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A comparative study of the random phase approximation is reported in the case of the following 
three approaches based on the thermo field dynamics formalism: (A) the Tanabe approach, (B) the 
Hatsuda approach and (e) the approach developed by the present authors. The basic viewpoint is 
to formulate the random phase approximation by picking up the quadratic terms with respect to 
bosons in the boson expansion theory for the thermo field dynamics formalism. It is conciuded that 
the approach (e) appears to be superior to the other two approaches. 

§ 1. Introduction 

The study of phenomena occurring in highly exicited nuclear states,. in the 

framework provided by the nuclear rpany-body theory, has received the attention of 

many authors. Such phenomena are expected to be interpreted in the language of the 

theory of thermal equilibrium with a temperature T=f=.O. In response to the situation 

mentioned above, three papers have appeared along an idea of constructing the 

random phase approximation (RP A) in the frame of the thermo field dynamics 

formalism:!) (A) the Tanabe approach/) (B) the Hatsuda approach3
) and (C) the 

approach developed by the present authors.4
) The thermo field dynamic formalism is 

regarded as useful for describing mixed states such as the states of thermal equili-

brium with T=f=.O. In this formalism, as a technique for the trace calculation, the 

fermion space in which the system is described is enlarged from the original one. 

With the use of the solution of the Schrodinger equation given in the enlarged space, 

statistical ensemble average of any physical quantity is automatically reduced to 

quantum mechanical calculation of the expectation value. 

In the above three papers, the RP A methods were formulated on the basis of the 

thermo field dynamics formalism. In the present paper, we will call the RPA for-

mulated in the frame of the thermo field dynamics formalism the TFRP A. 

Further, we will use the notations the TFRPA (A), (B) and (C) for the TFRPA based 

on the approach (A), (B) and (C), respectively. Since in the above three papers the 

starting ideas are different from each other, the resultant equations are also different 

from each other. In (A), the starting Hamiltonian for the Schrodinger equation in the 

enlarged space is expressed only in terms of the variables in the original space. The 

TFRP A (A) equation called the extended TRP A (ETRP A) equation in the original 

paper of (A) is different from that of the RPA for T=f=.O which is not based on the 

thermo field dynamics formalism and called the TRP A equation in (A).5) However, 

from the careful investigation of the detailed formulation of (A), we notice that the 

 b
y
 g

u
est o

n
 Jan

u
ary

 4
, 2

0
1
6

h
ttp

://p
tp

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://ptp.oxfordjournals.org/


750 M. Yamamura,]. da Providencia, A .. Kuriyama and C. Fiolhais 

approach (A) seems to contain unclear aspects which should be reexamined concern-

ing the position of the thermal equilibrium and the interpretation of the single-particle 

excitation energies. In contrast to the above case, the approach (B) starts from the 

Hamiltonian expressed in terms of the whole variables in the enlarged space. 

However, the formulation shown in (B) is not so concrete and the detailed form of the. 

TFRP A (B) equation is not given. Therefore, physical meaning of the results such as 

the frequencies obtained in the TFRPA (B) equation is unclear. In (C), the starting 

Hamiltonian is essentially the same as that in (A). However, soine of the variables 

in the enlarged space do not have any counterparts in the original space. Therefore, 

quantities which relate to these variables should be constrained. Under these con-

straints, the equation of the collective submanifold is given and in the small amplitude 

limit, the TFRPA (C) is formulated. However, it starts from a single collective 

degree of freedom. Therefore, for example, the maximum number of the degrees of 

freedom in the enlarged space, which is independent of the constraints, cannot be 

given. This fact shows that the approach (C) is, in its present form, unpowerful for 

describing the couplings among various modes. Anyhow, the above three approaches 

contain some unclear points which should be reexamined. 

