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Abstract

The paracatadioptric camera is one of the most popular panoramic systems currently available in the market. It provides a wide field
of view by combining a parabolic shaped mirror with a camera inducing an orthographic projection. Previous work proved that the para-
catadioptric projection of a line is a conic curve, and that the sensor can be fully calibrated from the image of three or more lines. How-
ever, the estimation of the conic curves where the lines are projected is hard to accomplish because of the partial occlusion. In general
only a small arc of the conic is visible in the image, and conventional conic fitting techniques are unable to accurately estimate the curve.
The present work provides methods to overcome this problem. We show that in uncalibrated paracatadioptric views a set of conic curves
is a set of line projections if and only if certain properties are verified. These properties are used to constrain the search space and cor-
rectly estimate the curves. The conic fitting is solved naturally by an eigensystem whenever the camera is skewless and the aspect ratio is
known. For the general situation the line projections are estimated using non-linear optimization. The set of paracatadioptric lines is
used in a geometric construction to determine the camera parameters and calibrate the system. We also propose an algorithm to estimate
the conic locus corresponding to a line projection in a calibrated paracatadioptric image. It is proved that the set of all line projections is
a hyperplane in the space of conic curves. Since the position of the hyperplane depends only on the sensor parameters, the accuracy of the
estimation can be improved by constraining the search to conics lying in this subspace. We show that the fitting problem can be solved by
an eigensystem, which leads to a robust and computationally efficient method for paracatadioptric line estimation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The approach of combining mirrors with conventional
cameras to enhance the sensor field of view is referred as
catadioptric image formation. The use of catadioptric sys-
tems to achieve panoramic vision is simple and fast
enabling the capture of dynamic scenes. The entire class
of catadioptric configurations satisfying the single view-
point constraint is derived in [1]. Panoramic central catadi-
optric systems can be built by combining a hyperbolic
mirror with a perspective camera, and a parabolic mirror
with an orthographic camera (paracatadioptric sensor).
1077-3142/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2005.07.002

* Corresponding author. Fax: +351 239 406 672.
E-mail addresses: jpbar@deec.uc.pt (J.P. Barreto), helder@isr.uc.pt

(H. Araujo).
URL: www.deec.uc.pt/jpbar (J.P. Barreto).
The construction of the former requires a careful alignment
between the mirror and the imaging device. The camera
projection center must be positioned in the outer focus of
the hyperbolic reflective surface. The paracatadioptric cam-
era is easier to construct being broadly used in applications
requiring omnidirectional vision [2–8]. In [9], Geyer and
Daniilidis introduce for the first time a unifying theory
for general central catadioptric image formation. A modi-
fied version of this mapping model is proposed in [10]. It
is shown that central catadioptric projection is isomorphic
to a projective mapping from a sphere, centered in the
effective viewpoint, to a plane with a projection center on
the perpendicular to the plane. For the particular case of
paracatadioptric sensors the projection center lies on the
sphere and the projective mapping is a stereographic pro-
jection. The plane and the final catadioptric image are
related by a collineation depending on the mirror and
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Fig. 1. Paracatadioptric projection model. The unitary sphere is centered
at point Oc and P is the point where the projective ray x intersects the
sphere. The new projective point �x is defined by Oc and P. The
paracatadioptric image point x̂ is related to �x by a projective transfor-
mation Hc.
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camera intrinsic parameters. The system is calibrated when
this collineation is known. It has already been proved that
the central catadioptric projection of a line is a conic curve
[11,9,12], and that any central panoramic system can be ful-
ly calibrated from the image of three lines in general posi-
tion [13]. However, since lines are mapped into conic curves
which are only partially visible, the accurate estimation of
catadioptric line images is far from being a trivial task
[14,15]. The present work addresses the problem of accu-
rately estimate paracatadioptric lines using image points.

Several authors have already proposed algorithms to
calibrate a paracatadioptric camera [16–18]. The approach
presented in [17] requires a sequence of paracatadioptric
images. The system is calibrated using the consistency of
pair wise tracked point features across the sequence, based
on the characteristics of catadioptric imaging. In [18], the
center and focal length are determined by fitting a circle
to the image of the mirror boundary. The method is simple
and can be easily automated, however it is not very accu-
rate and requires the visibility of the mirror boundary. Its
major drawback is that it is only applicable to the situation
of a skewless camera with unitary aspect ratio. Geyer and
Daniilidis [16] propose an algorithm to calibrate the sensor
from an image of at least three lines. They present a closed-
form solution for focal length, image center, and aspect
ratio for skewless cameras, and a polynomial root solution
in the presence of skew. Certain properties of parabolic
projection are used to get accurate line estimates, but the
conic curves verifying these properties are not necessarily
the paracatadioptric projection of lines. This has an impact
on the global performance of the method as will be dis-
cussed in Section 5.

We derive for the first time the necessary and sufficient
conditions that must be satisfied by a set of conic curves
to be the paracatadioptric projection of lines. The derived
conditions can be used to accurately estimate the line imag-
es using non-linear optimization. Moreover, if the system is
skewless and the aspect ratio is known, then the line projec-
tions can be computed by solving an eigensystem. Given
the image of at least three lines the paracatadioptric camera
is easily calibrated using the geometric construction pro-
posed in [13]. The calibration algorithm is evaluated using
both synthetic and real images. The experimental results
show that it out performs the method proposed in [16].

Additionally, we present a conic fitting algorithm that
copes with the occlusion problem and accurately estimates
the paracatadioptric image of single lines. The method is
specific for line projections in parabolic systems and
requires the sensor to be calibrated. We prove that a conic
curve is the paracatadioptric image of a line if and only if
the image of the circular points lie on the curve, and two
specific points are harmonic conjugate with respect to the
conic. The paracatadioptric camera maps lines in the scene
into conic curves lying in a hyperplane in the space of all
conics. Therefore, the line projection can be accurately
determined by constraining the search space. The estima-
tion algorithm is stable and computationally efficient
because the fitting problem can be solved by an eigensys-
tem. The proposed method is useful for many applications
such as 3D reconstruction and visual control of motion
using paracatadioptric images. Experimental results show
that the approach is very robust and the estimation results
are much better than the ones obtained by performing per-
spective rectification [4].

2. Paracatadioptric projection of lines

A general mapping model for central catadioptric sys-
tems has been introduced for the first time in [9]. This sec-
tion briefly reviews the image formation model for the
particular case of paracatadioptric cameras (for a detailed
derivation see [10]). The equations for paracatadioptric line
projection are derived, and it is shown that the image of a
line is a conic curve [9,11]. The estimation of these conic
curves is in general hard to accomplish due to partial occlu-
sion. We compare and discuss the performance of five stan-
dard conic fitting methods.

2.1. Paracatadioptric projection model

Assume a paracatadioptric system combining a parabol-
ic mirror, with latus rectum 4p, and an orthographic cam-
era. The principal axis of the camera is aligned with the
symmetry axis of the paraboloid. The paracatadioptric
projection can be modeled by a stereographic projection
from an unitary sphere, centered in the effective viewpoint,
into a plane P1 as shown in Fig. 1.

