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Abstract

Assisted living systems can greatly help disabled or elderly people with their daily tasks, helping them

to maintain a safe, healthy and independent life. Therefore, it is essential that a personal robot is

endowed with cognitive skills in order to understand what surrounds it and decide the best action to

take in accordance with the situation. Recognition of activities in real-time is essential to understand

the behaviour of the person being assisted and to quickly detect any risk situation. It is important

not only to detect these risk behaviours, but also reacting as soon as possible, assisting the person

effectively, avoiding as much damage as possible.

In this research work, an integrated artificial cognitive system was developed for a mobile robot,

which all methods were implemented under the Robot Operating System (ROS). To this end, a mobile

robot equipped with a Red-Green-Blue and Depth sensor (RGB-D) and a laser range finder was used.

By using the RGB-D sensor is possible to detect and track the human skeleton and extract relevant

spatio-temporal features in order to characterize daily activities, including risk situations. A classi-

fication module has been implemented based on a probabilistic ensemble of classifiers as well as a

decision-making module for the robot to react given a recognized activity.

The entire system was tested both offline and online, i.e. either with data previously acquired

(datasets) and also running on-the-fly using a mobile robot. The results attained for activity recogni-

tion in terms of accuracy, precision and recall were 93.41%, 93.61% and 92.25% for assessment on

our dataset and 90.55%, 90.84% and 90.55% for testing in real time application of robot-assisted liv-

ing. The activity recognition framework with the proposed skeleton-based features was also evaluated

using a public state-of-the-art dataset, UTKinect Action Dataset [37], achieving a good performance

compared to other state-of-the-art approaches.

Experiments have shown that the developed system has the potential to be used in robot-assisted

living.

Keywords: Activity Recognition, Assisted Living, Human Skeleton, Kinect, ROS.
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Resumo

Os sistemas de vida assistida podem ajudar fortemente pessoas deficientes ou idosas com as suas tarefas

diárias, ajudando-as a manter uma vida segura, saudável e independente. Para isso, é indispensável que

um robô pessoal seja dotado de capacidades cognitivas, de modo a perceber o que o rodeia e a decidir

a melhor ação a tomar de acordo com a situação. O reconhecimento de atividades em tempo real é

essencial para compreender o comportamento da pessoa a ser assistida e detetar o mais prontamente

possı́vel quaisquer situações de risco. É importante não só detetar esses comportamentos de risco, mas

também agir o mais brevemente possı́vel, assistindo a pessoa de forma eficaz, evitando o máximo de

danos possı́vel.

Neste trabalho, desenvolveu-se um sistema artificial cognitivo integrado num robô móvel onde to-

dos os métodos foram implementados no Robot Operating System (ROS). Para tal, foi usado um robô

móvel equipado com um sensor Red-Blue-Green and Depth (RGB-D) e um laser range finder. Usando

um sensor RGB-D, foi possı́vel detetar e seguir o esqueleto humano e extrair caracterı́sticas espácio-

temporais relevantes de modo a caracterizar atividades diárias, incluindo situações de risco. Foi imple-

mentado um módulo de classificação que tem por base uma fusão probabilı́stica de classificadores e um

módulo de tomada de decisão para que o robô reaja de acordo com a atividade detetada.

Todo o sistema foi testado tanto offline como online, isto é, tanto com dados previamente adquiridos

e guardados como também executando em tempo real, usando um robô móvel. Os resultados obtidos

para reconhecimento de atividades em termos de accuracy, precision e recall foram 93.41%, 93.61% e

92.25% para os testes offline e 90.55%, 90.84% e 90.55% para os testes na aplicação de tempo real para

vida assistida por robôs. O módulo de reconhecimento de atividades com as caracterı́sticas propostas

baseadas no esqueleto foi também avaliado usando um dataset público do estado da arte, UTKinect

Action Dataset [37], alcançando um bom desempenho comparado com outras abordagens do estado da

arte.

As experiências realizadas mostram que o sistema desenvolvido tem potencial para ser usado em



aplicações de vida assistida por robôs.

Palavras-chave: Reconhecimento de Atividades, Vida Assistida, Esqueleto Humano, Kinect, ROS.
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Chapter 1

Introduction

Accordingly to the United Nations [23], world population ageing is increasing every year in nearly all

the countries of the world, and will keep increasing in future decades. This phenomenon results from

increased average life expectancy and declining fertility. The global share of people aged 60 years or

over increased from 9.2% in 1990 to 11.7% in 2013 and will continue to grow as a proportion of the

world population, reaching 21.1% by 2050. 40% of these older people live alone or with their spouse

only. Even the older population is ageing, with a global share of older people aged 80 years or over of

14% in 2013 and a projected share of 19% in 2050.

The increasing ageing population will result in some challenges for society and the health care

system: increase in diseases, such as the Alzheimer’s disease or Parkinson’s disease; increase in health

care costs; shortage of caregivers; dependency due to the increase of diseases. Some older people

will be unable to live independently. Because of these and other issues, researchers in the robotics

domain have been trying to develop technologies that allow the introduction of robots in our daily life.

Assistive robots should be able to blend in with humans, being aware of the surrounding environment

and interacting in a friendly and secure way. This kind of robots can act as caregivers for the elderly and

disabled by helping them in their daily activities, overcoming the necessity of home nurses or family

caregivers.

This dissertation describes a research work on ” Recognition of Daily Activities and Risk Situations

towards Robot-Assisted Living”. This work aims studying classification methods and implement a

classification framework capable of recognizing human activities. In order to test the system in real

scenarios, a mobile robot was used to assemble an integrated system capable of assist humans.
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1.1 Motivation

Recognizing human activities has been a challenging issue for researchers in the last few years. Human

behaviour is an important issue in indoor environments, for several applications. In the context of

security and surveillance systems, it is important to detect abnormal or suspicious behaviours. These

systems can assist security personnel to detect such behaviours in crowded environments. By exploring

recent advances in human pose detection using RGB-D sensors, the features are usually computed

extracting the human body silhouette and 3D skeleton from depth images. After features extraction, a

classification method is trained and adopted to recognize a set of activities.

In this work, we focus our attention on the domain of human-centered robotics, therefore using

human activity recognition as a mean to support people. Mobile robots endowed with cognitive skills

are able to help and support humans in an indoor environment, providing increased availability, aware-

ness and access, as compared to static systems. For that, the robot must be able to understand human

behaviours, distinguishing human daily routine from potential risk situations. In this context, a robot

that can recognize human activities will be useful for assisted care, such as human-robot or child-robot

interaction and also monitoring elderly and disabled people regarding strange or unusual behaviours.

1.2 Objectives

The primary goal of this dissertation is to implement a framework in ROS capable of recognizing human

activities, using a mobile robot with an onboard RGB-D sensor. In addition, different modules are

integrated with the classification framework in order to have a robot capable of autonomously navigate

in an indoor environment to recognize human activities.

Thus, the main objectives are:

• Modelling discriminative skeleton-based features for activity recognition.

• Developing a module for human activity recognition in ROS

• Integrating the activity recognition module and ROS navigation packages towards monitoring the

human activities.

• Developing a reaction module towards assisting a human.

• Evaluating the integrated system in real-time tests in real scenarios.
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1.3 Implementations and main contributions

The following scientific question is addressed in this dissertation: ”How can an artificial system be en-

dowed with cognitive skills in order to recognize human daily activities to monitor and assist humans?”

In this dissertation, we tried to answer this question by understanding how humans perform some

activities and what are the consequences of these activities. The focus of this work is on developing an

artificial cognitive system to be executed by a mobile robot, capable of recognizing daily activities and

risk situations as well as reacting accordingly to the activity being performed.

A dataset of human daily activities and risk situations was collected and relevant features were

extracted from this dataset to properly characterize the activities. Several classification methods were

studied and a probabilistic ensemble of classifiers proposed in [10] was implemented. The approach was

tested and validated offline, using the dataset collected by us and a state of the art dataset, and on-the-

fly, using a mobile robot. The results show a significant improvement on the classification performance

using the adopted approach. A reaction module was developed so the robot make a decision after

detecting the activity being performed. An artificial cognitive system was developed integrating ROS

navigation packages, the classification framework and the reaction module.

The implementations and main contributions of the presented work are the following:

Activity Recognition Framework (Chapter 3):

• Creation of a dataset of human daily activities and risk or unusual behaviours.

• Proposed spatio-temporal skeleton-based features.

Artificial Cognitive System Implemented in ROS, as shown in figure 1.1 (Chapter 4):

• Navigation Module: A simple node for random navigation was implemented, with SLAM and

collision avoidance.

• Classification Module: Implementation of the Dynamic Bayesian Mixture Model (DBMM) [9]

[10] in ROS environment.

• Reaction Module: A module to endow the robot with the ability of deciding what to do after an

activity be recognized.

• Combination of the different ROS modules for a robot-assisted living application.

3



Experimental Results (Chapter 5):

• Comparison of different single classifiers and DBMM.

• Offline validation of DBMM using leave-one-out cross validation on ”unseen” person.

• Online validation of the integrated artificial cognitive system.

In chapter 6 conclusions are drawn and guidelines for future work are provided.

Kinect 

SLAM 

Autonomous 
Navigation 

Navigation Module 

• Creation of a dataset 
of human activities. 

• Implementation of 
DBMM in ROS. 

• Comparison of 
different classifiers 
and DBMM. 

• Development of an 
Activity Recognition 
module.  

• Development of a reaction 
module. 

• Person follower with collision 
avoidance with person. 

• Mobile robot able to do 
SLAM and 
autonomously navigate. 

• Integration of 
Classification Module, 
Navigation Module and 
Reaction Module. 

Mobile Robot 

DBMM 

NBC SVM k-NN 

Classification Module 

Activity detected 

Features Extraction and 
Pre-processing 

Training 

Artificial Cognitive System 

Decision Making 

Reaction Module 

Reaction 
Performance 

Figure 1.1: Implementations and main contributions.
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Chapter 2

Background and State of the Art

This chapter describes the fundamental methodologies required to understand the work presented in

this dissertation. It reviews important background theory required to develop the presented work and

covers related state of the art topics, such as People Detection, Features Extraction, Activity Detection

and Classification Algorithms and Activity Recognition Applications.

2.1 Background

2.1.1 Classification Methods

2.1.1.1 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem

assuming the features are independent from each other.

Bayes’ theorem was first proposed by Thomas Bayes and describes the probability of an event,

based on conditions that might be related to the event. Bayes’ theorem can be stated mathematically as

following:

P(A|B) = P(B|A)P(A)
P(B)

, (2.1)

where P(A) and P(B) are the probabilities a priori of A and B; P(A|B) and P(B|A) are conditional

probabilities, A given that B is true and B given that A is true, respectively. Using Bayesian probability

terminology, equation (2.1) can be written as

5



posterior =
likelihood× prior

evidence
(2.2)

Given a class variable C and a dependent feature vector A1 through An, Bayes’ theorem states the

following relationship:

P(C|A1, ...,An) =
P(C)P(A1, . . . ,An|C)

P(A1, . . . ,An)
(2.3)

Using the naive independence assumption that

P(Ai|C,A1, . . . ,Ai−1,Ai+1, . . . ,An) = P(Ai|C), (2.4)

for all i, this relationship is simplified to

P(C | A1, . . . ,An) =
P(C)∏n

i=1 P(Ai |C)

P(A1, . . . ,An)
(2.5)

Thus, the independent feature model, that is, the naive Bayes probability model is obtained. The

Naive Bayes Classifier (NBC) combines this model with a decision rule, usually using the maximum a

posteriori (MAP) estimation [14] to estimate P(C|A) and P(Ai|C). The corresponding classifier, is the

function that assigns a class label ŷ =C as follows:

ŷ = argmax
C

P(C)
n

∏
i=1

P(Ai|C). (2.6)

2.1.1.2 Support Vector Machine

Support Vector Machines (SVM) are supervised learning models widely used for classification. The

first SVM algorithm was proposed by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963, but

only in 1995 the current version (soft margin) was published by Corinna Cortes and Vapnik [6].

A linear SVM tries to separate two different classes using a straight line (Figure 2.1). That straight

line is determined, selecting two hyperplanes so the gap between the two classes is as wide as possible.

In order to do that, a vector w̄ is defined as the normal vector to the hyperplane. However its

magnitude is unknown and some steps are necessary in order to find the right w̄. We can say, without

loss of generality that for an unknown sample ū, if

w̄ · ū+b≥ 0, then the sample belongs to the first class (2.7)

6
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Figure 2.1: Maximum-margin hyperplane and margins for an SVM trained with samples from two

classes. The white circles belong to the first class and the black circles belong to the second class.

where b is a constant that needs to be determined. Additional constraints are necessary in order to

calculate w̄ and b:

{
w̄ · x̄i +b≤−1, for x̄i of the first class
w̄ · x̄i +b≥ 1, for x̄i of the second class

(2.8)

For mathematical convenience a new variable yi is introduced such that yi = 1 for samples of the

first class and yi =−1 for samples of the second class. Multiplying the respective yi in (2.8) we obtain:

{
yi(w̄ · x̄i +b)≥ 1, for x̄i of the first class

yi(w̄ · x̄i)+b)≥ 1, for x̄i of the second class
(2.9)

Now we have the same equation for samples of both classes. From (2.9),

yi(w̄ · x̄i +b)−1≥ 0⇒ yi(w̄ · x̄i +b) = 1 for x̄i in the margin (2.10)

In order to find the distance between the two hyperplanes of Figure 2.1, we can compute:
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width = (x̄1− x̄2) ·
w̄
‖w̄‖ , (2.11)

where x̄1 and x̄2 are support vector, i.e., a sample of the first class and second class, respectively on

the margins of the hyperplane. Using equation (2.10) it is possible to conclude that x̄1 · w̄ = 1−b and

−x̄2 · w̄ = 1+b. Hence, from equation (2.11), width = 2
‖w̄‖ . The goal is to maximize this width, so:

max
(

2
‖w̄‖

)
⇔ max

(
1
‖w̄‖

)
⇔ min(‖w̄‖)⇔ min

(
1
2
‖w̄‖2

)
. (2.12)

To solve this quadratic optimization problem, introducing the Lagrange multipliers α is necessary:

L =
1
2
‖w̄‖2−

n

∑
i=1

αi [yi(w̄ · x̄i +b)−1] . (2.13)

Then it is necessary to partial derive L with respect to anything that might vary, i.e., w̄ and b, and

equalize to 0:

∂L
∂ w̄

= w̄−
n

∑
i=1

αiyix̄i = 0⇒ w̄ =
n

∑
i=1

αiyix̄i, (2.14)

∂L
∂b

=−
n

∑
i=1

αiyi = 0⇒
n

∑
i=1

αiyi = 0. (2.15)

From (2.14), it is possible to see that w̄ is expressed as a linear combination of the training samples.

