Biochimica et Biophysica Acta 1842 (2014) 2468-2478

journal homepage: www.elsevier.com/locate/bbadis

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

Mitochondrial apoptosis-inducing factor is involved in

@ CrossMark

doxorubicin-induced toxicity on H9c2 cardiomyoblasts

Ana C. Moreira *>!, Ana F. Branco *>!, Susana F. Sampaio *”!, Teresa Cunha-Oliveira ¢, Tatiana R. Martins *°,

Jon Holy €, Paulo J. Oliveira **, Vilma A. Sardio °

2 CNC — Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
b Department of Life Sciences, University of Coimbra, Portugal

¢ Department of Biomedical Sciences, University of Minnesota, Medical School-Duluth, Duluth, MN, USA

ARTICLE INFO ABSTRACT
Article history:
Received 30 October 2013

Received in revised form 19 September 2014
Accepted 26 September 2014
Available online 2 October 2014

Keywords:

Doxorubicin
Apoptosis-inducing factor
Apoptosis
Cardiomyoblast

The cardiotoxicity induced by the anti-cancer doxorubicin involves increased oxidative stress, disruption
of calcium homeostasis and activation of cardiomyocyte death. Nevertheless, antioxidants and caspase inhibitors
often show little efficacy in preventing cell death. We hypothesize that a caspase-independent cell death mechanism
with the release of the apoptosis-inducing factor from mitochondria is involved in doxorubicin toxicity. To test the
hypothesis, H9c2 cardiomyoblasts were used as model for cardiac cells. Our results demonstrate that z-VAD-fmk, a
pan-caspase inhibitor, does not prevent doxorubicin toxicity in this cell line. Doxorubicin treatment results in AIF
translocation to the nuclei, as confirmed by Western Blotting of cell fractions and confocal microscopy. Also,
doxorubicin treatment of H9c2 cardiomyoblasts resulted in the appearance of 50 kbp DNA fragments, a hallmark
of apoptosis-inducing factor nuclear effects. Apoptosis-inducing factor knockdown using a small-interfering RNA ap-
proach in H9¢2 cells resulted in a reduction of doxorubicin toxicity, including decreased p53 activation and poly-
ADP-ribose-polymerase cleavage. Among the proteases that could be responsible for apoptosis-inducing factor
cleavage, doxorubicin decreased calpain activity but increased cathepsin B activation, with inhibition of the latter
partly decreasing doxorubicin toxicity. Altogether, the results support that apoptosis-inducing factor release is in-
volved in doxorubicin-induced H9c2 cell death, which explains the limited ability of caspase inhibitors to prevent

toxicity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Doxorubicin (DOX) is an anthracycline widely used for the treatment
of different types of cancer [1]. The efficacy of DOX on tumor cells results
from different mechanisms, including its ability to inhibit nuclear DNA
replication [2-4] and its potential to generate oxygen radicals [5,6],
ultimately resulting in cell death. Despite its effectiveness, DOX
treatment often results in the development of chronic and cumulative
cardiotoxicity, manifested as congestive heart failure [7]. The progres-
sive and persistent character of DOX-induced cardiotoxicity can lead to
cardiovascular alterations decades after treatment [8-10]. Cardiomyo-
cyte apoptosis and consequent cell loss can be a mechanism by which
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DOX causes a deterioration of cardiac function, as described in different
biological systems [11], although the extension and mechanisms are still
unclear [7]. Both mitochondrial-dependent [12] and independent [13]
signaling have been described in the context of DOX-induced cardiac
cell death and the transcription factor p53 is apparently involved in
up-stream events that lead to mitochondrial activation of the apoptotic
pathway [14]. Despite several end-points for apoptosis are measured
in cells treated with DOX, the appearance of apoptotic/necrotic
cardiomyocytes, as characterized from a morphological point of view,
appears to be low when evaluated in post-mortem samples of cardiac
tissue from patients [15]. Nevertheless, confounding factors including
a peak of apoptotic induction in cardiac cells occurring early in the treat-
ment and thus not detected post-mortem [16] or masquerading fibrosis
[17] may occur. One interesting feature of DOX-induced cell death in
several systems is the fact that caspase-inhibitors are not fully protec-
tive, which has been confirmed by the fact that DOX-induced cell
death can follow caspase-independent signaling pathways [18].

The objective of this work was to find out if the apoptosis-inducing
factor (AIF) is released from mitochondria during DOX treatment and
whether it plays any relevant role in cell death signaling. AIF is a flavo-
protein consisting of three structural components: a FAD-binding
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domain, a NAD-binding domain and a C-terminal domain, which plays a
role in apoptosis. The AIF has NADH oxidase activity and is normally lo-
cated within the mitochondrial intermembrane space or loosely associ-
ated with the inner mitochondrial membrane [19,20]. The AIF mature
form (57 kDa) is released into the cytoplasm through rupture of the
outer membrane associated with the permeability transition [21] or
through pores formed by the pro-apoptotic Bcl-2 family members Bax,
Bak, and Bid [22]. Poly (ADP-ribose) polymerase-1 (PARP-1) is also in-
volved in AIF translocation from mitochondria to the nucleus [23,24],
triggering chromatin condensation and large-scale DNA fragmentation
in a caspase-independent mechanism. The fact that AIF apoptogenic
effects are not eliminated in the presence of the pan-caspase inhibitor
benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-
fmk) suggests that AIF signaling is independent of caspase activation
[12]. In order to test our hypothesis, the cardiomyoblast cell line
H9c2 was used in the present study. This cell line, derived from rat myo-
cardium, is widely recognized as an in vitro model to study DOX-induced
biochemical and morphological changes [12,25,26], as well as the ef-
fects of several potential protective compounds [27-29]. We have pre-
viously shown that DOX induces mitochondrial depolarization and
phosphatidylserine externalization [27], as well as activation of the
p53/Bax axis [14,30].