The mapping can be described as follows. Each visible
scene point defines an oriented projective ray x = (x,y,z)t,
joining the 3D point with the projection center O. Consider
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the south pole of the sphere Oc with coordinates (0,0,�1)t.
To each x corresponds a projective ray �x going through Oc

and P (the intersection point of x and the sphere). This
mapping ⁄ between projective points is non-linear as shown
in Eq. (1). Function ⁄ is equivalent to projecting the scene
on the unitary sphere, followed by a re-projection from the
sphere to the plane P1 with center Oc. Points in catadiop-
tric image plane x̂ are obtained after a collineation Hc of
the 2D projective points �x. Eq. (2) shows that Hc is always
an affine transformation depending on the camera intrinsic
parameters Kc, and the latus rectum of the parabolic
mirror.

�hðxÞ ¼ ðx; y; zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Þt; ð1Þ

x̂ ¼ Kc

2p 0 0

0 2p 0

0 0 1

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hc

�x.
ð2Þ

Consider plane P = (n, 0)t going through the effective view-
point O as depicted in Fig. 1 (n = (nx,ny,nz)

t). The para-
catadioptric image of any line lying in P is the conic
curve X̂. The line in the scene is projected into a great circle
on the sphere surface. This great circle is the curve of inter-
section of plane P, containing both the line and the projec-
tion center O, and the unit sphere. The projective rays �x,
joining Oc with points on the great circle, form a central
cone surface. The central cone, with vertex at Oc, projects
into the conic �X in plane P1 Eq. (3). Since the image plane
and P1 are related by collineation Hc, the result of Eq. (4)
comes in a straightforward manner.

�X ¼
�n2z 0 nxnz
0 �n2z nynz

nxnz nynz n2z

2
64

3
75; ð3Þ

X̂ ¼
a b d

b c e

d e f

2
64

3
75 ¼ H�t

c
�XH�1

c . ð4Þ

The paracatadioptric system is calibrated whenever the col-
lineation Hc is known. Assume that the image center of the
orthographic camera is C = (cx,cy)

t, and that r2c , fo, and sk
are respectively the aspect ratio, the focal length and the
skew. Since the matrix of intrinsic parameters Kc is upper
triangular, then Hc is always an affine transformation
(Eq. (2)). Matrix Hc is provided in Eq. (5) where fc = 2fop
is a measurement in pixels of the combined focal length of
the camera and the mirror. As a final remark notice that
since �X is a circle, then the conic curve X̂ is in general an
ellipse (Eqs. (3) and (4)). Moreover, the paracatadioptric
image of a line is a circle if and only if the orthographic
camera has unitary aspect ratio (rc = 1).

Hc ¼
rcfc sk cx
0 r�1

c fc cy
0 0 1

2
64

3
75. ð5Þ
2.2. Estimation of paracatadioptric line images using

standard conic fitting methods

Eq. (4) shows that the paracatadioptric projection of a
line is a conic curve which is parameterized by a 3 · 3 sym-
metric matrix X̂. Since a conic has five independent degrees
of freedom (DOF), it can also be represented by a point x̂
in the 5D projective space }5 (Eq. (6) [19]). Henceforth, we
will assume both representations without distinction. The
present section discusses the problem of fitting conic curves
to image points to estimate the loci where lines are project-
ed. A conic fitting algorithm determines the curve that best
fits the data points according to a certain distance metric.
We review some standard conic fitting methods [14,15]
and evaluate their performance in estimating paracatadiop-
tric line projections.

x̂ ¼ ða; b; c; d; e; f Þt. ð6Þ
The algebraic distance ai from the image point x̂i ¼ ðx̂i; ŷiÞ
to the conic x̂ is defined by

ai ¼ ax̂2i þ 2bx̂iŷi þ cŷ2i þ 2dx̂i þ 2eŷi þ f . ð7Þ
Consider the set of N distinct image points x̂1; x̂2 . . . x̂N.
The corresponding vector of algebraic distances is
ða1; a2; . . . ; aNÞt ¼ Ax̂ where A is the following N · 6
matrix

A ¼

x̂21 2x̂1ŷ1 ŷ21 2x̂1 2ŷ1 1

x̂22 2x̂2ŷ2 ŷ22 2x̂2 2ŷ2 1

..

. ..
. ..

. ..
. ..

. ..
.

x̂2N 2x̂N ŷN ŷ2N 2x̂N 2ŷN 1

2
666664

3
777775. ð8Þ

The sum of the square of the algebraic distances between
the data points and the conic curve x̂ is

/ðx̂Þ ¼
XN
i¼1

a2i ¼ x̂tAtAx̂. ð9Þ

The algebraic distance ai is zero whenever point x̂i lies on
the conic curve x̂. Thus, if x̂1; x̂2 . . . x̂N are points on the
conic then matrix A is rank deficient and x̂ is the respective
right null space. In general the data points are noisy and A

is full rank. In this case the square matrix AtA is non-sin-
gular and function /ðx̂Þ has a single root x̂ ¼ 0. There
are several methods that minimize the objective function
of Eq. (9) to fit a a conic to the data points. The solution
x̂ ¼ 0 is a global minimum of the function that must be
avoided. The following algorithms differ in the way that
the search space is constrained.

(1) The normal least squares (LMS) method determines
the unit vector x̂ which minimizes the sum of the
square distances to the data points. The cost function
is /lmsðx̂; kÞ ¼ /ðx̂Þ þ kðx̂tx̂� 1Þ where k is a
Lagrange multiplier. The minimizer is the eigenvector
corresponding to the smallest eigenvalue of matrix
AtA [20].
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(2) The approximate mean square (AMS) metric was
introduced by Taubin [21]. The AMS method mini-
mizes the algebraic distance / under the constraint
x̂tðAt

xAx þ At
yAyÞx̂ ¼ 1 where Ax and Ay are the par-

tial derivatives of A. In this case the minimizer is
determined by solving the generalized eigensystem
AtAx̂ ¼ kðAt

xAx þ At
yAyÞx̂. The conic curve estimate

is provided by the eigenvector corresponding to the
smallest eigenvalue.

(3) In the method proposed by Fitzgibbon and Fisher
(FF) the search space is constrained to the space of
the ellipses [22]. The algorithm finds the ellipse x̂ that
minimizes the algebraic distance to the data points.
The minimization can be stated as a generalized
eigenproblem with a closed form solution.