The aim of this paper is to clarify the unclear points contained in the approaches 

(A), (B) and (C). For this aim, we start from the Hamiltonian of the separable type 

interaction, with the aid of which the TFRPA equation can be given in a concrete 

form. First of all, we define fermion annihilation and creation operators, (ai, a;*) 

and (bi, b i*) which play the same role as that of the particle and hole operators, 

respectively, in the static Hartree-'Fock theory. Fermion operators (c;,c;*) which 

are defined in the original space can be expressed in the form c;=uiai+v;b;*, c;* 

= u;(i;* + Vi b;. Here, the coefficients Ui and v; are defined by Ui= ./1- ni and v,=;n; 

. 1). The quantity ni denotes the occupation probability of the state i at the 

equilibrium point. Further, additional fermion operators (;I, ;I*), which compose 

the enlarged space with the fermions (Ci, c;*), are given in the form d;=-v;a;* 

+ uibi, d;*= - Via i+ uib i*. Then, the bi-linear forms of these fermion operators are 

given by the forms Ci* cj=n;!Jij+ Fij and d j* di=n;!Jij+ Gij. Here, Fij and Gij are 

expressed in of linear combinations for ai* bj*, biaj, a;* aj and bj* bi. These 

operators can be transcribed in the boson space, i.e., we can get the boson expansion 

theory for mixed states. Further, its classical limit can be obtained by replacing the 

boson operators by the classical canonical variables. This classical limit is, in its 

formalism, nothing but the TDHF theory parametrized in terms of the canonical 

variables.6
) Then, we can express anyone body physical quantity as a function of 

c;* Cj in terms of the equilibrium value plus the fluctuation. Of course, the fluctua-

tion is expressed in terms of Fij and it starts from the linear terms for the bosons or 

their classical counterpart. If we rewrite the starting Hamiltonian in the frame of 

the above fermion bi-linear forms, the Hamiltonian can be expressed by the boson 

operators or classical canonical variables. Then, picking up the terms up to the 

quadratic order for the bosons, we can get the approximate Hamiltonian which leads 

us to the TFRP A. Through the diagonalization of the Hamiltonian, the eigenvalue 

equation is obtained. In this paper, we will investigate the Hamiltonians for the 

TFRPA and the eigenvalue equations in the approaches (A), (B) and (C). Through 
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On the Random Phase Approximation 751 

this investigation, the unclear points in the three approaches can be clarified. 

After giving the Hamiltonian and some basic formulae in § 2, the TFRP A 

Hamiltonians in the approaches (A) and (B) are given in § 3. Especially, the TFRPA 

(B) equation is investigated in detail. In § 4, the TFRPA equation is presented on the 

basis of the approach (C). A general one body physical operator is expressed in 

terms of the variables which are free from the constraints. Finally, in § 5, the results 

based on the approachs (B) and (C) are given and several concluding remarks, for 

example, such as that the result given in (C) coincides with that given by the present 

authors 0. P. and C. F.),1i are mentioned. 

§ 2_ Preliminaries 

In this section, we will give the preparation for the later discussion. With the 

aim of illustrating our idea in a concrete form, we describe a system, the Hamiltonian 

of which consists of kinetic energy and two-body interaction of the separable type: 

(2-1) 

(2-1a) 

Here, the single-particle states are denoted by in terms of the Latin subscripts i, j, k 

and t. The operators Ci and Ci* stand for the fermion annihilation arid creation 

operator in the state i, respectively. Since we are concerned with the interaction of 

the separable type, the exchange matrix elements for the interaction will be neglected. 

Associated with the operators Ci and c;*, we introduce another type of fermion 

operators ;1; and di*, which are independent of Ci and Ci*. Further, the following 

Hamiltonian is defined: 

(2-2) 

In the approaches (AY) and (C)4), the following Schrodinger equation is adopted: 

iOtlm(t)=Hlm(t))) . (2-3) 

Here, Im(t)) denotes a mixed state. The approach (B)3) starts in the Schrodinger 

equation 

K=H-H. (2-4) 

Following the thermo field dynamics formalism, let us introduce fermion opera-

tors ((i;, a;*) and (hi, h;*) in the following forms: 

Here, Ui and Vi are given by 

ui='/l-ni , Vi=/ii: . 

