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Agradeço à minha famı́lia, em especial aos meus pais, avós e sogros, por me terem su-
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colegas. Graças à vossa amizade e apoio, estes anos passaram num instante, oferecendo
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Abstract
Over the last years, deep learning architectures have gained attention by winning

some of the most important international detection and classification competitions, but
this comes at a cost: these models are computationally expensive and have been recently
ported to Graphics Processing Units (GPUs) to allow faster deployment. However, desk-
top GPUs have their own shortcomings and seem to be quickly approaching the limits
of power and heat dissipation walls, imposing high levels of energy consumption. This
implies high deployment costs in applications that process big data volumes on a perma-
nent basis, and also the inability to use these architectures, for example, in autonomous
systems such as vehicles and robots, which can hardly provide low power supplies. There-
fore, this thesis proposes another shift of paradigm, this time from GPU-based deep learn-
ing approaches to an Field-Programmable Gate Array (FPGA)-based context. We show
how to implement a particular type of deep learning architecture, the Stacked Autoen-
coder (SAE), and compare both accuracy and energy consumption levels achieved against
similar implementations both on desktop and mobile GPUs. The results show that similar
classification and error performances can be obtained using the SAE proposed solution,
with paid dividends in energy savings. Also important is the fact that the proposed SAE
architecture is scalable, and FPGAs and mobile GPUs have probably better progress mar-
gin than desktop GPUs. These results also pave the way for adopting low-power devices
in energy-constrained applications for big data classification.

Keywords
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Resumo
Ao longo dos últimos anos, as arquitecturas de deep learning têm vindo a ganhar

destaque ao vencerem algumas das mais importantes competições internacionais de de-
tecção e classificação, mas isso tem um preço: estes modelos são computacionalmente
exigentes e foram recentemente portados para execução em placas gráficas de modo a
permitir o seu rápido desenvolvimento. Contudo, as placas gráficas de desktop têm as
suas limitações e parecem estar rapidamente a aproximar-se dos limites de potência e
de barreiras de dissipação de calor suportáveis, com elevados nı́veis de consumo en-
ergético. Isto implica elevados custos de desenvolvimento em aplicações que processem
um elevado volume de dados em regime permanente, assim como a incapacidade para
usar estas arquitecturas, por exemplo, em sistemas autónomos como veı́culos e robots,
que dificilmente conseguem fornecer uma fonte de baixa potência com autonomia. As-
sim, esta tese propõe uma mudança de paradigma, de uma abordagem a deep learning

baseada em placas gráficas para um contexto baseado em Field-Programmable Gate Ar-

rays (FPGAs). Mostramos como implementar uma arquitectura de deep learning em
particular, o Stacked Autoencoder (SAE), e uma comparação tanto ao nı́vel da precisão
como de consumo energético obtidos face a implementações similares em placas gráficas
de desktop e de plataformas móveis. Os resultados mostram que desempenhos semel-
hantes na classificação e erro podem ser atingidos usando a solução de SAE proposta,
com dividendos pagos em poupança energética. Também é importante o facto de que a
arquitectura de SAE proposta é escalável, e que as FPGAs e placas gráficas móveis têm
provavelmente uma maior margem de progresso do que as placas gráficas de desktop.
Estes resultados abrem também o caminho à adopção de dispositivos de baixa potência
para classificação de grandes volumes de dados, em aplicações com elevadas restrições
energéticas.

Palavras Chave

Deep Learning, Redes Neuronais, Stacked Autoencoder, Computação Paralela, FP-
GAs, GPUs, OpenCL
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1. Introduction

Associated to the processing of increasingly larger amounts of (big) data, machine
learning and perception models aim at solving more complex and challenging tasks with
lower classification errors. The number of samples used to train the algorithms now sur-
passes the hundreds of thousands, which poses severe constraints regarding the time and
processing power necessary to train the networks.

Recently, deep learning architectures have gained some momentum because they have
shown superior performance in some of the most important international image, sound /
voice detection and classification competitions [10–12]. These typically deal with the au-
tomatic recognition of objects in images, whether these objects are in effect traffic signs,
digits, objects or animals, and have been won by research teams exploiting deep neural
networks of the convolutional type [10]. The current trend in machine learning / percep-
tion presently exploits the use of multiple representation levels, which can be achieved
using deep belief networks, Stacked Denoising Autoencoder (SDAE) or Convolutional
Neural Networks (CNNs), among others.

However, such current state-of-the-art implementations are known to consume high
energy levels in order to produce the expected results, which directly impacts the pro-
cessing costs of big data and also creates constraints in their utilization in autonomous
vehicles / robots. Moreover, some of the powerful parallel computing devices under
utilization, namely Graphics Processing Units (GPUs), are reaching power- and heat-
dissipation walls [13] (also known as utilization wall). Therefore, low power architectures
and corresponding energy-saving strategies are required at this point of neural networks
development.

1.1 Motivation

In this thesis we propose Stacked Autoencoder (SAE) architectures for reconfigurable
Field-Programmable Gate Array (FPGA) substrates, as a first step towards the imple-
mentation of more complex approaches to deep learning, such as CNNs. Even though
modern FPGAs support a high number of hardware resources, the proposed approach of
investigating a simpler Neural Network (NN) is justified by the fact that implementing,
for example, a CNN with the complexity of the largely adopted framework [14], would
require an FPGA with orders of magnitude more resources than those provided by current
state-of-the-art devices.

We propose to lower the N-dimensionality representation of the problem and associ-
ated computational complexity of the parallel architecture developed, allowing for sub-
optimal results albeit making it more tractable and thus able to cope with the existing
available hardware resources of modern FPGAs. These low-power FPGA architectures

2



1.2 Objectives

consume at least one order of magnitude less energy and are still able to provide real-time
throughput and competitive classification error performance, when compared to existing
clusters of other high-performance computational resources such as GPUs or Central Pro-
cessing Units (CPUs). The objective is to conciliate the quality of object recognition with
faster or even real-time execution capabilities at low-energy consumption budgets.

The main problems identified are the limited hardware resources available in recent
FPGAs to support this type of NN-based algorithms; the bandwidth bottleneck to ac-
cess global memory; and the long development times associated with Register Transfer
Level (RTL) design / development. The former problems can be addressed by developing
new algorithms based on less complex Autoencoder (AE) networks. The latter can be
overcome using new High-level Synthesis (HLS) tools that are very effective for design-
ing and prototyping hardware systems for reconfigurable devices in short periods of time
[15].

1.2 Objectives

In this thesis we show for the first time how we can train a type of NN, designated as
the SAE, on low-power FPGAs architectures. In particular, we propose:

i) to develop a SAE architecture based on low-power processing using FPGA de-
vices for classifying huge datasets that includes the training phase. For the best of our
knowledge, these long training periods have never been processed on these devices be-
fore (they are usually processed on the GPU). To exemplify these scenarios we develop
solutions for processing the well-known Mixed National Institute of Standards and Tech-
nology (MNIST) dataset.

and ii) to perform a power performance analysis by comparing the power and energy
efficiency of these algorithms in several computing platforms, from desktop and mobile
GPUs to FPGAs: we present experiments illustrating not only the accuracy obtained using
these SAE architectures, but also the execution times and the respective power and energy
consumption savings achieved when processing large amounts of images.

1.3 Main contributions

This thesis proposes new solutions that advance the state-of-the-art of artificial intel-
ligence, computer vision and parallel processing using the compute horse-power capabil-
ities of FPGAs. We provide a scalable and multi-platform solution for training a SAEs-
based NN, aimed at detecting objects, characters, or other type of structures in entire city

3



1. Introduction

maps. As the technology in the FPGA progresses and more processing resources are made
available, a shift to more robust types of NNs, such as the state-of-the-art CNNs, will be
possible. Moreover, we pave the way for new applications in a diversity of areas that can
benefit from the accurate real-time recognition of objects with lower consumption bud-
gets. These areas include not only big data processing, as for example the identification
and classification of large image data related to the visual information of entire city streets
(modern infrastructures like Google need to process and classify such large amounts of
data on a daily/permanent basis), but also robotics or autonomous vehicles, which all
present severe low-power constraints.

This work resulted in the article “Energy-efficient Deep Learning: Stacked Autoen-
coders on FPGAs and Mobile GPUs”, submitted to the ACM Transactions on Architec-
ture and Code Optimization journal and in “Low-power Accelerated Architectures using
Stacked Autoenconders for Object Recognition in Autonomous Systems”, submitted to
Neural Processing Letters - Special Issue on Neural Networks for Vision and Robotics.
Both these articles are available in the Appendixes B and C, respectively.

1.4 Dissertation outline

This thesis is structured in seven chapters. After this brief introduction, the principles
of Artificial Neural Networks (ANNs) and their relation to the biological model will be
depicted in Chapter 2, followed by a detailed look over the SAE selected for our work.
In Chapter 3 we describe the hardware architecture of the desktop and mobile GPUs and
FPGA platforms. Chapter 4 explains the Open Computing Language (OpenCL) program-
ming framework and the work developed to achieve efficient NN parallelism. Through
Chapter 5 we explain the experimental metrics and the specific test systems and OpenCL
devices used in our work. Regarding those metrics, in Chapter 6 we detail and analyze our
experimental results, evaluating the network and the test platforms in question. Finally, in
Chapter 7, we draw final conclusions of our work and discuss future improvements and
goals.
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2. Deep Learning using Neural Networks

The decisions we make in everyday life are based on personal experience, with knowl-
edge acquired over the years, shaped by our personal view of the world. An immense
amount of information helps us making those decisions. Things we saw, heard, smelled
or touched, produce a weighted effect, coming together to help us forming an opinion.

In modern neuroscience, scientists from several fields have been studying the brain,
formed by neural interconnections and responses, with the neuron acting as the basic unit
of the nervous system as described in the early 20th century [16]. With visualization
possible under optical microscopy, we now have a deeper understanding of the structure
and operation of a neuron.

2.1 Neuron

An abstract model of the biological neuron is comprised of a soma or neuron cell
body, several dendrites that extend from the soma, and a single axon, a structure similar
to dendrites but longer (as far as 1 meter in humans) [17]. A neuron axon can connect
to dendrites in other neurons, communicating through electrical signals from synapses,
hence forming a Neural Network (NN). A neuron is activated when a strong signal is
received by the dendrite through the synapse, propagating it through the axon and poten-
tially activating another neuron in the network [18]. An overview of the structure and
connections of a neuron can be seen in Fig. 2.1.

Figure 2.1: A schematic of the biological neuron
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2.2 Artificial Neural Networks

2.2 Artificial Neural Networks

The operation and connections of a neuron can be logically modeled [19], thus pro-
ducing an artificial neuron or combined together in an Artificial Neural Network (ANN).
The model in Fig. 2.2 relates to the abstract biological model, containing a set of inputs as
synapses, multiplied by the weights as the strength of the electrical signals, and combined
in an weighted sum that goes to an activation function, representative of the threshold for
activating the neuron. The computed output from the activation function relates to the
signal propagating to the axon in the biological model.

Figure 2.2: A logical approach to the neuron: the artificial neuron

As before, the equal mathematical model is defined by the inputs Xi, the weights Wi

and an activation function f (a step function in the original work [19]) resulting in the
expression

Y = f (
n

∑
i=1

Wi Xi) (2.1)

where Y is the neuron output and n represents the number of input signals.

The weights value directly affects the output of the neuron given a said input. There
is the possibility of changing these weights and thus obtain the desired output response,
in a step by step process called learning or training.