The data points are usually obtained using an image
processing algorithm (edge detection, contours, etc).
It is reasonable to assume that the action of the noise
is similar for all points and independent from one
point to another [14]. Let the error in a generic point
x̂i ¼ ðx̂i; ŷiÞ

t be Gaussian with zero mean and covari-
ance matrix r2I (I is the 2 · 2 identity matrix). There-
fore, the noise variance in the algebraic distance is
r2
i ¼ rir2, with $i denoting the scalar Laplacian of

ai Eq. (7). The algorithms enumerated above provide
the optimal solution in terms of the minimum covari-
ance if and only if the N equations ai = 0 have the
same variance and are statistically independent
[20,23]. Since the Laplacian $i is a function of the
point coordinates, the variances ri are not equal
and the estimation results obtained using LMS,
AMS, and FF are statistically biased [24]. This prob-
lem can be avoided by applying the following
algorithm.
(4) The gradient weighted least square fitting algorithm
(GRAD) divides the algebraic distances ai by the sca-
lar Laplacian $i to normalize the variances ri. The
corresponding objective function /grad is stated
below. In this case, the solution can not be found
solving an eigensystem and the problem has no longer
a closed form solution. The minimization of /grad

must be performed using iterative gradient descent
methods such as Gauss–Newton or Levenberg–Mar-
quardt [23,25].
/gradðx̂Þ ¼
XN
i¼1

a2i
ri

¼
XN
i¼1

a2i
oai
oxi

� �2
þ oai

oyi

� �2 .
Methods based on algebraic distances, like the LMS,
AMS, and FF algorithms, have a closed form solu-
tion because the estimation problem can be natural-
ly solved by an eigensystem. However, each data
point may contribute differently to the parameter
estimation depending on its position on the conic.
The problem of statistical bias is avoided in the
GRAD method, but the objective function is not
invariant under Euclidean transformations which
causes undesired effects [14]. The following algorithm
uses the geometric distance and the corresponding
estimation results are invariant to rotation and
translation.
(5) The ORTHO method minimizes the sum of the
square of the orthogonal distances bi between the
conic and the points (for further details about com-
puting the orthogonal distances please consult the
[14,10]). The objective function is /ortho and the min-
imum solution is determined using an iterative gradi-
ent descent method [25]:
/orthoðx̂Þ ¼
XN
i¼1

bi.

Fig. 2A shows the robustness to noise of the described
conic fitting methods. The performance suffers a
graceful degradation in the presence of increasing
noise. The GRAD and ORTHO algorithms are clear-
ly more robust than the methods based on algebraic
distances. Among the methods with closed form solu-
tion, the FF algorithm seems to be the most robust. In
the experiment of Fig 2A the data points are distrib-
uted over the the entire conic. Fig. 2B shows the per-
formance of the different algorithms when the conic
curve is partially occluded. In this experiment the
noise standard deviation is kept constant (r = 2pix-
el), and the samples are extracted from a partial arc
with a certain amplitude. As expected, an increase
in the angle of occlusion corresponds to a decrease
in the performance of the estimators. All methods
perform poorly when the amplitude of the occlusion
is above 240�. None of the algorithms provide an use-
ful estimate when the visible arc is less than 100�.

Section 2.1 proves that a line in the scene is project-
ed into a conic locus in the paracatadioptric image
plane. However, in most real images of lines, only a
small conic arc is actually visible. Taking into account
that in average the visible arc of a paracatadioptric
line projection has an amplitude below 45�, we may
conclude that these standard conic fitting techniques
are unsuitable to estimate the conic locus where lines
are mapped.
3. Paracatadioptric camera calibration using lines

Any central catadioptric system can be fully calibrated
using the image of a minimum of three lines in general posi-
tion [13,10,16]. In this work, we focus on the particular case
of calibrating a paracatadioptric camera. Given the image
of the lines, matrix Hc (Eq. (5)) can be determined using
the geometric construction proposed in [13]. This approach
is straightforward whenever the conics corresponding to
the line projections are accurately known. In the previous
section we saw that, due to partial occlusion, the estimation
of the conics using image points is hard to accomplish. To
solve this problem, we derive for the first time the necessary
and sufficient conditions that must be met by a set of conic
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Fig. 2. Comparing the performance of standard conic fitting algorithms using synthetic data. The arc of the test conic is uniformly sampled by 100 points.
Two-dimensional Gaussian noise with zero mean and standard deviation r is added to each sample point used in the estimation. The principal points of
the estimated curve are compared with the ground truth and the mean error is computed over 100 runs of each experiment. (A) Robustness to noise. (B)
Robustness to partial occlusion.
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curves to be the paracatadioptric projection of lines. These
conditions can be used to accurately estimate the line pro-
jections using non-linear minimization. Moreover, if the
system is skewless and the aspect ratio is known, then the
lines can be computed by solving an eigensystem.

3.1. Calibration by geometric construction

Table 1 summarizes the steps to calibrate a paracatadiop-
tric system from the image of K lines in general position.
Fig. 3 is a scheme of the required geometric construction
when the number of lines is minimum (K = 3). Assume that
the K lines are projected into the set of conic curves X̂1; X̂2,
. . . X̂K . Any two line projections X̂i; X̂j intersect in two real
points B̂ij; F̂ij. The image center Ô must always lie on the
line l̂ij defined by the intersection points B̂ij and F̂ij

[16,13]. Consider the plane Pi containing both the original
3D line and the effective viewpoint O (Fig. 1). If the line
is projected into the conic X̂i, then the polar line p̂i

with respect to Ô is the image of the vanishing line of
Pi. Line p̂i intersects the conic curve X̂i in two points
Î i and Ĵi. It can be proved that these two points lie on the
conic X̂1, which is the locus where the absolute conic is
mapped by collineationHc [13]. Conic X̂1 can be estimated
using the K pairs of points Îi; Ĵi (K P 3). Since Hc is an
upper triangular matrix Eq. (5) and X̂1 ¼ H�t

c H�1
c , then

Hc can be determined from the Cholesky decomposition
of X̂1.
Table 1
Calibration of a paracatadioptric system using K lines (KP 3).

Step 1 Determine the catadioptric line images X̂i for i =
Step 2 For each pair of conics X̂i , X̂j , compute the inter
Step 3 Estimate the image center Ô which is the intersec
Step 4 For each conic X̂i compute the polar line p̂i of th
Step 5 For each conic curve obtain the points Îi and Ĵi w
Step 6 Estimate the conic X̂1 going through points Îi, Ĵ
Step 7 Perform the Cholesky decomposition of X̂1 to es

For a detailed proof of the method please consult [13,10].
3.2. Properties of a set of paracatadioptric line images

A conic curve has five DOF and it can be represented
either by a symmetric matrix X̂, or by a point x̂ in P5

(Eqs. (4) and (6)). Replacing �X and Hc in Eq. (4) by the
results of Eqs. (3) and (5) yields

x̂ ¼

a

b

c

d

e

f

2
666666664

3
777777775
¼

a

� rcsk
fc
a

ðr
2
c s

2
k

f 2c
þ r4cÞa
d

e

�r2cf
2
c a� cxd � cye

2
6666666664

3
7777777775

ð10Þ

with

a ¼ � n2z
r2c f

2
c
;

d ¼ nxnz
rcfc

� n2z ðrcskcy�fccxÞ
r2c f

3
c

;

e ¼ rcnynz
fc

þ r2cn
2
z cy�sknxnz

f 2c
þ skn2z ðrcskcy�fccxÞ

rcf 4c
.