(2-5) 

(2-6) 

(2-7) 
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The quantity ni· means the occupation probability of the state i in the vacuum 10» for 

the fermions iii and b i (ii,IO»= b iIO»=O). With the use of (ii i, ii;*) and (b i, b ;*), the 

opera tors C i * C j and ;1;*;i; can be expressed as 

(2·8) 

(2·8a) 

(2·9) 

(2·9a) 

The expectation value of c;* Cj for the vacuum 10» is n;!Ju. Then, the term Fu 

denotes the fluctuation around the value ni and the aim of the TFRP A is to determine 

the fluctuation at the lowest order. If the mixed state Im(t)) obeys the Schrodinger 

equation (2·3), the expectation value of Gu should not depend on the time. There-

fore, we can set up 

«mCt)IGulm(t))( = Gu)=O. (2·10) 

The above relation (2·10) appears only in the approach (C) and it plays a role of a 

.constraint for the fluctuation around ni. 

With the aid of the relations (2·8) and (2·9), we rewrite the Hamiltonians (2·1) 

and (2·2) as follows: 

(2·11) 

(2·12) 

Here, Eo and Ci denote, respectively, 

(2 ·13) 

(2 ·14) 

We assumed that the quantity tu-:- is diagonal for i and j and obeys the 

following relation: 

if (2·15) 

The quantity Ci corresponds the single-particle energy of the state i in the conven-

tional Hartree-Fock theory 

As is well known in the boson expansion theory, the fermion pairs ii/ bj*, biiij, 

ii/ ii j and bj* b i can be expressed in terms of the boson operators Cu and C1; in the 

following forms: 

, 
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Here, Cij and Cli satisfy the commutation relations 

[Ci.;' Cn.]=OjkOil, 

753 

(2'16) 

(2 ·17) 

Under the above preliminary consideration, we will analyze the TFRP A based on the 

approaches (A) and (B) in the next section. 

§ 3. The TFRP A equations in the approaches (A) and (B) 

In this section, we will give the TFRPA in the approaches (A) and (B). Let us 

start from the approach (A).2) In this case, the Hamiltonian is of the form given in 

Eq. (2 ·11). Substituting the forms (2 ·16) into Eq. (2 ·11), together with Eq. (2· Sa), we 

have 

H=Eo+HQ+Fh, 

HQ= 4.:(EjU/- EiVl) ctCij- x/2' ViUjCij))2 , 
u u 

HL = '2:, EiUiVi( Cli+ Cii) . 
i 

. (3·1) 

(3'la) 

(3·1b) 

The expansion is stopped at the quadratic terms for the bosons Cij and C;'Although 

we do not show explicitly, the diagonalization of the Hamiltonian (Eo+ HQ) gives us 

the TFRP A (A) equation (the ETRP A equation). However, the existence of the term 

HL should not be forgotten and, in. this case, the total Hamiltonian H must be 

diagonalized. 

Since the term HL , which is linear for the bosons, exists, we have to diagonalize 

the Hamiltonian (3 ·1) by choosing appropriate values of rij and rJi in the following 

relations: 

(3·2) 

Therefore, in the present case, the expansion in Eq. (2·16) should be performed for C0 
and Cit and, in this expansion, the linear terms for C0 and Cjt appear also from the 

terms, the powers of which are higher than the linear for Cij and Cli. Therefore, it 

may be clear that the diagonalization of the Hamiltonian (3·1) cannot give us reliable 

result for the approximate diagonalization of the original Hamiltonian. Further, we 

start the formulation by expecting that the state 10» plays a role of the thermal 

equilibrium and the fluctuations around this point are describe'd by the bosons Cij and 

C;. However, if the relation (3·2) is necessary, the equilibrium is displaced from the 

state 10». This fact contradicts to the starting expectation. It should be recalled 

that, in the standard understanding, the RP A describes the fluctuations around the 
. . . 

equilibrium in the lowest order and, then, the Hamiltonian should be quadratic for the 

fluctuations. In addition to the above fact, the term contained in the Hamiltonian 

(3·1), ,(EjU/-EiVi2
), may be of an unnatural form. If Ei corresponds to the single-
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particle energy in the conventional Hatree-Fock theory, the single-particle excitation 

energy from the state ito j must be of the form (Cj- Ci). The effect of ni, nj*O or 

1 influences only to the probability of the excitation such as from the state i to j. 

From the above-mentioned few points, we have to conclude that the TFRPA (A) 

disagrees with the standard understanding and form of the RP A. 

