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Abstract The principle of least information is used to 
derive the inequality between the arithmetic and the 
geometric mean. Some important variational results in 
quantum statistical mechanics (Peierls and Bogolyubov 
inequalities) are pedagogically reviewed. Emphasis is put on 
the distinction between  mixed states describing metastable 
and stable equilibrium. 

1. Introduction 
The  most  pursued  but  nevertheless still unachieved 
project  in  statistical  physics  has  been  the  establish- 
ment  of  its  compatibility  with  classical or quantum 
mechanics.  The  ergodic  theorem.  which is often  in- 
voked  in  this  context, is not  universally  valid.  In  fact, 
the  statement  that all points  of  the  microcanonical 
surface  are  equally  accessible, is verified  neither  in the 
trivial  case  of  a  perfect  gas nor for  a  large  number  of 
more  realistic  systems.  Furthermore,  ergodicity  is  not 
sufficient to  guarantee  the  occurrence  of  irreversible 
phenomena,  the  stronger  concept  of ‘mixing’  being 
required. 

Some  authors (e.g. Katz  1967,  Landsberg  1978b) 
therefore  prefer  an  axiomatic  approach  to  statistical 
mechanics,  and find it useful  to  resort  to  the  language 
of  information  theory.  The  equivalence  of  the  results 
arising  from  the  principle  of  least  information  with 
those  of  the  Gibbs-Einstein  ensemble  theory  does 
assure  the  connection with the  known  phenomenology. 

We  present in  this  article a scheme  for  the 
construction  of  the  canonical  density  matrix  along 
axiomatic  lines,  having  in  mind  those  students  who 
feel uneasy with  the  microcanonical  ensemble  (we 
refer  the  reader  to  textbooks  like  Katz  (1967)  and 
Landsberg  (1978b)).  Realistic  systems  are  never 
perfectly  isolated so that it  is  meaningful  to  start  from 
the  concept  of  least  information  implied  by a complex 
though  weak  external  perturbation. Our construction 
consists  in  a  two-step  minimisation  of  a well defined 
functional  of  the  density  matrix D, which is related  to 
the  information.  The  two  steps are as follow. 

(i) Minimisation  with  respect  to  the  eigenvectors  of 

Resume On use le principe de la moindre information pour 
deriver I‘inequalite entre les moyennes arithmetique et 
geometrique. Quelques resultats importants dans le cadre de 
la mecanique statistique quantique (inequalites de Peierls et 
de Bogolyubov) sont revus avec un but pedagogique. On met 
l‘accent sur la distinction entre etats de melange qui 
decrivent l’equilibre metastable et stable. 

D. keeping  the  _eigenvalues  fixed.  This m_eans that we 
try  to  replace D by  a  different  matrix  D’  which  has 
the  same  eigenvalues  as D but  different  eigenvectors: 
Dim) = ~ , l m ) ,  Dflm‘) = ~ , , l m ‘ ) ,  im) + lm’), We  t ry   to  
optimise  our  functional  with  respect  to {lm’)}. 

(ii) Minimisation  with  respect  to  the  eigenvalues  of 
D, keeping  fixed  the  eigenvectors pLeviously deter- 
mined. Now we  replace D by  a  matrix DLwith the  same 
Ggenvectors  but  different  eigenvalues:  Dim) =P,,jm), 
D’(m) =P’,(m), P, +P‘,. We  try  to  optimise our 
functional  with  respect  to {P;). 

If  minimisation (i) alone is performed  and  a 
convenient D is chosen,  the  inequality  between  the 
arithmetic  and  thcgeometric  means is obtained. 

If  we compel D to  be  diagonal in some  prescribed 
basis  and  minimise  our  functional  with  respect  to  the 
eigenvalues  of D (step (ii)), the  Peierls  inequality is 
obtaine!. If_the eamiltonian is written  as  a  sum of two 
terms, H = H I + H*, and  the   f ip t iona l  is eva!uat_ed for 
a  convenient  density  matrix D satisfying [D ,, Hi ] = 
0, the  Bogolyubov  inequality  results. 

Our formalism  is  appropriate to stress  the  im- 
portant  distinction  between  thermal  equilibrium,  which 
corresponds  to  the fulfilment of (i) and (ii), and 
weaker  forms  of  equilibrium  such  as  the  kind  of  meta- 
stable  equilibrium  implied  by  minimisation (i) alone. 