8>>><
>>>:
The paracatadioptric image of a line depends both on the
system intrinsic parameters and the orientation of the 3D
plane P (Fig. 1). Assume K lines in the scene that are pro-
jected in the set of conic curves x̂i

x̂i ¼ ðai; bi; ci; di; ei; fiÞt; i ¼ 1; 2; 3; . . . ;K. ð11Þ
1, 2, 3, . . . ,K
section points F̂ij, B̂ij, and determine the corresponding line l̂ij ¼ F̂ij ^ B̂ij

tion point of lines l̂ij
e image center Ô (i = 1, 2, 3, . . . ,K).
here line p̂i intersects X̂i (i = 1, 2, 3, . . . ,K)

i (i = 1, 2, 3, . . . ,K)
timate matrix Hc
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From Eq. (10) follows that

b1
a1

¼ b2
a2

¼ b3
a3

¼ � � � ¼ bK
aK

¼� rcsk
fc

;

c1
a1

¼ c2
a2

¼ c3
a3

¼ � � � ¼ cK
aK

¼ r2cs
2
k

f 2
c

þ r4c .

with

a ¼ � n2z
r2c f

2
c
;

d ¼ nxnz
rcfc

� n2z ðrcskcy�fccxÞ
r2cf

3
c

;

e ¼ rcnynz
fc

þ r2cn
2
z cy�sknxnz

f 2c
þ skn2z ðrcskcy�fccxÞ

rcf 4c
.

8>>><
>>>:
From the first expression it follows that gi = 0 for
i = 2,3, . . . ,K, with gi obtained from Eq. (12). Moreover,
using the second expression in a similar manner, one ob-
tains vi = 0 for i = 2,3, . . . ,K with vi given by Eq. (13).

gi ¼ a1bi � aib1; i ¼ 2; 3; . . . ;K; ð12Þ
vi ¼ a1ci � aic1; i ¼ 2; 3; . . . ;K. ð13Þ
From the result of Eq. (10) it follows that each line projec-
tion x̂i verifies r2cf

2
c ai þ cxdi þ cyei þ fi ¼ 0. Consider the

first three elements x̂1; x̂2, and x̂3, of the set of line projec-
tions. The parameters r2cf

2
c , cx, and cy can be estimated

from

r2cf
2
c

cx
cy

3
75 ¼ �

a1 d1 e1
a2 d2 e2
a3 d3 e3

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
U�1

f1
f2
f3

2
64

3
75

|fflffl{zfflffl}
C

.

Therefore each conic curve x̂i, with i = 4, . . . ,K, must verify
the constraint mi = 0 Eq. (14).
mi ¼ ai di ei fi½ �. �U�1C

1

" #
; i ¼ 4; . . . ;K. ð14Þ

If a set of K conic curves corresponds to the paracatadiop-
tric projection of K lines, then gi, vi, and mi, provided in
Eqs. (12)–(14), must be equal to zero. We have derived
3K � 5 independent conditions that are necessary for a
set of K conic curves to be the paracatadioptric projection
of a set of K lines in the scene. However it has not been
proved that these conditions are also sufficient. By suffi-
cient we mean that, if a certain set of conic curves satisfies
these conditions then it can be the paracatadioptric projec-
tion of a set of lines. Consider the uncalibrated image of K
lines that are mapped in the same number of conics. Since
each conic has five DOF then a set of K conics has a total
of 5K DOF. Each line introduces two unknowns (DOF),
which correspond to the orientation of the associated plane
P (see Fig. 1). Moreover, the five parameters of matrix Hc

are also unknown Eq. (5). Therefore, we have a total of
2K + 5 unknowns (DOF). Since 5K > 2K + 5 then it is
obvious that there are sets of conic curves that can never
be the paracatadioptric projection of lines. The conics that
can correspond to the image of the lines lie in a subspace of
dimension 2K + 5. This means that there are 3K � 5 inde-
pendent constraints, which proves the sufficiency of the
conditions derived above.

3.3. Estimation of a set of K paracatadioptric line images

Consider the image of K lines acquired by a non-cali-
brated paracatadioptric sensor. The lines are mapped into
a set of K conic curves x̂i Eq. (11) that we aim to estimate.
To each curve x̂i corresponds a set of image points x̂i

j, with
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j = 1,2, . . . ,Ni and Ni P 5. The data points are used to
build a matrix B with the sub-matrices Ai similar to matrix
A of Eq. (8).

B ¼

A1 0 0 � � � 0

0 A2 0 � � � 0

0 0 A3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � AK

2
66666664

3
77777775
. ð15Þ

The sum of the square of the algebraic distances between
the data points and the set of conics x̂i is provided by func-
tion �(p) with p ¼ ðx̂t

1; x̂
t
2; . . . ; x̂

t
KÞ

t

�ðpÞ ¼ ptBtBp. ð16Þ
As discussed in Section 2.2, the set of conic curves can be
estimated by finding the minimum of function �. The prob-
lem is that in general the conic curves corresponding to the
paracatadioptric projection of lines are strongly occluded
in the image. The standard conic fitting techniques do
not work properly in these conditions since the data points
do not provide enough information to correctly estimate
the conics. We propose to use the derived necessary and
sufficient conditions to constrain the search space and im-
prove the estimation results.

3.3.1. General case

In general nothing is known about the system calibra-
tion. The skew sk can be non-null and the aspect ratio r2c
can be different from one (Eq. (5)). According to Section
3.2, a set of K conic curves p ¼ ðx̂t

1; x̂
t
2; . . . ; x̂

t
KÞ

t is the
paracatadioptric projection of a set of lines if and only if
the constraints of Eqs. (12)–(14) are verified. We aim to
determine the 6k · 1 vector p, that minimizes function �,
and verifies gi = 0, vi = 0 and mi = 0. The constraints can
be introduced using a Lagrange multiplier k, and the objec-
tive function is

�gðp; kÞ ¼ �ðpÞ þ k
XK
i¼2

g2i þ
XK
i¼2

v2i þ
XK
i¼4

m2i

 !
. ð17Þ

The minimization of �g can be stated as a non-linear least
squares problem, and the solution found using Gauss–
Newton or Levenberg–Marquardt algorithms [23,25].

3.3.2. Skewless images with known aspect ratio

Assume that the orthographic camera is skewless and
that the aspect ratio r2c is known. Replacing sk by 0 in
Eq. (10) yields b = 0 and c ¼ r4ca. The constraints gi = 0
and vi = 0 for i = 2, . . .,K, become bi = 0 and
ci � r4cai ¼ 0 for i = 1, . . .,K. There are two additional con-
straints because two of the calibration parameters are
known. A new objective function �s is derived from Eq. (17)

�sðp; kÞ ¼ �ðpÞ þ k
XK
i¼1

b2i þ
XK
i¼1

ðci � r4caiÞ
2 þ

XK
i¼4

m2i

 !
.

ð18Þ
Each curve in the set has a matrix Ai associated with it (Eq.
(8)). Since the camera is skewless and the aspect ratio is
known, then bi = 0 and ci ¼ r4cai. Omitting the second col-
umn of Ai and adding the third column, multiplied by r4c , to
the first column yields

_Ai ¼

x̂21 þ r4c ŷ
2
1 2x̂1 2ŷ1 1

x̂22 þ r4c ŷ
2
2 2x̂2 2ŷ2 1

..

. ..
. ..

. ..
.

x̂2Ni
þ r4c ŷ

2
Ni

2x̂Ni 2ŷNi
1

2
666664

3
777775.