Previous results suggested the hypothesis that DOX cardiotoxicity
on H9c2 cardiomyoblasts involves AlF release: a) DOX generates oxida-
tive stress that promotes AIF proteolysis [6,14], b) DOX activates calpains
in cardiac cells [31,32], possibly as a result of calcium overloading [14]
and c) DOX-induced cell death is not completely inhibited by caspase
inhibitors, suggesting also the involvement of a caspase-independent
cell death [18].

Due to the clinical relevance of DOX as an effective anti-cancer agent,
a full understanding of how it induces cell damage and death are para-
mount to designing effective protective strategies to reduce its toxic
side effects on the cardiovascular system.

2. Materials and methods
2.1. Reagents

Dulbecco's modified Eagle's medium (DMEM), penicillin, strepto-
mycin, fetal bovine serum (FBS) and Trypsin were purchased from
Gibco-Invitrogen (Grand Island, NY, USA). Doxorubicin, dithiothreitol
(DTT), phenylmethanesulfonyl fluoride (PMSF), protease inhibitor cock-
tail (leupeptin, antipain, chymostatin, and pepstatin A), sulforhodamine
B (SRB) were obtained from Sigma (St. Louis, USA). Hoechst 33342,
tetramethylrhodamine methyl ester (TMRM), and Mitotracker Red
CMXROS were obtained from Invitrogen/Molecular Probes (Eugene,
OR, USA). Rabbit anti-AIF (1:1000), rabbit anti-GADPH (1:1000), rabbit
anti-COXIV (1:1000), rabbit anti-Lamin A/C and mouse anti-p53
(1:1000) were obtained from Cell Signaling (Danvers, MA, USA); rabbit
anti-PARP (1:1000) was purchased from Santa Cruz (Santa Cruz, CA,
USA). Secondary antibody Fluorescein (FITC) anti-Mouse IgG and
alkaline phosphatase (AP)-conjugated were purchased from Jackson
ImmunoResearch Laboratories, Inc. (Cambridgeshire, UK). Caspase
substrate (Ac-DEVD-pNA) was purchased from Calbiochem (San Diego,
CA, USA). z-VAD-fmk was obtained from Alexis (Farmingdale, NY,
USA) and ethidium bromide was obtained from Bio-Rad (Hercules, CA,
USA). Lipofectamine® 2000 Transfection Reagent was purchased from
Invitrogen (Carlsbad, CA, USA). Opti-MEM® I Reduced Serum Medium
was purchased from Gibco (Rockville, MD, USA). 5x siRNA buffer was
obtained from Dharmacon — Thermo Scientific (Waltham, MA, USA).
AIF siRNA (Rn_Pdcd8_1) was obtained from Qiagen (Germantown,
MD, USA). The MDL28170 inhibitor was kindly provided by Dr Inés
Aratjo from the University of Algarve, Portugal. The cathepsin B inhibitor
CA-074 Me was from Enzo Life Sciences (Farmingdale, NY, USA). DOX
was dissolved in milli-Q water at a stock solution of 25 mM.

2.2. Cell culture and treatments

The H9c2 cell line was purchased from American Tissue Type Collec-
tion (Manassas, VA; Catalog # CRL - 1446). Cells were cultured in
DMEM medium supplemented with 1.5 g/l sodium bicarbonate, 10%
fetal bovine serum, 100 U/ml of penicillin and 100 pg/ml of streptomy-
cin in 150 cm? tissue culture flasks at 37 °C in a humidified atmosphere
of 5% CO,. Cells were treated with 0.5 and 1 uM DOX for 6, 24 or 48 h,
according to the assay. These DOX concentrations are clinically relevant,
as they fall well within the concentrations of DOX found in the plasma of
patients undergoing DOX therapy [33]. The experiments performed in
the presence of z-VAD-fmk, the compound was added to the cells in a
concentration of 50 M, 1 h prior to DOX treatment. The calpain inhibi-
tor MDL28170 and the cathepsin B inhibitor CA-074 Me were added 30
or 90 min before DOX treatment, respectively, at a concentration of
10 M. For immunocytochemistry, cells were seeded on glass coverslips
at a density of 3.5 x 10 cells/ml in six well plates containing coverslips
(final volume of 2 ml per well). For sulforhodamine B assay, cells were
also seeded at 3.5 x 10* cells/ml in 24 well-plates at a final volume of
1 ml per well.

2.3. Cytotoxicity and cell density evaluation by sulforhodamine B (SRB)
assay

The sulforhodamine B (SRB) assay, a colorimetric method used for
cell density determination, is based on the measurement of cellular pro-
tein mass [34]. HIc2 cells (3.5 x 10% cells/ml) were seeded in 24 well-
plates and at specific time points, the incubation media was removed
and cells were fixed with ice-cold methanol containing 1% acetic acid
for at least 30 min. Cells were then incubated with 0.5% (wt/vol) SRB
dissolved in 1% acetic acid for 1 h at 37 °C. The unbound dye was
removed with 1% acetic acid solution. Dye bound to cell proteins was
extracted with 10 mM Tris-base solution, pH 10, and the optical density
determined at 540 nm. Results were expressed as a percentage of time
zero (first time point harvested after cell attachment, 24 h after seeding).

2.4. Metabolic cell viability assessment through the resazurin reduction
assay

H9c2 cells were seeded at a density of 87,500 cells/ml for 6 hour
treatments or at a density of 35,000 cells/ml for 24 and 48 hour treat-
ments in 96-well plates. After 24 h of cell attachment, H9c2 cells were
incubated for 6, 24 and 48 h with 0.5 and 1 pM DOX. At the end of the
treatment, the culture medium was removed and cells were incubated
for 40 min with 75 pl of culture medium supplemented with 10 pg/ml
resazurin. The amount of resazurin reduced to resorufin, indicative of
metabolic activity, was measured fluorimetrically with 570 nm exci-
tation and 600 nm emission in Biotek Cytation 3 reader (Biotek
Instruments, Winooski, VT, USA).