2.2.1 Perceptron

The first report on ANN training detailed a binary classifier, the perceptron, intended
at mapping an input vector of real values to a binary output via a step activation func-
tion [20].

Y = f (b+
n

∑
i=1

Wi xi) =

{
1 if b+∑

n
i=1Wi xi > 0

0 otherwise (2.2)

A bias b was introduced to provide a shift in the activation of the network output
and more appropriately adjust the position of the decision boundary. The initial training
algorithm does not distinguish input samples (vectors of input values) that are not linearly
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2. Deep Learning using Neural Networks

separable, causing some of them to be impossible to classify correctly as we can observe
in Fig. 2.3. In a) and a’) we can see a logical AND output correctly classified into two
hyperplanes. The same happens in b) for the logical OR output, but for the logical XOR in
c) a valid decision boundary cannot be set, always leaving at least one value out of the
correct hyperplane.

Figure 2.3: A collection of logical operations responses, with associated
decision boundaries and hyperplanes (green for 0, white for 1)

2.2.2 Multi-Layer Perceptron

To solve the issue with the basic perceptron and its inability to correctly distinguish
values that are not linearly separable, a new proposal was made in the form of the Multi-
Layer Perceptron (MLP) [21]. The premise was that an added layer, the hidden layer
between the input and output layers, could then perform a non-linear transformation via
a sigmoidal function and thus obtain a linearly separable output space [22]. A new learn-
ing algorithm was introduced, the error back propagation, computed after the data feeds
forward through the network. A model of one of these MLPs, along with the direction of
the feed forward and back propagation training phases, is depicted in Fig. 2.4.

Figure 2.4: A graphical representation of a Multi-layer Perceptron

The output signal is compared to the desired output and an error value and gradient
is calculated for each of the output nodes. The error is then back propagated through the
network, layer by layer, with the layer weights updated using a gradient descent algorithm.
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2.3 State-of-the-Art: The Convolutional Neural Network

After the back propagation is concluded, a training iteration or epoch is over, and the
process can start again from the feed forward, for as many epochs as needed until an ideal
output error is achieved.

The use of more than two hidden layers in neural network supervised learning in what
is called a Deep Neural Network (DNN), was seen as unnecessary until recently, given
the proofs of the approximation capabilities of one [22] and two [23] hidden layer neural
networks.

The exceptions to this rule were the neocognitron [24], which used several layers to
emulate the human visual system, and Convolutional Neural Networks (CNNs) [25], both
developed mostly for visual tasks.

Apart from the apparent unnecessary use of more than two layers, the other main issue
with using deep networks was the difficulty that appeared when trying to train several
hidden layers using standard back propagation: there were problems adjusting the weights
as depth increased (vanishing gradients).

2.3 State-of-the-Art: The Convolutional Neural Network

The efforts by Hinton and co-workers [26,27], resulted in the ability to train DNNs, in
this case, Deep Belief Networks (DBNs) which took advantage of Boltzmann machines in
a variant called Restricted Boltzmann Machines (RBMs). At the same time, other groups
proposed a way to train deep networks based on stacking autoencoders [28, 29].

From 2006 until today, the field of DNNs has received much attention. The poten-
tial advantages that come from using DNNs are the possibility of having increasingly
more abstract levels of representation, the possibility of reusing the intermediate level
representations across different tasks and also to obtain a more compact and efficient rep-
resentation for certain types of problems [30].

A novel form of DNN called CNN was then introduced, consisting in the simulation of
how the brain’s visual system works (or at least how we currently believe its first regions
work). The CNN presented in [10] is in fact based on a combination of several individual
CNNs, each applied to the same or different inputs and with the corresponding outputs
combined and averaged.

This particular CNN presented the best results, by the time it was published, in 7 dif-
ferent datasets normally used for benchmarking similar algorithms, with improvements
ranging from 30% to 80% with respect to previously best published results [10]. The
main drawback of these approaches (CNNs) is their computational cost. These deep
learning approaches use Graphics Processing Unit (GPU) clusters to cope with these large
datasets [31]. But even using this type of powerful parallel computing engines, experi-
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2. Deep Learning using Neural Networks

Figure 2.5: Topology of the CNN for the CIFAR-10 dataset [1]

ments can still take several minutes or even hours to execute [10]. As an example, the
LeNet convolutional neural network, working with the Mixed National Institute of Stan-
dards and Technology (MNIST) dataset takes 380min on a Central Processing Unit (CPU)
(Core i7-2600K CPU at 3.40GHz) and 32min on a GPU (GeForce GTX 480) to run a sin-
gle experiment (including training and testing) [32].

2.4 Sub-optimal Neural Networks

2.4.1 Autoencoder

In this thesis we show the potential of implementing deep learning in Field-Programmable
Gate Arrays (FPGAs) by using a Stacked Autoencoder (SAE). An Autoencoder (AE) con-
sists of a simple network that tries to produce at the output what is presented at its input.
The most basic AE is in fact an MLP that has one hidden and one output layer, with the
following restrictions:

• The weight matrix of the last layer is the transposed of the weight matrix of the
hidden layer (clamped weights);

• The number of output neurons is equal to the number of inputs.

Let’s represent the input vector by x, the weight matrix by W, the input size by n. The
hidden layer neurons output, called the encoding, is obtained with

h j = s(a j) (2.3)
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2.4 Sub-optimal Neural Networks

where

a j = b j +
n

∑
i=1

Wi jxi (2.4)

and where b j is the bias of the hidden layer neuron j and s(·) is the sigmoid function. The
output layer values, or the decoding, is given by

x̂ j = s(â j) = s

(
c j +

nh

∑
i=1

W T
i j hi

)
(2.5)

where c j is the bias of the output layer neuron j and nh the number of hidden layer
neurons.

A simplified way to write the previous expressions is

h = s(a) = s(b+Wx) (2.6)

and
x̂ = s(â) = s

(
c+WT h(x)

)
(2.7)

where the sigmoid is applied to each element of its input (vector) argument.
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Figure 2.6: Example of an autoencoder (left) and of a stacked autoencoder (right).

Since the goal is to obtain at the output the same thing that is in the input, an adequate
cost function should compare these two vectors. The typical approach is to use (real-
valued inputs)

C(x̂,x) =
n

∑
i=1

(x̂i− xi)
2 . (2.8)

For binary inputs, the cross-entropy can be used :

C(x̂,x) =−
n

∑
i=1

(xi log(x̂i)+(1− xi) log(1− x̂i)) (2.9)
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Figure 2.7: Topology of the first autoencoder for the MNIST dataset

The weight changes will be done according to the gradient descent. Since the goal is to
obtain in the output the same that is present in the input, an adequate cost function should
compare these two vectors. In what follows, the index i runs from 1, . . . ,nh and the index
j = 1, . . . ,n. For real-valued inputs, we use

C(x̂,x) =
n

∑
k=1

(x̂k− xk)
2 . (2.10)

When the activation function is the sigmoid, we have to update the weights (dropping
constants that can be absorbed by η) according to:

Wi j =Wi j−η

n

∑
k=1

[(x̂k− xk)x̂k(1− x̂k)

(
hi +

nh

∑
z=1

[
W T

kzhz(1−hz)x j
])]

bi = bi−η

n

∑
k=1

[(x̂k− xk)x̂k(1− x̂k)Wikhi(1−hi)]

c j = c j−η(x̂ j− x j)x̂ j(1− x̂ j)

This process of adjusting the AE’s weights in an unsupervised manner is called pre-
training.

2.4.2 Stacked Autoencoder

The process described so far is used to train a single AE, but a single AE is not deep:
it only has depth 2. One possible way to obtain a deeper architecture using AEs is to stack
them on top of each other such that the output of one AE is the input for the next. This
stacking can produce a deep network: the stacked AE, or SAE.
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2.5 Softmax Classifier

Figure 2.8: Topology of the stacked autoencoder for the MNIST dataset

The SAE is obtained by the following procedure: first pre-train several AEs such that
the first learns to approximate the inputs from the dataset, the second learns to approxi-
mate the hidden representations of the first and so on. Then place a final layer of neurons
that represent the output layer and will have as many neurons as there are classes in the
problem.

The idea is that the pre-training is used to bring the weights of the network near a
good starting point for the fine-tuning procedure. Note that the pre-train is an unsuper-
vised training procedure, whereas the fine-tunning that is performed on the complete SAE
after the placement of the final layer is a typical supervised learning procedure that takes
advantage of the class labels.

In the end, we obtain a deep network that receives input data from the dataset and
produces a class label at the output.

2.5 Softmax Classifier

The output layer of the SAE receives as input the last hidden layer representation
produced by the AE on top of the stack, say h, and produces an output using the usual
weighted product between the layer input (h) and its weights followed by the application
of an activation function f (·).

The activation function used in this output layer can be any of several possibilities.
We have chosen to use the softmax. So, for the activation of the output layer neuron i we
get:

f (ai) =
eai

∑
L
k=1 eak

(2.11)
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2. Deep Learning using Neural Networks

where L represents the number of classes (and output layer neurons) and ai is the activa-
tion of neuron i obtained using an expression similar to (2.4) but where xi are replaced by
hi.

2.6 Neural Networks Hyper-parameters

2.6.1 Learning Rate

The learning rate selected at the start of the training phase is a high-impact parameter.
If it’s set too low, the resulting error convergence takes longer than necessary and the
optimal final error may not be achieved, as the error may get ’stuck’ on a local minimum.
The opposite case, when the learning rate is set too high is also not ideal. With a value
too high, as the first stages of training may present a faster error convergence, the error
may start to diverge quickly, thus avoiding the targeted minimum. The ideal learning rate
should be high enough to provide a rapid error convergence at the start, and then decrease
to provide a finer rate and lower error in the end. An example of this problem can be
observed in Figs. 2.9 and 2.10.

Figure 2.9: Impact of different learning rates. A low (0.1) learning rate gets
caught in a local minimum (slow error convergence), an ideal (0.45) learning

rate achieves the lowest possible error, and a high (1.0) learning rate goes
past the ideal value (error divergence)

2.6.2 Batch Size

During the training process an overall better performance and faster error convergence
is obtained if we only present a small batch of images at each time. This problem size
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Figure 2.10: Another example of the impact on the final result of a low (0.1), an ideal
(0.45) and a high (1.0) learning rate

reduction dismisses the overhead impact of launching too many work-items in the device,
at the same time decreasing the memory footprint of the application. Since the error
verification and weight updates are computed at a quicker rate, the stopping criteria are
achieved faster, thus improving the SAE training performance.
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3.1 Desktop GPU

With the ubiquitous nature and power of currently available Graphics Processing Units
(GPUs), there is high potential for computational acceleration. The trend in current GPU
development is to provide the end user with an increased number of cores, benefiting the
computational power and thus allowing more demanding applications to be addressed.
The single-device GPUs in the gaming-driven market are headlined by the Advanced
Micro Devices (AMD) R9 290X with 2816 Streaming Processors (SPs), and the Nvidia
GTX Titan with 2668 Compute Unified Device Architecture (CUDA) cores. Their dual-
GPU counterparts, the AMD R9 295X2 and Nvidia GTX Titan Z, are set to release with
the double of SPs/CUDA cores and available memory.

3.1.1 AMD R9 290X (Hawaii)

The AMD R9 290X GPU codename “Hawaii” was the first to be produced with
AMD’s own Graphics Core Next (GCN) version 2.0 architecture [33], with new takes on
performance, image quality and energy efficiency. GCN 2.0 was designed with general-
computing in mind and the increasing popularity of Open Computing Language (OpenCL)
was considered during the development process.