The sum of the squares of the algebraic distances between
the conic curve and the data points is _/i ¼ _xt

i
_A
t

i
_Ai _xi with

_xi ¼ ðai; di; ei; fiÞt. By combining the K conics we obtain
the sum of squares of the algebraic distances between the
set of curves and the data points. This sum is given by
the function

_�ðqÞ ¼ qt _B
t _Bq; ð19Þ

where matrix _B is obtained by replacing Ai by _Ai in Eq.
(15), and q ¼ ð _xt

1; _x
t
2; . . . _x

t
KÞ

t. Since _B implicitly encodes
the constraints bi = 0 and ci � r4cai ¼ 0, the objective func-
tion �s of Eq. (18) can be rewritten as

_�sðq; kÞ ¼ _�ðqÞ þ k
XK
i¼4

m2i . ð20Þ

As discussed in Section 2.2, the eigenvector corresponding
to the smallest eigenvalue of matrix _B

t _B is the solution q

that minimizes _� under the constraint qtq = 1 [20]. If
K = 3 then the second term of Eq. 20 disappears and the
minimization problem has a closed form solution. If
K > 3 then the minimum of function _�s must be found using
an iterative gradient descent method. In this situation the
eigenvector solution can be used as an initial estimate.

4. Direct least square fitting of paracatadioptric line images

The paracatadioptric image of a line is a conic curve that
in general is hard to estimate due to partial occlusion. Sec-
tion 3 shows that a set of conic curves must verify certain
properties to be a coherent paracatadioptric projection of
a set of lines. The conditions of Eqs. (13)–(15) depend nei-
ther on the system calibration nor on the 3D position of the
lines. These conditions are used to constrain the search
space and estimate the set of conic curves in the uncalibrat-
ed image. The set of line images is used to calibrate the
paracatadioptric camera using the geometric construction
presented in [13,10].

While Section 3 focuses in the estimation of a set of line
projections in an uncalibrated paracatadioptric image, the
present section discusses the problem of determining the
projection of a single line in a calibrated paracatadioptric
view. Considering the space of all conic curves, it is proved
that the paracatadioptric projection of any line lies in a
hyperplane defined by the calibration parameters. The line
image can be estimated by fitting the data points by a conic
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lying in this linear subspace. The proposed approach is
computationally efficient because the fitting problem can
be solved by an eigensystem.

4.1. The necessary and sufficient conditions

The scheme of Fig. 1 shows the paracatadioptric projec-
tion of a line. The line lies in a plane P going through the
effective viewpoint O. The mapping from the sphere into
the plane P1 is a stereographic projection. Plane P inter-
sects the sphere in a great circle that is projected into a cir-
cle �X Eq. 3. Points in plane P1 are mapped into points in
the image by an affine transformation Hc Eq. (5). Since an
affine transformation does not change the type of conic,
then the paracatadioptric projection of a line X̂ is always
a circle/ellipse Eq. (4). Consider the following points lying
in plane P1:

�I1 ¼ ð1; i; 0Þt;
�J1 ¼ ð1;�i; 0Þt;
�G1 ¼ ð1; 0;�iÞt;
�H1 ¼ ð1; 0; iÞt.

Assume that the paracatadioptric system is calibrated and
the affine transformation Hc is known. The above points
are mapped in the paracatadioptric image plane in points:

Î1 ¼ Hc
�I1 ¼ ðix; iy ; izÞt;

Ĵ1 ¼ Hc
�J1 ¼ ðjx; jy ; jzÞ

t
;

Ĝ1 ¼ Hc
�G1 ¼ ðgx; gy ; gzÞ

t
;

Ĥ1 ¼ Hc
�H1 ¼ ðhx; hy ; hzÞt. ð21Þ

Using these points we can state the following proposition

Proposition 1. A conic curve X̂ is the paracatadioptric
image of a line in the scene if and only if it contains points
Î1 and Ĵ1ðÎt1X̂Î1 ¼ 0; Ĵ

t
1X̂Ĵ1 ¼ 0Þ, and points Ĝ1, Ĥ1

are conjugate with respect to X̂ðĜt
1X̂Ĥ1 ¼ 0Þ.

Proof. Consider the conic curve �X ¼ Ht
cX̂Hc, lying in

plane P1 (Fig. 1). Conic �X is a function of the normal n
to the plane P Eq. (3). Since �X is a circle, then it must
go through the circular points �I1 and �J1. Moreover, from
Eq. (3), it follows that points �G1 and �H1 are always har-
monic conjugate with respect to conic �X. Remark that
these properties are independent of the orientation n of
plane P. Since collineation Hc preserves incidence and har-
monic relations, then conic X̂ must satisfy
Î
t
X̂Î ¼ 0; Ĵ

t
X̂Ĵ ¼ 0 and Ĝ

t
X̂Ĥ ¼ 0. The conditions derived

are necessary, nevertheless it is not clear that they are suf-
ficient. By sufficient we mean that if a conic curve verifies
these three constraints, then it is the locus where a certain
line in the scene is projected. By neglecting the scale factor,
the conic curve �X of Eq. (3) is a function of two indepen-
dent parameters. These two degrees of freedom (DOF) are
associated with the pose of plane P containing both the
original line and the effective viewpoint (Fig. 1). Since in
general a conic curve has five DOF, then we must be able
to find three, and no more than three, independent con-
straints. This proves the sufficiency of the statement. h

The established proposition has an interesting geometric
interpretation. It has already been stated that any conic
curve X̂ can be parameterized by a point x̂ in }5 (Eq.
(6)). Consider the 3 · 6 matrix ! provided in Eq. (22).
The matrix is defined by points Î1; Ĵ1; Ĝ1, and Ĥ1 Eq.
(21). According to Proposition 1, a conic curve is the para-
catadioptric image of a line if and only if the corresponding
6 · 1 vector x̂ lies in the null space of ! (!x̂ ¼ 0). This
means that all points x̂, parameterizing the paracatadiop-
tric projection of a line, must lie in a certain plane in the
five-dimensional projective space. This plane is defined by
matrix ! and depends exclusively on the camera
calibration.

!¼
i2x 2ixiy i2y 2ixiz 2iy iz i2z
j2x 2jxjy j2y 2jxjz 2jyjz j2z
gxhx gxgy þhxhy gyhy gxgzþhxhz gygzþhyhz gzhz

2
64

3
75.

ð22Þ
4.2. The fitting algorithm

Consider a set of image points x̂i ¼ ðx̂i; ŷiÞ
t with

i=1,2, . . . ,N. Our goal is to fit a conic curve x̂, correspond-
ing to the paracatadioptric projection of a line, to the set of
data points. From Section 2.2 it follows that the sum of the
squares of the algebraic distances between the curve and
the image points is /ðx̂Þ ¼ x̂tAtAx̂ (matrix A is provided
in Eq. (8)).