Next, let us investigate the approach (B).3) As was mentioned in § 1, the TFRPA 

(B) equation has not been formulated in a concrete' form in the original paper. Then, 

we will give the derivation in detail. In this case, as the Hamiltonian, the form 

K( = fJ- ii) is adopted. The Hamiltonian ii can be expanded for {;ij and {;Ji in the 

following form: 

Then, the Hamiltonian K can be expressed as 

K = Ci){;t{;ij- x/Z· ViUj{;ij)]2 ij ij 

(3·3) 

(3·3a) 

(3·3b) 

(3·4) 

We can see that the Hamiltonian K does not contain any linear term for {;ij and (;Ji 

and is of the standard form for the RP A. 

Let us diagonalize the Hamiltonian (3·4). For this aim, we introduce the follow-

ing operators: 

The above operators satisfy the relations 

X!;=Xji, [Xij, Xkz]=Ojkoil(ni-nj) , 

[Xij, Ykz]=O, 

[Xij, {;kl]=[ Yij, {;kll=O. (for nk=nl) 

For ni*nj, the inverse of the relation (3·5) is given by 

(;ij=(ViUjXij- UiVj Yij)/(ni- nj) . 

(3·5) 

(3·6a) 

(3·6b) 

(3·6c) 

(3·7) 

With the use of the operators defined above, the Hamiltonian K can be expressed as 

K=Kx-Ky+Kz, 

Kx= Ci)/Z(ni- nj)· XjiXij- X/Z· qijXij]2 , 
ij U 

(3·8) 

(3·8a) 
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(3·Sb) 

(3·Sc) 

The symbols and denote the summations for ni-=F nj and ni= nj, respectively. 

The commutation relations for and Yij, further, Cij and CJi (ni=nj) for the 

Hamiltonian K are given in the following: 

[K, Xij]=(Ci- Cj)Xij - xqij(nj- qklXkl . kl 

(3·9a) 

(3·9b) 

(3·10a) 

(3·10b) 

With the use of the above commutation relations, we search for the operator 13* 
which satisfies the relation 

[K, 13*] = w.8* , [13, .8*]=1, 

.8* = UijXij+ Vij Yij)+ lJTijCJi+ (])ijCij) . 
ij v 

The above relations give us the following eigenvalue equations: 

(3·11) 

(3·12) 

(Ci- Cj) Uij- qkl(nl- nk) Ukl - qklUkVk[ lJTkl-(])kl]= wUij , (3·13a) 
kl kl. 

The addition and the subtraction of Eqs. (3·13) and (3·14) give us 

(Ci-cJ[Uij+ Vkl]=W[Uij+ Vij], 
kl 

(3·15a) 

(Ci - Cj)[ lJTij - (])ij] = w[ lJTij - (])ij] . (3 . 16b) 

Let us search for solutions of Eqs. (3·15) and (3·16). By eliminating [Uij+ Vij] in 

 b
y
 g

u
est o

n
 Jan

u
ary

 4
, 2

0
1
6

h
ttp

://p
tp

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://ptp.oxfordjournals.org/


756 M. Yamamura,]. da Providencia, A. Kuriyama and C. Fiolhais 

Eq. (3 '15a), possible solutions of Eq. (3 ·15a) are obtained by solving the following 

equations: 

XF(co)=I, (3'17) 

F(co)= L:,' qMnj- n i)2(Ci-/J . 
ij (Ci-Cj)-CO (3·18) 

Since F(co) is a function of co2, the solutions of Eq. (3'17) are labeled by 

-'-+ co- - COn. (COn>O n=1 2 ... ) . , , , (3·19) 

In order to stress the connection with the eigenvalues ± COn, Uij, Vij, lJfij and (f)ij are 

denoted as uir) , Viy±n), 1Jf&±n) and respectively. Equation (3 . 16b) gives us 

(3'20) 

We investigate the case ±COn=l=ci-Cj (ni=nJ. In this case, Eq. (3'20) gives us 

(3'21) 

Rewriting Eq. (3 '15a) and substituting the result (3·21) into Eqs. (3 '15a) and (3 . 15b), 

we obtain the following equations: 

( )[ U(±n) + v,(±n)] .,..-" ( )[ u(±n) +. v,(±n)] 
Ci---:-Cj ij ij -Xqij£.." qki ni-nk ki ki 

ki 

(3'22a) 

