the design of systems
that aim to provide both reliability and secrecy. The BE-CDFbc can be used to identify
regions of operation for Bob, in terms of SNR, that provide a high rate of decoding success
and therefore, reliability. It also provides information of acceptable regions of operation
for Eve that guarantee a high probability of decoder failure. The BER-CDFac can then be
used to evaluate the contribution of the outer code in terms of generating a considerable
BER when decoder failure occurs.

In the next chapter we will put these two metrics to use and analyze a proposed secu-
rity scheme, showing how the information obtained from the metrics can be used to tune
and further develop the scheme.
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4. Interleaved Coding for Secrecy

Having proposed new possible methods for analyzing schemes that intend to achieve
secrecy, in this chapter we propose a concatenated coding scheme and use the metrics
introduced in sections 3.3 and 3.4 to make its security evaluation. The scheme, which will
be presented in section 4.1, was first introduced in [27], although a security evaluation is
yet to be made and there’s still no clearance on which codes to use. Along this chapter
we’ll aim to fill these gaps and suggest a methodology for selecting possible codes to
apply for this scheme.

4.1 Coding for Secrecy Scheme

The system we will present this section follows the concatenated coding scheme of
figure 2.7. An inner code is utilized to correct transmission errors and provide reliability,
while an outer code is employed to provide secrecy.

Channel
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Figure 4.1: Encoder and decoder processes of the analyzed scheme

The outer code consists of a set of encodings. A word1 Kk, is randomly generated and
used as a permutation key to interleave the message Mm, producing a shuffled message

1Along this section, we will use the notation Xx to denote a word X formed by x bits. The superscript
label x will be dropped, whenever the size of X is clear from the context.
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Mm
i . The key is then encoded for extra error protection into Kl

c by a code Co, of dimensions
(l,k), and concatenated to the interleaved message. This concludes the outer encoding.

The concatenated encoded key and interleaved message, i.e. [Kc Mi], are then encoded
by the inner coder, a systematic code Ci of size (n, l +m), and transmitted onto the chan-
nel. The receiver performs soft decoding on the received codeword, obtaining estimations
Ṁi and K̇c, of the interleaved message and encoded key respectively. The estimated coded
key is then decoded and used to deinterleave Ṁi generating the estimated message M̂.

Figure 4.1 illustrates the encoder and decoder processes described. It should be clear
by now that getting an estimated key K̇ without errors is crucial to obtain a good esti-
mation of the message. Due to the mapping between keys and permutations, any errors
on the key can result in high error rates on the deinterleaved message. It is assumed that
the distribution of the number of ones (or zeros) of the message is somewhat uniform, in
order to avoid messages composed only of ones or zeros, which would make M = Mi.

The point of this scheme is to prevent the eavesdropper from obtaining a correct es-
timation of the key. Being so, for this system we are going to consider a variant of the
wiretap channel, depicted in figure 4.2. A friendly jammer is active during the transmis-
sion of bits associated with Kc producing extra interference with power equal to a fraction
α of Alice’s transmit power, intending to degrade the eavesdropper’s channel. The idea
is to give the legitimate user some sort of advantage, due to his location or knowledge of
the jamming signal, so that the degradation on his channel is minimal compared to the
eavesdropper’s. Some amount of interference might be present on Bob’s channel, hence
the use of code Co on the key.

ALICE

EncoderM
X =[Kc Mi P]

Z =[K̈c M̈i P̈]

EVE

Decoder M̂2

[M̈i P̈]

K̈cChannel 2 -
key (degraded)

+

Channel 2 -
message

Decoder
Y =[K̇c Ṁi Ṗ]

M̂1

K̇cChannel 1 -
key (degraded)

+

[Ṁi Ṗ]

Channel 1 -
message

BOB

Figure 4.2: Variant of the wiretap channel where a jammer is present during the transmis-
sion of the key, hence the degraded channels. P represents the parity bits of the codeword
generated by the inner code Ci.