2.5. Collection of total, cytosolic, mitochondrial and nuclear extracts from
HO¢2 cells

To obtain total cellular extracts, H9c2 cells were harvested by
trypsinization after treatments and washed once with PBS. In order to
collect total cells (attached and floating dead cells), two centrifugation
steps were performed for 5 min at 1000 xg. The cellular pellet was re-
suspended in collecting buffer (20 mM HEPES/NaOH, pH 7.5, 250 mM
Sucrose, 10 mM KCl, 2 mM MgCl,, 1 mM EDTA) supplemented with
2 mM dithiothreitol (DTT), 100 pM phenylmethylsulfonyl fluoride
(PMSF) and a protease inhibitor cocktail (containing 1 pg/ml of
leupeptin, antipain, chymostatin and pepstatin A) and ruptured by 30
passages through a 27-gauge needle. The cell suspension was then
kept at —80 °C until used. For subcellular fractionation, cells were
harvested as described above and resuspended in homogenization buff-
er (250 mM sucrose, 20 mM K* Hepes pH 7.5, 10 mM KCl, 1.5 mM
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MgCl,, 0.1 mM EDTA, 1 mM EGTA) supplemented with 1 mM DTT,
100 uM PMSF and protease inhibitor cocktail (containing 1 pg/ml of
leupeptin, antipain, chymostatin and pepstatin A). Cells were incubated
in homogenization buffer for 15 min on ice. Cells were then transferred
to a pre-cooled tissue homogenizer and homogenized 30 times using a
tight pestle. The homogenized cells were centrifuged at 217 xg for
5 min at 4 °C. The pellet was discarded and the supernatant was centri-
fuged again at 14,000 xg for 15 min at 4 °C. The pellet, containing the
mitochondrial fraction was resuspended in 50 pl of homogenization
buffer. Mitochondrial fractions were stored at — 80 °C until used. For
cytosolic and nuclear extraction, the K266-100 Nuclear/Cytosol Frac-
tionation kit from Biovision (Milpitas, CA, USA) was used. Specific
protein markers for each fraction were tested to evaluate their purity.
Protein contents were determined using the Bradford assay with bovine
serum albumin as standard.

2.6. Western Blot analysis

After denaturation at 95 °C for 5 min in a Laemmli buffer (from
Bio-rad), equivalent amounts of proteins (25 pg) were separated by
electrophoresis in 8% or 12% SDS-polyacrylamide gels (SDS-PAGE) and
electrophoretically transferred to a polyvinylidene difluoride (PVDF)
membrane for 90 min at 100 V. After blocking membranes with 5%
milk in TBST (50 mM Tris-HCl, pH 8; 154 mM NaCl and 0.1% Tween
20) for 2 h at room temperature, membranes were incubated overnight
at 4 °C with the respective antibodies: rabbit anti-AIF (1:1000), rabbit
anti-GADPH (1:1000), rabbit anti-COXIV (1:1000), rabbit anti-Lamin
A/C (1:1000), mouse anti-p53 (1:1000) and rabbit anti-PARP (1:1000).
Membranes were washed and incubated with the secondary goat
anti-mouse IgG (1:2500) and goat anti-rabbit IgG (1:2500) antibodies.
Membranes were then incubated with the ECF detection system (GE
Healthcare, Piscataway, NJ) and imaged with Versa Doc imaging system
(Bio-Rad, Hercules, CA). Densities of each band were calculated with
Quantity One Software (Bio-Rad). Membranes were also stained with
Ponceau reagent from Bio-Rad (Hercules, CA, USA) to confirm equal
protein loading in each lane. This experimental strategy was preferred
over the use of housekeeping proteins (such as actin or other protein)
since their expression can be altered after DOX treatment.

2.7. Double fluorescence imaging of H9c2 cells with TMRM and Hoecshst
33342

H9c2 cells were treated as previously described in this section and
then incubated with TMRM™ (100 nM), Hoechst (1 pg/ul), 30 min at
37 °C in the dark. Cells were observed under a Zeiss LSM 510 Meta
confocal microscope. A lower concentration of TMRM* was maintained
in the media in order to avoid leakage from mitochondria. Images were
obtained through LSM Image Browser.

2.8. Immunocytochemistry

Cells were seeded on glass coverslips in 6-well plates, at a density of
35,000 cells/ml. Doxorubicin (0.5 uM and 1 pM) was incubated with
cells for 24 and 48 h. After the end of the treatment, cells were incubated
with Mitotracker Red (125 nM) for 30 min at 37 °C in the dark, washed
twice with cold PBS and fixed with 100% ice-cold methanol overnight at
— 20 °C. Cells were washed/rehydrated 3 times with PBST (PBS supple-
mented with 0.1% Tween-20) during 5 min. Cells were then incubated
with blocking solution (PBST supplemented with1% BSA) for 1 h at
room temperature. Cells were incubated with a primary antibody
(anti-AlF, 1:100 in blocking solution) overnight and stained with FITC-
secondary antibody (goat anti-mouse, 1:50 in blocking solution), sup-
plemented with 1 pl/ml of Hoechst 33342, during 2 h at room temper-
ature. Between incubations with the primary and secondary
antibodies, cells were rinsed 3 times with PBS-T during 5 min each. Cov-
erslips were mounted on glass slides. Cells were observed under a Zeiss

LSM 510Meta confocal microscope with the LSM Image Browser
software.