= + r" [u(",n) - v,.<.±n)] 
- U/n lJ lJ· (3·22b) 

In the above equations, generally, we can put 

(3' 23) 

For determining and v&-n), we set up an eigenvalue equation 

(3'24) 

The eigenvalues of Eq. (3·24) are given by solving Eq. (3 ·17), that is, co = ± COn. Then, 

Wiy±n) which correspond to ± COn, are determined in the form 

(3'25) 

Here, N(±n) are normalization constants. Making positive and negative n-th 

eigenvalues of the above equation correspond to ± COn, we put 

(3·26) 

Substituting the above result into Eq. (3 '16a) and using Eq. (3·21), we have 

(3·27) 

Thus, the following forms for the operators B* are. obtained: 
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The normalization constants are determined by setting up the relation [B±n, Bfn]=I: 

(3·29) 

Equations (3 ·15) and (3 ·16) have another type of solutions. We investigate the 

following case: If Ei-Ej=Ea-Eb (ni7nj, na=nb), the single-particle states i and j 

coincide with a and b, respectively, i.e., i=a and j=b. Then, Eq. (3·16b) has the 

following solutions: 

,W=Ea-Eb, (3·30) 

1Jfi)abL <l>ifbl=O, (for (ij)*(ab)) (3·31a) 

1Jfi)abL <l>ifbl*O. (for (ij)=(ab)) (3·31b) 

For discriminating the eigenvalues and the eigenvectors, we used the notation (ab), 

for example, as are shown in 1Jfi)
abl and <l>ifbl. Since ± Wn*Ea-Eb, Eq. (3·15a) gives 

us 

Substituting Eq. (3·32) into Eq. (3 ·16a), we have 

Solutions of Eq. (3·33) are as follows: 

(for (ij)*(ab)) 

(for (ij)=(ab)) 

Combining the solutions (3·34) with (3·31), we have 

[1Jfi)abl)2- [<l>ifbl)2*O . 

Then, Eq. (3·15b) leads us to 

(for (ij)*(ab)) 

(for (ij)=(ab)) 

-2 [1Tr(abl m(abl] XQijqabUaVa ':I:'ab - lVab 

Equations (3·32) and (3·36) give us 

(3·32) 

(3·33) 

(3·34a) 

(3·34b) 

(3·35a) 

(3·35b) 

(3·36) 

(3·37) 
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Here, M(ab) is a normalization constant which is given by 

M(ab)= XqabUaVa[ lJfJgb) - [1- xF(ca - Cb)]-l . 

Thus, we have the following forms: 

(3'38) 

qij(Xij---" Yij)/[(Ci- cj)-(ca - Cb)] + lJfJgb)C'ta+ . (3 '39) 
lJ 

The quantities lJfJgb) and further, the normalization constants M(ab) are deter-

mined by the condition [Bab, = 1, which gives us the relation [lJfJgb)J2- 1. 

Then, we can put 

(3'40) 

The above treatment is also valid for the case a= b. 

With the use of the results (3·28) and (3·29), the Hamiltonian K is expressed as 

(3'41) 

Therefore, the excitation energies are given by (j)n and (ca-cb) (>0). The above is 

the TFRPA (B) formalism. In § 5, we will discuss again the approach (B). 

§ 4 .. The TFRP A equation in the approach (C) 

As was mentioned in § 1, the approach (C) has been initiated by the present 

authors.4
) The basic idea is based on the TDHF-like variational principle and it is a 

classical theory. First, let us give some basic parts of this theory. A characteristic 

point, in contrast to the approaches (A) and (B), is the existence of the constraint 

(2'10), the explicit form of which is 

Gij= + ViUj(a/ bj*)c + uiv;(biaj)C + uiu;(bj* bi)c - viv;(a/ aJc=O . (4 ·1) 

Here, (ai*bj*)c, etc., denote the expectation value of the operators ai* bj*, etc., for the 

mixed state !m(t») which is a Slater determinant-like state for the SchrOdinger 

equation (2·3). These expectation values can be expressed in the classical correspon-

dences of the relation (2·16). In this case, Cij and Cli are replaced with the c-number 

variables Cij and Ck 

(4'2) 

The variables Cij and are canonical if constraint is suppressed. The con-

straint (4 ·1) is explicitly given by 

Gij= Cjt(j1- C t C*CT)kiCkj 
k k 

(4·3) 

