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co-financiado pelo FEDER, no âmbito do Acordo de Parceria PT2020).





Abstract

SymStereo is a novel matching cost function capable of evaluating the possibility of
two pixels being a match by measuring symmetry, unlike traditional dense stereo estima-
tion algorithms that use photo-similarity. Particularly, the LogN variant of the SymStereo
framework provides encouraging results when dealing with slanted surfaces. Nonethe-
less, the computational complexity required by this technique is problematic. Therefore,
this thesis proposes a fully functional real-time parallel pipeline that uses dense stereo
based photo-symmetry to process 3D maps for images with slant-dominated surfaces.
This is of interest for multiple areas in computer vision involved in scene reconstruction
of urban data sets and also for tracking in robotics or intelligent autonomous vehicles.
The analysis and manipulation of the various matching cost and aggregation parameters
resulted in real-time reconstructions with higher image quality for images with slanted
surfaces. Also, a multiple Graphics Processing Unit (GPU) parallelization pipeline is
proposed, which is capable of calculating from 2 up to 132 volumes per second for high-
and low-resolution images, respectively.

Keywords

Dense stereo estimation, SymStereo, 3D Reconstruction, High resolution images,
Parallel Processing, Multiple-GPU processing





Resumo

O SymStereo é uma nova ferramenta que, através de foto-simetria, avalia a possi-
bilidade de dois pixeis serem correspondentes, ao contrário dos métodos tradicionais de
estimação estéreo densa que utilizam foto-similaridade. Em particular, a variante LogN
do SymStereo obtém bons resultados para imagens com superficies com inclinação. No
entanto, a complexidade computacional desta técnica pode ser problemática. Desta forma,
é proposto um pipeline, paralelo e em tempo real, que utiliza foto-simetria baseada em
estimação estéreo densa para processar mapas 3D para imagens com superfı́cies domi-
nadas por slant. Este estudo é de interesse para várias áreas de visão por computador
como a reconstrução de zonas urbanas e na reconstrução de mapas para sistemas robóticos
ou veı́culos autónomos. A análise e manipulação dos vários parâmetros, tanto do LogN
como do capı́tulo da agregação, resultaram em reconstruções em tempo real com qual-
idade superior para imagens com inclinação. O pipeline apresentado é constituı́do por
múltiplas GPU e é capaz de calcular 2 e 132 volumes por segundo para imagens de alta e
baixa resolução, respectivamente.

Palavras Chave

Estimação estéreo densa, SymStereo, Reconstrução 3D, Imagens de alta resolução,
Processamento paralelo, Processamento em múltiplas GPU
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1. Introduction

3D views can be obtained from depth maps and depth maps can be calculated with
two (sparse or dense stereo) or more images (multiview stereo). Sparse stereo extracts
potentially matchable image locations (edges or object discontinuities) and then searches
for corresponding locations in the other image [1], while multiview and dense stereo try
to find the corresponding pixels for every pixel in the reference image [2, 3].

Regarding dense stereo, the matching cost function assesses the likelihood of two
pixels being in correspondence. Most matching functions use a technique that measures
photo-similarity (or dissimilarity) between two stereo images to compute the matching
costs. However, a recent study proposed the measure of symmetry instead of photo-
similarity [4]. This method is named SymStereo and originated a new family of symmetric
dense matching cost functions.

1.1 Motivation

SymStereo is implemented in three functions: SymBT (modification of the BT met-
ric [5] for measuring symmetry instead of similarity, SymCen (non-parametric symmetry
metric based in the Census [6] transform) and logN (uses a bank of log-Gabor wavelets for
quantifying symmetry) [4]. The SymStereo variant logN outperforms the aforementioned
functions in the particular case of images with slanted surfaces [4].

Despite the good results, the logN metric is a compute-intensive algorithm when run-
ning on a conventional Central Processing Unit (CPU). Therefore, we propose to ac-
celerate the code by introducing support for parallel computing on Graphics Process-
ing Units (GPUs). Currently, there are several frameworks that allow performing paral-
lel computing, namely the Compute Unified Device Architecture (CUDA) [7] and the
Open Computing Language (OpenCL) [8]. CUDA is exclusive to Nvidia’s GPUs while
OpenCL is supported by a vast set of processors. Despite being limited to a number of
GPUs, CUDA is highly optimized to Nvidia’s architectures and typically performs 10 to
30% better than OpenCL on the same task [9]. The CUDA framework was used to paral-
lelize the logN metric, allowing superior throughput performance when compared to its
sequential counterpart. The main motivation consists of achieving more than one scene
processed per second, while maintaining the high quality of the 3D reconstructed scene.

1.2 Objectives

This thesis focus on developing a hybrid dual-GPU real-time stereo pipeline for the
construction of 3D maps using SymStereo. In order to improve the quality of recon-
structed scenes, visual enhancement post-processing algorithms such as local aggrega-
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1.3 Main contributions

tion, left-right consistency check and occlusion pixel filling were designed to obtain depth
maps with less imperfections and, consequently, higher-quality 3D maps. The complete
pipeline is parallelized using the CUDA computing language, in order to fully exploit the
processing power of two top performer Nvidia GTX Titan GPUs.

1.3 Main contributions

One kind of autonomous system that typically has to process large amounts of images
to make decisions about odometry and trajectory is the robot. Many of those images, in
particular for indoor systems, have high levels of slant. The real-time processing of these
images allows the system to make decisions also in real-time, assuming, this way, a level
of importance which depends on the motion requisites of the autonomous vehicle.

By taking advantage of the processing capabilities of two GPUs and one CPU, a
full working real-time pipeline is presented, capable of calculating up to 2 and 132 vol-
umes/scenes per second for high- and low-resolution images, respectively. Also, the log-
Gabor parameters were refined, namely the number of scales, shape-factor, scaling step
and center frequency of the mother wavelet, as well as the aggregation window, for per-
forming an exhaustive generation of disparity maps. Therefore, an extensive analysis
regarding quality versus processing time was performed.

This work has produced two manuscripts. One is already accepted for publication,
while the other has been submitted in March 2015:

• Ricardo Ralha, Gabriel Falcao, Joao Andrade, Michel Antunes, Joao Pedro Bar-
reto, and Urbano Nunes, ”Distributed dense stereo matching for 3D reconstruction
using parallel-based processing advantages” [Accepted] in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2015;

• Ricardo Ralha, Gabriel Falcao, Joao Amaro, Vasco Mota, Michel Antunes, Joao
Pedro Barreto, and Urbano Nunes, ”Parallel refinement of 3D slanted scenes using
dense stereo induced from symmetry” [Submitted] in IEEE Transactions on Circuits
and Systems for Video Technology (TCSVT), 2015.

1.4 Dissertation outline

This thesis consists of 6 chapters. After the introduction, chapter 2 features the GPU
and CPU architectures and the functioning of the CUDA framework. Chapter 3 focuses
on the basic principles of stereo algorithms and the theory that involves the development
of the logN algorithm. In chapter 4, the implementation and parallelization of the stereo

3



1. Introduction

pipeline on the GPU is explained. In chapter 5, the experimental results are exposed and
chapter 6 presents some conclusions about the work developed under the scope of this
thesis.
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2. The GPU architecture and CUDA Programming Model

In the early 2000’s, Central Processing Units (CPUs) had reached physical and clock
speed walls. This led to a change in the CPU design paradigm [10]. Meanwhile, Graphics
Processing Units (GPUs) were only used to perform multimedia tasks like video play-
backs and graphics rendering. The parallel computing nature of these devices encouraged
the development of novel parallel programming interfaces that allowed exploiting GPUs
for scientific computation as well.