In 5 2 ,  we  present  the  two-stage  minimisation  of  the 
information,  in 5 3 we  extract  some  particular  results, 
and in 5 4 we  discuss  the  differences  between  the 
states,  which we have  asociated  with  stable  and  meta- 
stable  equilibrium.  The  conclusions  are  summarised 
in the  last  section. 
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2. Least information 
As usual,  we  accept  the following postulates: 

( l )  The  information  about  the  state  of  a  complex 
quantal  system-is  contained in an  hermitian  positive- 
definite matrix D, which  has  trace  one: 

T r   D =  1. (2.1) 

The  connection with a  macroscppic  measurement 0, 
corresponding  to  an  observable 0, is made  through  the 
relation 

0 = Tr(0D). (2.2) 

(2) The  information is represented  by  the  functional 

I [D]=Tr (DlogD) ,  (2.3) 

this  choice relying on physical  considerations.  The 
state of thermal  equilibrium  corresponds  to  the  least 
information (or maximal  entropy,  the  entropy being 
defined as  the  symmetric  of  the  information)  com- 
patible with imposed  constraints.  It is clear  that no 
new physics is generated  just  by giving  new names  to 
old concepts,  such  as,  for  instance,  talking  about 
information  instead of entropy.  Nevertheless, we think 
that  the  word  ‘information’  may be of some  peda- 
gogical utility. 

Suppose  that  the  energy _E=Tr(HD) of a  system 
ruled  by  the  Hamiltonian  H is kept fixed. The  in- 
formation (2.3) should  therefore be_ minimised with 
respect  to all possible  variations of D  which  preserve 
the  energy. We  are  going  to  look  for  the  minimum of 

F[D]=Z[D] +pE[D ]  

=Tr(D log D) +pTr(DH) (2.4) 

where p E P is a  Lagrange multiplier. It  is  clear  that if 
we  associate /3 wiih  the  inverse  absolute  temperature, 
the  functional F [ D ]  is proportional  to  the  Helmholtz 
free  energy  of  thermodynamics. 

The  minimisation of (2.4) is carried  out in two 
stages,  as  indicated in the  introduction. 
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with D‘, D E .d? and I I D -  D l 1  < E ,  with E a  positive 
infinitesimal quantity. If Do E I is  the  solution  we a-re 
looking  for,  then all matrices  unitarily  equivalent to Do 
belong  also  to c d? : 

D=UDoUt=exp(   -&Do exp(iS) (2.7) 
with S an  arbitrary  hermitian  operator.  Inserting (2.7) 
into (2.6) we obtain 

Tr([Do, 6S]H)=Tr([H, D0]6S)=0. (2.8) 

The  arbitrariness  of 8S leads  to  the  stationary  con- 
dition: 

^ ^  - 

[H, D o ]  = 0. (2.9) 

The  states D o  which  satisfy (2.9) are  called  stationary 
since  they do  not evolve in time. 

From  the  commutation  relation (2.9), it follows that 
there is at  least  one  complete  and  orthonormal set of 
common  eigenvectors of H  and Do, which we denote 

Him) =Emim)  E l < E 2 < E , < , . ,  

DoIm)=Pmlm). (2.10) 

In  order  to  ensure  that  the  extremum  thus  found is a 

pTr(DH)>/3Tr(DoH) (2.1 1 )  

for all D E This  inequality  may be written.  up  to 
second  order in S. as 

- i P T r ( [ S ,  [S, Do]]fi)>O. (2.12) 

The  trace is easily evaluated,  using  the  basis of (2. lo), 
yielding 

~/3{Tr(SDoSH)-Tr(S’DoH)} 

by i lm)): 

minimum. we require  furthermore  that 

=+PC I S m n l ’ ( P n - P m ) E m  
mn 

= i P x  Is,,(’(P,-Pm)(Ern-E,)>,O (2.13) 
m“ 

with S,,,, = (mlSjn). 

following cases: 
The  inequality (2.13) is fulfilled in one of the 

p>O and (Pn-Pm)(Em-En)>O (2.14) 
or 

p<O and (Pn-Pm)(Em-En)<O. (2.15) 

The first case  means  that higher P, values  correspond 
to  lower  energies E,,,. The  second  case, with  higher P, 
corresponding  to  higher  energies E,, may  only  occur 
if the  energy  spectrum is bounded  from  above,  as  a 
consequence  of  the  normalisation  condition (2.1). We 
can  therefore  have  equilibrium  (stationarity)  at  nega- 
tive temperatures in such  physical  systems  (see e.g. 
Landsberg 1978b). It is well known  that  nuclear 
and  atomic  spin  systems  can  be  prepared  in  negative 
temperature  states. 