This usage of a jammer over the key, only, requires strict synchronization with Alice,
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4. Interleaved Coding for Secrecy

and that the eavesdropper doesn’t have any information on the jamming signal and/or is
in a geographic position that doesn’t grant him the same advantage that Bob has. These
factors are out of the scope of this thesis, and, therefore, won’t be taken into consideration
in the following sections.

Now that we presented the coding for secrecy scheme, we’ll use the methods intro-
duced in sections 3.3 and 3.4 to help us understand the behavior of the scheme and make
some considerations about the proper codes to be used.

4.2 Code Selection

The literature presents a vast amount of error correcting codes. For the inner code
Ci, given that we need a powerful systematic code, we decided to focus on LDPC codes.
However, the inner code can’t be powerful enough to correct all the errors on the coded
key, even when in the presence of a high power jamming signal, or else Eve would be
able to reliably get a correct estimation of the key. Given these constraints, we chose,
as example and without loss of generalization, a LDPC code of dimensions (1248,1040)
to be used as the inner code, even though there are many other options that would be
acceptable.

Selecting a suitable code Co is an important task. This code must be able to correct
eventual errors left on the coded key after the inner decoding done by Bob. On the other
hand, it is crucial for security that this code isn’t strong enough to correct Eve’s errors. For
these reasons we chose to use BCH codes, as these type of codes possess a well defined
t error correcting capability. To avoid the possibility of Eve having such a high SNR that
allows the inner code to correct all the errors on the coded key, independently of the power
of the jamming signal, the codeword length of code Co must be greater than the number
of parity bits of code Ci. In order to maximize the code rate of the system, we’ll consider
BCH codes with codeword length 255, since this is the lowest value the codeword length
of a BCH can take that is greater than 208 (the number of parity bits of the chosen inner
code).

Throughout this section we’ll make some considerations on possible options to use as
code Co by analyzing the selected inner code Ci performance for varying values of SNR
and jamming power.

4.2.1 Notes on simulations

The figures shown on the following sections were obtained through simulation. The
simulations were performed in MATLAB due to the vast amount of toolboxes it gives
access to. The PMFs necessary for the construction of some of the figures were obtained
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4.2 Code Selection

by normalization of histograms with never less than 105 samples. BER values were cal-
culated using Monte Carlo.

Simulations will be done for transmission over a Gaussian channel using BPSK mod-
ulation. In simulations that involve jamming, the emulated eavesdropper has knowledge
on the variance of the jamming AWGN signal when performing the demodulation.

The number of maximum iterations of the LSPA, chosen for the decoding of LDPC
codes, will be 50.

4.2.2 Analysis for a fixed point of SNR

The performance of this system is dependent on various factors such as the SNR, the
power of the jamming signal and the utilized codes. We’ll start analyzing this system by
choosing a fixed operation point of SNR and observe the effects of the extra interference
on the affected bits, as a function of the jamming signal power.

Figure 4.3 shows de behavior of the chosen inner code when performing on an AWGN
channel using BPSK modulation.
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Figure 4.3: BER as a function of SNR for LDPC(1248,1040) over an AWGN channel
using BPSK modulation.

Let’s consider the operating point of 6.33 dB which results on a BER approximately
10−5. On these circumstances we assume that the LDPC(1248,1040) provides a reliable
transmission, so we’ll start by evaluating this value of SNR as a possible operation point
for Bob and Eve.
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4. Interleaved Coding for Secrecy

Given that we chose to use a BCH of length 255 as the code Co, we’ll evaluate the
error correcting capabilities of the inner coder for the first 255 bits of a decoded word.
Remember that only these bits will be affected by the extra interference caused by a
jamming AWGN signal, with power Pj = αPa, where Pa is Alice’s transmit power.

Figures 4.4 and 4.5 represent the probability Pr(X ≤ t) as a function of α , where
X represents the number of errors on the key section of the decoded codeword. The
considered values of t are such that exists a BCH code with codeword length equal to 255
that can correct up to t errors.

