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Global optimization of energy and production in process industries:
a genetic algorithm application
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Abstract

The process industries exhibit an increasing need for efficient management of all the factors that can reduce their operating costs,
leading to the necessity for a global multi-objective optimization methodology that will enable the generation of optimum strategies,
fulfilling the required restrictions. In this paper, a genetic algorithm is developed and applied for the optimal assignment of all the
production sections in a particular mill in the kraft pulp and paper industry, in order to optimize energy the costs and production rate
changes. This system is intended to implement all programmed or forced maintenance shutdowns, as well as all the reductions
imposed in production rates. © 71999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Plants in the continuous production industries can be
described as groups of departments, each responsible for
some specific operations and separated by intermediate
buffers. The production of kraft pulp and paper is one of
such industries.

Consider the notation of Fig. 1, suggested in (Dourado
and Santos 1993), where buffer j, with level x;
(j=1, ..., m), receives the production from the depart-
ment i, working at rate u; (i = 1, ..., n) units, and delivers
the raw material to department i + 1, working at rate
U; 41 UNIts; b; ;11 u; 4+, units are consumed from buffer
j for each unit of production u;, ;. This work is based on
the case study of the flowsheet of Centro Fabril de Viana
da Portucel, represented in Fig. 5.

Pulp mills (and in general the continuous production
industry mills) are complex systems, where shutdowns
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and disturbances are propagated throughout the plant
and influence the whole mill. This may lead to mass and
energy losses due to transient incorrect chemical dosing,
and consequently to production losses by breakdowns in
the quality levels. The task of scheduling must minimize
these effects.

2. The production scheduling

The stock equation (1) represents the overall discrete
model for the production coordination, where B is the
mass balance matrix, and control vector u and state
vector x are the departments’ production rates and the
intermediate-level buffers, respectively. T is the discretiz-
ation interval, N is the number of discrete planning
intervals and k=0, ..., N — 1:

x(k+ 1) = x(k) + B-T-u(k). (1)
Both control u and state x are physically constrained by
0 < thmin (k) < u(k) < Umax (k) < Upax, 2
0 < Xmin (k) < X(k) < Ximax (k) < Xmax- )

In the flowsheet presented here there are three depart-
ments that exhibit some different behaviors from the rest,
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Fig. 1. Flowsheet example with two departments and one buffer.

and therefore require special attention: the water (collec-
tion and treatment) department, the auxiliary boiler and
the turbogenerator.

The water department produces filtered water for con-
sumption in the various mill departments, and so the
production rate is dependent on the rest of the mill. This
situation leads to a representation of the water produc-
tion (4), where FW is the filtered water production and
D, ... 1s the water balance matrix:

Fw :Dwater'u~ (4)

The task of the auxiliary boiler, together with the recov-
ery boiler, is to produce high-pressure steam (HPS) (the
recovery boiler also produces green liquor). The two
boilers must fulfil the requirements of HPS in the mill.
The mill also needs medium-pressure steam (M PS) and
low-pressure steam (LPS) in several sections, namely the
paper machine, the pulp mill, the evaporation, the caus-
ticizing, and the energy sector. Egs. (6) and (5) express the
relation between the input (HPS) and the output (M PS,
LPS, condensed water and electrical energy) in the turbo-
generator, where HPS, MPS, LPS and CW (condensed
water) are given in kg, and the electrical energy (EEpgnr)
is given in kW h:

EE vgne = (MPS-77.5 4+ LPS-117.5

0.7

178.0) ——
+CW178.0) . (5)
HPS = MPS + LPS + CW. (6)

By an analysis of the production values, the turbogener-
ator production rates are kept at the minimum to main-
tain the needed output flow of MPS and LPS . Therefore,
the flow of condensed water is as low as possible, and
a statistical analysis reveals a value of approximately
4.6% of the HPS consumed in the turbogenerator. The
high cost of the fuel consumed in the auxiliary boiler is
responsible for this situation (the organic combustible is
not enough to produce the steam). Consequently, the
auxiliary boiler production can be given by Eq. (7) where
HPS, 18 the total production of HPS and HPS,.,., is the
HPS produced in the recovery boiler:

