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Landau Damping and One-Body Dissipation in Nuclei
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In the framework of the theory of Fermi liguids, the walt formula describes a type of Lan-
dau damping of the collective motion. It is found that in this model the ratio between width
and energy of the ruclear giant resonances is of the order of 1. essentially independent of the
muitipolarity. This result, which is in contradiction with the experimental findings, is due to
the fact that the boundary is externally imposed. With the exception of the compression
modes, the Landau damping is not the appropriate process for describing the damping of the
jow-multipole giant resonances, being however very effective for deformations corresponding
to high multipolarities (a modified wall formula predicts overdamping to occur at £=7)
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1. INTRODUCTION

Following the experimental identification of new collective excitations in atomic
nuclei (giant resonances), their damping mechanism has received much attention in
the last years (see the reviews [ 1,27 and references therein). As the concept of
elementary excitations has a widespread usefulness in other fields of physics (e.g.,
helium, plasma, and solid state physics) we think that we may learn something
about nuclear dissipation from establishing analogies with the different many-body
systems where quantal collective motion has been observed. [t is a purpose of the
present paper to develop such a correspondence.

Only recently attempts have been undertaken to formulate a consistent
microscopic description of the width of nuclear excitations, with a result which in
some cases falls short, from the quantitative viewpoint. As the theoretical
understanding of damping is still embrionary, it is usual to resort to
phenomenological methods [3,4, 5]

The phenomenological approaches to nuclear friction may be divided in two
main types:

1. One-body dissipation/long-mean free path (wall formula)
2. Two-body dissipation/short-mean free path (viscosity).

The wall formula [6, 7, 8] has been introduced due to the recognition that a
theory based on a short-mean free path, like hydrodynamics, is not justified for the
nuclei. Surprising enough, the comparison with experiment of formulae 1 and 2 is in
favor of the latter [5].
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From the microscopic treatment it has become apparent that the main damping
mechanism for small amplitude collective motion is neither of type | nor 2, but is a
two-body dissipation adequate to systems with a long-mean free path. Similar
behavior is found in helium-3 [9] and in plasmas [ 10, 11].

In the theory of Fermi liquids [12] the damping of elementary collective
oscillations, like helium phonons, electronic plasmons, and lattice phonons, may
occur due to the {ollowing processes:

1. Landau damping [13].
2. Collision damping [14].

The first corresponds to the direct decay of the coherent ph excitation into a
separated 1p— 1 &, while the second corresponds to the decay into 2p 24 con-
figurations or processes of higher order (see Fig. 1). We will use the terminology of
Fermi liquids to refer to nuclear damping, as an alternative to the common
designations of one- and two-body dissipation.

In this work we are interested is ascertaining the eventual role of Landau damp-
ing in nuclear collective motion. We show that the wall formula describes processes
of the Landau damping type, in accordance with recent work by Yannouleas
[15,16]. Furthermore, we argue that Landau damping cannot be the main
mechanism in the damping of the observed electric giant resonances with mul-
tipolarity £=1, 2, and 3.

A simple analysis of the phase space available for decay shows that small Landau
damping at low temperatures is characterized by a proportionality between the
width and the energy of the excitation, while the width corresponding to small
collision damping depends quadratically on the energy, for the same range of tem-
peratures. The wall formula when applied to the giant resonances gives indeed a
linear dependence between width and energy, but the rate of damping in this model
is too high. An analogy with the Landau damping present in the jellium model
points out that the unrealistic assumption in the wall formula lies in the rigid
character of the wall, which is strange to the particles. The incorporation of
self-consistency in the wall formula leads to a reduction of damping for the low
multipoles and an increase for the multipoles 4z 6.

(o} (b}

FiG. 1. Feynman diagrams corresponding to a) Landau damping and b) collision damping {with
one of the final ph-states correlated ).
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The Landau damping is not able to account for the width of the giant resonances
with =1, 2, and 3, due to the simple fact that these self-sustained low multipole
oscillations have an energy which corresponds to a gap of the spectrum of
single-particle excitations (the dipole is an exception, but its negative parity avoids
the direct decay into a 1p— [ A pair). On the other side, the role of Landau damp-
ing is rather effective for higher multipolar modes. destroying them at the very
beginning.

In Section2 we present a short review of the damping processes found in
helium-3 and plasmas. The phase space analysis 1s developed in Section 3 and used
to show that the wall formula represents a process of Landau damping. The dis-
cussion of Section 4 is intended to explain the non-applicability of one-body friction
to the smail amplitude nuclear motion with low mulitipolarities. The conclusions are
collected in Section 5. In Appendix A, we present the calculation of the integral
which measures the phase space available for one-body decay.