Observing the figures we can estimate the behavior of the system depending on the
used code Co. For example, if both Bob and Eve have an SNR of 6.33 dB on the main
channel, and the code Co is a BCH(255,87), which can correct up to 26 errors, Bob could
reliably get an error free key as long as he was affected by a jamming interference with
power corresponding to an α less than 0.25. Eve on the other hand would have to suffer
interference with power matching an α of around 1.5, for reliably being kept away from
obtaining a correct key. Using a BCH(255,47), which can correct up to 42 errors, would
guarantee reliability of transmission for Bob even when affected by a jamming signal with
power corresponding to α = 0.4, at the cost of requiring the eavesdropper to be affected
by a much higher interference.
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Figure 4.4: Probability of having fewer than t errors as a function of a jamming power of
Pj = αPa applied over 255 bits, for LDPC(1248,1040) decoding at the selected SNR of
6.33 dB for reliability.
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Figure 4.5: Close up of figure 4.4 on the aceptable regions of operation in terms of inter-
ference for Bob (upper figure) and Eve (bottom figure).

The previous example highlights the type of compromise one must make when cal-
ibrating this system. For a fixed code Co this type of analysis provides bounds for the
interference acceptable for both Bob and Eve. On the other hand, if the values of expected
interference on both the legitimate party and eavesdropper are defined for a specific sce-
nario, this analysis provides information about which code Co should be used to fit the
given restraints.

Figure 4.4 also gives us an idea on the levels of interference this system requires to
function. It becomes clear that for this value of SNR, Bob shouldn’t suffer from interfer-
ence with α greater than 0.5 or else he won’t be able to reliably decode the key, regardless
of the chosen outer code. On a similar fashion, Eve should be affected by jamming inter-
ference with α greater than 1.2. Figure 4.5 shows in more detail an example of acceptable
levels of interference for both parties.

4.2.3 Analysis for fixed values of α

Now that we have an idea on how the system behaves when varying the jamming
power, we’ll observe how the system responds when the SNR of the receiver varies for
fixed values of α , considering the error correcting capabilities of the code Co. The values
of α = 0.2 and α = 1.6 will be evaluated as the levels of interference that affect Bob
and Eve respectively. We’ll also consider the use of BCH(255,139), BCH(255,115) and
BCH(255,87) as the code Co, which respectively can correct up to 15, 21 and 26 errors.
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Figure 4.6: BE-CDFbc for the first 255 bits coded by LDPC(1248,1040). These bits are
affected by a jamming AWGN signal of power Pj = αPa.
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Figure 4.7: Close up of figure 4.6 on the aceptable regions of operation in terms of SNR
for Bob (upper figure) and Eve (bottom figure).

Figures 4.6 and 4.7 show the results of the BE-CDFbc metric defined in section 3.3,
when applied to this scenario. For the examined values of interference, using a BCH
(255,115), which can correct up to 21 errors, would allow Bob to successfully decode
the key with probability 0.9997 when the SNR over his channel is above 6.75 dB. For the
same code and value of SNR, the probability of Eve getting a correct key would only be
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0.0032.

Using a BCH(255,87), which can correct up to 26 errors, a SNR of 6 dB would make
Bob get an errorless key with probability 0.9975, while for a SNR of 6.5, Eve’s probability
would be 0.0033. This example illustrates that it’s possible to achieve reliability and
secrecy, even if Eve has a better main channel than Bob, depending on the levels of
jamming interference that affect them.

Note that until now we only evaluated the probability of obtaining a key without errors.
While this type of analysis permits us to evaluate points of operation that assure reliability
for Bob and brings closure on how Eve’s key decoding capability breaks down, we still
can’t predict the effects of a bad estimated key on Eve’s decode message. Also keep
in mind that BCH codes are not perfect codes, which means that there’s the possibility
of successfully decoding certain error patterns with more than t errors, although this is
unlikely to occur.

To give us more insight on how Eve is affected by this scheme, on the next section
we’ll provide simulation results of the full system, and perform the security evaluation
with the BER-CDFac metric defined in section 3.4, showing the usefulness of the proposed
metric.

4.3 Security Considerations

The analysis done on the previous sections gave us an idea on the desirable levels of
jamming interference, SNR operation points and possible outer codes that can be used for
this system, when fixing the inner code Ci. We’ll now evaluate the security brought by
this scheme, through the analysis of distribution of error proportion in Eve’s message bits.