2.9. Caspase-3-like colorimetric activity assay

Total cellular extracts were collected by trypsinization and centri-
fuged twice at 1000 xg, 4 °C during 5 min. Floating cells were also col-
lected. The pellet was resuspended in collecting buffer (20 mM
HEPES/NaOH pH 7.5, 250 mM Sucrose, 10 mM KCl, 2 mM MgCl,,
1 mM EDTA) supplemented with 2 mM DTI, 100 pM
phenylmethylsulfonyl fluoride (PMSF) and a protease inhibitor cock-
tail, containing 1 pg/ml of leupeptin, antipain, chymostatin and
pepstatin A. Protein contents were determined by the Bradford
assay. To measure caspase 3-like activity, aliquots of cell extracts con-
taining 25 g of protein were incubated in the reaction buffer, contain-
ing 25 mM Hepes (pH = 7.5), 10% sucrose, 10 mM DTT, 0.1% CHAPS and
100 UM caspases substrate Ac-DEVD-pNA for 2 h at 37 °C. Caspases-like
activity was determined by following the detection of the chromophore
p-nitroanilide after cleavage from labeled substrate Ac-DEVD. The
method was calibrated with known concentrations of p-nitroanilide
(pNA) and the results are expressed as amount of pNA released (nM)/
g of protein.

2.10. Pulse field-gel electrophoresis

In order to detect large scale DNA fragmentation, Pulse Field-Gel
Electrophoresis (PFGE) was performed. Cells were harvested by
trypsinization and centrifuged. The pellet was washed once with ice
cold PBS containing 5 mM of EDTA (PBS/EDTA) and counted with a
hemocytometer. Suspension containing 2-3 x 10° cells was transferred
for anew 15 ml conical tube and centrifuged again. The supernatant was
removed and cells were mix with Low Gelling Temperature (LGT) em-
bedding solution (0.1 ml of 1 M Tris-HCl (pH 7.5), 2 ml of 0.5 M EDTA,
0.1 g of LGT agarose, 0.5% Triton-X 100 and 10 g/ml of RNAse). Immedi-
ately, the cell/agarose mix was transferred to plug mold and chilled at
4 °Cfor 10-20 min. The agarose chip was transferred to a 2 ml centrifuge
tube containing 1 ml of 10 mM Tris, pH7.5, 0.1 M EDTA, 0.2% Triton X-
100 and 10 | of 20 mg/ml proteinase K. The samples were incubated
overnight in a dry block at 50 °C. The agarose chip was washed in TBE
(40 mM Tris; 40 mM Boric Acid; 1 mM EDTA) for 3 times during
10 min each. One % agarose gel was then prepared and casted in TBE.
While the gel was polymerizing, the TBE running buffer was added to
PFGE apparatus and chips were loaded into wells, with PFGE markers
(0.1-200 kbp Sigma, St Louis, USA) being included as well. The wells
were then filled with LGT agarose and the running started after 10 min
with the following settings: initial time: 5 s; final time: 120 s; run time
24 h; voltage: 150 V (CHEF DR-II system, from Bio-Rad). At the end
of the run, agarose gel was stained with ethidium bromide during
30 min, washed and visualized under UV light.

2.11. siRNA-mediated knockdown of the AIF in H9c2 cells

In the day prior to transfection, cells were plated in 60 mm-diameter
plates at a density of 35,000 cells/mlin DMEM. Cells were approximate-
ly 60% confluent prior to transfection. On the day of transfection, cells
were incubated with AIF small interfering RNA (siRNA) (Qiagen, catalog
number SI03025379/Rn_Pdcd8_1, sequence: TTGGGTCGAAGGAGAGTA
GAA), with On TargetPlus scrambled negative control (OT4, scrambled
RNA) (Dharmacon, catalog number #11811994, sequence: UGGUUU
ACAUGUUUUCCUA) or with RNA buffer solution (negative control). In
one tube, 6.7 pl/plate of siRNA against AIF mRNA or OT4 mRNA were
diluted in Opti-MEM and siRNA buffer solution; in a separate tube,
6 pl/plate of Lipofectamine was diluted in 500 pl/plate of Opti-MEM.
Both tubes were incubated for 5 min at room temperature, following
which the two tubes (siRNA AIF with Lipofectamine or siRNA OT4
with Lipofectamine) were mixed together and incubated for another
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20 min at room temperature to allow for the formation of transfection
complexes. Plates were washed three times with PBS and filled with
1.5 ml of Opti-MEM. One milliliter aliquot of the solution was then
added to each plate and gently mixed to ensure uniform distribution.
The plates were then incubated at 37 °C humidified atmosphere con-
taining 5% CO, and 95% air for 5 h. Following this incubation, 2.5 ml of
DMEM was added. The media were again changed to fresh DMEM
after 24 h and cells were treated with DOX for the required experimental
protocol.

2.12. Lactate dehydrogenase (LDH) release assay

After incubation with DOX, the medium was collected from wells,
centrifuged at 18,000 xg (Eppendorf 5415C) during 10 min at 4 °C
and the supernatant stored in new microtube and kept at —80 °C. To
measure LDH enzymatic activity, the samples were incubated with a
pyruvate (Tris 81.3 mM, NaCl 203.3 mM, Pyruvate 9.76 mM) and
NADH-containing reaction media (Tris 81.3 mM, NaCl 203.3 nM,
NADH 0.244 mM) and readily read at 340 nm. Blanks were done in a
reaction media lacking pyruvate and the rate of absorbance decrease
was obtained. Values were presented as % of control.

2.13. Calpain activity assay

H9c2 cells were seeded at a density of 87,500 cells/ml for 6 h treat-
ments and at 35,000 cells/ml for 24 and 48 hour treatments, in 96-well
plates. After 24 h of cell attachment, H9c2 cells were incubated for 6, 24
and 48 h with 0.5 and 1 pM DOX. After the treatment, cells were lysed
with 0.9% Triton X-100. Protein contents were determined by the
Bradford method. The CalpainGLO luciferase detection reagent from
the Calpain Glo protease assay (Promega) was then added in a 1:1
proportion to the cellular extracts, incubated for 15 min and the
luminescence was detected in a Biotek Cytation 3 reader (Biotek
Instruments, Winooski, VT, USA).