The  states, defined by (2.9) and (2.14), were  called 

(i) Minimisation  with respect to the  eigenvectors of 6 
w e  assume  a given discrete  spectrum of eigenvalues  of 
D, {P,; m= 1,  2 , .  . .}, and  minimise (2.4) within the 
set 

L I = { D : s p e c t r u m o f D = { P m ; m = 1 , 2 ,  . . . } ) .  
The  information (2.3) is  unaffected  by  tkis  process 
since it depends  only on the  eigenvalues of D: 

I [Dl   =I [ (P , ) ]  =x Pm log P,. (2.5) 
m 

One is only  faced with the  task of minimising Tr(bH) 
in -4. This  problem  is  similar  to  the  Ritz  variational 
principle of quantum  mechanics. A necessary  con- 
dition is clearly  (with /3 # 0) 

6 ,  Tr(DA)=O. (2.6) 
The  variation i_ndicated by performe$ for  a fix_ed 
spectrum of D, i.e. 6, Tr(DH)=  Tr(D‘H)-Tr(DH), 
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‘passive  states’ by Pusz  and  Woronovicz  (1978) (see 
also  Lenard  1978). A system  prepared in some  passive 
state  has  the  property  of being able  to receive energy 
from  the  exterior. In fact,  on  the  basis  of  condition 
(2.14) it has been proved  (Pusz  and  Woronovicz  1978, 
Lenard  1978)  that if an  external  perturbation, 
described by an  hermitian  time-dependent  operator, is 
activated  during  a  restricted  amount of time in a finite 
quantal  system,  then  the  system  gains  energy  from  the 
outside.  The  name  ’passive  states’ is suggestive,  since a 
thermally  isolated  system  prepared in such  a  state is 
ready  to  accept  energy  from  the  surroundings, if the 
external  conditions  are  changed.  Work is therefore 
done on the  system  and  not by the  system. On the 
contrary,  states defined by (2.9)  and (2.15) do  not  have 
this  property, being ready  to give energy  away,  under 
modification of the  external  conditions. 

(ii) Minimisation with respect to the eigencalues of 6 
In this  stage we keep fixed the  eigenvectors,  which 
have been found in stage (i), and  vary with respect 
to  the eigenvalues, We  are  therefore  searching  for 
5 minjnum  of   F[D] in the  family of passive  states 
Do=D~[{P , i ]=EmIm)_P , (ml .  each  one  bslonging  to 
a  different  set = {Do:  spectrum of DO = { P , } } .  
We  express  the  variational  problem  by 

6 ,F  [ DO] = 0, (2.16) 

where_ 6, denqtes a vacation with _respect to  the PT, i.e. 
62F[Do]=F[Db]-F[D~],   wi thJDbTP’,) lm)=(Do- 
P,)Im) = 0 ,  m= 1 , 2 . .  . . , and IIDb - Doll< E .  

Using  the  common  eigenvectors  of Do and H, the 
functional (2.4) may  be  written  as 

F [ D o ]  = 2 (P, log Pm + PPmE,). (2.17) 

Incorporating  the  normalisation  (2.1)  as  a  subsidiary 
condition,  associated with the  Lagrange multiplier a. 
the  variational  problem is expressed  by 

m 

leading  to 

P, = exp(a - 1) exp( - P E m ) .  (2.19) 
It is straightforward  to verify that  the  Lagrange multi. 
plier a is given by 

a= 1  -log 1 exp(-PE,)=  1  -log z (2.20) 
m 

so that  (2.19)  reads 

P,=z” exp(-PE,,,) (2.21) 

where 

Z =  1 exp(-PE,,,), 
m 

These  values  are  alwzys positive, as  required  by  the 
positive definiteness of  D, and  satisfy  the  requirements 

(2.14)  or  (2.15).  The  second  derivative of (2.17) yields 

ensuring  the  stability of the  minimum.  It  may easily 
be verified that  (2.21)  corresponds  to  an  absolute 
minimum of (2.4). 