The “Hawaii” block diagram in Fig. 3.1 details the integral GPU design [2]. At the
top center of the design is the Graphics Command Processor, responsible for receiving
the commands and state changes from the device’s memory subsystem at the bottom of
the diagram, and controlling the general flow of execution.

The memory subsystem is comprised of 1MB L2 Cache with 1TB/s L1/L2 bandwidth
and capable of being partitioned into 16x64KB, and eight 64 bit Memory Controllers
(MCs) resulting in the 512 bit bus interface to the 4 GB of GDDR5 memory, and 320
GB/s of memory bandwidth. Connecting to the host is the PCIe 3.0 Bus Interface with up
to 15.75 GB/s for a 16-lane slot.

The GPU is intended to be a parallel computing platform and for maximum perfor-
mance and less idle states, the Command Processor is aided by the 8 Asynchronous Com-
pute Engines (ACEs) in this architecture. The ACEs perform in parallel with the Com-
mand Processor, independently managing the scheduling and workload dispatchment to
each Compute Unit (CU) for processing.

The computing core of the “Hawaii” GPU consists of 4 Shader Engines, each with its
own parallel linked Geometry Processors and Rasterizers, but all sharing the same pool of
16x64KB L2 Cache. Each Shader Engine holds 11 CUs with 64 SPs each one, for a total
of 44 CUs and a shader count of 2816 SPs. A more detailed view of a CU is depicted in
Fig. 3.2.
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Figure 3.1: The AMD R9 290X (Hawaii) GPU block diagram [2]

Figure 3.2: A detailed view of the GCN Architecture Compute
Unit in the AMD R9 290X (Hawaii) [2]

3.1.2 Nvidia GTX Titan (GK110)

The Nvidia GTX Titan GPU codename “GK110” is produced with Nvidia’s Kepler
Architecture [3] and, as the “Hawaii” from AMD, was developed with innovative comput-
ing technology and features, resulting in an improved parallelism with greater efficiency
and performance per Watt. The trend in demanding scientific computing applications was
addressed in improvements to Nvidia’s own CUDA framework.

The “GK110” block diagram in Fig. 3.3 details the integral GPU design [3]. In the
top of the design is the GigaThread Engine, providing fast context switching, concur-
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rent kernel execution and managing thread block level scheduling and parallelism. The
pipeline information for the GigaThread Engine is fetched from the memory subsystem
and through the PCI Express 3.0 Host Interface.

Kepler memory hierarchy provides a 1536KB L2 Cache and six 64-bit MCs resulting
in a 384-bit memory interface to the 6GB of GDDR5 memory, and 288.4 GB/s of memory
bandwidth.

The computing core contains an array of five Graphics Processing Clusters (GPCs)
each with three Streaming Multiprocessor (SMX), for a total of 15 SMXs, albeit with
one disabled due to the production yield, usually the SMX furthest from Nvidia’s quality
control standards. Each of the SMX units feature 192 single-precision CUDA cores, and
each core has fully pipelined floating-point and integer arithmetic logic units. In the end
we have a total of 2668 CUDA cores throughout the 14 SMXs. A detailed view of a SMX
Architecture is depicted in Fig. 3.4.

Figure 3.3: The Nvidia GTX Titan (GK110) GPU block diagram [3]

3.2 Mobile GPU

Over recent years the concern with energy consumption has led to a new direction in
development, resulting in more efficient platforms while still meeting the need for higher
computational power. Today’s smartphones have an increasing demand for performance
while dealing with strict power constraints due to constant dependency on battery power.
The result are platforms such as Qualcomm’s Snapdragon 800 mobile System On Chip

20



3.2 Mobile GPU

Figure 3.4: A detailed view of the SMX Architecture in the
Nvidia GTX Titan (GK110) [3]

(SoC) used in most of the latest smartphones from the leading manufacturers. These
platforms are comprised of multiple processing hardware, usually needed in a mobile
phone environment, in a single chip. We are specially interested in its Adreno 330 GPU,
since it provides OpenCL 1.1 compliant compute capability.

3.2.1 Qualcomm Adreno 330 (Snapdragon 800)

In late 2012, OpenCL 1.1 support was introduced to the Qualcomm Adreno 320 GPU
in Snapdragon 600, with further improvements made to the Adreno 330 in Snapdragon
800. The Adreno 330 was launched with Application Programming Interfaces (APIs)
designed to expand the use of GPU processing for general computing, offering a 2 times
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superior compute performance than Adreno 320 [34].

The Adreno 330 GPU has a unified global memory with the Krait Central Processing
Unit (CPU), using the remaining space from the 2GB of LP-DDR3 memory, with up to
12.8 GB/s memory bandwidth [4]. Inside the GPU we also have access to 8KB of local
memory and 4KB of constant memory.

The processing core of the Adreno 330 is composed of 4 CUs each with 32 SPs,
providing 128 SPs in total.

Figure 3.5: The Qualcomm Adreno 330 GPU in the Snapdragon 800 SoC [4]

3.3 FPGA

The Field-Programmable Gate Array (FPGA) market regained some momentum when
Altera, one of the leading FPGA manufacturers, released their OpenCL Software Devel-
opment Kit (SDK) in May 2013 [35]. The FPGA is an inherently parallel architecture
and OpenCL provides an easy to use, high-level language, resulting in a perfect match
for high computational needs. The difference in energy consumption being 10 times in-
ferior in the FPGA when compared to top GPUs, also seems to encourage the adoption
of this type of platforms for some applications. Some selected development kits provide
32GB of memory so there is a clear advantage in this field towards making the move to
FPGAs, as implementations regarding image processing can be memory-size bounded.
In overview, we have a platform that provides great computational capabilities, with sig-
nificantly lower power usage and extended memory available, all in a small and portable
package ready for robotics and other low-power budget applications.
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3.3.1 Altera Stratix V GS D5 (5SGSD5)

One of the current FPGAs from Altera with OpenCL support is the Stratix V GS
D5 [36]. This device has been developed for Digital Signal Processing (DSP) and inte-
grates 3180 18x18, high-performance, variable-precision multipliers, 36 full-duplex 14.1
Gbps transceivers, along with 457000 logic elements, 172600 adaptive logic modules
and 690400 registers. The memory interface allows for up to 6 independent banks of
Double-Data Rate (DDR)3 Synchronous Dynamic Random Access Memory (SDRAM)
on a 72-bit data bus, with connection to the Host made via an 8-lane PCIe 3.0 bus with
up to 10 GB/s sustained bandwidth. With these building blocks, the number of possible
CUs to which the FPGA can be fine-tuned is application dependent, with variable logic
substrate usage.

Figure 3.6: Stratix V FPGA architecture and features [5]
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4. High-Level Synthesis and OpenCL Structure for Neural Networks

4.1 The OpenCL Programming Framework

From the currently available parallel computing frameworks for Graphics Processing
Unit (GPU) programming, we can choose from a few alternatives, namely Compute Uni-
fied Device Architecture (CUDA) and Open Computing Language (OpenCL). CUDA is
bound to Nvidia’s hardware but OpenCL is a highly portable framework currently being
implemented in Central Processing Units (CPUs), GPUs, Field-Programmable Gate Ar-
rays (FPGAs) and even Android smartphones and tablets. Provided there is a Software
Development Kit (SDK) for the desired platform, we are able to port an existing code into
the device and achieve fast parallel processing.

The OpenCL framework links a host to one or more OpenCL devices, forming a single
heterogenous computational system [37]. The framework is structured in the following
manner:

1. Platform Layer: The platform layer supports the host program, finding available
OpenCL devices and their capabilities and then creating a connection through a
context environment. A detailed view of this layer is described in Section 4.1.1.

2. Runtime: The runtime component allows the host program to manipulate context
environments once they have been created, sending kernels and command queues
to the device. A detailed view of the runtime is described in Section 4.1.2.

3. Compiler: From the OpenCL kernels the compiler produces program executables.
The OpenCL C programming language implemented by the compiler supports a
subset of the ISO C99 language with extensions for parallelism [37].

4.1.1 OpenCL Platform Layer

The OpenCL platforms with their SDKs installed on the host system, such as AMD’s
or Nvidia’s platforms, provide access to the OpenCL devices from those vendors, allow-
ing a detailed query of its capabilities and configuration information. With the device
information we can then select one or more available devices to create a context, forming
a working environment able to receive a command queue at a latter stage.

The first step consists of initializing the OpenCL Application Programming Interface
(API) variables. These include a cl int for storing the API return calls, a cl uint vari-
able to hold the number of available platforms with their SDK installed on the host system,
as well as another cl uint for the number of devices in the available platform. The IDs
from the available platforms and devices can then be collected to cl platform id and
cl device id, respectively, with which we can later create a cl context and link the
pretended device to the host.
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1 // [...]

2
3 // OPENCL API VARIABLES

4 cl_int cl_return;

5 cl_uint num_platforms;

6 cl_uint num_devices;

7 cl_platform_id *platforms;

8 cl_device_id *devices;

9 cl_context context;

After the OpenCL API variables are initialized, we query the host system with clGetPlatformIDs
and retrieve the number of installed platforms and their IDs, each representative of one
platform.

1 // [...]

2
3 // OPENCL PLATFORMS

4 // Retrieve the number of platforms (up to 5)

5 cl_return = clGetPlatformIDs (5, NULL , &num_platforms);

6
7 // Allocate memory space for each of the platforms

8 platforms = new cl_platform_id[num_platforms ];

9
10 // Retrieve each of the platforms IDs

11 cl_return = clGetPlatformIDs(num_platforms , platforms , NULL);

The platform information allows to use clGetDeviceIDs and retrieve the available
OpenCL devices and IDs.

1 // OPENCL DEVICES

2 // Retrieve the number of devices on platform 0

3 cl_return = clGetDeviceIDs(platforms [0], CL_DEVICE_TYPE_ALL , 0, NULL , &

num_devices);

4
5 // Allocate memory space for each of the devices on platform 0

6 devices = new cl_device_id[num_devices ];

7
8 // Retrieve the device data from platform 0

9 cl_return = clGetDeviceIDs(platforms [0], CL_DEVICE_TYPE_ALL , num_devices ,

devices , NULL);

At this stage we are able to select one or more devices and create a context with
clCreateContext, so we can manage them.

1 // OPENCL CONTEXT

2 // Create a context and link it to device 0 on platform 0

3 context = clCreateContext(NULL , 1, &devices [0], NULL , NULL , &cl_return);

After the runtime execution and all the computation is done, we can then clear the
allocated resources from memory using clReleaseContext and the standard C++ meth-
ods.

1 // [...]

2
3 // CLEAR OPENCL RESOURCES

4 clReleaseContext(context);

5 delete [] platforms;

6 delete [] devices;
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4.1.2 OpenCL Runtime

During the OpenCL runtime several API calls are available to manage command
queues, memory, program and kernel objects in a context. All these calls allow a direct
runtime control over the developed kernel functions in a program. We enqueue neces-
sary commands such as kernel execution, and access to read, write or copy operations on
a memory object allocated in the device.

As before in the Platform Layer, several OpenCL API variables are required. A
cl command queue is needed for the kernel program command queue, so the device
can perform the requested operation. The kernel source code is compiled and built to
a cl program, with each of its kernels created to a cl kernel variable. For the de-
vice memory allocation and various operations a cl mem object is needed for each of
the memory buffers. The kernel source can also be loaded from an external file with
kernel source, or from an external binary as in kernel binary. These .aocx files are
precompiled device binaries from the Altera SDK.
1 // [...]