2. DAMPING MECHANISMS IN FERMI LIQUIDS

The Landau theory of Fermi liquids [ 147 is based on the concept of a self-con-
sistent mean field for infinite systerus, in which quasi-particles are allowed to move
according to the Pauli principle. The Landau kinetic equation for the distribution
function of quasi-particles is the Vlasov equation supplemented by a collision term
of the Uehling—Uhlenbeck type.

In normal liquid helium-3 at low enough temperatures collisions scarcely take
place, and any disturbance can only be propagated through the mean field. This
phenomenon is called zero-sound to contrast with the normal or first sound, which
propagates due to frequent particle collisions. The physics of zero-sound is just the
same as the one which has been successfully proposed to account for the vibrational
motion of nuclei [17].

Mathematically the zero-sound modes are found as solutions of the linearized
Vlasov equation, which is valid for small wavenumbers (k < k). The existence of
solutions depends on the effective interaction between quasi-particles. In the crudest
approximation, which consists in taking only the first Landau parameter (F; in the
isoscalar spin independent channel), the velocity of zero-sound, in unifs of the
Fermi velocity, s = 0 p,../0F = w/kv,, is the solution of

—1 s

1+ %iog ‘;_%—1 155001 = s]) = _Fio’ (2.1)
with 8(x) the step function. If Fy >0 (repulsive force) s> 1 is real. As the phase
velocity of the wave is larger than the Fermi velocity, no direct energy transfer from
the wave to the particles is possible. If —1 < F, <0 (weak attractive interaction) the
solution 1s complex, meaning that the modes are Landau damped. If Fy < —1
(strong attractive interaction) the solutions are purely imaginary, meaning
instability of the ground state.
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TABLE 1

Landau Parameters for Helium-3 and Nuclear Matter
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Scalar Spin [sospin Spin~-isospin
Fy Fy Go Gy £y F Go G
Helium-3* 1607 6.04 —{L67 -0.67
Nuclear
Matter” —0.37 -0.69 0.45 0.76 0.56 0.43 1.29 0.07

« Expenmental results at P =0 atm, according to J. C. Wheatley, Rev. Mod. Phys. 47 (1975), 413
® Brueckner calculation based on a realistic bare interaction, according te D, Sjdberg. Ann. Phys. 78

{1973). 39 and S. Bickman er al., Nucl. Phys. 4 321 (1979), 10,

The experimental values of the [irst Landau parameters for helium-3 are dis-
played in Table I. The force is strongly repulsive in the scalar channel and weak
attractive in the spin channel. The zero-sound at 7= 0 should therefore be {ree from
Landau damping, which should take place for the spin modes. In Fig.2 the
zero-sound dispersion relation is schematically represented, illustrating the fact that
the inexistence of Landau damping for small & is due to the position of the collec-

tive branche above the band of single particle excitations.

If, however, we extrapolate the results of the Landau theory to the range of
higher k, we find that there is a critical value of k, for which the collective mode
plunges into the continuum of single particle excitations and therefore strong Lan-
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Fig. 2. Schematic representation of the dispersion relation w=w(k) of the zero-sound for neutral

and for a charged Fermi liquid.
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dau damping begins to occur. This sound attenuation has been observed through
neutron scattering on helium-3 [18].

For values of & smaller than the critical, the damping is only due to collisions
between quasi-particles. The collisional width of the Landau theory of Fermi liquids
at T=0 is proportional to the square of the sound frequence [14].

Helium-3 may serve as a guide for the study of nuclear matter, for which the
Landau parameters are not exactly known. Tablel shows a set of Landau
parameters obtained with the aid of Brueckner calculations. As the interaction is
weak attractive in the isoscalar spin-independent channel, the Landau damping
should forbid the existence of the corresponding collective mode. In principle spin,
isospin and spin-isospin modes might exist. It 1s an open question to know whether
these modes are allowed in a range of k, wide enough to consider them as
well-defined modes.

Recently, Yukawa and Kurazawa [ 197 have proposed an approach to the sound
in nuclear matter in terms of the Wigner transform of the RPA equation, with the
result that weak Landau damping sets up even for small values of k and not very
repulsive interactions. The degree of damping they obtain is very sensitive to the
force, indicating that more progress in nuclear effective forces is needed before one
can make definitive statements about the propagation of sound in nuclear matter.