2.14. Cathepsin activity assay

H9c2 cells were seeded at a density of 35,000 cells/ml concentration
in a total volume of 10 ml at 100 mm diameter dishes. After 48 h of cell
attachment, H9c2 cells were incubated for 24 h with 1 DOX. Following
the treatment, culture media was collected and was added 3 ml of
extraction buffer (PBS supplemented with 0.1 g/L of EDTA) to each
dish. Cells were then scraped and the cell suspension was collected
and added to the correspondent culture medium. The suspensions
were centrifuged at 340 xg rpm for 4 min, the pellet was collected
and washed with PBS and centrifuged again at 340 xg for 4 min. Pellets
were ressuspended in 200 pl of Lysis Buffer (50 mM HEPES pH 7.4,
100 mM Nadl, 0.1% (wt/vol) CHAPS, 0.1 mM EDTA and 10 mM DTT).
The cell suspensions were kept at — 80 °C until used. The protein con-
tent was quantified by the Bradford method. Aliquots of 50 pl of each
sample were incubated with 40 uM of z-Arg-Arg-N-methyl-coumarin
in Incubation Buffer (100 mM Sodium Acetate pH 5.5, 1 mM EDTA,
5 mM DTT and 0.1% Brij-35) at 37 °C for 20 min. After the incubation,
150 pl of Stopping Buffer (33 mM Sodium Acetate pH 4.3, 33 mM
Sodium Chloroacetate) were used to stop the enzymatic reaction.
Cathepsin-B like activity was determined by the detection of the N-
methyl-coumarin fluorimetrically with 360 nm excitation and 460 nm
emission. The assay was calibrated with known concentrations of
N-methyl-coumarin.

2.15. Statistical analysis

Data analysis was performed by using GraphPad Prism 6.0 program
(GraphPad Software, Inc., La Jolla, CA, USA) and data were expressed as
means + SEM for the number of experiments indicated in the legends of
the figures. Multiple comparisons were performed using one-way

analysis of variance (ANOVA) followed by Bonferroni multiple compar-
ison post-hoc test. Comparisons between two groups were performed
by using a Student's t-test. Significance was accepted when p
value < 0.05.

3. Results
3.1. Doxorubicin induces caspase-independent cell death

Caspase-dependent cell death has been reported to be involved in
the cardiotoxicity associated with DOX therapy [11,35]. To test whether
DOX-induced cell death is prevented by blocking caspase activity, z-
VAD-fmk, a synthetic peptide that irreversibly inhibits caspase activity
was used (Fig. 1). H9c2 cells were pre-incubated with 50 pM z-VAD-
fmk for 1 h, followed by treatment with 1 uM DOX for 48 h. The
decrease in H9c2 cell mass due to DOX-induced toxicity and the effect
of a non-toxic z-VAD-fmk concentration was analyzed through the
SRB dye-binding assay [34]. Our results demonstrate that z-VAD-fmk
did not inhibit DOX-induced toxicity on H9¢2 myoblasts (Fig. 1A),
confirming previous studies [36]. The lack of protection by z-VAD-fmk
on DOX toxicity was further confirmed using vital epifluorescence
microscopy, in cells incubated with the mitochondrial probe TMRM
and nuclear label Hoechst 33342 (Fig. 1B). The images obtained show
that 1 uM DOX caused mitochondrial depolarization and a decrease in
nuclear size, regardless of the presence of z-VAD-fmk, when incubated
for 48 h. In order to confirm whether z-VAD-fmk incubation leads
indeed to caspase inhibition, caspase-like activity was measured by
using a colorimetric assay (Fig. 1C). As previously reported, DOX in-
duced an increase in caspase-3-like activity in H9c2 myoblasts [14,27],
even after 48 h of treatment (Fig. 1C). However, caspase inhibition
by 50 uM z-VAD-fmk, when pre-incubated for 1 h before DOX treatment
did not prevent DOX-induced decreased cell mass (Fig. 1A and
B) although the same z-VAD-fmk concentration and treatment time
inhibited DOX-induced caspase 3-like activity increase, showing that
the inhibitor worked as expected. The results demonstrate that z-
VAD-fmk inhibits DOX-induced caspase 3 activation but not the loss of
cells (Fig. 1C).

3.2. Doxorubicin triggers large scale DNA fragmentation

Nuclear DNA fragmentation is a hallmark of apoptosis, generally
orchestrated by caspases and normally used as an end-point for pro-
grammed cell death [37]. In some cell types, internucleosomal cleavage
during apoptosis generates a characteristic 200 bp ladder; however, in
most cells, however, 50 kbp or larger fragments are generated, in
some instances preceding the subsequent formation of 200 bp frag-
ments. H9c2 cell death induced by a 24 hour treatment with 1 uM
DOX was not accompanied by 200 bp DNA laddering (data not
shown); therefore, pulse-field gel electrophoresis (PFGE) was
employed to test for large scale DNA cleavage. Treatment of H9c2 cells
with 0.5 and 1 pM DOX resulted in the appearance of 50 kbp DNA frag-
ments in H9¢2 cells after 24 h of treatment, and more markedly after
48 h (Fig. 2A), which suggests involvement of AIF nuclear translocation
[38].

3.3. Doxorubicin treatment results in AIF release and nuclear translocation

The inability of z-VAD-fmk to inhibit DOX-induced cell death, along
with the appearance of large-scale DNA fragmentation, raised the possi-
bility that AIF could be playing a determinant role in H9c2 responses
to DOX. Previous studies have shown that apoptotic insults resulting
in outer mitochondrial membrane permeabilization release AIF,
which is subsequently translocated to the nucleus and serves as a
pro-apoptotic stimulus [19]. To test whether AIF was released from
mitochondria and translocated to the nucleus after DOX treatment,
AIF content was evaluated in mitochondrial, cytosolic and nuclear



2472

A B

g 1254 Control

o

o

S 100

= 1M DOX

8 £ 75 _

= o

® O e}

£ Q s01 5

2 s * " ©

© 254

m

o

0 0-

50 uM _ + _ +
2-VAD,
x

C (o)

c Control 1M DOX A

'S 2000 ———— s

os * =%

a —

o 15004

g

=

£ 1000+ #

S ~

- & i3

2 1 oo

- ;: a

< .