The above relation means that, on the submanifold governed by the constraint 
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Gij=O, these variables are not canonical. Therefore, we introduce the boson-type 

canonical variables Dm and Dm * on the submanifold, where m denotes the index 

specifying the variables. At the present stage, we do not know the total number of 

the variables. ' 

Our problem is to express Cij and C},: as functions of the new canonical variables, 

Dm and Dm *. We impose the following relation, which is called the canonicity 

condition: 

Of course, we also consider the complex conjugate of the relation (4 ·4). Here, S is 

a function of (Dm, Dm *) and satisfies S*=S. Let us note that the state \mCt») satisfies 

«m(t)\a!aCij\m(t»)= C/j!2. (4·5) 

The complex conjugate of the "above relation will be also used. Then, combining 

Eq. (4·4) with Eq. (4;5), we have 

(4·6) 

The variation for determining\m(t») can be expressed in the following form: 

1
11 

a Ldt=O, 
to 

(4·7) 

L=«m(t)\iat - iI\m(t») 

=i!2· L},(DmDm*- Dm* Dm)- H +dS!dt, (4·8) 
m 

H=«m(t)\iI\m(t»)=H(D, D*). (4·9) 

The term dS!dt does not give any effect on the variation (4·7) and from this variation, 

we have the Hamilton equations of motion. 

Now, on the basis of the relations (4·3) and (4·4), let us determine Cij and as 

functions of the canonical variables Dm and Dm *. We expand Gij, Cij and in the 

following forms: 

C :I:= CfP*+ Cf2l*+··· 
Jt Jl Jl • 

, The first and the second order of Gij are determined by 

From the relation (4·12), we can put 

(4 ·10) 

(4 ·11) 

(4·12) 

(4·13) 

(4·14) 
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Since (CH»)* = C}]>*, Zij should satisfy 

(4°15) 

Then, by substituting the relation (4 °14) into Eq. (4°13), we have 

(4 °16) 

From the relation (4 016), we can put 

(4 °17) 

The above relations satisfy (C}Jl)*= CH)* and Wij,k and Wji,k should satisfy 

(4°18) 

The quantity Wij,k is a function of ni, nj and nk: Wij,k=w(ni, nj, nk). Through a 

procedure similar to the above case, the higher order terms can be determined. 

Next, in order to determine Zij and Wij,k, we use the canonicity condition (4 0 4). 

Under the present approximation, the condition (4°4) can be expressed by 

° [(ZikZkj)(JzjdaDm - Zjia(ZikZkj) /aDm] 

=Dm*--:-2ioaS/aDm. 

For the above relation, we impose the following relations: 

nl1- nj)wij,k + ni1- ni)Wji,k=O , 

Then, the relation (4°19) can be rewritten as 

+ 1/3 ° ni(l- ni)(1-2ni)ajiaikakj] 

=Dm*-2ioaS/aDm. 

Here, Aij and aij are defined by 

aij; (for ni=nJ 

(4°19) 

(4 °20) 

(4°21) 

(4°22) 

(4°23) 
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The relation (4·23) gives us 

1/2· 2},(ni- nj)(AijOAj;joDm - AjiOAij/oDm) = Dm * , 
ij 

(4·24) 

(4·25) 

Of course, 5 given in Eq. (4·25) satisfies 5*=5. A possible solution of Eq. (4·24) and 

its complex conjugate is given by 

(for ni>nJ 

(for ni< nj) (4·26) 

Here, the index of the canonical variables Dm and Dm *, m , is defined by the ordered 

pair of the single-particle states such as denoted i > j if ni> nj. From the solution 

(4·26), we can see that Zij for every combination (i, j) except ni= n/Aij) can be 

expressed as function of Di>j and DT>j and Zij for ni= n/aij) exists only in 5, which 

does not give any influence on the equation of motion. This means that the many-

body system under investigation can be described only in terms of Aij. Therefore, 

the number of the variables is determined by the ordered pairs of the single-particle 

states. With the use of the relations (4 ·18), (4·20) and (4· 21), we can determine Wij,k: 

nj(l- ni)(1-2nk)/(nj- n;) , 

(for ni=Fnj, 

Wij,k= 1-nk, (for ni=Fnj, 

-nk, (for ni=Fnj, 

(1-2nk)/2. (for ni=nj) 

Then, we have 

ni=Fnk, nj=Fnk) 

ni=nk) 

nj=nk) 

(4·27) 

(4·28a) 

(4·28b) 

Now, it is possible to express the Hamiltonian in terms of the canonical variables. 