This chapter discusses Intel’s Haswell CPU and Nvidia’s Kepler GPU architectures
and also the Compute Unified Device Architecture (CUDA) framework.

2.1 The CPU architecture

In 1965, ”Moore’s Law” [11] defined the growth trajectory for the hardware and
semiconductor industries. But as technology evolved, new challenges arose. The fur-
ther increasing of the transistor’s clock speed eventually stalled and the rising number
of transistors in CPUs led to heat dissipation constraints. Thus, to solve these problems,
the industry opted to change the process design established and started combining cores.
With the new multicore solutions, new mechanisms were introduced. For example, mul-
tiprocessing enabled the Operating System (OS) to schedule processes to different cores,
distributing the workload. This was the industry’s solution to continue supplying the ever
demanding Personal Computer (PC) users market.

In this section, the Haswell CPU Architecure, represented in Fig. 2.1, is addressed
since it is the architecture of the host system used to perform experimental tests in this
thesis - Intel’s i7 4790k.

Figure 2.1: Haswell Generic Architecture. 4 cores, processor graphics and a shared L3
cache between them [12].

6



2.1 The CPU architecture

2.1.1 The x86-64 multicores

There are two important mechanisms that make up each one of the CPU cores, the
control unit and the Arithmetic and Logic Unit (ALU). The L1 and L2 caches that com-
plete each core are addressed in the next segment.

Control unit The control unit is responsible for interpreting the instructions that are
passed on to that core. By decoding the instruction, the control unit can, for example, fetch
other instructions from the memory or discover the memory addresses of the operands
for an operation and send the data to the arithmetic and logic units, so that the desired
operation may be performed.

ALU The ALU is responsible for the arithmetic operations that occur on that core
including additions, subtractions, multiplications, bit shifting, logic operations such as
AND, OR, NOT and boolean comparisons. By supporting floating-point operations,
ALUs are complex components that enable a large array of operations.

2.1.2 System memory hierarchy

One of the main bottlenecks with computers is the communication latency that exists
between the CPU and main memory. With the objective of reducing the impact of this
problem, a memory hierarchy exists in the system. With the introduction of the multicore
architecture, this memory hierarchy, which started fairly simple, is now a complex mech-
anism that greatly enhances the user experience. The memory hierarchy can be split in
two regions: top level and bottom level.

Top level On the top of the hierarchy there are three cache levels. The L1 and L2 caches
are exclusive to each core and have 64 KB and 256KB of capacity, respectively. The L1
cache is faster than the L2 cache seeing that, commonly, the memory capacity is inversely
proportional to its access speed. The L3 cache is a shared memory between all cores and
has a capacity of 8MB. This cache is bigger but slower than the two previously mentioned
ones. Despite the small capacity, due to space limitations, these caches make-up in speed
as the CPU access time is much faster compared to the time that it takes to access the
main memory.

Bottom level On the bottom of the hierarchy is located the main memory, four 8GB
Dynamic Random Access Memory (DRAM) sticks that combine for a 32GB memory.
Besides the main memory, the system also has a Read Only Memory (ROM) containing

7



2. The GPU architecture and CUDA Programming Model

important data to be used when loading the OS. While Random Access Memorys (RAMs)
are volatile (contents are lost when the machine is powered off) and allow the CPU to read
and write at will, ROMs are non-volatile (retain contents after the machine is powered
off), read-only memories.

2.2 The GPU architecture

By demanding increasingly complex graphics in real-time, the gaming industry de-
fines the growth pace of GPUs. This leads to more threads running simultaneously, more
cores and more efficient memory control. As a result of this evolution, the gap between
CPUs and GPUs is increasing each year. Nevertheless, it is still possible (and desirable)
for both of them to coexist and work together [10]. The CUDA programming model was
invented by Nvidia to support the joint CPU/GPU execution on Nvidia’s devices [7].

In this section, the Kepler GPU Architecure, shown in Fig.2.2, is explained since it is
the architecture of the two GeForce GTX Titan GPUs used in this thesis.

Figure 2.2: Kepler Generic Architecture, 14 Streaming Multiprocessors with the L2
cache [13].
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2.2 The GPU architecture

2.2.1 Streaming Multiprocessors

GPUs are composed by Streaming Multiprocessors (SMs). Each SM is formed by the
basic processing unit of a GPU, Streaming Processors (SPs) or CUDA cores. Besides
CUDA cores, a SM also possesses its own control unit, for decoding and issuing instruc-
tions and to schedule the threads’ execution and on-chip memory composed by shared
memory and L1 cache. The SM is able to process several threads concurrently, issuing
and executing the same instructions for a great number of threads and performing similar
work on different data elements. The GeForce GTX Titan, using the Kepler architecture,
has 14 SMs with 192 CUDA cores per SM. Regarding kernel execution, Nvidia follows a
Single Instruction Multiple Thread (SIMT) policy. It uses the warp, a batch of 32 threads
that execute in parallel. Such grouping exists to dispatch the same instruction to all 32
threads, following a common datapath.

2.2.2 Memory Hierarchy

There are two regions of memory distinguishable in a GPU device: the on-chip mem-
ory and the off-chip memory.

On-chip memory The on-chip memory consists of the shared memory and L1 cache.
In this architecture, each SM has a 64kB on-chip memory that can be configured as 48kB

of shared memory and 16kB of L1 cache, the other way around or as 32kB/32kB. Thus,
the memory can be adjusted and suited for any application’s needs.

Besides this, each SM also has a read-only data cache that is 48kB long. Fig.2.3
depicts the on-chip memory.

Off-chip memory When transferring data to the GPU, the CPU can only interact with
the off-chip memory. The off-chip memory includes global memory and constant mem-
ory. Constant memory is a cached 64kB read-only memory region, useful for allocating
initialized values that are accessed several times without need for update, while global
memory is a 6GB read-write memory that can transfer data with any thread on the GPU.

Besides the off-chip memory, the GPU also has a 1536kB L2 cache. The off-chip
memory can be seen in Fig.2.4.

2.2.3 Scalability and Scheduling

An application developed to run on a GPU has to be partitioned in order to be pro-
cessed by the device. The lowest level of the hierarchy is the thread, an instance that
executes the same code segment applied to different data elements. A group of threads

9



2. The GPU architecture and CUDA Programming Model

form the mid-level of the hierarchy which is named a block. And finally, a group of blocks
forms the highest level, a grid. This hierarchy is observable in Fig.2.5.

The blocks created have to be distributed to the SMs to be scheduled (Fig.2.6). Since
a SM dispatches warps of 32 threads, the number of threads per block has to be a factor
of 32. Only this way it is possible to achieve the best occupation. Each cycle, the SM
dispatches a number of warps equal to the number of blocks allocated to the SM.

Figure 2.3: Kepler Streaming Multiprocessor model with 192 CUDA cores, the on-chip
memory and read-only data cache [13].
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2.2 The GPU architecture

Figure 2.4: Kepler off-chip and on-chip Memories.