2
3 // OPENCL API VARIABLES

4 cl_command_queue queue;

5 cl_program program;

6 cl_kernel feedFwd;

7 cl_kernel backProp;

8 cl_kernel backPropHidden;

9 cl_mem cl_weights;

10 cl_mem cl_input;

11 cl_mem cl_output;

12
13 // KERNEL SOURCE FILE

14 #define kernel_source "./ kernel.cl"

15 // OR KERNEL BINARY FILE (FROM ALTERA SDK)

16 //#define kernel_binary "./ kernel.aocx.cl"

With the platform layer correctly configured, we can now launch a command queue
with a call with the clCreateCommandQueue function. This creates a command queue
on a specific device associated with in an existing context.
1 // [...]

2
3 // OPENCL COMMAND QUEUE

4 // Create a command queue on the current context , linking to device 0

5 queue = clCreateCommandQueue(context , devices [0], 0, &cl_return);

After reading the source code from the file to a buffer with a known size, we can
create a program using clCreateProgramWithSource, linking it to an existing context.
An alternative is to create the program from a precompiled device binary file, as the one
produced with the Altera SDK. The next step consists of program compilation and linkage
for devices associated with the platform, which is performed with clBuildProgram.
1 // [...]

2
3 // CREATE THE PROGRAM WITH THE KERNEL SOURCE CODE

4 program = clCreateProgramWithSource(context , 1, (const char **)&source_buffer , &

source_size , &cl_return);
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5 // OR CREATE THE PROGRAM FROM BINARY (FROM ALTERA SDK)

6 // program = clCreateProgramWithBinary(context , 1, &devices [0], &binary_length ,

(const unsigned char **)&binary , &binary_status , &cl_return);

7
8 // BUILD THE PROGRAM

9 cl_return = clBuildProgram(program , num_devices , devices , NULL , NULL , NULL);

Now, from the built program, we can construct the necessary OpenCL functions, or
kernels, using clCreateKernel.
1 // CREATE THE NEEDED KERNELS FROM THE PROGRAM

2 feedFwd = clCreateKernel(program , "feedFwd", &cl_return);

3 backProp = clCreateKernel(program , "backProp", &cl_return);

4 backPropHidden = clCreateKernel(program , "backPropHidden", &cl_return);

As the kernels are now created, we can begin the computations on the device. For data
on the device to be accessible, a memory buffer with the correct size must be allocated
with clCreateBuffer and then wrapped to a cl mem memory object.
1 // CREATE THE NEEDED BUFFERS FOR THE KERNEL

2 // Create a buffer object to store the weight vector from this autoencoder

3 cl_weights = clCreateBuffer(context , CL_MEM_READ_WRITE , joined_weights_size*

sizeof(float), NULL , &cl_return);

4
5 // Create a buffer object to store the input data vector from this autoencoder

6 cl_input = clCreateBuffer(context , CL_MEM_READ_WRITE , max_data_size*sizeof(float

), NULL , &cl_return);

7
8 // Create a buffer object to store the output data vector from this autoencoder

9 cl_output = clCreateBuffer(context , CL_MEM_READ_WRITE , max_data_size * sizeof(

float), NULL , &cl_return);

With the newly created buffers we can start to transfer the data needed for the de-
vices computations, from the host to the device. This can be achieved by adding a
clEnqueueWriteBuffer task to the command queue, with a host pointer to the data
of the previously set buffer size.
1 // ENQUEUE A WRITE TO THE PREVIOUSLY CREATED BUFFERS

2 // Enqueue the weight buffer write in the queue , so it can be transferred to the

device

3 cl_return = clEnqueueWriteBuffer(queue , cl_weights , CL_FALSE , 0,

joined_weights_size * sizeof(float), joined_weights , 0, NULL , NULL);

4
5 // Enqueue the input data buffer write in the queue , so it can be transferred to

the device

6 cl_return = clEnqueueWriteBuffer(queue , cl_input , CL_FALSE , 0, ( hidden_layer ->

getNodes () * batchSize ) * sizeof(float), inputData , 0, NULL , NULL);

The memory objects are now allocated and the data is available on the device. We
can point the kernel arguments to the correct buffer location in global memory, as well as
setting other kernel arguments that will be stored in local memory. This operation can be
achieved with clSetKernelArg.
1 // DEFINE KERNEL ARGUMENTS

2 cl_return = clSetKernelArg(feedFwd , 0, sizeof(cl_mem), (void *)&cl_weights);

3 cl_return |= clSetKernelArg(feedFwd , 1, sizeof(cl_mem), (void *)&cl_input);

4 cl_return |= clSetKernelArg(feedFwd , 2, sizeof(cl_mem), (void *)&cl_output);

5 cl_return |= clSetKernelArg(feedFwd , 3, sizeof(int), (void *)(& hidden_layer ->

getNodes ()));

6 cl_return |= clSetKernelArg(feedFwd , 4, sizeof(int), (void *)(& hidden_layer ->

getFeatures ()));

7 cl_return |= clSetKernelArg(feedFwd , 5, sizeof(int), (void *)(& offset));
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We are now ready to launch the kernel execution on the device with clEnqueueNDRan-
geKernel, requesting a data partitioning based on the developed kernel and the data we
are about to process. We can distribute the processing load across up to 3 dimensions,
with a detailed control of the partitioning inside each dimension with the global and local
number of work-items. A work-item is one singular implementation or thread of the total
workload.

In our particular case with the Stacked Autoencoder (SAE), the input of the next layer
is the output of the current layer. The clFinish call provides a synchronization point
that awaits the return from every operation in the queue, thus only advancing when all the
work-items successfully computed.
1 // EXECUTE KERNEL

2 size_t global_2D [2];

3 size_t local_2D [2]={1 , min_multi };

4 // Number of nodes in the current layer

5 global_2D [0]= round_up(hidden_layer ->getNodes (), min_multi);

6 // Number of samples to process

7 global_2D [1]= round_up(batch_size , min_multi);

8
9 // Executes the kernel with the pre -determined parameters

10 cl_return = clEnqueueNDRangeKernel(queue , feedFwd , 2, NULL , global_2D , local_2D ,

0, NULL , NULL);

11
12 // Waits for the end of every element in the command queue

13 clFinish(queue);

Aside from the clEnqueueWriteBuffer call to transfer data from host to device, the
OpenCL API has calls for device to host transfers, using clEnqueueReadBuffer, and a
call for host to host internal data transfer, the clEnqueueCopyBuffer.
1 // READ THE KERNEL OUTPUT BUFFER

2 // Read the output buffer from this kernel to the host output array

3 cl_return = clEnqueueReadBuffer(queue , cl_output , CL_TRUE , 0, ( hidden_layer ->

getNodes () * batchSize ) * sizeof(float), hiddenOutputBatch[layer], 0, NULL ,

NULL);

4
5 // [...]

6
7 // COPY THE BUFFERS

8 // Copy the previous execution output buffer to the input buffer

9 cl_return = clEnqueueCopyBuffer(queue , cl_output , cl_input , 0, 0, ( output_layer

->getNodes () * batchSize ) * sizeof(float), 0, NULL , NULL);

With the runtime execution and all the computation completed, we can then clear all
the OpenCL allocated resources from memory.
1 // [...]

2
3 // CLEAR OPENCL RESOURCES

4 clReleaseMemObject{cl_weights };

5 clReleaseMemObject{cl_input };

6 clReleaseMemObject{cl_output };

7 clReleaseKernel(feedFwd);

8 clReleaseKernel(backProp);

9 clReleaseKernel(backPropHidden);

10 clReleaseProgram(program);

11 clReleaseCommandQueue(queue);

12
13 // [...]
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4.2 General OpenCL Optimizations for Neural Networks

Work in the field of Neural Networks (NNs) started by looking at an OpenCL im-
plementation of a Multi-Layer Perceptron (MLP) [38]. His goal was to implement and
evaluate a NN running on a GPU. The source code provided contained a three layered
MLP, training and classifying the Olive dataset [39].The training set from Olive has 572
samples and details the composition of eight chemicals (the training values) in the olive
fruit, from nine regions of Italy (the classification labels).

The OpenCL kernel for the feed forward phase has two execution dimensions. These
dimensions are related to the number of nodes in the current layer, the inputs, and the
number of nodes from the previous layer, the outputs. All other computations associated
with the MLP algorithm, including the back propagation, are performed in a serial manner
on the CPU. The MLP has an input layer with 8 nodes (the chemical values), three
hidden layers with 384 - 256 - 128 nodes, respectively, and an output layer with 9 nodes,
equal to each of the regions to classify data. The weights were initialized with random
values and the training run for 100 epochs with a fixed learning rate of 0.01. This phase
was developed in an ASUS N53SN laptop comprised of an Intel i7 2630QM CPU at 2.0
GHz, 8 GB DDR3-1333MHz and an Nvidia GeForce GT 550M with 2 GB of GDDR5 as
OpenCL device. The SDK for Nvidia provides OpenCL version 1.1. Next, we explain the
several modifications and optimizations performed on his code, with total execution time
and relative time savings achieved in each one.

v1. Original implementation in [38]
Starting from the original code, we benchmarked the execution time at 128.24s.

v2. Data transfer from one layer to the next: out put layer[n]⇒ input layer[n+1]
In the feed forward phase, the output data of one layer is the input of the next
one. Originally, this data transfer was done by copying the output from Device to
Host, deleting the OpenCL memory objects. The memory objects were then created
once more for the next layer, copying the recently transferred output once again
but now in reverse order, from Host to Device. The optimization here performed
consists of maintaining the data in the Device’s memory, avoiding unnecessary slow
data transfers between Device and Host. A copy is now performed internally, from
Device to Device, via the clEnqueueCopyBuffer(output, input) command.
We recorded an execution time of 101.46s or a relative gain of 26.78s.

v3. Work-Group size and number of Work-Items
When querying an OpenCL device, the PREFERRED WORK GROUP SIZE MULTIPLE

variable returns a reference value for the work-group size. For our particular device,
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maintaining it at multiples of 32 allows achieving a faster processing time, even if
there is a need for additional threads. This is due to the problem with idle threads.
Threads are executed in groups called wavefronts for AMD and warps for Nvidia,
of a determined size. If we launch only a fraction of those threads, those groups
are unbalanced and a coalesced access is then impossible. A function to round
up to the nearest minimum multiple was then developed, with the kernel executed
accordingly, as depicted in Algorithm 1. During the kernel execution, if the thread

Algorithm 1 Round Up to the Best Work-Group Size Performer

1 // Minimum multiple work -items

2 const int min_multi = 32;

3
4 int round_up(int num , int multiple)

5 {

6 int rest = num \% multiple;

7
8 // If rest is 0, is already a multiple

9 if (rest == 0)

10 return num;

11
12 // otherwise

13 return num + multiple - rest;

14 }

15
16 // [...]

17
18 size_t global_2D [2];

19 size_t local_2D [2]={1 , min_multi };

20
21 // Number of nodes in the current layer

22 global_2D [0]= round_up(layer_nodes , min_multi);

23 // Number of samples to process

24 global_2D [1]= round_up(samples , min_multi);

25
26 // Executes the kernel with the pre -determined parameters

27 cl_return = clEnqueueNDRangeKernel(queue , feedFwd , 2, NULL , global_2D , local_2D , 0,

NULL , NULL);

28
29 // [...]