HPSauxb = HPSlolal - HPSrecb~ (7)
The HPS,. can be given by Eq. (8), where HPS is

papm
the high-pressure steam consumption of the paper
machine, and HPS,pg,, 1S the HPS consumed in the

turbogenerator

HPStotal = HPStrbgnr + HPSpapm- (8)

As HPS pgnr €quals the sum of MPS, LPS and CW
produced in the turbogenerator (6), after some calcu-
lations HPS,..; is given by Eq. (9), where LPS,,,,, and
MPS,,. are, respectively, the low- and medium-pressure
steam consumption by the mass chain of the mill,
bi%e and b3j3% are the low- and medium-pressure specific
consumption by the auxiliary boiler, and HPS,,,, is the
high-pressure steam consumption by the paper machine:

Num

HPSuow = )
with
Num = [MPSpss + LPSmass — (b33 + b3i58) HPS ccr
1
+ HPS,.pm] 0954
Den =1 — ;-( auxb | bauxt).
0.954

The electrical energy production of the turbogenerator,
after the elimination of the condensed water, is given by
Eq. (10) where LPS,, and M PS,,, are described by Eqgs.
(11) and (12):

EE  pgnr = 70.017- M PS5 — 102.566° LPS, 1., (10)
LPSlolal = LPSmass + bil;’)fsb HPSauxb> (11)
MPStotal = MPSmass + b?\/}ll);g.HPSauxb' (12)

The electrical energy bought from the public power sys-
tem is computed by Eq. (13):

EEEDP = EElolal - EElrbgnr' (13)

The total electrical energy consumed in the mill must be
minimized by Eq. (14), where By is the energy balance
matrix:

EEtotal = BEETu (14)

3. Mathematical formulation

There are some issues that should be addressed in the
production scheduling, as stated in Leiviskd (1982) and in
Uronen (1981):

(1) the final production must be accomplished within the
planning time horizon, since delays in delivery times
lead to economic losses;

(2) the storage capacities should be used in order to
avoid over- and underflows and also to

(3) avoid production-rate changes, as these are respon-
sible for additional costs due to efficiency break-
downs in almost all departments;

(4) the maintenance shutdowns should be carefully plan-
ned so as to benefit the entire mill;

(5) the end of one schedule plan should be seen as the
beginning of the next one, and therefore the final
storage levels should be pre-determined;
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(6) some attention should be paid to the energy con-
sumption, since the pulp and paper industry is highly
energy-demanding.

The mathematical formulation must take account of
all the aspects mentioned above. From these, it is essen-
tial to distinguish between objectives and constraints.

From the above statements, it is seen that in this
problem two criteria are needed, given by Egs. (15) and
(16) where ch(k, i), as stated in Monteiro (1992), is the
production-rate change function (department i and in-
stant k) defined in Eq. (17):

N—-1

Objl =min Y {Bgy T u(k)}, (15)
k=0
N-1 n

Ob2=min ¥ Y ch(k, i), (16)
k=11i=1

1 <= u;(k) # u;(k — 1),
ch(k, i) = { (9 #wk =1 (17)
0<u;(k) = u;(k — 1).
The formulation will be completed by a constraint set
definition:

e the accomplishment of final production, during the
planning time horizon, must corroborate Eq. (18),
where X, Stands for the paper machine buffer level
and Ky,,, represents the finished paper needed:

Xmpap (N - 1) - xmpap(o) = Kfpap; (18)

 the planned maintenance shutdowns and the produc-
tion restrictions expressed by Eq. (2);

¢ the minimum and maximum safety limits of all storage
buffers, as stated in Eq. (3);

* the buffers’ final state, which should be pre-determined,
as in Eq. (19) where Xg;,.; represents the intended final
state of the buffers;

X(N) = Xtinal (19)

* the contracted electrical power, which is time variant,
should not be exceeded, as in Eq. (20) where P, (k) is the
contracted power limit:

EEgpp(k) < Pc(k). (20)

4. The genetic algorithm

The optimization of objectives (15) and (16) cannot
be achieved by traditional methods since it is a mixed
integer problem. However, since genetic algorithms are
able to solve mathematically ill-defined problems, they
are a tool of great potential. In this work a GA multicri-
teria approach is used, based on constraint-handling
techniques.