Figure 2.5: Grid organization [7]. Figure 2.6: Block execution on different generation
devices [7].
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2.3 The CUDA Programming Model

In order to turn GPUs into fully programmable devices, programming languages were
necessary. With the objective of having a dedicated language, Nvidia created the CUDA
programming model, which only works with the company’s devices, like the GeForce
GTX Titans used in this thesis. To achieve maximal efficiency, the user must be aware of
the capacities of the device. This way, the CUDA programming language can be seen as
a high-level language that requires a low hardware abstraction by the user.

In this section, a simple example is used to explain the working flow of CUDA. The
example consists of a parallel summation between two single floating-point tables (A and
B) with the result being stored in matrix C.

2.3.1 Program Execution

CUDA applications can de divided in two parts, one than runs on the host, the CPU,
and another one that runs on the device, the GPU. While the host runs the part responsible
for memory allocations and flow control, the device processes the parallel kernels, where
data operations are made.

CUDA host code Fig.2.7 shows a typical scheme of the host section code of a CUDA
application. If there is more than one compatible device, CUDA allows the programmer
to choose the device to work with. By default, device 0 is chosen. Initially, it is necessary
to allocate space in the device’s global memory. Afterwards, the data segment in the
host is transferred to the device. This way, when the kernel is called, the GPU already
has the data available to perform the necessary calculations. After kernel execution, the
CPU orders the data back to its memory. Finally, the memory space allocated needs to be
deallocated.

CUDA device code The GPU is responsible for running the parallel kernels. Basically,
kernels specify the amount of work each thread performs. In Fig.2.8 it is possible to
obverse a kernel that performs the matrix summation.

The kernel is build in a way that allows each thread to be responsible for an index of
the matrix. If memory accesses are coalesced (data pre-aligned on the device’s memory),
all indexes are calculated and stored at the same time.

12



2.3 The CUDA Programming Model

// Host code 

int main()

{

int i;

int N = 1024;

size_t size = N * sizeof(float);

// Allocate vectors in host memory 

float* h_A = (float*)malloc(size);
float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

// Initialize input vectors 

for(i=0;i<N;i++)
{

h_A[i]=i*3;

h_B[i]=i*4;

}

// Allocate vectors in device memory 

float* d_A;

cudaMalloc(&d_A, size);

float* d_B;

cudaMalloc(&d_B, size);

float* d_C;

cudaMalloc(&d_C, size);

// Copy vectors from host memory to device memory 

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel 

int threadsPerBlock = 64;

int blocksPerGrid = N/threadsPerBlock;

dim3 dimBlock(threadsPerBlock,1,1);

dim3 dimGrid(blocksPerGrid,1,1);

VecAdd<<<dimGrid, dimBlock>>>(d_A, d_B, d_C, N);

// Copy results from device memory to host memory 

// h_C contains the results in host memory 

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory 

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

// Free host memory 

free(h_A);

free(h_B);

}

Figure 2.7: Matrix summation host code [7]. 13



2. The GPU architecture and CUDA Programming Model

// Device code - Kernel definition

__global__ void VecAdd(float* A, float* B, float* C, int N)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < N)

C[i] = A[i] + B[i];

}

Figure 2.8: Matrix summation device code [7].

2.3.2 GPU efficiency

One of the objectives of the programmer is to achieve the best efficiency from the
GPU. Occupancy can measure this efficiency. It can be defined as

Occupancy =
Number of Active Warps per SM

Maximum Number of Active Warps per SM
. (2.1)

Occupancy limiting factors Three factors can limit occupancy: the number of threads
per block, the number of registers per thread and shared memory per block. The program-
mer is responsible to find the best combination of threads per block that can maximize the
occupancy. For example, being a first rate GPU, the GeForce GTX Titan has 216 32 bit
registers per SM. Let’s assume a configuration with 256 threads per block, 32 registers
per thread and 4 KB of shared memory per block. The occupancy here is 100% seeing
that the maximum number of active warps this GPU allows is 64 and there are 64 warps
running. Now, consider each thread uses 64 registers. The occupancy would drop to
50% since the maximum number of active warps could only be 32. In this case, not even
changing the number of threads per block would help, as the maximum occupancy for 64
registers per thread is 50%. Presume now the initial configuration but with 8 KB of shared
memory per block. The occupancy would be 75%, with 48 active warps. If the number of
threads per block is risen to 512, the occupancy returns to 100%, with less active blocks
but enough shared memory for all of them.

There are various configurations that can be used by the programmer to maximize the
efficiency of the device. It all depends on the application’s needs and the capacity of the
programmer to take full advantage of the resources at his/her disposal.

2.3.3 Code optimization techniques

The real challenge of developing parallel CUDA code programs lies in using all the
resources available on the device in the most efficient way. In order to do so, there are
known techniques that can significantly enhance the program’s performance:
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2.3 The CUDA Programming Model

• Shared memory: As mentioned before, shared memory can be used by all threads
scheduled to a SM. When using it, the data handled by the kernel must be trans-
ferred from the GPU’s main memory to the SM’s shared memory. It is smaller
and faster which allows for reduced access times, compared to the device’s main
memory;

• Pinned memory allocations: Data transfers from CPU to GPU can have a significant
impact on the final processing time. It is fundamental to minimize this impact in
order to achieve better results. When allocating data in the host memory, the system
makes a pageable allocation by default. However, the device is not able to transfer
data directly from pageable memory. To transfer that data, a temporary pinned array
is created on the host memory so that the data can be transferred from the pageable
section to the array and only then it is transferred to the device memory [7]. To
avoid this, pinned allocations in the host can be made, saving time in data transfers;

• Thread Divergence: Divergent conditions, such as the if statements, can influence
the final results. When in the presence of a conditional statement, the warp has
to verify both paths in all threads, adding one more cycle. This way, whenever
possible, it is important to avoid divergent branches;

• Loop Unrolling: In the presence of a loop, the warp needs to verify, each cycle, the
established condition to perform a jump. By unrolling the loop, these problems are
avoided. The unrolling can be made manually or by the CUDA compiler;

• Coalesced Memory Accesses: When all the threads in a warp perform a memory
load, the device detects if the addresses being read are consecutive or separated by
a constant multiple of 16 or 32. Thanks to the Peripheral Component Interconnect
Express (PCIe) 3.0, with a bus of 128-bit, used by most GPUs, multiple memory
accesses can be coalesced to a single memory access, decreasing the number of
memory transfers;

• Asynchronous Memory Transfers: By using CUDA streams, it is possible to do
memory transfers while executing kernels. This increases the throughput of the
program, minimizing the impact of memory transactions.
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2. The GPU architecture and CUDA Programming Model

2.4 Conclusions

This chapter describes the architectures that compose the host and devices. The
Haswell CPU architecture is an efficient architecture composed of several (2, 4, 6 or
8) cores and a memory hierarchy. It is mainly used to process serial applications but is
also prepared for parallel computing. The Kepler GPU is a highly parallel architecture
comprised of 14 SMs with 192 CUDA cores each and a memory hierarchy to support
efficient data processing.

CUDA is a highly optimized programming language developed by Nvidia for exploit-
ing general-purpose processing on GPUs. Programmers need specific knowledge about
the Kepler architecture in order to develop code that allows an efficient exploitation of all
the resources available.