We first give the expression for (c;*cJc: 

+ni(1-nJwij,k+n/1-ni)wij,k-]ZikZkj+···. (for ni=Fnj) (4·29b) 

Substituting the relation (4·23) into Eqs. (4·29), we have 

(for ni=nJ 

(4·30a) 
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(ct*cJc=(ni- nJAu 

+ nk)-(l- n;)(l- rij)nk]AikAkj+ .... (for ni*nj) 
k 

(4·30b) 

It should be noted that the quantity (ct*Cj)c, in terms of which the Hamiltonian H is 

expressed, does not contain the quantity au (Zij for ni= nj). Therefore, the 

Hamiltonian can be expressed only in terms of the canonical variables introduced in 

Eq. (4·26): 

(4·31) 

With the use of Di>j and D!>j, the Hamiltonian is 

(4·32) 

We can see that the Hamiltonian (4·32) isof the familiar to the standard understand-

ing of the RP A. From the equation of motion for the above Hamiltonian, the TFRP A 

(C) equation is obtained and in the next section, we will give it explicitly. 

§ 5. Discussion 

First of all, we will show that the Hamiltonian H given in Eq. (4·32) can be 

rewri tten as 

Here, Xu is defined by 

Xij={J ni- nj , 

Jnj-niDj>i 

and satisfies the relations 

(for ni> nj) 

(for ni< nj) 

(5 ·1) 

(5·2) 

Here, [ , ]p denotes the Poisson bracket for Di>j and D!>j. We can see that, under 

the correspondence between the relations (3·6a) and (5·3), the Hamiltonian H corre-

sponds to the term Kx given in Eq. (3· 8a). Further, if we rewrite Eqs. (4·30) in terms 

of X, the quantities (Ci*Cj)C recover the same forms as those given in Eqs. (6·3) of 

Ref. 4). Of course, the properties of X given in Eq. (5·3) are also the same as those 

given in Eq. (6·1) of Ref. 4). 

The Hamilton equation of motion gives us the TFRP A (C) eigenvalue equation 

and it is of the same form as that given in Eq. (3·13a) for the case lJfk1 = rpkl=O. It is 

also equivalent to that given in Eq. (5·11) of Ref. 4). With the use of the notations 

shown in § 3, we can express H in the form 

H=Eo+ wnB!nB+n, 
n=1.2.··· . 

(5·4) 
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B * X I( - - ) +n - £... qij ij Ei Ej (J)n. (5·5) 
ij 

Here, (J)n is the positive n-th solution of Eq. (3 ·18) and N<+n) is given by Eq. (3·29). 

On the basis of the above result, let us compare the approach (C) with the 

approach (A) or (B). As one of the merits of the use of the thermo field dynamics 

formalism, we can find the following statement on page 2805 of Ref. 2), which is the 

original paper of the approach (A): This enlarged space provides us with the new 

possibility of supplying more variational parameters than those in the variational 

derivation of the TRPA equation. This statement is quite interesting, but, concern-

ing the construction of the RP A, the thermo field dynamics formalism does not realize 

this expectation. As was already mentioned, the approach (A) cannot give us the 

standard form of the RPA. The solution given in the approach (B) can be classified 

into two types: The first and the second solution are related with the frequencies (J)n 

and (Ea-Eb), respectively. The first is nothing but the solution in the TRPA equa-

tion. In some sense, the second corresponds to the single-particle excitation. There-

fore, the approach (B) does not lead us to the solution with new correlations which 

do not exist in the TRPA equation. Further, in the approach (C), only the firsttype 

solution of the approach (B) is obtained. Therefore, the approach (C) also cannot 

lead us to the solution with the new correlations. 