Only some αi will be greater than 0 and the corresponding x̄i are exactly the support vectors, which lie

on the margin and satisfy equation (2.10). Replacing in (2.13) the value of w̄ found in (2.14),

L =
1
2

(
n

∑
i=1

αiyix̄i

)(
n

∑
j=1

α jy jx̄ j

)
−

n

∑
i=1

αiyix̄i

(
n

∑
j=1

α jy jx̄ j

)
−

n

∑
i=1

αiyib

︸ ︷︷ ︸
0

+
n

∑
i=1

αi

=
n

∑
i=1

αi−
1
2

n

∑
i=0

n

∑
j=0

αiα jyiy jx̄i · x̄ j

(2.16)

At this stage, the maximization of expression (2.16) can be achieved by the use of the standard quadratic

programming method described in [33]. Once the vector α∗ = (α∗1 ,α
∗
2 , ...,α

∗
N) solution of the maxi-

mization problem has been found, the optimal separating hyperplane is given by,
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w∗ =
n

∑
i=1

α∗i yixi, (2.17)

b∗ =−1
2
〈w∗, xr + xs〉, (2.18)

where xr and xs are any support vector from each class satisfying, αr,αs > 0 and yr =−ys = 1.

If the samples are not linearly separable, it is necessary to perform a transformation φ from the

current space into a space where things are more convenient (Figure 2.2). So now, it is necessary to

maximize φ(x̄i) ·φ(x̄ j) and in order to do that, all we need is a function called Kernel function:

K(x̄i, x̄ j) = φ(x̄i) ·φ(x̄ j). (2.19)

Figure 2.2: Transformation of spaces using a Kernel function [1].

There are several Kernel functions, such as:

• Polinomial: K(x̄i, x̄ j) = (c+ x̄i · x̄ j)
d , where c is a constant and d is the polynomial degree.

• Radial basis function (Gaussian): K(x̄i, x̄ j) = e−
‖x̄i−x̄ j‖2

2σ2 , where σ is a free parameter that should

be tuned.

• Sigmoid: K(x̄i, x̄ j) = tanh(γ x̄i · x̄ j + c), where γ is the slope.

In multi-class classification there are two major methods to use SVM: ”one-against-all” and ”one-

against-one” approaches [17]. The first method consists of constructing one SVM per class which is

trained to distinguish the samples of one class from the samples of all remaining classes. The second
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method consists in constructing one SVM for each pair of classes. If nclass is the number of classes,

then nclass ∗ (nclass−1)/2 SVMs are constructed and each one trains data from two classes.

2.1.1.3 k-Nearest Neighbours

The k-Nearest Neighbours (k-NN) algorithm is among the simplest of all machine learning algorithms.

The basic idea of this method was proposed in 1951 by Fix and Hoges [12], and formalized by Royall

[27]. k-NN is a non parametric algorithm, meaning that it does not make any assumptions about the

probability distributions of the variables being assessed. This is very useful, since in real world, most of

the practical data does not obey the typical theoretical assumptions made. k-NN is also a lazy algorithm

because it does not use the training data points to do any generalization. So, the training phase is

minimal and the target function is approximated locally. The disadvantage of this kind of algorithms is

that the testing phase requires more space, time and memory.

? 

𝑘 = 1 

𝑘 = 3 

𝑘 = 9 

X1 

X2 

Figure 2.3: Example of k-NN classification.

The training set comprises vectors in a multidimensional feature space, each with a class label. On

the other hand, the test set comprises unlabelled vectors, also in a multidimensional feature space. k

is a user-defined constant and, in order to classify an unlabelled vector, the algorithm assigns the most

frequent label among the k training samples nearest to that unlabelled vector. There are several distance
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metrics, but the most widely used is Euclidean distance:

δ (p,q) =
√

(px−qx)2 +(py−qy)2 +(pz−qz)2. (2.20)

Figure 2.3 illustrates an example of k-NN classification. For a k = 1 the unknown sample is classi-

fied as ”green” because the nearest circle is green, while for a k = 3 is classified as ”yellow” (one green

circle vs. two yellow circles). For k = 9 a third class appears to vote, however the green class wins

again with four votes against three yellow and two blue.

2.1.1.4 Dynamic Bayesian Mixture Model

Dynamic Bayesian Mixture Model (DBMM) was first proposed in [9], in order to increase classification

performance on human activity recognition combining single (base) classifiers. In [10], the DBMM is

extended by using the memory of the system for dynamic update of the weighted ensemble, adjusting

the weights based on previous behaviours of the base classifiers.

DBMM is a dynamic probabilistic ensemble of classifiers that uses the concept of Bayesian Mixture

Models (BMM) in a dynamic form in order to combine conditional probability outputs (likelihoods)

from different single classifiers (Figure 2.4). A mixture model is a probabilistic model that assumes all

the data points are generated from a mixture of a finite number of probability distributions. The general

BMM is given as follows:

P(A) =
n

∑
i=1

wi×Pi(A), (2.21)

where n is the number of components (here represented by the number of classifiers); wi is the weight

of each Bayesian classifier output Pi(A), and ∑n
i=1 wi = 1.

The DBMM comprises a set of models A= {A1
m,A

2
m, ...,A

T
m}, where At

m is a model with m attributes;

i.e., observed variables generated for some dynamic process at each time instant t = {1,2...,T}. The

DBMM’s general probability distribution function for each class C can be written as follows:

P(C,A) =
T

∏
t=1

P(Ct |Ct−1)×
n

∑
i=1

wt
i×Pi(A|Ct). (2.22)

Assuming that the process holds the Markov property (recursion) by taking the posterior of the previous

time instant as the prior for the present time instant, (2.22) can be rewritten as follows:
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P(C|A) = β × P(Ct |Ct−1)︸ ︷︷ ︸
dynamic transitions

×
n

∑
i=1

wt
i×Pi(A|Ct),

︸ ︷︷ ︸
mixture model with dynamic w

with

{
P(Ct |Ct−1)≡ 1

C (uniform), t = 1
P(Ct |Ct−1) = P(Ct−1|A), t > 1

,

(2.23)

      

Classifier 1 

Classifier N 

 
 
𝑤1
𝑡 

  
 

𝑤𝑁
𝑡   

𝑃1 𝐴|𝐶
𝑡  

𝑃𝑁 𝐴|𝐶
𝑡  

𝑃(𝐶|𝐴) 

Base Classifiers 

 𝑃 𝐶𝑡|𝐶𝑡−1  

      

𝛽 

𝑡 − 1 

Weights 
Update  𝑃1…𝑁 𝐴|𝐶

𝑡−𝑠  

… t-1 

. 

. 

. 

Figure 2.4: DBMM diagram.

where:

• P(Ct |Ct−1) is the transition probability distribution among class variables over time. A class Ct

is conditioned to Ct−1.

• Pi(A |Ct) is the posterior result of each base classifier at time t, i = {1, ...,n}.

• The weight in the model for each base classifier wt
i is estimated using an Entropy-based confi-

dence measure [9], and afterwards it is updated as explained in the next subsection.

• β = 1
∑ j(P(Ct

j|Ct−1
j )×∑n

i=1 wi×Pi(A|Ct
j))

is a normalization factor, ensuring numerical stability once con-

tinuous update of belief is done.
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Dynamic Update of Weights A weight is assigned to each base classifier, according to previous

knowledge. Since base classifiers can change the performance over time, the local update of the weights

will produce a higher belief when priority is assigned to a base classifier with more confidence on

previous classifications. Assuming the memory of the system, there is a temporal information on the

test set that contains previous posteriors for each base classifier Ωs = {P(A|Ct−1)...P(A|Ct−s)}. This

information can be used together with the weights at the previous time instant wt−1
i to update the

ensemble model. The memory of the system is used during the classification by keeping the previous

posteriors, and consequently, the entropy is acquired on each set of posteriors Hi(Ωs) as follows:

Hi(Ωs) =−
s

∑
j

Ω j log(Ω j). (2.24)

Knowing Hi(Ωs) for each base classifier, the weights P(wi|Hi(Ωs)) are estimated inversely propor-

tional to the entropy:

P(wi|Hi(Ωs)) =

[
1−
(

Hi(Ωs)
∑n

i=1 Hi(Ωs)

)]

∑n
i

[
1−
(

Hi(Ωs)
∑n

i=1 Hi(Ωs)

)] , i = {1, ...,n}, (2.25)

where wt
i is the result for each base classifier, and Hi is the current value of entropy given by (2.24). The

denominator in (2.25) ensures that ∑i wi = 1. The following expression updates the current weights:

wt
i =

wt−1
i ×P(wi|Hi(Ωs))

∑n
i=1 wt−1

i ×P(wi|Hi(Ωs))
, (2.26)

where wt
i is the estimated weight for each base classifier (updated) and wt−1

i is the previous weight at

t−1.

2.1.2 Log-covariance matrices

The idea of log-covariance is based on [15], where examples of manifold Riemannian metrics and log-

covariance applied in 2D image features for activity recognition were used. The rational behind of

log-covariance is the mapping of the convex cone of a covariance matrix to the vector space by using

the matrix logarithm as proposed in [4] (Figure 2.5). A covariance matrix form a convex cone, so that

it does not lie in Euclidean space, e.g., the covariance matrix space is not closed under multiplication

with negative scalars.
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The log-covariance matrix LS of a covariance matrix CS is computed as follows. Suppose that the

eigen-decomposition of CS is given by CS =V DV
′
, where the columns of V are orthonormal eigenvec-

tors and D is the diagonal matrix of eigenvalues. Then LS = log(CS) = V D̃V
′
, where D̃ is a diagonal

matrix obtained from D by replacing D’s diagonal entries by their logarithms.

Figure 2.5: Matrix logarithm that maps covariance matrices from a convex cone to Euclidean space

[15].

2.1.3 Activity classification measures

In this dissertation, three different classification performance measures were adopted to evaluate and

compare our classification framework: accuracy, precision and recall [11]. In the classification con-

text, the terms true positives (T P), true negatives (T N), false positives (FP), and false negatives (FN)

compare the predictions of the classifier with the ground truth.

Accuracy is the proportion of both true positives and true negatives among the total number of cases

examined, obtaining the following expression:

Accuracy =
T P+T N

T P+T N +FP+FN
. (2.27)

Precision is the proportion of predicted positive cases that are correctly true positives, as shown

below:

Precision =
T P

T P+FP
. (2.28)

Recall is the proportion of true positive cases that are correctly predicted positive, obtained as

follows:

Recall =
T P

T P+FN
. (2.29)
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2.2 State of the Art

Automatic human activity recognition has drawn much attention in the Robotics research community

due to the growing demands from many applications, such as surveillance environments, assisted-living

environments and Human-Robot Interaction (HRI).

There are several methods to recognize human activities, but the most common approach is through

visual information. With the appearance of low cost vision sensors, these have become popular in

the Robotics research community. They provide not only RGB information but also Depth informa-

tion (RGB-D sensors), which is a powerful tool for a variety of applications, such as human activity

recognition.

2.2.1 People Detection

The first step in human activity recognition is to detect the human body. Some methods are based solely

on 2D visual information provided by cameras [21]. Local descriptors can be more robust to noise and

occlusion scale, such as scale-invariant feature transform (SIFT) features [28] and histogram of oriented

gradient (HOG) features [8]. More recently, with the popularization of RGB-D sensors much research

has been done on people detection from depth information. In [36] a Microsoft Kinect is used to

human detection, utilizing depth information only. In [22], a multipeople tracking algorithm designed

to be applied on mobile service robots using RGB-D data is proposed. The data is processed by a

detection module that filters the point cloud data, removes the ground and performs a 3D clustering

of the remaining points. Then, a HOG-based people detection algorithm is applied to the projection

onto the RGB image of the 3D clusters extended till the ground. Hence, a set of detections enters in

the tracking module that performs detection-track association as a maximization of a joint likelihood

composed by motion, colour appearance and people detection confidence.

2.2.2 Features Extraction

The second step for human activity recognition is the feature extraction, where meaningful character-

istics of image frames are extracted in order to properly describe an activity. Features extraction is

a crucial step in human activity recognition, since it has a lot of influence on the performance of the

classifier.
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There are several methods to extract features from image frames based on RGB and depth image

or based on the 3D skeleton model provided by some RGB-D sensors. Local descriptors are also

used to extract good features for human activity recognition. In [32], the human pose and motion are

used as features computed from the skeleton model. Together with this set of features, HOG features

descriptors are also used on both RGB and depth images. In [5], depth motions maps (DMM) are used

as features, where each 3D depth frame is used to generate three 2D projected maps corresponding to

front, side, and top views. For each projected map, the motion energy is calculated as the absolute

difference between two consecutive maps. In order to reduce the intraclass variability, for example due

to different subject heights, bicubic interpolation is used to resize all DMMs under the same projection

view to a fixed size. Pixel values are then normalized between 0 and 1 and used as features. Using only

features extracted from the 3D skeleton, it is possible to attain great performance on human activity

recognition. In [9], it is considered the skeleton frame of reference, obtaining all joints relative to the

torso centroid instead of using the sensor frame of reference. Thus, a set of 14 features are computed:

the distances between hands and face, between the left and right hands, shoulders and feet, hip and feet,

distance between the initial position of the hands at initial time and the next frames, using the Euclidean

distance; the distance of the two hands to the face at the same time; the torso inclination; the difference

between the initial hand position at initial time (for left and right hands) and the consecutive frames, as

well as the left and right elbows and the head in x and y coordinates.