The  set of eigenvalues  (2.21)  characterise  the  state 
of thermal  equilibrium: 

Do,,,, = 1 1m)Z” exp(-PE,) < m l .  (2.23) 

Note  that  the  variational  procedure (ii) has-defined a 
mapping  (2.21) hetween the  eigenvalues of D and  the 
eigenvalues of H. If the  eigenvalues of H are  de- 
generate, the_ stage- (i) alone  does  not  necessarily 
ensure  that D =  f ( H ) ,  with f a  non-increasing  func- 
tional (we may  have P, #P,, while E,,, =En) ,  but 
the whole variational  method implies the  existence  of 
such  a  functional  relationship,  which is called  ‘struc- 
tural stability’ by  Lenard  (1978). 

In quantum  statistical  mechanics.  ergodicity is 
related to  the  non-degeneracy of the  energy  spectrum 
(Mello  and  Moshinsky  1972,  Bongaarts  and  Siskens 
1973,  1974), since. in contrast  to  integrable  systems, 
ergodic  systems  do  not  admit  other  invariants  besides 
the  Hamiltonian. For an  ergodic  quantal  system,  the 
eigenvalues of the  density  matrix  associated with a 
passive  state  must  decrease with the  eigenenergies  as 
indicated by the  strict  inequality in (2.14). 

We  emphasise  that t_he exact  form  of  the  functional 
relationship  between D and H is a consequence of 
the definition adopted  for  information.  The  canonical 
density  matrix  (2.23)  follows  from  the  two-step  process 
of minimisation, so that 

FIDo.,,,] = -log Z < T r ( D  log D) +pTr(DH),  (2.24) 

the  equality  holding if and  only if 6 = 60, c a n .  

m 

3. Particular  results 
We  are  now free to insert in the  right-hand side (RHS) 
of (2.24)  any  trial  density  matrix,  obtaining  in  this  way 
particular  inequalities. 

3.1. Inequality between the arithmetic and geometric 
means 
This  inequality is achieved if the  eigenvectors of the 
density  matrix  are  optimised  but  the  eigenvalues  are 
not.  Let us consider  a  Hamiltonian  bounded  from 
above  (this  property is realistic for  a  spin  system), 
which  has  eigenvectors Im),  m = 1, . . . , N .  We insert 

v 

D= 2 Im)N-](rnI (3.1) 
m =  I 
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in the RHS of (2.24),  obtaining 
v \ 

-log 1 exp( - P E ~ )  < ( P / N )  1 E ,  - log N 
m =  I m =  I 

\ \ 

m -  I 

\ 

(3.2) 
m =  I 
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eigenvalues  are, i.e. we suppose  that  step (ii) is the  only 
one to be performed. 

We  assume  therefore  as  an ansatz for D 

D=E I*)F,(fil (3.6) 
m 

where 

P, ,=exp(-P(fiIHIfi))/~  exp(-P(GlRlG))  (3.7) 

with {IG)} a set of orthonormal  vectors. which does 
not need to be complete. From (2.24) it follows that 

m 

- l o g Z < - l o g C e x p ( - / 3 ( 6 ~ H ~ l i t ) )  (3.8) 
m 

or further 

Z>I e x p ( - P ( ~ ~ H ~ G ) ) .  (3.9) 

Equality  holds if and  only if the trial set  coincides with 
the  set of eigenvectors of the  Hamiltonian, being 
therefore  complete, i.e. ( ( r i i ) }  { Im)}. 

The  inequality (3.9) expresses  the Peierls theorem 
(Peierls  1938).  Various  proofs  appear in the  literature 
(e.g. Huang  1963,  Falk  1963,  Huber  1970)  but  the 
present  one  seems to be simpler. Moreover.  the 
canonical  density  matrix is here  not  assumed  to  be 
known  as in those  references,  but is derived  from first 
principles. 

m 

with am = exp( -PEm)  > 0. Equality in (3.2)  occurs if 
a_nd only if there  is full degeneracy  of  the  spectrum of 
H:Z"  exp(- /E,)=N".  

The  inequality  (3.2) is the  celebrated  inequality 
between  the  arithmetic  and  the  geometric  means, 
which is the  cornerstone  of  the  mathematical  theory of 
inequalities  (Bellman  and  Beckenbach  1971). We  have 
derived it from  the  basic  postulates of quantum 
statistical  mechanics in a vein very similar  to  the  thermo- 
dynamic  proof of the  same  inequality  proposed  by 
Landsberg  (Landsberg  1978a). 