Several methods exist for handling constraints by gen-
etic algorithms in optimization problems. The technique
used here (Michalewicz, (1994) is based on preserving the

feasibility of solutions by using specialized operators that
are closed on the feasible part of the search space. These
operators (crossover and mutation) transform feasible
solutions into other feasible solutions. The basic idea
behind this method lies (i) in the elimination of the
equalities present in the constraint set and, (ii) in the use
of specific operators that guarantee that individuals are
kept inside the feasible space.

GAs have been used particularly in single-objective
problems; nevertheless, most of the practical applications
exhibit more than one objective to be attended to. In this
work, the Pareto ranking method is used in order to
properly select the next generation. This technique,
which makes use of the definition of Pareto optimality,
was first introduced by Goldberg (1989) and later re-
defined as a slightly different scheme in Fonseca and
Fleming (1993). As proposed by Fonseca, an individual’s
rank corresponds to the number of individuals in the
current population by which it is dominated; therefore,
the heavily dominated individuals are given a worse
chance of reproduction. This process ends with the fitness
assignment by interpolating from the best individual to
the worst, usually according to an exponential function,
but possibly also using other types. Here the function
expressed in Eq. (21) was used, where P is the rank of the
best individual, and 0 < ¢ < 1 is a constant:

c—1

=gt e {l P (21)

The crossover and mutation operators employed in this
algorithm were chosen from those found in the literature,
and which, by simulation, proved to be the set with the
best convergence time and with the best diversification in
the trade-off surface. The uniform crossover is based on
Syswerda (1989) and Spears and De Jong (1991), where,
at instant k, two vectors with dimension m, x¢ and x2,
exchange genes i with each other; that is, x¢ ? and x{ for
i=1,2, ..., m, with probability p. Fig. 2 represents this
Crossover.

The mutation phase is formed by a set of four strat-
egies: uniform, boundary, non-uniform (Michalewicz,
1994) and exchange mutations. Let C = (¢y, ..., ¢j, ..., C1)
be a chromosome of length [, and let ¢; € [a;, b;] be the
gene to which the mutation operator will be applied
resulting in gene cj; then in the uniform mutation c¢; is

<) > [ ]

x 2(2) )4 x 112(2)

<a(m) 7 <)

Fig. 2. Uniform crossover with probability p.
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a random value, according to a uniform probability dis-
tribution, from [a;, b;]. In the boundary mutation c¢; is
either a; or b;, with equal probability. In the non-
uniform mutation, if g, i1s the maximum number of
generations, ¢; is given by (22), where « € {0, 1} is a ran-
dom binary digit, A(k, y) = y-f(1 — k/gmax)’, B is a ran-
dom number from the interval [0,1], and b is
a parameter determining the dependence degree in the
number of generations

(22)

Ci

/_{ci—i-A(k,bi—ci)ccx:O,

ci—Ak,c; —a;)<=a=1.

Finally, in an exchange mutation, two consecutive
genes ¢; and ¢;+; are exchanged for each other. This last
type can be seen as a particular case of uniform mutation,
where interval [a;, b; ] is simply ¢;;; and [a;+1, b;+1] 18 ¢;.

The stochastic universal sampling is used in this work
since it is considered the standard algorithm for samp-
ling, which exhibits null distortion and minimum spread.
For the reinsertion the elected mechanism was the gen-
erational reproduction (Syswerda, 1991) where the whole
population is replaced in each generation.

The scheme of sharing was introduced in Goldberg
and Richardson (1987), known as fitness sharing, and its
main purpose is the distribution of the population in a set
of niches in the search space. Use of this procedure
eliminates the existence of similar individuals that would
lead to redundancy, enemy of diversity. Eq. (23) repres-
ents the shared fitness function, where nn; is the niche
number of individual i, as given in Eq. (24):

fi

fishare = (23)
nn;
nn; =Y Sh(d(i,j)). (24)

Function d(i, j) enables the computation of the distance
between individuals i and j, and represents the distance