2.2.3 Activity Recognition Approaches

After extracting proper features, activity classification is the last step to take into account for human

activity recognition. To achieve a good performance, it is essential to choose a suitable classification

approach, using the extracted features. Basically, the algorithms can be divided into generative models

and discriminative models. Generative models can generate synthetic data points and learn a model

of class-conditional probability distribution functions and make their predictions. Popular generative

models are Naı̈ve Bayes, Hidden Markov Models (HMM), Bayesian networks and Mixture Models,

such as Gaussian Mixture Model (GMM). On the other hand, discriminative models directly estimate

posterior probabilities. Popular models are SVMs, artificial neural networks (ANNs) and k-NNs.

In [26], a GMM-based HMM is used to infer the human activities, using 3D positions of each

skeleton joint. The authors evaluated their approach in a publicly available dataset, however the results

attained are overcome by other state of the art approaches used in the same dataset. In [19], the human
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activities and object affordances are modelled as a Markov random field where the nodes represent

objects and sub activities, and the edges represent their relations over time. Classification is done using

a structural SVM (SSVM) classifier. The authors evaluated their approach using a publicly available

dataset and a dataset collected by them. The results attained for the first dataset shows the potential of

their approach, but even so there are other works in the state of the art with higher classification perfor-

mance. On the other hand, the results obtained for the collected dataset presents higher performance.

The authors also test their approach in a real situation, using a robot to assist people, however they use

object interaction to decide how the robot should react. In our work, we do not use object interaction but

only the activity being performed to decide how the robot should react. To estimate unobserved actions,

the authors in [35] use Bayesian Networks (BN) that integrate the evidence given by the observations.

All extracted features are modelled as probability distributions and processed by seven different BN

to estimate seven actions. All observations from the user model are integrated into the BN and the

sum-product algorithm is applied. The authors evaluate their approach only in real time, using a mobile

robot. Although the classification results are not very good, they show potential for a real time appli-

cation. Other works use the combination of several methods to improve classification performance. In

[34], a combination of dynamic time warping (DTW), Fourier temporal pyramid (FTP) representation

and linear SVM is employed, whereas in [10] a probabilistic ensemble of classifiers is proposed having

a Naive Bayes, a linear-kernel multiclass SVM and an ANN as base classifiers. The co-authored work

presented in [10] was evaluated using two well known state of the art daily activity datasets, outper-

forming other state of the art approaches. The authors also evaluate their approach in real time, using

a mobile robot, showing potential for a robot-assisted living application. However, differently of this

research, their work has different feature models, and brings no reaction module of the robot, since their

framework is focused on the activity recognition.

2.2.4 Activity Recognition Applications

As previously mentioned, human activity recognition has a wide range of applications. In the context

of security and surveillance, one of the first objectives is to detect and track people, so as to support

security personnel. Security surveillance systems endowed with automatic activity recognition can

detect suspicious behaviours and create an alert immediately when security events are detected in order

to prevent potentially dangerous situations. Some researchers perform detection of various types of

violent behaviours such as fighting, punching, stalking [20], [24], [29].
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Table 2.1: Some works in activity recognition in the last few years.
Work Features Classification Method Described Application

Faria et al. [9] [10]
Spatio-temporal skeleton-based
features.

Probabilistic ensemble of single classifiers
(e.g., SVM, NBC, ANN) as a dynamic
mixture model considering the Bayesian
probability.

Monitoring of daily human activities
and future work address to a robotic
application in the scope of assisted
living.

Vemulapalli et al. [34] 3D Skeleton-based features.
Combination of DTW, FTP representation
and linear SVM.

NA.

Chen et al. [5] Depth Motion Maps.
l2-regularized collaborative representation
classifier.

NA.

Piyathilaka et al. [26] 3D Skeleton-based features. GMM based HMM. NA.

Koppula et al. [19]

Object-based features;
3D Skeleton-based features;
Object and skeleton temporal
features.

Structural support vector machine (SSVM).

Robotic applications assisting humans:
React according to the activity being
performed; Proper manipulation of
objects, knowing their affordances.

Sung et al. [32]
3D Skeleton-based features and
HOG features descriptors.

Maximum entropy Markov model (MEMM). NA.

Volkhardt et al. [35]

HOG detector to detect the user’s
pose; Motion histogram; Structural
knowledge by localizing the user
with respect to predefined room
and object maps of the environment.

Bayesian Networks. Mobile companion robot.

Lin et al. [20]
CBS(Change of Body Size) and
Speed.

A GMM classifier is used for each feature
vector. A Confident Frame-based
Recognition algorithm (CFR) combines
results from the multiple GMM classifiers
and gives the recognition results.

Video Surveillance.

Another important application is in the context of assisted-living. Assisted living systems can help

to support elderly and disabled people with their daily activities in order to help them maintain a healthy,

safe and independent life. In a more specific way, robots endowed with activity recognition skills can

continuously monitor the person and assist in simple daily activities as well as detect risk or unusual

behaviours. In [19], a robotic application is presented to assist humans. One of the scenarios presented

is taking medicine: a person opens the medicine container, takes the medicine, and waits as there is

no water nearby. The robot assists the subject by bringing a glass of water on detecting the ”taking

medicine” activity.

Table 2.1 shows some works in activity recognition proposed recently. It summarizes the features

used, as well as the classification method and applications.

18



Chapter 3

Activity Recognition Framework

This chapter describes the necessary steps to develop the proposed activity recognition framework.

An overview of the sensor used for data acquisition is done and the collected dataset is described.

The proposed set of features for activity recognition is explained in detail and finally the probabilistic

classification model adopted is described.

3.1 Data Acquisition

3.1.1 Microsoft Kinect

Figure 3.1: Kinect and its components [2].

In order to recognize human activities, it is required some kind of sensor to aquire data from the

environment. In this work, a Microsoft-Kinect is used, due to its low cost and its capability to provide

RGB images and depth information simultaneously. Given its interesting characteristics, it is suitable
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for robotic applications in indoor environments. Kinect and its main components can be seen in Figure

3.1. It has an RGB camera, an infrared (IR) emitter and an IR depth sensor (IR camera), a multi-array

microphone and a motorized tilt system.

Kinect’s base technology for depth measurements is structured light. The IR emitter emits infrared

light beams in a pattern of speckles that are reflected back to the sensor and read by the IR camera. This

reflected pattern is correlated against a reference pattern stored in the memory of the Kinect, obtained

by capturing a plane at a known distance from the sensor. For each speckle projected on an object

whose distance is different than that of the reference plane, its position in the IR image will be shifted,

originating a disparity image. From the disparity image, it is possible to compute the distance to the

sensor, and therefore the 3D coordinates for each pixel, applying a triangulation method [18]. Figure

3.2 helps to understand how this method works and how can depth be obtained. The depth coordinate

system has its origin at the perspective center of the IR camera and k is an object point. As this point

is closer to the sensor than the reference plane, the location of the speckle on the image plane will be

displaced D in the X direction and a disparity d will be measured by the IR camera. From the similarity

of triangles the following relations can be obtained:

D
b
=

Zo−Zk

Zo
, (3.1)

and
d
f
=

D
Zk

, (3.2)

where Zk is the depth of the point k, b is the base length and f is the focal length of the IR camera.

Substituting D from equation (3.2) into equation (3.1):

Zkd
f b

=
Zo−Zk

Zo
⇔ Zod

f b
=

Zo

Zk
−1⇔ Zk =

Zo

1+ Zod
f b

. (3.3)

Equation (3.3) allows to compute depth from the constant parameters determined by calibration Zo,

f and b.

Accordingly to [18], the expected error on Kinect’s depth measurements is proportional to the dis-

tance squared, as well as the depth resolution. Both the resolution of the RGB and depth image can go

up to 640 x 480 pixels per frame at 30 frames per second (fps). However, Kinect has a limited depth

range of 0.8 to 4 meters in which the measures can be quite accurate. Even in indoor applications, this

limited range can be a barrier difficult to overcome. Table 3.1 summarizes some Kinect specifications.
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Figure 3.2: Depth and disparity relation [18].

Table 3.1: Kinect specifications [2] [3].
Feature Value

RGB image resolution 640 x 480 @30fps
Depth image resolution 640 x 480 @30fps
Depth operation range 0.8m-4m

Viewing angle 43◦vertical by 57◦horizontal field of view
Vertical tilt range ±27◦

3.1.2 Dataset of Daily Activities and Risk Situations

A dataset of daily activities and risk situations was acquired to train the activity recognition framework.

This dataset (Figure 3.3) comprises video sequences of two male subjects and two female subjects

performing eight different activities in a living-room. The sequences were taken using a stationary

Kinect at 30fps that records the skeleton joints coordinates. The daily activities are: 1-walking, 2-

standing still, 3-working on computer, 4-talking on the phone, 5-sitting down; and the unusual or risk

situations are: 6-jumping, 7-falling down, 8- running. Altogether, the dataset contains 28013 frames of

samples spread by the 8 activities as shown in Table 3.2.

This dataset is a challenging one, once there is significant intraclass variation among different re-

alizations of the same activity. For example, sometimes the phone is held with the left hand while

sometimes is held with the right hand. Another challenging feature is that the activity sequences are

registered from different views, i.e., from the front, back, left side, and so on.
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Table 3.2: Number of frames in the dataset.
Activity Number of frames
walking 3961

standing still 4214
working on computer 3826
talking on the phone 3155

running 2088
jumping 2987

falling down 2632
sitting down 5150

Total 28013

Figure 3.3: Few examples of the dataset (RGB with skeleton joints and depth images) which was

created to learn some daily and risk situations.
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Figure 3.4: Fifteen joints skeleton model provided by the OpenNi’s tracker package for ROS.

3.2 3D Skeleton-based Features

We can detect and track the human skeleton using the Microsoft Kinect and the OpenNi’s tracker

package for ROS. This package tracks the skeleton at a rate of 30 frames per second providing the

three-dimensional Euclidean coordinates of fifteen joints of the human body, with respect to the sensor

as shown in Figure 3.4.

Using this information, a set of proposed features for activity recognition is computed as follows:

• Euclidean distances among the joints, all relative to the torso centroid, obtaining a 15×15 sym-

metric matrix with a null diagonal. Let (x,y,z) be the 3D coordinates of two body joints b j with

j = 1,2, ...,15 and bi with i = 1,2, ...,15, then ∀ {bi,b j}, the distances were computed as follows:

δ (b j,bi) =
√

(bx
j−bx

i )
2 +(by

j−by
i )

2 +(bz
j−bz

i )
2 (3.4)

Subsequently, the null diagonal is removed, obtaining a 14× 15 matrix M to compute its log-

covariance as follows:

Mlc = U(log(cov(M))), (3.5)

where cov(Mi, j) = (Mi− µi)(M j− µ j); log(·) is the matrix logarithm function (logm) and U(·)
returns the upper triangle matrix composed by 120 feature elements.
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• The global skeleton velocities, assuming the 3D coordinates of 14 joints in the case of having

the torso centroid as origin; and 15 joints in the case of having the sensor frame as origin were

computed as follows:

v j =

√
(bt

jx−bt−tw
jx )2 +(bt

jy−bt−tw
jy )2 +(bt

jz−bt−tw
jz )2

frate× tw
, (3.6)

where v j is the velocity of a specific skeleton joint j; b jd represents the position d = {x,y,z} of

a skeleton body joint j in the current time t, and t− tw represents some preceding frames, herein

tw = 10. If tw is too big, important information is lost. On the other hand, if tw is to small,

irrelevant data will be used because the human motion does not change significantly in so little

time; the frame rate is set to frate = 1/30.

• Differently of the aforementioned velocities in the torso frame of reference, herein, relative to

the sensor frame, for all joints, for each dimension individually, we computed the difference

δ (bt
jd ,b

t−tw
jd ) between the position at a given frame and the preceding 10th frame. Using these

values, we computed the velocities of the same joints for each dimension individually, v j =
bt

jd
−bt−tw

jd
frate×tw

, obtaining additional 45 features.

• The angles variation of certain joints play a crucial role in carrying out many activities. We are

interested in knowing whether a person is sitting or standing, so we compute the angles of both

right and left elbows in the triangle formed by the hands, elbows and shoulders as well as the

angles of the hip joints in the triangle formed by the shoulders, hips and knees and the angles of

the knees in the triangles formed by the feet, knees and hips (Figure 3.5). The angle θi is given

by:

θi = arccos
(
(δ j12)

2 +(δ j23)
2− (δ j13)

2

2×δ j12×δ j23

)
, (3.7)

where δ j12 is the distance between two joints, e.g. j1 and j2, that are forming a triangle in the

skeleton. We have 2+2+2=6 features for angles, since we are considering the left and right side

for the body joints. In addition, we compute the difference between these angles at a current

frame and the preceding 10th frame, θvi = θ t
i −θ t−10

i , obtaining additional 2+2+2=6 features.

Thus, in total, we attained a set with 206 spatio-temporal skeleton-based features, useful to discrim-

inate different classes of activities.
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Figure 3.5: Angles used as features. (a) shows the angle of elbows in the triangle formed by the hands,

elbows and shoulders. (b) shows the angle of the hip joints in the triangle formed by the shoulders, hips

and knees. (c) shows the angle of the knees in the triangle formed by the feet, knees and hips.

3.2.1 Features pre-processing

Before using the features set in the classification module, a pre-processing step is applied. Normal-

ization, standardization or filtering may be a requirement for many machine learning estimators, as

they can behave badly if no pre-processing is applied to the features set. So, in the dataset case, we

apply a moving average filter which smooths data by replacing each data point with the average of the

neighbouring data points defined within the span. This smoothing process is given by the difference

equation

ys(i) =
1

2N +1
(y(i+N)+ y(i+N−1)+ . . .+ y(i−N)) , (3.8)

where ys(i) is the smoothed value for the ith data point, N is the number of neighbouring data points on

either side of ys(i), and 2N + 1 is the span. In this work, N = 5 was determined empirically, giving a

span of 11.