For a charged Fermi liquid like the electron gas, the zero-sound mode has a
finite mass due to the long range Coulomb interaction. The oscillation (plasmon) is
undamped for a large of k, if processes of higher order than the RPA are excluded
(see Fig. 2). The RPA provides the following dispersion relation for a plasmon with

small k at T=0
37k
w=0,| 1+ ?E';) , (22)

with w, = (4npe’/m)"/? the classical plasmon frequence and k. = w, /v, the critical
wavenumber for the onset of Landau damping. The sudden broadening of the
plasmon at k =k, has been observed by electron loss spectroscopy [11]. A typical
experience is 50 KeV electron scattering on A/, with the result that the plasmon
with energy fiw, = 15.8 eV becomes very wide at k.= 0.74 k. Note that this cutoff
is much smaller than the geometrical constraint kg, = 1.7 kr, which arises from
equating the half-wavelength with the mean distance between the electrons.

The only possible type of damping before the cutoff k. is the collision damping.
The collision damping width has been calculated by DuBois with the following
result in first order and for small & [20]

ICP(k) = 9.30k%w2(1 + 0.79),). (2.3)

The strong supression of the collision width {2.3) for £ =0 should be remarked.
For finite temperatures, Landau damping does exist both for helium-3 and the
electron gas at all wavenumbers. It is due to the quasi-particles of the thermal dis-
tribution whose velocity is nearly identical to the phase velocity of the wave. These
quasi-particles may “steal” energy from the wave, without spoiling it completely.
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In helium-3 the thermal Landau damping is obscured by the much stronger
collision damping and is usually ignored.

For the electron gas at T# 0 and small k the plasmon frequence and the Landau
damping width are given respectively by [21]

o | 37 kN2 5
w(,l)_wp[ +5(E)] (24)

U2 sp 23 . N2
ok, T)mfzcuf,(g) (%) exp[—;i—(i;t—_o) :', {2.5)

where &y, = (dnpe/k s T)'? is the reciprocal of the Debye shielding length. The ratio
between width and energy, which depends only on & and T, is exponentially small,
but nevertheless the effect has been confirmed by experiment. An approximate
upper limit is obtained putting k=4,/2, with the result TPlhey =0.987 (for
k>kp/2 the Eq. (2.5) no longer holds).

3. THE WALL FORMULA AS LANDAU DAMPING

The width of the giant resonances in finite nuclei due to the coupling of the RPA
modes to more complicated configurations has been shown to correspond to the
collision damping at low temperatures described by the theory of infinite matter
[1,22]. The microscopic calculations seem to reproduce the experimental width,
with the exception of the breathing mode.

It is purpose of this section to examine the differences between the less known
Landau damping and the collision damping and to establish a relationship with the
current phenomenological models. It is already apparent beforehand, that the wall
formula should correspond to some limit of Landau damping. In fact, in both cases
there is a direct energy transfer from the wave to the particles.

The difference between Landau and collision damping with respect to the energy
and temperature dependence may be explained in terms of phase space available for
decay,

The width of a given collective state |¢), with the excitation energy E=#w may
be evaluated using Fermi’s golden rule

2
F=5 Y KLV 312 bl — E)
/

2 e dn
~— | {S1VIey|" =, (3.1)
h dE
where [ /> are the final states with cnergy £y, V is the interaction responsible for
the decay, the bar denotes a mean value of the transition probability, and dn, /dE is
the density of final states with the prescribed energy Aw.
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The structure of final states is distinct for Landau and collision damping. In the
first case the [inal states are uncorrelated 1p— 1 A excitations, while in the second
are 2p— 2h states (Bortignon and Broglia [23] have emphasized the role of the
diagram of Fig. 1b, where one 1p—1 /4 is correlated ).

Let us consider first the Landau damping in infinite matter at an arbitrary tem-
perature. The damping is assumed to be small enough in order to legitimate the
perturbative formula (3.1).