The  inequality  between  the  arithmetic  and  the  geo- 
metric  means  may  be  seen  as a very  particular  case of a 
complete  chain of inequalities  between  'generalised 
means'  (Landsberg  1980a, b). 

The  method we have  presented  may  also allow 
generalisations of inequalityj3.2).  For  that  purpose, let 
us consider-an ansatz for D, which is less restrictive 
than  (3.1): D=.Xmlm)Pm(mI. with the P, positive real 
numbers  such  that ZmPm = I .  Inserting  this  density 
matrix in (2.24) we obtain  a  generalisation of the 
inequality  between  the  arithmetic  and  the  geometric 
means: 

C exp(-PEm) 
m 

1 e x p ( - P E m ) > n  (eXp(-PEm)/Pm)Pm (3.4) 
m m 

or, with X, = exp( -pEm)/Pm > 0, 

1 X m P m  >R (3.5) 
m m 

This is one of the  inequalities  betwen  generalised 
means  discussed  by  Landsberg (1 980a, b). 

A further  extension of our  method,  in  order  to 
achieve  other  inequalities,  would  consist in measuring 
the  information with a functional different from  (2.3). 
Care  should  then  be  taken  when  establishing links  with 
physical  reality,  since  these  choices  are  not  compatible 
with all the  properties of entropy. 

3.2. Peierls  inequality 
To deduce  the  Peierls ineq_uality we consider  the  case 
where  the  eigenvectors of D are  not  optimised  but  the 

3.3. Bogolyuboc inequality 
Let us give an  example of a  trial  density  matrix  that 
obeys  neither  the  prescriptions  indicated in (i) nor in 
(ii), but  may  be useful as  an  approximative  tool. 

For-that  pufpose, we split the  Hamiltonian  into  two 
parts  H I and  H2 

H=H, + H 2 .  

We p m e  the  solution of_the diagonalisation  problem 
for H, is known, while H2 is to  be-considered  as  a 
perturbation. Le; us  choose  for D the  canonical 
density  matrix, D , ,  associated with the  Hamiltonian 

61 =exp(-PHI)/Tr  exp(-PH,).  (3.10) 

HI. 

Then,  inequality  (2.24)  becomes 

with 

F l [ D I l = T r ( D I  log D l ) + P T r ( D I  HI). (3.12) 
The  inequation  (3.11)  is  referred  to  as  the  Bogolyubov 
inequality or Peierls-Bogolyubov  inequality,  since it 
has  been  attributed  to N N Bogolyubov  by  Kvasnikov 
(1956).  The  demonstration we have  presented  avoids 
the  perturbative  treatment of Feynman  (Feynman 
1972). 

From  the  variational  procedure, it  follows that  the 
Peierls inequality  is  superior  to  the Bogolyub_ov one. If 
we have  at  our  disposal  the  eigenvectors  of H I ,  which 
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we-denote  by I r n , ) .  the  lowest  upper  bound  for 
F [  DO.ian] is provided by the Peierls theorem: 

- l o g Z < - I o g ~ e x p ( - P ( r n , I H t m l ) )  
n l  

4. Stable and metastable equilibrium 
We  emphasise  that  thermal  equilibrium  states  are 
passive  states  but  that  the  opposite is not  necessarily 
true.  Passive  states  may  be  considered  as  representing 
a  situation  of  equilibrium different from  the  stable 
thermal  equilibrium.  We  prefer  to call them  states of 
metastable  equilibrium,  for  reasons  which  may be- 
come  clear  from  the following arguments. 

In classical  thermodynamics,  metastable  states  are 
defined as  states  which exist during  a  time  interval  long 
enough  for  them  to be considered  macroscopic  states. 
having  measurable  properties like energy.  entropy,  etc. 
As a  result of some  small  perturbation,  they  decay 
irreversibly  into  states of thermal  equilibrium, which 
have lower Helmholtz free energy. 