Subsequently, a normalization step is applied to the features set in such a way that the values of

minimum and maximum obtained during the training stage were applied on the testing set as follows:

Ftri =
Ftri−min(Ftr)

max(Ftr)−min(Ftr)
, and Ftei =

Ftei−min(Ftr)

max(Ftr)−min(Ftr)
, (3.9)

where Ftr is the set of features for training and Fte is the set of features for test; i is an index to describe

a set of features in a specific frame; max(·) and min(·) are functions to get the global maximum and
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minimum value of a feature set.

In the real-time case, we did not apply the moving average filter because it returns worse results.

The normalization step is done in the same way as in the offline tests because we keep the maximum

and minimum values of the training set.

3.3 Probabilistic Classification Framework

After features extraction, the next step is the classification. As already mentioned in chapter 1, a

probabilistic ensemble of classifiers called DBMM is used. A detailed theoretical explanation of this

method is done in section 2.1.1.4. Several classifiers can be used in the DBMM as base classifiers. In

this work, a DBMM was designed using a NBC, a multi-class SVM classifier with a linear-kernel and

a k-NN. The SVMs were trained according to a one-vs-one scheme, with the Cost parameter C set to

1.0 and classification outputs were given in terms of probability estimates. The k-NN was trained using

20 neighbours determined empirically, and classification outputs were given in terms of probability

estimates as well.

Figure 3.6 describes the DBMM designed for this work. A training is previously done to define the

initial weights and the likelihoods for each base classifier. For each frame, features are extracted and

each base classifier returns the posterior probability for each activity. These posteriors are then used to

update the weights and posteriorly to perform the DBMM fusion, as explained in section 2.1.1.4. The

DBMM returns a new posterior for each activity which is used in the next frame as the prior probability

for the fusion. After N frames, the activity for which the DBMM returned the highest posterior is

assumed as the activity being performed.
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Figure 3.6: DBMM approach at current (time t) frame classification.
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Chapter 4

Artificial Cognitive System Implemented in

ROS

In this chapter an overview of ROS implementation of the developed artificial cognitive system is given

and the hardware and drivers necessary to run this system are described. Details of the implementation

in ROS of each module that makes up the system are given, such as navigation module, classification

module and reaction module.

4.1 System Overview

The proposed artificial cognitive system was implemented in ROS, using a mobile robot as shown in

Figure 4.1. The system comprises three main modules: one module in charge of autonomous navigation

in an indoor environment, other module for recognizing the learned human activities from visual input,

and the other in charge of triggering a reaction according to the activity detected.

In order to properly test the system in real scenarios, a mobile robot is used. Therefore, a personal

robot endowed with cognitive skills, capable of monitoring the behaviours of a person should be able

to autonomously navigate an indoor environment. The navigation module uses the odometry and laser

scans from the robot to map the environment and be located on this map, randomly navigating, avoiding

obstacles collision.

While the robot is navigating, Kinect is sending RGB-D data to the classification module. Once

a skeleton is detected, the robot stops and the features extraction process starts. Then, classification

is done using the DBMM and an activity is recognized. Once the system knows the activity being
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Figure 4.1: System overview.

performed, the reaction module is in charge of selecting what the robot should do next. Each activity

has a predefined reaction associated in a lookup-table, including warnings, questions or changes in

navigation.

4.2 Hardware and Drivers

The mobile platform used in this work is a Nomad Scout mobile robot (Figure 4.2). This mobile robot is

equipped with a Hokuyo URG-04LX Laser Range Finder, a Raspberry Pi to control the platform motors

and encoders used for odometry. An elevated structure was built to support the Microsoft Kinect, and

an Asus laptop is used, mounted on top of the robot.

ROS already provides a large set of software to develop robotic applications. In this case, the

OpenNi’s driver is used to acquire all the data from the Kinect. In order to make the bridge between

the hardware of the robot and ROS, a robot driver, implemented in [7] was used. This driver allows the

robot to send odometry information to ROS and ROS to send velocity commands to the wheels of the

robot.
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Figure 4.2: The robotic setup used for experiments. It is possible to see the Nomad Scout robot with

the elevated structure and Kinect on top of it. On top of the robot is the Asus laptop that was used to

control the platform and in the small silver support in the middle of the robot is the Hokuyo URG-04LX

Laser Range Finder.

4.3 Navigation Module

The navigation module (Figure 4.3) comprises three main ROS nodes: the move base node, the isr hector

mapping node and the simple navigation goals node.

The move base node consists of a global planner that produces global trajectories between two

points in the world map, and a local planner to follow that path in the most optimal manner. The

global planner uses a global costmap built dynamically from received occupancy grid map, every time

the map is updated. Based on this costmap, the global planner performs a tree search to find the

optimal path. The local planner uses a local costmap which is also built dynamically with raw data

available from range sensors, in this case a laser range finder. The obstacles are updated and a dynamic

window approach is implemented to collision avoidance [13], having the global path as reference.

The move base node subscribes the /odom topic for the local planner and the /tf topic with the sensor

transforms. It also subscribes the /move base simple/goal topic to get the destination coordinates and

generate the best path to reach that point. In order to execute the planned path, this node sends a stream
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Figure 4.3: Navigation module implementation. Nodes represented on ellipses and topics on rectangles.

of velocity commands through the /cmd vel topic to the wheels of a mobile robot.

The isr hector mapping SLAM node estimates the current pose of the robot and updates the map

of the environment. This node was modified in [7], based on Hector Team SLAM’s method, which was

modified to receive an initial map of the static environment. In this work, we do not use an a priori

map of the environment, but one can be used in the future, if it is available. This node subscribes to

the /scan topic to get the readings of the laser used by the SLAM system. Then, it gets the map data

from the /map topic, which is latched, and updated periodically. It publishes the estimated robot pose

with or without a Gaussian estimate of uncertainty using the /poseupdate and /slam out pose topics,

respectively.

The simple navigation goals node was created to the robot randomly navigate until a person is

detected. This node publish to the /move base/goal topic random goals, i.e., x and y coordinates and

angle yaw for robot orientation, every five seconds. Once the skeleton is detected, the robot stops and

starts the activity recognition performed by the classification module.
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4.4 Classification Module

In order to link the Kinect with ROS, the OpenNi’s driver is used. The PrimeSense NiTE 2.0 middleware

library made possible to track the human skeleton without being necessary any kind of calibration or

starting pose (e.g. Psi pose). In figure 4.4, the openni tracker node is responsible for detecting the

human skeleton and track it while it is within the range of the Kinect sensor. This node broadcasts

15 skeleton joints using the /tf topic. The tf listener node is continuously listening for new tf frames

and as soon as the skeleton frames are detected, it immediately gets theirs x,y,z coordinates. The

3D coordinates are provided in the sensor frame of reference, however, a transformation is applied in

order to have the coordinates in the skeleton frame of reference. Both information is kept and saved

in two different text files. The classifica node reads five seconds of data from both text files and

compute the features described in section 3.2. This node was written in Python in order to use the

open source machine learning library scikit-learn [25]. This library has many simple and efficient tools

that can be used for classification. A NBC and a multi-class SVM classifier with a linear-kernel were

previously trained and the train data was saved. The node uses this data and the features extracted to

obtain the individual classification from each base classifier. Then, the DBMM combines the individual

classifications in order to recognize the activity being performed.

openni_tracker /tf

classifica

tf_listener

Classification Module

right_shoulder_1head_1 neck_1 torso_1 left_shoulder_1 left_elbow_1 right_elbow_1

openni_depth_frame

left_hip_1

left_knee_1 right_hip_1 right_knee_1 left_hand_1 right_hand_1 left_foot_1 right_hand_1

Figure 4.4: Classification module nodes and topics. In the dashed rectangle are presented the tf frames

for each skeleton joint and the tf frame openni depth frame as the sensor frame of reference.
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4.5 Reaction Module
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Figure 4.5: Reaction module nodes and topics.

After recognizing the activity being performed, the system should be able to make a decision, using

for this purpose the reaction module (Figure 4.5). Once an activity is recognized by the classification

framework, the proper reaction is taken from the look-up table to be executed by the mobile robot.

The reaction of the robot depends on what activity is detected (Figure 4.6). In the event of the

person telling the robot to follow him/her, the follower kalman node is executed. The robot will follow

the person, keeping a safety distance of 2.5 meters and an orientation margin of ±0.2 radians. In order

to do that, the node will get the torso coordinates using the tf topic and computes the distance remaining

to be 2.5 meters away. By keeping the mentioned distance, we ensure that the person remains within the

range of Kinect and the robot do not exceed the social space, defined in 1966 by Hall [16] as a radius

between 1.2m and 3.6m (4-12 feet). This node can use the /cmd vel topic or the /move base goal topic.

In the first case, if a positive value is obtained, the robot will move that distance. If the value is negative,

the robot will move backwards. Using the /cmd vel topic the robot is not aware of what surrounds it, so

this method is not collision free. On the other hand, using the /move base goal topic, the robot takes

into account the obstacles around it. As there is no sensor in the rear of the robot, if the distance is less

than 2.5 meters the robot stands still, orientating itself with the person, turning on itself. The advantage
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Figure 4.6: Decision tree in reaction module.

in using the /cmd vel topic is that we have total control of the robot velocity and the robot performs a

smoother motion when compared with the one using the /move base goal topic.

A Kalman filter is used to estimate the trajectory of the person one second ahead in order to avoid

collision with the robot. If a collision trajectory is detected, the robot should step away, in order to the

person walk through safely. For the prediction of the human motion, a position model was adopted,

where the state includes position (x(k);y(k)) of the human target:

{
x(k) = x(k−1)+ vx(k−1)×∆t
y(k) = y(k−1)+ vy(k−1)×∆t

(4.1)

with ∆t = t(k)− t(k−1).

The a priori estimate of the Kalman filter is given by:

xe(k) = φ(k−1)xe(k−1), (4.2)

where φ is the state transition model, which in this work is the identity. The error covariance matrix P

for the new xe is given by:

35



P(k) = φ(k−1)P(k−1)φ(k−1)T . (4.3)

Then, a measure y(k) is made and the new estimate is given by:

xe(k) = xe(k)+K(k−1)(y(k)− xe(k)), (4.4)

where K is the Kalman filter gain. This gain is computed as follows:

K(k) = P(k)(P(k)+R(k))−1. (4.5)

where R is the error covariance matrix of the sensor. The new xe has an error covariance matrix given

by:

P(k) = (I−K(k))×P(k)× (I−K(k))T +K(k)R(k)K(k)T . (4.6)

Using the torso coordinates as measures, it is possible to compute the x velocity vx and y velocity

vy as follows:

{
vx(k) = (xtorso(k)− xtorso(k−1))×∆t
vy(k) = (ytorso(k)− ytorso(k−1))×∆t

(4.7)

The node estimates the position of the person one second ahead and if the estimate distance between

person and robot is less than one meter, the robot will execute a pre-defined maneuver in order to avoid

collision with the person that is coming in the robot direction. In order to perform that maneuver,

velocities are sent to the robot wheels using the /cmd vel topic.

If the activity performed is running or jumping, the robot will warn the person that it is not allowed

to behave like that. Using the voice synthesizer package sound play from ROS, it is possible to convert

text into audio. The say node takes text as input and publishes the data through the /robotsound topic.

The sound play node subscribes the same topic and transforms the data into audio, using the computer

speakers.

If the activity detected is falling on the floor, the robot should be able to assume that a risk situation

has come up. The robot will ask if the person needs some help, using the same sound play node as

before. In order to recognize the person’s answer the pocketsphinx package is used. This package
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recognizes a single word or a stream of words from a vocabulary file previously created. In this case,

the vocabulary comprises the following words: ”no”, ”yes”, ”please”, ”help”, ”follow”, ”me”. The

package can recognize combinations of these words, such as ”please help me”. The recognizer node

receives audio from a microphone as input and translate it into text publishing to the /output topic. If

the robot gets a positive answer (e.g. ”yes”), then, it will call a doctor or a relative; otherwise, with a

negative reply the robot will keep monitoring.

Finally, if the activity recognized is standing still, working on computer, talking on the phone or

sitting down, the robot will keep monitoring the person, since these activities do not show any risk

situation.
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Chapter 5

Experimental Results

In this chapter, the performance of the proposed system is assessed and validated. First, the activity

recognition framework is validated offline, using the collected dataset and a public available benchmark

dataset. Then, several experiments are carried out on-the-fly in order to test and validate the integrated

system developed.

5.1 Performance on datasets

5.1.1 Performance on original dataset

Before testing the proposed classification framework on-the-fly, using a mobile robot, experiments were

also done offline, using the collected dataset described in 3.1.2.

The validation technique adopted for assessing the results was the leave-one-out cross-validation

(LOOCV). The idea is to verify the capacity of generalization of the classifier by using the strategy of

”new person”, i.e., learning from different persons and testing with an unseen person. As this dataset

comprises four subjects, four tests are performed. The classification results are presented in a confusion

matrix and with the performance measures of Accuracy, Precision, Recall of the overall of the four tests.

Figure 5.1 shows the results in a single confusion matrix. Table 5.1 shows the performance in terms of

Precision (Prec) and Recall (Rec) of this approach for each activity. The results show that using DBMM

with the proposed features, improvements in the classification were obtained in comparison with using

the base classifiers alone. The overall results attained were: accuracy 93.41%, precision 93.61% and

recall 92.25%. For comparison purposes, Table 5.2 summarizes the results from single classifiers and
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an average ensemble compared with DBMM, showing the improvement achieved using the described

skeleton-based features in 3.2.

Table 5.1: Performance on the dataset (“new person”). Results are reported in terms of Precision (Prec)

and Recall (Rec).
DBMM

Activity Prec Rec

walking 89.63% 99.73%
standing still 94.86% 98.13%

working on computer 95.93% 93.20%
talking on the phone 93.64% 87.96%

running 92.81% 85.20%
jumping 92.52% 88.83%

falling down 97.24% 90.04%
sitting down 92.27% 94.88%

Average 93.61% 92.25%

Table 5.2: Global results using single classifiers, a simple average ensemble (AV) and the DBMM.
Method Acc. Prec. Rec.