The density of 1p—1 A states having the given energy is proportional to the
integral

I, 4= ” de, deante, )1 — nles)] 0(hw — &, + £,), (3.2)
where n{¢) is the Fermi distribution function
n{e)=1/{exp[(e—pu)fksT]+ 1} (3.3)

with ¢ the chemical potential. The integral {3.2) can be evaluated exactly (see
Appendix A). The final result reads as

hw
! = ) 34
T _expl —hwik, T) (34)
The Landau damping width for homogeneous matter is therefore
—_ fi
My WK, Ky d (3.5)

I —exp{ —hw/K,TY

where Wi(k,, k;) is a mean one-body interaction obtained from the scattering
amplitude in the medium. For small temperatures, the width (3.5) is proportional
to the collective energy, being independent of the temperature

I Poh, hwe kT, (3.6)

while for large temperatures increases linearly with the temperature, being indepen-
dent of the frequency

IPok, T, kpT» hw. (3.7)

The frequency and temperature dependence (3.6) and (3.7) contrasts to that of
the collision damping width. The density of 2p — 2/ states with energy fiw may be
measured by the integral

Loy = [[[] Tney) n(e2) n(—23) n(~e5) = nles) neg) n(—e1) n( —¢2)]

X Ohw — &y — &4 + &, +8,) de, de, dey deg
2 # 2
= ek T)? [1 +( = ) ] (3.8)

3 2k, T
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The mean two-body interaction contributes with a factor (i)', leading to the
result {14]

Pa(hw)?, fiwe kT, (3.9)
T Palk , TV, kT ho. {3.10)

For k,T> hw the Landau damping does not increase so fast with the temperature
as the collision damping, due to the reduced phase space available for decay. Which
of the two processes prevails is a question which depends on the interaction of the
particular system under study.

For finite nuclei and Aiw » &, T the dependence of I'*? and 7" on Aw may not
be so simple as in (3.6) and (3.9), but it is expected that the dominant behavior is
still given by the infinite matter result.

We wish now to consider the relationship between the width given by the
phenomenological models of nuclear {riction and the energy of the giant resonances.
For the isoscalar electric modes with 4> 2, Bertsch [24] has recognized that the
high frequency response of nuclei to external probes should be accounted for by a
stiffness coefficient characteristic of an elastic body, rather than the stiffness
provided by the standard liquid drop model (similar behavior has been pointed out
for helium-3 [25, 267).

The restoring force constant

A—1
C,1=ETmA(vz> (3.11)
and the irrotational hydrodynamical mass

4 12
L= .
M,_ 2(2: ) H‘ZARO (3 )

lead to the collective energy

C‘ 142 2 1/2 5
E =2} =slZ@i+no-1| 2
f l(ﬂzf}) 2[3{ A+ 1} 1)} R

[2 . 2 pp
=f [5 {24+ 1)~ 1):] Ry
where Am is the nuclear mass, R, is the nuclear radius, and where we have used the
relation between the mean square velocity = ({r*>)'” and the Fermi velocity:
5= (3)"?v,. The expression (3.13) gives a very good overall account of the depen-
dence of the resonance energies on A, without any adjustable parameters. We
obtain for the quadrupole and the octupole

(3.13)

Ey =2 h=£ =1.58 ho, (3.14)
R
28 pp ,
E,= ?frii=2.64 hwg, (3.15)
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where fwg, =414 ' MeV = 0.895/v,/R, is the usual shell energy spacing. For
208} the agreement of (3.14) and (3.15) with the experimental data is nearly perfect
(Eg0 = 10.87 £0.10 MeV and E$P=18.16 + .35 MeV, these values being averages
over the results of different laboratories [277)

The wall formula relies on the assumption of a rigid wall, which is the container
of a rarefied gas (Knudsen gas). The wall is able to transmit energy to the particles
once a disturbance is imposed from outside. The rarefaction is in agreement with
the requirement of a long-mean free path which is known to be adequate in nuclel
The wall formula should therefore be applied to the nuclear elastic vibrations rather
than to the hydrodynamical modes which require by their very definition a
short-mean free path.

The wall formula for the friction coefficient referring to multipolar distortions is

dn
r\_VFw.'“: 7] 4, 3'16
}f. 2i+1pvR0 ( )

where p is the nuclear density. In this context the mean velocity is usually taken to
be 0.75v, but we shall employ the slightly different mean square root t=07Tvp.
Dividing (3.16) by the collective mass (3.13) we obtain the width

- i — (3.17)

IWE =4 )
CTM, T R

The following quotient between /7" and E, is readily achieved

WF 2 1/2
r;é. x[g (2;.+1)(,z—1)] 2 (3.18)

This quantity does not depend on the particular nucleus considered. Table 11 shows
that the dependence on the multipolarity of the oscillation is rather weak.

The linear relation between width and energy characteristic of Landau damping
is therefore fulfilled in the wall model. The dependence of I'¥F/E; on A resembles
the dependence on k of the rate of the Landau damping of plasmons (see Egs. (2.4)
and (2.5)).