Since a conic has five DOF, the space of all conics has
five dimensions. The standard conic fitting algorithms of
Section 2.2 search the entire space for the conic that best
fits the data points. However, and according to Proposition
1, not all conics can be the paracatadioptric projection of a
line. The line projection x̂ must be in the null space of
matrix ! Eq. (22). The null space of ! is a linear subspace
(hyperplane) in the space of all conic curves. Our approach
fits the data by the conic curve in this hyperplane that min-
imizes the algebraic distance to the image points. Consider
the singular value decomposition of matrix !.

! ¼ USVt.

Matrices U, S, and V have respectively dimension 3 · 3,
3 · 6, and 6 · 6. Matrix V is full rank and orthonormal
(V�1 = Vt). The three last columns of V are an orthonor-
mal basis of the null space of ! [23,26]. Consider the
change on the base of representation x̂v ¼ Vx̂. If x̂ be-
longs to the null space of matrix !, then the corresponding
x̂v has the following structure:

x̂v ¼ ð0; 0; 0; dv; ev; fv|fflfflfflffl{zfflfflfflffl} Þt. ð23Þ
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Rewriting the algebraic distance of Eq. (9) in terms of the
new coordinates one obtains / ¼ x̂t

vVA
tAVtx̂v. Taking

into account the structure of x̂v Eq. (23), the algebraic dis-
tance becomes / = qtKtKq with K the bottom right 3 · 3
sub matrix of VAtAVt. We aim to determine the solution
q which minimizes the algebraic distance / under the con-
straint qtq = 1. The corresponding objective function is

wðq; kÞ ¼ qtKtKqþ kðqtq� 1Þ. ð24Þ
The minimum of the objective function w is the eigenvector
of matrix KtK corresponding to the smallest eigenvalue.
The final conic x̂ is computed by replacing q in Eq. (24)
and making x̂ ¼ Vtx̂v.

5. Performance evaluation using synthetic data

The performance of the proposed algorithms is evaluat-
ed using synthetically generated images. This section starts
by introducing the scheme to generate synthetic data. In
Section 5.2 a skewless system with unitary aspect ratio is
calibrated using just three lines (K = 3). It is shown that
our approach outperforms the method proposed in [16].
The calibration of a general paracatadioptric system
(unknown skew and aspect ratio) is discussed in Section
5.3. The section ends with the performance evaluation of
the fitting method to estimate the conic locus where a line
is projected in a calibrated paracatadioptric image.

5.1. Simulation scheme

Assume a paracatadioptric camera with a field of view
(FOV) of 180�, corresponding to a full hemisphere, and
predefined intrinsic parameters. The image of a set of K

lines is generated as follows. As depicted in Fig. 1, to each
line in the scene corresponds a plane P with normal n. The
K normals are unitary and randomly chosen from an uni-
form distribution in the sphere. Each normal defines a
plane that intersects the unit sphere on a great circle.
Notice that half of the great circle is within the camera field
of view (the FOV is 180�). An angle h, less than or equal to
the FOV, is chosen to be the amplitude of the arc that is
N = 20
Θ = 70°

α = 1.1 ; s
k
 = 0 ; f = 245

(c
x
,c

y
) = (330,238)

α =
(c

x

A B

Fig. 4. Synthetic generation of 480 · 640 test images. (A)
actually visible in the paracatadioptric image. The arc is
randomly and uniformly positioned along the part of the
great circle which is within the FOV. The visible arc is uni-
formly sampled by a fixed number N of sample points. To
each sample point corresponds a projective ray x. The sam-
ple rays are projected using formula (1), and transformed
using Eq. (2) with the chosen intrinsic parameters. Two-di-
mensional Gaussian noise with zero mean and standard
deviation r is added to each image point x̂. Fig. 4 depicts
two simulated images of three randomly generated lines.
In Fig. 4A the visible arc has an amplitude h = 70� and is
sampled by 20 points. The camera intrinsic parameters
appear in the bottom left corner. In Fig. 4B the visible
arc is h = 140� and the number of sample points is
N = 140. In this case the camera is not skewless. As a final
remark notice that the amplitude of the visible arc is mea-
sured in the great circle where plane P intersects the
sphere, and not in the conic curve where the line is project-
ed. In general the visible angle of the paracatadioptric line
image is much less than h.

5.2. Calibration of skewless camera with known aspect ratio

Consider a skewless parabolic camera with aspect ratio
1.21 (sk = 0 and rc = 1.21). Both the skew and the aspect
ratio are assumed to be known. We aim to determine the
focal length (fc = 245) and the image center
((cx,cy) = (330,238)) using the image of three lines
(K = 3). The line projections are estimated by minimizing
the sum of the square of the algebraic distances _�. The
objective function is provided in Eq. (19) and the minimi-
zation problem has a closed form solution. The system is
calibrated using the algorithm presented in Table 1 after
estimating the conic curves where the lines are projected.
The data points are synthetically generated using the simu-
lation scheme explained above. The image of Fig. 4A is an
example of a test image. The estimated calibration param-
eters are compared with the ground truth and the RMS
error is computed over 100 runs of each experiment.

Fig. 5 shows the results for different choices of h (ampli-
tude of the visible arc) and N (number of sample points).
 1.1 ; s
k
 = 20 ; f = 245

,c
y
) = (330,238)

N = 140

Θ = 140°

Test image (Section 5.2). (B) Test image (Section 5.3).
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Fig. 5. Calibration of a skewless paracatadioptric camera with known aspect ratio using the image of three lines. The set of line projections is estimated
using the closed form algorithm of section 3.3.2. The graphics show the root mean square (RMS) error for the focal length and image center. (A) Focal
length. (B) Image center.
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For each choice of h and N the standard deviation of the
additive Gaussian noise varies between 0.5 and 6 pixels
by increments of 0.5 pixels. For h = 170� the algorithm pre-
sents an excellent performance. The decrease in the number
of sample points from 300 to 80 only slightly affects the
robustness to noise. Since we are only using three lines,
the decrease in the amplitude of the visible arc h and in
the number of points N has a strong impact on the perfor-
mance. Even so the calibration using arcs of 90� is still
practicable. The situation of h = 70� and N = 20, shown
in Fig. 4A, is very extreme and leads to a bad estimation
of the intrinsic parameters.

An alternative calibration approach is presented in [16].
The authors evaluate the performance of their algorithm
using similar simulation conditions. A direct comparison
can be made between the results presented in here and
the ones presented in [16]. In general terms they estimate
the conic curves by exploiting the fact that the image center
must lie in the line going through the intersection points of
any two line images. As discussed in Section 3, this condi-
tion is necessary, but not sufficient, for a set of conic curves
to be the paracatadioptric projection of lines. Since the
search space is not fully constrained, they need much more
than three lines to calibrate the sensor. The results present-
ed in Fig. 5 are obtained using the minimum theoretical
number of lines for calibration [13,16]. Even so, and as
far as we are able to judge from the results presented in
[16], the performance of our approach seems to be signifi-
cantly better.