NBC 82.90% 85.79% 82.67%
SVM 88.47% 89.02% 87.62%
k-NN 87.98% 90.09% 87.06%
AV 85.29% 87.74% 84.68%

DBMM 93.41% 93.61% 92.25%

5.1.2 Performance on UTKinect Action Dataset

In order to confirm the effectiveness of the classification framework, the proposed method was also

evaluated on a second dataset: UTKinect [37]. This dataset contains 10 types of human actions in an

indoor environment: walk, sit down, stand up, pick up, carry, throw, push, pull, wave, clap hands. Each

action was performed by 10 different persons for 2 times: 9 males and 1 female.

This dataset presents some challenging differences when compared with the dataset collected for

this work. First, the durations of the action clips vary dramatically. The length of sample actions ranges

from 5 to 120 frames which can lead to lack of information for some actions. Second, another difficulty

is added by the presence of occlusions, caused by human-object interaction or by the absence of some

body parts in the field of view.

We use the features described in section 3.2, however some modifications were necessary. The

skeleton model used in UTKinect dataset has 20 joints, so the features are computed using 20 joints

instead of 15, totalling 322 features instead of 206. Since the smaller sample action has only 5 frames,
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Figure 5.1: Confusion matrix obtained from the DBMM classification applied on the dataset

it makes no sense to use a temporal window of 10 frames. Because of that, for this dataset, a temporal

window of 1 frame is used.

To compare the results attained with other state of the art works, the experiment protocol proposed

in [37] is used. Since there are 10 subjects performing each activity two times, 20 tests were performed

using LOOCV. The results attained are presented in a confusion matrix in Figure 5.2. Table 5.3 shows

the overall accuracy of DBMM (91.29%) compared with some selected works of the state-of-the-art.

Our results outperforms the ones attained by some other works, including the authors of the dataset

[37]. Reminding that the focus of this thesis is a real-time application, some works have better results

than ours in this dataset, because they processes more features. In order to outperform the two works

referred in table 5.3, more features should be added to the bag of features. Some examples of features

to improve the classification performance on this dataset, and to outperform all other works, is the

energy model of the autocorrelation applied over the difference of two consecutive poses of the 3D

skeleton computed from the joint coordinates as shown in [10]. However, since the focus of this work

is a real time application, we do not attempt to use other features beyond of the proposed ones in this

work in order to keep an acceptable processing time. Even so, with the proposed features we obtained

competitive results.
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Figure 5.2: Confusion matrix obtained from the DBMM classification applied on UTKinect dataset.

Table 5.3: Comparison of approaches that use the UTKinect dataset in terms of overall accuracy.

Columns 3 an 4 point out the feature types used by the approaches.
Method Acc SK joints Depth

Vemulapalli et al. [34] 97.08% X
Slama et al. [30] 95.25% X

Proposed framework (DBMM) 91.29% X
Xia et al. (dataset authors) [37] 90.92% X

Slama et al. [31] 88.50% X

5.2 Performance on-the-fly using a mobile robot

The experimental tests using the proposed approach for a real time application are a little bit different

than the experimental tests on the dataset. In this case, the robot will acquire 5 seconds of RGB-

D sensor data for features extraction and classification. Only the NBC and SVM were used as base

classifiers for the DBMM fusion, because they are enough for obtaining good results, thus, avoiding

spending more processing time using other base classifiers. After 5 seconds of frames classification,

a final decision is made for activity recognition and to trigger a proper robot reaction. The proposed

framework is capable of recognizing different activities transitions that happens sequentially in case of

a person transit from one activity to another one, e.g., a person that is standing and sequentially pass to

a sitting down position and consequentially working on the computer.
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Figure 5.3: Scenarios for experimental tests. Entrance of the ISR (left) and ISR shared experimental

areas (right).

Three tests were carried out for each activity with three different subjects. One of the subjects was

already ”seen” in the training, while the rest are ”unseen” subjects. The subjects were divided in two

scenarios shown in Figure 5.3. One subject performed the activities at the entrance of the Institute of

Systems and Robotics (ISR) and the other two in a shared room intended for experimental tests, also at

the ISR. Figure 5.4 shows some examples of tests of daily activities and unusual or risk situations that

the mobile robot correctly recognized.

All activities were classified with a large percentage of certainty, so that the overall performance

of classification is shown in Figure 5.5. The overall results attained in real-time experiments were:

accuracy 90.55%, precision 90.84% and recall 90.55%.

Table 5.4 shows the results in terms of recall of each test for each subject. Looking at the results

attained, it is possible to conclude, as expected, that the best performance is achieved for the ”seen”

person (subject 1). However, the difference of results between subjects is not very significant in most

cases, which indicates that the fact of being or not a ”seen” person is not a key factor for the performance

of the classification. The most important factor in a real-time application is that in the end, the activity

being performed is correctly recognized.

Since the robot correctly classified the activity performed, it also successfully reacted accordingly

to the situation. Figure 5.6 shows a sequence of events from an activity that is being recognized (in this

case falling) to react according to this activity. First, the skeleton of a person is detected and tracked,

initiating the monitoring stage. Then, the person falls on the floor and the robot correctly recognize the

risk situation ”falling”. Detecting such a behaviour, the robot asks if the person needs help. The robot
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receives an affirmative answer from the person and immediately calls for help.

Table 5.4: On-the-fly results in terms of recall for 3 different subjects. One subject seen and two unseen.
Activity

Overall
Test walking

standing
still

working on
computer

talking on
the phone

running jumping
falling
down

sitting
down

Subject 1
(seen)

1 96.30 100 100 59.26 85.19 85.19 85.19 96.30 88.43
2 96.30 100 100 100 85.19 88.89 95.45 96.30 95.27
3 92.59 100 92.59 100 85.19 88.89 92.86 96.30 93.55

Average 95.06 100 97.53 86.42 85.19 87.65 91.17 96.30 92.42

Subject 2
(unseen)

1 66.67 100 96.30 100 96.30 81.48 74.07 70.37 85.65
2 81.48 85.19 96.30 92.59 85.19 92.59 74.07 92.59 87.50
3 81.48 100 88.89 100 85.19 92.59 95.45 92.59 92-02

Average 76.54 95.06 93.83 97.53 88.89 88.89 81.20 85.18 88.39

Subject 3
(unseen)

1 82.14 96.30 100 100 73.33 96.30 85.19 88.89 90.27
2 92.86 96.30 100 100 80.00 92.60 100 85.19 93.37
3 82.14 92.59 100 100 73.33 96.30 81.48 85.19 88.88

Average 85.71 95.06 100 100 75.55 95.07 88.89 86.42 90.84

Overall Average 85.77 96.71 97.12 94.65 83.21 90.54 87.09 89.30 90.55

Figure 5.4: Shots of tests of activity recognition (‘unseen” person) using a mobile robot.

The on-the-fly tests were performed using an Asus laptop with an Intel i7-4700HQ 2.4GHz CPU and

16Gb of RAM, running Ubuntu 12.04 and ROS Hydro. The average computation time, since features

extraction to the classification or reaction, if applicable, was 0,1435 seconds. This low computation

time demonstrates that the proposed system is computationally efficient.

Regarding the following task with collision avoidance with person, rigorous tests were not carried

out, reminding that this is an additional ability provided to the robot. However, whenever the robot was

performing this task, it was successful, with few exception, namely perform the collision avoidance

maneuver too soon. In the future, this ability should be evaluated in a proper way and improved if

necessary.
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Figure 5.5: DBMM on-the-fly classification confidence (average) presented in a confusion matrix.

Do you
need help?

Yes

I will call
a doctor

Figure 5.6: Sequence of events on detecting a person falling and reacting.

45



46



Chapter 6

Conclusions and Future Work

Human activity recognition is a fundamental step in understanding the human behaviour in several sce-

narios. In this work, a fully integrated robotic application was developed in order to recognize human

activities in real scenarios. A dynamic probabilistic ensemble of classifiers (DBMM) was implemented

for daily activity recognition using a proposed spatio-temporal 3D skeleton-based features. This ap-

proach was tested in datasets and on-the-fly, bearing in mind an assisted-living application.

Analysing the experimental results in datasets, it is possible to conclude that DBMM truly improves

the classification performance, corroborating the conclusions in [10]. DBMM results outperforms other

single classifiers in terms of overall accuracy, precision and recall measures.

The robotic application was developed in ROS and comprises a navigation module, a classification

module and a reaction module. In the on-the-fly tests, the robot was able to recognize the activity being

performed with great confidence, proving that DBMM achieves good results online. Once recognized

the activity, the robot was able to make a decision according to the situation, assisting a person if

needed, showing that the proposed framework has good potential for robot-assisted living.

Regarding the goals initially proposed in this work, the main contributions are:

• Extending the use of DBMM to real-time applications using proposed discriminative 3D skeleton-

based features, which can successfully characterize different daily activities;

• Combining different ROS modules running in parallel towards a real time robot-assisted living

application;

• Assessment and validation: (i) leave-one-out cross validation of the activity recognition using
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our dataset; (ii) comparison of different classification models using the proposed features (NBC,

SVM and k-NN); (iii) triggering of robot (re)actions given a recognized activity.

In spite of the good results, there is always room for improvement, so further work should be

developed in order to achieve a proper companion robot. The navigation module should be refined so

that the robot navigates the environment in a more efficient way, instead of randomly.

More activities and reactions could be added as well, to cover more possible situations. Additional

contextual information should be added, such as ”who”, ”where”, ”when” in order to fully understand

human behaviours. The same activity may have different behaviour interpretations depending on the

context in which it is performed (e.g. where it is performed).

Finally, in terms of hardware, a better equipped robot can assist a human in a more effective way.

A simple robotic arm brings a lot of possibilities with regard to assist elderly or disabled humans.
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Probabilistic Human Daily Activity
Recognition towards Robot-assisted Living

Diego R. Faria, Mario Vieira, Cristiano Premebida and Urbano Nunes

Abstract— In this work, we present a human-centered robot
application in the scope of daily activity recognition towards
robot-assisted living. Our approach consists of a probabilistic
ensemble of classifiers as a dynamic mixture model considering
the Bayesian probability, where each base classifier contributes
to the inference in proportion to its posterior belief. The
classification model relies on the confidence obtained from an
uncertainty measure that assigns a weight for each base clas-
sifier to counterbalance the joint posterior probability. Spatio-
temporal 3D skeleton-based features extracted from RGB-D
sensor data are modeled in order to characterize daily activities,
including risk situations (e.g.: falling down, running or jumping
in a room). To assess our proposed approach, challenging public
datasets such as MSR-Action3D and MSR-Activity3D [1] [2]
were used to compare the results with other recent methods.
Reported results show that our proposed approach outperforms
state-of-the-art methods in terms of overall accuracy. Moreover,
we implemented our approach using Robot Operating System
(ROS) environment to validate the DBMM running on-the-fly
in a mobile robot with an RGB-D sensor onboard to identify
daily activities for a robot-assisted living application.

I. INTRODUCTION

Nowadays with the advances of technology and the broad
research worldwide, a cognitive robot can act as human
assistant in the context of robot-assisted living, and also
having the potential to offer social and entertaining interac-
tion experiences through human-robot interaction. For that,
in order to enable this natural human-robot interaction, the
robot needs to infer the human intentions, their daily routine
and potential risk situations by observing them. In this work,
we focus our attention in the domain of human daily activity
recognition. In this context, a robot that can recognize daily
activities will be useful for assisted care: human-robot or
child-robot interaction (e.g. in coping tasks); and also mon-
itoring elderly and disabled people regarding their activities
at home. In our previous work [3], we proposed a Dynamic
Bayesian Mixture Model (DBMM) that was applied as a
probabilistic loop, where the model recursively uses the prior
information to reinforce current classification as a first-order
Markov process. Herein, we are extending this model by
using the memory of the system for dynamic update of the
weighted ensemble, adjusting the weights based on previous
behaviors of the base classifiers to improve the performance
of classification. We validated the DBMM performance using

This work has been supported by the Portuguese Foundation for Science
and Technology, COMPETE and QREN programs under Grant AMS-
HMI12 RECI/EEI-AUT/0181/2012. The authors are with Institute of Sys-
tems and Robotics, Dept. of Electrical and Computer Engineering, Univer-
sity of Coimbra, Polo II, 3030-290 Coimbra, Portugal (emails: diego, mario,
cpremebida, urbano@isr.uc.pt).

different datasets and also using a mobile robot in an on-
the-fly application for monitoring tasks. In the scope of
human daily activity recognition, experimental results show
that our proposed probabilistic ensemble is robust and with
better performance than single classifiers and state-of-the-art
approaches as well. Notice that, our framework relies only on
3D skeleton-based features, which is enough to characterize
different classes of activities. The main impact of this work
are the following:
• Employing a local update of weights on the DBMM

using the memory of the system (i.e. previous base
classifier behaviors) to obtain better classification per-
formance.

• Modeling meaningful spatio-temporal features relying
on skeleton distances, energy model and autocorrelation
of joint translational movements, which can successfully
characterize different activities.

• Assessment and validation: (i) comparing with single
classifiers and state-of-the-art activity recognition ap-
proaches; and (ii) on-the-fly tests using a mobile robot
for robot-assisted living.

The remainder of this paper is organized as follows. Sec-
tion II covers selected related works. Section III introduces
our approach, detailing the extended model with dynamic
update of weights. The proposed skeleton-based features is
presented in section IV. Section V presents the performance
of the DBMM using state-of-the-art datasets and using a
mobile robot for assisted living. Finally, Section VI brings
the conclusion and future work.

II. RELATED WORK

By looking to recent advances of works that use RGB-
D sensors, several works focus on human-pose detection
for human activity recognition [4] [5]. In [6], a maximum
entropy Markov model (MEMM) for human activities classi-
fication was adopted, where features were modeled using the
Histogram of Oriented Gradient (HOG). In [7], each activity
is modeled into sub-activities, while object affordances and
their changes over time were used with a multi-class Support
Vector Machine (SVM) classifier. In [8], a bag of kinematic
features was used with a set of SVMs, for activity classifi-
cation. Other works on the recognition of human activities
focus their research on how to model the attributes efficiently,
to successfully obtain reliable classification [9] [10] [11].
In [12], a descriptor which couples depth and spatial infor-
mation to describe humans body-pose was proposed. This
approach is based on segmenting masks from depth images
to recognize an activity. Sparse coding and temporal pyramid



matching is proposed in [13] for human action recognition.
They use depth data for a learning algorithm that employs
a discriminative class-specific dictionary. In [14], a feature
descriptor for action recognition is presented. Depth motion
maps are built given projection views in order to capture
motion cues. Later on, a compact feature representation is ob-
tained by using local binary patterns. Regarding our proposed
framework, it allows the combination of different classifier
models, which is advantageous to increase the classification
performance. The DBMM dynamically reinforces the clas-
sification as a probabilistic loop, updating the initial learned
weights given a confidence level to generate a distribution
conditioned to the previous posteriors. Moreover, the DBMM
approach has success in obtaining better results compared
with benchmarked methods for activity recognition.