The next chapter focuses on the various phases of dense stereo algorithms and the
logN metric in particular, which presents a complex and thus compute-intensive nature.
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3. Stereo Algorithms and the logN metric

This Chapter discusses dense stereo algorithms and all the steps they usually comprise
to generate a 3D map. Since it is an integral part of this work, the logN algorithm is
discussed in detail.

This way, the reader is given an overview of the principles of stereo algorithms. If the
reader is interested in knowing more, he can refer itself to [14].

3.1 Stereo Algorithms Phases

Stereo algorithms generally include the following steps:

1. Matching cost computation;

2. Cost (support) aggregation;

3. Disparity computation;

4. Disparity refinement;

5. Disparity to 3D maps conversion.

This section addresses the algorithms used in each phase to calculate the final 3D map.

3.1.1 Matching cost computation - The LogN algorithm

In this first step, the matching function receives data from left and right images, which
are acquired by a stereo camera. The purpose of the algorithm is to compute the matching
costs by verifying the possibility of two pixels, one from each image, corresponding to
each other. This evaluation is performed across all possible disparities and pixel locations.
By doing this, the Disparity Space Image (DSI) [15] is created. The DSI is a 3D volume
that, for each pair pixel-disparity associates the corresponding matching cost.

New advancements show that by using symmetry rather than photo-similarity to eval-
uate the likelihood of two pixels being a match, stereo disparity estimation improves [4].
In Fig.3.1 are represented the differences between conventional stereo matching by plane
sweeping [16] and SymStereo. By examining images 3.1a and 3.1c, it is noticeable
that each possible disparity di is associated with a virtual plane Φi, meaning that photo-
similarity between Ib and I′b, that are the results of back-projecting I and I′ onto Φi, is
implicitly measured by the chosen matching cost. By observing images 3.1b and 3.1d,
in SymStereo, the virtual planes Πi that pass between the cameras intersect the scene
structure. Thus, the back-projection images are reflected with respect to the curve where
that intersection occurs (mirroring effect). Also, each plane Πi in 3.1b corresponds to an
oblique plane Γi in 3.1d which means that by choosing the appropriate set of virtual cut
planes Πi, the entire DSI domain can be covered.
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Similar i ty

(a) Plane Sweeping

Symmetry

(b) SymStereo

(c) DSI Plane Sweeping (d) DSI SymStereo

Figure 3.1: Plane sweeping vs SymStereo [4].

The objective of logN consists of calculating the matching costs. To do so, logN uses
a bank of log-Gabor filters to detect symmetric and anti-symmetric energy. The matching
cost will be the joint energy calculated by combining the symmetric energy with its anti-
symmetric equivalent. The N in logN stands for the number of wavelet scales that are
used to filter the input images.

The matching function can be divided in two phases: the filtering and the computation
of the joint energy. However, before describing the algorithm, it is important to understand
the geometry comprising stereo vision.

Epipolar Geometry Epipolar geometry is essential for any stereo algorithm. Fig.3.2
depicts two pinhole cameras, each one with its own center of projection, OL for the left
camera and OR for the right camera. Each one has an image plane, A and B, that contains
the projections xL and xR, respectively, of X , the point of interest. Since the two centers of
projection are distinct, they both can be projected into the other camera’s image plane (eL

is the representation of OR in the left camera image plane and eR is the representation of
OL in the right camera’s image plane). These image points are called epipoles or epipolar
points.

The line OL−X is seen as a point by the left camera because it is in line with the
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3. Stereo Algorithms and the logN metric

center of projection. However, by the perspective of the right camera, OL−X is seen as
a line in image plane B. This line, eR− xR is called an epipolar line. Symmetrically, the
line OR−X seen by the right camera as a point is seen as an epipolar line eL–xL by the
left camera.

Epipolar geometry can be simplified if the two image planes, A′ and B′, coincide. In
this case, both epipolar points, e′R and e′L, are located in the infinite. Thus, the epipolar
lines e′R–x′R and e′L–x′L also coincide. Because both images are horizontally aligned, when
searching for corresponding points in aligned images, the search only needs to be done
along an horizontal line. If the cameras cannot be positioned in a way that allows both
planes to coincide, an image rectification process is possible [17].

X

xR

O
R

O
L e

R
e

L

e'
L e'

R

A B

A' B'

Figure 3.2: Representation of Epipolar Geometry for non-aligned and aligned image
planes.

Camera alignment is important in LogN since the search for corresponding pixels is
done only along an horizontal line. Thus, the algorithm input images must be captured
with aligned cameras or rectified a posteriori.

Filtering Phase Consider two images, I and I′ and two epipolar lines, one on each
image, I(q0) and I′(q0). In this phase, the stereo pair will be filtered with N log-Gabor
wavelets. Since these are 1D analytical filters and filtering occurs in the spectral domain,
a 1D Fourier transform has to be applied to both images. Being I = F (I) the Fourier
Transform along the epipolar lines of I and G the matrix of coefficients of the filter, I .Gk

is calculated, for a given wavelet k, where Gk represents a wavelet with the same length
as the epipolar line.

In order to return to the time domain, an Inverse Fourier Transform is applied. For a
general pixel location q0 and wavelet k, it can be deduced that

sk(q0)+ iak(q0) = F−1(I (q0).Gk), (3.1)

s′k(q0)+ ia′k(q0) = F−1(I ′ f (q0).Gk). (3.2)

I′f is I′ flipped horizontally, as it needs to be flipped before the filtering procedure.
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Energy Calculation Phase After filtering the two images, the joint energy needs to be
calculated. In order to properly implement this procedure, the right-side signal needs to
be shifted by an amount di that depends on the virtual cut plane Πi [4]. The flipped image
becomes

Î(q0) = I′f (q0−di), (3.3)

where di is a shift amount depending on the choice of the virtual plane Πi.
With this, the symmetry (sS and aS) and anti-symmetry (sA and aA) coefficients can

now be calculated for a generic epipolar line q0 with

sS
k(q0)+ iaS

k(q0) =
(
sk(q0)+ s′k(q0−d)

)
+ i
(
ak(q0)+a′k(q0−d)

)
, (3.4)

sA
k (q0)+ iaA

k (q0) =
(
sk(q0)− s′k(q0−d)

)
+ i
(
ak(q0)−a′k(q0−d)

)
. (3.5)

With the image being symmetric about the pixel location q0, the real components sS

and sA typically take high values and the imaginary components aS and aA assume small
values [18]. Taking this into account, the symmetry (ES) and anti-symmetry (EA) energies
can be established for the N wavelet scale responses

ES(q0) =
∑

N−1
k=0 |s

S
k(q0)|− |aS

k(q0)|

∑k

√
(sS

k(q0))2 +(aS
k(q0))2

, (3.6)

EA(q0) =
∑

N−1
k=0 |a

A
k (q0)|− |sA

k (q0)|

∑k

√
(sA

k (q0))2 +(aA
k (q0))2

. (3.7)

The joint energy E comes as a combination of the symmetry and anti-symmetry ener-
gies

E = EA×ES. (3.8)

In Fig.3.3 it is possible to observe the various stages of the logN metric.

Wavelet scales To understand the wavelet scales of the log-Gabor filters, the role of
each parameter must be addressed. Fig. 3.4 illustrates the relation of the parameters with
the space-frequency response of the filter.