2 W5 e
50 \M } . * = o
2-VAD, 3+

o
wn

A.C. Moreira et al. / Biochimica et Biophysica Acta 1842 (2014) 2468-2478

TMRM* Hoechst

Phase contrast

Fig. 1. Cytotoxicity of DOX is not completely prevented by the pan-caspase inhibitor z-VAD-fmk. The cytotoxicity of DOX on H9¢2 myoblasts was analyzed in the presence or absence of the
caspase inhibitor z-VAD-fmk by using the SRB technique (A) and vital epifluorescence microcopy (B). Arrows indicate nuclei with more condensed morphology after DOX treatment Panel
C shows that z-VAD-fmk prevents DOX-induced caspase-3 activation in H9c2 cardiomyoblasts. Data represent mean + SEM of 3-4 independent experiments, *p < 0.05 compared with
non-treated cells, *p < 0.05 compared with DOX-treated cells. Images in panel B are representative of 2 independent experiments. White bar represents 100 pm.

fractions by Western Blot and immunocytochemistry (Fig. 2B-F). After
48 hour treatment with 1 uM DOX, a decrease in the amount of AIF in
mitochondrial fractions (Fig. 3D), and an increase in the cytosolic
(Fig. 2E) and nuclear (Fig. 2F) fractions were observed. Whole cell ex-
tracts did not show any changes in total AIF content (Fig. 2C), indicating
that AIF subcellular location, but not its overall quantity, was altered by
DOX treatment. Three distinct markers were used to verify the purity of
each fraction (Supplementary Fig. S1). The complex IV subunit, COX IV
was used as mitochondrial marker, while glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and lamin A/C were assessed as cytosolic
and nuclear markers, respectively. The same proteins were present in
the respective fractions as loading controls.

The release of AIF to the cytosol and its translocation to the nucleus
was further confirmed by imunocytochemistry (Fig. 2B). In untreated
H9c2 myoblasts, AIF protein was mostly located in mitochondria, co-
localizing with the mitochondrial probe MitoTracker Red. However,
upon DOX treatment, AIF fluorescence lost its preferential mitochondrial
distribution, being detected in the nucleus after 48 hour treatment with
0.5 and 1 uM DOX.

3.4. AIF knockdown decreases doxorubicin-induced toxicity on H9c2 cells

The next experimental question regarded whether AIF downregula-
tion could decrease DOX toxicity in H9c2 cells. For this purpose, the
effects of DOX on naive untransfected H9c2 cells, control H9c2 cells
transfected with a non-target RNA (OT4), or H9¢c2 cells transfected
with small interfering RNA targeting AIF mRNA (siRNA AIF) were com-
pared. Using this knockdown protocol, AIF protein levels were reduced
to 10-20% of basal levels (Fig. 3A). Twenty-four hours after transfection,
cells were incubated with 1 uM of DOX for 24 and 48 h. Similar to previ-
ous experiments, a reduction in cell number - reflecting cell death — was
observed in naive and control OT4-transfected cells after treatment with
1 uM DOX for both 24 (data not shown) and 48 h (Fig. 3B). In contrast,
DOX-induced cell death was significantly inhibited in siRNA AIF

knockdown cells, as demonstrated by the SRB (Fig. 3B) and lactate
dehydrogenase (LDH) release assays (Fig. 3C). According to the SRB
assay, an increase in cell mass was observed after DOX treatment in
AIF knockdown cells, when compared with control and OT4-treated
cells (Fig. 3B). Supporting results were also observed by performing the
LDH release assay, where only AIF knockdown cells showed no significant
increase in LDH release after 1 uM DOX treatment for 48 h (Fig. 3C). Pre-
viously, we found that H9c2 cells treatment with DOX resulted in an up-
regulation of the transcription factor p53 [14]. We hypothesized at that
time that nuclear DOX accumulation results in DNA damage and p53 ac-
tivation, up-regulating Bax expression and causing its mitochondrial
translocation, with consequent activation of the intrinsic apoptosis path-
way [14]. When caspases are involved in cell death, PARP-1 cleavage and
inactivation by those proteins drives the cell towards a point of no return
[39]. Facing this, our next experimental question was whether AIF knock-
down would decrease the cellular contents on p53 and PARP cleaved
product, an 89 kDa protein fragment. Western Blotting was used to quan-
tify p53 and full-length/cleaved PARP protein after treatment with 1 uM
DOX for 48 h (Fig. 4). The results regarding p53 confirmed that DOX
causes an increased content in that transcription factor in both control
and OT4-treated cells. Interestingly, AIF knockdown decreased the effects
of DOX on p53 content.

As observed in Fig. 4, the band corresponding to PARP full length
(116 kDa) decreases upon DOX treatment (1 pM for 48 h) in all of the
three cellular groups tested, in opposition with the cleaved 89 kDa
form. However, and in agreement with previous results, the amount of
cleaved PARP was higher in control or OT4 transfected cells than in
AIF siRNA cells treated with DOX (Fig. 4C).