Figure 4.8 shows the BER-CDFac calculated for this system, when the code Co is
a BCH(255,115) which can correct up to 21 errors. The values of α used on section
4.2.3 for Bob and Eve were considered (i.e. 0.2 and 1.6 respectively). BER curves are
also shown for comparison, and to check the required level of Eb/N0 Bob needs to oper-
ate at, for having reliability of transmission. Note that it doesn’t make sense to use the
BER-CDFac for evaluating Bob’s performance (the objective is for Bob to have a reliable
transmission), nonetheless, we chose to keep the curves of Pr(P̂b > 0.5− δ ) for α = 0.2
as example.
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Figure 4.8: BER-CDFac and BER for the coding for secrecy scheme presented on section
4.1, when the inner code is a LDPC(1248,1040) and the code Co a BCH(255,115).

For δ = 0.05 we verify that this scheme ensures a Pr(P̂b > 0.5− δ ) close to 1 for a
wide range of Eb/N0 values, when Eve is affected by a jamming signal with α = 1.6.

On section 4.2.3 we saw that a SNR of 6.75 dB would cause Eve to fail the decoding
of the key with probability 0.9968. From figure 4.8 we note that for an Eb/N0 of 8.76
dB (equivalent to a SNR of 6.75 dB2) the probability Pr(P̂b > 0.45) is 0.9959. This
result indicates that assuring that Eve fails the decoding of the key might be sufficient for
insuring a high proportion of errors on Eve’s decoded message.

Note that these results fortify the statement of section 3.2, that the BER can be mis-
guiding when used to evaluate the security of a system with short blocklenghts. Eb/N0

equal to 10 provides a BER of 0.453 however, the BER-CDFac shows that for the same
value of Eb/N0, the probability Pr(P̂b > 0.45) is around 0.90, meaning that roughly 1 out
of every 10 blocks wouldn’t possess such a high error rate. A better way to understand
this is by looking at the distribution of the number of errors on the decoded message, for
this set of parameters, which is presented on figure 4.9.

2SNRdB = (Eb/N0)dB +10× log10(m/n)
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Figure 4.9: PMF of the random variable E that defines the number of errors on the decoded
message bits for the security scheme presented on section 4.1, when the inner code is a
LDPC(1248,1040), the code Co a BCH(255,115), the value of α is 1.6 and the Eb/N0 of
operation is 10.

Even with a BER of 0.453 we can see on figure 4.9 that there’s a probability of 0.083
that Eve gets a correct estimation of the message, which is far from desirable from a
security perspective. The Gaussian centered on k = 392 is the consequence of a key
with errors, while the residue close to k = 0 is the result of the situation when the key is
correctly decoded but the LDPC doesn’t correct all errors on the interleaved message.

Nevertheless the BER can still be used to evaluate the reliability aspect of the scheme,
and to identify regions of operation for Bob. We conclude the analysis of this scheme
with the graphic representation of the BER as a function of the Eb/N0 and the power of
the received jamming signal. Once again the inner code Ci is the LDPC(1248,1040) and
the code Co is the BCH(255,115).

We see on figure 4.10 that Bob can still have reliability of transmission for some values
of α greater than 0.2, at the cost of a small penalty in terms of Eb/N0. However, for α

greater than 0.6, reliable transmission becomes impractical.
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Figure 4.10: BER as a function of Eb/N0 and jamming power, for the security scheme
presented on section 4.1, when the inner code is a LDPC(1248,1040) and the outer code
a BCH(255,115).

On the following chapter the discussion developed so far will come in handy, since
the scheme presented on the next chapter shares some similarities with this one, although
serving a different purpose.
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Throughout this dissertation, physical-layer security was approached from a practical
perspective. On Chapter 3 we observed how the current secrecy metrics are impractical to
apply to real world scenarios, and suggested new metrics to evaluate coding for secrecy
schemes. Then, on Chapter 4, a scheme with the objective to provide both reliability and
secrecy was introduced, and analyzed using the previously defined metrics.