1415~
] /14103

T T I T T T i T T T i T T T i T T T
0 20,000 40,000 60,000 80,000 100,000
Generation

between the vectors formed by all the objective functions
in the multicriteria problem. Sh(d) is the sharing function
as expressed by Eq. (25). 04uare represents the niche radius
which, as stated in Fonseca and Fleming (1993) can be
determined by Eq. (26), where n is the number of objec-
tives, D;; = M; — m; + Ospare» D2 = M; —m;, m and
M are the minimum and the maximum of all objectives
from the non-dominated set, Q = (d/ognare) ™ and
Oshare 1S @ positive real:

1 - Q =d < Oshare»
Sh(d) = 25
( ) {0 Cd > Oghare > ( )
" p,.—TI"_. D,
N'O_;,h;rle_nlfl 1i 1—[171 21=0. (26)

Oshare

Once the sharing scheme has been applied to the popula-
tion, the crossover between individuals belonging to dif-
ferent niches may result in descendants in any niche. The
mating restriction scheme (Deb and Goldberg, 1989)
involves the parameter ¢,,,,. which is quite similar to
Oshare- T he simplest mechanism using this approach is the
mating radius which chooses as the second progenitor an
individual from the mating pool at a distance less than
Omate from the first progenitor. If none are in this situ-
ation, then a random individual is chosen.

5. Application to the mill, and some simulation results

With the simplifications introduced in Section 2, three
out of the 10 mill departments can be determined sub-
sequently; therefore, the scheduling problem is formed by
seven departments. A discretization interval of 4 h is
used, in a planning horizon of 48 h, which leads to 84
system variables. Each chromosome is then coded as real
multiparameters, constructed from the concatenated
codes. The population is composed of 50 individuals, and
the initial ones are randomly generated feasible examples.

15.0 T T 7 i L i L i T T T i L

0 20,000 40,000 60,000

Generation

80,000 100,000

Fig. 3. Evolution of Obj1 and Obj2 across 100,000 generations.
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The initial and final buffer states are constrained to be
50% of their capacity and the final state for the finished
paper is to be 90% of capacity. A shutdown in the paper
mill is also imposed during the third discretization inter-
val, and a reduction to 30% in the causticizing must
occur during the second discretization interval. Due to

the limitations of the floating-point representation,
a change in a production rate (17) is considered only if it
is greater than 2% of the maximum.

Some simulation results are shown in Figs. 3-5. The
evolution of the best individual in the population across
100,000 generations is shown by Fig. 3. Fig. 4 depicts the

60
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1 1 T AL generation 100,000
56 @ 36| @ o
' 1 00 o o =
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1 o 34 @ QO
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S 504 o S 3| (S}
1 E @0 o -]
229
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46\ e 1 = ;
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Fig. 4. The population and the cumulative trade-off surface in generations 100, 10,000 and 100,000.
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Fig. 5. One solution from the trade-off surface in generation 100,000.
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population in three different generations as well as
the cumulative trade-off surface. Finally, Fig. 5 represents
the solution marked in Fig. 4, in generating 100,000,
being one of the possible solutions from the optimal
Pareto set. These results show optimistic prospects
for the potential of the GAs ability to solve this
problem.

6. Conclusions

The aim of this work is to contribute to the
development of an optimal scheduling system for the
mass and energy production, with an application to
a kraft pulp and paper mill. The dimensions of the
problem, its multiobjective characteristic, and the pres-
ence of a high-order constraint set preclude the use
of (only) traditional optimization techniques. The
Pareto ranking method, and a technique that preserves
the feasibility of the solutions, were used in a genetic
optimization framework. In agreement with other studies
(Santos, 1996), these methods and the genetic operators
mentioned above (crossover, mutation, sharing and mat-
ing restriction) were those that revealed the best conver-
gence time and the best diversification in the trade-off
surface.

If a non-linear component were present in the con-
straint set, the system could be adapted using the propo-
sal in Michalewicz and Nazhiyath (1995). In this way, the
technique presented here exhibits a flexibility that is not
achieved by traditional optimization methods. Further
work will be needed in order to improve the convergence
time, which is still the main drawback. Although
the literature shows several applications with reasonable
computational times in sequential architectures, it
could always be possible to go over to parallel technolo-
gies, not necessarily using multiprocessors, but using
existing resources such as personal computers and data
networks.
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