The  passive  states  are  equilibrium  states in the  sense 
that  they  are  stable  against  any  unitary  transfor- 
mation. A system  prepared in an  equilibrium  state 
does  not evolve in  time, if the  dynamical  evolution is 
described  by  the Liouville-von Neumann  equation 

D = -i[H. D]  (4.1) 

where H is the  Hamiltonian  containing  the  inter- 
actions within the given system.  It is however  known 
that  the  entropy is a  constant of motion  for  a  system 
governed by equation  (4.1). If one  wishes  to  account 
for  the  increase of entropy  required  by  the  second 
law of thermodynamics,  one is left with two  alterna- 
tives: (1) to  modify  the definition of entropy  (this 
is the  reason  for  introducing  the  ‘coarse-grained’ 
entropy) or (2) to  accept  that  the  dynamics  are  not 
completely  described in equation  (4.1)  (the  master 
equation is meaningful in this  context). 

In non-isolated  systems,  external  fluctuations  are 
responsible  for  the  evolution  towards  thermal equi- 
librium.  These  residual  interactions with the sur- 
roundings  (a _heat bath.  for  instance), which are  not 
contained in H, will lead  from  the  neighbourhood of a 
passive  state  to  the  state of thermal  equilibrium.  The 
first type of equilibrium is therefore  short-term or 
metastable, while the  second is long-term or stable. 

It  should be pointed out  that  the  machinery of linear 
response  against  external known fields only  requires 
the  existence of a  passive  state, so that  one  may 
consider  oscillations (with real  frequencies  and 
described  by well defined boson  operators)  around 
metastable or stable  states.  The  persistence  of 
oscillations  around  metastable  states  depends on the 
comparison  of  the  period with the  time of relaxation 
towards  thermal  equilibrium. If the  period  is  much 

smaller  than  the  relaxation time, we may  consider 
quasi-stationary mixed states  oscillating  around  a 
stationary  solution. 

Recently,  the  question of excitation  around  thermal 
equilibrium  has been investigated in nuclear  and  solid- 
state  physics.  Evidence  has been found  for  dipolar 
motion in ‘compound nuclei‘, while modern  neutron- 
scattering  experiments  have revealed the  persistence of 
spin-waves  up  to  the  Curie  temperature.  We refer  the 
reader  to  the  literature  for  a  detailed  theoretical 
treatment of these  phenomena  (Providincia  and 
Fiolhais.  1985a,  b.  Brajczewska  et a1 1986). 

5 .  Conclusions 
We  have  proposed  a  pedagogical  approach  to  the 
theory of the  canonical  density  matrix,  consisting of a 
double  minimisation of the  free  energy with respect  to 
(i) the  eigenvectors  and (ii) the  eigenvalues of trial 
density  matrices. 

With  the  assumption of equal  eigenvalues  for  the  trial 
density  matrix,  minimisation (i) led to  the  inequality 
between  the  arithmetic  and  the  geometrical  means, 
which  may  be  seen  as  a  member of a chain of 
inequalities  between  generalised  means. On the  other 
hand.  the  Peierls  theorem  has  been  demonstrated on 
the  basis of the  minimisation (ii) within the  family of all 
density  matrices  which  admit  as  eigenvectors  a given 
orthonormal set. The  Bogolyujov  inequality  has been 
obtained with an ansatz for  D  which  corresponds  to 
the  minimisations  indicated in (i) and (ii), taking  some 
approximation  to  the  true  Hamiltonian. 

The  inequality  between  the  arithmetic  and  the 
geometric  means is an  example  of  the  intimate 
connection  between  the  principles of physics  and 
mathematics,  although  one  should  agree with 
Landsberg  (1980a)  that  the  physical  proofs  such  as  the 
one we have  presented  are  not  necessarily  more 
convincing or simpler  than  the  standard  ones. 

Passive  states  have  been  characterised by their 
stability  against  canonical  transformations  and their 
ability to receive energy  from  the  outside,  when  the 
external  conditions  are  changed.  Thermal  equilibrium 
states  have  been defined by  a  certain  functional 
dependence  of  the  density  matrix on the  Hamiltonian, 
being globally  stable.  Oscillating  states  may exist 
around  any  passive  state,  not  necessarily  states of 
thermal  equilibrium. 

We  comment, finally, that  for  classical  systems 
the  density  matrix  should  be  replaced  by  a  distribu- 
tion  function in phase  space.  Then,  concepts like 
eigenvalues  and  eigenvectors  are  lost, so that  the 
Peierls theorem  does  not  have  a  classical  translation. 
In  contrast,  the  Bogolyubov  inequality  does  have  a 
classical  counterpart  (Wehrl  1978). 
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