We will now use the new metrics introduced in Chapter 3 for a different purpose. A
great amount of work has been developed in attempts to provide code constructions of
wiretap codes that satisfy information-theoretic security constraints [6], [3]. However,
these code constructions exist only for discrete memoryless wiretap channels, and require
either a noiseless channel for Bob and/or a degraded wiretap channel for Eve [1]. In order
to utilize these code constructions in real-world scenarios, it becomes relevant to design
channel coding schemes that aim to produce an effective wiretap channel over which these
codes can be applied to.

On this chapter we will show how the metrics from sections 3.3 and 3.4 can be used
to help us fulfill this objective. The point is to achieve an information-theoretic security
result on a real-world scenario, by concatenating a coding scheme that can be modeled as
a BSC when working on a realistic channel, to an additional code that can achieve strong
secrecy over a discrete memoryless channel (e.g. [5]), as shown on figure 5.1.
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Figure 5.1: A concatenated coding scheme may be utilized to emulate a BSC over which
known secrecy codes may operate for information-theoretic security.
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First we will present an example coding scheme, and use the BE-CDFbc and BER-
CDFac to analyze it’s performance. On the final section of this chapter we will make the
necessary considerations to show that the scheme can be used to model a BSC.

5.1 Interleaved Coding for Secrecy with a Hidden Key

In this section we will present the concatenated coding scheme that will be the object
of focus for the remainder of the chapter.

This scheme shares several similarities with the one presented on section 4.1. Once
again, a word Kk is randomly generated and used as a permutation key to interleave the
message Mm, giving origin to a shuffled message Mm

i . Then, the key is concatenated to the
interleaved message and coded by the inner coder, a systematic code Ci of size (n,k+m).
Note that until now the encoder process is mostly the same as the one from section 4.1,
the only difference being the non presence of a code Co that first encodes the key.

After the encoder process, only the last n− k bits from the obtained codeword are
transmitted onto the channel. This means that the first k bits of Ci, referring to the key K,
are not transmitted, being the information on those bits only embedded on the parity bits.
Figure 5.2 illustrates the presented scheme.
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Figure 5.2: Encoder and decoder processes of the described scheme. Note that the bits
of K at the output of the inner coder are not transmitted onto the channel. P refers to the
parity bits of the codeword at the output of Ci.
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Due to the non transmission of the key word, the code Ci must be adequately powerful
and have enough parity bits to allow a legitimate/unintended receiver to be able/unable to
obtain an errorless key, depending on the SNR.

An analogy that can be done is that this scheme corresponds to the one from section
4.1, when both Bob and Eve are affected by jamming interference of infinite power during
the transmission of the bits corresponding to the key.

On the following section we will perform a concise analysis on this scheme and iden-
tify the advantage in terms of SNR Bob needs to possess over Eve, as well as threshold
operation points, for some chosen inner code.

5.1.1 Performance analysis

On a similar fashion to the decision taken on section 4.2, on which codes to use for
simulations, we will consider as example a LDPC(1536,1280) for the inner code Ci, even
though there are many other options that could still be considered without loss of general-
ization. Once again transmission will be over a AWGN channel using BPSK modulation.

The BE-CDFbc applied onto the bits of K at the output of the inner decoder will help
us identify regions of operation for Bob and Eve as a function of the SNR and the size
of the key (k). Note that no code is used on the key prior to the inner encoding, which
means the t parameter from definition 1 is equal to zero for this case, therefore, figure 5.3
represents Pr(E = 0), where E is the number of errors on the key after inner decoding.
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Figure 5.3: BE-CDFbc for the first k bits coded by a LDPC(1536,1280). These bits are
not transmitted. The remainder of the codeword is transmitted onto a AWGN channel
using BPSK modulation.
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Examining figure 5.3 it’s easy to identify, for each curve, the SNR region that displays
a probability close to 1 of obtaining a key with errors, and the one where it is likely to
get an errorless key. These will be the regions of operation for Eve and Bob, respectively.
The gap (≈ 2.5dB) between the thresholds of these regions of SNR corresponds to rough
estimation on the minimum advantage Bob has to possess over Eve in terms of channel
quality, not varying much with the key size.