ID exceeded the necessary values it means that it was was a “filler” thread, and
would return from execution immediately. After this modification the execution
time was reduced to 89.99s, or a 11.47s gain from the previous optimization.

v4. Initial buffer allocation
Every call to clCreateBuffer has an impact in the execution time. To prevent
extra unnecessary calls, an initial parsing of the max size needed for the input and
output buffers was made and the buffers were allocated with that size, only to be
freed from memory at the end of the current layer execution. This yielded a total
time of 89.28s and a relative gain of 0.71s regarding the last optimization.
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v5. Weight vectors appended together in a total weight vector
In order to avoid making one weight transfer from Host to Device for every single
layer, a buffer was initially created with enough size to accommodate the entire set
of weight vectors. An extra kernel argument was then added with the offset value
related to the position of each layer’s weights. A total execution time of 88.83s was
recorded, with a relative gain of 0.45s from the last optimization.

v6. Output vectors appended together in a total output vector
Equal to the previous optimization but now regarding the output vectors from each
layer. At this point the execution time takes 88.20s, with a relative gain of 0.63s
from the last optimization.

From these changes we were able to reduce the execution time a total of 40.04s, a
third of the initial execution time. A comparison of all versions can be seen in Fig. 4.1.
At this point, and from the 88.20s it was taking to execute, 81 of those seconds or 92%
of the total execution time was spent in the back propagation phase, as it was still being
performed in a serial manner on the CPU. It became clear that the next objective was to
develop an OpenCL kernel for the back propagation.

Figure 4.1: Comparison of the five initial OpenCL optimizations performed

4.3 OpenCL Kernels for Neural Network Parallelism

After the initial study discussed in Section 4.2, for the NN architectures referenced
in this thesis three OpenCL kernels (functions running on the device) were developed.
The first one relates to the feed forward algorithm, sending the data through the network
and computing its results. After this phase is concluded, the second kernel computes the
autoencoder reconstruction error at the output layer and then begins the gradient-based
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back propagation algorithm. The back propagation, as the feed forward, suffers with data-
dependency from the previous layer. Since the back-propagation for the hidden layer is
depedent on the gradient calculations from the output layer, this results in a third kernel
for that purpose.

4.3.1 Feed-Forward

When the samples from the dataset and weights for that layer are loaded to the device’s
global memory, we begin the initial phase, sending the data through the network. The
kernel is launched across two dimensions, the first being equal to the output nodes of the
current layer and the second relative to the amount of samples from the dataset. This
means that one particular work-item is responsible for one output node when all the input
nodes from one sample go through it.

Inside the kernel, a loop goes over all the layer input nodes and respective weights
for that particular output node, computing the overall sum of that product (Eq. 2.4). An
activation function, in this case being the sigmoid function, is then applied to that sum
plus the bias of that output node (Eq. 2.3).

This kernel is valid for both the encoder and decoder phase of the autoencoder, the
only difference being the input varying between the original image for the encoder layer
and the encoder output for the decoder layer (Eq.2.5).
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for(int i=0; i<InNodes; i++)
            sum += WEIGHTS[i + idx * InNodes] *
                           INPUT[i + idy * InNodes]; 

OUTPUT[idx + (idy*OutNodes)] = sigmoid(sum + 
                 WEIGHTS[InNodes*OutNodes+ idx ]);

Figure 4.2: Feed forward work-items spread across two dimensions
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4.3.2 Back Propagation - Output Layer

After computing the feed-forward across the Autoencoder (AE), the resulting output
is of the same size as the input. We then have the possibility of comparing those values
and thus calculating a reconstruction error. The kernel developed for this phase calculates
the error and then computes the gradient descent on the back propagation. Since we are
batch training the network, this time the kernel is launched only in one dimension, that of
the number of output nodes.

If as before in the feed-forward phase, the kernel was also launched across two di-
mensions, in the case of back propagation the resulting memory block size needed to
avoid data-dependencies would be just too large to fit in the device’s memory, as the size
of features × samples × nodes × sizeof(float) could amount to hundreds of
gigabytes of allocated memory.

The algorithm inside the kernel then loops over all dataset samples, computing the
reconstruction error and gradient (Eq. 2.10). The partial derivative for the weights is then
calculated via the gradient. The value for the bias is obtained directly from the gradient
(Eq. 2.11), with the value for the weights also being dependent on the output from the
previous hidden layer (Eq. 2.11). When all the samples have been processed, the mean of
the gradient is needed due to the batch training method.

4.3.3 Back Propagation - Hidden Layer

The kernel used for the back propagation in the hidden layer is close to that of the out-
put layer. We don’t have a reconstruction error for this layer which is rather depent on the
gradient calculated in the output layer. The kernel is then launched with one dimension,
which was the size of the hidden layer output nodes.

The product of the weights of this layer and the output gradient is summed across
input nodes, with the resulting sum replacing the error in the previous algorithm, finally
obtaining the gradient for this layer. The kernel then proceeds to compute the partial
derivatives as described in the output layer kernel.

When the back propagation for this hidden layer comes to an end, the partial deriva-
tives are then copied to the host where a simple loop updates the weights and bias, this
being a fast and low computationally demanding operation.

4.4 FPGA-Specific High-Level Optimizations

The current Altera SDK provides several compiler optimizations, improving the over-
all throughput performance of the hardware and architecture [40]. For the FPGA ver-
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Figure 4.3: Back propagation work-items
for the output layer (decoder)
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Figure 4.4: Back propagation work-items
for the hidden layer (encoder)

sion, several key optimizations were studied, namely the usage of multiple Compute
Units (CUs), Single Instruction Multiple Data (SIMD) vectorization and loop unrolling.

4.4.1 Compute Units

Using a higher number of CUs results in increased throughput of work-items/second,
with the work-groups being divided accordingly via the hardware scheduler to the avail-
able CUs. We must include the attribute ((num compute units(CUs))) atribute
in the code in the beginning of each kernel, with the desired number of CUs given at
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Figure 4.5: Architecture of the FPGA running the OpenCL kernels on two CUs

compile time.

4.4.2 SIMD Vectorization

SIMD vectorization is also available, boosting performance by computing the same
operations (multiplication, addition, subtraction) over different data in a single instruc-
tion. This allows a speed up of operations/second in each work-item, coalescing memory
accesses in the process. Usage is performed via the attribute ((num simd work

items(SIMDs))) attribute, with one extra parameter being the required work-group size
attribute ((reqd work group size(WGx,WGy,WGz))).

4.4.3 Loop Unrolling

Finally, loop unrolling is a well known method for reducing loop delays and iter-
ations. By replicating the code inside the loop several times, we reduce the need for
end loop verifications and branch operations. To achieve this in the Altera SDK, a
#pragma unroll UNROLLs directive is needed before the desired loop in the kernel code,
with the amount of times to unroll given at compile time.
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5.1 The MNIST Dataset

The Mixed National Institute of Standards and Technology (MNIST) dataset consists
of grayscale images of 28 by 28 pixels, each containing one hand written digit, obtained
from around 250 different writers. The digits were size-normalized and centered. The
dataset is divided into a training set with 60000 images and a test set with 10000 images.
A full discussion of the dataset and the data itself can be obtained online [41] and some
sample images can be seen in Figs. 6.3, 6.4 and 6.5, in column ”Original”.

5.2 FPGA Hardware Resources Utilization

Distinct combinations of different parameters were evaluated with the Altera Software
Development Kit (SDK) for Open Computing Language (OpenCL) synthesis compiler.
In this phase, several optimizations that greatly impact the final processing time of each
kernel can be achieved. The resulting combination of Compute Units (CUs), Single In-
struction Multiple Data (SIMD), and loop unrolling, provides a utilization of hardware
resources and throughput, aiding to predict the final performance of the kernel.

5.2.1 Floating-Point Processing

An algorithmic limitation with impact in the utilization of Field-Programmable Gate
Array (FPGA) resources consists of the need of floating-point calculations to be per-
formed on input data and weights product. Since the dynamic range of the weights can
and will vary even if the initial random generation is limited to a small interval, we are not
able to map weights and inputs to the integer range, thus impacting the number of FPGA
hardware resources used. Fixed-point computations are more efficient in both throughput
performance and resource usage but current FPGAs have an emphasis in signal process-
ing. FPGAs for signal processing are developed with a large number of Digital Signal
Processing (DSP) blocks, thus raising floating-point computing resources and minimiz-
ing the impact in throughput performance.

5.3 Training Time

The most time consuming and computationally demanding phase of Neural Network
(NN) processing is the training period, when the dataset is first presented to the network.
In this process, the data goes through the network during several epochs, each time re-
ducing the output error, converging to a better reconstruction and final solution of the
problem. Considering this fact, we aimed at measuring the training time of the Stacked
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Autoencoder (SAE) so we can better compare the platforms used. Each epoch time was
measured from the host side, with the time counter initialized before the start of the first
data transfer between host and device and finalized at the time the kernel queue is finished
and the data processed is transferred back to the host.

5.4 Reconstruction/Classification Error

The accuracy of the end result may be measured in two ways, depending on the type
and objective of the NN used. Regarding the Autoencoder (AE), as we try to encode
and then decode the input, we aim at a low reconstruction error, representative of a good
compression achieved in the lower dimension hidden layer.

When we stack the AEs and reduce the number of nodes in each layer, we repeat this
procedure until we achieve a dimension equal to the number of classes in the dataset. We
can then add a final layer with a softmax classifier as defined in subsection 2.5. Its output
is evaluated against the correct class of that sample, resulting in this case as a classification
error. The classification error was obtained using the test set, after the network was fully
trained with only the training set. This aims at reproducing a real-world scenario in which
we have a known set of data at our disposal for training the SAE (the training set) and an
unknown set that we aim to classify (the test set).

5.4.1 Validation Set/Error

To guarantee the ideal learning rate at all times, and therefore speed up the error con-
vergence and reduce the training time, an algorithm for error verification and validation
was implemented. A subset of 2656 images from the training set were used as a validation
set in order to obtain a validation error during the training process. Algorithm 2 was used
on the remaining 57344 training images [42].

Algorithm 2 Checkpoint and Cross-Validation
Restart⇐ 0
while Restart < 3 do

train for 10 epochs
evaluate the Validation Error, V E
if V E increased for 2 consecutive epochs then

Restart⇐ Restart +1
LearningRate⇐ LearningRate/10
go back to the weights of the network used 20 epochs before

end if
end while
evaluate the test error and stop
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5.5 Throughput Performance

For this comparison we measured the epoch duration when training the MNIST dataset
with the defined batch size and calculated how many Frames-per-second (FPS) were pro-
cessed in this phase:

Training T hroughput =
Batch Size

E poch Time
[FPS] (5.1)

After the training is completed, the test data feeds forward through the trained SAE,
in a new operational phase of the NN. The time it takes to undergo through this process
is measured, along with the batch size, into a new classification throughput metric:

Classi f ication T hroughput =
Batch Size

SAE Processing Time
[FPS] (5.2)

5.6 Power and Energy Consumption

Power levels and energy consumption were estimated via the difference between the
system load and idle, measured using a wall-plug energy monitor. In this manner we mea-
sure only the influence of the OpenCL device during application execution. All energy
saving measures from the motherboard and Central Processing Unit (CPU) were disabled
to prevent misreading of the energy consumption when idle. This value is measured in
kiloWatt × hour (kWh).

5.7 Throughput per Power Ratio

We try to predict how many images we can train or classify with a single Watt of
power, which indicates another measure of energy efficiency. The throughput perfor-
mance was used, along with power usage measurements.

E f f iciency =
T hroughput

Power

[
Frames

Watt×Sec

]
(5.3)

5.8 Apparatus

The four computing platforms used in these experiments are stated in Table 5.1, with
further specifications presented below.