So far, the results suggest that DOX-induced cardiomyoblast cell
death is mediated by AIF release. Thus, we investigated which proteases
could be responsible for AIF cleavage, an initial step that would lead to
its release. Since DOX was previously shown to increase intracellular
calcium [14], and activate calpains in cardiac cells [31,32], we investigat-
ed the role of these calcium-activated proteases by studying the effect of
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Fig. 2. DOX induces large scale DNA fragmentation and AIF translocation from mitochondria to the nucleus. A) DNA fragmentation in 50 kbp occurs 48 h treatment with DOX in the H9c2
cell line. This phenotype of DNA cleavage is a hallmark of AlF-induced fragmentation. The image is representative of two independent experiments. B) Laser confocal scanning imaging
showing triple labeling with Hoechst 33342 (blue), immunostaining with AIF (green) and Mitotracker Red CMXROS (red) of untreated cells compared with cells treated with 0.5 pM
or 1 pM DOX during 48 h. The results confirm AIF translocation to the nucleus. Images are representative of three different cell preparations. White bar represents 100 pm. C-F) Western
Blot analysis of total, mitochondrial, cytosolic and nuclear extracts shows that (C) total AIF content does not change during the treatment; (D) treatment with DOX induces a decrease of
mitochondrial AIF content and an increase in cytosolic and nuclear AIF content (E, F, respectively). Ponceau staining, COX IV, GADPH and Lamin A/C show an equal loading amount of
protein in each lane. Graphs represent the densitometry analysis of AIF protein in each extract, expressed as % of control. Data represents mean + SEM of four independent experiments

*p < 0.05, when compared with control (no DOX added).

the inhibitor MDL28170 on metabolic cell viability in H9c2 cells (Fig. 5).
DOX significantly decreased metabolic cell viability after 24 and 48 h.
(Fig. 5A). However, despite the increase in basal metabolic viability
after 24 h and 48 h incubation with the inhibitor, no protection was
observed against DOX toxicity (Fig. 5A). In fact, DOX induced a decrease
in calpain activity after 24 and 48 h exposure (Fig. 5B), in agreement
with recent reports [40]. Thus, we investigated the role of cathepsin B,
which was previously shown to be activated by DOX in HeLa cells [41].
In our conditions, the cathepsin B inhibitor CA-074 Me partially pro-
tected against DOX toxicity (Fig. 5C), at a time point when DOX induced
an increase in cathepsin B activity (Fig. 5D). These results support the
idea that cathepsin B could be responsible by the cleavage of AIF that
precedes its release from the mitochondria. Cathepsin D activity was
not altered by DOX treatment (data not shown).

4. Discussion

Several mechanisms are proposed to explain the cardiotoxicity
induced by DOX, such as the generation of reactive oxygen species
[42], disruption of calcium homeostasis [43], disturbance of cardiac
mitochondrial bioenergetics [28], and activation of p53/Bax pathway
[14] followed by cell death through activation of caspase-dependent
signaling [11]. Cell death in DOX-treated cells may also result from

GATA-4 depletion [44], a transcriptional factor that regulates the
apoptotic pathway by activating the antiapoptotic gene Bcl-X; [45].
The use of caspase inhibitors to decrease DOX-induced cardiac damage
is often ineffective, suggesting that DOX-induced cardiac cell death may
occur through both caspase-independent and caspase-dependent
pathways [18].

Caspase-independent cell death pathways can involve the mito-
chondrial release of AIF, a flavoprotein with NADH oxidase activity,
located in the mitochondrial intermembrane space. The AIF was first
identified as a pro-apoptotic protein, inducing caspase-independent
cell death, involving chromatin condensation and large-scale DNA frag-
mentation [19]. It is noteworthy that the AIF is also involved in the
maintenance and maturation of mitochondrial respiratory complex I,
as well as peroxide scavenging activities [46], demonstrating a physio-
logical role for that protein. Despite this, the apparent viability in our
AIF siRNA H9c2 cell model was not altered (Fig. 3B). Regarding the
pro-apoptotic role of AIF, the basic mechanism involves its release
from the mitochondrial intermembrane space to the cytosol, followed
by nuclear translocation. Once in the nucleus, AIF binds to nuclear
DNA inducing chromatin condensation and large-scale DNA fragmenta-
tion. The nuclear effects resulting from AIF translocation require a direct
interaction between AIF and DNA [47]. Cytosolic AIF also promotes a
decrease in mitochondrial AV and facilitates release of cytochrome ¢
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Fig. 3. AIF downregulation protects HIc2 cells from DOX toxicity. The downregulation of AIF by using siRNA was confirmed by Western Blot as a decrease in the respective band (57 kDa).
A) The amount of total AIF present in control samples and in samples incubated with the non-target siRNA was equivalent. Ponceau staining shows an equal loading amount of protein in
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iments. *p < 0.05 vs control (no DOX added). C) Lactate dehydrogenase assay was used to evaluate the extension of cell necrosis. The method was based in measuring LDH activity in the
culture medium after DOX treatment (1 pM during 48 h). The graph represents LDH release, expressed as % of each control group. Data are expressed as mean + SEM of eight different

experiments. *p < 0.05 compared with the respective control.

and AIF from mitochondria, resulting in a positive feedback amplifica-
tion loop [19,48]. For its release from the mitochondrial intermembrane
space, AIF must be cleaved in a specific region by several proteases that
may access the mitochondrial intermembrane space during an apopto-
tic stimulus. It is known that oxidative stress renders the AIF more
susceptible to proteolytic cleavage by calpains [49)]. After cleavage, trun-
cated AIF (tAIF) is competent to execute caspase-independent apoptotic
action [50,51].

Despite the essential roles of calcium and oxidative stress in AIF
release from mitochondria, no study has reported the potential role of
AIF in the process of DOX-dependent cardiac cell death, although the
association between AIF and DOX-induced cell death has been

demonstrated in cancer cells. Kim et al. measured the release of cyto-
chrome c and AIF induced by the combination of N,N-dimethyl
phytosphingosine and DOX in a variant of HL-60 cells [52]. One of the
few studies that investigated the role of the AIF in a cardiac toxicity
model is the work by Bae et al. [53] in which chemical inhibition of cas-
pase activity results in a delayed release of AIF from mitochondria and
induction cell death.