On figure 5.4 an example of a distribution of number of errors on the key, considering
the case with k = 120, for a value of SNR close to Bob’s threshold operation point is de-
picted. The probability of obtaining a key with a short amount of errors (e.g. 0 < E ≤ 10)
is negligible. This is the reason why an ECC isn’t applied on the key before the concate-
nation with the interleaved message, contrary to what was done on the scheme discussed
on Chapter 4, as the usage of this code wouldn’t provide significant improvements, but on
the other hand would put constraints on the size of the key.
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Figure 5.4: PMF of the number of errors on the key K (considering k = 120) after soft
inner decoding of a LDPC(1536,1280). These bits are not transmitted. The remainder
of the codeword is transmitted onto an AWGN channel using BPSK modulation, with
SNR = 6.75 dB.

The BE-CDFbc gave us an idea on the advantage in terms of SNR Bob needs to have
over Eve. In order to get a more precise value for this gap of SNR and have more closure
on the security brought by this scheme, we’ll analyze the BE-CDFbc and BER, depicted
on figure 5.5. As example we picked the cases in which the key is composed of 60 and
100 bits.
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Figure 5.5: BER-CDFac and BER for the coding for secrecy scheme presented on section
5.1, when the inner code is a LDPC(1536,1280) and using a key with k bits.

Considering the transmission secure if the eavesdropper’s decoding generates a
Pr(P̂b > 0.45)≥ 0.999, the security restriction would be fulfilled if Eve operates at
Eb/N0 ≤ 5.5 dB, for k = 60, and at Eb/N0 ≤ 6 dB, for k = 100. These threshold val-
ues of Eb/N0 are consistent with the values of SNR given by the BE-CDFbc (see figure
5.3) that grant a Pr(E = 0) ≤ 0.001, after making the necessary units conversion1. If we
recognize the transmission as reliable if the BER over the message bits is below 10−5,
Bob would have to operate at Eb/N0 ≥ 8 and Eb/N0 ≥ 8.6 for a key of size 60 and 100,
respectively. From here on we’ll refer to SBob

T and SEve
T as the threshold values of SNR

that limit the regions of operation of Bob and Eve, respectively.

With Bob and Eve operating at SBob
T and SEve

T , respectively, of the previously defined
operating regions, the advantage of Eb/N0 (or SNR) Bob needs over Eve for assuring
reliability and security is 2.5 dB for k = 60 and 2.6 dB for k = 100. The similarity of
these values is interesting, because it introduces the notion of selecting the most appro-
priated key size (i.e. the one that assures reliability and has the highest possible value
of SEve

T ), when applying this security scheme to a scenario where Bob’s expected SNR is
characterized.

Now that we have an idea on how this scheme performs, we’ll move on to the main
focus of this chapter, which is the introduced concept of using a coding scheme to emulate
a discrete memoryless channel, more specifically, a BSC.

1(Eb/N0)dB = SNRdB− 10× log10 [m/(n− k)]. For the considered example with LDPC(1536,1280),
n = 1536 and m = 1280− k.
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5.2 Using the Scheme to Emulate a BSC

Previously on this chapter we mentioned the existence of code constructions that fulfill
information-theoretic restrictions [3] [4] [5] [6]. These code constructions often require
that the legitimate user receives from a perfect channel, and the eavesdropper from a dis-
crete memoryless channel. We’ll now make the necessary deliberations for showing that
the previously introduced scheme can emulate this situation, when Bob and Eve’s receive
through a AWGN channel with a SNR greater than SBob

T and less than SEve
T , respectively,

as illustrated on figure 5.6.
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Figure 5.6: Using the encoder and decoder from figure 5.2 a perfect channel is emulated
for Bob when having a AWGN channel and operating at a value of SNR≥ SBob

T . For Eve a
BSC is emulated when having a AWGN channel and operating at a value of SNR ≤ SEve

T .