III. PROBABILISTIC CLASSIFICATION MODEL: DBMM

DBMM is an ensemble of classifiers designed to combine
a set of single classifiers (also referred as base classifiers)
towards obtaining more accurate results than any of its
individual members. For that, a probabilistic approach was
adopted, using the concept of mixture models in a dy-
namic form in order to combine conditional probabilities.
A weight is assigned to each base classifier, according to
previous knowledge (learning process), using an uncertainty
measure as a confidence level, and can be updated locally
during the online classification. In our solution, the local
weight update assigns priority to the base classifier with
more confidence along the temporal classification, since
they can vary along the different frame classifications. Fig-
ure 1 depicts an example of DBMM classification, where
base classifiers are integrated as weighted posterior distri-
butions, and previous posteriors and weights are used to
update the model. The DBMM uses a set of models A =
{A1

m,A
2
m, ...,A

T
m} where At

m is a model with m attributes; i.e.,
observed variables generated for some dynamic process at
t = {1,2...,T}. The DBMM probability distribution function
for each class P(C,A)=∏

T
t=1 P(Ct |Ct−1)×∑

n
i=1 wi×Pi(A|Ct)

can be rewritten holding the Markov property by taking the
posterior of previous time instant as the new prior as follows:

P(C|A) = β × P(Ct |Ct−1)︸ ︷︷ ︸
dynamic transitions

×
n

∑
i=1

wt
i×Pi(A|Ct),︸ ︷︷ ︸

mixture model with dynamic w

with
{

P(Ct |Ct−1)≡ 1
C (uniform), t = 1

P(Ct |Ct−1) = P(Ct−1|A), t > 1
,

(1)
where:
• P(Ct | Ct−1) is the transition probability distribution

among class variables over time. A class Ct is condi-
tioned to Ct−1. This means a non-stationary behavior
applied recursively, then reinforcing the classification at
time t.

• Pi(At) is the posterior result of each base classifier at
time t, i = {1, ...,n}.

• The weight in the model for each base classifier wt
i is

initially estimated using an entropy-based confidence on
the training set (offline) as shown in our previous work
[3], and afterwards (t > 5) it is updated as explained in
the next subsection.

• β = 1
∑ j

(
P(Ct

j |C
t−1
j )×∑

n
i=1 wi×Pi(A|Ct

j)
) is a normalization fac-

tor, ensuring numerical stability once continuous update
of belief is done.

A. Dynamic Update of Weights using the System’s Memory

During a classification task, base classifiers can change the
performance over time. Thus, the local update of the weights
during the on-line classification will benefit from the fact
that the adjusted weights will produce a higher belief when
priority is assigned to a base classifier with more confidence
on previous classifications. We update the ensemble model
using the temporal information on the test set as the memory
of the system (set with previous posteriors for each base
classifier Ωs

i = {P(C|A)t−1...P(C|A)t−s} together with the
weights at the previous time instant wt−1

i . Thus, in order
to apply an update on the current weights, we compute:

wt
i =

wt−1
i ×P(wi|Hi(Ω

s))

∑
n
i=1 wt−1

i ×P(wi|Hi(Ωs))
, (2)

where wt
i is the estimated weight for each base classifier

(updated); wt−1
i is the previous weight at t− 1. In order to

obtain Hi(Ω
s), we use the memory of the system during the

classification by keeping the previous posteriors (up to 5th

order), and consequently, we acquire the the entropy on each
set of posteriors Hi(Ω

s) as follows:

Hi(Ω
s) =−

s

∑
j

Hi(Ω
j) log(Hi(Ω

j)). (3)

Knowing Hi(Ω
s) for each base classifier, the weights

P(wi|Hi(Ω
s)) are estimated inversely proportional to the

entropy:

P(wi|Hi(Ω
s)) =

[
1−
(

Hi(Ω
s)

∑
n
i=1 Hi(Ωs)

)]
∑

n
i

[
1−
(

Hi(Ωs)
∑

n
i=1 Hi(Ωs)

)] , i = {1, ...,n}, (4)

where wi is the result for each base classifier, and Hi is the
current value of entropy given by (3). The denominator in
(4) ensures that ∑i wi = 1.

B. Base Classifiers for DBMM Fusion

In this work, we have used the Naive Bayes Classifier
(NBC), Support Vector Machines (SVM) and an Artificial
Neural Network (ANN) as base classifiers for the DBMM.
The NBC assumes the features are independent from each
other given a class, P(Ci|A) = αP(Ci)∏

m
j=1 P(A j|Ci). For the

linear-kernel multiclass SVM implementation, we adopted
the LibSVM package [15], trained according to the ‘one-
against-one’ strategy, with soft margin (or Cost) parameter
set to 1.0, and classification outputs were given in terms
of probability estimates. The ANN adopted is a multilayer
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Fig. 1: Example of DBMM during frame to frame classification in activity recognition. The left image shows that during the
dynamic classification, initially the weights are learned from the training set, and later on, during the test they are updated.

feedforward network (with 40 neurons in the hidden layer),
where the hidden layer transfer function is a hyperbolic tan-
gent sigmoid and a normalized exponential (softmax) is used
for the output of the transfer function as posterior probability
estimates, conditional on the input, i.e., ∑

n
i=1 P(Ci|x) = 1.

IV. SPATIO-TEMPORAL SKELETON-BASED FEATURES

It is of utmost importance to find discriminative features of
daily activity relying on existing relations between skeleton
body parts to model their motion by correlating different time
instants. The skeleton detection and tracking is made using
depth images, adopting the OpenNi’s software development
kit for RGB-D sensor to obtain the joint locations of the
human body.

We defined a set F with 51 features per frame to dis-
criminate daily activities. Features based on skeleton joint
distances, velocities and difference of skeleton poses along
different frames are used in this work. Three types of spatio-
temporal features are substantiated in the energy concept: 1)
energy-based features using the joint velocities, 2) log-energy
entropy-based features using skeleton poses, and 3) sample
autocorrelation-based features using the distances of skeleton
poses in different time instants. The velocities energy of the
upper joints of the skeleton (i.e. seven joints: head; left and
right shoulders, hands and elbows) are computed as follows:

Euv = ∑
N
j=1(Vjx)

2 +∑
N
j=1(Vjy)

2 +∑
N
j=1(Vjz)

2,

with Vjd =
St

jd−St−s
jd

∆T , d = {x,y,z},
(5)

where for each dimension {x,y,z}, S j is a vector of di-
mension 7 × 1, whose elements are the skeleton joints;
for the computation of Vjd , the numerator corresponds to
the skeleton joints distances from t to ts preceding frames
(herein, s = 10), and the denominator corresponds to the
elapsed time ∆T = frate×ϖ (a frame rate frate = 1/30 and
a temporal slide window ϖ = 10 were used).

The second feature is based on the sum of log-energy
entropy logEs using the global skeleton joints in each di-
mension as follows:

logEs = ∑
j

log(S2
jx)+∑

j
log(S2

jy)+∑
j

log(S2
jz). (6)

The two aforementioned features enclose key poses of
movements, i.e., when the skeleton joints alternately show
acceleration and deceleration in repeated movements that
leads to changes in the energy model representation. This
information helps the characterization of drastic changes in
direction and velocities of the skeleton. The energy model
(5) is applied to the upper body part and the log-entropy (6)
is applied to all body joints.

The third feature is based on the autocorrelation function
employed on the difference of skeleton poses at time t and
t−1. The first step before computing the autocorrelation is
to obtain the translation of each skeleton joint S j from a time
instant t− 1 to the current time instant t by employing the
Euclidean distance δ{St

jd ,S
t−1
jd }

=
√

(St
jd−St−1

jd )2, d = {x,y,z},
obtaining a matrix of N×d (i.e., number of joints N and d-
dimensional space). Subsequently, the sample autocorrelation
is computed by:

r(τ) =
1

T−1 ∑
T−τ

t=1

(
δ t
{St ,St−1}−µ t

δ

)(
δ

t+τ

{St ,St−1}−µ
t+τ

δ

)
σ2 (7)

where σ2 = 1
N ∑

N
i=1

(
δ{St ,St−1}−µδ

)2
is the sample variance

and µδ is the sample mean value; and τ is the lag vari-
able of a process at different times. Since we are working
with 3D skeleton arranged in a matrix δ{St ,St−1} of 20× 3
(joints by 3 dimensions), then in order to facilitate the
autocorrelation computation, we applied a self-convolution,
whereas the autocorrelation is alike to a convolution, apart
from it does not need to flip an input about the origin.
Thus, 2D convolution in spatial form for finite intervals is
achieved by f ∗ g = c(i, j) = ∑

p
k ∑

q
l f (k, l)× g(i− k, j− l),

where f = δ{St ,St−1}, and g which commonly has the role of
the filter in convolution, herein it is in charge of the shift
of f with respect to itself (rotates about the origin) in the
plane p×q. A resulting matrix that is given by f ∗g has a
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(a) AS1: Prec:96.59%; Rec:96.61%; Acc:96.61%
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Fig. 2: Classification results: cross-validation confusion matrix for each action set using the DBMM for the “new person”
setting (training five persons and testing on other “unseen” five). Global Prec.: 97.34%, Rec.: 97.33%, Acc.: 97.33%.

dimension of m× n (2× size(δ{St ,St−1})− 1) = 39× 5, was
then reshaped as a feature vector r of (m×n)×1 elements
to compute the autocorrelation energy Er = ∑i r2

i .
Additionally, a set of features based on Euclidean dis-

tances of the skeleton joints δ{Sd
j1,S

d
j2}

was used, as similarly
presented in [3]: 1) the minimum distance from hand (left
or right) to the head, e.g. min(δ{Sd

j1,S
d
j2}
,δ{Sd

j1,S
d
j3}
); 2) the

minimum distance from elbow (left or right) to the head; 3)
the minimum distance from hand (left or right) to the center
of the skeleton; 4) distance from the left hand to the right
hand; 5) distance from the head to the center of the hip; 6)
distance from the central knee (mean coordinate taking into
account the left and right knees) to the center of the hip; 7)
the minimum distance from foot (left or right) to the head;
8) the hand with higher changes in directions (i.e., using
the difference of the current position to a previous one); 9)
six angles obtained from triangles formed by: shoulder, hand
and elbow; hip, shoulder and knee; hip, knee and foot, all
considering left and right sides. The angle computation is
given by θi = arccos(δ 2

j12
+δ 2

j23
−δ 2

j13
/ 2×δ j12×δ j23), where

δ j12 is the Euclidean distance between two joints. These
angles are useful to discriminate stand and seated positions
or torso inclination.

Then, a stage consisting of derivatives and accumulative
values was employed on the aforementioned set of extracted
features F. We first applied a discrete derivative y = Ft−Ft−s

∆T
on each feature, where s represents a temporal slide window
of ten frames. Subsequently, we accumulated each feature
value over the frames: yt

cum = ∑
t
k=1 Fk. Thus, with these two

steps we obtained more 34 features, and F sums up to a total
of 51 features. To ensure a higher classification performance,
an essential step is employed; the extracted set of features
are normalized in such a way that, values of minimum and
maximum obtained during the training were applied on the
normalization of the test set.

V. ASSESSMENT OF THE PROPOSED FRAMEWORK ON
DATASETS AND ROBOTIC APPLICATION

Experimental tests using a mobile robot and two datasets
were performed to assess our framework. Looking at the per-

formance attained, we can state that our framework has good
potential for activity recognition in robot-assisted living.

A. Performance on MSR-Action3D Dataset

The MSR-Action3D dataset [1] contains skeleton data
from depth images captured by an RGB-D sensor at 15Hz.
MSR-Action3D comprises twenty actions, and each action
was performed by ten subjects for three times. The actions
cover various movement of arms, legs, torso and their
combinations. For performance evaluation purposes, and
concerning this dataset, we followed the same methodology
as described in [1] [2], where the dataset is split into 3 action
sets with eight actions each one as shown in Fig. 2. As stated
in [1], AS1 and AS2 group actions with similar movements,
while AS3 groups actions that are more complex. We follow
the cross-validation test as defined by [2] and [16]. The
tests were performed by training five subjects out of ten,
and testing on the other five subjects (testing on “unseen
persons”), e.g., training persons {1,3,5,7,9} and testing on
persons {2,4,6,8,10}; afterwards the opposite (even, odd);
then, training on persons {1...5} and testing on persons
{6...10}, and so on. Taking into consideration 5× 5 splits,
there are 252 possible splits in total. The overall accuracy
(average) was computed to compare our proposed frame-
work with other state-of-the-art methods. Results show that
our proposed framework outperforms other state-of-the-art
benchmarked methods using this dataset up to the current
date. The overall accuracy obtained with the DBMM was
97.33%, taking the average of all attained performances.
Figure 2 presents the overall confusion matrix for the cross-
subject classification for each action set. Table I summarizes
the results attained by the DBMM in comparison with each
single classifier and an averaged ensemble for AS1, AS2
and AS3, showing that our approach outperforms the other
classifiers (all using our skeleton features). Finally, Table II
presents the results of our DBMM approach in comparison
with other state-of-the-art methods evaluated using the MSR-
Action3D dataset. This table references some selected works,
the ones with higher overall accuracy up to date.

Our approach using only 3D skeleton features outperforms
other approaches that use features from skeleton, from depth



TABLE I: Accuracy on action sets using single classifiers, a
simple averaged ensemble (AV) and the proposed DBMM.

.