5.3. Calibration of general paracatadioptric systems

In this section, it is assumed that nothing is known
about the calibration parameters. We aim to determine
the aspect ratio, skew, focal length and image center using
the paracatadioptric image of a set of K lines. The test
images are generated using the simulation scheme
explained in Section 5.1. Fig. 4B shows an example of a test
image with the assumed camera intrinsic parameters at the
bottom left corner. The set of line projections is estimated
by minimizing the function �g provided in Eq. (17). As dis-
cussed, theminimization is stated as a non-linear least squar-
es problem, and the minimum is found using iterative
gradient descent methods (typically Gauss–Newton or Len-
venberg–Marquardt [23,25]). The initial estimate for the iter-
ative method is the closed form solution that minimizes
function �Eq. (16). The set of line projections is used to deter-
mine the calibration parameters following the steps enunci-
ated in Table 1. The results are compared with the ground
truth and the median error is computed over 100 runs.

In the first experiment, the system calibration is per-
formed using the projection of three lines (K = 3). The
application of gradient descent methods to minimize func-
tion �g can be problematic in many ways [23,25]. The choice
of the initial estimate is crucial to assure a correct conver-
gence. The iterative process must start from a point close
enough to the global minimum to avoid possible local min-
ima and saddle points. The objective function has this type
of singularities when there is not enough information and/
or the search problem is not properly constrained. By
insufficient information we mean a small number of lines,
data points strongly corrupted with noise and visible arcs
with small amplitude or not sampled enough. Fig. 6A
shows the failure of convergence over the 100 runs for each
experiment. The run fails when the absolute conic X̂1,
determined following the steps in Table 1, is not positive
definite and the Cholesky decomposition is not possible.
This can only happen when the set of paracatadioptric line
images is far from being correctly estimated. As expected,
the convergence is strongly affected by the noise. More-
over, the decrease in the number of sample points also
causes an increase in the number of failures. Remark that
we are using the minimum number of lines required to
calibrate a paracatadioptric system. Therefore, it is natural
that often the minimization process does not converge
correctly. Fig. 6B shows the median error in the estimation
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Fig. 6. Calibration using the projection of three lines (K = 3). The visible arc h has 170� of amplitude and the number of sample points N is variable
(N = 300,170,80). For each choice of h and N the standard deviation of the additive Gaussian noise varies between 0.5 and 6 pixels by increments of 0.5
pixels. (A) Failure rate in the convergence of the iterative gradient descent method. (B) Median error in the calibration of the focal length.
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of the focal length with the performance decreasing with
the number N of sample points. The results are not very
impressive because we are using only three line images.

The experiment of Fig. 7 compares the performance of
the calibration algorithm when using the projection of 3,
5, 7, and 9 lines. The increase of the number of lines
dramatically improves the robustness of the calibration.
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Fig. 7. Calibration using the projection of K = 3, 5, 7, and 9 lines. The amplitud
The standard deviation of the additive Gaussian noise varies between 0.5 and
parameters. (A) Aspect ratio. (B) Camera skew. (C) Focal length. (D) Image
5.4. Estimating paracatadioptric line projections in

calibrated images

The present section evaluates the performance of the fit-
ting algorithm (CATPARB) proposed in Section 4. The
synthetic data is generated using the simulation scheme
explained in Section 5.1. Fig. 8 shows the estimation of a
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6 pixels. The graphics show the median error for the different calibration
center.
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Fig. 8. Estimation of the conic curve corresponding to a line projection in
a calibrated paracatadioptric image. The figure compares the estimation
results using AMS, FF, and CATPARB. The amplitude of the visible arc
is h = 25�, the number of sample points is N = 20 and the standard
deviation of the additive noise is r = 5 pixels.
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Fig. 9. Comparing the performance of AMS, FF, DLE, and CATPARB
algorithms in estimating the conic locus where a line is projected. The data
points are synthetically generated using the simulation scheme of Section
5.1. The visible arc has amplitude h = 80� and is uniformly sampled by
N = 40 points. Each algorithm fits a conic to the synthetic data points.
The estimated conic is compared with the ground truth and the RMS error
in the principal points is computed over 100 runs.
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Fig. 10. Characterization of the performance of the CATPARB algorithm
for different amplitudes of the visible arc (h) and number of sample points
(N). As expected the performance is worse when the number of samples
and/or the amplitude of the visible arc decrease. The results provide a
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paracatadioptric line projection using AMS, FF (Section
2.2), and CATPARB. The standard conic fitting methods
perform poorly, but the CATPARB algorithm is able to
correctly recover the conic curve. To certain extent the
comparison of Fig. 8 is not entirely fair. While AMS and
FF are generic methods to fit a conic curve to data points,
CATPARB uses information about the sensor geometry
and calibration to perform the estimation. The CATPARB
algorithm is a specific method for the estimation of para-
catadioptric line projections that requires the calibration
matrix Hc to be known.

If the system calibration is known, then the line projec-
tion can be easily determined by performing the perspective
rectification of the data points. Consider the image points
x̂i, lying in the paracatadioptric line projection X̂, the cal-
ibration matrix Hc (Eq. (5)) and the inverse of function ⁄
(Eq. (1)). Since �xi ¼ H�1

c x̂i and xi ¼ �h�1�xi, then the formula
to compute the rectified data points is

xi ¼ �h�1ðH�1
c x̂iÞ i ¼ 1; . . . ;N ð25Þ

with

�h�1ð�xÞ ¼ ð2�x�z; 2�y�z;�z2 � �x2 � �y2Þt.
The line projected into conic X̂ lies in a plane P with nor-
mal n = (nx,ny,nz)

t (Fig. 1). The rectified points xi, with
i = 1,. . .,N, are projective rays in the plane P that satisfy
ntxi = 0. Therefore, the normal n can be estimated from
the set of rectified image points xi using normal least squar-
es. The solution is the eigenvector of the matrix C (Eq.
(26)) corresponding to the smallest eigenvalue. The conic
locus X̂ in the image plane is computed from n = (nx,ny,nz)

t

and Hc using the relations established in Eqs. (3) and (4).
Henceforth, we will refer this approach as the direct line
estimation (DLE) method.

C ¼

x1 y1 1

x2 y2 1

..

. ..
. ..

.

2
66664

3
77775. ð26Þ
xN yN 1
Figs. 9 and 10 compare the performances of the AMS, FF,
DLE, and CATPARB algorithms. The DLE method per-
forms much better than the standard conic fitting tech-
niques (AMS and FF). This is explained by the fact that
the DLE uses not only the data points, but also implicit
information about the sensor and its calibration. However,
the performance of the DLE is clearly worse than the per-
formance of the CATPARB method. As explained in Sec-
tion 2.2, it is reasonable to assume that the noise in the
image points x̂i ¼ ðx̂i; ŷiÞ

t is Gaussian, two-dimensional
and with zero mean. It is also reasonable to assume that
general idea of the robustness of the CATPARB algorithm.