GPU1: The host platform for GPU1 consists of an Intel i7 920 at 4.2GHz with
3x2GB Double-Data Rate (DDR)3, running Microsoft Windows 8.1. The OpenCL de-
vice consists of an Advanced Micro Devices (AMD) R9 290X with Graphics Processing
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Unit (GPU) clocked at 1040MHz and 4GB Graphics Double-Data Rate Random Access
Memory (GDDR)5 at 6250MHz.

Figure 5.1: The AMD R9 290X from Gigabyte [6]

GPU2: For GPU2, the host system is based on an Intel i7 4770k at 3.5GHz with
4x8GB DDR3, running CentOS release 6.5. The OpenCL device is an Nvidia GTX Titan
with GPU clocked at 837MHz and 6GB GDDR5 at 6000MHz.

Figure 5.2: The Nvidia GTX Titan from ASUS [7]
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GPU3: The GPU3 is available on a smartphone developing platform from Qualcomm,
the DragonBoard, with a Snapdragon 800 System On Chip (SoC), comprised of an Ad-
vanced RISC Machine (ARM)v7 Krait 400 CPU at 2.15GHz and our OpenCL device,
the Adreno 330 GPU clocked at 450MHz with 2GB of shared Low-Power (LP)-DDR3 at
1600MHz. The platform is currently running Android 4.3 - Jelly Bean.

Figure 5.3: The Snapdragon 800 DragonBoard from Qualcomm [8]

FPGA: Finally, coupled to the FPGA system we have an Intel i7 2600k at 3.4GHz act-
ing as host CPU, with 2x4GB DDR3 of host memory, running CentOS release 6.4. The
FPGA board is a Nallatech PCIe 385N Stratix V D5, populated with 2x4GB of DDR3 at
1600MHz. The FPGA is used in conjunction with the Altera SDK compiler for OpenCL,
version 13.1, in compliance to the 1.0 version of the OpenCL standard.

Figure 5.4: The Altera Stratix V D5 from Nallantech [9]
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Platform Host CPU OpenCL Device Device Memory
GPU1 Intel i7 920 AMD R9 290X 4GB GDDR5
GPU2 Intel i7 4770k Nvidia GTX Titan 6GB GDDR5
GPU3 Qualcomm Krait 400 Qualcomm Adreno 330 2GB LPDDR3
FPGA Intel i7 2600k Altera Stratix V D5 2x4GB DDR3

Table 5.1: Hardware overview of the computing platforms

All the OpenCL devices used are manufactured using the same 28nm process design
technology but with purchase price and power consumption in different ranges, as seen in
Table 5.2.

Platform Process
Technology (nm) Price (e) Power (W)

GPU1 28 500 290
GPU2 28 900 250
GPU3 28 500 10
FPGA 28 6000 30

Table 5.2: Cost and power consumption for the OpenCL devices,
as per indicated manufacturer data

As the host platforms are certainly heterogeneous, the OpenCL device’s throughput
performance during the training duration of the SAE is barely affected by this factor. It
was verified via the profiling tool, that the percentage of total computational time on the
device was 99.86%, with the host CPU running idle most of the time.
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In this section we display the final results and behavior of the studied implementations
across the platforms described in section 5.8. We evaluate the performance of the system
using several metrics, as explained in sections 5.3 through 5.7.

6.1 Training Hyper-parameters

Both the batch size and learning rate parameters were studied in depth. The study was
comprised of 6 values for the batch size, ranging from 32 to 1024, and 4 values for the
learning rate, from 0.045 to 1. The best results were achieved using a batch size of 64
images and an initial learning rate of 0.45. With these parameters, the training required
4m05s to reach the stopping criteria and produced a final reconstruction error of 1.626%.
These results can be observed in Fig. 6.1.

Although the study was performed using GPU1, the algorithm behaves similarly across
all platforms. Similar results regarding the same batch size and learning rate are to be ex-
pected, with only varying computational time.

Figure 6.1: Reconstruction error comparison over 6 batch sizes
and 4 learning rates

The training hyper-parameters defined for our Stacked Autoencoder (SAE) consist of
a network of size 784 - 500 - 250 - 10, deemed the appropriate size for problem reduction,
using a training batch of 64 images and an initial learning rate set at 0.45.

6.2 FPGA Optimizations and Hardware Utilization

We started by compiling a simple device binary, with the Open Computing Lan-
guage (OpenCL) kernel code developed for the Graphics Processing Unit (GPU) imple-

48



6.3 Evaluating the Neural Network

mentation, using only one Compute Unit (CU), no loop unrolling and no Single Instruc-
tion Multiple Data (SIMD) vectorization.

We then moved to two CUs over all the kernels but immediately verified that we
became close to 100% of resource usage, when usually above 70% or 80% of usage, the
resulting critical path is long enough to compromise the maximum operating frequency
of the system. A compromise was therefore mandatory. Since after training the Neural
Network (NN) only the feed-forward kernel is necessary for classification and everyday
usage, we opted for only using two CUs on the feed-forward kernel, leaving enough
hardware resources for other optimizations.

A study with loop unrolling was also performed, with the available resources allowing
to choose only a factor of two for the unroll. At this stage there were not enough resources
available to test SIMD vectorization. In the end the optimal device binary was comprised
of two CUs for the feed-forward kernel with one CU for the rest, and a loop unroll of
factor two for all the for loops present in the kernels. The obtained hardware resources
utilization is shown in Table 6.1.

Feed-Forward Back Propagation Performance

# of CUs Unroll # of CUs Unroll Total
Utilization

Epoch
Time (ms)

1 1 1 1 60% 1160
2 1 2 1 96% 1012
2 1 1 1 75% 949
2 2 1 2 88% 907

Table 6.1: FPGA hardware resources utilization as obtained by the Altera
OpenCL SDK compiler

6.3 Evaluating the Neural Network

As we trained the SAE using the Mixed National Institute of Standards and Tech-
nology (MNIST) dataset, several performance metrics were recorded for each of the
Autoencoders (AEs): the reconstruction error on the validation set, the number of epochs
and corresponding duration, amounting in the end to the SAE total training time.

The progression of the reconstruction error for the SAE can be seen in Fig. 6.2. By
training the first AE during 1140 epochs, we achieved a reconstruction error of 1.62%
for the first AE. The second AE was trained during another 2010 epochs with a final
reconstruction error of 0.26%. Since the algorithm remains the same and weights were
initialized with the same random seed generator, the error is constant across all four plat-
forms.
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Figure 6.2: SAE reconstruction error as function of the number of epochs

The decoder output of the first AE tries to replicate the original image from the dataset,
implying that we can compare both images rather than just looking at the reconstruction
error value. A reconstruction of several images can be seen in Figs. 6.3 to 6.5, on column
‘Reconstructed’.

In Table. 6.2 we evaluate the training time across all four platforms. In the end, GPU1
produced the fastest results training the SAE. Although being a powerful device from
Nvidia, GPU2 takes longer to execute the same workload. The GPU3 presented us with
revealing results as it beats the Field-Programmable Gate Array (FPGA), ranking as the
third fastest platform. The FPGA has proven to be the slowest but in our opinion the
savings in energy consumption still compensate.

Platform First AE
Training Time

Second AE
Training Time

Total
Training Time

Training Time
Comparison
(vs GPU1) *

GPU1 4m05s 3m34s 7m39s —
GPU2 12m25 7m44s 20m09s + 163%
GPU3 35m33s 15m14s 50m47s + 564%
FPGA 44m47s 22m21s 1h08m08s + 778%

* Lower is better

Table 6.2: Final SAE training time for the four different platforms,
with a batch size of 64 images and initial learning rate equal to 0.45

The maximum valued output of the network on the Softmax decided the estimated
classification, varying from 1 to 0, with 1 being total certainty of the result. A variety
of reconstruction and classification outputs were analyzed, along with a graphical output
of the estimated classification as a function of the expected labels varying from 0 to 9,
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all in Figs. 6.3 to 6.5. We studied cases of correct classification with high degree of
probability (higher than 0.9) as seen in Fig. 6.3. There were few cases close to being
misclassified, which are presented in Fig. 6.4 and finally misclassified images with a
degree of probability higher than 0.6 are also represented in Fig. 6.5. A classification
error of 4.35% was obtained over the 10000 test samples of the MNIST dataset. It should
be clear that the errors reported in Figs. 6.3 to 6.5 all occur in the four platforms (GPU1,
GPU2, GPU3 and FPGA).

Figure 6.3: Some of the images correctly classified (from MNIST)

Figure 6.4: Difficult cases and near misses (from MNIST)

6.4 Throughput and Energy Analysis

As we can see in Table 6.3, the fastest GPU1 implementation shows a training through-
put of 739 Frames-per-second (FPS), resulting in a performance 3.1× faster than GPU2
at 239 FPS, 8.7× faster than GPU3 at 85 FPS, and 10.4× faster than the FPGA at 71
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Figure 6.5: A collection of misclassified images (from MNIST)

FPS. The first AE was the one used for these measurements considering it is the largest
and most computationally demanding part of the SAE. This is in fact due to the nature of
our SAE and its progressive problem size reduction.

Platform
Feed

Forward
(ms)

Back
Propagation

(ms)

Epoch
Total
(ms)

Training
Throughput

(FPS)

Throughput
Comparison
(vs GPU1) *

GPU1 6 81 87 739 —
GPU2 20 248 268 239 32.3% ↓
GPU3 158 595 753 85 11.5% ↓
FPGA 203 704 907 71 9.6% ↓

* Higher is better

Table 6.3: Running time and throughput performance associated with four different
computing platforms, while training the first AE with a batch size of 64 images and

initial learning rate of 0.45

After the training process, the SAE is ready to classify the provided test samples. The
decoder’s feed forward and all back propagation is now withdrawn from the computation,
leaving the network with only the encoder from each AE. From such reduced computation
we can obtain a measurement of classification throughput, i.e, how many images we can
classify in a second, as seen in Table. 6.4.

For the power consumption analysis we first measured the idle consumption of the
entire system (Host and Device) and then launched the application, measuring the differ-
ence (Load - Idle) in average power over the SAE training time. The results are shown in
Table 6.5. Although running for 6.6× more time, GPU3 manages to have a total energy
consumption more than an order of magnitude below that of GPU1, with around 91% less
energy consumed for the same amount of work. The same can be said for the FPGA since
that, while running 8.8× slower than GPU1, still consumes 43% less energy.

By combining throughput performance and average power we were able to measure
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Platform First
AE (ms)

Second
AE (ms)

Classification
Total (ms)

Classification
Throughput

(FPS)

Throughput
Comparison
(vs GPU1) *

GPU1 4 1 5 12800 —
GPU2 10 4 14 4571 35.7% ↓
GPU3 79 40 139 460 3.6% ↓
FPGA 74 25 99 646 5.0% ↓

* Higher is better

Table 6.4: Running time and throughput performance associated with four different
computing platforms, during the classification of a batch of 64 images

Platform Total
Training Time

Average
Power (W)

Energy
Consumption

(kWh)

Energy Consumption
Comparison
(vs GPU1) *

GPU1 7m39s 247 0.03149 —
GPU2 20m09s 209 0.07019 223%
GPU3 50m47s 3.4 0.00288 9%
FPGA 1h08m08s 16 0.01790 57%

* Lower is better

Table 6.5: Total SAE training time and energy consumption associated with four
different computing platforms, using a batch size of 64 images and learning rate of 0.45

throughput per power ratio, which shows a metric for energetic efficiency of these systems
as depicted in Table 6.6.