Table II indicates that the width is of the order of magnitude of the excitation
energy, like the maximal Landau damping width of the plasmon (see (2.5)). The
smallest value for I'VF/E, occurs in the limit of very large multipoles. The wall for-
mula has been claimed to be valid only in this limit, due to the randomization
hypothesis required in its derivation [6]. We remark that only very big nuclel can
support such modes, since the wavelength of a collective oscillation must be larger
than the mean distance between the nucleons. In the limit 2 — oo (with Ry — ©0,
/R, = constant) we obtain from (3.18)

I'YF \/3_
i A =N =087 3.15
zlinlc. E, 2 08 ( )
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TABLE 11

Ratio between Width and Energy of the Giant Resonances,
using Wall, Modified Wall, and Viscosity Formulas

- 2 3 4 5 6 7
T
r B
Wi g 1.09 0.98 0.94 0.9z 0.91 0.99
i 0.07 0.24 0.51 (.88 1.37 1.95
YHE 0.17 0.28 0.39 0.50 0.61 072

It is well known that the transition from damped periodic (underdamping) to
aperiodic motion (overdamping) of an oscillator takes place when the imaginary
part of the frequency w = w, —iw, = (£ —11/2)/h is equal to the real part, i.c., when
E=w, ;w, = 1. Within the wall model this parameter assumes values which go from
EVT = ['WF/2FE, =0.55, for the quadrupole mode, to

lim EWF = 4 =0.43, (3.20)

As one has always ¢V" < 1, the glant resonances are underdamped with the wall
friction. This statement contrasts to earlier verifications, that the liquid drop
oscillations are overdamped in the wall madel [3, 6].

It 1s however clear that the condition ¢, <1 (or I"; <€ £} which is expected for
well-defined modes, is not satisfied by the wall [riction. For all multipolarities, the
time to reduce the amplitude of the oscillation to half its initial value is comparable
with the period. In the framework of the wall model, the mode should therefore dis-
appear after very few periods. [t is known from the experimental data that the dis-
sipation of the low multipoles is not so strong as indicated by Eq. (3.18). A typical
quadrupole vibration, for instance, lasts at least 4 periods before damped out (the
giant 2% of **Pb has an experimental ratio between width and energy I'§P/ES™® =
2.773/10.87=0.25 [27]).

We must resort to the conclusion that there are assumptions in the derivation of
the wall formula, which cannot be justified in coherent collective motion. It is not
difficult to recognize that a wall external to the particles 15 not realistic in the
present context. Yannouleas [16] and Griffin and Dworzecka [28] have recently
discussed this 1ssue.

The validity of the wall formula may be better understood if analogies with other
many-body systems are developed.

For helium-3, besides the small Landau damping taking place in the bulk, there
is strong Landau damping at the boundary [29], originated by the transfer of
energy from the solid container to the particles in the interior. The particles are in
this case strange to the source of energy as in the nuclear wall formula.
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There is bulk Landau damping in the jellium model of a plasma. The model con-
sists of an ion-electron gas. The ionic plasmons are Landau damped through energy
transfer to the electrons, because there are plenty of electrons available with
velocity equal to the phase velocity of the wave. The only hindrance, which keeps
the process weak, lies in the mismatch between the electron and the ion masses. The
ratio between the imaginary and the real parts of the collective frequency is [12]

i;;=%(3;;z)1'2, (3.21)

r

where Z is the number of electrons per ion, m is the electronic mass, and M is the
ionic mass. An upper bound for (3.30) is ﬁ\/rj/iz =045, corresponding to mZ = M.
This value is remarkably close to the wall formula resuit (3.20). Attention should
however be paid to the fact that for mZ=M the Born-Oppenheimer-like
approximation, which allows the separation of the electronic from the ionic
problem, breaks down.

The last examples show, as a common feature of the wall model, the cir-
cumstance that the collective modes are not made up of the particles which receive
the energy, but are external to them.

A modification of the wall formula has been proposed by Sierk, Koonin, and Nix
[30] with the scope of implementing self-consistency, at least in an approximate
way. In the modified wall formula the dissipation rate is calculated, replacing the
normal surface velocity by the relative normal velocity between the surface and the
matter inside. The result reads as

4n
2i+1

MWF

¥i

(A— 1) pBa’RE, (3.22)

with @ a parameter with the dimensions of a length, which must be of the order of
magnitude of the range of nuclear forces. The associated width is