Table 2
Calibration results using the projection of 4, 5, and 6 lines

rc fc sk cx cy

4 Lines
Mean 1.0001 699.37 1.46 1137.6 870.66
STD 0.0012 16.00 2.35 22.6 13.42

5 Lines
Mean 0.9998 701.03 0.57 1143.6 874.36
STD 0.0019 13.57 1.41 11.0 8.29

6 Lines
Mean 0.9996 701.81 �1.95 1147.7 876.64
STD 0.0015 10.65 1.39 5.8 5.66

For each situation we performed five independent calibrations using five
different images. The table shows the mean and standard deviation for
each calibration parameter.
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the error is equal in both directions and uncorrelated.
Therefore, the noise covariance matrix is r2I, where r is
a scalar and I the 2 · 2 identity matrix. Consider the recti-
fied point xi and the line n, both lying in the conventional
perspective plane. The algebraic distance between the point
and the line is /i = ntxi. Replacing xi by the result of Eq.
(25) and propagating the variance of the image point x̂i fol-
lows that the noise variance in the algebraic distance is

r2
i ¼ 4

ðn2x þn2yÞðx̂
2
i þ ŷ2i Þ

2þ8nxnyx̂iŷiþ2ðn2x �n2yÞðx̂
2
i � ŷ2i Þ

ð1� x̂2i � ŷ2i Þ
4

r2.

ð27Þ
The least square estimator computes the line n that mini-
mizes the sum of the squares of the algebraic distances /i

(i = 1, . . . ,N). The estimation is optimal when the algebraic
distances /i have the same noise variance and are statisti-
cally independent [20,23]. From Eq. (27) it follows that
the variance ri is a function of the coordinates of the origi-
nal image point x̂i. Thus, the variance of the algebraic
distances /i is not constant and the line estimation using
least squares is statistically biased [24]. The effects of the
statistical bias are much stronger in the DLE method than
in the CATPARB algorithm, which explains the poorer
performance of the former (Fig. 9).

6. Experimental results using real images

In this section we apply the calibration method pro-
posed in Section 3 to determine the parameters of a real
paracatadioptric sensor. Five images were taken using a
paracatadioptric camera. Fig. 11 shows one of those imag-
es where a set of line projections is clearly visible. For each
image we used an edge detector and selected points belong-
ing to six different lines. Each one of the five images was
independently calibrated using 4, 5, and 6 lines. The results
are summarized in Table 2.

In this case, the calibration parameters are all unknown.
The estimation of the line projections is performed by find-
ing the solution that minimizes function �g of Eq. (17). The
initial estimation for the iterative process is obtained using
A B

Fig. 11. Estimation of a set of line projections in an uncalibrated paracatadiop
Initial estimate (AMS). (B) Final estimate.
the AMS algorithm which, among the standard conic fit-
ting methods with closed form solution, is the one that bet-
ter performs in the presence of occlusion (see Section 2.2).
Fig. 11A shows the initial estimates for the paracatadiop-
tric line projections. If the conic loci were accurately deter-
mined then all the lines going through the intersection
points should meet in the image center ([16,13]). Fig. 11B
exhibits the result corresponding to the minimum of func-
tion �g. The calibration results are summarized in Table 2.
Notice that the estimated values for the calibration param-
eters are more or less the same for the different K (number
of lines). The standard deviation acts as a measure of con-
fidence. If the standard deviation takes high values then the
results obtained for each image are very different and the
achieved calibration is not trustful. As expected the
standard deviation decreases when the number of lines
increases. Henceforth, we will assume that the camera is
calibrated.

The experiment of Fig. 12 uses the CATPARB algo-
rithm to determine the paracatadioptric projection of lines.
Remark that the estimation results implicitly depend on the
calibration accuracy. Therefore, we are simultaneously
testing the CATPARB algorithm and the proposed calibra-
tion method. Since a line image has two independent
degrees of freedom (Section 4), we select by hand two
points lying on the conic locus where a scene line is project-
tric image. The image resolution is 1704 · 2272 and the FOV is 180�. (A)



Fig. 12. Estimating the projection of lines in a calibrated paracatadioptric
image using two points selected by hand.

a 

b 

c 
d 

Fig. 13. Estimating the angles between pairs of parallel lines from a
paracatadioptric image of those lines.
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ed. Fig. 12 shows the selected points and the corresponding
projected line estimated using CATPARB.

Fig. 13 is the paracatadioptric image of four pairs of
parallel lines denote by a, b, c, and d. The polar of the
image center with respect to the conic locus where each line
is mapped is the horizon of the corresponding planeP con-
taining the original 3D line and the effective viewpoint (see
Fig. 1) [13,10]. Moreover, if two imaged lines are parallel
then the intersection of the corresponding horizons is the
vanishing point of their common direction. The eight line
images, corresponding to the four pairs of parallel lines,
Table 3
Recovering the angles between pairs of parallel lines

a–b a–c a–d b–

G. Truth 90� 30� 30� 60
Error CAT 0.85� 2.05� 1.82� 2
Error PER 0.34� 6.64� 0.49� 2

CAT denotes the results obtained by estimating the paracatadioptric projectio
rectification.
are estimated using the CATPARB algorithm (see
Fig. 13). The vanishing point of each pair is determined
in a straightforward manner using the results of [13,10].
Since the calibration matrix Hc is known, then the image
of the absolute conic can be computed making
X̂1 ¼ H�t

c H�1
c . The estimation of the angles between the

pairs of parallel lines from the vanishing points and the
absolute conic is trivial [27,19]. Table 3 shows the errors
in estimating these angles.

There is an alternative approach to estimate the angles
between the pairs of parallel lines. We can perform the per-
spective rectification of the image points, estimate the lines
using normal linear least squares and compute the angles
using standard projective relations. The estimation errors
are exhibited in the second line of Table 3. As expected,
estimating the lines directly in the paracatadioptric plane
presents better results. We may conclude that the bias
introduced by the perspective rectification has a strong
impact on the performance of the DLE method.

7. Conclusions

This article presents an effective way to calibrate a para-
catadioptric camera using the image of three or more lines
in general position. It is shown that the accurate estimation
of the conic curves where the lines are projected is hard to
accomplish due to partial occlusion. We propose a strategy
to overcome this difficulty. The necessary and sufficient
conditions that must be verified by a set of conic curves
to be the image of a set of lines are derived. These condi-
tions are used to constrain the search space and accurately
estimate the set of conic curves required to calibrate the
paracatadioptric sensor. If the camera is skewless and the
aspect ratio is known then the conic fitting problem is
solved naturally by an eigensystem. Otherwise the estima-
tion is performed using non-linear optimization techniques.
Experimental results show that the proposed calibration
method performs much better than the ones appearing in
the literature [16–18].

The second contribution is the CATPARB algorithm to
estimate the projection of a line in a calibrated paracata-
dioptric plane. It is proved that a conic curve, parameter-
ized by a point in P5, is the paracatadioptric image of a
line if and only if it lies in a hyperplane defined by the sys-
tem parameters. Thus, there are three necessary and suffi-
cient conditions which define a linear subspace in the
space of all conic curves. The line image is estimated within
this subspace by solving an eigensystem. The method is
c b–d c–d Mean STD

� 60� 60�
.99� 1.04� 3.87� 2.10� 3.87�
.40� 13.71� 16.01� 6.62� 6.85�

n of the lines. PER are the angles estimated after performing perspective
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accurate, robust and computationally efficient. Experimen-
tal results show that this approach performs much better
than estimating the lines using perspective rectification as
is often done in robotic applications [4]. The estimation
after perspective rectification is statistically biased [24]
which strongly affects the results.
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