Action Set SVM Bayes ANN AV DBMM
AS1 92.8% 89.3% 90.8% 90.9% 96.6%
AS2 91.7% 88.4% 90.4% 90.1% 96.7%
AS3 94.6% 89.9% 92.7% 92.4% 98.6%

Average 93.0% 89.2% 91.3% 91.1% 97.3%

TABLE II: Comparison of approaches that use the MSR-
Action3D in terms of overall accuracy. Columns 3 an 4 point
out the feature types used by the approaches.

Method Acc SK joints Depth
Proposed framework (DBMM) 97.33% 7

* Luo et al. [13] 97.26% 7 7
Chen et al. [14] 94.90% 7

Ohn-Bar and Trivedi [17] 94.84% 7 7
Yang, Zhang and Tian [18] 91.63% 7

Chaudhry et al. [19] 90.00% 7
Evangelidis et al. [20] 89.86% 7
Oreifej and Liu [16] 88.89% 7

Wang et al. [2] 88.20% 7 7
*The approach in [13] obtained 96.7% when using only skeleton features

and even approaches that combine both.

B. Performance on MSR-DailyActivity3D Dataset

The MSR-DailyActivity3D [2] is another dataset with
depth images and 3D skeleton data from an RGB-D sensor
that was used herein to evaluate our approach. It contains
16 activities: 1-drink, 2-eat, 3-read book, 4-call cellphone,
5-write on a paper, 6-use laptop, 7-use vacuum cleaner, 8-
cheer up, 9-sit still, 10-toss paper, 11-play game, 12-lie down
on sofa, 13-walk, 14-play guitar, 15-stand up, 16-sit down
performed by 10 subjects twice, where one trial is in standing
position, and the second in sitting position on a sofa. We
followed the state-of-the-art methodology [2] for evaluation
of our framework. This dataset has all 16 activities in a single
scenario, i.e., a multi-class cross-subject classification. The
tests were performed in the same way of the MSR-Action3D
by training five subjects out of ten, and testing on the other
five subjects (“unseen persons”). The results attained are
shown by means of a confusion matrix in Fig. 3. To the best
of our knowledge, our results outperforms other state-of-the-
art methods applied on MSR-DailyActivity3D dataset up to
the current date. The overall performance obtained with the
DBMM approach are: precision of 97.39%; recall of 96.83%;
and accuracy of 96.83%. Table III shows the overall accuracy
of our approach compared with some selected works of the
state-of-the-art, i.e. the ones with higher accuracy for this
dataset up to the current date.

C. Performance using a Mobile Robot

In order to evaluate our approach using a mobile robot,
we built a dataset (e.g. Fig. 4) with RGB-D image sequences
and skeleton data to learn human daily activities, such as 1-
walking, 2-stand/still, 3-talking on the phone, 4-working on a
computer and 5-sitting; and for suspicious or risk situations:
6-jumping, 7-falling down, 8-running. We recorded 4 persons
performing 3 times each activity during 30 up to 45 seconds.

Fig. 3: Confusion Matrix obtained from the DBMM classi-
fication applied on the MSR-DailyActivity3D dataset.

TABLE III: Comparison of approaches that use the MSR-
DailyActivity3D in terms of overall accuracy. Columns 3 an
4 point out the feature types used by the approaches.

Method Acc SK joints Depth
Proposed framework (DBMM) 96.83% 7

Luo et al. [13] 95.00% 7 7
Xia and Aggarwal [21] 88.20% 7 7

Wang et al. [2] 85.75% 7 7

Robot Operating System (ROS) packages in hydro version
were used to program the mobile robot to navigate in
an indoor environment. For that, the robot has different
sensors onboard, such as laser for mapping and localization,
avoiding obstacle collision, and an RGB-D sensor for human
body detection for skeleton tracking and human activity
recognition. Reminding that, in this work, the focus of our
attention is on the evaluation of our probabilistic approach
for activity recognition on-the-fly, thus, herein we do not
detail other robot functionalities (e.g., navigation and robot
(re)actions). Once the skeleton is detected in a range of two
up to five meters to the RGB-D sensor, the robot starts the
activity recognition. In this experiment, a robot response is
assigned for each activity that is recognized (e.g. during a
monitoring task, when a usual activity is classified, the robot
will just re-position itself to keep monitoring). For each risk
situation detected, the robot is supposed to assist somehow,
by sending warnings or calling relatives to report the current
situation. Figure 5 shows the cognitive system for activity
recognition in robot-assisted living (monitoring task) using
ROS environment1.

The strategy to test an on-the-fly application using a
mobile robot is a little different than the evaluation on
datasets. In this case, the DBMM classification is made in
3 up to 5 seconds to guarantee a confidence for a final
decision, i.e., after recognizing the activity, the robot will
respond with an action. Figure 6 shows few snapshots of the
experiments of daily activities including a risk situation that

1A video demonstrating our approach for robot-assisted living can be
seen at https://youtu.be/FAfLj28_iSM



Fig. 4: Few examples of the dataset (RGB and depth images)
which was built to learn some daily and risk situations.
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Fig. 5: Architecture in ROS of our artificial cognitive system
for robot-assisted living.

our mobile robot correctly recognized. During the on-the-fly
experiments using a mobile robot, all activities performed
twice by two “unseen” persons were correctly classified. The
overall confidence of classification in the context of robot-
assisted living is presented in a confusion matrix as shown
in Fig. 7, with overall accuracy of 90.46%. We noticed that
the activities can be correctly classified with a high certainty
within 3 up to 6 seconds of frames by frame classification.
The activities walking and running were the ones with more
misclassification due to their strong similarities.

VI. CONCLUSION AND FUTURE WORK

A dynamic probabilistic ensemble of classifiers (DBMM)
using a local update of weights was designed for activity
recognition. The local weighting strategy to update the model
has shown through experimental results to be very effective
given a set of suitable features. Two well-known state-of-the-
art datasets of human daily activities, Microsoft Research [1]
[2], were used to evaluate the performance of our approach.
The classification performance in terms of overall accuracy
has shown that our proposed framework outperforms other
methods in the scope of human daily activity recognition. In
addition, we performed experimental tests of our approach
running on-the-fly in a mobile robot for monitoring daily
activities and risk situations, showing that it has potential
to successfully be used in robot-assisted living applications.
Future work will exploit and extend our framework for robot-
assisted living and natural human-robot interaction scenarios.
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Abstract. In this work, we present a real-time application in the scope of human
daily activity recognition for robot-assisted living as an extension of our previous
work [1]. We implemented our approach using Robot Operating System (ROS)
environment, combining different modules to enable a robot to perceive the en-
vironment using different sensor modalities. Thus, the robot can move around,
detect, track and follow a person to monitor daily activities wherever the person
is. We focus our attention mainly on the robotic application by integrating several
ROS modules for navigation, activity recognition and decision making. Reported
results show that our framework accurately recognizes human activities in a real
time application, triggering proper robot (re)actions, including spoken feedback
for warnings and/or appropriate robot navigation tasks. Results evidence the po-
tential of our approach for robot-assisted living applications.

1 Introduction

Mobile robots endowed with cognitive skills are able to help and support humans in
an indoor environment, providing increased availability, awareness and access, as com-
pared to static systems. Thus, a robot can act not only as assistant in the context of
robot-assisted living, but also offer social and entertaining interaction experiences be-
tween humans and robots. For that, the robot needs to be able to understand human
behaviours, distinguishing human daily routine from potential risk situations in order
to react in accordance. In this work, we focus our attention on the domain of human-
centered robot application, more precisely, for monitoring tasks, where a robot can rec-
ognize daily activities and unusual behaviours to react according to the situation. In
this context, a robot that can recognize human activities will be useful for assisted care,
such as human-robot or child-robot interaction and also monitoring elderly and disabled
people regarding strange or unusual behaviours. We use a robot with an RGB-D sensor
(Microsoft Kinect) on-board to detect and track the human skeleton in order to extract

? This work was supported by the Portuguese Foundation for Science and Technology (FCT)
under the Grant AMS-HMI12: RECI/EEI-AUT/0181/2012. The authors are with Institute of
Systems and Robotics, Department of Electrical and Computer Engineering, University of
Coimbra, Polo II, 3030-290 Coimbra, Portugal (emails: mvieira, diego, urbano@isr.uc.pt).



motion patterns for activity recognition. We present an application that combines differ-
ent modules, allowing the robot localization and navigation in an indoor environment,
and also to detect obstacles and human skeleton for motion tracking. In addition, we
use modules for voice synthesizer and recognition, that will be triggered by our activity
recognition module. The activity recognition module uses a Dynamic Bayesian Mix-
ture Model (DBMM) [2] [1] for inference, in order to classify each activity, enabling
the mobile robot to make a decision to react accordingly. The main contributions of this
work are:

– Combining different ROS modules (navigation, classification and reaction module),
towards a real time robot-assisted living application.

– Extending the use of DBMM to real-time applications using proposed discrimina-
tive 3D skeleton-based features, which can successfully characterize different daily
activities.

– Assessment and validation: (i) leave-one-out cross validation of the activity recog-
nition using our training dataset; (ii) comparison of different classification models
using our proposed features; (iii) online validation of the integrated artificial cog-
nitive system.

The remainder of this paper is organized as follows. Section 2 covers selected re-
lated work. Section 3 introduces our approach, detailing the proposed 3D skeleton-
based features as well as the classification method. Section 4 describes how the ap-
proach is implemented in ROS. In section 5, the performance of the proposed appli-
cation is presented. Finally, Section 6 brings the conclusion of this research pointing
future directions.

2 Related Work

In order to have a fully operational robot-assisted living application, it is essential that
the robot can recognize daily activities in real scenarios, in real-time. In spite of some
proposed works that use inertial sensors for human activity recognition [3] [4], the
most common approaches use vision-based depth sensors, even more nowadays, with
low cost vision sensors (e.g. RGB-D sensors [5] [6]) that can track the entire human
body accurately. In [7], a Microsoft Kinect sensor is used to track the skeleton and
posteriorly extract the features. The action recognition is done using first order Hidden
Markov Models (HMMs) and for every hidden state, the observations were modelled
as a mixture of Gaussians. The work presented in [8] uses depth motion maps as fea-
tures for activity recognition. Other works on the recognition of human activities focus
their research on how to extract the right features in order to obtain better classifica-
tion performance [9] [10] [11]. In the context of robot assisted living, [12] describes
a behaviour-based navigation system in assisted living environments, using the mobile
robot ARTOS. In [13] a PR2 robot is used to assist a person. The robot detects the ac-
tivity being performed as well as the object affordances, enabling the robot to figure
out how to interact with objects and plan actions. In [14], a mobile robot is used in a
home environment to recognize activities in real-time by continuously tracking the pose
and motion of the user and combining them with structural knowledge like the current



room or objects in proximity. In our work, we use a Nomad Scout with a laser Hokuyo
to assist the localization and navigation module, and an RGB-D sensor on-board to de-
tect and track a person. It is a small mobile robot that monitors a person in an indoor
environment, recognizing daily and risky activities and reacts with defined actions, as-
sisting the person if needed. Our activity recognition module is based on the framework
proposed in [1], where the features are also skeleton-based, however, herein we model
different skeleton-based features, and in addition, we use a new collected dataset.

3 Activity Recognition Framework

3.1 Extraction of 3D Skeleton-based Features

We have used a Microsoft Kinect sensor and the OpenNi’s tracker package for ROS
to detect and track the human skeleton. This package allows the skeleton tracking at
30 frames per second, providing the three-dimensional Euclidean coordinates of fifteen
joints of the human body with respect to the sensor. Using this information, we compute
a set of features as follows:

– Euclidean distances among the joints, all relative to the torso centroid, obtaining a
15×15 symmetric matrix with a null diagonal. Let (x,y,z) be the 3D coordinates of
two body joints b j with j = 1,2, ...,15 and bi with i = 1,2, ...,15, then ∀ {bi,b j},
the distances were computed as follows:

δ (b j,bi) =
√

(bx
j−bx

i )
2 +(by

j−by
i )

2 +(bz
j−bz

i )
2 (1)

Subsequently, we removed the null diagonal, obtaining a 14×15 matrix M to com-
pute its log-covariance as follows:

Mlc = U(log(cov(M))), (2)
where cov(Mi, j) = (Mi − µi)(M j − µ j); log(·) is the matrix logarithm function
(logm) and U(·) returns the upper triangle matrix composed by 120 feature ele-
ments. The rational behind of log-covariance is the mapping of the convex cone of
a covariance matrix to the vector space by using the matrix logarithm as proposed
in [15]. A covariance matrix form a convex cone, so that it does not lie in Eu-
clidean space, e.g., the covariance matrix space is not closed under multiplication
with negative scalers. The idea of log-covariance is based on [16], where examples
of manifold Riemannian metrics and log-covariance applied in 2D image features
for activity recognition were used.

– The global skeleton velocities, assuming the 3D coordinates of 14 joints in the case
of having the torso centroid as origin; and 15 joints in the case of having the sensor
frame as origin were computed as follows:

v j =

√
(bt

jx −bt−tw
jx )2 +(bt

jy −bt−tw
jy )2 +(bt

jz −bt−tw
jz )2

frate× tw
, (3)

where v j is the velocity of a specific skeleton joint j; b jd represents the position
d = {x,y,z} of a skeleton body joint j in the current time t, and t− tw represents
some preceding frames, herein tw = 10; the frame rate is set to frate = 1/30.



– Differently of the aforementioned velocities in the torso frame of reference, herein,
relative to the sensor frame, for all joints, for each dimension individually, we com-
puted the difference δ (bt

jd
,bt−tw

jd
) between the position at a given frame and the

preceding 10th frame. Using these values, we computed the velocities of the same

joints for each dimension individually, v j =
bt

jd
−bt−tw

jd
frate×tw

, obtaining additional 45 fea-
tures.