There are four parameters that define the wavelets: the shape-factor Ω, the center fre-
quency of the mother wavelet ω0 , the scaling step s, and the total number N of wavelets.
The shape-factor is related with the bandwidth of the filter and defines a contour in the
(ω , σ ) domain. The first wavelet scale G0 is uniquely defined by the center frequency
ω0 and the shape-factor Ω and s sets the distance between center frequencies of succes-
sive wavelet scales along the contour. If the stereo pair is dominated by textured regions,
logically, the parameters must be chosen in order to work on the top-left corner of the
(ω , σ ) plane where the frequency of the log-Gabor wavelets is higher. But if the pair
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Figure 3.3: The LogN algorithm.
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Figure 3.4: (Qualitative) space-frequency behaviour of the log-Gabor wavelets Gk [19] .
The horizontal axis refers to the spatial support σ of the filter kernel, while the vertical
axis concerns the response frequency ω .
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is comprised mostly of textureless regions, then the work must be done on the bottom-
right corner of the plane where the frequency is lower. More details on the design of the
log-Gabor filters can be found in [19].

3.1.2 Cost aggregation and disparity computation

There are two types of stereo algorithms: local and global. Local algorithms rely on
a window-based approach and use an aggregation step [20, 21] while global algorithms
tend to solve a global optimization problem by finding the best disparity that minimizes a
global cost function that is composed by data and smoothness terms [22–24]. LogN is a
local stereo algorithm thus, it needs an aggregation cost step to aggregate the determined
matching costs.

To estimate the correct disparity for a pixel, the sum of the matching costs is calculated
over a square window. This is done for every disparity value. The final disparity chosen
will be the disparity associated with the smallest sum of values calculated over the square
window.

3.1.3 Disparity refinement

The disparity refinement stage is used to correct some disparities that were wrongly
computed and to fill pixels that are occluded on the depth map. Occluded pixels are pixels
only visible in one of the images. The circumvent of these inconveniences is divided in
two sub-stages: left-right consistency check and filling of occluded pixels.

Left-Right Consistency Check Two disparity maps are necessary for this stage, one
computed using the left image as reference and the other with the right image. By sub-
tracting the disparities of corresponding pixels on each depth map, it is verifiable that if
the absolute value is superior than a given threshold, then the pixel is considered occluded.
For our pipeline, the threshold adopted is three.

Filling of Occluded Pixels The algorithm starts by finding the first occluded pixel,
beginning in the top left corner of the disparity map. Then, a 4-way search is performed
to find the first non-occluded pixel in each way, left, right, up and down. The disparity
selected is the median between the four values that were found. If no value is found in
one of the ways, the median is calculated between the other three values and so on. This
is done for all occluded pixels in the disparity map.

The pixels that have already been filled are considered in the calculation of the dispar-
ities for the next occluded pixels. Therefore, due to these dependencies between pixels,
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this stage is confined to the Central Processing Unit (CPU). The algorithm is depicted in
Fig.3.5.

4-way search

Figure 3.5: Representation of a 4-way search.

3.1.4 From Disparity maps to 3D views

To calculate the 3D volume, 2D coordinates are mapped into 3D by

Z = ( f ∗b)/D, (3.9)

X = ((x− cx)∗Z)/ f , (3.10)

Y = ((y− cy)∗Z)/ f , (3.11)

where f is the focal length (in pixels), b represents the distance between the two lens (in
meters), cx and cy are the image centers (in pixels) and D is the disparity of the pixel.

3.2 Conclusions

This chapter provides the reader with a better understanding of stereo algorithms and
all phases that they comprise. Stereo algorithms are composed of five stages: matching
cost computation, cost aggregation, disparity computation, disparity refinement and dis-
parity to 3D conversion. Of all phases, the first one is the most important. The LogN

metric is essential in this investigation since it responds extremely well to slanted sur-
faces, but it presents a high computational complexity, which is incompatible with real-
time execution on conventional CPUs. Therefore, it can be accelerated and conveniently
supported by parallel programming.

The next chapter explains how the pipeline is parallelized and takes advantage of the
many resources made available by the Graphics Processing Unit (GPU) to perform in
real-time.
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4. The SymStereo pipeline on the GPU

With the goal of parallelizing the pipeline of 3D volumes computation in real-time, a
hybrid architecture was exploited using a Central Processing Unit (CPU) and two Graph-
ics Processing Units (GPUs). The parallel pipeline of SymStereo is depicted in Fig. 4.1.
In order to reduce the pipeline processing time, some previously mentioned code opti-

GPU0

Aggregation

SymStereo

DSI

I I'

LRCCheck

DispMap0

2D-3D

3D Map

GPU1

Aggregation

SymStereo

DSI

If I'f

DispMap1

Disp. Enhan.

CPU

DispMap0

DispMap0

G

Figure 4.1: SymStereo Pipeline representation, where I and I′ are the left and right im-
ages, I f and I′f are the left and right images flipped and G represent the Gabor coefficients.

mization techniques like pinned memory allocations, thread divergence, loop unrolling
and coalesced memory accesses were extensively utilized.

The use of shared memory was also tried but since the necessary data blocks are
larger than the shared memory size, that at the finest level of thread-granularity would
force several memory swaps to occur, every time this performance enhancing technique
is applied, the kernels’ efficiency decreases due to these overheads accessing the global
memory. Therefore, this option was discarded. Also, asynchronous memory transfers
were not possible to apply in this work, considering that there are no memory transfers
that can be made while executing any kernel.

This chapter explains the implementation of the pipeline on the machine’s host and
devices.

26



4.1 LogN parallelization

4.1 LogN parallelization

Fig. 3.3 shows the LogN algorithm. To parallelize it, three kernels were created, i)
the flip kernel; ii) the filtering kernel; and iii) the energy calculation kernel. To perform
the Discrete-time Fourier transform (DTFT) and Inverse discrete-time Fourier transform
(IDTFT) on the GPU, Nvidia provides the optimized CUFFT Application Programming
Interface (API) [25].

4.1.1 Filtering Phase on the GPU

This phase only comprises two of the three kernels mentioned previously, where each
thread is associated to one image pixel. The flip kernel has half the threads of the remain-
ing kernels. Since the input matrix is flipped horizontally, only half of the matrix width
needs to be swept. Regarding the filtering kernel, each line of the input spectrum has to
be multiplied by a line of the log-Gabor coefficients matrix. This way, the output of the
kernel consists of N matrices used in the posterior energy calculation phase. This is illus-
trated in Fig. 4.2. The quantity of data processed in this kernel depends on the number
of wavelets chosen for the filter. The larger the number of wavelets, the larger the filter
becomes.
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Figure 4.2: Representation of the log-Gabor kernel. (T,R) are the number of blocks in
the (x,y) directions, W and H are the width and height of the input images, respectively
and N is the number of wavelets.

4.1.2 Energy Calculation on the GPU

This operation represents a time consuming phase that depends on the image dimen-
sions, the disparity range and the number of scales chosen. The inputs are the images after
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being filtered by the log-Gabor wavelets, F−1(I .G) and F−1(I ′ f .G), as depicted in
Fig. 3.3, and the output is the Disparity Space Image (DSI). Each thread processes the
energy for each pixel and the corresponding disparity, i.e. the symmetry (ES) and anti-
symmetry (EA) energies as established in (3.6) and (3.7). Finally, the joint energy is
determined. The energy calculation kernel is depicted in Fig. 4.3.
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Figure 4.3: Representation of the Energy calculation kernel. (T,R) are the number of
blocks in the (x,y) directions, N is the number of wavelets, dmin and dmax are the mini-
mum and maximum disparities, respectively, and drange is the difference between dmax
and dmin.