We’ll start by defining the bounds for the emulated channels. Bob’s channel will be
considered as perfect if the probability of having errors on the message bits after the
decoding of a block is at least fewer than 10−4, i.e. 1−P(EX = 0) ≤ 10−4, where EX

represents the number or errors on the message bits. The BER-CDFac with δ = 0.5 allows
us to evaluate this probability, i.e. 1−P(EX = 0)= Pr(P̂b > 0). On a similar fashion, Eve’s
channel will be considered as a BSC, if the probability of it possessing the properties of a
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BSC, for the transmission of a block, is at least 0.9999.
The properties that need to be verified for considering that Eve’s channel is modeled

as an effective BSC are:

1. the probability p of flipping each bit over the channel should be identical for all
bits;

2. each bit should be flipped independently from all other bits.

For the following analysis we’ll return to the example from last section, i.e. using a
LDPC(1536,1280) as the inner code and considering the key sizes of 60 and 100. Figure
5.7 represents the BER-CDFac for this scenario as a function of the SNR. The values of
δ = 0.1 and δ = 0.5 were chosen for evaluating Eve and Bob’s performances, respectively.
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Figure 5.7: BER-CDFac for the coding for secrecy scheme presented on section 5.1, when
the inner code is a LDPC(1536,1280) and using a key with k bits. The thresholds values
of operation for Bob and Eve are also included.

The vertical dark red lines indicate the minimum values of SNR, (7 dB for k = 60 and
7.56 dB for k = 100), that satisfy the previously stated requirement for considering Bob’s
channel as perfect. The values of SEve

T , (4.5 dB for k = 60 and 5 dB for k = 100), marked
by the vertical dark blue lines, are the maximum SNR values that guarantee Pr(P̂b >

0.4) ≥ 0.9999. Recall that P̂b is the proportion of estimated message bits in error over
a single block of data, so this guarantee indicates that all blocks maintain at least a 40%
error rate.

We’ll evaluate the first property for considering that Eve’s channel is a BSC, when Eve
operates at SNR ≤ SEve

T . This will be done by performing the analysis of the probability
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of error of each message bit for SNR = SEve
T . On figure 5.8, we see that for both cases,

the probability of flipping each message bit over the channel is approximately identical
for all message bits, with value p≈ 0.5. This result verifies the first stated property.
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Figure 5.8: Probability of error of a bit from a decoded message, Pe, as a function of the
position within the message length m. Considering a LDPC(1536,1280), m = 1280− k.
These values were obtained after the evaluation of 5×105 blocks, with random messages
following an uniform distribution.

One possible way to guarantee that each bit is flipped independently from all other
bits, is by using an inter-block interleaver, spreading the information around as in [28].
On the limit case, each bit from a message is transmitted on a different block, assuring
independency even if there’s some correlation between the bits flipped on a block. There-
fore, the usage of an inter-block interleaver allows the emulation of a DMC by any coding
scheme for which the BER-CDFac assures a probability close to 1 of having high error
rates.

We still wish to see if the scheme may provide this property in the absence of the
additional interleaver. However, evaluating if each bit is erased independently from all
other bits proves to be a more difficult challenge. Let EX be the random variable that
defines the number of errors on a word of size m, received through a BSC with probability
of flipping a bit Pf , then due to the errors being independent, EX ∼ B(m,Pf ), and the
probability of having x errors on a received word is given by:

Pr(EX = x) =
(

m
x

)
Pf

x(1−Pf )
m−x. (5.1)

When Pf = 0.5, which corresponds to the value of p we identified on figure 5.8, equation
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5.1 can be simplified into:

Pr(EX = x) =
(

m
x

)
0.5m. (5.2)

On figures 5.9 and 5.10 the obtained through simulation PMFs that model the number
of errors on the decoded message bits for the examples we are considering (k = 60 and
k = 100), are depicted for comparison with the PMF2 of X for the respective values of
m and Pf . Although this comparison is not enough to claim that the second property is
verified without the additional interleaver, it serves as an indicator on how the scheme
from section 5.1 approaches the behavior of a BSC for the example parameters evaluated,
even without the addition of an inter-block interleaver.
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Figure 5.9: Normalized histogram that approximates the probability of having x errors on
the decoded message, for the scheme presented on section 5.1 when the inner code is a
LDPC(1536,1280), k=60 bits and the SNR is 4.5 dB. The curve from equation 5.2 when
m = 1220 is shown for comparison.