2 2
P o s = (- 12 (L) e (3.23)
7 3 -
. R R, s

In comparison with the wall width (3.17), there is a correction in the order of
magnitude (@ <€ Ry} and a modification on the multipolar dependence (this depen-
dence is much stronger in (3.23)). If we take {a/R,)?=0.06, corresponding to
a=1.73 for *®*Pb [30], we obtain for (3.23) the range of values shown in Table IL
There is a very weak damping of the first multipoles and a strong damping of the
426 modes. The transition to overdamping occurs approximately at A=7
(EMF =0.98). The next mode is already overdamped (EMWF = 1.35). The situation
is very similar to that found in helium-3 and in the electron gas, where the collec-
tive mode disappears due to Landau damping at some critical value of £.
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The maximal value for the multipolarity of a surface oscillation in *®Pb is A =11,
as it may easily be verified equating half wavelength 2rR,/2A with the mean dis-
tance between nucleons d=2 fm. The mode A=11 is strongly overdamped
(EMWF =261).

This picture of one-body damping is much more reasonable than the one
provided by the simple wall formula. The modified wall formula may be supported
by several arguments. On one hand, a weak one-body damping of symmetrical
shapes (even zero for the quadrupole) has been found in a classical linear response
calculation by Koonin and Randrup {31]. On the other hand, Griffin and Dwor-
zecka [287, based on the work of Yannouleas [16], have proposed a quantal wall
formula giving a damping which is less than 10% of the standard wall result. The
modified wall formula of Sierk er al. satisfies this constraint and seems therefore to
simulate in a simple way the real quantal damping.

Let us now discuss the experimental information on the width of giant resonan-
ces. The width of the dipole and of the quadrupole is fitted by the following formula

[32]
[se=0029E,  A=1,2 (3.24)

This empirical relationship indicates that the prevailing mechanism of damping is
collisional, although strong shell effects obscure the smooth trend. If one tries to
describe the experimental data by a straight line, the slope should be approximately
I./E, =0.25. Nix et al. [33] claim that the renormalization of the wall formula by
a factor 0.27 may describe both the quadrupole and the octupole widths. This
approach has the drawback of failing to predict the rapid decay of high multipoles
and its consequent non-observability. On the contrary, a formula based on the
modified wall formula shows up this feature. Recent results on the detection of the
octupole strength suggest that the high energy octupole is much more spread than
it was supposed to [27].

As the modified wall formula only accounts for 28% of the experimental
quadrupole damping, the rest should be attributed to two-body processes. Let us
then consider the dissipation given by the viscosity formula. The viscosity friction
constant is

e

— Riu, (3.25)

where u is the viscosity coefficient, which is related to the mean free path L by

p= % piL. (3.26)

The whole approach depends on the condition L < R,. This requirement is not met
in practice in nuclear physics, but we may consider {3.25) and (3.26) merely as a
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phenomenological prescription for the two-body dissipation. Inserting (3.26) in
(3.25) we obtain

pyF=2 mAGL. (3.27)

The viscosity width is obtained dividing {3.27) by (3.12)

2 L
T =z h(2=1)2i+ )i, (3.28)

tH

This width increases with A much faster than the wall width (3.17), in agreement
with the physical picture we have of the damping process.

It is straightforward from (3.28) and (3.13) to arrive at the following quadratic
dependence of the viscosity width on the energy:

e or
£ W

A

(3.29)

This value is not only independent of the nuclear radius but also of the multipole
degree.

The relation (3.29) is similar to {3.9), which characterizes collision damping at
low temperatures, although the physics involved is different. At low temperatures
Fermi liquids display a long-mean free path, which is incompatible with the idea of
frequent particle collisions.

The fact that the viscosity width shows the same dependence on the frequency as
the collisional width of zero sound may explain some qualitative agreement with
experiment of the viscosity width [4,5]. Actually, the viscosity coefficient is
adjusted from some data {in general on the kinetic energy of fission fragments).
According to (3.26) this fitting corresponds to choosing an “effective mean free
path” L. The viscosity = 0.03 £ 0.01 TP, which is adequate for fission, leads to L=
0.65 +0.22 fm, in disagreement with the experimental knowledge on the mean free
path (L2 Ry, with Ry =7.07m for *®*Pb). Nevertheless, we remark that the dis-
sipation predicted by (3.29) with L=065fm is essentially the difference between
the experimental and the one-body (modified wall) results for the quadrupole in

208Pb
it 10 L
o= [——=(17 3.30
Es V3R ( )

In this way we obtain a comprehensive view of the damping of giant resonances as
a sum of one- and two-body contributions. In Table II the ratio I'JF/E; is shown
for 2< A< 7, keeping L constant.
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We note that (3.28) gives underdamping of all the admissible multipoles. The
coefficient