4.2 Aggregation and refinement parallelization

This section encompasses four algorithms. Unfortunately, the filling algorithm is not
parallelizable, which means that it runs on the CPU. The remaining three kernels, namely
aggregation, consistency check and 3D conversion, run on the GPU, which implies that
the data needs to be transferred from the GPU to the CPU and then back to the GPU. This
is shown in Fig. 4.1.

4.2.1 Aggregation on the GPU

Here, each thread calculates the sum of the matching costs over the defined square
window, for each disparity, and chooses the disparity associated with the highest sum of
costs (Fig. 4.4). Like in the other kernels, each thread is associated to one pixel. This
kernel can be computationally costly, depending on the window size and the disparity
range chosen. With a large window size, the processing time of the pipeline can increase
significantly, damaging processing time performance.
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Figure 4.4: Representation of the Aggregation kernel. (T,R) are the number of blocks in
the (x,y) directions, and drange is the difference between dmax and dmin.

4.2.2 Refinement on the GPU

The consistency check phase involves two GPUs working in parallel, as two disparity
maps are necessary to perform a cross comparison. The maps are calculated concurrently
on the two GPUs, saving considerable processing time. Again, each thread verifies the
consistency of the disparity associated to a single pixel. This kernel is observable in
Fig. 4.5.
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Figure 4.5: Representation of the consistency check kernel. (T,R) are the number of
blocks in the (x,y) directions and t is the threshold value.

As mentioned before, the algorithm used to fill the occluded pixels cannot be ported
to work on a GPU, hence the data must be transferred to the host’s memory in order to
be processed by the CPU. When all calculations are over, the data can be brought back to
the device’s memory.
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4. The SymStereo pipeline on the GPU

4.2.3 3D Reconstruction on the GPU

At the end of the pipeline, the final disparity map is used to calculate the 3D coor-
dinates for the 3D view/scene reconstruction. Each thread, associated to one pixel, is
responsible for calculating the three coordinates necessary to generate the 3D map, ac-
cording to (3.9), (3.10) and (3.11). With all pixels processed, data can be transferred from
the device to the host.

4.3 Conclusions

This chapter describes the implementation of a fully functional real-time pipeline. The
parallelization of LogN is challenging, considering three kernels are needed and various
optimization techniques are applied to each kernel.

The use of two GPUs enabled the creation of two disparity maps at the same time,
which is of great advantage for the disparity check phase since LogN and aggregation
represent the most time consuming stages.

Unfortunately, not all parallelization techniques were possible to apply. Shared mem-
ory would limit the cores’ occupancy and as a result it shows a negative impact in the final
processing times. Asynchronous data transfers cannot be implemented in the application.
Nevertheless, other optimization techniques like pinned memory allocations, avoidance
of thread divergence, loop unrolling or coalesced memory accesses were used.

The next chapter addresses the studies made, visual results achieved and processing
times obtained during this work.
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5. Experimental Results

To present the results, this section has been split into three parts: the first one focuses
on the tests performed to refine the disparity maps; the second one discusses the visual
results of the 3D scenes generated; and the third one emphasizes the processing times of
the program.

To determine the percentage of error in non-occluded areas, the absolute difference
between the disparities of corresponding pixels of the calculated disparity map and the
matching ground truth image is evaluated. If the difference is superior to one, then the
computed disparity is wrong. Also, all tested images are rectified [17].

The pipeline here presented was developed using CUDA 6.5 and uses a GeForce GTX
Titan dual-GPU workstation with an i7 4790k @ 4 GHz, 32 GB of RAM running Ubuntu
14.04.1 and GCC 4.8.2. The 3D maps can be visualized with MeshLab v1.3.2.

5.1 Parameter refinement

The objective was to create the best 3D reconstruction for images with slanted sur-
faces. With that goal in mind, several combinations of the already mentioned pipeline
parameters were applied to different sets of images, namely two images from a dataset
created for testing purposes (820x1142 pixels); nine images from the Kitty dataset [26]
(375x1242 pixels); one image from the synthetic Tunnel dataset [27] (300x400 pixels);
another image from the Tsukuba set [3] (288x324 pixels); and, finally, an image from the
Oxford Corridor set (256x256 pixels). The Tsukuba image does not contain slant but is
used for reference. The values used for the parameters are shown in table 5.1.

Table 5.1: Parameters values used for the tests.

Parameters

N Ω s W0 Aw

15 0.35 1.02 0.2 3
20 0.55 1.05 0.25 9
30 0.75 1.08 0.3 15

The tests performed in [4] were carried out using specific values for each parameter.
That combination is used in this thesis and is called the reference combination, where
N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9. With these values, the objective is to reach
an equilibrium by not compromising neither textured or textureless regions. In fact, that
study has been made before [4]. In figure 5.1 the Oxford Corridor, Tsukuba and Tunnel
disparity maps calculated with the reference combination can be seen, using the proposed
parallel processing pipeline.

With the tests performed, the aim is to show the impact of the various parameters on
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5.1 Parameter refinement

the disparity maps and to find the best combination for images with slanted surfaces in
urban scenes. By observing Fig. 5.4, the changes that occur if only one of the parame-
ters is modified are notorious. Increasing the number of wavelets will allow the filter to
have a larger range, reacting better to images with textured and textureless regions. The
shape factor changes the value of the center frequency of each wavelet, originating dif-
ferent results. The higher the scaling step, the bigger the difference between the center
frequencies of each wavelet. In this case, it favours textureless regions. Choosing the right
center frequency for the first wavelet is crucial, as it can change the results drastically. In
Figures 5.4i) and 5.4j) is visible that with a high first frequency, the disparity map yields
better results for textured regions. Finally, a large aggregation window corrects some
wrong disparities but affects the definition on the discontinuities.

(a) Oxford Corridor set

(b) Tsukuba set

(c) Tunnel set

Figure 5.1: Oxford Corridor, Tsukuba and Tunnel datasets, ground truth and disparity
maps using SymStereo.
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5. Experimental Results

By processing disparity maps (trying different combinations of parameters that can be
found in table 5.2) for three images and comparing them with the ground truth provided,
the accuracy of the pipeline was tested. The results are shown in Fig. 5.2, with the Tunnel
image being the most accurate. Combinations two, three and four provide the best results
possible for the Oxford Corridor, Tsukuba and Tunnel images, respectively.

Table 5.2: Combinations used in the tests with ground truth verification for the Oxford
Corridor, Tsukuba, Tunnel (1, 2, 3, 4) and KITTI (5, 6, ..., 15) datasets.

Combination

Parameters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N 20 30 15 15 20 30 30 30 20 30 15 30 30 30 20
Ω 0.55 0.35 0.55 0.35 0.55 0.55 0.55 0.35 0.55 0.55 0.35 0.55 0.35 0.35 0.35
s 1.05 1.08 1.05 1.02 1.08 1.05 1.08 1.08 1.08 1.08 1.08 1.05 1.05 1.05 1.08

Wo 0.25 0.2 0.2 0.3 0.2 0.2 0.3 0.25 0.25 0.2 0.2 0.25 0.2 0.25 0.25
Aw 9 15 15 9 15 15 15 15 15 15 15 15 15 15 15
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Figure 5.2: Test results for the Oxford Corridor, Tsukuba and Tunnel images with ground
truth verification.