2Due to the complexity of calculating equation 5.2 for large values of m, the curves on figures 5.9 and
5.10 were obtained by approximation to a normal distribution. The Central Limit Theorem states that for
large values of m and/or Pf close to 0.5, X ∼ B(m,Pf ) approaches X ∼N (m×Pf , m×Pf (1−Pf )).
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Figure 5.10: Normalized histogram that approximates the probability of having x errors
on the decoded message, for the scheme presented on section 5.1 when the inner code is
a LDPC(1536,1280), k=100 bits and the SNR is 5 dB. The curve from equation 5.2 when
m = 1180 is shown for comparison.

The mutual information over a BSC with p = 0.5 is zero and, therefore, if the prob-
ability of a flipped bit can indeed be assumed to be 0.5, then this scheme could provide
secrecy by itself. However, we feel that the proper approach to achieve secrecy in practice
is to apply a wiretap code on top of the emulated BSC, while assuming the lower bound
of the error rate over smaller blocks of p = 0.5− δ , (p = 0.4 in this case) given by the
BER-CDFac. Any secrecy codes appended to our system would then be designed to pro-
vide information-theoretic security on this lower bound p value, and would thus provide
it in practice on every (possibly short) secrecy codeword since we have designed for the
worst case error rate over a single small block of data. We also point out that these results
are more general than the specific code that has been used for example in this section, and
any code that leads to similar properties (steep waterfall region) could be applied to our
scheme with the accompanying analysis to identify the required SNR gap between Bob
and Eve.
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6. Conclusions

In this thesis a practical approach on physical-layer security was taken. We started by
pointing out the limitations of the state of the art physical-layer security metrics, and in
order to circumvent some of this shortcomings, we have proposed two new metrics for
evaluation of schemes with finite blocklength. Through the calculation of the distribution
of the number of bit errors per block, we can use CDF to provide a lower bound on the
security levels based on BER. This approach retains the simplicity of calculation of the
BER while providing a much stronger secrecy guarantee.

Later, on chapter 4, we used the new metrics to design and evaluate a proposed con-
catenated coding scheme for secrecy, that takes into account both reliability and security
factors. On this scheme, an inner code is used to provide typical levels of information
reliability, while security is obtained on the premise than an eavesdropper can’t obtain a
correct estimation of an interleaving key, that is used to shuffle the message, before being
encoded with an ECC and transmitted concatenated to the interleaved information bits.
Our analysis shows how the system behaves for varying parameters of SNR, additional
expected interference during the transmission of key bits at the eavesdropper’s channel
(e.g. due to a jammer) and error correcting capability of the code applied on the key.

Finally, on chapter 5 we have proposed a coding scheme that functions on a similar
fashion to the one from chapter 4, with the difference that the interleaving key is punctured
before being sent through the channel, meaning that for any receiver the only information
about the key is in the transmitted parity bits. The presented methodology allows us
to determine the SNR advantage Bob needs to possess over Eve, as well as threshold
operation points for which a reliable and secure communication is achieved. We have
also outlined arguments and given evidence for the possibility of using this scheme to
generate an effective DMC from a Gaussian wiretap channel. Therefore, the scheme
can be concatenated with existing wiretap codes that require such a channel to provide
information-theoretic security guarantees on scenarios where such guarantees were not
yet achieved.

6.1 Future Work

The design of secrecy coding schemes has much room for development. For the
schemes proposed on this dissertation, other key based methods for hiding the informa-
tion could be employed. For example, the interleaving could be substituted by a scrambler
for which the scrambling matrix is chosen randomly from a codebook indexed by the key.
It also might be of interest to see how the proposed schemes behave on a real transmis-
sion. One way this can be tested is through the implementation of such schemes using a
software-defined radio system.
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