1/2
é)-_’*":[é (2Z+I)(2—1)} e (3.31)

is 0.09, 0.31, and 0.58 for 1 =2, 6, and 11, respectively. Wong [347 has proposed to
take as lower and upper bounds for the nuclear viscosity the values which give
overdamping of the 1= 1, and the =2 modes of the liquid drop model, respec-
tively: 0.0568 < 1 <0.0687 TP. The coefficient ;=003 does not satisfy the first
inequality since the two-body dissipation we have in mind is adequate to describe
the damping ol giant resonances and not of the low-lying modes. Although the
viscosity we are using is not sufficient to assure overdamping of the maximal mode
i =11, the combined effect of one- and two-body damping provides overdamp-

“max

ing at already 4 =6 for **Pb (see Table II).

4 IRRELEVANCE OF LANDAU DAMPING FOR THE GIANT RESONANCES A=2 AND 3

In this section we will show why Landau damping cannot be the adequate
process for the description of the damping of the lowest surface multipolar modes.
One-body damping is only pertinent for high distorted shapes and for the com-
pression modes.

We may look into the problem from a classical or from a quantal perspective:

(i) Classical picture. Landau damping can only occur if the velocity of the
wave is slightly smaller than the velocity of the particle. The phase velocity of the
wave corresponding to the giant surface modes is, in units of v, Upnase/Vr =
w/kvy = [2(24 + 1)(A—1)1"2/A. For 1=2, the result is 0.71. There is in this case a
serious discrepancy between the wave velocity and the velocity of the most external
particle and a large energy exchange between wave and particle cannot take place.
The phase velocity is however increasing with A For A=7, Ugpee/vr=0.85,
indicating that Landau damping is possible. Note that the corresponding “critical”
wavenumber for 2®Pb is k =0.78k, a value which is very close to the critical
wavelength in the given example of Landau damping in a metal.

(ii) Quantal picture. If we take as shell basis an harmonic oscillator, the
quadrupole motion is build up from 0fw, and 24w, single particle excitations. The
effect of the residual forces is to pull down the isoscalar mode and to pull up the
isovector mode. The isoscalar mode A= 2 has been predicted using self-consistency
arguments (o be at £, mﬁfzw@, while on the same basis the high frequency
octupole should be at Ej =\ﬁﬁw0 ([177, compare with (3.14) and (3.15)). Both
the giant quadrupole and octupole are therefore situated in the middle of gaps of
the single-particie excitation spectrum (see Fig. 3). There is no possibility of direct
energy transfer from the collective to single-particle degrees of freedom.



200 CARLOS FIOLHAIS

The “dispersion relation” E= E(4) represented in Fig. 3 contrasts with those of
Fig. 2 for infinite matter systems, due to the quantization of both collective and
single-particle spectra. But there does exist a resemblance in the fact that for long
wavelengths the collective modes do not superimpose with single-particle ones.

Although the real situation i1s much more involved than in the schematic model,
mainly due to the spin-orbit splitting which mixes different shells, the microscopic
RPA calculations show a clear-cut concentration of strength for the quadrupole
and octupole giant modes (the octupole has a low-lying collective component,
which carries a fair ammount of strength, but this mode is outside the scope of the
macroscopic treatment of Sect. 3). The shell structure together with the residual for-
ces assure the existence of self-sustained modes.

It is apparent from the RPA results that the strength of the multipole operators
becomes gradually very fragmented with increasing 4 [32]. After A=6 it is
impossible to recognize any peaks. This fact is a clear manifestation of Landau
damping. For A=6, the centroid energy predicted by the macroscopic formula
(3.13} is E, =5.70hw,. This value is inside the 6Aw, excitation “band”, which
should be rather large due to the increasing number of configurations which are
possible at high excitation energies. The formula (3.13) is supported by RPA
sum-rules for A< 6, but it should be noted that it does not hold anymore for i>6
[35]. This effect should be interpreted as a manifestation of Landau damping,
which affects not only the width but the centroid energy of the resonance, lowering
it. The numbers I”,/E, displayed in Table I and calculated on the basis of (3.13)
are only conservative estimates of the real damping for A=7.
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FiG. 3. Schematic representation of the “dispersion relation” E=E(1) for the first nuclear giant
resonances. The broadening of the single-particle excitation “bands” is intended to simulate the increas-
ing number of configurations at high energy.
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For the isovector dipole mode, the strong isovector interaction displaces the
energy from the unperturbed value to approximately 2Aw, in heavy nuclei. There is
however no possibility for an extended energy exchange through Landau damping
due to the different parity of collective and single particle excitations (the spin-orbit
force causes some intrusions of levels with negative parity into this energy range).