Platform Training
FPS/Watt

Classification
FPS/Watt

GPU1 2.99 51.82
GPU2 1.14 21.87
GPU3 24.99 135.29
FPGA 4.41 40.38

Table 6.6: Throughput per power ratio over four different computing platforms

6.5 Discussion

With these results we show that FPGAs are a valid alternative to GPUs when it comes
to OpenCL computation in energy-saving environments. A network trained directly on the
FPGA is thus possible, avoiding the need for training on the GPU or Central Processing
Unit (CPU). Although the training time is several times higher in the FPGA, with the
final reconstruction and classification error being similar across all platforms, the energy
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savings compensate and make it a real possibility for adoption in a variety of low-power
applications. The FPGA is at a loss in terms of FPS/Watt during the classification process
but this is only a small portion of the total running time, taking 15 seconds to classify the
entire MNIST test set of 10000 images, or only 0.4% of the total training time. Regarding
an FPGA training and classifying images, the achieved 71 FPS and 646 FPS, respectively,
may well suit many real world scenarios, allowing to reduce performance (e.g. 25 FPS) or
increase image dimensions and still maintain a throughput to meet the situational demands
while further increasing energy savings. The drawback of an FPGA solution remains its
purchase price, 12× higher than GPU1 and GPU3, requiring a great deal of running time
to recover the initial investment through energy savings. This is where GPU3 excels with
its relatively low price of acquisition and impressive low-power performance.

The GPU3 does the same work as all the other platforms but since it was engineered
with a low power budget from the start, it presents the overall best FPS/Watt results both
in SAE training and classification, outperforming the FPGA in the low-power platforms.
Its target market has several competitors and produces millions of devices, helping to
reduce the purchase cost and creating the need for constant development and innovation.
As more and more smartphones are sold and the market profusion increases, it raises the
possibility of connecting them in a global heterogeneous computational network, with a
NN-capable device aiding the user in many every-day applications.

We then conclude that the current low-power platforms such as the mobile GPU and
FPGA devices, are more than able to provide a viable NN implementation in both training
and classification stages. The training computation doesn’t need to be performed on a
more space- and energy-consuming machine but can be done in loco, using a low-power
device, in a robotics or other autonomous and battery driven applications, possibly linked
to a camera to directly provide the training/test samples in real-time.
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In this thesis we presented a Neural Network (NN) architecture based on the Stacked
Autoencoder (SAE), targeted at image classification. In this approach we developed
Field-Programmable Gate Array (FPGA) parallel architectures programmed with OpenCL-
based high-level synthesis tools to perform both the processing and also the training
of the NN. To the best of our knowledge this was never produced before, as previous
implementations always relied on powerful and energy-demanding Graphics Processing
Units (GPUs). The simplified approach via SAE has produced a final classification error
of 4.35%, a sub-optimal result explained by not relying on state-of-the-art Convolutional
Neural Networks (CNNs) architectures and their high computational complexity, with
which current FPGAs can’t still cope. The developed algorithm is scalable and the next
generations of FPGAs and mobile GPUs should be able to incorporate more hardware
compute resources. Therefore, this approach works as a proof of concept and is expected
to scale smoothly to future devices, allowing real-time performances also in images with
larger dimensions.

Shifting to an FPGA platform we were able to reduce energy costs by 43% when
compared against the top performing platform (GPU1), while maintaining a throughput
of 71 Frames-per-second (FPS) during training and 646 FPS during classification. Most of
the autonomous vehicles and robotics have already the means (in form of a computer with
a Peripheral Component Interconnect Express (PCIe) slot) for running FPGAs, therefore
it is advantageous to have the possibility of developing low-power based applications for
supporting these systems.

Looking at the final results in this thesis, the mobile GPU in the GPU3 platform is the
overall best performer. Energy costs were reduced by 91% when compared against the top
performing platform (GPU1), while maintaining a throughput of 85 FPS during training
and 460 FPS during classification. These devices have had the biggest technological
development over the recent years, driven by the smartphone market growth and agressive
competition. GPU3 is a solid self-contained low-power platform, already with an array of
sensors and interfaces available for current robotics such as GPS, WiFi, camera module,
among others.

Although desktop GPUs are the current platform of choice for this highly compu-
tationally demanding problem, the increasing concerns with energy costs for big data
processing and low-power budgets for autonomous vehicles and robotics, as well as the
fact that power and heat dissipation walls are quickly approaching, have created the need
for alternatives and may well turn networks of FPGAs and mobile GPUs into the future
platforms of choice for this and other computationally demanding applications.
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7.1 Future Work

The Mixed National Institute of Standards and Technology (MNIST) dataset was used
for training and evaluating the network of SAEs but in the future we expect to train more
complex datasets such as Street View House Numbers (SVHN) and CIFAR-10, which are
also representative of big data scenarios. Since the developed kernels are scalable and
accommodate datasets with different dimensions, due to time constraints in this thesis we
decided to limit the experimental procedures to the well-known monochromatic MNIST
dataset. Future work will address the polychromatic datasets such as the aforementioned
SVHN and CIFAR-10 datasets.

As technology progresses and more powerful FPGAs are developed, our future hope
is to be able to create a state-of-the-art CNN running entirely on an FPGA, thus achieving
top results in both energy savings and classification accuracy.
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A.1 Autoencoder Flow

Figure A.1: Detailed autoencoder flow diagram

A.2 Training Flow

Figure A.2: Training flow diagram. The training flow of the first autoencoder is
explained in more detail in Fig. A.3, the second autoencoder in Fig. A.4 and the softmax

classifier in Fig. A.5
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A.2 Training Flow

Figure A.3: First autoencoder training flow diagram. The detailed execution flow of the
autoencoder in the shadowed area below Batch #1 is explained in Fig. A.1
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Figure A.4: Second autoencoder training flow diagram
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A.3 Classification Flow

Figure A.5: Softmax Classifier training flow diagram

A.3 Classification Flow

Figure A.6: Test set classification flow diagram. The classification flow is explained in
more detail in Fig. A.7
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Figure A.7: Test set classification flow diagram
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Over the last years, deep learning architectures have gained attention by winning some of the most im-
portant international detection and classification competitions, but this comes at a cost: these models are
computationally expensive and have been recently ported to GPUs to allow faster deployment. However,
desktop GPUs have their own shortcomings and seem to be quickly approaching the limits of power and
heat dissipation walls, imposing high levels of energy consumption. This implies high deployment costs in
applications that process big data volumes on a permanent basis, and also the inability to use these architec-
tures, for example, in autonomous systems such as vehicles and robots, which can hardly provide low power
supplies. Therefore, this paper proposes deep learning approaches on mobile GPU- and FPGA-based context.
We show how to implement a particular type of deep learning architecture, the Stacked Autoencoder (SAE),
allowing for the first time the training phase to be performed on these low power devices. A comparison
of both throughput performance and energy consumption is performed against similar implementations on
desktop GPUs. The results show that similar classification accuracy can be obtained using the SAE proposed
solution, with energy savings ranging from 46% to 91%. Also important is the fact that the proposed SAE
architecture is scalable, and FPGAs and mobile GPUs have probably better progress margin than desktop
GPUs. These results also pave the way for adopting low-power devices in energy-constrained applications
for big data classification.
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now surpasses the hundreds of thousands, which poses severe constraints regarding
the time and processing power necessary to train the networks.

Recently, deep learning architectures have gained some momentum because they
have shown superior performance in some of the most important international image,
sound / voice detection and classification competitions [Ciresan et al. 2012; Gong et al.
2013; Goodfellow et al. 2013]. These typically deal with the automatic recognition of
objects in images, whether these objects are in effect traffic signs, digits or animals,
and have been won by research teams exploiting deep neural networks of the con-
volutional type [Ciresan et al. 2012]. At the time of its publication, this particular
CNN presented the best results in 7 different datasets normally used for benchmark-
ing similar algorithms, with improvements ranging from 30% to 80% with respect to
previously best published results. The main drawback of these approaches (CNNs) is
their computational cost that hinders real-time application.

To address both the size of the training datasets, and the high computational cost,
deep learning approaches have been turning towards the use of GPU clusters [Coates
et al. 2013], but even with this solution, experiments can still take several minutes or
hours to execute [Ciresan et al. 2012]. As an example, the LeNet convolutional neural
network, working with the MNIST dataset takes 380min on a CPU (Core i7-2600K
CPU at 3.40GHz) and 32min on a GPU (GeForce GTX 480) to run a single experiment
(including training and testing) [LISA lab 2014].

The current trend in machine learning / perception presently exploits the use of mul-
tiple representation levels, which can be achieved using deep belief networks, Stacked
Denoising Autoencoders (SDAEs) or Convolutional Neural Networks (CNNs), among
others. However, such current state-of-the-art implementations are known to consume
high energy levels in order to produce the expected results, which directly impacts
the processing costs of big data and also creates constraints in their utilization in au-
tonomous vehicles / robots. Moreover, some of the powerful parallel computing devices
under utilization, namely desktop GPUs, are reaching power- and heat-dissipation
walls [Hardavellas 2011] (also known as utilization wall). Therefore, low power ar-
chitectures and corresponding energy-saving strategies are required at this point of
neural networks development.

In this paper we propose a scalable parallel solution for SAE architectures in recon-
figurable FPGA substrates and mobile GPUs, as a first step towards the implemen-
tation of more complex approaches to deep learning (e.g. with higher computationally
demanding layers and more nodes), such as CNNs. These deep learning approaches
can expectedly be implemented in the future, as FPGAs accommodate more hardware
resources, thus increasing throughput performance in the training and classification
phases.

We propose to lower the network size and associated computational complexity of the
developed parallel architecture, allowing for sub-optimal results albeit making it more
tractable and thus able to cope with the existing available hardware resources of cur-
rent FPGAs and mobile GPUs. These devices consume at least one order of magnitude
less energy and are still able to provide real-time throughput and competitive classifi-
cation error performance, when compared to existing high-performance computational
resources, such as desktop GPUs or CPUs. The objective is to conciliate the quality
of object recognition with real-time execution capabilities at low-energy consumption
budgets.

The main problems identified are the limited hardware resources available in cur-
rent FPGAs and mobile GPUs to support this type of NN-based algorithms; bandwidth
bottleneck to access global memory; and the long development times associated with
RTL design / development in FPGAs. The former problem can be addressed by de-
veloping new algorithms based on less complex autoencoder networks, adjusting the
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number of layers and nodes per layer. The latter can be overcome using new High-level
Synthesis tools that are very effective for designing and prototyping hardware systems
for reconfigurable devices in short periods of time [Andrade et al. 2013].

In this paper we show for the first time how we can include the training of a deep
network, designated as Stacked Autoencoder (SAE), on FPGAs and mobile GPUs. In
particular, we propose:

i) to develop OpenCL kernels for a SAE architecture based on low-power process-
ing devices, aimed at the training and classification phases on huge datasets. For the
best of our knowledge, these long training periods have never been processed on these
devices before (they are usually processed on desktop GPUs). To exemplify these sce-
narios we develop solutions for processing the well-known MNIST dataset.

and ii) to perform a power performance analysis by comparing the power and energy
efficiency of these algorithms in several computing platforms, from desktop and mobile
GPUs to FPGAs: we present experiments illustrating not only the accuracy obtained
using these SAE architectures, but also the execution times and the respective power
and energy consumption savings achieved when processing large amounts of images.