The proposed parallel processing pipeline, in particular the logN variant of SymStereo
has shown good results, especially in images with slanted surfaces. This is verifiable in
Figures 5.4 through 5.14. Every disparity map computed with the reference combination,
despite having some miscalculated disparities, show a good reconstruction quality. In
order to discover the combination that would produce the best 3D map, the tests taken en-
compassed the creation of several disparity maps of four training images from the KITTI
dataset by combining all parameters. Fig. 5.3 shows the pipeline accuracy for images ’A’
and ’B’ (the only ones presented in this thesis with ground truth, images ’C’ to ’K’ don’t
have a ground truth image) of the KITTI dataset. The pipeline produces good results, with
a low error percentage. The combinations used were the best performing combinations of
the tests taken with the KITTI training dataset and can be found in table 5.2.
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5.2 3D Reconstruction of urban scenes with slant
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Figure 5.3: Test results for images ’A’ and ’B’ of the KITTI dataset with ground truth
verification.

5.2 3D Reconstruction of urban scenes with slant

By observing the final disparity maps, it is verifiable that they are very smooth. Be-
cause the tested images are slant dominated, the parameters were manipulated in a way
that benefits textureless zones and neglects texture dominated zones. The calculated 3D
reconstructions can be observed in different views (from the front, side and top views)
in Fig. 5.15 through 5.18. The close analysis of the reconstructions shows that around
discontinuities there are some wrongly calculated pixels. For example, in Fig.5.15h), the
trunk of the tree surrounded by wall of one of the houses in the background is an error, as
the trunk and the wall were calculated as being in the same disparity zone.

When evaluating reconstructions, an important feature presented is the sky. It is one
of the main noise sources existent in most test images and, since it belongs to the infinite
plane, a correct disparity estimation is impossible. Sky perturbation is especially visible
in Fig. 5.18b) and 5.18d).

An additional challenge for stereo algorithms is surface reflection. Despite not being
too far apart, the difference between the two cameras is sufficient to take two photos that
greatly differ in its pixel color intensities for the same surface. In urban scenes this is very
common, as windows reflect the light and most of the cars have metallic painting that has
a high reflection coefficient. Fig.5.17b) shows this problem in the car on the left, despite
not being too flagrant, as the parameter refinement almost eliminated this challenge.

For slanted surfaces, the reconstruction is almost flawless. This is observable in every
side view of the aforementioned scenes. By using the calculated parameter configuration,
the wrong disparities that existed in slanted zones disappeared in most cases, being re-
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5. Experimental Results

(a) Original Image ’A’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=15 (d) N=30

(e) Ω=0.35 (f) Ω=0.75

(g) s=1.02 (h) s=1.08

(i) W0=0.2 (j) W0=0.3

(k) Aw=3 (l) Aw=15

Figure 5.4: Test results for the KITTI dataset image ’A’. In each test, only one parameter
was changed, while the others maintained their reference values.
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5.2 3D Reconstruction of urban scenes with slant

(a) Original Image ’B’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.2 and Aw=9 (d) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=9

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.5: Test results for the KITTI dataset image ’B’.

(a) Original Image ’C’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.08, W0=0.25 and Aw=9 (d) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=9

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.6: Test results for the KITTI dataset image ’C’.
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5. Experimental Results

(a) Original Image ’D’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=15 (d) N=20, Ω=0.55, s=1.08, W0=0.25 and Aw=15

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.7: Test results for the KITTI dataset image ’D’.

(a) Original Image ’E’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.2 and Aw=9 (d) N=20, Ω=0.55, s=1.05, W0=0.2 and Aw=15

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.8: Test results for the KITTI dataset image ’E’.
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5.2 3D Reconstruction of urban scenes with slant

(a) Original Image ’F’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.08, W0=0.25 and Aw=9 (d) N=20, Ω=0.55, s=1.08, W0=0.25 and Aw=15

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.9: Test results for the KITTI dataset image ’F’.

(a) Original Image ’G’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=15 (d) N=20, Ω=0.55, s=1.05, W0=0.2 and Aw=15

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.10: Test results for the KITTI dataset image ’G’.
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5. Experimental Results

(a) Original Image ’H’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.08, W0=0.25 and Aw=9 (d) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=9

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.11: Test results for the KITTI dataset image ’H’.

(a) Original Image ’I’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.2 and Aw=9 (d) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=9

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.12: Test results for the KITTI dataset image ’I.
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5.2 3D Reconstruction of urban scenes with slant

(a) Original Image ’J’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=15 (d) N=20, Ω=0.55, s=1.05, W0=0.2 and Aw=15

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.13: Test results for the created dataset image ’J’.
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5. Experimental Results

(a) Original Image ’K’ (b) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=9

(c) N=20, Ω=0.55, s=1.05, W0=0.25 and Aw=15 (d) N=20, Ω=0.55, s=1.08, W0=0.25 and Aw=15

(e) N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15

Figure 5.14: Test results for the created dataset image ’K’.
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5.3 Numerical results

placed by the correct ones. The strength of the SymStereo matching cost is visible here,
as it can provide great versatility for different situations.

Videos of the 3D reconstructions can be seen at http://montecristo.co.it.pt/
3DVideos/.

5.3 Numerical results

Results’ evaluation may seem to indicate that the parameters are free to change with-
out consequence regarding computational effort. Unfortunately, this is not true as some
parameters have a high impact on the processing time of the pipeline. Of the five param-
eters manipulated, N and Aw have visual and processing impact while Ω, s and W0 only
have visual impact. Another value has a high impact, especially in processing time: the
disparity range. Each one of the three parameters has a different impact in processing
speed. By increasing the value of N, a larger log-Gabor coefficients matrix is created.
This influences the transfer times of the matrix coefficients to the GPU, the log-Gabor
filtering and the energy processing kernels that run on the GPU. Aw only influences the
aggregation stage but the disparity range impacts not only this stage as the posterior en-
ergy calculation phase.

Table 5.3 shows the processing times depending on Aw, N and the disparity range, for
five image resolutions. By observing the results, it can be seen that Aw greatly increases
the final processing times, especially in larger images, and N is the parameter that least
influences the throughput performance. The disparity range is chosen depending on the
depth the tester desires to depict. A stereo pair with objects much closer and small depth
needs a low disparity range, compared with a pair that has a higher depth. For every
image, a range of disparities that fits the scene represented is manually chosen. This way,
it is very important to reach a compromise between the parameters, as their variation has
a high impact on the number of maps generated per second.

All the tests performed use disparity ranges of 22, 16, 65, 110 and 185 for the Oxford
Corridor, Tsukuba, Tunnel, KITTI and the created dataset images, respectively. By an-
alyzing table 5.3, it can be concluded that the pipeline achieves, for each image, 132.3,
120.8, 37.6, 6.1 and 2 processed volumes per second, respectively, for the reference com-
bination. For the best quality results in each image, the effects of changing the parameters
are notorious. The rates of generated volumes diminished (excluding the Tunnel image)
being 80.4, 93.3, 43.5, 4 and 1.25 for each of the aforementioned image resolutions.