Our objective was thus to investigate whether DOX toxicity involves
AIF release from mitochondria and its translocation to the nucleus in
H9c2 cardiomyoblasts, a model for cardiac cells. This mechanism would
preclude that at least an important component of DOX toxicity on this
cell model results from caspase-independent apoptotic signaling. By
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using Western Blotting and immunocytochemistry, AIF trafficking to the
nucleus was confirmed, followed by large-scale nuclear DNA damage. AIF
knockdown resulted in a decrease of DOX toxicity. The present work
used H9c2 cardiomyoblasts, a commercial cell line that has been used
as a model for cardiomyocytes in different studies investigating DOX tox-
icity [14,25-27,30]. The results obtained indicate that after 48 hour treat-
ment with 1 uM DOX, AIF is released from mitochondria and translocated
to the nuclei, where large scale 50 kbp DNA fragments were detected.
The evidence that AIF actively participates on DOX-induced cell death
was suggested by our silencing experiments. AIF silencing decreased
DOX toxicity, including the resulting over-expression of p53 protein.
This transcription factor has multiple roles within cells, including regula-
tion of metabolism [54] and downstream pathways linking DNA damage
and mitochondria-mediated cell death [55-57]. DOX toxicity is associat-
ed with redox-mediated p53 translocation to mitochondria, collaborating
in the permeabilization of the outer membrane [14,58]. Several stress
signals activate the p53 signaling pathway, including DNA damage,
which results in p53 acetylation, enhancing its transcriptional activi-
ty [59], besides increasing the activity of PARP-1, which may also contrib-
ute to AIF release from mitochondria [60]. Our results support the idea
that p53 over-expression after DOX treatment may also results from
AlF-induced DNA cleavage. The protection afforded by AIF knockdown
also resulted in decreased PARP cleavage, which is a caspase 3 down-
stream target. This fact confirms again that DOX toxicity also involves
caspase activation [14,27], although the action of these proteases are
not fundamental for DOX-induced cell death.

The mechanism by which AIF is released from mitochondria may be
initiated through AIF cleavage by cathepsin B. In fact, pre-treatment
with the cathepsin B inhibitor CA-074 Me partially protected H9c2
cells against DOX toxicity (Fig. 5C). However, it would be also expected
that MDL28170, which also inhibits cathepsin B [61], would protect
against DOX-induced loss of cell viability, which was not observed

under our conditions (Fig. 5). This could be due to the unselective in-
hibition of cathepsin B, calpain-1 and calpain-2, especially because
calpain-2 was reported to exert protective effects against DOX toxicity
[40].

An increase in cell mass after DOX treatment in AIF-knockout cells
was also observed. This result suggests that, besides leading to AIF
release from mitochondria, DOX toxicity may also result from a direct
interaction with AIF. In the absence of AIF, DOX treatment surprisingly
resulted in increased cell proliferation. Accordingly, it was previously
described that quinone compounds, including anti-cancer quinones,
may prevent the accumulation of the reduced form of AlF, and enhance
AlF-mediated apoptosis [62]. In addition, AIF may be responsible by the
bioreductive activation of anticancer quinones, and the potentially
harmful AIF-quinone interactions can be exacerbated in the presence
of oxidative stress [62]. In this work, we propose a working model in
which DOX toxicity causes mitochondrial ROS and loss of cytosolic
calcium homeostasis, which predisposes AIF to cleavage by proteases.
On the other hand, DOX direct effects on nuclear DNA result in damage
which activates PARP-1 and p53, both leading to outer mitochondrial
permeabilization and AIF (and cytochrome c) release. While cytochrome
c release results in the activation of caspase 9 and later caspase 3, AIF
translocates directly to the nuclei initiating a process of DNA cleavage
which further leads to increase p53 over-expression, contributing to a
positive feedback to increase mitochondrial outer membrane perme-
abilization (Fig. 6).

Two questions arise now. 1) Are DOX-induced AIF release and
downstream caspase-independent cell death selective to the heart and
2) is this phenomenon relevant for acute, chronic or delayed DOX cardi-
ac toxicity? As for the first question, although no experiments were
performed in other cell lines, we believe that this phenomenon may
occur in a much smaller scale in other tissues because of limited DOX ac-
cumulation in those tissues, as well as because of decreased DOX intra-
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following a nuclear translocation and consequent large scale DNA fragmentation and a caspase-independent apoptosis. AlF-induced DNA damage leads further to an increase in p53
over-expression and poly(ADP-ribose) polymerase-1 (PARP1) activation, contributing to a positive feedback to increase mitochondrial outer membrane permeabilization and AIF release

(more details in the Discussion section).

mitochondrial activation to a reactive semi-quinone, resulting from
both lower accumulation and decreased mitochondrial activity [7]. As
for the second question, the problem is actually more complex. The
loss of cardiac cells due to acute DOX treatments is likely to have a
role in chronic or delayed cardiac alterations because of two compo-
nents. One involves the loss of cardiomyocytes and replacement by
fibrotic tissue which may limit the pumping activity of the heart [63].
The second is particularly important in pediatric patients, involving
selective removal of cardiac progenitors following DOX treatment, con-
tributing to a weakening of cardiac responses to stress later in adult life
[64,65]. Since H9c2 cells are cardiomyoblasts, the results here described
have clinical relevance in this context, although more work must be
performed in other cardiac models, including through the use of in vivo
models.

In conclusion, the results shown here explain why anti-apoptotic
strategies are not useful per se to counteract DOX cardiotoxicity. Instead,
a multi-target strategy must be followed including the use of caspase
inhibitors and mitochondrial antioxidants, besides decreasing the accu-
mulation of DOX in non-target tissues such as the heart through liposo-
mal carriers [66].

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.09.015.
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