– The angles variation of certain joints play a crucial role in carrying out many ac-
tivities. We are interested in knowing whether a person is sitting or standing, so
we compute the angles of both right and left elbows in the triangle formed by the
hands, elbows and shoulders. We also compute the angles of the hip joints in the
triangle formed by the shoulders, hips and knees and the angles of the knees in the
triangles formed by the feet, knees and hips. The angle θi is given by:

θi = arccos
(
(δ j12)

2 +(δ j23)
2− (δ j13)

2

2×δ j12 ×δ j23

)
, (4)

where δ j12 is the distance between two joints, e.g. j1 and j2, that are forming a
triangle in the skeleton. We have 2+2+2=6 features for angles, since we are con-
sidering the left and right side for the body joints. In addition, we compute the
difference between these angles at a current frame and the preceding 10th frame,
θvi = θ t

i −θ t−10
i , obtaining additional 2+2+2=6 features.

Thus, in total, we attained a set with 206 spatio-temporal skeleton-based features,
useful to discriminate different classes of activities.

Features pre-processing: Before using the features set in the classification module,
we perform a pre-processing step. Normalization, standardization or filtering may be
a requirement for many machine learning estimators, as they can behave badly if no
pre-processing is applied to the features set. So, in the dataset case, we apply a moving
average filter with 5 neighbours data points to filter the noise, smoothing the data. Sub-
sequently, a normalization step is applied in such a way that the values of minimum and
maximum obtained during the training stage were applied on the testing set as follows:

Ftri =
Ftri−min(Ftr)

max(Ftr)−min(Ftr)
, and Ftei =

Ftei−min(Ftr)

max(Ftr)−min(Ftr)
, (5)

where Ftr is the set of features for training and Fte is the set of features for test; i
is an index to describe a set of features in a specific frame; max(·) and min(·) are
functions to get the global maximum and minimum value of a feature set. In the real-
time case, we did not apply the moving average filter because it returns worse results.
The normalization step is done in the same way as in the offline tests because we keep
the maximum and minimum values of the training set.

3.2 Probabilistic Classification Model

In this work, we adopt an ensemble of classifiers called Dynamic Bayesian Mixture
Model (DBMM) proposed in [2] [1]. DBMM uses the concept of mixture models in a



dynamic form in order to combine conditional probability outputs (likelihoods) from
different single classifiers, either generative or discriminative models. A weight is as-
signed to each classifier, according to previous knowledge (learning process), using an
uncertainty measure as a confidence level, and can be updated locally during the on-
line classification. The local weight update assigns priority to the base classifier with
more confidence along the temporal classification, since they can vary along the differ-
ent frames. The key motivation of using a fusion model is because we are taking into
consideration that an ensemble of classifiers is designed to obtain better performance
than any of their individual classifiers, once there is diversity of the single components.
Beyond of employing this classification model in an on-the-fly robot-assisted living ap-
plication, we also compare the activity classification results with different well-known
state-of-the-art classification models, such as Naive Bayes Classifier (NBC), Support
Vector Machines (SVM) and k-Nearest Neighbours (k-NN). The DBMM general model
for each class C is given by:

P(C|A) = β × P(Ct |Ct−1)︸ ︷︷ ︸
dynamic transitions

×
n

∑
i=1

wt
i×Pi(A|Ct),

︸ ︷︷ ︸
mixture model with dynamic w

with
{

P(Ct |Ct−1)≡ 1
C (uniform), t = 1

P(Ct |Ct−1) = P(Ct−1|A), t > 1
,

(6)

where P(Ct |Ct−1) is the transition probability distribution among class variables over
time, which a class Ct is conditioned to Ct−1. This means a non-stationary behavior
applied recursively, then reinforcing the classification at time t; Pi(A|Ct) is the poste-
rior result of each ith base classifier at time t, becoming the likelihood in the DBMM
model. The weight wt

i in the model for each base classifier is initially estimated using
an entropy-based confidence on the training set (offline), and afterwards (t > 5) it is
updated as explained in our previous work [1]; β = 1

∑ j

(
P(Ct

j |Ct−1
j )×∑n

i=1 wi×Pi(A|Ct
j)
) is a

normalization factor, ensuring numerical stability once continuous update of belief is
done.

Base Classifiers for DBMM In this work, we have used the NBC, SVM and k-NN as
base classifiers for the DBMM fusion. The NBC assumes the features are independent
from each other given a class, P(Ci|A) = αP(Ci)∏m

j=1 P(A j|Ci). For the linear-kernel
multiclass SVM implementation, we adopted the LibSVM package [17], trained ac-
cording to the ‘one-against-one’ strategy, and classification outputs were given in terms
of probability estimates. A k-NN was also combined into the DBMM fusion. An object
is classified by a majority vote of its neighbours, with the object being assigned to the
class most common among its k nearest neighbours. The classification outputs of the
adopted k-NN were given in terms of probability estimates as well.



4 Robot-Assisted Living Architecture in ROS

The proposed artificial cognitive system was implemented in ROS and comprises three
main modules, as shown in Figure 1: classification, navigation and reaction modules.

In order to properly test the system in real scenarios, a mobile robot is used. There-
fore, a personal robot endowed with cognitive skills, capable of monitoring the be-
haviours of a person should be able to autonomously navigate in an indoor environ-
ment. The navigation module uses odometry and laser scans from the robot to map the
environment and self-localization, randomly navigating, avoiding obstacles. We use the
navigation stack available in ROS distributions, more specifically, the move base pack-
age to generate an appropriate collision free trajectory. For simultaneous localization
and mapping (SLAM) the hector slam package is used. While the robot is navigat-
ing, the MS-Kinect sensor is sending RGB-D data to the classification module. Once
a skeleton is detected, the robot stops and the feature extraction process starts. Then,
classification is done using the DBMM and an activity is recognized. Once the sys-
tem knows the human activity being performed, the reaction module is in charge to
select what the robot should do next. For each human activity, a predefined reaction in
a lookup-table was associated, including warnings, questions or changes in navigation
(Figure 2). In the event of a person telling the robot to follow him/her, a safe distance of
2.5 meters is maintained. A Kalman filter is used to estimate the trajectory of the per-
son one second ahead in order to avoid collision between the robot and the human. If
a collision trajectory is estimated, the robot will step away, in order to the person walk
through safely. For the prediction of the human motion, a position model was adopted,
where the state includes position (x(k);y(k)) of the human target:

Navigation Module Classification Module Reaction Module 
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Features 
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Stop Robot 
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Speech 
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Decision Making 
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Fig. 1: System overview.
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Fig. 2: Decision tree in reaction module.

{
x(k) = x(k−1)+ vx(k−1)×∆ t
y(k) = y(k−1)+ vy(k−1)×∆ t (7)

with ∆ t = t(k)−t(k−1). Using the torso coordinates as measures, it is possible to com-
pute the x velocity vx and y velocity vy. For speech synthesis, we use the sound play
package that given a text input, it will be synthesized into sound output. For speech
recognition, we use the pocketsphinx package. This package recognizes a single word
or a stream of words from a vocabulary file previously created. In our work, the vocabu-
lary comprises the following words: ”no”, ”yes”, ”please”, ”help”, ”follow”, ”me”. The
package can recognize combinations of these words, such as ”please help me”.

5 Experimental Results

5.1 Performance on collected dataset

A new dataset of daily activities and risk situations, more complete and challenging
than the one used in our previous work [1], was collected to train the activity recog-
nition module. This dataset (Figure 3) comprises video sequences of two male sub-
jects and two female subjects performing eight different activities in a living room. The
daily activities are: 1-walking, 2-standing still, 3-working on computer, 4-talking on the
phone, 5 sitting down; and the unusual or risk situations are: 6-jumping, 7-falling down,
8- running. This dataset is a challenging one, once there is significant intra-class vari-
ation among different realizations of the same activity. For example, the phone is held
with the left or right hand. Another challenging feature is that the activity sequences are
registered from different views, i.e., from the front, back, left side, and so on. The classi-
fication results are presented in a confusion matrix and with the measures of Accuracy,
Precision, Recall of the four tests. The idea is to verify the capacity of generalization of



Fig. 3: Few examples of the dataset (RGB with skeleton joints and depth images) which
was created to learn some daily and risk situations.

Fig. 4: Confusion matrix obtained from the DBMM classification applied on the dataset

the classifier by using the strategy of ”new person”, i.e., learning from different persons
and testing with an unseen person. Figure 4 shows the results in a single confusion ma-
trix. Table 1 shows the performance in terms of Precision (Prec) and Recall (Rec) of this
approach for each activity. The results show that using DBMM, improvements in the
classification were obtained in comparison with using the base classifiers alone. The
overall results attained were: accuracy 93.41%, precision 93.61% and recall 92.25%.



Table 1: Performance on the dataset (“new person”). Results are reported in terms of
Precision (Prec) and Recall (Rec).

DBMM
Activity Prec Rec

walking 89.63% 99.73%
standing still 94.86% 98.13%

working on computer 95.93% 93.20%
talking on the phone 93.64% 87.96%

running 92.81% 85.20%
jumping 92.52% 88.83%

falling down 97.24% 90.04%
sitting down 92.27% 94.88%

Average 93.61% 92.25%

Table 2: Global results using single classifiers, a simple average ensemble (AV) and the
DBMM.

Method Acc. Prec. Rec.
NBC 82.90% 85.79% 82.67%
SVM 88.47% 89.02% 87.62%
k-NN 87.98% 90.09% 87.06%
AV 85.29% 87.74% 84.68%

DBMM 93.41% 93.61% 92.25%

For comparison purposes, Table 2 summarizes the results from single classifiers and an
average ensemble compared with DBMM, showing the improvement achieved using
the described skeleton-based features. The SVM was trained with soft margin (or Cost)
parameter set to 1.0, and the k-NN was trained using 20 neighbours.

5.2 Performance on-the-fly using a mobile robot

The experimental tests using the proposed approach for a real time application is a
little bit different than the experimental tests on the dataset. In this case, the robot will
acquire 5 seconds of RGB-D sensor data for features extraction and classification. Only
the NBC and SVM were used as base classifiers for the DBMM fusion, because they are
enough for obtaining good results, thus, avoiding spending more processing time using
other base classifiers. After 5 seconds of frames classification, a final decision is made
for activity recognition to trigger a proper robot reaction. The proposed framework
is capable of recognizing different activities transitions that happens sequentially in
case of a person transit from one activity to another one, e.g., a person that is standing
and sequentially pass to a sitting down position and consequentially working on the
computer. Figure 5 shows some examples of tests of daily activities and unusual or risk
situations that the mobile robot correctly recognized. Three tests were carried out for
each activity with three different subjects. One of the subjects was already ”seen” in the
training, while the rest are ”unseen” subjects.



Fig. 5: Shots of tests of activity recognition (‘unseen” person) using a mobile robot.

Fig. 6: DBMM on-the-fly classification confidence (average) presented in a confusion
matrix

All activities were correctly classified, so that the overall performance of classifica-
tion is shown in Figure 6. The overall (average) results attained in real-time experiments
were: accuracy 90.55%, precision 90.84% and recall 90.55%. Table 3 shows the results
in terms of recall of each test for each subject. Looking at the results attained, it is possi-
ble to conclude, as expected, that the best performance is achieved for the ”seen” person
(subject 1). However, the difference of results between subjects is not very significant,
which indicates that the fact of being or not a ”seen” person is not a key factor for the
performance of the classification. The most important factor in a real-time application
is that in the end, the activity being performed is correctly recognized. Since the robot
correctly classified the activity performed, it also successfully reacted accordingly to
the situation. Figure 7 shows a sequence of events from an activity that is being rec-
ognized (in this case falling) to react according to this activity. First, the skeleton of a
person is detected and tracked, initiating the monitoring stage. Then, the person falls on
the floor and the robot correctly recognizes the risk situation ”falling”. Detecting such
a behaviour, the robot asks if the person needs help. The robot receives an affirmative
answer from the person, recognizes the command and immediately calls for help.



Table 3: On-the-fly results in terms of recall for 3 different subjects. One subject seen
and two unseen.

Activity
Overall

Test walking
standing

still
working on
computer

talking on
the phone

running jumping
falling
down

sitting
down

Subject 1
(seen)

1 96.30 100 100 59.26 85.19 85.19 85.19 96.30 88.43
2 96.30 100 100 100 85.19 88.89 95.45 96.30 95.27
3 92.59 100 92.59 100 85.19 88.89 92.86 96.30 93.55

Average 95.06 100 97.53 86.42 85.19 87.65 91.17 96.30 92.42

Subject 2
(unseen)

1 66.67 100 96.30 100 96.30 81.48 74.07 70.37 85.65
2 81.48 85.19 96.30 92.59 85.19 92.59 74.07 92.59 87.50
3 81.48 100 88.89 100 85.19 92.59 95.45 92.59 92-02

Average 76.54 95.06 93.83 97.53 88.89 88.89 81.20 85.18 88.39

Subject 3
(unseen)

1 82.14 96.30 100 100 73.33 96.30 85.19 88.89 90.27
2 92.86 96.30 100 100 80.00 92.60 100 85.19 93.37
3 82.14 92.59 100 100 73.33 96.30 81.48 85.19 88.88

Average 85.71 95.06 100 100 75.55 95.07 88.89 86.42 90.84

Overall Average 85.77 96.71 97.12 94.65 83.21 90.54 87.09 89.30 90.55

Do you
need help?

Yes

I will call
a doctor

Fig. 7: Sequence of events on detecting a person falling and reacting

6 Conclusions and Future Work

The main contribution of this work is a robotic application for real-time monitoring of
daily activities and risk situations in indoor environments. A dynamic probabilistic en-
semble of classifiers (DBMM) was used for daily activity recognition using a proposed
spatio-temporal 3D skeleton-based features. We collected a dataset to endow a robot to
recognize daily activities, and we used this dataset to compare our approach with other



state-of-the-art classifiers. Using our proposed skeleton-based features, we attained rel-
evant results using the DBMM classification, outperforming other single classifiers in
terms of overall accuracy, precision and recall measures. More importantly, the exper-
imental tests using a mobile robot presented good performance on the activity classifi-
cation, allowing the robot to take appropriate actions to assist the human in case of risk
situations, showing our framework has good potential for robot-assisted living. Future
work will address addition of contextual information, such as ”who”, ”where”, ”when”
in order to fully understand human behaviours, as well as exploitation of our approach
with more daily activities, risk situations and robot reactions.
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