By comparing the pipeline with its serial counterpart, presented in table 5.4, a massive
speedup is observed in the achieved processing times, as each image resolution registers
a boost of 173x, 217x, 252x, 291x and 307x, respectively.

43

http://montecristo.co.it.pt/3DVideos/
http://montecristo.co.it.pt/3DVideos/


5. Experimental Results

(a) Front view 3D Reconstruction (b) Side view 3D Reconstruction

(c) Front view 3D Reconstruction (d) Side view 3D Reconstruction

(e) Front view 3D Reconstruction (f) Side view 3D Reconstruction

(g) Front view 3D Reconstruction (h) Side view 3D Reconstruction

(i) Front view 3D Reconstruction (j) Side view 3D Reconstruction

Figure 5.15: 3D reconstruction of KITTI dataset images ’B’, ’D’, ’F’, ’H’ and ’I’ with
N=20, Ω=0.55, s=1.08, W0=0.2 and Aw=15.

44



5.3 Numerical results

(a) Front view 3D Reconstruction (b) Left side view 3D Reconstruction

(c) Right side view 3D Reconstruction (d) Top view 3D Reconstruction

(e) Front view 3D Reconstruction (f) Left side view 3D Reconstruction

(g) Right side view 3D Reconstruction (h) Top view 3D Reconstruction

Figure 5.16: 3D reconstruction of KITTI dataset images ’A’ and ’G’ with N=20, Ω=0.55,
s=1.08, W0=0.2 and Aw=15.
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5. Experimental Results

(a) Front view 3D Reconstruction (b) Left side view 3D Reconstruction

(c) Right side view 3D Reconstruction (d) Top view 3D Reconstruction

(e) Front view 3D Reconstruction (f) Left side view 3D Reconstruction

(g) Right side view 3D Reconstruction (h) Top view 3D Reconstruction

Figure 5.17: 3D reconstruction of KITTI dataset images ’C’ and ’E’ with N=20, Ω=0.55,
s=1.08, W0=0.2 and Aw=15.
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5.3 Numerical results

(a) Front view 3D Reconstruction (b) Side view 3D Reconstruction

(c) Front view 3D Reconstruction (d) Side view 3D Reconstruction

Figure 5.18: 3D reconstruction of the created dataset images ’J’ and ’K’ with N=20,
Ω=0.55, s=1.08, W0=0.2 and Aw=15.

Table 5.3: Volumes per second and pipeline times (ms) with the variation of the number
of scales, the disparity range and the aggregation window for the five resolutions of the
studied images. The values highlighted are the processing times with the reference com-
bination and with the combination for the best visual results obtained. The corresponding
volumes per second are represented in rows ”Volumes p/sec” 1 and ”Volumes p/sec” 2,
respectively.

Image Resolution

256x256 288x384 300x400 375x1242 820x1142

Aw N / Range d=12 d=22 d=32 d=6 d=16 d=26 d=45 d=65 d=85 d=70 d=110 d=150 d=155 d=185 d=215

15 3.67 4.82 6.02 4.28 5.68 7.40 11.21 14.51 17.82 69.10 95.11 119.52 249.28 283.98 329.95
3 20 4.20 5.60 7.20 4.85 6.64 8.82 13.78 18.10 22.35 85.55 118.57 150.64 310.45 355.93 397.66

30 5.21 7.33 9.66 6.05 8.81 12.14 20.13 26.68 33.17 124.31 175.31 220.10 452.10 525.12 590.81

15 4.55 6.44 8.23 5.04 7.22 9.87 17.01 22.98 28.50 97.96 139.80 181.49 382.45 415.25 482.29
9 20 4.98 7.56 9.48 5.78 8.28 11.35 19.69 26.59 33.04 113.92 163.03 209.83 431.61 500.21 565.89

30 6.11 9.04 11.99 6.86 10.68 14.82 26.11 35.10 43.37 153.88 218.03 279.48 575.29 668.68 755.79

15 6.46 9.82 13.21 6.53 10.72 15.34 28.68 39.4 50.05 162.36 234.27 301.25 617.92 719.40 832.10
15 20 7.11 10.75 14.51 7.19 11.70 16.93 31.35 42.99 54.63 176.84 254.00 335.76 680.37 794.88 909.39

30 8.07 12.44 17.24 8.36 14.14 20.27 37.77 51.72 64.74 214.28 313.61 399.12 822.86 972.74 1099.37

Volumes p/sec 1 132.3 120.8 37.6 6.1 2
Volumes p/sec 2 80.4 93.3 43.5 4 1.25
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5. Experimental Results

Table 5.4: CPU vs GPU and the speedup for each image resolution, with the reference
combination.

Resolution CPU (s) GPU (ms) Speedup

256x256 1.31 7.56 173×
288x384 1.80 8.28 217×
300x400 6.70 26.59 252×

375x1242 47.44 163.03 291×
820x1142 153.56 500.21 307×

Fig. 5.19 represents the duration of each phase of the pipeline for an 820x1142 image
resolution, with the reference combination. As predicted, the SymStereo and aggrega-
tion stages are time consuming, corresponding to more than 95% of the processing time.
Despite not being so significant, the occlusion filling algorithm running on the CPU also
impacts the final time, representing 3.7% of the total time. Regarding memory trans-
fers and the remaining kernels, they have a small impact, corresponding to the remaining
1.3%.

CPU

GPU 1

GPU 0

Time (ms)

Memory Transfers SymStereo Aggregation Post-Processing

0 2.3 303.6 480.4 481.3 499.9 500.2

Figure 5.19: Pipeline phase times for an 820x1142 resolution image, with the reference
combination.

5.4 Conclusions

With the conducted tests, it was possible to observe the impact of the multiple pipeline
parameters on the processing times and visual results. The values chosen can greatly
influence both outputs. Therefore, it is important to perform a careful selection in order
to reach a balance between the final processing times and the precision of the 3D views
achieved.
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6. Conclusions

The real-time SymStereo pipeline created for this thesis is a robust dense stereo es-
timation application capable of computing two 3D maps per second, for high-resolution
images, and 132 volumes per second, for low resolution images. With the tests presented,
it was shown how the pipeline reacts to the alteration of its parameters and how that affects
processing times and the final 3D maps.

As stated previously in the literature [4], the logN algorithm performs very well for
most kind of challenges, especially when dealing with slanted surfaces. This thesis ex-
plores the mentioned characteristics a bit further and concludes that for a specific combi-
nation of parameters, slanted surfaces can be fully reconstructed with a high estimation
precision. Unfortunately, this causes textured zones to be less precise, especially around
the discontinuities.

Besides impacting visual results, changing parameters also impacts processing times.
Three parameters are highly influential: the number of wavelets, the disparity range and
the aggregation window size. It is highly important to reach a compromise between these
three values in order to obtain good visual results and real-time processing power.

6.1 Future Work

Despite the reported good performance, the proposed pipeline still has room to evolve,
especially in the aggregation and post processing stages. Several window-based algo-
rithms can be applied in order to analyze more deeply the output results in the aggrega-
tion section of the pipeline. Also, a new occlusion filling algorithm is recommended, one
that is parallelizable since memory transfers between the device and the host’s memory
must be avoided whenever possible. Regarding the noise originated by the sky, there are
methods involving cross correlation between the left and right images that detect pixels
belonging to the sky. This is of interest for this work as it allows the exclusion of the
mentioned pixels from the final 3D reconstruction.
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