The monopole is a special case since its ph components lie at 2fw, and the obser-
ved energy is roughly at the same position (the experimental 0* for **®*Pb is at
13.72 +0.21 MeV, having a width of 2.67 +0.37 MeV). We can therefore expect that
Landau damping plays a role for the monopole. Corroborating this possibility, we
may add some arguments:

(a) Microscopic calculations give only a collisional width of 1 MeV [1],
which is too low when compared with the experimental result.

(b) It has been reported by some authors [36] that the monopole has as
appreciable width ( ~ 2 MeV} already in the RPA.

(c) The data systematics [32] on the monopoie width does not follow the
empirical rule (3.24}.

We think that a proper combination of one- and two-body damping processes
may explain the monopole width. As suggested in [1], the decay branches of the
monopole should be investigated.

5. CONCLUSIONS

As in infinite Fermi liquids there are two main types of damping of nuclear
collective motion: Landau or collisioless (one-body dissipation) and collision dam-
ping (two-body dissipation}.

We have concentrated in this work on the Landau damping. A criterium for
well-defined collective motion is that the Landau damping width is small when
compared with the collective energy: I'*" < E. If this condition is not met, it is not
worth to extend the calculations to the further level of complexity.

We have shown that in infinite systems the Landau and the collision widths have
different dependencies on energy and temperature. The two most common
phenomenological approaches to nuclear friction display the energy dependence
required by such general considerations.

The wall formula does not satisfy the condition of the smallness of the width
when compared to the energy. This shortcoming is due to the assumption of a wall
as an external source of energy. The modified wall {formula, which incorporates
self-consistency, is able to describe the Landau damping of high multipoles. The
occurrence of overdamping after 2 =7 indicates that there is a critical multipolarity
for which the collective behaviour is essentially replaced by incoherent single-par-
ticle response.

Although this work confirms other studies about the inadequacy of the wall for-
mula in some circumstances [16], it should be emphasized that the formula was
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nol originally intended to describe small disturbances but the large amplitudes
found in fission and heavy ion collisions. In these cases the nuclear shapes include
very high multipolar components.

Finally we have shown the reason for processes of Landau type to be irrelevant
when studying the decay of the 1=2 and 3 giant modes. The self-consistency
provided by the residual interactions conjugated with the existence of shells guaran-
tee that the collective energies do not coincide with the energy of any single-particle
excitation of the same parity. The Landau damping in nuclear as well as in other
many-body systems manifests itself in strongly damping modes with short
wavelengths.

The broadening of giant resonances in deformed nuclei, which may be accounted
by a RPA description, is due to the dense bunches of levels characteristic of defor-
med shell models. This Landau damping in the deformed basis, should be
equivalent to the w— 0 limit of the collision damping in the spherical basis, since
the deformed shape may be interpreted as a very slow, adiabatic vibration.

A rtecent interest on the question of collective motion at finite temperatures has
emerged from the experimental detection of the giant dipole in compound nuclet
[37,38]. In this situation Landau damping should appear or become more accen-
tuated, but its relative role in comparison with the collision damping is unclear. The
one-body width increases with the temperature certainly due to the increase of
deformation of the system. We would expect a weak direct T-dependence of both
Landau and collision damping for the range of temperatures available
(kyT<2MeV, hw =~ 15MeV, and therefore kT <Aw). Further data is needed to
determine the main mechanism of damping of collective energy in thermal excited
nuclei.

APPENDIX A

In this Appendix, we calculate the integral (3.2}

Tpsn = [[ dey dean(e)(1 —n(e:)) ki — o5 +21).

We change variables from ¢ and w to respectively x = (e —pu)/ks T and E=w/kpT
obtaining

L s =ka T [ nx)(1 = n(x2)) (&= x; +x,) dx, dx,

1 1 .
=kBTJJ- ex1+1€"“x2+1 5((:-—)(72 +x;)dx1 dX2
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w ] 1

- ().w;+1€~.t1m¢+1
1 i

u+lua+1l

du
awt +{a+ Du+1"

——-kBTJ‘j dx,

du

+
:kBTJ.
0

w_wk,jTj(:

where we have introduced v=¢ " and a=¢""
The result is the expression (3.4)

loga fuw
1—a | —expl—hwk,T)

Iipmlh = “kf:T
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