This paper proposes new solutions that advance the state-of-the-art of artificial in-
telligence, computer vision and parallel processing using the compute horse-power ca-
pabilities of FPGAs and mobile GPUs. We provide a scalable and multi-platform solu-
tion for training a SAE-based neural network, aimed at detecting objects, characters,
or other type of structures in entire cityscapes. As the technology in the FPGAs and
mobile GPUs progresses, and more processing resources are made available, a shift
to more robust types of neural networks, such as the state-of-the-art CNNs, will be
possible. Moreover, we pave the way for new applications in a diversity of areas that
can benefit from the accurate real-time recognition of objects with lower consumption
budgets. These areas include not only big data processing, as for example the iden-
tification and classification of large image data related to the visual information of
entire city streets (modern infrastructures like Google and Facebook need to process
and classify such large amounts of data on a daily/permanent basis), but also robotics
or autonomous vehicles, which all present severe low-power constraints.

2. DEEP LEARNING USING NEURAL NETWORKS
The use of more than two hidden layers in neural network supervised learning was

seen as unnecessary until recently, given the proofs of the approximation capabilities of
one [Cybenko 1989] and two [Lapedes and Farber 1987] hidden layer neural networks.

The exceptions to this rule were the neocognitron [Fukushima 1980] which was us-
ing several layers to emulate the human visual system and the convolutional neural
networks (CNNs) [LeCun and Bengio 1995], both developed mostly for visual tasks.

The other main issue with using deep networks, apart from the apparent unneces-
sity to use more than two layers, was the difficulty that appeared when trying to train
several hidden layers using standard back-propagation: there were problems with ad-
justing the weights as the depth increased (vanishing gradients).

The efforts by Hinton and co-workers [Hinton and Salakhutdinov 2006; Hinton et al.
2006], resulted in the ability to train deep neural networks (DNNs), in this case, Deep
Belief Networks (DBNs) which took advantage of Boltzmann machines in a variant
called restricted Boltzmann machines (RBMs). At the same time, other groups pro-
posed a way to training deep networks based on stacking autoencoders [Bengio et al.
2007; Ranzato et al. 2006].

From 2006 to today, the field of DNNs has received much attention. The potential
advantages that come with using DNNs are the possibility of having increasingly more
abstract levels of representation, the possibility of reusing the intermediate level rep-
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Platform First
AE (ms)

Second
AE (ms)

Total
Classif.

Time (ms)

Classification
Throughput

(FPS)

Throughput
Comparison
(vs GPU1) *

GPU1 4 1 5 12800 —
GPU2 10 4 14 4571 35.7% ↓
GPU3 79 40 139 460 3.6% ↓
FPGA 74 25 99 646 5.0% ↓

* Higher is better

Table VI: Running time and throughput performance associated with four different
computing platforms, during the classification of a batch of 64 images

For the power consumption analysis we first measured the idle consumption of the
entire system (Host and Device) and then launched the application, measuring the
difference (Load - Idle) in average power over the SAE training time. The results are
shown in Table VII. Although running for 6.6× more time, GPU3 manages to have a
total energy consumption more than an order of magnitude below that of GPU1, with
around 91% less energy consumed for the same amount of work. The same can be said
for the FPGA since that, while running 8.8× slower than GPU1, still consumes 43%
less energy.

Platform Total
Training Time

Average
Power (W)

Energy
Consumption

(kWh)

Energy
Consumption
Comparison
(vs GPU1) *

GPU1 7m39s 247 0.03149 —
GPU2 20m09s 209 0.07019 223% ↑
GPU3 50m47s 3.4 0.00288 9% ↓
FPGA 1h08m08s 16 0.01790 57% ↓

* Lower is better

Table VII: Total SAE training time and energy consumption associated with four dif-
ferent computing platforms, using a batch size of 64 images and learning rate of 0.45

By combining throughput performance and average power we were able to measure
throughput per power ratio, which shows a metric for energetic efficiency of these
systems as depicted in Table VIII.

Platform Training
(FPS/Watt)

Classification
(FPS/Watt)

GPU1 2.99 51.82
GPU2 1.14 21.87
GPU3 24.99 135.29
FPGA 4.41 40.38

Table VIII: Throughput per power ratio over four different computing platforms
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7. DISCUSSION
With these results we show that FPGA are a valid alternative to GPU when it comes

to OpenCL computation in energy-saving environments. A network trained directly on
the FPGA is thus possible, avoiding the need for training on the GPU or CPU. Although
the training time is several times higher in the FPGA, with the final reconstruction
and classification error being similar across all platforms, the energy savings compen-
sate and make it a real possibility for adoption in a variety of low-power applications.

The FPGA is at a loss in terms of FPS/Watt during the classification process but this
is only a small portion of the total running time, taking 15 seconds to classify the entire
MNIST test set of 10000 images, or only 0.4% of the total training time. Regarding an
FPGA training and classifying images, the achieved 71 FPS and 646 FPS, respectively,
may well suit many real world scenarios, allowing to reduce performance (e.g. 25 FPS)
or increase image dimensions and still maintain a throughput to meet the situational
demands while further increasing energy savings. The drawback of an FPGA solution
remains its purchase price, 12× higher than GPU1 and GPU3, requiring a great deal
of running time to recover the initial investment through energy savings.

This is where GPU3 excels, with its relatively low price of acquisition and im-
pressive low-power performance. Providing a training throughput of 85 FPS, and a
classification throughput of 460 FPS, the GPU3 still manages to reduce the energy
consumption by 91%. The GPU3 is therefore the most energy-efficient computing
platform of the roundup, and a suitable solution for the aforementioned low-power
applications such as autonomous vehicles and robotics.

8. CONCLUSION
In this paper we presented a Neural Network (NN) architecture based on the

Stacked Autoencoder targeted at image classification. In this approach we developed
FPGA parallel architectures programmed with OpenCL-based high-level synthesis
tools to perform the processing and also the training of the NN. This way we were
able to reduce energy costs by 43%, when compared against desktop GPUs.

The mobile GPU does the same work as all the other platforms but since it was en-
gineered with a low power budget from the start, it presents the overall best FPS/Watt
results both in SAE training and classification, outperforming the FPGA in the low-
power platforms. Presenting 91% less energy consumed for the same amount of work
as the top desktop GPU, as well as 48% less than the FPGA, it clearly edges ahead of
the tested platforms. Its target market has several competitors and produces millions
of devices, helping to reduce the purchase cost and creating the need for constant de-
velopment and innovation. As more and more smartphones are sold and the market
profusion increases, it raises the possibility of connecting them in a global heteroge-
neous computational network, with a neural network capable device aiding the user
in many every-day applications.

We then conclude that the current low-power platforms such as the mobile GPUs
and FPGA devices, are more than able to provide a viable neural network implemen-
tation in both training and classification stages. The training computation doesn’t
need to be performed on a more space- and energy-consuming machine but can be
done in loco, using a low-power device, in a robotics or other autonomous and battery
driven applications, possibly linked to a camera to directly provide the training/test
samples in real-time.
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1 Introduction

Over the last years, deep neural networks (DNNs) have established as the state-
of-the-art in terms of classification performance on many different tasks [5,9,10]. In
particular, convolutional neural networks (CNNs) have assumed greater and greater
importance [5], since they have shown performances 30 to 80% superior when bench-
marking against 7 typical datasets commonly used to assess these algorithms.

Against what was considered the best approach in the recent past, they have
shown that using several layers can lead to superior performance [17,13]. Such use
of multiple representation stages can be achieved using CNNs or other types of deep
networks such as Stacked Denoising Autoencoders (SDAE). Also impactful, in order
to obtain superior classification performance, is the number of samples currently used
to train these algorithms. They surpass the dozens to hundreds of thousands, which
has considerably increased the computational complexity required to train these net-
works for achieving good performance.

The fact that these models are computationally intensive to train has encouraged
the porting of these algorithms for execution on GPU devices [19]. This allowed con-
current execution of different parts of the neural network either at training or classi-
fication phases, thus accelerating the long processing times. However, top performer
GPUs, which are mainly desktop accelerators coupled to a host CPU, have reached
power and heat dissipation walls, as the number of stream processors included on
a single die has risen to thousands [12]. Also, power and physical limitations in the
chip manufacturing process limit the frequency of operation of these devices to values
around 1GHz.

There have been previous attempts at implementing deep learning architectures
on FPGAs, but to the best of our knowledge, the high costly training phase was always
performed first on a separate machine, either recurring to CPU or GPU to perform
that computation, and the trained model then implemented on the FPGA [8,6].

The computational power of mobile GPUs in smartphones and tablets is begin-
ning to be studied, mainly in the area of computer vision [23].

In this paper we propose the use of stacked autoencoders (SAEs) in low-power
mobile GPUs and FPGAs to perform the real-time classification of objects. Instead of
a traditional approach to improve on the state-of-the-art regarding classification accu-
racy, this work aims at reaching a sub-optimal classification performance, by propos-
ing solutions that are capable of achieving those performances in real-time running in
low-power devices. Among the multiple applications that can benefit from such use
of deep neural networks, we find robots and other types of autonomous vehicles that
are limited to severe low-power constraints. We used a parallel computing language
and framework—OpenCL—to develop kernels for concurrent execution on these ac-
celerators [7]. We have parallelized both the training and classification phases of the
process, which allows the robot to perform the training of newly acquired datasets
during runtime. Although we can find in the literature a vast set of works describing
the implementation of neural networks on FPGAs, for the best of our knowledge the
inclusion of the training phase on an FPGA has never been reported before.

We achieved 10 fps on the training phase and more importantly, real-time perfor-
mance during classification, with 119 fps while classifying the CIFAR-10 polychro-
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For the power consumption analysis, we first measured the average static con-
sumption of the entire system (Host + Device) and then launched the application,
measuring the dynamic average power (Load − Idle), over the SAE training time.
The results are shown in Table 7.

Platform Total
Training Time

Average
Power (W)

Energy
Consumption (kWh) *

mGPU 17h08m26s 6.6 0.113
FPGA 45h31m03s 16.0 0.728

* Lower is better

Table 7: Total SAE training time and energy consumption

By combining throughput performance and average power we were able to mea-
sure throughput per power ratio, which shows a metric for energetic efficiency of
these systems as depicted in Table 8.

Platform Training
FPS/Watt

Classification
FPS/Watt

mGPU 1.45 18.03
FPGA 0.24 2.81

Table 8: Throughput per power ratio over four different computing platforms

5 Conclusions

In this paper we show for the first time the training phase of a polychromatic
dataset in a SAE performed on low-power devices, namely the FPGA and mobile
GPU. Although the time necessary to complete the training process is extensive, the
overall energy consumption remains low. With a training phase 3× quicker, the mo-
bile GPU manages to have a total energy consumption of 6.4× below that of the
FPGA, with around 84% less energy consumed for the same amount of work. As
for the classification phase, since our efforts were towards a SAE implementation
applicable in low-power devices, our accuracy of 46.51% remains below the current
state-of-the art. With the sub-optimal approach based on the SAE, we have achieved
real-time classification throughput on both platforms, with 45 FPS on the FPGA and
119 FPS on the mobile GPU, or 2.6× higher. With the high throughput on the mobile
GPU, a future implementation can be linked to the platform’s camera, providing the
capture and classification of images in real-time.

The purchase cost remains a major drawback from FPGAs, and makes the usage
of the more affordable mobile GPUs as a valid alternative. Since the average power
during training remains low in both platforms, the utilization of these solutions in
low-power scenarios is thus proven by our results.
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The mobile GPU and FPGA are in a class of low-power devices that allow com-
putationally demanding algorithms to be performed directly on autonomous vehicles,
robots and other low-power budget applications. As technology progresses and more
powerful FPGAs and mobile GPUs are developed, our future hope is to be able to
create a state-of-the-art CNN running entirely on these devices, thus achieving top
results in both energy savings and classification accuracy.
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