From the above statement, we must note the existence of the second type solution 

in the approach (B). In order to investigate the meaning of the solution, here, we will 

recapitulate the RPA at the pure state limit where we have ni=O or 1. The former 

and the latter correspond to the single-particle and the single-hole states, respectively, 

which are denoted by the notations (p, p', p") and (h, h', h"), respectively. The crea-

tion and the annihilation operators of the particle and the hole are defined by 

_ {lip, 
Gi= b

h
*, { 

- * .*= ap , 
G, b- * 

h . 

(for i=p) 

(for i=h) 

Further, we introduce the following operators: 

(5'6) 

(5·7) 

With the use of the above operators, the Hamiltonian (2·1) can be rewritten as 

fj =Eoo+ 2:: Epo B pp - 2::EhO Bhh - x/2' AhP) 
p h Ph . 

(5'8) 

(5·8a) 

(5·8b) 

The above is the solution of the conventional Hartree equation. If we pick up the 
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linear terms for AIp, A hP , Epp' and Ehh', the equations of motion for the above 

operators are approximately given by 

[H, Ath]=(CpO-ChO)A%p- XqPh qp'h,(A}p'+ Ah,p') 
P'h' 

[H, 

[H, 

(5·9a) 

(5·9b) 

(5·10a) 

(5·10b) 

Concerning the above equations, there exist two interpretations for the lineariza· 

tion for the operators AhP, Epp' and E hh,. One is the following: Regarding the 

operators (5·7) as independent of each other, Eqs. (5·9)· and (5·10) are funda-

mental in the RP A. In this case, from Eqs. (5·10), we can get the solutions with the 

single-particle exicitations. Further, from Eqs. (5·9), we obtain the well-known RPA 

frequencies. However, in the boson expansion theory, it is questionable to regard 

Epp' and Ehh' as independent of A hP and AIp. In the first order expansion, A hP and AIp 

are regarded as boson operators AhP and AIp. The operators Bpp' and can be 

expressed in the forms Epp'= and Bhh'= Therefore, Epp' and 

Ehh, are quadratic in the bosons. In this sense, the equations of motion (2·9) contain 

non-linear terms, which are linear for Ep'p" and Eh'h". Therefore, for the lineariza-

tion, such terms should be rejected from Eqs. (5·9). Further, Eqs. (5·10) are quadratic 

with respect to the bosons and we can pick up the other quadratic terms from the 

exact equation of motion for Epp' and E hh,. This means that Eqs. (5·10) are not 

consistent to the order of the approximation. Therefore, they should not be included 

in the set of equations in the RPA. Further, on the basis of Eqs. (5·9) and (5·10), it 

may be impossible to investigate the higher order effects systematically. If we start 

only from Eqs. (5·9), no trouble arises under the boson expansion. From the above-

mentioned reason, the RP A at the pure state limit should be restricted to the forms 

(5·9) with Bpp'=Ehh'=O. 

Now, we will go back to our starting problem. As was shown in § 3, the TFRPA 

(B) equation contains the solution which gives us the excitation energy (ca - Cb). At 

the pure state limit, its value is reduced to (CpO-ChO), which cannot be accepted in the 

RP A at the pure'state limit. This means that such solutions should be rejected from 

those of the TFRP A equation. The approach (C) does not contain such solutions and 

all solutions are reduced to those given under the condition Bpp'=Ehh,=O at the pure 

state limit. In this sense, we can conclude that, in the thermo field dynamics for-

malism, the constraints introduced in the approach (C) play an essential role for 

rejecting the solution which does not have any physical meaning. In contrast to the 

above case, the approaches (A) and (B) do not contain such constraints and the 
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variables Cij and CJi (ni=nJ are independent of the others and this fact leads to the 

trouble discussed in this paper. Further, we again remark that the TFRPA (C) 

equation coincides with that based on the use of the Liouville-von Neumann equation 

by the present authors 0. P. and C. F.).7) In conclusion, in spite of an interesting 

approach, the thermo field dynamics formalism cannot give any extended TRP A 

equation under the standard form of the RP A. In this 'sense, the merit of the thermo 

field dynamics formalism may appear at the case where the approximation is higher 

than that of the TFRP A. In this paper, we have shown only the expressions up to the 

quadratic order terms. In the subsequent paper, under careful investigation on the 

constraints, we will give a method which makes possible to calculate straightforward-

ly the terms with any order. 
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